
IDL Version 6.0
July, 2003 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

IDL Reference
Guide

0703IDL60REF

Restricted Rights Notice
The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. Research Sys-
tems, Inc., reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty
Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of the soft-
ware, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered
by the Licensee or any others resulting from use of the IDL or ION software packages or their doc-
umentation.

Permission to Reproduce this Manual
If you are a licensed user of this product, Research Systems, Inc. grants you a limited, nontransfer-
able license to reproduce this particular document provided such copies are for your use only and
are not sold or distributed to third parties. All such copies must contain the title page and this
notice page in their entirety.

Acknowledgments
IDL® is a registered trademark and ION™, ION Script™, ION Java™, are trademarks of Research Systems Inc., registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 1999
National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by INTERSOLV, Inc., 1991-1998.

Use of this software for providing LZW capability for any purpose is not authorized unless user first enters into a license agreement
with Unisys under U.S. Patent No. 4,558,302 and foreign counterparts. For information concerning licensing, please contact: Unisys
Corporation, Welch Licensing Department - C1SW19, Township Line & Union Meeting Roads, P.O. Box 500, Blue Bell, PA 19424.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)

IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents
Chapter 1:
Overview of IDL Syntax .. 53
IDL Syntax .. 54

Elements of Syntax ... 55
Procedures ... 56
Functions ... 56
Arguments ... 57
Keywords .. 57

Part I: IDL Command Reference

Chapter 2:
Dot Commands .. 62
.COMPILE ... 63
.CONTINUE ... 64
.EDIT ... 65
IDL Reference Guide 3

4

.FULL_RESET_SESSION .. 66

.GO ... 67

.OUT .. 68

.RESET_SESSION .. 69

.RETURN .. 71

.RNEW ... 72

.RUN ... 74

.SKIP .. 76

.STEP .. 78

.STEPOVER ... 79

.TRACE .. 80

Chapter 3:
Procedures and Functions .. 81
A_CORRELATE ... 82
ABS .. 84
ACOS ... 86
ADAPT_HIST_EQUAL .. 88
ALOG .. 91
ALOG10 .. 93
AMOEBA .. 95
ANNOTATE .. 99
ARG_PRESENT .. 101
ARRAY_EQUAL .. 103
ARRAY_INDICES .. 105
ARROW ... 108
ASCII_TEMPLATE .. 110
ASIN .. 114
ASSOC ... 116
ATAN .. 119
AXIS .. 123
BAR_PLOT .. 127
BEGIN...END ... 131
BESELI ... 134
BESELJ ... 137
BESELK ... 142
Contents IDL Reference Guide

5

BESELY ... 145
BETA .. 148
BILINEAR ... 150
BIN_DATE .. 153
BINARY_TEMPLATE .. 155
BINDGEN .. 160
BINOMIAL .. 162
BLAS_AXPY ... 164
BLK_CON .. 168
BOX_CURSOR .. 170
BREAK .. 172
BREAKPOINT ... 173
BROYDEN ... 176
BYTARR .. 179
BYTE .. 181
BYTEORDER .. 183
BYTSCL ... 188
C_CORRELATE ... 191
CALDAT .. 194
CALENDAR ... 197
CALL_EXTERNAL ... 198
CALL_FUNCTION .. 209
CALL_METHOD ... 211
CALL_PROCEDURE ... 213
CASE ... 215
CATCH ... 217
CD ... 220
CDF Routines .. 222
CEIL .. 223
CHEBYSHEV ... 225
CHECK_MATH .. 226
CHISQR_CVF ... 232
CHISQR_PDF ... 234
CHOLDC ... 236
CHOLSOL ... 238
CINDGEN ... 240
IDL Reference Guide Contents

6

CIR_3PNT ... 242
CLOSE ... 244
CLUST_WTS .. 246
CLUSTER .. 248
COLOR_CONVERT ... 251
COLOR_QUAN .. 253
COLORMAP_APPLICABLE ... 257
COMFIT .. 259
COMMON ... 262
COMPILE_OPT .. 263
COMPLEX .. 268
COMPLEXARR .. 272
COMPLEXROUND .. 274
COMPUTE_MESH_NORMALS .. 276
COND .. 277
CONGRID ... 279
CONJ .. 282
CONSTRAINED_MIN .. 284
CONTINUE ... 291
CONTOUR .. 292
CONVERT_COORD ... 305
CONVOL ... 308
COORD2TO3 .. 313
COPY_LUN ... 315
CORRELATE .. 318
COS .. 320
COSH ... 322
CPU .. 324
CRAMER ... 327
CREATE_STRUCT ... 329
CREATE_VIEW .. 332
CROSSP ... 336
CRVLENGTH ... 337
CT_LUMINANCE .. 339
CTI_TEST .. 341
CURSOR .. 344
Contents IDL Reference Guide

7

CURVEFIT ... 347
CV_COORD ... 352
CVTTOBM ... 355
CW_ANIMATE .. 357
CW_ANIMATE_GETP .. 362
CW_ANIMATE_LOAD ... 364
CW_ANIMATE_RUN .. 367
CW_ARCBALL .. 369
CW_BGROUP .. 374
CW_CLR_INDEX .. 380
CW_COLORSEL .. 383
CW_DEFROI .. 386
CW_FIELD ... 390
CW_FILESEL ... 395
CW_FORM ... 400
CW_FSLIDER .. 408
CW_LIGHT_EDITOR .. 413
CW_LIGHT_EDITOR_GET .. 417
CW_LIGHT_EDITOR_SET ... 420
CW_ORIENT .. 422
CW_PALETTE_EDITOR ... 425
CW_PALETTE_EDITOR_GET ... 432
CW_PALETTE_EDITOR_SET ... 433
CW_PDMENU .. 434
CW_RGBSLIDER .. 442
CW_TMPL .. 446
CW_ZOOM ... 447
DBLARR ... 452
DCINDGEN .. 454
DCOMPLEX ... 456
DCOMPLEXARR ... 459
DEFINE_KEY ... 461
DEFINE_MSGBLK .. 470
DEFINE_MSGBLK_FROM_FILE .. 473
DEFROI ... 478
DEFSYSV ... 480
IDL Reference Guide Contents

8

DELVAR ... 482
DERIV ... 483
DERIVSIG ... 484
DETERM ... 486
DEVICE ... 488
DFPMIN .. 492
DIAG_MATRIX .. 496
DIALOG_MESSAGE .. 498
DIALOG_PICKFILE ... 501
DIALOG_PRINTERSETUP ... 506
DIALOG_PRINTJOB .. 508
DIALOG_READ_IMAGE .. 510
DIALOG_WRITE_IMAGE .. 513
DIGITAL_FILTER .. 515
DILATE ... 517
DINDGEN ... 523
DISSOLVE .. 525
DIST ... 527
DLM_LOAD .. 529
DLM_REGISTER .. 530
DOC_LIBRARY .. 531
DOUBLE ... 533
DRAW_ROI .. 535
EFONT ... 537
EIGENQL .. 539
EIGENVEC .. 542
ELMHES .. 545
EMPTY .. 547
ENABLE_SYSRTN .. 548
EOF .. 550
EOS_* Routines ... 552
ERASE ... 553
ERF .. 555
ERFC .. 557
ERFCX ... 559
ERODE .. 561
Contents IDL Reference Guide

9

ERRPLOT ... 566
EXECUTE ... 568
EXIT .. 570
EXP ... 572
EXPAND ... 574
EXPAND_PATH .. 576
EXPINT ... 582
EXTRAC ... 585
EXTRACT_SLICE ... 588
F_CVF ... 593
F_PDF ... 595
FACTORIAL ... 597
FFT .. 599
FILE_BASENAME ... 605
FILE_CHMOD .. 608
FILE_COPY .. 612
FILE_DELETE ... 616
FILE_DIRNAME .. 619
FILE_EXPAND_PATH .. 622
FILE_INFO ... 624
FILE_LINES ... 628
FILE_LINK ... 631
FILE_MKDIR ... 634
FILE_MOVE ... 635
FILE_READLINK .. 638
FILE_SAME ... 640
FILE_SEARCH ... 643
FILE_TEST ... 657
FILE_WHICH ... 661
FILEPATH .. 663
FINDFILE ... 665
FINDGEN ... 667
FINITE .. 669
FIX ... 673
FLICK ... 676
FLOAT .. 677
IDL Reference Guide Contents

10
FLOOR .. 679
FLOW3 .. 681
FLTARR .. 683
FLUSH ... 685
FOR .. 686
FORMAT_AXIS_VALUES .. 687
FORWARD_FUNCTION ... 689
FREE_LUN .. 690
FSTAT ... 692
FULSTR ... 695
FUNCT .. 697
FUNCTION ... 699
FV_TEST ... 700
FX_ROOT .. 702
FZ_ROOTS .. 705
GAMMA .. 708
GAMMA_CT ... 710
GAUSS_CVF ... 711
GAUSS_PDF ... 713
GAUSS2DFIT .. 715
GAUSSFIT .. 719
GAUSSINT .. 724
GET_DRIVE_LIST ... 726
GET_KBRD ... 728
GET_LUN .. 730
GET_SCREEN_SIZE .. 732
GETENV .. 734
GOTO .. 737
GRID_INPUT .. 738
GRID_TPS ... 743
GRID3 .. 747
GRIDDATA ... 750
GS_ITER .. 774
H_EQ_CT .. 777
H_EQ_INT ... 778
H5_* Routines ... 780
Contents IDL Reference Guide

11
H5_BROWSER .. 781
HANNING .. 784
HDF_* Routines .. 786
HDF_BROWSER .. 787
HDF_READ .. 791
HEAP_FREE ... 795
HEAP_GC ... 798
HELP ... 800
HILBERT .. 807
HIST_2D ... 809
HIST_EQUAL ... 811
HISTOGRAM ... 814
HLS ... 821
HOUGH ... 823
HQR ... 832
HSV ... 834
IBETA ... 836
ICONTOUR .. 840
IDENTITY .. 863
IDL_Container Object Class ... 865
IDL_VALIDNAME .. 866
IDLan* Object Class ... 868
IDLcom* Object Class .. 869
IDLff* Object Class .. 870
IDLgr* Object Classes .. 871
IDLit* Object Classes ... 872
IDLITSYS_CREATETOOL ... 873
IF...THEN...ELSE ... 876
IGAMMA .. 878
IIMAGE ... 881
IMAGE_CONT ... 896
IMAGE_STATISTICS .. 898
IMAGINARY .. 901
INDGEN .. 903
INT_2D ... 906
INT_3D ... 910
IDL Reference Guide Contents

12
INT_TABULATED ... 913
INTARR ... 915
INTERPOL .. 917
INTERPOLATE .. 920
INTERVAL_VOLUME .. 924
INVERT ... 929
IOCTL .. 931
IPLOT .. 935
ISHFT .. 953
ISOCONTOUR .. 955
ISOSURFACE ... 960
ISURFACE .. 964
ITCURRENT ... 983
ITDELETE ... 985
ITGETCURRENT ... 987
ITREGISTER ... 989
ITRESET .. 992
IVOLUME ... 994
JOURNAL ... 1015
JULDAY .. 1017
KEYWORD_SET .. 1020
KRIG2D ... 1022
KURTOSIS .. 1027
KW_TEST ... 1029
L64INDGEN .. 1032
LA_CHOLDC ... 1034
LA_CHOLMPROVE ... 1037
LA_CHOLSOL ... 1041
LA_DETERM ... 1044
LA_EIGENPROBLEM .. 1046
LA_EIGENQL .. 1052
LA_EIGENVEC .. 1058
LA_ELMHES ... 1062
LA_GM_LINEAR_MODEL .. 1065
LA_HQR ... 1068
LA_INVERT ... 1071
Contents IDL Reference Guide

13
LA_LEAST_SQUARE_EQUALITY .. 1073
LA_LEAST_SQUARES .. 1076
LA_LINEAR_EQUATION ... 1080
LA_LUDC .. 1083
LA_LUMPROVE ... 1086
LA_LUSOL .. 1089
LA_SVD ... 1092
LA_TRIDC ... 1096
LA_TRIMPROVE .. 1100
LA_TRIQL ... 1104
LA_TRIRED ... 1107
LA_TRISOL .. 1109
LABEL_DATE ... 1112
LABEL_REGION ... 1116
LADFIT ... 1119
LAGUERRE ... 1122
LEEFILT ... 1125
LEGENDRE .. 1127
LINBCG .. 1130
LINDGEN ... 1133
LINFIT .. 1135
LINKIMAGE .. 1138
LL_ARC_DISTANCE .. 1142
LMFIT ... 1144
LMGR ... 1149
LNGAMMA .. 1152
LNP_TEST .. 1154
LOADCT ... 1157
LOCALE_GET ... 1159
LOGICAL_AND ... 1160
LOGICAL_OR .. 1162
LOGICAL_TRUE ... 1164
LON64ARR ... 1166
LONARR ... 1168
LONG .. 1170
LONG64 .. 1172
IDL Reference Guide Contents

14
LSODE ... 1174
LU_COMPLEX ... 1179
LUDC .. 1181
LUMPROVE .. 1183
LUSOL ... 1186
M_CORRELATE .. 1189
MACHAR .. 1192
MAKE_ARRAY .. 1194
MAKE_DLL .. 1198
MAP_2POINTS ... 1204
MAP_CONTINENTS .. 1208
MAP_GRID ... 1213
MAP_IMAGE .. 1218
MAP_PATCH .. 1222
MAP_PROJ_FORWARD .. 1226
MAP_PROJ_INFO .. 1231
MAP_PROJ_INIT .. 1234
MAP_PROJ_INVERSE ... 1250
MAP_SET .. 1252
MATRIX_MULTIPLY .. 1263
MATRIX_POWER .. 1266
MAX .. 1268
MD_TEST .. 1272
MEAN .. 1274
MEANABSDEV .. 1276
MEDIAN .. 1278
MEMORY .. 1281
MESH_CLIP .. 1285
MESH_DECIMATE .. 1290
MESH_ISSOLID ... 1297
MESH_MERGE .. 1298
MESH_NUMTRIANGLES ... 1303
MESH_OBJ ... 1304
MESH_SMOOTH .. 1311
MESH_SURFACEAREA .. 1317
MESH_VALIDATE .. 1319
Contents IDL Reference Guide

15
MESH_VOLUME ... 1321
MESSAGE .. 1323
MIN ... 1329
MIN_CURVE_SURF .. 1332
MK_HTML_HELP ... 1337
MODIFYCT .. 1340
MOMENT ... 1342
MORPH_CLOSE .. 1345
MORPH_DISTANCE ... 1348
MORPH_GRADIENT .. 1351
MORPH_HITORMISS ... 1354
MORPH_OPEN .. 1357
MORPH_THIN ... 1360
MORPH_TOPHAT ... 1362
MPEG_CLOSE ... 1365
MPEG_OPEN ... 1366
MPEG_PUT .. 1370
MPEG_SAVE ... 1372
MSG_CAT_CLOSE .. 1373
MSG_CAT_COMPILE ... 1374
MSG_CAT_OPEN .. 1376
MULTI .. 1378
N_ELEMENTS ... 1380
N_PARAMS .. 1382
N_TAGS .. 1383
NCDF_* Routines ... 1385
NEWTON .. 1386
NORM ... 1389
OBJ_CLASS ... 1392
OBJ_DESTROY ... 1394
OBJ_ISA ... 1395
OBJ_NEW ... 1396
OBJ_VALID ... 1398
OBJARR .. 1400
ON_ERROR .. 1402
ON_IOERROR .. 1403
IDL Reference Guide Contents

16
ONLINE_HELP ... 1405
OPEN .. 1410
OPLOT ... 1419
OPLOTERR ... 1422
P_CORRELATE .. 1424
PARTICLE_TRACE ... 1426
PATH_CACHE .. 1429
PATH_SEP .. 1436
PCOMP .. 1437
PLOT .. 1442
PLOT_3DBOX .. 1446
PLOT_FIELD .. 1450
PLOTERR .. 1452
PLOTS ... 1454
PNT_LINE ... 1457
POINT_LUN .. 1459
POLAR_CONTOUR ... 1461
POLAR_SURFACE .. 1463
POLY ... 1466
POLY_2D .. 1467
POLY_AREA .. 1472
POLY_FIT ... 1474
POLYFILL ... 1478
POLYFILLV .. 1482
POLYSHADE .. 1484
POLYWARP .. 1488
POPD ... 1492
POWELL ... 1493
PRIMES ... 1496
PRINT/PRINTF ... 1497
PRINTD ... 1500
PRO .. 1501
PRODUCT ... 1503
PROFILE ... 1506
PROFILER ... 1509
PROFILES ... 1512
Contents IDL Reference Guide

17
PROJECT_VOL .. 1514
PS_SHOW_FONTS .. 1518
PSAFM .. 1519
PSEUDO ... 1520
PTR_FREE .. 1522
PTR_NEW ... 1523
PTR_VALID ... 1525
PTRARR ... 1528
PUSHD .. 1530
QGRID3 .. 1531
QHULL ... 1536
QROMB .. 1540
QROMO .. 1545
QSIMP ... 1548
QUERY_* Routines .. 1551
QUERY_BMP ... 1555
QUERY_DICOM .. 1556
QUERY_IMAGE .. 1558
QUERY_JPEG .. 1562
QUERY_MRSID ... 1563
QUERY_PICT ... 1566
QUERY_PNG ... 1567
QUERY_PPM ... 1569
QUERY_SRF .. 1571
QUERY_TIFF ... 1572
QUERY_WAV .. 1574
R_CORRELATE ... 1576
R_TEST ... 1579
RADON ... 1581
RANDOMN .. 1590
RANDOMU .. 1595
RANKS ... 1600
RDPIX ... 1602
READ/READF ... 1603
READ_ASCII .. 1606
READ_BINARY ... 1609
IDL Reference Guide Contents

18
READ_BMP .. 1611
READ_DICOM ... 1614
READ_IMAGE .. 1616
READ_INTERFILE .. 1618
READ_JPEG .. 1620
READ_MRSID .. 1624
READ_PICT .. 1627
READ_PNG ... 1629
READ_PPM ... 1632
READ_SPR .. 1634
READ_SRF .. 1635
READ_SYLK .. 1637
READ_TIFF .. 1641
READ_WAV ... 1649
READ_WAVE ... 1650
READ_X11_BITMAP ... 1652
READ_XWD ... 1654
READS .. 1656
READU .. 1658
REAL_PART ... 1660
REBIN .. 1661
RECALL_COMMANDS .. 1665
RECON3 .. 1666
REDUCE_COLORS .. 1672
REFORM ... 1674
REGION_GROW .. 1676
REGISTER_CURSOR .. 1679
REGRESS .. 1681
REPEAT...UNTIL ... 1685
REPLICATE .. 1686
REPLICATE_INPLACE ... 1688
RESOLVE_ALL .. 1690
RESOLVE_ROUTINE .. 1692
RESTORE .. 1694
RETALL .. 1696
RETURN .. 1697
Contents IDL Reference Guide

19
REVERSE ... 1699
RK4 ... 1701
ROBERTS ... 1704
ROT ... 1706
ROTATE ... 1709
ROUND ... 1712
ROUTINE_INFO .. 1714
RS_TEST ... 1717
S_TEST ... 1720
SAVE ... 1722
SAVGOL ... 1725
SCALE3 .. 1729
SCALE3D ... 1731
SEARCH2D .. 1732
SEARCH3D .. 1735
SET_PLOT .. 1739
SET_SHADING .. 1741
SETENV .. 1743
SETUP_KEYS .. 1744
SFIT ... 1747
SHADE_SURF .. 1750
SHADE_SURF_IRR ... 1755
SHADE_VOLUME ... 1758
SHIFT .. 1761
SHMDEBUG ... 1763
SHMMAP .. 1765
SHMUNMAP .. 1780
SHMVAR .. 1782
SHOW3 ... 1786
SHOWFONT ... 1788
SIMPLEX .. 1790
SIN ... 1795
SINDGEN ... 1797
SINH .. 1798
SIZE ... 1800
SKEWNESS .. 1805
IDL Reference Guide Contents

20
SKIP_LUN ... 1807
SLICER3 .. 1810
SLIDE_IMAGE ... 1830
SMOOTH ... 1834
SOBEL ... 1837
SOCKET .. 1839
SORT ... 1844
SPAWN .. 1846
SPH_4PNT ... 1854
SPH_SCAT .. 1856
SPHER_HARM .. 1859
SPL_INIT ... 1862
SPL_INTERP ... 1864
SPLINE .. 1866
SPLINE_P .. 1868
SPRSAB ... 1871
SPRSAX .. 1874
SPRSIN .. 1876
SPRSTP .. 1879
SQRT ... 1880
STANDARDIZE .. 1882
STDDEV .. 1884
STOP .. 1886
STRARR .. 1887
STRCMP .. 1888
STRCOMPRESS ... 1890
STREAMLINE .. 1892
STREGEX .. 1894
STRETCH .. 1898
STRING ... 1900
STRJOIN .. 1903
STRLEN .. 1905
STRLOWCASE ... 1906
STRMATCH .. 1908
STRMESSAGE .. 1911
STRMID .. 1913
Contents IDL Reference Guide

21
STRPOS .. 1915
STRPUT .. 1918
STRSPLIT ... 1920
STRTRIM .. 1926
STRUCT_ASSIGN ... 1928
STRUCT_HIDE .. 1930
STRUPCASE .. 1932
SURFACE ... 1934
SURFR .. 1940
SVDC .. 1941
SVDFIT ... 1944
SVSOL .. 1950
SWAP_ENDIAN ... 1952
SWAP_ENDIAN_INPLACE .. 1954
SWITCH .. 1956
SYSTIME .. 1958
T_CVF ... 1961
T_PDF ... 1964
T3D .. 1966
TAG_NAMES ... 1969
TAN ... 1971
TANH .. 1973
TEK_COLOR .. 1975
TEMPORARY .. 1976
TETRA_CLIP ... 1978
TETRA_SURFACE .. 1980
TETRA_VOLUME ... 1981
THIN ... 1983
THREED ... 1985
TIME_TEST2 .. 1987
TIMEGEN ... 1988
TM_TEST ... 1993
TOTAL .. 1995
TRACE .. 1999
TrackBall Object ... 2001
TRANSPOSE .. 2002
IDL Reference Guide Contents

22
TRI_SURF ... 2005
TRIANGULATE ... 2009
TRIGRID ... 2013
TRIQL .. 2023
TRIRED ... 2026
TRISOL .. 2028
TRUNCATE_LUN .. 2031
TS_COEF ... 2033
TS_DIFF .. 2035
TS_FCAST .. 2037
TS_SMOOTH .. 2039
TV .. 2042
TVCRS ... 2046
TVLCT ... 2048
TVRD ... 2051
TVSCL ... 2055
UINDGEN ... 2058
UINT .. 2060
UINTARR .. 2062
UL64INDGEN ... 2064
ULINDGEN ... 2066
ULON64ARR .. 2068
ULONARR .. 2070
ULONG .. 2072
ULONG64 .. 2074
UNIQ .. 2076
USERSYM ... 2078
VALUE_LOCATE .. 2080
VARIANCE ... 2082
VECTOR_FIELD .. 2084
VEL .. 2086
VELOVECT .. 2088
VERT_T3D .. 2091
VOIGT ... 2093
VORONOI ... 2096
VOXEL_PROJ ... 2098
Contents IDL Reference Guide

23
WAIT ... 2104
WARP_TRI ... 2105
WATERSHED .. 2107
Wavelet Toolkit ... 2110
WDELETE .. 2111
WF_DRAW ... 2112
WHERE ... 2115
WHILE...DO ... 2119
WIDGET_ACTIVEX .. 2120
WIDGET_BASE ... 2127
WIDGET_BUTTON ... 2151
WIDGET_COMBOBOX .. 2162
WIDGET_CONTROL .. 2170
WIDGET_DISPLAYCONTEXTMENU .. 2211
WIDGET_DRAW ... 2213
WIDGET_DROPLIST .. 2230
WIDGET_EVENT .. 2237
WIDGET_INFO .. 2241
WIDGET_LABEL .. 2263
WIDGET_LIST ... 2270
WIDGET_PROPERTYSHEET .. 2278
WIDGET_SLIDER ... 2290

Known Implementation Problems .. 2297
WIDGET_TAB ... 2298
WIDGET_TABLE .. 2307
WIDGET_TEXT ... 2323
WIDGET_TREE ... 2333
WINDOW ... 2342
WRITE_BMP .. 2346
WRITE_IMAGE ... 2349
WRITE_JPEG ... 2351
WRITE_NRIF ... 2354
WRITE_PICT .. 2356
WRITE_PNG .. 2358
WRITE_PPM .. 2361
WRITE_SPR ... 2363
IDL Reference Guide Contents

24
WRITE_SRF .. 2365
WRITE_SYLK .. 2367
WRITE_TIFF ... 2369
WRITE_WAV ... 2378
WRITE_WAVE ... 2379
WRITEU .. 2381
WSET ... 2383
WSHOW .. 2385
WTN .. 2387
WV_* Routines .. 2391
XBM_EDIT ... 2392
XDISPLAYFILE ... 2394
XDXF ... 2397
XFONT .. 2401
XINTERANIMATE .. 2403
XLOADCT .. 2410
XMANAGER .. 2413
XMNG_TMPL ... 2422
XMTOOL .. 2424
XOBJVIEW ... 2426
XOBJVIEW_ROTATE ... 2436
XOBJVIEW_WRITE_IMAGE ... 2438
XPALETTE ... 2440
XPCOLOR ... 2444
XPLOT3D .. 2445
XREGISTERED .. 2452
XROI .. 2454
XSQ_TEST .. 2470
XSURFACE ... 2473
XVAREDIT ... 2475
XVOLUME .. 2477
XVOLUME_ROTATE .. 2483
XVOLUME_WRITE_IMAGE .. 2486
XYOUTS ... 2488
ZOOM .. 2492
ZOOM_24 .. 2494
Contents IDL Reference Guide

25
Part II: Object Class and Method Reference

Chapter 4:
IDL Object Class Overview ... 2499
Using the Class Reference ... 2500

Syntax ... 2500
Arguments ... 2501
Creating Objects from the Class Library .. 2502

Object Properties ... 2503
Properties and the Property Sheet Interface .. 2503
Setting Properties at Initialization ... 2504
Setting Properties of Existing Objects .. 2504
Retrieving Property Settings ... 2504
About Object Property Descriptions ... 2505

Registered Properties ... 2507
Registering a Property .. 2507
Registering All Available Properties .. 2507
Registered Property Data Types ... 2508

Undocumented Object Classes .. 2511

Chapter 5:
Analysis Object Classes ... 2513
IDLanROI ... 2514

IDLanROI Properties .. 2516
IDLanROI::AppendData ... 2520
IDLanROI::Cleanup .. 2522
IDLanROI::ComputeGeometry .. 2523
IDLanROI::ComputeMask ... 2525
IDLanROI::ContainsPoints ... 2528
IDLanROI::GetProperty ... 2530
IDLanROI::Init ... 2531
IDLanROI::RemoveData .. 2533
IDLanROI::ReplaceData .. 2535
IDLanROI::Rotate .. 2538
IDLanROI::Scale .. 2539
IDLanROI::SetProperty .. 2540
IDLanROI::Translate .. 2541
IDL Reference Guide Contents

26
IDLanROIGroup .. 2542
IDLanROIGroup Properties .. 2544
IDLanROIGroup::Add .. 2546
IDLanROIGroup::Cleanup .. 2547
IDLanROIGroup::ComputeMask .. 2548
IDLanROIGroup::ComputeMesh .. 2551
IDLanROIGroup::ContainsPoints ... 2553
IDLanROIGroup::GetProperty .. 2555
IDLanROIGroup::Init .. 2556
IDLanROIGroup::Rotate ... 2557
IDLanROIGroup::Scale ... 2558
IDLanROIGroup::Translate .. 2559

Chapter 6:
File Format Object Classes ... 2561
IDLffDICOM .. 2562

IDL DICOM v3.0 Conformance Summary ... 2564
IDLffDICOM Properties ... 2568
IDLffDICOM::Cleanup ... 2569
IDLffDICOM::DumpElements ... 2570
IDLffDICOM::GetChildren .. 2571
IDLffDICOM::GetDescription .. 2573
IDLffDICOM::GetElement ... 2575
IDLffDICOM::GetGroup .. 2577
IDLffDICOM::GetLength ... 2579
IDLffDICOM::GetParent .. 2581
IDLffDICOM::GetPreamble ... 2583
IDLffDICOM::GetReference .. 2584
IDLffDICOM::GetValue ... 2586
IDLffDICOM::GetVR ... 2589
IDLffDICOM::Init ... 2591
IDLffDICOM::Read .. 2593
IDLffDICOM::Reset ... 2594

IDLffDXF ... 2595
IDLffDXF Properties .. 2597
IDLffDXF::Cleanup .. 2598
Contents IDL Reference Guide

27
IDLffDXF::GetContents ... 2599
IDLffDXF::GetEntity ... 2602
Fields Common to All Structures ... 2603
Structure Formats .. 2604
IDLffDXF::GetPalette .. 2615
IDLffDXF::Init ... 2616
IDLffDXF::PutEntity .. 2617
IDLffDXF::Read ... 2618
IDLffDXF::RemoveEntity .. 2619
IDLffDXF::Reset .. 2620
IDLffDXF::SetPalette ... 2621
IDLffDXF::Write .. 2622

IDLffLanguageCat ... 2624
IDLffLanguageCat Properties ... 2625
IDLffLanguageCat::IsValid .. 2626
IDLffLanguageCat::Query .. 2627
IDLffLanguageCat::SetCatalog .. 2628

IDLffMrSID .. 2629
IDLffMrSID Properties ... 2630
IDLffMrSID::Cleanup .. 2631
IDLffMrSID::GetDimsAtLevel .. 2632
IDLffMrSID::GetImageData .. 2634
IDLffMrSID::GetProperty .. 2637
IDLffMrSID::Init .. 2640

IDLffShape ... 2642
Overview of ESRI Shapefiles ... 2644
Accessing Shapefiles .. 2649
Creating New Shapefiles .. 2651
Updating Existing Shapefiles .. 2652
IDLffShape Properties .. 2654
IDLffShape::AddAttribute .. 2658
IDLffShape::Cleanup .. 2661
IDLffShape::Close .. 2662
IDLffShape::DestroyEntity ... 2663
IDLffShape::GetAttributes ... 2665
IDLffShape::GetEntity .. 2667
IDL Reference Guide Contents

28
IDLffShape::GetProperty .. 2669
IDLffShape::Init .. 2671
IDLffShape::Open ... 2673
IDLffShape::PutEntity ... 2675
IDLffShape::SetAttributes ... 2677

IDLffXMLSAX .. 2680
IDLffXMLSAX Properties .. 2683
IDLffXMLSAX::AttributeDecl ... 2687
IDLffXMLSAX::Characters ... 2689
IDLffXMLSAX::Cleanup ... 2690
IDLffXMLSAX::Comment ... 2691
IDLffXMLSAX::ElementDecl .. 2692
IDLffXMLSAX::EndCDATA .. 2693
IDLffXMLSAX::EndDocument ... 2694
IDLffXMLSAX::EndDTD .. 2695
IDLffXMLSAX::EndElement ... 2696
IDLffXMLSAX::EndEntity .. 2697
IDLffXMLSAX::EndPrefixMapping .. 2698
IDLffXMLSAX::Error .. 2699
IDLffXMLSAX::ExternalEntityDecl .. 2701
IDLffXMLSAX::FatalError .. 2702
IDLffXMLSAX::GetProperty ... 2703
IDLffXMLSAX::IgnorableWhitespace ... 2704
IDLffXMLSAX::Init ... 2705
IDLffXMLSAX::InternalEntityDecl ... 2706
IDLffXMLSAX::NotationDecl ... 2707
IDLffXMLSAX::ParseFile .. 2708
IDLffXMLSAX::ProcessingInstruction .. 2709
IDLffXMLSAX::SetProperty .. 2710
IDLffXMLSAX::SkippedEntity .. 2711
IDLffXMLSAX::StartCDATA ... 2712
IDLffXMLSAX::StartDocument .. 2713
IDLffXMLSAX::StartDTD ... 2714
IDLffXMLSAX::StartElement .. 2715
IDLffXMLSAX::StartEntity ... 2717
IDLffXMLSAX::StartPrefixmapping ... 2718
Contents IDL Reference Guide

29
IDLffXMLSAX::StopParsing ... 2719
IDLffXMLSAX::UnparsedEntityDecl ... 2720
IDLffXMLSAX::Warning .. 2721

Chapter 7:
iTools Object Classes ... 2724
IDLitCommand ... 2725

IDLitCommand Properties .. 2727
IDLitCommand::AddItem .. 2728
IDLitCommand::Cleanup ... 2730
IDLitCommand::GetItem .. 2731
IDLitCommand::GetProperty ... 2732
IDLitCommand::GetSize .. 2733
IDLitCommand::Init ... 2734
IDLitCommand::SetProperty .. 2736

IDLitCommandSet .. 2737
IDLitCommandSet Properties ... 2739
IDLitCommandSet::Cleanup .. 2740
IDLitCommandSet::GetSize ... 2741
IDLitCommandSet::Init .. 2742

IDLitComponent ... 2743
IDLitComponent Properties .. 2745
IDLitComponent::Cleanup ... 2748
IDLitComponent::EditUserDefProperty ... 2749
IDLitComponent::GetFullIdentifier .. 2751
IDLitComponent::GetProperty ... 2752
IDLitComponent::GetPropertyAttribute ... 2753
IDLitComponent::GetPropertyByIdentifier .. 2754
IDLitComponent::Init ... 2755
IDLitComponent::QueryProperty ... 2757
IDLitComponent::RegisterProperty .. 2758
IDLitComponent::SetProperty .. 2763
IDLitComponent::SetPropertyAttribute ... 2764
IDLitComponent::SetPropertyByIdentifier .. 2765

IDLitContainer .. 2766
IDLitContainer Properties ... 2768
IDL Reference Guide Contents

30
IDLitContainer::Add ... 2769
IDLitContainer::AddByIdentifier .. 2770
IDLitContainer::Cleanup ... 2771
IDLitContainer::Get .. 2772
IDLitContainer::GetByIdentifier ... 2774
IDLitContainer::Init ... 2775
IDLitContainer::Remove ... 2776
IDLitContainer::RemoveByIdentifier ... 2777

IDLitData ... 2778
IDLitData Properties ... 2780
IDLitData::AddDataObserver ... 2782
IDLitData::Cleanup ... 2783
IDLitData::Copy .. 2784
IDLitData::GetByType .. 2785
IDLitData::GetData ... 2786
IDLitData::GetProperty ... 2787
IDLitData::GetSize .. 2788
IDLitData::Init ... 2789
IDLitData::NotifyDataChange .. 2791
IDLitData::NotifyDataComplete ... 2792
IDLitData::RemoveDataObserver ... 2793
IDLitData::SetData .. 2794
IDLitData::SetProperty ... 2795

IDLitDataContainer ... 2796
IDLitDataContainer Properties .. 2798
IDLitDataContainer::Cleanup ... 2799
IDLitDataContainer::GetData ... 2800
IDLitDataContainer::GetIdentifiers .. 2801
IDLitDataContainer::GetProperty ... 2802
IDLitDataContainer::Init ... 2803
IDLitDataContainer::SetData .. 2805
IDLitDataContainer::SetProperty .. 2807

IDLitDataOperation ... 2808
IDLitDataOperation Properties ... 2811
IDLitDataOperation::Cleanup ... 2812
IDLitDataOperation::DoExecuteUI .. 2813
Contents IDL Reference Guide

31
IDLitDataOperation::Execute ... 2815
IDLitDataOperation::GetProperty .. 2817
IDLitDataOperation::Init .. 2818
IDLitDataOperation::SetProperty ... 2820
IDLitDataOperation::UndoExecute .. 2821

IDLitIMessaging ... 2823
IDLitIMessaging Properties .. 2825
IDLitIMessaging::AddOnNotifyObserver .. 2826
IDLitIMessaging::DoOnNotify .. 2828
IDLitIMessaging::ErrorMessage .. 2830
IDLitIMessaging::GetTool ... 2832
IDLitIMessaging::ProbeStatusMessage .. 2833
IDLitIMessaging::ProgressBar ... 2834
IDLitIMessaging::PromptUserText .. 2835
IDLitIMessaging::PromptUserYesNo .. 2836
IDLitIMessaging::RemoveOnNotifyObserver ... 2837
IDLitIMessaging::SignalError .. 2838
IDLitIMessaging::StatusMessage ... 2839

IDLitManipulator .. 2840
IDLitManipulator Properties ... 2842
IDLitManipulator::Cleanup .. 2848
IDLitManipulator::CommitUndoValues .. 2849
IDLitManipulator::GetCursorType ... 2851
IDLitManipulator::GetProperty .. 2853
IDLitManipulator::Init .. 2854
IDLitManipulator::OnKeyboard ... 2856
IDLitManipulator::OnLoseCurrentManipulator ... 2858
IDLitManipulator::OnMouseDown .. 2859
IDLitManipulator::OnMouseMotion .. 2861
IDLitManipulator::OnMouseUp ... 2863
IDLitManipulator::RecordUndoValues .. 2864
IDLitManipulator::SetCurrentManipulator .. 2866
IDLitManipulator::SetProperty ... 2867

IDLitManipulatorContainer ... 2868
IDLitManipulatorContainer Properties ... 2870
IDLitManipulatorContainer::Add ... 2871
IDL Reference Guide Contents

32
IDLitManipulatorContainer::GetCurrent .. 2872
IDLitManipulatorContainer::GetCurrentManipulator ... 2873
IDLitManipulatorContainer::GetProperty ... 2874
IDLitManipulatorContainer::Init ... 2875
IDLitManipulatorContainer::OnKeyboard .. 2877
IDLitManipulatorContainer::OnMouseDown ... 2879
IDLitManipulatorContainer::OnMouseMotion ... 2881
IDLitManipulatorContainer::OnMouseUp .. 2883
IDLitManipulatorContainer::SetCurrent ... 2884
IDLitManipulatorContainer::SetCurrentManipulator ... 2885
IDLitManipulatorContainer::SetProperty ... 2886

IDLitManipulatorManager ... 2887
IDLitManipulatorManager Properties ... 2888
IDLitManipulatorManager::Add ... 2889
IDLitManipulatorManager::AddManipulatorObserver ... 2890
IDLitManipulatorManager::Init .. 2891
IDLitManipulatorManager::RemoveManipulatorObserver 2893

IDLitManipulatorVisual .. 2894
IDLitManipulatorVisual Properties ... 2895
IDLitManipulatorVisual::Cleanup .. 2897
IDLitManipulatorVisual::GetProperty .. 2898
IDLitManipulatorVisual::Init .. 2899
IDLitManipulatorVisual::SetProperty ... 2901

IDLitOperation ... 2902
IDLitOperation Properties ... 2905
IDLitOperation::Cleanup ... 2907
IDLitOperation::DoAction .. 2908
IDLitOperation::GetProperty .. 2910
IDLitOperation::Init .. 2911
IDLitOperation::RecordFinalValues ... 2913
IDLitOperation::RecordInitialValues .. 2915
IDLitOperation::RedoOperation ... 2917
IDLitOperation::SetProperty ... 2919
IDLitOperation::UndoOperation ... 2920

IDLitParameter .. 2922
IDLitParameter Properties ... 2924
Contents IDL Reference Guide

33
IDLitParameter::Cleanup .. 2925
IDLitParameter::GetParameter ... 2926
IDLitParameter::GetParameterSet .. 2927
IDLitParameter::Init .. 2928
IDLitParameter::OnDataChangeUpdate ... 2929
IDLitParameter::OnDataDisconnect ... 2931
IDLitParameter::RegisterParameter .. 2933
IDLitParameter::SetData .. 2935
IDLitParameter::SetParameterSet ... 2937

IDLitParameterSet ... 2939
IDLitParameterSet Properties ... 2941
IDLitParameterSet::Add ... 2942
IDLitParameterSet::Cleanup ... 2944
IDLitParameterSet::Copy ... 2945
IDLitParameterSet::Get .. 2946
IDLitParameterSet::GetByName .. 2948
IDLitParameterSet::GetParameterName .. 2950
IDLitParameterSet::Init .. 2951
IDLitParameterSet::Remove ... 2953

IDLitReader ... 2954
IDLitReader Properties ... 2956
IDLitReader::Cleanup ... 2957
IDLitReader::GetData ... 2958
IDLitReader::GetFileExtensions .. 2959
IDLitReader::GetFilename ... 2960
IDLitReader::GetProperty .. 2961
IDLitReader::Init .. 2962
IDLitReader::IsA .. 2964
IDLitReader::SetFilename .. 2965
IDLitReader::SetProperty ... 2966

IDLitTool ... 2967
IDLitTool Properties ... 2970
IDLitTool::Add ... 2973
IDLitTool::AddService ... 2974
IDLitTool::Cleanup .. 2975
IDLitTool::CommitActions .. 2976
IDL Reference Guide Contents

34
IDLitTool::DisableUpdates ... 2977
IDLitTool::DoAction ... 2978
IDLitTool::DoSetProperty ... 2979
IDLitTool::DoUIService ... 2981
IDLitTool::EnableUpdates .. 2982
IDLitTool::GetCurrentManipulator ... 2983
IDLitTool::GetFileReader ... 2984
IDLitTool::GetFileWriter .. 2985
IDLitTool::GetManipulators ... 2986
IDLitTool::GetOperations ... 2987
IDLitTool::GetProperty ... 2988
IDLitTool::GetSelectedItems .. 2989
IDLitTool::GetService ... 2990
IDLitTool::GetVisualization ... 2991
IDLitTool::Init ... 2993
IDLitTool::RefreshCurrentWindow .. 2995
IDLitTool::Register ... 2996
IDLitTool::RegisterFileReader ... 2999
IDLitTool::RegisterFileWriter .. 3001
IDLitTool::RegisterManipulator ... 3003
IDLitTool::RegisterOperation ... 3005
IDLitTool::RegisterVisualization .. 3007
IDLitTool::SetProperty ... 3009
IDLitTool::UnRegister .. 3010
IDLitTool::UnRegisterFileReader ... 3011
IDLitTool::UnRegisterFileWriter ... 3012
IDLitTool::UnRegisterManipulator .. 3013
IDLitTool::UnRegisterOperation .. 3014
IDLitTool::UnRegisterVisualization ... 3015

IDLitUI .. 3016
IDLitUI Properties ... 3018
IDLitUI::AddOnNotifyObserver ... 3019
IDLitUI::Cleanup .. 3021
IDLitUI::DoAction .. 3022
IDLitUI::GetProperty .. 3023
IDLitUI::GetTool .. 3024
Contents IDL Reference Guide

35
IDLitUI::GetWidgetByName ... 3025
IDLitUI::Init .. 3026
IDLitUI::RegisterUIService .. 3027
IDLitUI::RegisterWidget .. 3029
IDLitUI::RemoveOnNotifyObserver .. 3031
IDLitUI::SetProperty .. 3032
IDLitUI::UnRegisterUIService ... 3033
IDLitUI::UnRegisterWidget ... 3034

IDLitVisualization ... 3035
IDLitVisualization Properties ... 3038
IDLitVisualization::Add ... 3041
IDLitVisualization::Aggregate ... 3043
IDLitVisualization::Cleanup ... 3044
IDLitVisualization::Get .. 3045
IDLitVisualization::GetCenterRotation .. 3047
IDLitVisualization::GetCurrentSelectionVisual ... 3049
IDLitVisualization::GetDataSpace ... 3050
IDLitVisualization::GetDataString ... 3051
IDLitVisualization::GetDefaultSelectionVisual ... 3052
IDLitVisualization::GetManipulatorTarget .. 3053
IDLitVisualization::GetProperty .. 3054
IDLitVisualization::GetSelectionVisual ... 3055
IDLitVisualization::GetTypes .. 3056
IDLitVisualization::GetXYZRange .. 3057
IDLitVisualization::Init .. 3059
IDLitVisualization::Is3D .. 3060
IDLitVisualization::IsIsotropic ... 3061
IDLitVisualization::IsManipulatorTarget ... 3062
IDLitVisualization::IsSelected .. 3063
IDLitVisualization::OnDataChange ... 3064
IDLitVisualization::OnDataComplete .. 3065
IDLitVisualization::OnDataRangeChange ... 3066
IDLitVisualization::Remove ... 3067
IDLitVisualization::Scale ... 3068
IDLitVisualization::Select .. 3070
IDLitVisualization::Set3D .. 3072
IDL Reference Guide Contents

36
IDLitVisualization::SetCurrentSelectionVisual .. 3073
IDLitVisualization::SetData .. 3074
IDLitVisualization::SetDefaultSelectionVisual .. 3075
IDLitVisualization::SetParameterSet .. 3076
IDLitVisualization::SetProperty .. 3077
IDLitVisualization::UpdateSelectionVisual .. 3078
IDLitVisualization::VisToWindow ... 3079
IDLitVisualization::WindowToVis ... 3081

IDLitWindow ... 3083
IDLitWindow Properties ... 3086
IDLitWindow::Add ... 3095
IDLitWindow::AddWindowEventObserver ... 3096
IDLitWindow::Cleanup ... 3097
IDLitWindow::ClearSelections ... 3098
IDLitWindow::DoHitTest ... 3099
IDLitWindow::GetEventMask .. 3101
IDLitWindow::GetProperty ... 3103
IDLitWindow::GetSelectedItems .. 3104
IDLitWindow::Init ... 3105
IDLitWindow::OnKeyboard ... 3107
IDLitWindow::OnMouseDown ... 3108
IDLitWindow::OnMouseMotion ... 3110
IDLitWindow::OnMouseUp ... 3112
IDLitWindow::OnScroll .. 3114
IDLitWindow::Remove ... 3115
IDLitWindow::RemoveWindowEventObserver ... 3116
IDLitWindow::SetCurrentZoom ... 3117
IDLitWindow::SetEventMask ... 3118
IDLitWindow::SetManipulatorManager ... 3120
IDLitWindow::SetProperty ... 3121
IDLitWindow::ZoomIn ... 3122
IDLitWindow::ZoomOut ... 3123

IDLitWriter .. 3124
IDLitWriter Properties .. 3126
IDLitWriter::Cleanup .. 3127
IDLitWriter::GetFileExtensions .. 3128
Contents IDL Reference Guide

37
IDLitWriter::GetFilename .. 3129
IDLitWriter::GetProperty ... 3130
IDLitWriter::Init ... 3131
IDLitWriter::IsA ... 3133
IDLitWriter::SetData .. 3134
IDLitWriter::SetFilename ... 3135
IDLitWriter::SetProperty .. 3136

Chapter 8:
Graphics Object Classes .. 3137
IDLgrAxis .. 3138

IDLgrAxis Properties .. 3140
IDLgrAxis::Cleanup ... 3161
IDLgrAxis::GetCTM .. 3162
IDLgrAxis::GetProperty ... 3164
IDLgrAxis::Init ... 3165
IDLgrAxis::SetProperty .. 3167

IDLgrBuffer .. 3168
IDLgrBuffer Properties ... 3170
IDLgrBuffer::Cleanup .. 3175
IDLgrBuffer::Draw ... 3176
IDLgrBuffer::Erase ... 3177
IDLgrBuffer::GetContiguousPixels .. 3178
IDLgrBuffer::GetDeviceInfo .. 3179
IDLgrBuffer::GetFontnames .. 3181
IDLgrBuffer::GetProperty .. 3183
IDLgrBuffer::GetTextDimensions .. 3184
IDLgrBuffer::Init .. 3186
IDLgrBuffer::PickData ... 3188
IDLgrBuffer::Read .. 3191
IDLgrBuffer::Select .. 3192
IDLgrBuffer::SetProperty ... 3194

IDLgrClipboard .. 3195
IDLgrClipboard Properties ... 3197
IDLgrClipboard::Cleanup ... 3202
IDLgrClipboard::Draw ... 3203
IDL Reference Guide Contents

38
IDLgrClipboard::GetContiguousPixels ... 3207
IDLgrClipboard::GetDeviceInfo ... 3208
IDLgrClipboard::GetFontnames ... 3210
IDLgrClipboard::GetProperty ... 3212
IDLgrClipboard::GetTextDimensions ... 3213
IDLgrClipboard::Init ... 3215
IDLgrClipboard::SetProperty .. 3217

IDLgrColorbar ... 3218
IDLgrColorbar Properties .. 3221
IDLgrColorbar::Cleanup ... 3231
IDLgrColorbar::ComputeDimensions ... 3232
IDLgrColorbar::GetProperty ... 3234
IDLgrColorbar::Init ... 3235
IDLgrColorbar::SetProperty .. 3237

IDLgrContour ... 3238
IDLgrContour Properties ... 3241
IDLgrContour::AdjustLabelOffsets .. 3266
IDLgrContour::Cleanup .. 3267
IDLgrContour::GetCTM ... 3268
IDLgrContour::GetLabelInfo .. 3270
IDLgrContour::GetProperty .. 3272
IDLgrContour::Init .. 3273
IDLgrContour::SetProperty ... 3275

IDLgrFont ... 3276
IDLgrFont Properties .. 3277
IDLgrFont::Cleanup .. 3279
IDLgrFont::GetProperty .. 3280
IDLgrFont::Init .. 3281
IDLgrFont::SetProperty ... 3283

IDLgrImage ... 3284
IDLgrImage Properties .. 3287
IDLgrImage::Cleanup ... 3300
IDLgrImage::GetCTM .. 3301
IDLgrImage::GetProperty ... 3303
IDLgrImage::Init ... 3304
IDLgrImage::SetProperty .. 3306
Contents IDL Reference Guide

39
IDLgrLegend ... 3307
IDLgrLegend Properties ... 3310
IDLgrLegend::Cleanup ... 3320
IDLgrLegend::ComputeDimensions .. 3321
IDLgrLegend::GetProperty ... 3323
IDLgrLegend::Init ... 3324
IDLgrLegend::SetProperty ... 3326

IDLgrLight ... 3327
IDLgrLight Properties ... 3329
IDLgrLight::Cleanup .. 3336
IDLgrLight::GetCTM ... 3337
IDLgrLight::GetProperty .. 3339
IDLgrLight::Init .. 3340
IDLgrLight::SetProperty ... 3342

IDLgrModel .. 3343
IDLgrModel Properties ... 3345
IDLgrModel::Add ... 3351
IDLgrModel::Cleanup .. 3352
IDLgrModel::Draw ... 3353
IDLgrModel::GetByName .. 3354
IDLgrModel::GetCTM ... 3356
IDLgrModel::GetProperty .. 3358
IDLgrModel::Init .. 3359
IDLgrModel::Reset ... 3361
IDLgrModel::Rotate ... 3362
IDLgrModel::Scale ... 3363
IDLgrModel::SetProperty ... 3364
IDLgrModel::Translate ... 3365

IDLgrMPEG .. 3366
IDLgrMPEG Properties .. 3368
IDLgrMPEG::Cleanup .. 3375
IDLgrMPEG::GetProperty .. 3376
IDLgrMPEG::Init .. 3377
IDLgrMPEG::Put .. 3379
IDLgrMPEG::Save ... 3380
IDLgrMPEG::SetProperty .. 3381
IDL Reference Guide Contents

40
IDLgrPalette ... 3382
IDLgrPalette Properties ... 3384
IDLgrPalette::Cleanup ... 3387
IDLgrPalette::GetRGB .. 3388
IDLgrPalette::GetProperty .. 3389
IDLgrPalette::Init .. 3390
IDLgrPalette::LoadCT ... 3392
IDLgrPalette::NearestColor ... 3393
IDLgrPalette::SetRGB ... 3394
IDLgrPalette::SetProperty ... 3395

IDLgrPattern .. 3396
IDLgrPattern Properties .. 3398
IDLgrPattern::Cleanup .. 3401
IDLgrPattern::GetProperty .. 3402
IDLgrPattern::Init .. 3403
IDLgrPattern:SetProperty .. 3405

IDLgrPlot .. 3406
IDLgrPlot Properties ... 3408
IDLgrPlot::Cleanup ... 3422
IDLgrPlot::GetCTM .. 3423
IDLgrPlot::GetProperty ... 3425
IDLgrPlot::Init ... 3426
IDLgrPlot::SetProperty ... 3428

IDLgrPolygon .. 3429
IDLgrPolygon Properties .. 3431
IDLgrPolygon::Cleanup .. 3450
IDLgrPolygon::GetCTM ... 3451
IDLgrPolygon::GetProperty .. 3453
IDLgrPolygon::Init .. 3454
IDLgrPolygon::SetProperty ... 3456

IDLgrPolyline .. 3457
IDLgrPolyline Properties .. 3459
IDLgrPolyline::Cleanup .. 3475
IDLgrPolyline::GetCTM ... 3476
IDLgrPolyline::GetProperty .. 3478
IDLgrPolyline::Init .. 3479
Contents IDL Reference Guide

41
IDLgrPolyline::SetProperty .. 3481
IDLgrPrinter ... 3482

IDLgrPrinter Properties .. 3484
IDLgrPrinter::Cleanup .. 3490
IDLgrPrinter::Draw .. 3491
IDLgrPrinter::GetContiguousPixels ... 3494
IDLgrPrinter::GetFontnames .. 3495
IDLgrPrinter::GetProperty .. 3497
IDLgrPrinter::GetTextDimensions ... 3498
IDLgrPrinter::Init .. 3500
IDLgrPrinter::NewDocument ... 3502
IDLgrPrinter::NewPage .. 3503
IDLgrPrinter::SetProperty .. 3504

IDLgrROI .. 3505
IDLgrROI Properties .. 3507
IDLgrROI::Cleanup .. 3516
IDLgrROI::GetProperty .. 3517
IDLgrROI::Init .. 3518
IDLgrROI::PickVertex ... 3520
IDLgrROI::SetProperty .. 3522

IDLgrROIGroup .. 3523
IDLgrROIGroup Properties .. 3525
IDLgrROIGroup::Add .. 3532
IDLgrROIGroup::Cleanup .. 3533
IDLgrROIGroup::GetProperty .. 3534
IDLgrROIGroup::Init .. 3535
IDLgrROIGroup::PickRegion .. 3537
IDLgrROIGroup::SetProperty .. 3539

IDLgrScene ... 3540
IDLgrScene Properties .. 3542
IDLgrScene::Add .. 3545
IDLgrScene::Cleanup ... 3546
IDLgrScene::GetByName ... 3547
IDLgrScene::GetProperty ... 3549
IDLgrScene::Init ... 3550
IDLgrScene::SetProperty .. 3552
IDL Reference Guide Contents

42
IDLgrSurface ... 3553
IDLgrSurface Properties .. 3555
IDLgrSurface::Cleanup ... 3575
IDLgrSurface::GetCTM .. 3576
IDLgrSurface::GetProperty ... 3578
IDLgrSurface::Init ... 3579
IDLgrSurface::SetProperty .. 3581

IDLgrSymbol .. 3582
IDLgrSymbol Properties ... 3584
IDLgrSymbol::Cleanup ... 3586
IDLgrSymbol::GetProperty ... 3587
IDLgrSymbol::Init ... 3588
IDLgrSymbol::SetProperty ... 3590

IDLgrTessellator ... 3591
IDLgrTessellator Properties .. 3594
IDLgrTessellator::AddPolygon ... 3595
IDLgrTessellator::Cleanup .. 3597
IDLgrTessellator::Init .. 3598
IDLgrTessellator::Reset .. 3599
IDLgrTessellator::Tessellate ... 3600

IDLgrText ... 3602
IDLgrText Properties .. 3604
IDLgrText::Cleanup .. 3619
IDLgrText::GetCTM ... 3620
IDLgrText::GetProperty .. 3622
IDLgrText::Init .. 3623
IDLgrText::SetProperty ... 3625

IDLgrView ... 3626
IDLgrView Properties ... 3628
IDLgrView::Add ... 3635
IDLgrView::Cleanup ... 3636
IDLgrView::GetByName .. 3637
IDLgrView::GetProperty ... 3639
IDLgrView::Init ... 3640
IDLgrView::SetProperty ... 3642

IDLgrViewgroup .. 3643
Contents IDL Reference Guide

43
IDLgrViewgroup Properties ... 3645
IDLgrViewgroup::Add ... 3647
IDLgrViewgroup::Cleanup ... 3648
IDLgrViewgroup::GetByName .. 3649
IDLgrViewgroup::GetProperty ... 3651
IDLgrViewgroup::Init ... 3652
IDLgrViewgroup::SetProperty ... 3654

IDLgrVolume .. 3655
IDLgrVolume Properties .. 3657
IDLgrVolume::Cleanup .. 3674
IDLgrVolume::ComputeBounds .. 3675
IDLgrVolume::GetCTM ... 3676
IDLgrVolume::GetProperty .. 3678
IDLgrVolume::Init .. 3679
IDLgrVolume::PickVoxel .. 3681
IDLgrVolume::SetProperty .. 3683

IDLgrVRML ... 3684
IDLgrVRML Properties .. 3687
IDLgrVRML::Cleanup ... 3693
IDLgrVRML::Draw .. 3694
IDLgrVRML::GetDeviceInfo ... 3695
IDLgrVRML::GetFontnames ... 3697
IDLgrVRML::GetProperty ... 3699
IDLgrVRML::GetTextDimensions .. 3700
IDLgrVRML::Init ... 3702
IDLgrVRML::SetProperty .. 3704

IDLgrWindow ... 3705
IDLgrWindow Properties ... 3707
IDLgrWindow::Cleanup ... 3717
IDLgrWindow::Draw .. 3718
IDLgrWindow::Erase .. 3719
IDLgrWindow::GetContiguousPixels .. 3720
IDLgrWindow::GetDeviceInfo ... 3721
IDLgrWindow::GetFontnames ... 3723
IDLgrWindow::GetProperty ... 3725
IDLgrWindow::GetTextDimensions .. 3726
IDL Reference Guide Contents

44
IDLgrWindow::Iconify ... 3728
IDLgrWindow::Init ... 3729
IDLgrWindow::PickData .. 3731
IDLgrWindow::Read ... 3734
IDLgrWindow::Select ... 3735
IDLgrWindow::SetCurrentCursor ... 3737
IDLgrWindow::SetProperty .. 3739
IDLgrWindow::Show .. 3740

Chapter 9:
Miscellaneous Object Classes .. 3741
IDL_Container .. 3742

IDL_Container Properties ... 3743
IDL_Container::Add ... 3744
IDL_Container::Cleanup ... 3745
IDL_Container::Count ... 3746
IDL_Container::Get ... 3747
IDL_Container::Init ... 3749
IDL_Container::IsContained ... 3750
IDL_Container::Move ... 3751
IDL_Container::Remove ... 3752

IDLcomActiveX .. 3753
IDLcomActiveX Properties ... 3754

IDLcomIDispatch ... 3755
IDLcomIDispatch Properties ... 3757
IDLcomIDispatch::GetProperty .. 3758
IDLcomIDispatch::Init .. 3759
IDLcomIDispatch::SetProperty ... 3760

IDLjavaObject .. 3761
IDLjavaObject Properties .. 3763
IDLjavaObject::GetProperty ... 3764
IDLjavaObject::Init ... 3765
IDLjavaObject::SetProperty .. 3767

TrackBall .. 3769
TrackBall Properties .. 3770
TrackBall::Init ... 3772
Contents IDL Reference Guide

45
TrackBall::Reset ... 3773
TrackBall::Update ... 3775

Part III:
Appendices

Appendix A:
IDL Graphics Devices ... 3781
Supported Devices ... 3782
Keywords Accepted by the IDL Devices .. 3784
Window Systems ... 3824

Backing Store .. 3824
Image Display On Monochrome Devices ... 3826

Printing Graphics Output Files .. 3827
Setting Up The Printer .. 3828
Positioning Graphics Output ... 3828
Image Background Color .. 3829

The CGM Device .. 3830
Abilities and Limitations .. 3830

The HP-GL Device .. 3832
Abilities And Limitations ... 3833
HP-GL Linestyles ... 3833

The Metafile Display Device .. 3834
The Null Display Device ... 3836
The PCL Device .. 3837
The Printer Device ... 3839
The PostScript Device ... 3840

Using PostScript Fonts .. 3841
Color PostScript .. 3841
PostScript Positioning ... 3843
Importing IDL Plots into Other Documents ... 3847

The Regis Terminal Device ... 3852
Defaults for Regis Devices ... 3852
Regis Limitations .. 3852

The Tektronix Device .. 3853
The DEVICE Procedure For Tektronix Terminals ... 3853
Tektronix Limitations ... 3853
IDL Reference Guide Contents

46
Tektronix Device Limitations ... 3854
The Microsoft Windows Device .. 3855
The X Windows Device ... 3856

X Windows Visuals ... 3856
Using Color Under X .. 3859
Using Pixmaps ... 3861
How Color is Interpreted for a TrueColor Visual ... 3863
Setting the X Window Defaults ... 3864

The Z-Buffer Device .. 3865
Reading and Writing Buffers .. 3866
Z-Axis Scaling ... 3866
Polyfill Procedure .. 3866
Examples Using the Z-Buffer .. 3867

Appendix B:
Graphics Keywords .. 3871

BACKGROUND ... 3872
CHANNEL .. 3872
CHARSIZE ... 3873
CHARTHICK .. 3873
CLIP .. 3873
COLOR ... 3874
DATA .. 3874
DEVICE .. 3874
FONT ... 3875
LINESTYLE ... 3875
NOCLIP ... 3876
NODATA .. 3876
NOERASE ... 3877
NORMAL .. 3877
ORIENTATION .. 3877
POSITION ... 3877
PSYM .. 3878
SUBTITLE .. 3879
SYMSIZE .. 3879
T3D .. 3879
Contents IDL Reference Guide

47
THICK .. 3880
TICKLEN ... 3880
TITLE ... 3880
[XYZ]CHARSIZE .. 3881
[XYZ]GRIDSTYLE ... 3881
[XYZ]MARGIN ... 3881
[XYZ]MINOR .. 3881
[XYZ]RANGE .. 3881
[XYZ]STYLE ... 3882
[XYZ]THICK ... 3882
[XYZ]TICK_GET .. 3882
[XYZ]TICKFORMAT .. 3883
[XYZ]TICKINTERVAL .. 3885
[XYZ]TICKLAYOUT .. 3886
[XYZ]TICKLEN .. 3886
[XYZ]TICKNAME .. 3887
[XYZ]TICKS .. 3887
[XYZ]TICKUNITS .. 3887
[XYZ]TICKV ... 3888
[XYZ]TITLE .. 3888
Z .. 3888
ZVALUE .. 3889

Appendix C:
Thread Pool Keywords .. 3891

Appendix D:
System Variables ... 3893
What Are System Variables? .. 3894
Constant System Variables .. 3895

!DPI ... 3895
!DTOR .. 3895
!MAP .. 3895
!PI .. 3895
!RADEG ... 3895
!VALUES ... 3895
IDL Reference Guide Contents

48
Error Handling System Variables .. 3897
!ERR .. 3897
!ERROR_STATE .. 3897
!ERROR .. 3898
!ERR_STRING ... 3898
!EXCEPT ... 3899
!MOUSE .. 3899
!MSG_PREFIX ... 3900
!SYSERROR ... 3900
!SYSERR_STRING .. 3900
!WARN ... 3900

IDL Environment System Variables .. 3902
!CPU .. 3902
!DIR ... 3903
!DLM_PATH .. 3904
!EDIT_INPUT ... 3905
!HELP_PATH ... 3905
!JOURNAL ... 3906
!MAKE_DLL .. 3906
!MORE .. 3908
!PATH ... 3909
!PROMPT .. 3910
!QUIET .. 3910
!VERSION .. 3910

Graphics System Variables .. 3913
!C System Variable ... 3913
!D System Variable ... 3913
!ORDER System Variable ... 3917
!P System Variable .. 3917
!X, !Y, !Z System Variables .. 3921

Appendix E:
IDL Operators .. 3929
Mathematical Operators ... 3930
Minimum and Maximum Operators .. 3932
Matrix Operators .. 3933
Contents IDL Reference Guide

49
Logical Operators .. 3934
Bitwise Operators .. 3935
Relational Operators ... 3937
Other Operators ... 3938
Operator Precedence .. 3940

Appendix F:
Special Characters .. 3943

Exclamation Point (!) .. 3944
Apostrophe (') ... 3945
Semicolon (;) ... 3945
Dollar Sign ($) .. 3945
Quotation Mark (") ... 3945
Period (.) ... 3945
Ampersand (&) ... 3946
Colon (:) .. 3946
Asterisk (*) ... 3946
At Sign (@) ... 3946
Question Mark (?) ... 3947

Appendix G:
Reserved Words .. 3949

Appendix H:
Fonts .. 3951
Overview ... 3952
Fonts in IDL Direct vs. Object Graphics ... 3953

IDL Direct Graphics ... 3953
IDL Object Graphics ... 3953

About Vector Fonts ... 3954
Using Vector Fonts ... 3954
Specifying Font Size ... 3954
ISO Latin 1 Encoding ... 3955
Customizing the Vector Fonts .. 3956

About TrueType Fonts .. 3957
Using TrueType Fonts .. 3958
Specifying Font Size ... 3958
Using Embedded Formatting Commands ... 3959
IDL Reference Guide Contents

50
IDL TrueType Font Resource Files ... 3959
Adding Your Own Fonts ... 3960
Where IDL Searches for Fonts .. 3960

About Device Fonts ... 3962
Which Device Fonts Are Available? ... 3962
Using Device Fonts ... 3963
Fonts and the PostScript Device .. 3964

Choosing a Font Type .. 3969
Appearance .. 3969
Three-Dimensional Transformations .. 3969
Portability .. 3969
Computational Time .. 3970
Flexibility .. 3970
Print Quality .. 3970

Embedded Formatting Commands .. 3971
Changing Fonts within a String ... 3971
Positioning Commands .. 3973

Formatting Command Examples ... 3975
A Complex Equation ... 3976
Vector-Drawn Font Example .. 3977

TrueType Font Samples ... 3980
Vector Font Samples .. 3983

Appendix I:
Obsolete Features .. 3993
What Are Obsolete Features? .. 3994
Routines Obsoleted in IDL 6.0 .. 3995
Routines Obsoleted in IDL 5.6 .. 3996
Routines Obsoleted in IDL 5.5 .. 3997
Routines Obsoleted in IDL 5.4 .. 3998
Routines Obsoleted in IDL 5.3 .. 3999
SDF Routines Obsoleted in IDL 5.3 .. 4000

What is DFSD and Why Are We Obsoleting It? ... 4000
Routines Obsoleted in IDL 5.2 .. 4001
Routines Obsoleted in IDL 5.1 .. 4002
Routines Obsoleted in IDL 5.0 .. 4003
Contents IDL Reference Guide

51
Routines Obsoleted in IDL 4.0 or Earlier .. 4004
Obsolete Arguments and Keywords .. 4010
Obsolete System Variables .. 4015
Obsolete Graphics Devices ... 4017

Index ... 4019
IDL Reference Guide Contents

52
Contents IDL Reference Guide

Chapter 1:

Overview of IDL Syntax
This reference is a complete listing of all built-in IDL functions, procedures,
statements, executive commands, and objects, collectively referred to as
“commands.” Every IDL language element that can be used either at the command
line or in a program is listed alphabetically. A description of each routine follows its
name.

Note
Descriptions of Scientific Data Formats routines (CDF_*, EOS_*, HDF_*, and
NCDF_* routines) can be found in the Scientific Data Formats book.

Routines written in the IDL language are noted as such, and the location of the .pro
file within the IDL distribution is specified. You may wish to inspect the IDL source
code for some of these routines to gain further insight into their inner workings.

Conventions used in this reference guide are described below.
IDL Reference Guide 53

54 Chapter 1: Overview of IDL Syntax
IDL Syntax

The following table lists the elements used in IDL syntax listings:

Element Description

[] (Square brackets) Indicates that the contents are optional. Do not include the
brackets in your call.

[] (Italicized square
brackets)

Indicates that the square brackets are part of the statement
(used to define an array).

Argument Arguments are shown in italics, and must be specified in
the order listed.

KEYWORD Keywords are all caps, and can be specified in any order.
For functions, all arguments and keywords must be
contained within parentheses.

/KEYWORD Indicates a boolean keyword.

Italics Indicates arguments, expressions, or statements for which
you must provide values.

{ } (Braces) • Indicates that you must choose one of the values they
contain

• Encloses a list of possible values, separated by vertical
lines (|)

• Encloses useful information about a keyword

• Defines an IDL structure (this is the only case in which
the braces are included in the call).

| (Vertical lines) Separates multiple values or keywords.

[, Value1, ... , Valuen] Indicates that any number of values can be specified.

[, Value1, ... , Value8] Indicates the maximum number of values that can be
specified.

Table 1: Elements of IDL Syntax
IDL Syntax IDL Reference Guide

Chapter 1: Overview of IDL Syntax 55
Elements of Syntax

Square Brackets ([])

• Content between square brackets is optional. Pay close attention to the
grouping of square brackets. Consider the following examples:

ROUTINE_NAME, Value1 [, Value2] [, Value3]: You must include Value1.
You do not have to include Value2 or Value3. Value2 and Value3 can be
specified independently.

ROUTINE_NAME, Value1 [, Value2, Value3]: You must include Value1. You
do not have to include Value2 or Value3, but you must include both Value2 and
Value3, or neither.

ROUTINE_NAME [, Value1 [, Value2]]: You can specify Value1 without
specifying Value2, but if you specify Value2, you must also specify Value1.

• Do not include square brackets in your statement unless the brackets are
italicized. Consider the following syntax:

Result = KRIG2D(Z [, X, Y] [, BOUNDS=[xmin, ymin, xmax, ymax]])

An example of a valid statement is:

R = KRIG2D(Z, X, Y, BOUNDS=[0,0,1,1])

• Note that when [, Value1, ... , Valuen] is listed, you can specify any number of
arguments. When an explicit number is listed, as in [, Value1, ... , Value8], you
can specify only as many arguments as are listed.

Braces ({ })

• For certain keywords, a list of the possible values is provided. This list is
enclosed in braces, and the choices are separated by a vertical line (|). Do not
include the braces in your statement. For example, consider the following
syntax:

READ_JPEG [, TRUE={1 | 2 | 3 }]

In this example, you must choose either 1, 2, or 3. An example of a valid
statement is:

READ_JPEG, TRUE=1

• Braces are used to enclose the allowable range for a keyword value. Unless
otherwise noted, ranges provided are inclusive. Consider the following syntax:

Result = CVTTOBM(Array [, THRESHOLD=value{0 to 255}])
IDL Reference Guide IDL Syntax

56 Chapter 1: Overview of IDL Syntax
An example of a valid statement is:

Result = CVTTOBM(A, THRESHOLD=150)

• Braces are also used to provide useful information about a keyword. For
example:

[, LABEL=n{label every nth gridline}]

Do not include the braces or their content in your statement.

• Certain keywords are prefaced by X, Y, or Z. Braces are used for these
keywords to indicate that you must choose one of the values it contains. For
example, [{X | Y}RANGE=array] indicates that you can specify either
XRANGE=array or YRANGE=array.

• Note that in IDL, braces are used to define structures. When defining a
structure, you do want to include the braces in your statement.

Italics

• Italicized words are arguments, expressions, or statements for which you must
provide values. The value you provide can be a numerical value, such as 10, an
expression, such as DIST(100), or a named variable. For keywords that expect
a string value, the syntax is listed as KEYWORD=string. The value you
provide can be a string, such as 'Hello' (enclosed in single quotation marks), or
a variable that holds a string value.

• The italicized values that must be provided for keywords are listed in the most
helpful terms possible. For example, [, XSIZE=pixels] indicates that the XSIZE
keyword expects a value in pixels, while
[, ORIENTATION=ccw_degrees_from_horiz] indicates that you must provide a
value in degrees, measured counter-clockwise from horizontal.

Procedures

IDL procedures use the following general syntax:

PROCEDURE_NAME, Argument [, Optional_Argument]

where PROCEDURE_NAME is the name of the procedure, Argument is a required
parameter, and Optional_Argument is an optional parameter to the procedure.

Functions

IDL functions use the following general syntax:
IDL Syntax IDL Reference Guide

Chapter 1: Overview of IDL Syntax 57
Result = FUNCTION_NAME(Argument [, Optional_Argument])

where Result is the returned value of the function, FUNCTION_NAME is the name
of the function, Argument is a required parameter, and Optional_Argument is an
optional parameter. Note that all arguments and keyword arguments to functions
should be supplied within the parentheses that follow the function’s name.

Functions do not always have to be used in assignment statements (i.e.,
A=SIN(10.2)), they can be used just like any other IDL expression. For example,
you could print the result of SIN(10.2) by entering the command:

PRINT, SIN(10.2)

Arguments

The “Arguments” section describes each valid argument to the routine. Note that
these arguments are positional parameters that must be supplied in the order indicated
by the routine’s syntax.

Named Variables

Often, arguments that contain values upon return from the function or procedure
(“output arguments”) are described as accepting “named variables”. A named
variable is simply a valid IDL variable name. This variable does not need to be
defined before being used as an output argument. Note, however that when an
argument calls for a named variable, only a named variable can be used—sending an
expression causes an error.

Keywords

The “Keywords” section describes each valid keyword argument to the routine. Note
that keyword arguments are formal parameters that can be supplied in any order.

Keyword arguments are supplied to IDL routines by including the keyword name
followed by an equal sign (“=”) and the value to which the keyword should be set.
The value can be a value, an expression, or a named variable (a named variable is
simply a valid IDL variable name).

Note
If you set a keyword equal to an undefined named variable, IDL will quietly ignore
the value.

For example, to produce a plot with diamond-shaped plotting symbols, the PSYM
keyword should be set to 4 as follows:
IDL Reference Guide IDL Syntax

58 Chapter 1: Overview of IDL Syntax
PLOT, FINDGEN(10), PSYM=4

Note the following when specifying keywords:

• Certain keywords are boolean, meaning they can be set to either 0 or 1. These
keywords are switches used to turn an option on and off. Usually, setting such
keywords equal to 1 causes the option to be turned on. Explicitly setting the
keyword to 0 (or not including the keyword) turns the option off. In the syntax
listings in this reference, all keywords that are preceded by a slash can be set
by prefacing them by the slash. For example, SURFACE, DIST(10), /SKIRT is
a shortcut for SURFACE, DIST(10), SKIRT=1. To turn the option back off,
you must set the keyword equal to 0, as in SURFACE, DIST(10), SKIRT=0.

In rare cases, a keyword’s default value is 1. In these cases, the syntax is listed
as KEYWORD=0, as in SLIDE_IMAGE [, Image] [, CONGRID=0]. In this
example, CONGRID is set to 1 by default. If you specify CONGRID=0, you
can turn it back on by specifying either /CONGRID or CONGRID=1.

• Some keywords are used to obtain values that can be used upon return from the
function or procedure. These keywords are listed as KEYWORD=variable.
Any valid variable name can be used for these keywords, and the variable does
not need to be defined first. Note, however, that when a keyword calls for a
named variable, only a named variable can be used—sending an expression
causes an error.

For example, the WIDGET_CONTROL procedure can return the user values
of widgets in a named variable using the GET_UVALUE keyword. To return
the user value for a widget ID (contained in the variable mywidget) in the
variable userval, you would use the command:

WIDGET_CONTROL, mywidget, GET_UVALUE = userval

Upon return from the procedure, userval contains the user value. Note that
userval did not have to be defined before the call to WIDGET_CONTROL.

• Some routines have keywords that are mutually exclusive, meaning only one of
the keywords can be present in a given statement. These keywords are grouped
together, and separated by a vertical line. For example, consider the following
syntax:

PLOT, [X,] Y [, /DATA | , /DEVICE | , /NORMAL]

In this example, you can choose either DATA, DEVICE, or NORMAL, but not
more than one. An example of a valid statement is:

PLOT, SIN(A), /DEVICE
IDL Syntax IDL Reference Guide

Chapter 1: Overview of IDL Syntax 59
• Keywords can be abbreviated to their shortest unique length. For example, the
XSTYLE keyword can be abbreviated to XST because there are no other
keywords in IDL that begin with XST. You cannot shorten XSTYLE to XS,
however, because there are other keywords that begin with XS, such as XSIZE.
IDL Reference Guide IDL Syntax

Part I: IDL
Command
Reference

Chapter 2:

Dot Commands
IDL Reference Guide 62

Chapter 2: Dot Commands 63
.COMPILE

The .COMPILE command compiles and saves procedures and programs in the same
manner as .RUN. If one or more filenames are specified, the procedures and functions
contained therein are compiled but not execauted. If you enter this command at the
Command Input Line of the IDLDE and the files are not yet open, IDL opens the files
within Editor windows and compiles the procedures and functions contained therein.

See RESOLVE_ROUTINE for a way to invoke the same operation from within an
IDL routine, and RESOLVE_ALL for a way to automatically compile all user-written
or library functions called by all currently-compiled routines.

If the -f flag is specified, File is compiled from the source stored temporarily in
TempFile rather than on disk in File itself. This allows you to make changes to File
(in an IDLDE editor window, for example), store the modified source into the
temporary file (IDLDE does it automatically), compile, and test the changes without
overwriting the original code stored in File.

Note
.COMPILE is an executive command. Executive commands can only be used at the
IDL command prompt, not in programs.

Syntax

.COMPILE [File1, ..., Filen]

.COMPILE -f File TempFile
IDL Reference Guide .COMPILE

64 Chapter 2: Dot Commands
.CONTINUE

The .CONTINUE command continues execution of a program that has stopped
because of an error, a stop statement, or a keyboard interrupt. IDL saves the location
of the beginning of the last statement executed before an error. If it is possible to
correct the error condition in the interactive mode, the offending statement can be re-
executed by entering .CONTINUE. After STOP statements, .CONTINUE continues
execution at the next statement. The .CONTINUE command can be abbreviated; for
example, .C. Execution of a program interrupted by typing Ctrl+C also can be
resumed at the point of interruption with the .CONTINUE command.

Note
.CONTINUE is an executive command. Executive commands can only be used at
the IDL command prompt, not in programs.

Syntax

.CONTINUE
.CONTINUE IDL Reference Guide

Chapter 2: Dot Commands 65
.EDIT

The .EDIT command opens files in IDL Editor windows when called from the
Command Input Line of the IDLDE. This functionality is only available on the
Windows and Motif platforms. Note that filenames are separated by spaces, not
commas.

Note
.EDIT is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

Syntax

.EDIT File1 [File2 ... Filen]
IDL Reference Guide .EDIT

66 Chapter 2: Dot Commands
.FULL_RESET_SESSION

The .FULL_RESET_SESSION command does everything .RESET_SESSION does,
plus the following:

• Removes all system routines installed via LINKIMAGE or a DLM.

• Removes all structure definitions installed via a DLM.

• Removes all message blocks added by DLMs.

• Unloads all sharable libraries loaded into IDL via CALL_EXTERNAL,
LINKIMAGE, or a DLM.

• Re-initializes all DLMs to their unloaded initial state.

Note
.FULL_RESET_SESSION is an executive command. Executive commands can
only be used at the IDL command prompt, not in programs.

Syntax

.FULL_RESET_SESSION
.FULL_RESET_SESSION IDL Reference Guide

Chapter 2: Dot Commands 67
.GO

The .GO command starts execution at the beginning of a previously-compiled main
program.

Note
.GO is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

Syntax

.GO
IDL Reference Guide .GO

68 Chapter 2: Dot Commands
.OUT

The .OUT command continues executing statements in the current program until it
returns.

Note
.OUT is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

Syntax

.OUT
.OUT IDL Reference Guide

Chapter 2: Dot Commands 69
.RESET_SESSION

The .RESET_SESSION command resets much of the state of an IDL session without
requiring the user to exit and restart the IDL session.

.RESET_SESSION does the following:

• Returns current execution point to $MAIN$ (RETALL).

• Removes all breakpoints.

• Clears the path cache (see PATH_CACHE for details).

• Closes all files except the standard 3 units, the JOURNAL file (if any), and any
files in use by graphics drivers.

• Disables SHMDEBUG mode.

• Destroys/Removes the following:

• All local variables in $MAIN$.

• All widgets. Exit handlers are not called.

• All windows and pixmaps for the current window system graphics device
are closed. No other graphics state is reset.

• All common blocks.

• All handles

• All user defined system variables

• All pointer and object reference heap variables.

• Object destructors are not called.

• All user defined structure definitions.

• All user defined object definitions.

• All compiled user functions and procedures, including the main program
($MAIN$), if any.

• Any memory segments created by SHMMAP.

The following are not reset:

• The current values of intrinsic system variables are retained.

• The saved commands and output log are preserved.
IDL Reference Guide .RESET_SESSION

70 Chapter 2: Dot Commands
• Graphics drivers are not reset to their full uninitialized state. However, all
windows and pixmaps for the current window system device are closed.

• The following files are not closed:

• Stdin (LUN 0)

• Stdout (LUN -1)

• Stderr (LUN -2)

• The journal file (!JOURNAL) if one is open.

• Any files in use by graphics drivers (e.g. PostScript).

• Dynamically loaded graphics drivers (LINKIMAGE) are not removed, nor are
any dynamic sharable libraries containing such drivers, even if the same library
was also used for another purpose such as CALL_EXTERNAL, LINKIMAGE
system routines, or DLMs. See the .FULL_RESET_SESSION executive
command to unload dynamic libraries.

Note
.RESET_SESSION is an executive command. Executive commands can only be
used at the IDL command prompt, not in programs.

Syntax

.RESET_SESSION
.RESET_SESSION IDL Reference Guide

Chapter 2: Dot Commands 71
.RETURN

The .RETURN command continues execution of a program until encountering a
RETURN statement. This is convenient for debugging programs since it allows the
whole program to run, stopping before returning to the next-higher program level so
you can examine local variables.

Also see the RETURN command.

Note
.RETURN is an executive command. Executive commands can only be used at the
IDL command prompt, not in programs.

Syntax

.RETURN
IDL Reference Guide .RETURN

72 Chapter 2: Dot Commands
.RNEW

The .RNEW command compiles and saves procedures and functions in the same
manner as .RUN. In addition, all variables in the main program unit, except those in
common blocks, are erased. The -T and -L filename switches have the same effect as
with .RUN.

Note
.RNEW is an executive command. Executive commands can only be used at the
IDL command prompt, not in programs.

Syntax

.RNEW [File1, ..., Filen]

To save listing in a file: .RNEW -L ListFile.lis File1 [, File2, ..., Filen]

To display listing on screen: .RNEW -T File1 [, File2, ..., Filen]

Example

Some statements using the .RUN and .RNEW commands are shown below.

Statement Description

.RUN Accept a program from the
keyboard. Retain the present
variables.

.RUN myfile Compile the file myfile.pro. If it
is not found in the current
directory, try to find it in the
directory search path.

.RUN -T A, B, C Compile the files a.pro, b.pro
and c.pro. List the files on the
terminal.

Table 2: Examples using .RUN and .RNEW
.RNEW IDL Reference Guide

Chapter 2: Dot Commands 73
.RNEW -L myfile.lis myfile, yourfile Erase all variables and compile
the files myfile.pro and
yourfile.pro. Produce a listing
on myfile.lis.

Statement Description

Table 2: Examples using .RUN and .RNEW
IDL Reference Guide .RNEW

74 Chapter 2: Dot Commands
.RUN

The .RUN command compiles procedures, functions, and/or main programs in
memory. Main programs are executed immediately. The command can be followed
by a list of files to be compiled. Filenames are separated by blanks, tabs, or commas.

If a file specification is included in the command, IDL searches for the file first in the
current directory, then in the directories specified by the system variable !PATH. See
“Running IDL Program Files” in Chapter 9 of the Using IDL manual for more
information on IDL’s search strategy.

If a main program unit is encountered, execution of the program will begin after all
files have been read if there were no errors. The values of all of the variables are
retained. If the file isn’t found, input is accepted from the keyboard until a complete
program unit is entered.

Files containing IDL procedures, programs, and functions are assumed to have the
file extension (suffix) .pro. Files created with the SAVE procedure are assumed to
have the extension .sav. See Chapter 9, “Preparing and Running Programs in IDL”
in the Using IDL manual for further information.

Note
.RUN is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

Syntax

.RUN [File1, ..., Filen]

To save listing in a file: .RUN -L ListFile.lis File1 [, File2, ..., Filen]

To display listing on screen: .RUN -T File1 [, File2, ..., Filen]

Note
Subsequent calls to .RUN compile the procedure again.

Using .RUN to Make Program Listings

The command arguments -T for terminal listing or -L filename for listing to a named
file can appear after the command name and before the program filenames to produce
a numbered program listing directed to the terminal or to a file.
.RUN IDL Reference Guide

Chapter 2: Dot Commands 75
For instance, to see a listing on the screen as a result of compiling a procedure
contained in a file named analyze.pro, use the following command:

.RUN -T analyze

To compile the same procedure and save the listing in a file named analyze.lis,
use the following command:

.RUN -L analyze.lis analyze

In listings produced by IDL, the line number of each statement is printed at the left
margin. This number is the same as that printed in IDL error statements, simplifying
location of the statement causing the error.

Note
If the compiled file contains more than one procedure or function, line numbering is
reset to “1” each time the end of a program segment is detected.

Each level of block nesting is indented four spaces to the right of the preceding block
level to improve the legibility of the program’s structure.
IDL Reference Guide .RUN

76 Chapter 2: Dot Commands
.SKIP

The .SKIP command skips one or more statements. It is useful for moving past a
program statement that caused an error. If the optional argument n is present, it gives
the number of statements to skip; otherwise, a single statement is skipped.

Note that .SKIP does not execute or evaluate the code it is skipping. Rather, it
arbitrarily alters the current program counter to the nth physical statement following
the current point. This has implications that may not be obvious on initial
consideration:

• .SKIP does not skip into a called routine.

• .SKIP moves to the nth physical statement following the current program
location. This may not be the statement that execution would have actually
have moved to if you had allowed the program to run normally.

• Arbitrarily moving the program counter in this way may leave your program in
an unrunnable state, depending on resulting state of the local variables and the
statements that the newly positioned program counter attempts to execute next.

In contrast, the .STEP executive command has none of the above drawbacks and can
be used instead in many situations. The advantage of .SKIP over .STEP is that .SKIP
can move past statements that .STEP cannot, such as:

• Statements with errors that cause execution to halt.

• Infinite loops, and similar logic errors.

For example, consider the following program segment:

......
OPENR, 1, 'missing'
READF, 1, xxx, ..., ...
...

If the OPENR statement fails because the specified file does not exist, program
execution will halt with the OPENR statement as the current statement. Execution
can not be resumed with the executive command .CONTINUE because it attempts to
re-execute the offending OPENR statement, causing the same error. The remainder of
the program can be executed by entering .SKIP, which skips over the incorrect OPEN
statement.

Note
.SKIP is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.
.SKIP IDL Reference Guide

Chapter 2: Dot Commands 77
Syntax

.SKIP [n]
IDL Reference Guide .SKIP

78 Chapter 2: Dot Commands
.STEP

The .STEP command executes one or more statements in the current program starting
at the current position, stops, and returns control to the interactive mode. This
command is useful in debugging programs. The optional argument n indicates the
number of statements to execute. If n is omitted, a single statement is executed.

Note
.STEP is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

Syntax

.STEP [n] or .S [n]
.STEP IDL Reference Guide

Chapter 2: Dot Commands 79
.STEPOVER

The .STEPOVER command executes one or more statements in the current program
starting at the current position, stops, and returns control to the interactive mode.
Unlike .STEP, if .STEPOVER executes a statement that calls another routine, the
called routine runs until it ends before control returns to interactive mode. That is, a
statement calling another routine is treated as a single statement.

The optional argument n indicates the number of statements to execute. If n is
omitted, a single statement (or called routine) is executed.

Note
.STEPOVER is an executive command. Executive commands can only be used at
the IDL command prompt, not in programs.

Syntax

.STEPOVER [n] or .SO [n]
IDL Reference Guide .STEPOVER

80 Chapter 2: Dot Commands
.TRACE

The .TRACE command continues execution of a program that has stopped because of
an error, a stop statement, or a keyboard interrupt.

Note
.TRACE is an executive command. Executive commands can only be used at the
IDL command prompt, not in programs.

Syntax

.TRACE
.TRACE IDL Reference Guide

Chapter 3:

Procedures and
Functions
IDL Reference Guide 81

82 Chapter 3: Procedures and Functions
A_CORRELATE

The A_CORRELATE function computes the autocorrelation Px(L) or autocovariance
Rx(L) of a sample population X as a function of the lag L.

where x is the mean of the sample population x = (x0, x1, x2, ... , xN-1).

Note
This routine is primarily designed for use in 1-D time-series analysis. The mean is
subtracted before correlating. For image processing, methods based on FFT should
be used instead if more than a few tens of points exist. For example:

Function AutoCorrelate, X
Temp = FFT(X,-1)
RETURN, FFT(Temp * CONJ(Temp), 1)

END

This routine is written in the IDL language. Its source code can be found in the file
a_correlate.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = A_CORRELATE(X, Lag [, /COVARIANCE] [, /DOUBLE])

Px L() Px L–()

xk x–() xk L+ x–()

k 0=

N L– 1–

∑

xk x–()2

k 0=

N 1–

∑

--= =

Rx L() Rx L–() 1
N
---- xk x–() xk L+ x–()

k 0=

N L– 1–

∑= =
A_CORRELATE IDL Reference Guide

Chapter 3: Procedures and Functions 83
Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Lag

An n-element integer vector in the interval [-(n-2), (n-2)], specifying the signed
distances between indexed elements of X.

Keywords

COVARIANCE

Set this keyword to compute the sample autocovariance rather than the sample
autocorrelation.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

; Define an n-element sample population:
X = [3.73, 3.67, 3.77, 3.83, 4.67, 5.87, 6.70, 6.97, 6.40, 5.57]
; Compute the autocorrelation of X for LAG = -3, 0, 1, 3, 4, 8:
lag = [-3, 0, 1, 3, 4, 8]
result = A_CORRELATE(X, lag)
PRINT, result

IDL prints:

0.0146185 1.00000 0.810879 0.0146185 -0.325279 -0.151684

Version History

Introduced: 4.0

See Also

CORRELATE, C_CORRELATE, M_CORRELATE, P_CORRELATE,
R_CORRELATE
IDL Reference Guide A_CORRELATE

84 Chapter 3: Procedures and Functions
ABS

The ABS function returns the absolute value of its argument.

Syntax

Result = ABS(X)

Return Value

Returns the absolute value of its argument.

Arguments

X

The value for which the absolute value is desired. If X is of complex type, ABS
returns the magnitude of the complex number:

If X is of complex type, the result is returned as the corresponding floating point type.
For all other types, the result has the same type as X. If X is an array, the result has the
same structure, with each element containing the absolute value of the corresponding
element of X.

ABS applied to any of the unsigned integer types results in the unaltered value of X
being returned.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Real2 Imaginary2+
ABS IDL Reference Guide

Chapter 3: Procedures and Functions 85
Examples

To print the absolute value of -25, enter:

PRINT, ABS(-25)

IDL prints:

25

Version History

Introduced: Original
IDL Reference Guide ABS

86 Chapter 3: Procedures and Functions
ACOS

The ACOS function returns the angle, expressed in radians, whose cosine is X (i.e.,
the arc-cosine). For real input, the range of ACOS is between 0 and π.

For input of a complex number, Z = X + iY, the complex arccosine is given by,

acos(Z) = acos(B) - i alog(A + sqrt(A2 - 1)) if Y >= 0

acos(Z) = acos(B) + i alog(A + sqrt(A2 - 1)) if Y < 0

where

A = 0.5 sqrt((X + 1)2 + Y2) + 0.5 sqrt((X - 1)2 + Y2)

B = 0.5 sqrt((X + 1)2 + Y2) - 0.5 sqrt((X - 1)2 + Y2)

The separation of the two formulas at Y = 0 takes into account the branch-cut
discontinuity along the real axis from -∞ to -1 and +1 to +∞, and ensures that
cos(acos(Z)) is equal to Z. For reference, see formulas 4.4.37-39 in Abramowitz, M.
and Stegun, I.A., 1964: Handbook of Mathematical Functions (Washington: National
Bureau of Standards).

Syntax

Result = ACOS(X)

Return Value

Returns the angle, expressed in radians, whose cosine is X (i.e., the arc-cosine).

Arguments

X

The cosine of the desired angle. For real input, X should be in the range -1 to +1. If X
is double-precision floating or complex, the result is of the same type. All other types
are converted to single-precision floating-point and yield floating-point results. If X
is an array, the result has the same structure, with each element containing the arc-
cosine of the corresponding element of X.
ACOS IDL Reference Guide

Chapter 3: Procedures and Functions 87
Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

Find the angle whose cosine is 0.707 and print the result in degrees by entering:

PRINT, 180/!PI*ACOS(0.707)
IDL prints:
45.0086

Find the complex arccosine of 2 + i and print the result by entering:

PRINT, ACOS(COMPLEX(2,1))
IDL prints:
(0.507356, -1.46935)

See the ATAN function for an example of visualizing the complex arccosine.

Version History

Introduced: Original

PHASE keyword: 5.6

See Also

COS, COSH, ASIN, SIN, SINH, ATAN, TAN, TANH
IDL Reference Guide ACOS

88 Chapter 3: Procedures and Functions
ADAPT_HIST_EQUAL

The ADAPT_HIST_EQUAL function performs adaptive histogram equalization, a
form of automatic image contrast enhancement. The algorithm is described in Pizer
et. al., “Adaptive Histogram Equalization and its Variations.”, Computer Vision,
Graphics and Image Processing, 39:355-368. Adaptive histogram equalization
involves applying contrast enhancement based on the local region surrounding each
pixel. Each pixel is mapped to an intensity proportional to its rank within the
surrounding neighborhood. This method of automatic contrast enhancement has
proven to be broadly applicable to a wide range of images and to have demonstrated
effectiveness.

This routine is written in the IDL language. Its source code can be found in the file
adapt_hist_equal.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = ADAPT_HIST_EQUAL (Image [, CLIP=value] [, FCN=vector]
[, NREGIONS=nregions] [, TOP=value])

Return Value

The result of the function is a byte image with the same dimensions as the input
image parameter.

Arguments

Image

A two-dimensional array representing the image for which adaptive histogram
equalization is to be performed. This parameter is interpreted as unsigned 8-bit data,
so be sure that the input values are properly scaled into the range of 0 to 255.

Keywords

CLIP

Set this keyword to a nonzero value to clip the histogram by limiting its slope to the
given CLIP value, thereby limiting contrast. For example, if CLIP is set to 3, the
slope of the histogram is limited to 3. By default, the slope and/or contrast is not
ADAPT_HIST_EQUAL IDL Reference Guide

Chapter 3: Procedures and Functions 89
limited. Noise over-enhancement in nearly homogeneous regions is reduced by
setting this parameter to values larger than 1.0.

FCN

Set this keyword to the desired cumulative probability distribution function in the
form of a 256 element vector. If omitted, a linear ramp, which yields equal
probability bins results. This function is later normalized, so magnitude is
inconsequential, though should increase monotonically.

NREGIONS

Set this keyword to the size of the overlapped tiles, as a fraction of the largest
dimensions of the image size. The default is 12, which makes each tile 1/12 the size
of the largest image dimension.

TOP

Set this keyword to the maximum value of the scaled output array. The default is 255.

Examples

The following code snippet reads a data file in the examples/data subdirectory of
the IDL distribution containing a cerebral angiogram, and then displays both the
original image and the adaptive histogram equalized image:

OPENR, 1, FILEPATH('cereb.dat', $
SUBDIRECTORY=['examples','data'])

;Image size = 512 x 512
a = BYTARR(512,512, /NOZERO)

;Read it
READU, 1, a
CLOSE, 1

; Reduce size of image for comparison
a = CONGRID(a, 256,256)

;Show original
TVSCL, a, 0

;Show processed
TV, ADAPT_HIST_EQUAL(a, TOP=!D.TABLE_SIZE-1), 1
IDL Reference Guide ADAPT_HIST_EQUAL

90 Chapter 3: Procedures and Functions
Version History

Introduced: 5.3

See Also

H_EQ_CT, H_EQ_INT, HIST_2D, HIST_EQUAL, HISTOGRAM
ADAPT_HIST_EQUAL IDL Reference Guide

Chapter 3: Procedures and Functions 91
ALOG

The ALOG function returns the natural logarithm of X.

For input of a complex number, Z = X + iY, the complex number can be rewritten as
Z = R exp(iθ), where R = abs(Z) and θ = atan(y,x). The complex natural log is then
given by,

alog(Z) = alog(R) + i q

In the above formula, the use of the two-argument arctangent separates the solutions
at Y = 0 and takes into account the branch-cut discontinuity along the real axis from -
∞ to 0, and ensures that exp(alog(Z)) is equal to Z. For reference, see formulas 4.4.1-3
in Abramowitz, M. and Stegun, I.A., 1964: Handbook of Mathematical Functions
(Washington: National Bureau of Standards).

Syntax

Result = ALOG(X)

Return Value

Returns the natural logarithm of X.

Arguments

X

The value for which the natural log is desired. For real input, X should be greater than
or equal to zero. If X is double-precision floating or complex, the result is of the same
type. All other types are converted to single-precision floating-point and yield
floating-point results. If X is an array, the result has the same structure, with each
element containing the natural log of the corresponding element of X.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
IDL Reference Guide ALOG

92 Chapter 3: Procedures and Functions
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

Find the natural logarithm of 2 and print the result by entering:

PRINT, ALOG(2)
IDL prints:
0.693147

Find the complex natural log of sqrt(2) + i sqrt(2) and print the result by entering:

PRINT, ALOG(COMPLEX(sqrt(2), sqrt(2)))
IDL prints:
(0.693147, 0.785398)

Note
The real part of the result is just ALOG(2) and the imaginary part gives the angle (in
radians) of the complex number relative to the real axis.

See the ATAN function for an example of visualizing the complex natural log.

Version History

Introduced: Original

See Also

ALOG10, ATAN
ALOG IDL Reference Guide

Chapter 3: Procedures and Functions 93
ALOG10

The ALOG10 function returns the logarithm to the base 10 of X.

For input of a complex number, Z = X + iY, the complex number can be rewritten as
Z = R exp(iq), where R = abs(Z) and q = atan(y,x). The complex log base 10 is then
given by,

alog10(Z) = alog10(R) + i q/alog(10)

In the above formula, the use of the two-argument arctangent separates the solutions
at Y = 0 and takes into account the branch-cut discontinuity along the real axis from -
∞ to 0, and ensures that 10^(alog10(Z)) is equal to Z. For reference, see formulas
4.4.1-3 in Abramowitz, M. and Stegun, I.A., 1964: Handbook of Mathematical
Functions (Washington: National Bureau of Standards).

Syntax

Result = ALOG10(X)

Return Value

Returns the logarithm to the base 10 of X.

Arguments

X

The value for which the base 10 log is desired. For real input, X should be greater
than or equal to zero. If X is double-precision floating or complex, the result is of the
same type. All other types are converted to single-precision floating-point and yield
floating-point results. If X is an array, the result has the same structure, with each
element containing the base 10 log of the corresponding element of X.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
IDL Reference Guide ALOG10

94 Chapter 3: Procedures and Functions
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

Find the base 10 logarithm of 100 and print the result by entering:

PRINT, ALOG10(100)
IDL prints:
2.00000

See the ATAN function for an example of visualizing the complex logarithm.

Version History

Introduced: Original

See Also

ALOG, ATAN
ALOG10 IDL Reference Guide

Chapter 3: Procedures and Functions 95
AMOEBA

The AMOEBA function performs multidimensional minimization of a function
Func(x), where x is an n-dimensional vector, using the downhill simplex method of
Nelder and Mead, 1965, Computer Journal, Vol 7, pp 308-313.

The downhill simplex method is not as efficient as Powell’s method, and usually
requires more function evaluations. However, the simplex method requires only
function evaluations—not derivatives—and may be more reliable than Powell’s
method.

This routine is written in the IDL language. Its source code can be found in the file
amoeba.pro in the lib subdirectory of the IDL distribution. AMOEBA is based on
the routine amoeba described in section 10.4 of Numerical Recipes in C: The Art of
Scientific Computing (Second Edition), published by Cambridge University Press,
and is used by permission.

Syntax

Result = AMOEBA(Ftol [, FUNCTION_NAME=string]
[, FUNCTION_VALUE=variable] [, NCALLS=value] [, NMAX=value]
[, P0=vector, SCALE=vector | , SIMPLEX=array])

Return Value

If the minimum is found, AMOEBA returns an n-element vector corresponding to the
function’s minimum value. If a minimum within the given tolerance is not found
within the specified number of iterations, AMOEBA returns a scalar value of -1.
Results are returned with the same precision (single- or double-precision floating-
point) as is returned by the user-supplied function to be minimized.

Arguments

Ftol

The fractional tolerance to be achieved in the function value—that is, the fractional
decrease in the function value in the terminating step. If the function you supply
returns a single-precision result, Ftol should never be less than your machine’s
floating-point precision—the value contained in the EPS field of the structure
returned by the MACHAR function. If the function you supply returns a double-
precision floating-point value, Ftol should not be less than your machine’ double-
precision floating-point precision. See MACHAR for details.
IDL Reference Guide AMOEBA

96 Chapter 3: Procedures and Functions
Keywords

FUNCTION_NAME

Set this keyword equal to a string containing the name of the function to be
minimized. If this keyword is omitted, AMOEBA assumes that an IDL function
named “FUNC” is to be used.

The function to be minimized must be written as an IDL function and compiled prior
to calling AMOEBA. This function must accept an n-element vector as its only
parameter and return a scalar single- or double precision floating-point value as its
result.

See the Example section below for an example function.

FUNCTION_VALUE

Set this keyword equal to a named variable that will contain an (n+1)-element vector
of the function values at the simplex points. The first element contains the function
minimum.

NCALLS

Set this keyword equal to a named variable that will contain a count of the number of
times the function was evaluated.

NMAX

Set this keyword equal to a scalar value specifying the maximum number of function
evaluations allowed before terminating. The default is 5000.

P0

Set this keyword equal to an n-element single- or double-precision floating-point
vector specifying the initial starting point. Note that if you specify P0, you must also
specify SCALE.

For example, in a 3-dimensional problem, if the initial guess is the point [0,0,0], and
you know that the function’s minimum value occurs in the interval:

-10 < X[0] < 10, -100 < X[1] < 100, -200 < X[(2] < 200,

specify: P0=[0,0,0] and SCALE=[10, 100, 200].

Alternately, you can omit P0 and SCALE and specify SIMPLEX.
AMOEBA IDL Reference Guide

Chapter 3: Procedures and Functions 97
SCALE

Set this keyword equal to a scalar or n-element vector containing the problem’s
characteristic length scale for each dimension. SCALE is used with P0 to form an
initial (n+1) point simplex. If all dimensions have the same scale, set SCALE equal to
a scalar.

If SCALE is specified as a scalar, the function’s minimum lies within a distance of
SCALE from P0. If SCALE is an N-dimensional vector, the function's minimum lies
within the Ndim+1 simplex with the vertices P0, P0 + [1,0,...,0] * SCALE, P0 +
[0,1,0,...,0] * SCALE, ..., and P0+[0,0,...,1] * SCALE.

SIMPLEX

Set this keyword equal to an n by n+1 single- or double-precision floating-point array
containing the starting simplex. After AMOEBA has returned, the SIMPLEX array
contains the simplex enclosing the function minimum. The first point in the array,
SIMPLEX[*,0], corresponds to the function’s minimum. This keyword is ignored if
the P0 and SCALE keywords are set.

Examples

Use AMOEBA to find the slope and intercept of a straight line that fits a given set of
points, minimizing the maximum error. The function to be minimized (FUNC, in this
case) returns the maximum error, given p[0] = intercept, and p[1] = slope.

; First define the function FUNC:
FUNCTION FUNC, P
COMMON FUNC_XY, X, Y
RETURN, MAX(ABS(Y - (P[0] + P[1] * X)))
END

; Put the data points into a common block so they are accessible to
; the function:
COMMON FUNC_XY, X, Y

; Define the data points:
X = FINDGEN(17)*5
Y = [12.0, 24.3, 39.6, 51.0, 66.5, 78.4, 92.7, 107.8, $

120.0, 135.5, 147.5, 161.0, 175.4, 187.4, 202.5, 215.4, 229.9]

; Call the function. Set the fractional tolerance to 1 part in
; 10^5, the initial guess to [0,0], and specify that the minimum
; should be found within a distance of 100 of that point:
R = AMOEBA(1.0e-5, SCALE=1.0e2, P0 = [0, 0], FUNCTION_VALUE=fval)
IDL Reference Guide AMOEBA

98 Chapter 3: Procedures and Functions
; Check for convergence:
IF N_ELEMENTS(R) EQ 1 THEN MESSAGE, 'AMOEBA failed to converge'

; Print results:
PRINT, 'Intercept, Slope:', r, $

'Function value (max error): ', fval[0]

IDL prints:

Intercept, Slope: 11.4100 2.72800
Function value: 1.33000

Version History

Introduced: 5.0

See Also

DFPMIN, POWELL, SIMPLEX
AMOEBA IDL Reference Guide

Chapter 3: Procedures and Functions 99
ANNOTATE

The ANNOTATE procedure starts an IDL widget program that allows you to
interactively annotate images and plots with text and drawings. Drawing objects
include lines, arrows, polygons, rectangles, circles, and ellipses. Annotation files can
be saved and restored, and annotated displays can be written to TIFF or PostScript
files. The Annotation widget will work on any IDL graphics window or draw widget.

This routine is written in the IDL language. Its source code can be found in the file
annotate.pro in the lib subdirectory of the IDL distribution.

Using the Annotation Widget

Before calling the Annotation widget, plot or display your data in an IDL graphics
window or draw widget. Unless you specify otherwise (using the DRAWABLE or
WINDOW keywords), annotations will be made in the current graphics window.

For information on using the Annotation widget, click on the widget’s “Help” button.

Syntax

ANNOTATE [, COLOR_INDICES=array] [, DRAWABLE=widget_id | ,
WINDOW=index] [, LOAD_FILE=filename] [, /TEK_COLORS]

Arguments

None.

Keywords

COLOR_INDICES

An array of color indices from which the user can choose colors. For example, to
allow the user to choose 10 colors, spread evenly over the available indices, set the
keyword as follows:

COLOR_INDICES = INDGEN(10) * (!D.N_COLORS-1) / 9

If neither TEK_COLORS or COLOR_INDICES are specified, the default is to load
10 colors, evenly distributed over those available.
IDL Reference Guide ANNOTATE

100 Chapter 3: Procedures and Functions
DRAWABLE

The widget ID of the draw widget for the annotations. Do not set both DRAWABLE
and WINDOW. If neither WINDOW or DRAWABLE are specified, the current
window is used.

LOAD_FILE

The name of an annotation format file to load after initialization.

TEK_COLORS

Set this keyword and the Tektronix color table is loaded starting at color index
TEK_COLORS(0), with TEK_COLORS(1) color indices. The Tektronix color table
contains up to 32 distinct colors suitable for graphics. If neither TEK_COLORS or
COLOR_INDICES are specified, the default is to load 10 colors, evenly distributed
over those available.

WINDOW

The window index number of the window to receive the annotations. Do not set both
DRAWABLE and WINDOW. If neither WINDOW or DRAWABLE are specified, the
current window is used.

Examples

; Output an image in the current window:
TVSCL, HANNING(300,200)
; Annotate it:
ANNOTATE

Version History

Introduced: Pre 4.0

See Also

PLOTS, XYOUTS
ANNOTATE IDL Reference Guide

Chapter 3: Procedures and Functions 101
ARG_PRESENT

The ARG_PRESENT function is useful in user-written procedures that need to know
if the lifetime of a value they are creating extends beyond the current routine’s
lifetime. This can be important for two reasons:

1. To avoid expensive computations that the caller is not interested in.

2. To prevent heap variable leakage that would result if the routine creates
pointers or object references and assigns them to arguments that are not passed
back to the caller.

Syntax

Result = ARG_PRESENT(Variable)

Return Value

Returns a nonzero value if the following conditions are met:

• The argument to ARG_PRESENT was passed as a plain or keyword argument
to the current routine by its caller, and

• The argument to ARG_PRESENT is a named variable into which a value will
be copied when the current routine exits.

In other words, ARG_PRESENT returns TRUE if the value of the specified variable
will be passed back to the caller.

Arguments

Variable

The variable to be tested.

Example

Suppose that you are writing an IDL procedure that has the following procedure
definition line:

PRO myproc, RET_PTR = ret_ptr

The intent of the RET_PTR keyword is to pass back a pointer to a new pointer heap
variable. The following command could be used to avoid creating (and possibly
losing) a pointer if no named variable is provided by the caller:
IDL Reference Guide ARG_PRESENT

102 Chapter 3: Procedures and Functions
IF ARG_PRESENT(ret_ptr) THEN BEGIN

The commands that follow would only be executed if ret_ptr is supplied and will
be copied into a variable in the scope of the calling routine.

Version History

Introduced: 5.0

See Also

KEYWORD_SET, N_ELEMENTS, N_PARAMS
ARG_PRESENT IDL Reference Guide

Chapter 3: Procedures and Functions 103
ARRAY_EQUAL

The ARRAY_EQUAL function is a fast way to compare data for equality in
situations where the index of the elements that differ are not of interest. This
operation is much faster than using TOTAL(A NE B), because it stops the
comparison as soon as the first inequality is found, an intermediate array is not
created, and only one pass is made through the data. For best speed, ensure that the
operands are of the same data type.

Arrays may be compared to scalars, in which case each element is compared to the
scalar. For two arrays to be equal, they must have the same number of elements. If the
types of the operands differ, the type of the least precise is converted to that of the
most precise, unless the NO_TYPECONV keyword is specified to prevent it. This
function works on all numeric types, strings, pointer references, and object
references. In the case of pointer and object references, ARRAY_EQUAL compares
the references (which are long integers), not the heap variables to which the
references point.

Syntax

Result = ARRAY_EQUAL(Op1 , Op2 [, /NO_TYPECONV])

Return Value

Returns 1 (true) if, and only if, all elements of Op1 are equal to Op2; returns 0 (false)
at the first instance of inequality.

Arguments

Op1, Op2

The variables to be compared.

Keywords

NO_TYPECONV

By default, ARRAY_EQUAL converts operands of different types to a common type
before performing the equality comparison. Set NO_TYPECONV to disallow this
implicit type conversion. If NO_TYPECONV is specified, operands of different
types are never considered to be equal, even if their numeric values are the same.
IDL Reference Guide ARRAY_EQUAL

104 Chapter 3: Procedures and Functions
Examples

; Return True (1) if all elements of a are equal to a 0 byte:
IF ARRAY_EQUAL(a, 0b) THEN ...
; Return True (1) if all elements of a are equal all elements of b:
IF ARRAY_EQUAL(a, b) THEN ...

Version History

Introduced: 5.4
ARRAY_EQUAL IDL Reference Guide

Chapter 3: Procedures and Functions 105
ARRAY_INDICES

The ARRAY_INDICES function converts one-dimensional subscripts of an array
into corresponding multi-dimensional subscripts.

This routine is written in the IDL language. Its source code can be found in the file
array_indices.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = ARRAY_INDICES(Array, Index)

Return Value

If Index is a scalar, returns a vector containing m dimensional subscripts, where m is
the number of dimensions of Array.

If Index is a vector containing n elements, returns an (m x n) array, with each row
containing the multi-dimensional subscripts corresponding to that index.

Arguments

Array

An array of any type.

Index

A scalar or vector containing the one-dimensional subscripts to be converted.

Keywords

None.
IDL Reference Guide ARRAY_INDICES

106 Chapter 3: Procedures and Functions
Examples

Example 1

This example finds the location of the maximum value of a random 10 by 10 array:

seed = 111
array = RANDOMU(seed, 10, 10)
mx = MAX(array, location)
ind = ARRAY_INDICES(array, location)
PRINT, ind, array[ind[0],ind[1]], $

FORMAT = '(%"Value at [%d, %d] is %f")'

IDL prints:

Value at [3, 6] is 0.973381

Example 2

This example routine locates the highest point in the example Maroon Bells data set
and places a flag at that point.

Enter the following code in the IDL editor:

PRO ExARRAY_INDICES

; Import Maroon Bells data.
file = FILEPATH('surface.dat', $

SUBDIRECTORY = ['examples', 'data'])
data = READ_BINARY(file, DATA_DIMS = [350, 450], $

DATA_TYPE = 2)

; Display data.
ISURFACE, data

; Calculate the value and one-dimensional
; array location of the highest point.
maxValue = MAX(data, maxPoint)

; Using ARRAY_INDICES to convert the one-
; dimensional array location to a two-
; dimensional aray location.
maxLocation = ARRAY_INDICES(data, maxPoint)

; Print the results.
PRINT, 'Highest Point Location: ', maxLocation
PRINT, 'Highest Point Value: ', maxValue

; Create flag for the highest point.
ARRAY_INDICES IDL Reference Guide

Chapter 3: Procedures and Functions 107
x = maxLocation[0]
y = maxLocation[1]
z = maxValue
xFlag = [x, x, x + 50., x]
yFlag = [y, y, y + 50., y]
zFlag = [z, z + 1000., z + 750., z + 500.]

; Display flag at the highest point.
IPLOT, xFlag, yFlag, zFlag, /OVERPLOT

END

Save the code as ExARRAY_INDICES.pro, compile it and run it. The following
figure displays the output of this example:

For a better view of the flag, use the Rotate tool to rotate the surface.

Version History

Introduced: 6.0

See Also

MAX, MIN, WHERE

Figure 3-1: Maroon Bells Surface Plot with Flag at Highest Point Before Rotation
(Left) and After Rotation (Right)
IDL Reference Guide ARRAY_INDICES

108 Chapter 3: Procedures and Functions
ARROW

The ARROW procedure draws one or more vectors with arrow heads.

This routine is written in the IDL language. Its source code can be found in the file
arrow.pro in the lib subdirectory of the IDL distribution.

Syntax

ARROW, X0, Y0, X1, Y1 [, /DATA | , /NORMALIZED] [, HSIZE=length]
[, COLOR=index] [, HTHICK=value] [, /SOLID] [, THICK=value]

Arguments

X0, Y0

Arrays or scalars containing the coordinates of the tail end of the vector or vectors.
Coordinates are in DEVICE coordinates unless otherwise specified.

X1,Y1

Arrays or scalars containing the coordinates of the arrowhead end of the vector or
vectors. X1 and Y1 must have the save number of elements as X0 and Y0.

Keywords

DATA

Set this keyword if vector coordinates are DATA coordinates.

NORMALIZED

Set this keyword if vector coordinates are NORMALIZED coordinates.

HSIZE

Use this keyword to set the length of the lines used to draw the arrowhead. The
default is 1/64th the width of the display (!D.X_SIZE / 64.). If the HSIZE is positive,
the value is assumed to be in device coordinate units. If HSIZE is negative, the
arrowhead length is set to the vector length * ABS(HSIZE). The lines are separated
by 60 degrees to make the arrowhead.
ARROW IDL Reference Guide

Chapter 3: Procedures and Functions 109
COLOR

The color of the arrow. The default is the highest color index.

HTHICK

The thickness of the arrowheads. The default is 1.0.

SOLID

Set this keyword to make a solid arrow, using polygon fills, looks better for thick
arrows.

THICK

The thickness of the body. The default is 1.0.

Examples

Draw an arrow from (100,150) to (300,350) in DEVICE units:

ARROW, 100, 150, 300, 350

Draw a sine wave with arrows from the line Y = 0 to SIN(X/4):

X = FINDGEN(50)
Y = SIN(x/4)
PLOT, X, Y
ARROW, X, REPLICATE(0,50), X, Y, /DATA

Version History

Introduced: Pre 4.0

See Also

ANNOTATE, PLOTS, VELOVECT
IDL Reference Guide ARROW

110 Chapter 3: Procedures and Functions
ASCII_TEMPLATE

The ASCII_TEMPLATE function presents a graphical user interface (GUI) which
generates a template defining an ASCII file format. Templates are IDL structure
variables that may be used when reading ASCII files with the READ_ASCII routine.
See READ_ASCII for details on reading ASCII files.

This routine is written in the IDL language. Its source code can be found in the file
ascii_template.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = ASCII_TEMPLATE([Filename] [, BROWSE_LINES=lines]
[, CANCEL=variable] [, GROUP=widget_id])

Return Value

Returns a template defining an ASCII file format.

Arguments

Filename

A string containing the name of a file to base the template on. If Filename is not
specified, a dialog allows you to choose a file.

Keywords

BROWSE_LINES

Set this keyword equal to the number of lines that will be read in at a time when the
“Browse” button is selected. The default is 50 lines.

CANCEL

Set this keyword to a named variable that will contain the byte value 1 if the user
clicked the “Cancel” button, or 0 otherwise.
ASCII_TEMPLATE IDL Reference Guide

Chapter 3: Procedures and Functions 111
GROUP

The widget ID of an existing widget that serves as “group leader” for the
ASCII_TEMPLATE graphical user interface. When a group leader is killed, for any
reason, all widgets in the group are also destroyed.

The ASCII_TEMPLATE Interface

When the ASCII_TEMPLATE function is invoked, the following dialog is
displayed:.

Note
If no filename is supplied in the call to the ASCII_TEMPLATE function, a file
selection dialog is displayed prior to the first ASCII_TEMPLATE screen.

The first page displays a representative sample of lines from the data file with their
numbers on the left. Select the field type that best describes the data. Click the Next
button on the bottom-right corner of the screen to move to the next page.

Figure 3-2: ASCII Template - Define Data Type / Range
IDL Reference Guide ASCII_TEMPLATE

112 Chapter 3: Procedures and Functions
The second page displays the number of fields per line which is listed as three and the
white space is selected for the data delimiter. Click the Next button on the bottom
right corner of the screen to move to the next page.

Figure 3-3: ASCII Template - Define Delimiter / Fields
ASCII_TEMPLATE IDL Reference Guide

Chapter 3: Procedures and Functions 113
The third page displays the columns in the data set which can be named and their data
type specified. Name the fields by typing in the name text at the upper right of the
form. Click the Finish button on the bottom-right corner of the screen.

Examples

Use the following command to generate a template structure from the file “myFile”:

myTemplate = ASCII_TEMPLATE(myFile)

Version History

Introduced: 5.0

See Also

READ_ASCII, BINARY_TEMPLATE

Figure 3-4: ASCII Template - Field Specification
IDL Reference Guide ASCII_TEMPLATE

114 Chapter 3: Procedures and Functions
ASIN

The ASIN function returns the angle, expressed in radians, whose sine is X (i.e., the
arc-sine).

For real input, the range of ASIN is between -π/2 and π/2.

For input of a complex number, Z = X + iY, the complex arcsine is given by,

asin(Z) = asin(B) + i alog(A + sqrt(A2 - 1)) if Y >= 0

asin(Z) = asin(B) - i alog(A + sqrt(A2 - 1)) if Y < 0

where

A = 0.5 sqrt((X + 1)2 + Y2) + 0.5 sqrt((X - 1)2 + Y2)

B = 0.5 sqrt((X + 1)2 + Y2) - 0.5 sqrt((X - 1)2 + Y2)

The separation of the two formulas at Y = 0 takes into account the branch-cut
discontinuity along the real axis from -∞ to -1 and +1 to +∞, and ensures that
sin(asin(Z)) is equal to Z. For reference, see formulas 4.4.37-39 in Abramowitz, M.
and Stegun, I.A., 1964: Handbook of Mathematical Functions (Washington: National
Bureau of Standards).

Syntax

Result = ASIN(X)

Return Value

Returns the angle, expressed in radians, whose sine is X (i.e., the arc-sine).

Arguments

X

The sine of the desired angle. For real input, X should be in the range -1 to +1. If X is
double-precision floating or complex, the result is of the same type. All other types
are converted to single-precision floating-point and yield floating-point results. If X
is an array, the result has the same structure, with each element containing the arcsine
of the corresponding element of X.
ASIN IDL Reference Guide

Chapter 3: Procedures and Functions 115
Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

Find the angle whose sine is 0.707 and print the result in degrees by entering:

PRINT, 180/!PI*ASIN(0.707)
IDL prints:
44.9913

Find the complex arcsine of 2 + i and print the result by entering:

PRINT, ASIN(COMPLEX(2,1))
IDL prints:
(1.06344, 1.46935)

See the ATAN function for an example of visualizing the complex arcsine.

Version History

Introduced: Original

See Also

ACOS, COS, COSH, SIN, SINH, ATAN, TAN, TANH
IDL Reference Guide ASIN

116 Chapter 3: Procedures and Functions
ASSOC

The ASSOC function associates an array structure with a file. It provides a basic
method of random access input/output in IDL.

Note
Unformatted data files generated by FORTRAN programs under UNIX contain an
extra long word before and after each logical record in the file. ASSOC does not
interpret these extra bytes but considers them to be part of the data. This is true even
if the F77_UNFORMATTED keyword is specified in the OPEN statement.
Therefore, ASSOC should not be used with such files. Instead, such files should be
processed using READU and WRITEU. An example of using IDL to read such data
is given in “Using Unformatted Input/Output” in Chapter 10 of the Building IDL
Applications manual.

Note
Associated file variables cannot be used for output with files opened using the
COMPRESS keyword to OPEN. This is due to the fact that it is not possible to
move the current file position backwards in a compressed file that is currently open
for writing. ASSOC is allowed with compressed files opened for input only.
However, such operations may be slow due to the large amount of work required to
change the file position in a compressed file.

Effective use of ASSOC requires the ability to rapidly position the file to arbitrary
positions. In general, files that require random access may not be good candidates
for compression. If this is necessary however, such files can be processed using
READU and WRITEU.

Syntax

Result = ASSOC(Unit, Array_Structure [, Offset] [, /PACKED])

Return Value

Returns a value that when assigned to a variable, stores the association between an
array structure and a file in an associated variable. This variable provides a means of
mapping a file into vectors or arrays of a specified type and size.
ASSOC IDL Reference Guide

Chapter 3: Procedures and Functions 117
Arguments

Unit

The IDL file unit to associate with Array_Structure.

Array_Structure

An expression of the data type and structure to be associated with Unit are taken from
Array_Structure. The actual value of Array_Structure is not used.

Offset

The offset in the file to the start of the data in the file, in bytes.

Keywords

PACKED

When ASSOC is applied to structures, the default action is to map the actual
definition of the structure for the current machine, including any holes required to
properly align the fields. (IDL uses the same rules for laying out structures as the C
language). If the PACKED keyword is specified, I/O using the resulting variable
instead works in the same manner as READU and WRITEU, and data is moved one
field at a time and there are no alignment gaps between the fields.

Examples

Suppose that the file images.dat holds 5 images as 256-element by 256-element
arrays of bytes. Open the file for reading and create an associated variable by
entering:

OPENR, 1, 'images.dat' ;Open the file as file unit 1.
A = ASSOC(1, BYTARR(256, 256)) ;Make an associated variable.

Now A[0] corresponds to the first image in the file, A[1] is the second element, etc.
To display the first image in the file, you could enter:

TV, A[0]

The data for the first image is read and then displayed. Note that the data associated
with A[0] is not held in memory. It is read in every time there is a reference to A[0].
To store the image in the memory-resident array B, you could enter:

B = A[0]
IDL Reference Guide ASSOC

118 Chapter 3: Procedures and Functions
Note
It is also possible to refer to individual elements within an associated array directly,
using multiple subscripts. See “Multiple Subscripts With Associated File Variables”
in Chapter 10 of the Building IDL Applications manual for details and examples.

Version History

Introduced: Original

See Also

OPEN, READU, “Associated Input/Output” in Chapter 10 of the Building IDL
Applications manual.
ASSOC IDL Reference Guide

Chapter 3: Procedures and Functions 119
ATAN

The ATAN function returns the angle, expressed in radians, whose tangent is X (i.e.,
the arc-tangent). If two parameters are supplied, the angle whose tangent is equal to
Y/X is returned.

For real input, the range of ATAN is between -π/2 and π/2 for the single argument
case, and between -π and π if two arguments are given.

In the single argument case with a complex number, Z = X + iY, the complex
arctangent is given by,

atan(Z) = 0.5 atan(2x, 1 - x2 - y2) + 0.25 i alog((x2 + (y+1)2)/(x2 + (y-1)2))

In the above formula, the use of the two-argument arctangent separates the solutions
at X = 0 and takes into account the branch-cut discontinuity along the imaginary axis
from -i∞ to -i and +i to +i∞, and ensures that tan(atan(Z)) is equal to Z. For reference,
see formulas 4.4.37-39 in Abramowitz, M. and Stegun, I.A., 1964: Handbook of
Mathematical Functions (Washington: National Bureau of Standards).

In the two argument case with two complex numbers Zy and Zx, the complex
arctangent is given by,

atan(Zy, Zx) = -i alog((Zx + iZy)/sqrt(Zx2 + Zy2))

In the two argument case (either real or complex), if both arguments are zero then the
result is undefined.

Syntax

Result = ATAN(X [, /PHASE])

or

Result = ATAN(Y, X)

Return Value

Returns the angle, expressed in radians, whose tangent is X (i.e., the arc-tangent). If
two parameters are supplied, the angle whose tangent is equal to Y/X is returned.
IDL Reference Guide ATAN

120 Chapter 3: Procedures and Functions
Arguments

X

The tangent of the desired angle. If X is double-precision floating or complex, the
result is of the same type. All other types are converted to single-precision floating-
point and yield floating-point results. If X is an array, the result has the same
structure, with each element containing the arctangent of the corresponding element
of X.

Y

An optional argument. If this argument is supplied, ATAN returns the angle whose
tangent is equal to Y/X. If both arguments are arrays, the function matches up the
corresponding elements of X and Y, returning an array with the same dimensions as
the smallest array. If one argument is a scalar and the other arguments is an array, the
function uses the scalar value with each element of the array, and returns an array
with the same dimensions as the input array.

Keywords

PHASE

If this keyword is set, and the argument is a complex number Z, then the complex
phase angle is computed as ATAN(Imaginary(Z), Real_part(Z)). If this keyword is
not set then the complex arctangent is computed as described above. If the argument
is not complex, or if two arguments are present, then this keyword is ignored.

Tip
Using the PHASE keyword is equivalent to computing ATAN(Imaginary(Z),
Real_part(Z)), but uses less memory and is faster.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
ATAN IDL Reference Guide

Chapter 3: Procedures and Functions 121
Example

Find the angle whose tangent is 0.5 and print the result in degrees by entering:

PRINT, 180/!PI*ATAN(0.5)
IDL prints:
26.5651

Find the angle whose tangent is 0.5, taking into account that the tangent came from
the ratio -0.25/-0.5:

PRINT, 180/!PI*ATAN(-0.25, -0.5)
IDL prints:
-153.435

Find the complex arccosine of 2 + i and print the result by entering:

PRINT, ATAN(COMPLEX(2,1))
IDL prints:
(1.17810, 0.173287)

Create a visualization of the complex arctangent:

; Create a grid of complex numbers.
n = 100
x = (FINDGEN(n)-(n-1)/2.0)/(n/4)
z = DCOMPLEX(REBIN(x,n,n), REBIN(TRANSPOSE(x),n,n))

; Try any of these transcendental functions:
; ACOS, COS, COSH, ASIN, SIN, SINH,

; ATAN, TAN, TANH, ALOG, EXP
fn = ATAN(z)
oReal = OBJ_NEW('IDLgrSurface', FLOAT(fn), x, x, $

COLOR=[255, 180, 0], STYLE=2)
oImag = OBJ_NEW('IDLgrSurface', IMAGINARY(fn), x, x, $

COLOR=[0, 150, 255], STYLE=2)

; Add graphics objects to a model and rotate to nice view.
oModel = OBJ_NEW('IDLgrModel')
oModel->Add, oReal
oModel->Add, oImag
oModel->ROTATE, [0,0,1], 25
oModel->ROTATE, [1,0,0], -30

; Display using XOBJVIEW.
;Block input so we can destroy objects after.

XOBJVIEW, oModel, /BLOCK, SCALE=1, $
IDL Reference Guide ATAN

122 Chapter 3: Procedures and Functions
TITLE='Complex transcendental function', $
XSIZE=700, YSIZE=700

OBJ_DESTROY, oModel

Version History

Introduced: Original

See Also

ACOS, COS, COSH, SIN, ASIN, SINH, TAN, TANH
ATAN IDL Reference Guide

Chapter 3: Procedures and Functions 123
AXIS

The AXIS procedure draws an axis of the specified type and scale at a given position.
The new scale is saved for use by subsequent overplots if the SAVE keyword
parameter is set. By default, AXIS draws an X axis. The XAXIS, YAXIS, and ZAXIS
keywords can be used to select a specific axis type and position.

Syntax

AXIS [, X [, Y [, Z]]] [, /OBJECTS] [, XAXIS={0 | 1} | YAXIS={0 | 1} | ZAXIS={0 |
1 | 2 | 3}] [, /XLOG] [, /YNOZERO] [, /YLOG]

Graphics Keywords: [, CHARSIZE=value] [, CHARTHICK=integer]
[, COLOR=value] [, /DATA | , /DEVICE | , /NORMAL] [, FONT=integer]
[, /NODATA] [, /NOERASE] [, SUBTITLE=string] [, /T3D] [, TICKLEN=value]
[, {X | Y | Z}CHARSIZE=value]
[, {X | Y | Z}GRIDSTYLE=integer{0 to 5}]
[, {X | Y | Z}MARGIN=[left, right]]
[, {X | Y | Z}MINOR=integer]
[, {X | Y | Z}RANGE=[min, max]]
[, {X | Y | Z}STYLE=value]
[, {X | Y | Z}THICK=value]
[, {X | Y | Z}TICKFORMAT=string]
[, {X | Y | Z}TICKINTERVAL= value]
[, {X | Y | Z}TICKLAYOUT=scalar]
[, {X | Y | Z}TICKLEN=value]
[, {X | Y | Z}TICKNAME=string_array]
[, {X | Y | Z}TICKS=integer]
[, {X | Y | Z}TICKUNITS=string]
[, {X | Y | Z}TICKV=array]
[, {X | Y | Z}TICK_GET=variable]
[, {X | Y | Z}TITLE=string]
[, ZVALUE=value{0 to 1}]

Arguments

X, Y, and Z

Scalars giving the starting coordinates of the new axis. If no coordinates are specified,
the axis is drawn in its default position as given by the [XYZ]AXIS keyword. When
IDL Reference Guide AXIS

124 Chapter 3: Procedures and Functions
drawing an X axis, the X coordinate is ignored, similarly the Y and Z arguments are
ignored when drawing their respective axes (i.e., new axes will always point in the
correct direction).

Keywords

SAVE

Set this keyword to indicate that the scaling to and from data coordinates established
by the call to AXIS is to be saved in the appropriate axis system variable, !X, !Y, or
!Z. If this keyword is not present, the scaling is not changed.

XAXIS

Set this keyword to draw an X axis. If the X argument is not present, setting XAXIS
equal to 0 draws an axis under the plot window with the tick marks pointing up, and
setting XAXIS equal to one draws an axis above the plot window with the tick marks
pointing down. If the X argument is present, the X axis is positioned accordingly, and
setting XAXIS equal to 0 or 1 causes the tick marks to point up or down, respectively.

XLOG

Set this keyword to specify a logarithmic X axis

YAXIS

Set this keyword to draw a Y axis. If the Y argument is not present, setting YAXIS
equal to 0 draws an axis on the left side of the plot window with the tick marks
pointing right, and setting YAXIS equal to one draws an axis on the right side of the
plot window with the tick marks pointing left. If the Y argument is present, the Y axis
is positioned accordingly, and setting YAXIS equal to 0 or 1 causes the tick marks to
point right or left, respectively.

Note
The YAXIS keyword must be specified in order use any Y* graphics keywords. See
the note under “Graphics Keywords Accepted” on page 125 for more information.

YLOG

Set this keyword to specify a logarithmic Y axis.
AXIS IDL Reference Guide

Chapter 3: Procedures and Functions 125
YNOZERO

Set this keyword to inhibit setting the minimum Y axis value to zero when the Y data
are all positive and non-zero, and no explicit minimum Y value is specified (using
YRANGE, or !Y.RANGE). By default, the Y axis spans the range of 0 to the
maximum value of Y, in the case of positive Y data. Set bit 4 in !Y.STYLE to make
this option the default.

ZAXIS

Set this keyword to draw a Z axis. If the Z argument is not present, setting ZAXIS has
the following meanings:

• 0 = lower (front) right, with tickmarks pointing left

• 1 = lower (front) left, with tickmarks pointing right

• 2 = upper (back) left, with tickmarks pointing right

• 3 = upper (back) right, with tickmarks pointing left

If the Z argument is present, the Z axis is positioned accordingly, and setting ZAXIS
equal to 0 or 1 causes the tick marks to point left or right, respectively.

Note that AXIS uses the 3D plotting transformation stored in the system variable
field !P.T.

Note
The ZAXIS keyword must be specified in order use any Z* graphics keywords. See
the note under Graphics Keywords Accepted for more information.

Graphics Keywords Accepted

See Appendix B, “Graphics Keywords” for the description of graphics and plotting
keywords not listed above.

Note
In order for the Y* or Z* graphics keywords to work with the AXIS procedure, the
corresponding YAXIS or ZAXIS keyword must be specified. For example, the
following code will not draw a title for the Y axis:

AXIS, YTITLE ='Y-axis Title'

To use the YTITLE graphics keyword, you must specify the YAXIS keyword to
AXIS:
IDL Reference Guide AXIS

126 Chapter 3: Procedures and Functions
AXIS, YAXIS = 0, YTITLE ='Y-axis Title'

Because the AXIS procedure draws an X axis by default, it is not necessary to
specify the XAXIS keyword in order to use the X* graphics keywords.

CHARSIZE, CHARTHICK, COLOR, DATA, DEVICE, FONT, NODATA,
NOERASE, NORMAL, SUBTITLE, T3D, TICKLEN, [XYZ]CHARSIZE,
[XYZ]GRIDSTYLE, [XYZ]MARGIN, [XYZ]MINOR, [XYZ]RANGE,
[XYZ]STYLE, [XYZ]THICK, [XYZ]TICKFORMAT, [XYZ]TICKINTERVAL,
[XYZ]TICKLAYOUT, [XYZ]TICKLEN, [XYZ]TICKNAME, [XYZ]TICKS,
[XYZ]TICKUNITS, [XYZ]TICKV, [XYZ]TICK_GET, [XYZ]TITLE, ZVALUE.

Examples

The following example shows how the AXIS procedure can be used with normal or
polar plots to draw axes through the origin, dividing the plot window into four
quadrants:

; Make the plot, polar in this example, and suppress the X and Y
; axes using the XSTYLE and YSTYLE keywords:
PLOT, /POLAR, XSTYLE=4, YSTYLE=4, TITLE='Polar Plot', r, theta

; Draw an X axis, through data Y coordinate of 0. Because the XAXIS
; keyword parameter has a value of 0, the tick marks point down:
AXIS,0,0,XAX=0,/DATA

; Similarly, draw the Y axis through data X = 0. The tick marks
; point left:
AXIS,0,0,0,YAX=0,/DATA

Version History

Introduced: Original

See Also

LABEL_DATE, PLOT
AXIS IDL Reference Guide

 127
BAR_PLOT

The BAR_PLOT procedure creates a bar graph. This routine is written in the IDL
language. Its source code can be found in the file bar_plot.pro in the lib
subdirectory of the IDL distribution.

Syntax

BAR_PLOT, Values [, BACKGROUND=color_index]
[, BARNAMES=string_array] [, BAROFFSET=scalar] [, BARSPACE=scalar]
[, BARWIDTH=value] [, BASELINES=vector] [, BASERANGE=scalar{0.0 to
1.0}] [, COLORS=vector] [, /OUTLINE] [, /OVERPLOT] [, /ROTATE]
[, TITLE=string] [, XTITLE=string] [, YTITLE=string]

Arguments

Values

A vector containing the values to be represented by the bars. Each element in Values
corresponds to a single bar in the output.

Keywords

BACKGROUND

A scalar that specifies the color index to be used for the background color. By default,
the normal IDL background color is used.

BARNAMES

A string array, containing one string label per bar. If the bars are vertical, the labels
are placed beneath them. If horizontal (rotated) bars are specified, the labels are
placed to the left of the bars.

BAROFFSET

A scalar that specifies the offset to be applied to the first bar, in units of “nominal bar
width”. This keyword allows, for example, different groups of bars to be overplotted
on the same graph. If not specified, the default offset is equal to BARSPACE.
IDL Reference Guide BAR_PLOT

128
BARSPACE

A scalar that specifies, in units of “nominal bar width”, the spacing between bars. For
example, if BARSPACE is 1.0, then all bars will have one bar-width of space between
them. If not specified, the bars are spaced apart by 20% of the bar width.

BARWIDTH

A floating-point value that specifies the width of the bars in units of “nominal bar
width”. The nominal bar width is computed so that all the bars (and the space
between them, set by default to 20% of the width of the bars) will fill the available
space (optionally controlled with the BASERANGE keyword).

BASELINES

A vector, the same size as Values, that contains the base value associated with each
bar. If not specified, a base value of zero is used for all bars.

BASERANGE

A floating-point scalar in the range 0.0 to 1.0, that determines the fraction of the total
available plotting area (in the direction perpendicular to the bars) to be used. If not
specified, the full available area is used.

COLORS

A vector, the same size as Values, containing the color index to be used for each bar.
If not specified, the colors are selected based on spacing the color indices as widely
as possible within the range of available colors (specified by !D.N_COLORS).

OUTLINE

If set, this keyword specifies that an outline should be drawn around each bar.

OVERPLOT

If set, this keyword specifies that the bar plot should be overplotted on an existing
graph.

ROTATE

If set, this keyword indicates that horizontal rather than vertical bars should be drawn.
The bases of horizontal bars are on the left, “Y” axis and the bars extend to the right.
BAR_PLOT IDL Reference Guide

 129
TITLE

A string containing the main title for the bar plot.

XTITLE

A string containing the title for the X axis.

YTITLE

A string containing the title for the Y axis.

Examples

By using the overplotting capability, it is relatively easy to create stacked bar charts,
or different groups of bars on the same graph.

The following example creates a two-dimensional array of 5 columns and 8 rows, and
creates a plot with 5 bars, each of which is a “stacked” composite of 8 sections.

;Handle TrueColor displays:
DEVICE, DECOMPOSED=0

;Load color table:
LOADCT, 5

;Make axes black:
!P.COLOR=0

;Create 5-column by 8-row array:
array = INDGEN(5,8)

;Create a 2D array, equal in size to array, that has identical
;color index values across each row to ensure that the same item is
;represented by the same color in all bars:
colors = INTARR(5,8)
FOR I = 0, 7 DO colors[*,I]=(20*I)+20

;With arrays and colors defined, create stacked bars (note that
;the number of rows and columns is arbitrary):

;Scale range to accommodate the total bar lengths:
!Y.RANGE = [0, MAX(array)]
nrows = N_ELEMENTS(array[0,*])
base = INTARR(nrows)
FOR I = 0, nrows-1 DO BEGIN
 BAR_PLOT, array[*,I], COLORS=colors[*,I], BACKGROUND=255, $
 BASELINES=base, BARWIDTH=0.75, BARSPACE=0.25, OVER=(I GT 0)
IDL Reference Guide BAR_PLOT

130
 base = array[*,I]
ENDFOR

;To plot each row of array as a clustered group of bars within the
;same graph, use the BASERANGE keyword to restrict the available
;plotting region for each set of bars, where NCOLS is the number of
;columns in array. (In this example, each group uses the same set
;of colors, but this could easily be changed.):

ncols = N_ELEMENTS(array[*,0])
FOR I = 0, nrows-1 DO BEGIN
 BAR_PLOT, array[*,I], COLORS=colors[*,I], BACKGROUND=255, $
 BARWIDTH=0.75, BARSPACE=0.25, BAROFFSET=I*(1.4*ncols), $
 OVER=(I GT 0), BASERANGE=0.12
ENDFOR

Version History

Introduced: Pre 4.0

See Also

PLOT, PSYM Graphics Keyword
BAR_PLOT IDL Reference Guide

 131
BEGIN...END

The BEGIN...END statement defines a block of statements. A block of statements is
a group of statements that is treated as a single statement. Blocks are necessary when
more than one statement is the subject of a conditional or repetitive statement. For
more information on using BEGIN...END and other IDL program control statements,
see Chapter 12, “Program Control” in the Building IDL Applications manual.

Syntax

BEGIN

statements

END | ENDIF | ENDELSE | ENDFOR | ENDREP | ENDWHILE
IDL Reference Guide BEGIN...END

132
The END identifier used to terminate the block should correspond to the type of
statement in which BEGIN is used. The following table lists the correct END
identifiers to use with each type of statement.

Note
CASE and SWITCH also have their own END identifiers. CASE should always be
ended with ENDCASE, and SWITCH should always be ended with ENDSWITCH.

Statement END
Identifier

Example

ELSE BEGIN ENDELSE IF (0) THEN A=1 ELSE BEGIN
A=2

ENDELSE

FOR variable=init, limit DO BEGIN ENDFOR FOR i=1,5 DO BEGIN
PRINT, array[i]

ENDFOR

IF expression THEN BEGIN ENDIF IF (0) THEN BEGIN
A=1

ENDIF

REPEAT BEGIN ENDREP REPEAT BEGIN
A = A * 2

ENDREP UNTIL A GT B

WHILE expression DO BEGIN ENDWHILE WHILE ~ EOF(1) DO BEGIN
READF, 1, A, B, C

ENDWHILE

LABEL: BEGIN END LABEL1: BEGIN
PRINT, A

END

case_expression: BEGIN END CASE name OF
'Moe': BEGIN

PRINT, 'Stooge'
END

ENDCASE

switch_expression: BEGIN END SWITCH name OF
'Moe': BEGIN

PRINT, 'Stooge'
END

ENDSWITCH

Table 3: Types of END Identifiers
BEGIN...END IDL Reference Guide

 133
Version History

Introduced: Original
IDL Reference Guide BEGIN...END

134
BESELI

The BESELI function returns the I Bessel function of order N for the argument X.
The BESELI function is adapted from “SPECFUN - A Portable FORTRAN Package
of Special Functions and Test Drivers”, W. J. Cody, Algorithm 715, ACM
Transactions on Mathematical Software, Vol 19, No. 1, March 1993.

Syntax

Result = BESELI(X, N [, /DOUBLE] [, ITER=variable])

Return Value

If both arguments are scalars, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of X and N, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the smallest input array.

Note
If the function does not converge for an element of X, the corresponding element of
the Result array will be set to the IEEE floating-point value NaN.

Arguments

X

A scalar or array specifying the values for which the Bessel function is required.
Values for X must be in the range 0 to 709.

N

A scalar or array specifying the order of the Bessel function to calculate. Values for N
should be greater than or equal to 0, and can be either integers or real numbers.

Keywords

DOUBLE

Set this keyword equal to one to return a double-precision result, or to zero to return a
single-precision result. The computations will always be done using double precision.
BESELI IDL Reference Guide

 135
The default is to return a single-precision result if both inputs are single precision,
and to return a double-precision result in all other cases.

ITER

Set this keyword equal to a named variable that will contain the number of iterations
performed. If the routine converged, the stored value will be equal to the order N. If X
or N are arrays, ITER will contain a scalar representing the maximum number of
iterations.

Note
If the routine did not converge for an element of X, the corresponding element of the
Result array will be set to the IEEE floating-point value NaN, and ITER will
contain the largest order that would have converged for that X value.

Examples

The following example plots the I and K Bessel functions for orders 0, 1 and 2:

X = FINDGEN(40)/10

;Plot I and K Bessel Functions:
PLOT, X, BESELI(X, 0), MAX_VALUE=4, $

TITLE = 'I and K Bessel Functions'
OPLOT, X, BESELI(X, 1)
OPLOT, X, BESELI(X, 2)
OPLOT, X, BESELK(X, 0), LINESTYLE=2
OPLOT, X, BESELK(X, 1), LINESTYLE=2
OPLOT, X, BESELK(X, 2), LINESTYLE=2

;Annotate plot:
xcoords = [.18, .45, .95, 1.4, 1.8, 2.4]
ycoords = [2.1, 2.1, 2.1, 1.8, 1.6, 1.4]
labels = ['!8K!X!D0','!8K!X!D1','!8K!X!D2','!8I!X!D0',

'!8I!X!D1','!8I!X!D2']
XYOUTS, xcoords, ycoords, labels, /DATA
IDL Reference Guide BESELI

136
This results in the following plot:

For an example calculating the accuracy of the Bessel function, see “Example 2” for
the BESELJ routine.

Version History

Introduced: Original

DOUBLE and ITER keywords: 5.6

See Also

BESELJ, BESELK, BESELY

Figure 1: I and K Bessel Functions.
BESELI IDL Reference Guide

 137
BESELJ

The BESELJ function returns the J Bessel function of order N for the argument X.
The BESELJ function is adapted from “SPECFUN - A Portable FORTRAN Package
of Special Functions and Test Drivers”, W. J. Cody, Algorithm 715, ACM
Transactions on Mathematical Software, Vol 19, No. 1, March 1993.

Syntax

Result = BESELJ(X, N [, /DOUBLE] [, ITER=variable])

Return Value

If both arguments are scalars, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of X and N, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the smallest input array.

If X is double-precision, the result is double-precision, otherwise the result is single-
precision.

Note
If the function does not converge for an element of X, the corresponding element of
the Result array will be set to the IEEE floating-point value NaN.

Arguments

X

A scalar or array specifying the values for which the Bessel function is required.
Values for X must be in the range 0 to 108.

N

A scalar or array specifying the order of the Bessel function to calculate. Values for N
should be greater than or equal to 0, and can be either integers or real numbers.
IDL Reference Guide BESELJ

138
Keywords

DOUBLE

Set this keyword equal to one to return a double-precision result, or to zero to return a
single-precision result. The computations will always be done using double precision.
The default is to return a single-precision result if both inputs are single precision,
and to return a double-precision result in all other cases.

ITER

Set this keyword equal to a named variable that will contain the number of iterations
performed. If the routine converged, the stored value will be equal to the order N. If X
or N are arrays, ITER will contain a scalar representing the maximum number of
iterations.

Note
If the routine did not converge for an element of X, the corresponding element of the
Result array will be set to the IEEE floating-point value NaN, and ITER will
contain the largest order that would have converged for that X value.

Examples

Example 1

The following example plots the J and Y Bessel functions for orders 0, 1, and 2:

X = FINDGEN(100)/10

;Plot J and Y Bessel Functions:
PLOT, X, BESELJ(X, 0), TITLE = 'J and Y Bessel Functions'
OPLOT, X, BESELJ(X, 1)
OPLOT, X, BESELJ(X, 2)
OPLOT, X, BESELY(X, 0), LINESTYLE=2
OPLOT, X, BESELY(X, 1), LINESTYLE=2
OPLOT, X, BESELY(X, 2), LINESTYLE=2

;Annotate plot:
xcoords = [1, 1.66, 3, .7, 1.7, 2.65]
ycoords = [.8, .62,.52, -.42, -.42, -.42]
labels = ['!8J!X!D0','!8J!X!D1','!8J!X!D2','!8Y!X!D0',

'!8Y!X!D1','!8Y!X!D2']
XYOUTS, xcoords, ycoords, labels, /DATA
BESELJ IDL Reference Guide

 139
This results in the following plot:

Example 2

Different order Bessel functions have recurrence relationships to each other. These
relationships can be used to determine how accurately IDL is computing the Bessel
functions. In the following example, the recurrence relationships for each order are
set to zero and the left side of the equations are plotted. The plots show how close the
left side of the equations are to zero, and therefore, how accurate IDL’s computation
of the Bessel functions are.

This example uses the following recurrence relationship:

Figure 2: The J and Y Bessel Functions.

x Jn 1– x() Jn 1+ x()+() 2nJn x()– 0=
IDL Reference Guide BESELJ

140
where J(x) is the Bessel function of the first kind of order n –1, n, or n + 1. (Similar
recurrence relationships could be used for the other forms of the Bessel function.)
Results are plotted for n equal to 1 through 6.

PRO AnalyzingBESELJ

; Derive x values.
x = (DINDGEN(1000) + 1.)/100.

; Initialize display window.
WINDOW, 0, TITLE = 'Bessel Functions'

; Display the first 8 orders of the Bessel function of
; the first kind.
PLOT, x, BESELJ(x, 0), /XSTYLE, /YSTYLE, $

XTITLE = 'x', YTITLE = 'f(x)', $
TITLE = 'Bessel Functions of the First Kind'

OPLOT, x, BESELJ(x, 1), LINESTYLE = 1
OPLOT, x, BESELJ(x, 2), LINESTYLE = 2
OPLOT, x, BESELJ(x, 3), LINESTYLE = 3
OPLOT, x, BESELJ(x, 4), LINESTYLE = 4
OPLOT, x, BESELJ(x, 5), LINESTYLE = 5
OPLOT, x, BESELJ(x, 6), LINESTYLE = 0
OPLOT, x, BESELJ(x, 7), LINESTYLE = 1

; Initialize display window for recurrence relations.
WINDOW, 1, XSIZE = 896, YSIZE = 512, $

TITLE = 'Testing the Recurrence Relations'
!P.MULTI = [0, 2, 3, 0, 0]

; Initialize title variable.
nString = ['0', '1', '2', '3', '4', '5', '6', '7']

; Display recurrence relationships for order 1 to 6.
; NOTE: the results of these relationships should be
; very close to zero.
FOR n = 1, 6 DO BEGIN

equation = x*(BESELJ(x, (n - 1)) + $
BESELJ(x, (n + 1))) - 2.*FLOAT(n)*BESELJ(x, n)

PLOT, x, equation, /XSTYLE, /YSTYLE, CHARSIZE = 1.5, $
TITLE = 'n = ' + nString[n] + ': Orders of ' + $
nString[n - 1] + ', ' + nString[n] + ', and ' + $
nString[n + 1]

PRINT, 'n = ' + nString[n] + ': '
PRINT, 'minimum = ', MIN(equation)
PRINT, 'maximum = ', MAX(equation)

ENDFOR

; Return display window back to its default setting, one
BESELJ IDL Reference Guide

 141
; display per window.
!P.MULTI = 0

END

The results for this example are shown in the following figure.

All of these plots show that this Bessel function is calculated accurately within
machine tolerance.

Version History

Introduced: Original

DOUBLE and ITER keywords: 5.6

See Also

BESELI, BESELK, BESELY

Figure 3: Recurrence Relationship for J(x)
IDL Reference Guide BESELJ

142
BESELK

The BESELK function returns the K Bessel function of order N for the argument X.
The BESELK function is adapted from “SPECFUN - A Portable FORTRAN Package
of Special Functions and Test Drivers”, W. J. Cody, Algorithm 715, ACM
Transactions on Mathematical Software, Vol 19, No. 1, March 1993.

Syntax

Result = BESELK(X, N [, /DOUBLE] [, ITER=variable])

Return Value

If both arguments are scalars, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of X and N, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the smallest input array.

If X is double-precision, the result is double-precision, otherwise the result is single-
precision.

Note
If the function does not converge for an element of X, the corresponding element of
the Result array will be set to the IEEE floating-point value NaN.

Arguments

X

A scalar or array specifying the values for which the Bessel function is required.
Values for X must be greater than or equal to zero.

N

A scalar or array specifying the order of the Bessel function to calculate. Values for N
should be greater than or equal to 0, and can be either integers or real numbers.
BESELK IDL Reference Guide

 143
Keywords

DOUBLE

Set this keyword equal to one to return a double-precision result, or to zero to return a
single-precision result. The computations will always be done using double precision.
The default is to return a single-precision result if both inputs are single precision,
and to return a double-precision result in all other cases.

ITER

Set this keyword equal to a named variable that will contain the number of iterations
performed. If the routine converged, the stored value will be equal to the order N. If X
or N are arrays, ITER will contain a scalar representing the maximum number of
iterations.

Note
If the routine did not converge for an element of X, the corresponding element of the
Result array will be set to the IEEE floating-point value NaN, and ITER will
contain the largest order that would have converged for that X value.

Examples

The following example plots the I and K Bessel functions for orders 0, 1 and 2:

X = FINDGEN(40)/10

;Plot I and K Bessel Functions:
PLOT, X, BESELI(X, 0), MAX_VALUE=4, $

TITLE = 'I and K Bessel Functions'
OPLOT, X, BESELI(X, 1)
OPLOT, X, BESELI(X, 2)
OPLOT, X, BESELK(X, 0), LINESTYLE=2
OPLOT, X, BESELK(X, 1), LINESTYLE=2
OPLOT, X, BESELK(X, 2), LINESTYLE=2

;Annotate plot:
xcoords = [.18, .45, .95, 1.4, 1.8, 2.4]
ycoords = [2.1, 2.1, 2.1, 1.8, 1.6, 1.4]
labels = ['!8K!X!D0','!8K!X!D1','!8K!X!D2','!8I!X!D0',

'!8I!X!D1','!8I!X!D2']
XYOUTS, xcoords, ycoords, labels, /DATA
IDL Reference Guide BESELK

144
This results in the following plot:

For an example calculating the accuracy of the Bessel function, see “Example 2” for
the BESELJ routine.

Version History

Introduced: 5.4

DOUBLE and ITER keywords: 5.6

See Also

BESELI, BESELJ, BESELY

Figure 4: I and K Bessel Functions.
BESELK IDL Reference Guide

 145
BESELY

The BESELY function returns the Y Bessel function of order N for the argument X.
The BESELY function is adapted from “SPECFUN - A Portable FORTRAN Package
of Special Functions and Test Drivers”, W. J. Cody, Algorithm 715, ACM
Transactions on Mathematical Software, Vol 19, No. 1, March 1993.

Syntax

Result = BESELY(X, N [, /DOUBLE] [, ITER=variable])

Return Value

If both arguments are scalars, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of X and N, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the smallest input array.

If X is double-precision, the result is double-precision, otherwise the result is single-
precision.

Note
If the function does not converge for an element of X, the corresponding element of
the Result array will be set to the IEEE floating-point value NaN.

Arguments

X

A scalar or array specifying the values for which the Bessel function is required.
Values for X must be in the range 0 to 108.

N

A scalar or array specifying the order of the Bessel function to calculate. Values for N
should be greater than or equal to 0, and can be either integers or real numbers.
IDL Reference Guide BESELY

146
Keywords

DOUBLE

Set this keyword equal to one to return a double-precision result, or to zero to return a
single-precision result. The computations will always be done using double precision.
The default is to return a single-precision result if both inputs are single precision,
and to return a double-precision result in all other cases.

ITER

Set this keyword equal to a named variable that will contain the number of iterations
performed. If the routine converged, the stored value will be equal to the order N. If X
or N are arrays, ITER will contain a scalar representing the maximum number of
iterations.

Note
If the routine did not converge for an element of X, the corresponding element of the
Result array will be set to the IEEE floating-point value NaN, and ITER will
contain the largest order that would have converged for that X value.

Examples

The following example plots the J and Y Bessel functions for orders 0, 1, and 2:

X = FINDGEN(100)/10

;Plot J and Y Bessel Functions:
PLOT, X, BESELJ(X, 0), TITLE = 'J and Y Bessel Functions'
OPLOT, X, BESELJ(X, 1)
OPLOT, X, BESELJ(X, 2)
OPLOT, X, BESELY(X, 0), LINESTYLE=2
OPLOT, X, BESELY(X, 1), LINESTYLE=2
OPLOT, X, BESELY(X, 2), LINESTYLE=2

;Annotate plot:
xcoords = [1, 1.66, 3, .7, 1.7, 2.65]
ycoords = [.8, .62,.52, -.42, -.42, -.42]
labels = ['!8J!X!D0','!8J!X!D1','!8J!X!D2','!8Y!X!D0',

'!8Y!X!D1','!8Y!X!D2']
XYOUTS, xcoords, ycoords, labels, /DATA
BESELY IDL Reference Guide

 147
This results in the following plot:

For an example calculating the accuracy of the Bessel function, see “Example 2” for
the BESELJ routine.

Version History

Introduced: Original

DOUBLE and ITER keywords: 5.6

See Also

BESELI, BESELJ, BESELK

Figure 5: The J and Y Bessel Functions.
IDL Reference Guide BESELY

148
BETA

The BETA function returns the value of the beta function B(Z, W). This routine is
written in the IDL language. Its source code can be found in the file beta.pro in the
lib subdirectory of the IDL distribution.

Syntax

Result = BETA(Z, W [, /DOUBLE])

Return Value

If both arguments are scalar, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of Z and W, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the input array.

If both of the arguments are double-precision or if the DOUBLE keyword is set, the
result is double-precision, otherwise the result is single-precision.

Arguments

Z, W

The point at which the beta function is to be evaluated. Z and W can be scalar or array.
Z or W may be complex.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
BETA IDL Reference Guide

 149
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

To evaluate the beta function at the point (1.0, 1.1) and print the result:

PRINT, BETA(1.0, 1.1)

IDL prints:

0.909091

The exact solution is:

((1.00 * .95135077) / (1.10 * .95135077)) = 0.909091.

Version History

Introduced: 4.0.1

Z and W arguments accept complex input: 5.6

See Also

GAMMA, IBETA, IGAMMA, LNGAMMA
IDL Reference Guide BETA

150
BILINEAR

The BILINEAR function uses a bilinear interpolation algorithm to compute the value
of a data array at each of a set of subscript values.

This routine is written in the IDL language. Its source code can be found in the file
bilinear.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = BILINEAR(P, IX, JY)

Return Value

This function returns a two-dimensional interpolated array of the same type as the
input array.

Arguments

P

A two-dimensional data array.

IX and JY

Arrays containing the X and Y “virtual subscripts” of P for which to interpolate
values. IX and JY can be either of the following:

• One-dimensional, n-element floating-point arrays of subscripts to look up in P.
One-dimensional arrays will be converted to two-dimensional arrays in such a
way that IX contains n identical rows and JY contains n identical columns.

• Two-dimensional, n-element floating-point arrays that uniquely specify the X
subscripts (the IX array) and the Y subscripts (the JY array) of the points to be
computed from the input array P.

In either case, IX must satisfy the expressions

0 <= MIN(IX) < N0 and 0 < MAX(IX) <= N0

where N0 is the total number of columns in the array P. JY must satisfy the
expressions

0 <= MIN(JY) < M0 and 0 < MAX(JY) <= M0
BILINEAR IDL Reference Guide

 151
where M0 is the total number of rows in the array P.

It is better to use two-dimensional arrays for IX and JY because the algorithm is
somewhat faster. If IX and JY are specified as one-dimensional, the returned two-
dimensional arrays IX and JY can be re-used on subsequent calls to take advantage of
the faster 2D algorithm.

Keywords

None.

Examples

Create a 3 x 3 floating point array P:

P = FINDGEN(3,3)

Suppose we wish to find the value of a point half way between the first and second
elements of the first row of P. Create the subscript arrays IX and JY:

IX = 0.5 ;Define the X subscript.
JY = 0.0 ;Define the Y subscript.
Z = BILINEAR(P, IX, JY) ;Interpolate.
PRINT, Z ;Print the value at the point IX,JY within P.

IDL prints:

0.500000

Suppose we wish to find the values of a 2 x 2 array of points in P. Create the subscript
arrays IX and JY:

IX = [[0.5, 1.9], [1.1, 2.2]] ;Define the X subscripts.
JY = [[0.1, 0.9], [1.2, 1.8]] ;Define the Y subscripts.
Z = BILINEAR(P, IX, JY) ;Interpolate.
PRINT, Z ;Print the array of values.

IDL prints:

0.800000 4.60000
4.70000 7.40000

Version History

Introduced: Original
IDL Reference Guide BILINEAR

152
See Also

INTERPOL, INTERPOLATE, KRIG2D
BILINEAR IDL Reference Guide

 153
BIN_DATE

The BIN_DATE function converts a standard form ASCII date/time string to a binary
string.

This routine is written in the IDL language. Its source code can be found in the file
bin_date.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = BIN_DATE(Ascii_Time)

Return Value

The function returns a six-element integer array where:

• Element 0 is the year (e.g., 1994)

• Element 1 is the month (1-12)

• Element 2 is the day (1-31)

• Element 3 is the hour (0-23)

• Element 4 is minutes (0-59)

• Element 5 is seconds (0-59)

Arguments

Ascii_Time

A string containing the date/time to convert in standard ASCII format. If this
argument is omitted, the current date/time is used. Standard form is a 24 character
string:

DOW MON DD HH:MM:SS YYYY

where DOW is the day of the week, MON is the month, DD is the day of month,
HH:MM:SS is the time in hours, minutes, second, and YYYY is the year.

Keywords

None.
IDL Reference Guide BIN_DATE

154
Version History

Introduced: Pre 4.0

See Also

CALDAT, JULDAY, SYSTIME
BIN_DATE IDL Reference Guide

 155
BINARY_TEMPLATE

The BINARY_TEMPLATE function presents a graphical user interface which allows
the user to interactively generate a template structure for use with READ_BINARY.

The graphical user interface allows the user to define one or more fields in the binary
file. The file may be big, little, or native byte ordering.

Individual fields can be edited by the user to define the dimensionality and type of
data to be read. Where necessary, fields can be defined in terms of other previously
defined fields using IDL expressions. Fields can also be designated as “Verify”.
When a file is read using a template with “Verify” fields, those fields will be checked
against a user defined value supplied via the template.

Note
Greater than (“>”) and less than (“<“) symbols can appear in the “New Field” and
the “Modify Field” dialogs where the offset value is displayed. The presence of
either symbol indicates that the supplied offset value is “relative” from the end of
the previous field or from the initial position in the file. Greater than means offset
forward. Less than means offset backward. “>0” and “<0” are synonymous and
mean “offset zero bytes”. You can delete these special symbols (thereby indicating
that their corresponding offset value is not “relative”) by typing over them in the
“New Field” or “Modify Field” dialogs.

Syntax

Result = BINARY_TEMPLATE ([Filename] [, CANCEL=variable]
[, GROUP=widget_id] [, N_ROWS=rows] [, TEMPLATE=variable])

Return Value

This function returns an anonymous structure that contains the template. If the user
cancels out of the graphical user interface and no initial template was supplied, it
returns zero.

Arguments

Filename

A scalar string containing the name of a binary file which may be used to test the
template. As the user interacts with the BINARY_TEMPLATE graphical user
IDL Reference Guide BINARY_TEMPLATE

156
interface, the user’s input will be tested for correctness against the binary data in the
file. If filename is not specified, a dialog allows the user to choose the file.

Keywords

CANCEL

Set this keyword to a named variable that will contain the byte value 1 if the user
clicked the “Cancel” button, or 0 otherwise.

GROUP

The widget ID of an existing widget that serves as “group leader” for the
BINARY_TEMPLATE interface. When a group leader is killed, for any reason, all
widgets in the group are also destroyed.

N_ROWS

Set this keyword to the number of rows to be visible in the BINARY_TEMPLATE’s
table of fields.

Note
The N_ROWS keyword is analogous to the WIDGET_TABLE and the
Y_SCROLL_SIZE keywords.

TEMPLATE

Set this keyword to structure variable containing an initial template (usually from a
previous call to BINARY_TEMPLATE). This template structure will be used to fill in
the initial fields in the new BINARY_TEMPLATE. If TEMPLATE is specified and
the user cancels out of the dialog, the specified template will be returned as the
Result.
BINARY_TEMPLATE IDL Reference Guide

 157
The BINARY_TEMPLATE Interface

When the BINARY_TEMPLATE function is invoked, the following dialog is
displayed:

The Template Name is optional, and can be any string.

The byte order in the file is selected using the using the File’s byte ordering: pull-
down menu. The choices are:

• Native — The type of storage method that is native to the machine you are
currently running. Little Endian for Intel microprocessor-based machines and
Big Endian for Motorola microprocessor-based machines. No byte swapping
will be performed.

• Little Endian — A method of storing numbers so that the least significant
byte appears first in the number. For example, given the hexadecimal number
A02B, the little endian method specifies the number to be stored as 2BA0.
Specify this if the original file was created on a machine that uses an Intel
microprocessor.

• Big Endian — A method of storing numbers so that the most significant byte
appears first in the number. For example, given the hexadecimal number
A02B, the big endian method specifies the number to be stored as A02B.
Specify this if the original file was created on a machine that uses a Motorola
microprocessor.

Figure 3-5: Binary Template
IDL Reference Guide BINARY_TEMPLATE

158
Fields are read in the order in which they are listed in the main dialog for
BINARY_TEMPLATE, with offsets being added to the current file position pointer
before each field is read. If a field has already been defined, clicking in the Return
column will toggle the value of the field between Yes and No. Fields that are not
marked for return can be used for calculations by other fields in the template. At least
one field must be marked Yes for return in order for the BINARY_TEMPLATE
function to return a template. Click New Field... to enter the description of a new
template field. The New Field dialog appears:

The Field Name can be any string.

The Type of each Template-specified field is selected from a droplist that offers the
following IDL types: byte, integer, long, float, double, complex, dcomplex, uint,
ulong, long64 and ulong64. Strings are read as an array of bytes for later conversion
to type STRING.

Offsets can be specified using integer values, field names, or any valid IDL
expression.

• An absolute integer offset specifies a fixed location (in bytes) from the
beginning of the file (or the initial file position for an externally opened file).

• A relative integer offset specifies a position relative to the current file position
pointer after the previous field (if any) is read. Relative offsets are shown in the
BINARY_TEMPLATE user interface with a preceding > or < character, to
indicate a positive (>) or negative (<) byte offset.

Figure 3-6: Binary Template - New Field
BINARY_TEMPLATE IDL Reference Guide

 159
• Expressions can include the names of fields that will be read before the current
field — that is, the field number of the referenced field must be lower than the
field number of the field being defined.

The Verify field can contain an integer, field name, or any valid IDL expression. Only
scalar fields can be verified. READ_BINARY reports an error if a verification fails.

The Number of Dimensions of a field can be set via a droplist of values 0 (scalar) to
8 (which is the maximum number of dimensions that an IDL variable can have.) The
size of each dimension can be an integer, field name, or any valid IDL expression.
Any of the first three dimensions of array data can also be specified to be reversed in
order.

Note
If BINARY_TEMPLATE is called by a program that is running in the IDL Virtual
Machine, the Offsets, Verify, and Size fields can contain integers or field names,
but not an IDL expression.

Click OK to create the new field definition, and repeat to define all necessary fields.

The BINARY_TEMPLATE function returns a structure variable containing the
template. The template variable can be saved and used as the value of the
TEMPLATE keyword to the READ_BINARY function:

template = BINARY_TEMPLATE(file.dat)
Result = READ_BINARY('file.dat', TEMPLATE=template)

where file.dat is a binary data file to be read. The template variable can also be reused
as the value of the TEMPLATE keyword to BINARY_TEMPLATE.

Version History

Introduced: 5.3

See Also

READ_BINARY, ASCII_TEMPLATE
IDL Reference Guide BINARY_TEMPLATE

160
BINDGEN

The BINDGEN function creates a byte array with the specified dimensions. Each
element of the array is set to the value of its one-dimensional subscript.

Syntax

Result = BINDGEN(D1 [, ...,D8])

Return Value

This function returns a byte array with the specified dimensions.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified. If the dimension arguments or
array elements are not integer values, IDL will convert them to integer values before
creating the new array.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

To create a four-element by four-element byte array, and store the result in the
variable A, enter:
BINDGEN IDL Reference Guide

 161
A = BINDGEN(4,4)

Each element in A holds the value of its one-dimensional subscript. That is, if you
enter the command:

PRINT, A

IDL prints the result:

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Version History

Introduced: Original

See Also

CINDGEN, DCINDGEN, DINDGEN, FINDGEN, INDGEN, LINDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
IDL Reference Guide BINDGEN

162
BINOMIAL

The BINOMIAL function computes the probability that in a cumulative binomial
(Bernoulli) distribution, a random variable X is greater than or equal to a user-
specified value V, given N independent performances and a probability of occurrence
or success P in a single performance:

This routine is written in the IDL language. Its source code can be found in the file
binomial.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = BINOMIAL(V, N, P [, /DOUBLE] [, /GAUSSIAN])

Return Value

This function returns a single- or double-precision floating point scalar or array that
contains the value of the probability.

Arguments

V

A non-negative integer specifying the minimum number of times the event occurs in
N independent performances.

N

A non-negative integer specifying the number of performances.

P

A non-negative single- or double-precision floating-point scalar or array, in the
interval [0.0, 1.0], that specifies the probability of occurrence or success of a single
independent performance.

Probability X V≥() N!
x! N x–()!
------------------------P

x
1 P–() N x–()

x V=

N

∑=
BINOMIAL IDL Reference Guide

 163
Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

GAUSSIAN

Set this keyword to use the Gaussian approximation, by using the normalized variable
Z = (V – NP)/SQRT(NP(1 – P)).

Note
The Gaussian approximation is useful when N is large and neither P nor (1–P) is
close to zero, where the binomial summation may overflow. If GAUSSIAN is not
explicitly set, and the binomial summation overflows, then BINOMIAL will
automatically switch to using the Gaussian approximation.

Examples

Compute the probability of obtaining at least two 6s in rolling a die four times. The
result should be 0.131944.

result = BINOMIAL(2, 4, 1.0/6.0)

Compute the probability of obtaining exactly two 6s in rolling a die four times. The
result should be 0.115741.

result = BINOMIAL(2, 4, 1./6.) - BINOMIAL(3, 4, 1./6.)

Compute the probability of obtaining three or fewer 6s in rolling a die four times. The
result should be 0.999228.

result = BINOMIAL(0, 4, 1./6.) - BINOMIAL(4, 4, 1./6.)

Version History

Introduced: Pre 4.0

See Also

CHISQR_PDF, F_PDF, GAUSS_PDF, T_PDF
IDL Reference Guide BINOMIAL

164
BLAS_AXPY

The BLAS_AXPY procedure updates an existing array by adding a multiple of
another array. It can also be used to update one or more one-dimensional subvectors
of an array according to the following vector operation:

where a is a scale factor and X is an input vector.

BLAS_AXPY can be faster and use less memory than the usual IDL array notation
(e.g. Y=Y+A*X) for updating existing arrays.

Note
BLAS_AXPY is much faster when operating on entire arrays and rows, than when
used on columns or higher dimensions.

Syntax

BLAS_AXPY, Y, A, X [, D1, Loc1 [, D2, Range]]

Arguments

Y

The array to be updated. Y can be of any numeric type. BLAS_AXPY does not
change the size and type of Y.

A

The scaling factor to be multiplied with X. A may be any scalar or one-element array
that IDL can convert to the type of X. BLAS_AXPY does not change A.

X

The array to be scaled and added to array Y, or the vector to be scaled and added to
subvectors of Y.

D1

An optional parameter indicating which dimension of Y is to be updated.

Y aX Y+=
BLAS_AXPY IDL Reference Guide

 165
Loc1

A variable with the same number of elements as the number of dimensions of Y. The
Loc1 and D1 arguments together determine which one-dimensional subvector (or
subvectors, if D1 and Range are provided) of Y is to be updated.

D2

An optional parameter, indicating in which dimension of Y a group of one-
dimensional subvectors are to be updated. D2 should be different from D1.

Range

A variable containing D2 indices indicating where to put one-dimensional updates of
Y.

Keywords

None.

Examples

The following examples show how to use the BLAS_AXPY procedure to add a
multiple of an array, add a constant, and a group of subvectors.

seed = 5L

Create a multidimensional array:

A = FINDGEN(4, 5, 2)

Print A:

PRINT, A

IDL prints:

 0.000000 1.00000 2.00000 3.00000
 4.00000 5.00000 6.00000 7.00000
 8.00000 9.00000 10.0000 11.0000
 12.0000 13.0000 14.0000 15.0000
 16.0000 17.0000 18.0000 19.0000

 20.0000 21.0000 22.0000 23.0000
 24.0000 25.0000 26.0000 27.0000
 28.0000 29.0000 30.0000 31.0000
 32.0000 33.0000 34.0000 35.0000
 36.0000 37.0000 38.0000 39.0000
IDL Reference Guide BLAS_AXPY

166
Create a random update:

B = RANDOMU(seed, 4, 5, 2)

Print B

PRINT, B

IDL prints:

 0.172861 0.680409 0.917078 0.917510
 0.766779 0.648501 0.334211 0.505953
 0.652182 0.158174 0.912751 0.257593
 0.810990 0.267308 0.188872 0.237323
 0.312265 0.551604 0.944883 0.673464

 0.613302 0.0874299 0.782052 0.374534
 0.0799968 0.581460 0.433864 0.459824
 0.634644 0.182057 0.832474 0.235194
 0.432587 0.453664 0.738821 0.355747
 0.933211 0.388659 0.269595 0.796325

Add a multiple of B to A (i.e., A = A + 4.5*B):

BLAS_AXPY, A, 4.5, B

Print A:

PRINT, A

IDL prints:

 0.777872 4.06184 6.12685 7.12880
 7.45051 7.91825 7.50395 9.27679
 10.9348 9.71178 14.1074 12.1592
 15.6495 14.2029 14.8499 16.0680
 17.4052 19.4822 22.2520 22.0306

 22.7599 21.3934 25.5192 24.6854
 24.3600 27.6166 27.9524 29.0692
 30.8559 29.8193 33.7461 32.0584
 33.9466 35.0415 37.3247 36.6009
 40.1994 38.7490 39.2132 42.5835

Add a constant to a subvector of A (i.e. A[*, 3, 1] = A[*, 3, 1] + 4.3):

BLAS_AXPY, A, 1., REPLICATE(4.3, 4), 1, [0, 3, 1]

Print A:

PRINT, A

IDL prints:

 0.777872 4.06184 6.12685 7.12880
BLAS_AXPY IDL Reference Guide

 167
 7.45051 7.91825 7.50395 9.27679
 10.9348 9.71178 14.1074 12.1592
 15.6495 14.2029 14.8499 16.0680
 17.4052 19.4822 22.2520 22.0306

 22.7599 21.3934 25.5192 24.6854
 24.3600 27.6166 27.9524 29.0692
 30.8559 29.8193 33.7461 32.0584
 38.2466 39.3415 41.6247 40.9009
 40.1994 38.7490 39.2132 42.5835

Create a vector update:

C = FINDGEN(5)

Print C:

PRINT, C

IDL prints:

 0.000000 1.00000 2.00000 3.00000 4.00000

Add C to a group of subvectors of A (i.e. FOR i = 0, 1 DO A[1, *, i] = A[1, *, i] + C):

BLAS_AXPY, A, 1., C, 2, [1, 0, 0], 3, LINDGEN(2)

Print A:

PRINT, A

IDL prints:

 0.777872 4.06184 6.12685 7.12880
 7.45051 8.91825 7.50395 9.27679
 10.9348 11.7118 14.1074 12.1592
 15.6495 17.2029 14.8499 16.0680
 17.4052 23.4822 22.2520 22.0306

 22.7599 21.3934 25.5192 24.6854
 24.3600 28.6166 27.9524 29.0692
 30.8559 31.8193 33.7461 32.0584
 38.2466 42.3415 41.6247 40.9009
 40.1994 42.7490 39.2132 42.5835

Version History

Introduced: 5.1

See Also

REPLICATE_INPLACE
IDL Reference Guide BLAS_AXPY

168
BLK_CON

The BLK_CON function computes a “fast convolution” of a digital signal and an
impulse-response sequence. It returns the filtered signal.

This routine is written in the IDL language. Its source code can be found in the file
blk_con.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = BLK_CON(Filter, Signal [, B_LENGTH=scalar] [, /DOUBLE])

Return Value

This function returns a vector with the same length as Signal. If either of the input
arguments are double-precision or the DOUBLE keyword is set, the result is double-
precision, otherwise the result is single-precision.

Arguments

Filter

A P-element floating-point vector containing the impulse-response sequence of the
digital filter.

Signal

An n-element floating-point vector containing the discrete signal samples.

Keywords

B_LENGTH

A scalar specifying the block length of the subdivided signal segments. If this
parameter is not specified, a near-optimal value is chosen by the algorithm based
upon the length P of the impulse-response sequence. If P is a value less than 11 or
greater than 377, then B_LENGTH must be specified.

B_LENGTH must be greater than the filter length, P, and less than the number of
signal samples.
BLK_CON IDL Reference Guide

 169
DOUBLE

Set this keyword to force the computation to be done using double-precision
arithmetic.

Examples

; Create a filter of length P = 32:
filter = REPLICATE(1.0,32) ;Set all points to 1.0
filter(2*INDGEN(16)) = 0.5 ;Set even points to 0.5

; Create a sampled signal with random noise:
signal = SIN((FINDGEN(1000)/35.0)^2.5)
noise = (RANDOMU(SEED,1000)-.5)/2.
signal = signal + noise

; Convolve the filter and signal using block convolution:
result = BLK_CON(filter, signal)

Version History

Introduced: Pre 4.0

See Also

CONVOL
IDL Reference Guide BLK_CON

170
BOX_CURSOR

The BOX_CURSOR procedure emulates the operation of a variable-sized box cursor
(also known as a “marquee” selector).

Warning
BOX_CURSOR does not function properly when used within a draw widget. See
the BUTTON_EVENTS and MOTION_EVENTS keywords in WIDGET_DRAW.

This routine is written in the IDL language. Its source code can be found in the file
box_cursor.pro in the lib subdirectory of the IDL distribution.

Using BOX_CURSOR

Once the box cursor has been realized, hold down the left mouse button to move the
box by dragging. Hold down the middle mouse button to resize the box by dragging.
(The corner nearest the initial mouse position is moved.) Press the right mouse button
to exit the procedure and return the current box parameters.

On machines with only two mouse buttons, hold down the left and right buttons
simultaneously to resize the box.

Syntax

BOX_CURSOR, [X0, Y0, NX, NY [, /INIT] [, /FIXED_SIZE]] [, /MESSAGE]

Arguments

X0, Y0

Named variables that will contain the coordinates of the lower left corner of the box
cursor.

NX, NY

Named variables that will contain the width and height of the cursor, in pixels.
BOX_CURSOR IDL Reference Guide

 171
Keywords

INIT

If this keyword is set, the arguments X0, Y0, NX, and NY contain the initial position
and size of the box.

FIXED_SIZE

If this keyword is set, NX and NY contain the initial size of the box. This size may not
be changed by the user.

MESSAGE

If this keyword is set, IDL prints a message describing operation of the cursor.

Version History

Introduced: Pre 4.0

See Also

Routines: CURSOR

Keywords to “IDL Graphics Devices” on page 3781: CURSOR_CROSSHAIR,
CURSOR_IMAGE, CURSOR_STANDARD, CURSOR_XY
IDL Reference Guide BOX_CURSOR

172
BREAK

The BREAK statement provides a convenient way to immediately exit from a loop
(FOR, WHILE, REPEAT), CASE, or SWITCH statement without resorting to GOTO
statements.

Note
BREAK is an IDL statement. For information on using statements, see Chapter 12,
“Program Control” in the Building IDL Applications manual.

Syntax

BREAK

Examples

This example exits the enclosing WHILE loop when the value of i hits 5.

I = 0
WHILE (1) DO BEGIN

i = i + 1
IF (i eq 5) THEN BREAK

ENDWHILE

Version History

Introduced: 5.4
BREAK IDL Reference Guide

 173
BREAKPOINT

The BREAKPOINT procedure allows you to insert and remove breakpoints in
programs for debugging. A breakpoint causes program execution to stop after the
designated statement is executed. Breakpoints are specified using the source file
name and line number. For multiple-line statements (statements containing “$”, the
continuation character), specify the line number of the last line of the statement.

You can insert breakpoints in programs without editing the source file. Enter the
following:

HELP, /BREAKPOINT

to display the breakpoint table which gives the index, module and source file
locations of each breakpoint.

Syntax

BREAKPOINT [, File], Index [, AFTER=integer] [, /CLEAR]
[, CONDITION=‘expression’] [, /DISABLE] [, /ENABLE] [, /ON_RECOMPILE]
[, /ONCE] [, /SET]

Arguments

File

An optional string argument that contains the name of the source file. Note that if File
is not in the current directory, the full path name must be specified even if File is in
one of the directories specified by !PATH.

Index

The line number at which to clear or set a breakpoint.

Keywords

AFTER

Set this keyword equal to an integer n. Execution will stop only after the nth time the
breakpoint is hit. For example:

BREAKPOINT, /SET, 'test.pro', 8, AFTER=3
IDL Reference Guide BREAKPOINT

174
sets a breakpoint at the eighth line of the file test.pro, but only stops execution
after the breakpoint has been encountered three times.

CLEAR

Set this keyword to remove a breakpoint. The breakpoint to be removed is specified
either by index, or by the source file and line number. Use command HELP,
/BREAKPOINT to display the indices of existing breakpoints. For example:

; Clear breakpoint with an index of 3:
BREAKPOINT, /CLEAR, 3

; Clear the breakpoint corresponding to the statement in the file
; test.pro, line number 8:
BREAKPOINT, /CLEAR, 'test.pro',8

CONDITION

Set this keyword to a string containing an IDL expression. When a breakpoint is
encountered, the expression is evaluated. If the expression is true (if it returns a non-
zero value), program execution is interrupted. The expression is evaluated in the
context of the program containing the breakpoint. For example:

BREAKPOINT, 'myfile.pro', 6, CONDITION='i gt 2'

If i is greater than 2 at line 6 of myfile.pro, the program is interrupted.

DISABLE

Set this keyword to disable the specified breakpoint, if it exists. The breakpoint can
be specified using the breakpoint index or file and line number:

; Disable breakpoint with an index of 3:
BREAKPOINT, /DISABLE, 3

; Disable the breakpoint corresponding to the statement in the file
; test.pro, line number 8:
BREAKPOINT, /DISABLE, 'test.pro',8

ENABLE

Set this keyword to enable the specified breakpoint if it exists. The breakpoint can be
specified using the breakpoint index or file and line number:

; Enable breakpoint with an index of 3:
BREAKPOINT, /ENABLE, 3

; Enable the breakpoint corresponding to the statement in the file
; test.pro, line number 8:
BREAKPOINT IDL Reference Guide

 175
BREAKPOINT, /ENABLE, 'test.pro',8

ON_RECOMPILE

Set this keyword to specify that the breakpoint will not take effect until the next time
the file containing it is compiled.

ONCE

Set this keyword to make the breakpoint temporary. If ONCE is set, the breakpoint is
cleared as soon as it is hit. For example:

BREAKPOINT, /SET, 'file.pro', 12, AFTER=3, /ONCE

sets a breakpoint at line 12 of file.pro. Execution stops when line 12 is
encountered the third time, and the breakpoint is automatically cleared.

SET

Set this keyword to set a breakpoint at the designated source file line. If this keyword
is set, the first input parameter, File must be a string expression that contains the
name of the source file. The second input parameter must be an integer that
represents the source line number.

For example, to set a breakpoint at line 23 in the source file xyz.pro, enter:

BREAKPOINT, /SET, 'xyz.pro', 23

Version History

Introduced: Pre 4.0
IDL Reference Guide BREAKPOINT

176
BROYDEN

The BROYDEN function solves a system of n nonlinear equations (where n ≥ 2) in n
dimensions using a globally-convergent Broyden’s method.

BROYDEN is based on the routine broydn described in section 9.7 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = BROYDEN(X, Vecfunc [, CHECK=variable] [, /DOUBLE] [, EPS=value]
[, ITMAX=value] [, STEPMAX=value] [, TOLF=value] [, TOLMIN=value]
[, TOLX=value])

Return Value

This function returns an n-element vector containing the solution.

Arguments

X

An n-element vector (where n ≥ 2) containing an initial guess at the solution of the
system.

Vecfunc

A scalar string specifying the name of a user-supplied IDL function that defines the
system of non-linear equations. This function must accept a vector argument X and
return a vector result.

For example, suppose we wish to solve the following system:

To represent this system, we define an IDL function named BROYFUNC:

FUNCTION broyfunc, X

3x yz() 1 2⁄–cos–

x
2

81 y 0.1+()2– z() 1.06+sin+

e xy– 20z 10π 3–
3

------------------+ +

0=
BROYDEN IDL Reference Guide

 177
RETURN, [3.0 * X[0] - COS(X[1]*X[2]) - 0.5,$
X[0]^2 - 81.0*(X[1] + 0.1)^2 + SIN(X[2]) + 1.06,$
EXP(-X[0]*X[1]) + 20.0 * X[2] + (10.0*!PI - 3.0)/3.0]

END

Keywords

CHECK

BROYDEN calls an internal function named fmin() to determine whether the
routine has converged to a local rather than a global minimum (see Numerical
Recipes, section 9.7). Use the CHECK keyword to specify a named variable which
will be set to 1 if the routine has converged to a local minimum or to 0 if not. If the
routine does converge to a local minimum, try restarting from a different initial guess
to obtain the global minimum.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

EPS

Set this keyword to a number close to machine accuracy, used to remove noise from
each iteration. The default is 10-7 for single precision, and 10-14 for double precision.

ITMAX

Use this keyword to specify the maximum allowed number of iterations. The default
is 200.

STEPMAX

Use this keyword to specify the scaled maximum step length allowed in line searches.
The default value is 100.0.

TOLF

Set the convergence criterion on the function values. The default value is 1.0 x 10-4.

TOLMIN

Set the criterion for deciding whether spurious convergence to a minimum of the
function fmin() has occurred. The default value is 1.0 x 10-6.
IDL Reference Guide BROYDEN

178
TOLX

Set the convergence criterion on X. The default value is 1.0 x 10-7.

Examples

We can use BROYDEN to solve the non-linear system of equations defined by the
BROYFUNC function above:

;Provide an initial guess as the algorithm’s starting point:
X = [-1.0, 1.0, 2.0]

;Compute the solution:
result = BROYDEN(X, 'BROYFUNC')

;Print the result:
PRINT, result

IDL prints:

0.500000 -1.10731e-07 -0.523599

The exact solution (to eight-decimal accuracy) is [0.5, 0.0, -0.52359877].

Version History

Introduced: 4.0

See Also

FX_ROOT, FZ_ROOTS, NEWTON
BROYDEN IDL Reference Guide

 179
BYTARR

The BYTARR function creates a byte vector or array.

Syntax

Result = BYTARR(D1[, ..., D8] [, /NOZERO])

Return Value

This function returns a byte vector or array.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, BYTARR sets every element of the result to zero. If the NOZERO
keyword is set, this zeroing is not performed (array elements contain random values)
and BYTARR executes faster.

Examples

To create B as a 3 by 3 by 5 byte array where each element is set to zero, enter:

B = BYTARR(3, 3, 5)

Version History

Introduced: Original
IDL Reference Guide BYTARR

180
See Also

COMPLEXARR, DBLARR, FLTARR, INTARR, LON64ARR, LONARR,
MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
BYTARR IDL Reference Guide

 181
BYTE

The BYTE function returns a result equal to Expression converted to byte type. If
Expression is a string, each string is converted to a byte vector of the same length as
the string. Each element of the vector is the character code of the corresponding
character in the string. The BYTE function can also be used to extract data from
Expression and place it in a byte scalar or array without modification, if more than
one parameter is present. See “Type Conversion Functions” on page 56 for details.

Syntax

Result = BYTE(Expression[, Offset [, D1[, ..., D8]]])

Return Value

This function returns the result of the Expression converted to byte type.

Arguments

Expression

The expression to be converted to type byte.

Offset

The byte offset from the beginning of Expression. Specifying this argument allows
fields of data extracted from Expression to be treated as byte data without conversion.

Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
If no dimension arguments are given, the result is taken to be scalar.

The Di arguments can be either an array or a series of scalar expressions. If a single
argument is specified, it can be either a scalar expression or an array of up to eight
elements. If multiple arguments are specified, they must all be scalar expressions. Up
to eight dimensions can be specified.
IDL Reference Guide BYTE

182
Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Example

If the variable A contains the floating-point value 10.0, it can be converted to byte
type and saved in the variable B by entering:

B = BYTE(A)

Version History

Introduced: Original

See Also

COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, LONG64, STRING,
UINT, ULONG, ULONG64
BYTE IDL Reference Guide

 183
BYTEORDER

The BYTEORDER procedure converts integers between host and network byte
ordering or floating-point values between the native format and XDR (IEEE) format.
This routine can also be used to swap the order of bytes within both short and long
integers. If the type of byte swapping is not specified via one of the keywords below,
bytes within short integers are swapped (even and odd bytes are interchanged).

The size of the parameter, in bytes, must be evenly divisible by two for short integer
swaps, and by four for long integer swaps. BYTEORDER operates on both scalars
and arrays. The parameter must be a variable, not an expression or constant, and may
not contain strings. The contents of Variable are overwritten by the result.

Network byte ordering is “big endian”. That is, multiple byte integers are stored in
memory beginning with the most significant byte.

Syntax

BYTEORDER, Variable1, ..., Variablen [, /DTOVAX] [, /DTOXDR] [, /FTOVAX]
[, /FTOXDR] [, /HTONL] [, /HTONS] [, /L64SWAP] [, /LSWAP] [, /NTOHL]
[, /NTOHS] [, /SSWAP] [, /SWAP_IF_BIG_ENDIAN]
[, /SWAP_IF_LITTLE_ENDIAN] [, /VAXTOD] [, /VAXTOF] [, /XDRTOD]
[, /XDRTOD]

Arguments

Variablen

A named variable (not an expression or constant) that contains the data to be
converted. The contents of Variable are overwritten by the new values.

Keywords

DTOVAX

Set this keyword to convert native (IEEE) double-precision floating-point format to
VAX D float format. See “Note on Accessing Data in VAX Floating Point Format” on
page 186.
IDL Reference Guide BYTEORDER

184
DTOXDR

Set this keyword to convert native double-precision floating-point format to XDR
(IEEE) format.

FTOVAX

Set this keyword to convert native (IEEE) single-precision floating-point format to
VAX F float format. See “Note on Accessing Data in VAX Floating Point Format” on
page 186.

FTOXDR

Set this keyword to convert native single-precision floating-point format to XDR
(IEEE) format.

HTONL

Set this keyword to perform host to network conversion, longwords.

HTONS

Set this keyword to perform host to network conversion, short integers.

L64SWAP

Set this keyword to perform a 64-bit swap (8 bytes). Swap the order of the bytes
within each 64-bit word. For example, the eight bytes within a 64-bit word are
changed from (B0, B1, B2, B3 B4, B5, B6, B7), to (B7, B6, B5, B4, B3, B2, B1, B0).

LSWAP

Set this keyword to perform a 32-bit longword swap. Swap the order of the bytes
within each longword. For example, the four bytes within a longword are changed
from (B0, B1, B2, B3), to (B3, B2, B1, B0).

NTOHL

Set this keyword to perform network to host conversion, longwords.

NTOHS

Set this keyword to perform network to host conversion, short integers.
BYTEORDER IDL Reference Guide

 185
SSWAP

Set this keyword to perform a short word swap. Swap the bytes within short integers.
The even and odd numbered bytes are interchanged. This is the default action, if no
other keyword is set.

SWAP_IF_BIG_ENDIAN

If this keyword is set, the BYTEORDER request will only be performed if the
platform running IDL uses “big endian” byte ordering. On little endian machines, the
BYTEORDER request quietly returns without doing anything. Note that this
keyword does not refer to the byte ordering of the input data, but to the computer
hardware.

SWAP_IF_LITTLE_ENDIAN

If this keyword is set, the BYTEORDER request will only be performed if the
platform running IDL uses “little endian” byte ordering. On big endian machines, the
BYTEORDER request quietly returns without doing anything. Note that this
keyword does not refer to the byte ordering of the input data, but to the computer
hardware.

VAXTOD

Set this keyword to convert VAX D float format to native (IEEE) double-precision
floating-point format. See “Note on Accessing Data in VAX Floating Point Format”
on page 186.

VAXTOF

Set this keyword to convert VAX F float format to native (IEEE) single-precision
floating-point format. See “Note on Accessing Data in VAX Floating Point Format”
on page 186.

XDRTOD

Set this keyword to convert XDR (IEEE) format to native double-precision floating-
point.

XDRTOF

Set this keyword to convert XDR (IEEE) format to native single-precision floating-
point.
IDL Reference Guide BYTEORDER

186
Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Obsolete Keywords

The following keywords are obsolete:

• DTOGFLOAT

• GFLOATTOD

For information on obsolete keywords, See Appendix I, “Obsolete Features”.

Note on Accessing Data in VAX Floating Point
Format

When converting between VAX and IEEE formats, you should be aware of the
following basic numerical issues in order to get the best results. Translation of
floating-point values from IDL’s native IEEE format to the VAX format and back
(that is, VAX to IEEE to VAX) is not a completely reversible operation, and should be
avoided when possible. There are many cases where the recovered values will differ
from the original values, including:

• The VAX floating-point format lacks support for the IEEE special values (NaN
and Infinity). Hence, their special meaning is lost when they are converted to
VAX format and cannot be recovered.

• The IEEE and VAX floating formats have intrinsic differences in precision and
range, which can cause information to be lost in both directions. When
converting from one format to another, IDL rounds the value to the nearest
representable value in the target format.

As a practical matter, an initial conversion of existing VAX format data to IEEE
cannot be avoided if the data is to be used on modern machines. However, each
format conversion can add a small amount of error to the resulting values, so it is
important to minimize the number of such conversions. RSI recommends using
IEEE/VAX conversions only to read existing VAX format data, and strongly
BYTEORDER IDL Reference Guide

 187
recommends that all new files be created using the native IEEE format. This
introduces only a single unavoidable conversion, and minimizes the resulting
conversion error.

Version History

Introduced: Pre 4.0

See Also

SWAP_ENDIAN
IDL Reference Guide BYTEORDER

188
BYTSCL

The BYTSCL function scales all values of Array that lie in the range (Min ≤ x ≤ Max)
into the range (0 ≤ x ≤ Top). For floating-point input, each value is scaled using the
formula (Top + 0.9999)*x/(Max - Min). For integer input, each value is scaled using
the formula ((Top + 1)*x - 1)/(Max - Min).

Syntax

Result = BYTSCL(Array [, MAX=value] [, MIN=value] [, /NAN] [, TOP=value])

Return Value

The returned result has the same structure as the original parameter and is of byte
type.

Arguments

Array

The array to be scaled and converted to bytes.

Keywords

MAX

Set this keyword to the maximum value of Array to be considered. If MAX is not
provided, Array is searched for its maximum value. All values greater or equal to
MAX are set equal to TOP in the result.

Note
The data type of the value specified for MAX should match the data type of the
input array. Since MAX is converted to the data type of the input array, specifying
mismatched data types may produce undesired results.

MIN

Set this keyword to the minimum value of Array to be considered. If MIN is not
provided, Array is searched for its minimum value. All values less than or equal to
MIN are set equal to 0 in the result.
BYTSCL IDL Reference Guide

 189
Note
The data type of the value specified for MIN should match the data type of the input
array. Since MIN is converted to the data type of the input array, specifying
mismatched data types may produce undesired results.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as missing
data. (See “Special Floating-Point Values” on page 434 for more information on
IEEE floating-point values.)

TOP

Set this keyword to the maximum value of the scaled result. If TOP is not specified,
255 is used. Note that the minimum value of the scaled result is always 0.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

BYTSCL is often used to scale images into the appropriate range for 8-bit displays.
As an example, enter the following commands:

; Create a simple image array:
IM = DIST(200)

; Display the array as an image:
TV, IM

; Scale the image into the full range of bytes (0 to 255) and
; re-display it:
IM = BYTSCL(IM)

; Display the new image:
TV, IM
IDL Reference Guide BYTSCL

190
Version History

Introduced: Original

See Also

BYTE, TVSCL
BYTSCL IDL Reference Guide

 191
C_CORRELATE

The C_CORRELATE function computes the cross correlation Pxy(L) or cross
covariance Rxy(L) of two sample populations X and Y as a function of the lag L

Pxy L()

xk L+ x–() yk y–()

k 0=

N L– 1–

∑

xk x–()2

k 0=

N 1–

∑ yk y–()2

k 0=

N 1–

∑

-- For L < 0

xk x–() yk L+ y–()

k 0=

N L– 1–

∑

xk x–()2

k 0=

N 1–

∑ yk y–()2

k 0=

N 1–

∑

-- For L 0≥























=

IDL Reference Guide C_CORRELATE

192
where x and y are the means of the sample populations x = (x0, x1, x2, ... , xN-1) and y
= (y0, y1, y2, ... , yN-1), respectively.

This routine is written in the IDL language. Its source code can be found in the file
c_correlate.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = C_CORRELATE(X, Y, Lag [, /COVARIANCE] [, /DOUBLE])

Return Value

Returns the cross correlation Pxy(L) or cross covariance Rxy(L) of two sample
populations X and Y as a function of the lag L.

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Y

An n-element integer, single-, or double-precision floating-point vector.

Rxy L()

1
N
---- xk L+ x–() yk y–()

k 0=

N L– 1–

∑ For L < 0

1
N
---- xk x–() yk L+ y–()

k 0=

N L– 1–

∑ For L 0≥










=

C_CORRELATE IDL Reference Guide

 193
Lag

A scalar or n-element integer vector in the interval [-(n-2), (n-2)], specifying the
signed distances between indexed elements of X.

Keywords

COVARIANCE

Set this keyword to compute the sample cross covariance rather than the sample cross
correlation.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

; Define two n-element sample populations:
X = [3.73, 3.67, 3.77, 3.83, 4.67, 5.87, 6.70, 6.97, 6.40, 5.57]
Y = [2.31, 2.76, 3.02, 3.13, 3.72, 3.88, 3.97, 4.39, 4.34, 3.95]

; Compute the cross correlation of X and Y for LAG = -5, 0, 1, 5,
; 6, 7:
lag = [-5, 0, 1, 5, 6, 7]
result = C_CORRELATE(X, Y, lag)
PRINT, result

IDL prints:

-0.428246 0.914755 0.674547 -0.405140 -0.403100 -0.339685

Version History

Introduced: 4.0

See Also

A_CORRELATE, CORRELATE, M_CORRELATE, P_CORRELATE,
R_CORRELATE
IDL Reference Guide C_CORRELATE

194
CALDAT

The CALDAT procedure computes the month, day, year, hour, minute, or second
corresponding to a given Julian date. The inverse of this procedure is JULDAY.

Note
The Julian calendar, established by Julius Caesar in the year 45 BCE, was corrected
by Pope Gregory XIII in 1582, excising ten days from the calendar. The CALDAT
procedure reflects the adjustment for dates after October 4, 1582. See the example
below for an illustration.

This routine is written in the IDL language. Its source code can be found in the file
caldat.pro in the lib subdirectory of the IDL distribution.

Syntax

CALDAT, Julian, Month [, Day [, Year [, Hour [, Minute [, Second]]]]]

Arguments

Julian

A numeric value or array that specifies the Julian Day Number (which begins at
noon) to be converted to a calendar date.

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000, respectively.

Note
Julian Day Numbers should be maintained as double-precision floating-point data
when the numbers are used to determine hours, minutes, and seconds.

Month

A named variable that, on output, contains a longword integer or longword integer
array representing the number of the desired month (1 = January, ..., 12 = December).
CALDAT IDL Reference Guide

 195
Day

A named variable that, on output, contains a longword integer or longword integer
array representing the number of the day of the month (1-31).

Year

A named variable that, on output, contains a longword integer or longword integer
array representing the number of the desired year (e.g., 1994).

Hour

A named variable that, on output, contains a longword integer or longword integer
array representing the number of the hour of the day (0-23).

Minute

A named variable that, on output, contains a longword integer or longword integer
array representing the number of the minute of the hour (0-59).

Second

A named variable that, on output, contains a double-precision floating-point value or
a double-precision floating-point array representing the number of the second of the
minute (0-59).

Keywords

None.

Examples

In 1582, Pope Gregory XIII adjusted the Julian calendar to correct for its inaccuracy
of slightly more than 11 minutes per year. As a result, the day following October 4,
1582 was October 15, 1582. CALDAT follows this convention, as illustrated by the
following commands:

CALDAT, 2299160, Month1, Day1, Year1
CALDAT, 2299161, Month2, Day2, Year2
PRINT, Month1, Day1, Year1
PRINT, Month2, Day2, Year2
IDL Reference Guide CALDAT

196
IDL prints:

10 4 1582
10 15 1582

Warning
You should be aware of this discrepancy between the original and revised Julian
calendar reckonings if you calculate dates before October 15, 1582.

Be sure to distinguish between Month and Minute when assigning variable names.
For example, the following code would cause the Month value to be the same as the
Minute value:

;Find date corresponding to Julian day 2529161.36:
CALDAT, 2529161.36, M, D, Y, H, M, S
PRINT, M, D, Y, H, M, S

IDL prints:

0 4 2212 18 0 0.00000000

Moreover, Julian Day Numbers should be maintained as double-precision floating-
point data when the numbers are used to determine hours, minutes, and seconds.

So, instead of the previous call to CALDAT, use something like:

CALDAT, 2529161.36D, Month, Day, Year, Hour, Minute, Second
PRINT, Month, Day, Year, Hour, Minute, Second

IDL prints:

7 4 2212 20 38 23.999989

You can also use arrays for the Julian argument:

CALDAT, DINDGEN(4) + 2449587.0D, m, d, y
PRINT, m, d, y

IDL prints:

 8 8 8 8
 22 23 24 25
 1994 1994 1994 1994

Version History

Introduced: Pre 4.0

See Also

BIN_DATE, JULDAY, SYSTIME
CALDAT IDL Reference Guide

 197
CALENDAR

The CALENDAR procedure displays a calendar for a month or an entire year on the
current plotting device. This IDL routine imitates the UNIX cal command.

This routine is written in the IDL language. Its source code can be found in the file
calendar.pro in the lib subdirectory of the IDL distribution.

Syntax

CALENDAR [[, Month] , Year]

Arguments

Month

The number of the month for which a calendar is desired (1 is January, 2 is February,
..., 12 is December). If called without arguments, CALENDAR draws a calendar for
the current month.

Year

The number of the year for which a calendar should be drawn. If YEAR is provided
without MONTH, a calendar for the entire year is drawn. If called without arguments,
CALENDAR draws a calendar for the current month.

Example

; Display a calendar for the year 2038.
CALENDAR, 2038
; Display the calendar for October, 1582.
CALENDAR, 10, 1582

Version History

Introduced: Original

See Also

SYSTIME
IDL Reference Guide CALENDAR

198
CALL_EXTERNAL

The CALL_EXTERNAL function calls a function in an external sharable object and
returns a scalar value. Parameters can be passed by reference (the default) or by
value. See Chapter 9, “CALL_EXTERNAL” in the External Development Guide
manual for examples.

CALL_EXTERNAL is supported under all operating systems supported by IDL,
although there are system specific details of which you must be aware. This function
requires no interface routines and is much simpler and easier to use than the
LINKIMAGE procedure. However, CALL_EXTERNAL performs no checking of
the type and number of parameters. Programming errors are likely to cause IDL to
crash or to corrupt your data.

Warning
Input and output actions should be performed within IDL code, using IDL’s built-in
input/output facilities, or by using the internal IDL_Message() function. Performing
input or output from external code, especially to the user console or tty (e.g. using
printf() or equivalent functionality in other languages to send text to stdout) may
create errors or generate unexpected results.

CALL_EXTERNAL supports the IDL Portable Convention, a portable calling
convention that works on all platforms. This convention passes two arguments to the
called routine, an argument count (argc) and an array of arguments (argv).

CALL_EXTERNAL also offers a feature called Auto Glue that can greatly simplify
use of the CALL_EXTERNAL portable convention if you have the appropriate C
compiler installed on your system. Auto glue automatically writes the glue function
required to convert the (argc, argv) arguments to the actual function call, and then
compiles and loads the glue function transparently. If you want IDL to simply write
the glue function for you, but not compile it, the WRITE_WRAPPER keyword can
be used.

The result of the CALL_EXTERNAL function is a scalar value returned by the
external function. By default, this is a scalar long (32-bit) integer. This default can be
changed by specifying one of the keywords described below that alter the result type.

Syntax

Result = CALL_EXTERNAL(Image, Entry [, P0, ..., PN-1] [, /ALL_VALUE]
[, /B_VALUE | , /D_VALUE | , /F_VALUE | , /I_VALUE | , /L64_VALUE |
, /S_VALUE | , /UI_VALUE | , /UL_VALUE | , /UL64_VALUE] [, /CDECL]
CALL_EXTERNAL IDL Reference Guide

 199
[, RETURN_TYPE=value] [, /UNLOAD] [, VALUE=byte_array]
[, WRITE_WRAPPER=wrapper_file])

Auto Glue keywords: [, /AUTO_GLUE] [, CC=string]
[, COMPILE_DIRECTORY=string] [, EXTRA_CFLAGS=string]
[, EXTRA_LFLAGS=string] [, /IGNORE_EXISTING_GLUE] [, LD=string]
[, /NOCLEANUP] [, /SHOW_ALL_OUTPUT] [, /VERBOSE]

Return Value

This function calls a function in an external sharable object and returns a scalar value.

Arguments

Image

The name of the file, which must be a sharable library (UNIX), or DLL (Windows),
which contains the routine to be called.

Entry

A string containing the name of the symbol in the library which is the entry point of
the routine to be called.

P0, ..., PN-1

The parameters to be passed to the external routine. All array and structure arguments
are passed by reference (address). The default is to also pass scalars by reference, but
the ALL_VALUE or VALUE keywords can be used to pass them by value. Care must
be taken to ensure that the type, structure, and passing mechanism of the parameters
passed to the external routine match what it expects. There are some restrictions on
data types that can be passed by value, and the user needs to be aware of how IDL
passes strings. Both issues discussed in further detail below.

Keywords

ALL_VALUE

Set this keyword to indicate that all parameters are passed by value. There are some
restrictions on data types that should be considered when using this keyword, as
discussed below.
IDL Reference Guide CALL_EXTERNAL

200
B_VALUE

If set, this keyword indicates that the called function returns a byte value.

CDECL

The Microsoft Windows operating system has two distinct system defined standards
that govern how routines pass arguments: stdcall, which is used by much of the
operating system as well as languages such as Visual Basic, and cdecl, which is
used widely for programming in the C language. These standards differ in how and
when arguments are pushed and removed from the system stack. The standard used
by a given function is determined when the function is compiled, and can usually be
controlled by the programmer. If you call a function using the wrong standard (e.g.
calling a stdcall function as if it were cdecl, or the reverse), you could get
incorrect results, corrupted memory, or you could crash IDL. Unfortunately, there is
no way for IDL to know which convention a given function uses; this information
must be supplied by the user of CALL_EXTERNAL. If the CDECL keyword is
present, IDL will use the cdecl convention to call the function. Otherwise, stdcall
is used.

D_VALUE

If set, this keyword indicates that the called function returns a double-precision
floating value.

F_VALUE

If set, this keyword indicates that the called function returns a single-precision
floating value.

I_VALUE

If set, this keyword indicates that the called function returns an integer value.

L64_VALUE

If set, this keyword indicates that the called function returns a 64-bit integer value.

RETURN_TYPE

The type code to set the type of the result. See the description of the SIZE function
for a list of the IDL type codes.
CALL_EXTERNAL IDL Reference Guide

 201
S_VALUE

If set, this keyword indicates that the called function returns a pointer to a
null-terminated string.

UI_VALUE

If set, this keyword indicates that the called function returns an unsigned integer
value.

UL_VALUE

If set, this keyword indicates that the called function returns an unsigned long integer
value.

UL64_VALUE

If set, this keyword indicates that the called function returns an unsigned 64-bit
integer value.

UNLOAD

Normally, IDL keeps Image loaded in memory after the call to CALL_EXTERNAL
completes. This is done for efficiency—loading a sharable object can be a slow
operation. Setting the UNLOAD keyword will cause IDL to unload Image after the
call to it is complete. This is useful if you are debugging code in Image, as it allows
you to iterate on your code without having to exit IDL between tests. It can also be a
good idea if you do not intend to make any subsequent calls to routines within Image.

If IDL is unable to unload the sharable object, it will issue an error to that effect. In
addition to any operating system reported problem that might occur, there are 2
situations in which IDL cannot perform the UNLOAD operation:

• If the sharable library has been used for any other purpose in addition to
CALL_EXTERNAL (e.g. LINKIMAGE).

VALUE

A byte array, with as many elements as there are optional parameters, indicating the
method of parameter passing. Arrays are always passed by reference. If parameter Pi
is a scalar, it is passed by reference if VALUE[i] is 0; and by value if it is non-zero.
There are some restrictions on data types that should be considered when using this
keyword, as discussed below.
IDL Reference Guide CALL_EXTERNAL

202
WRITE_WRAPPER

If set, WRITE_WRAPPER supplies the name of a file for CALL_EXTERNAL to
create containing the C function required to convert the (argc, argv) interface used
by the CALL_EXTERNAL portable calling convention to the interface of the target
function. If WRITE_WRAPPER is specified, CALL_EXTERNAL writes the
specified file, but does not attempt to actually call the function specified by Entry.
The result from CALL_EXTERNAL is an integer 0 in this case, and has no special
meaning. Use of WRITE_WRAPPER implies the PORTABLE keyword.

Note
This is similar to Auto Glue only in that CALL_EXTERNAL writes a function on
your behalf. Unlike Auto Glue, WRITE_WRAPPER does not attempt to compile
the resulting function or to use it. You might want to use WRITE_WRAPPER to
generate IDL interfaces for an external library in cases where you intend to combine
the interfaces with other code or otherwise modify it before using it with IDL.

Auto Glue Keywords

Auto Glue, discussed in the section “Auto Glue” on page 205, offers a simplified way
to use the CALL_EXTERNAL portable calling convention. The following keywords
control its use. Many of these keywords correspond to the same keywords to the
MAKE_DLL procedure, and are covered in more detail in the documentation for that
routine.

AUTO_GLUE

Set this keyword to enable the CALL_EXTERNAL Auto Glue feature.

CC

If present, a template string to be used in generating the C compiler command(s) to
compile the automatically generated glue function. For a more complete description
of this keyword, see MAKE_DLL.

COMPILE_DIRECTORY

Specifies the directory to use for creating the necessary intermediate files and the
final glue function sharable library. For a more complete description of this keyword,
see MAKE_DLL.
CALL_EXTERNAL IDL Reference Guide

 203
EXTRA_CFLAGS

If present, a string supplying extra options to the command used to execute the C
compiler. For a more complete description of this keyword, see MAKE_DLL.

EXTRA_LFLAGS

If present, a string supplying extra options to the command used to execute the linker.
For a more complete description of this keyword, see MAKE_DLL.

IGNORE_EXISTING_GLUE

Normally, if Auto Glue finds a pre-existing glue function, it will use it without
attempting to build it again. Set IGNORE_EXISTING_GLUE to override this
caching behavior and force CALL_EXTERNAL to rebuild the glue function sharable
library.

LD

If present, a template string to be used in generating the linker command to build the
glue function sharable library. For a more complete description of this keyword, see
MAKE_DLL.

NOCLEANUP

If set, CALL_EXTERNAL will not remove intermediate files generated in order to
build the glue function sharable library after the library has been built. This keyword
can be used to preserve information for debugging in case of error, or for additional
information on how Auto Glue works. For a more complete description of this
keyword, see MAKE_DLL.

SHOW_ALL_OUTPUT

Auto Glue normally produces no output unless an error prevents successful building
of the glue function sharable library. Set SHOW_ALL_OUTPUT to see all output
produced by the process of building the library. For a more complete description of
this keyword, see MAKE_DLL.

VERBOSE

If set, VERBOSE causes CALL_EXTERNAL to issue informational messages as it
carries out the task of locating, building, and executing the glue function. For a more
complete description of this keyword, see MAKE_DLL.
IDL Reference Guide CALL_EXTERNAL

204
Obsolete Keywords

The following keywords are obsolete:

• DEFAULT

• PORTABLE

• VAX_FLOAT

For information on obsolete keywords, See Appendix I, “Obsolete Features”.

String Parameters

IDL represents strings internally as IDL_STRING descriptors, which are defined in
the C language as:

typedef struct {
 unsigned short slen;
 unsigned short stype;
 char *s;
} IDL_STRING;

To pass a string by reference, IDL passes the address of its IDL_STRING descriptor.
To pass a string by value the string pointer (the s field of the descriptor) is passed.
Programmers should be aware of the following when manipulating IDL strings:

• Called code should treat the information in the passed IDL_STRING
descriptor and the string itself as read-only, and should not modify these
values.

• The slen field contains the length of the string without including the NULL
termination that is required at the end of all C strings.

• The stype field is used internally by IDL to know keep track of how the
memory for the string was obtained, and should be ignored by
CALL_EXTERNAL users.

• s is the pointer to the actual C string represented by the descriptor. If the string
is NULL, IDL represents it as a NULL (0) pointer, not as a pointer to an empty
null terminated string. Hence, called code that expects a string pointer should
check for a NULL pointer before dereferencing it.

These issues are examined in greater detail in the IDL External Development Guide.
CALL_EXTERNAL IDL Reference Guide

 205
Calling Convention

CALL_EXTERNAL uses the IDL Portable convention for calling user-supplied
routines. The IDL Portable calling convention can be simplified by using the Auto
Glue extension, described below.

The portable interface convention passes all arguments as elements of an array of C
void pointers (void *). The C language prototype for a user function called this way
looks like one of the following:

RET_TYPE xxx(int argc, void *argv[])

Where RET_TYPE is one of the following: UCHAR, short, IDL_UINT, IDL_LONG,
IDL_ULONG, IDL_LONG64, IDL_ULONG64, float, double, or char *. The return
type used must agree with the type assumed by CALL_EXTERNAL as specified via
the keywords described above.

Argc is the number of arguments, and the vector argv contains the arguments
themselves, one argument per element. Arguments passed by reference map directly
to these (void *) pointers, and can be cast to the proper type and then dereferenced
directly by the called function. Passing arguments by value is allowed, but since the
values are passed in (void *) pointers, there are some limitations and restrictions on
what is possible:

• Types that are larger than a pointer cannot be passed by value, and
CALL_EXTERNAL will issue an error if this is attempted. This limitation
applies only to the standard portable calling convention. Auto Glue does not
have this limitation, and is able to pass such variables by value.

• Integer values can be easily passed by value. IDL widens any of the integer
types to the C int type and they are then converted to a (void *) pointer using a
C cast operation.

• There is no C language-defined conversion between pointers and floating point
types, so IDL copies the data for the value directly into the pointer element.
Although such values can be retrieved by the called routine with the correct C
casting operations, this is inconvenient and error prone. It is best to pass non-
integer data by reference.

Auto Glue

Auto Glue is an extension to the IDL Portable Calling Convention that makes it easier
to use.
IDL Reference Guide CALL_EXTERNAL

206
The portable calling convention requires your function to use the IDL defined (argc,
argv) interface for passing arguments. However, functions not explicitly written for
use with CALL_EXTERNAL may not have this interface. A common solution using
the portable convention is for the IDL user to write a glue function that serves as an
interface between IDL and the called function. The entire purpose of this glue
function, which is usually very simple, is to convert the IDL (argc, argv) method of
passing parameters to a form acceptable to the called function. Writing this wrapper
function is easy for programmers who understand the C language, the system C
compiler and linker, and how sharable libraries work on their target operating system.
However, it is also tedious and error prone, and can be difficult for users that do not
already have these skills.

Auto Glue uses the MAKE_DLL procedure to automate the process of using glue
code to call functions via the CALL_EXTERNAL portable calling convention. Since
it depends so closely on MAKE_DLL, an understanding of how MAKE_DLL works
is necessary to fully understand Auto Glue. As with MAKE_DLL, Auto Glue
requires that your system have a suitable C compiler installed. Please refer to the
documentation for MAKE_DLL.

Auto Glue maintains a cache of previously built glue functions, and will reuse them
on subsequent requests, even between IDL sessions. Glue function libraries can be
recognized by their name, which starts with the prefix idl_ce, and ends with the
proper suffix for a sharable library on the target system (most UNIX: .so, AIX: .a,
HP-UX: .sl, Windows: .dll). CALL_EXTERNAL finds a suitable glue function
by performing the following steps in order, stopping after the first one that works:

1. Look for a ce_glue subdirectory within the IDL distribution bin
subdirectory for the current platform. (For example, on a Windows system the
subdirectory would be located in <IDL_DEFAULT>\bin\bin.x86.) If this
directory exists, it looks there for a sharable library containing the appropriate
glue function.

Note
For customer security reasons, the ce_glue subdirectory does not exist in the IDL
distribution as shipped by RSI, and IDL does not use it to create glue functions.
However, if an individual site creates this directory and places glue library files
within it, IDL will use them. Multiple IDL sessions on a given system can all share
these same glue files, even when run by different users on a multi-user system. If
you keep your IDL distribution on a network based file server shared by multiple
clients, and if you provide a sufficient selection of glue files, it is possible that your
users will not require a locally installed C compiler to use Auto Glue.
CALL_EXTERNAL IDL Reference Guide

 207
If you do create the ce_glue subdirectory on a multi-user system, we
recommend that you make it along with all files contained within belong to the
owner of the IDL distribution, and apply file protections that prevent non-
privileged users from creating files in the directory or modifying them.

2. Look in the directory given by the COMPILE_DIRECTORY keyword, or if
COMPILE_DIRECTORY is not present, in the directory given by the
!MAKE_DLL.COMPILE_DIRECTORY system variable for the appropriate
glue function.

3. If this step is reached, there is no pre-existing glue function available.
CALL_EXTERNAL will create one in the same directory searched in the
previous step by generating a C language file containing the needed glue
function, and then compiling and linking it into a sharable library using the
functionality of the MAKE_DLL procedure.

• IDL loads the sharable library containing the glue function found in the
previous step, as well as the library you specified with the Image argument.

• CALL_EXTERNAL calls the glue function, causing your function to be called
with the correct parameters.

The first time CALL_EXTERNAL encounters the need for a glue function that does
not already exist, it will automatically build it, and then use it without any external
indication that this has happened. You may notice a brief hesitation in IDL’s
execution as it waits for this process to occur. Once a glue function exists, IDL can
load it immediately on subsequent calls (even in unrelated later IDL sessions), and no
delay will occur.

Example: Using Auto Glue To Call System Library Routines

Under Sun Solaris, there is a function in the system math library called hypot() that
computes the length of the hypotenuse of a right-angled triangle:

sqrt(x*x + y*y)

This function has the C prototype:

double hypot(double x, double y)

The following IDL function uses Auto Glue to call this routine:

FUNCTION HYPOT, X, Y
; Use the 32-bit or the 64-bit math library?
LIBM=(!VERSION.MEMORY_BITS EQ 64) $

? ’/usr/lib/sparcv9/libm.so’ : ’/usr/lib/libm.so’
RETURN, CALL_EXTERNAL(LIBM, ’hypot’, double(x), double(y), $

/ALL_VALUE, /D_VALUE, /AUTO_GLUE)
END
IDL Reference Guide CALL_EXTERNAL

208
Important Changes Since IDL 5.0

The current version of CALL_EXTERNAL differs from IDL versions up to and
including IDL 5.0 in a few ways that are important to users moving code to the
current version:

• Under Windows, CALL_EXTERNAL would pass IDL strings by value no
matter how the ALL_VALUE or VALUE keywords were set. This was
inconsistent with all the other platforms and created unnecessary confusion.
IDL now uses these keywords to decide how to pass strings on all platforms.
Windows users with existing code that expects strings to be passed by value
without having specified it via one of these keywords will need to adjust their
use of CALL_EXTERNAL or their code.

• Older versions of IDL would quietly pass by value arguments that are larger
than a pointer without issuing an error when using the portable calling
convention. Although this might work on some hardware, it is error prone and
can cause IDL to crash. IDL now issues an error in this case. Programmers
with existing code moving to a current version of IDL should change their
code to pass such data by reference.

Examples

See Chapter 9, “CALL_EXTERNAL” in the External Development Guide manual.

Version History

Introduced: Pre 4.0

See Also

LINKIMAGE
CALL_EXTERNAL IDL Reference Guide

 209
CALL_FUNCTION

CALL_FUNCTION function calls the IDL function specified by the string Name,
passing any additional parameters as its arguments.

Although not as flexible as the EXECUTE function, CALL_FUNCTION is much
faster. Therefore, CALL_FUNCTION should be used in preference to EXECUTE
whenever possible.

Syntax

Result = CALL_FUNCTION(Name [, P1, ..., Pn])

Return Value

The result of the called function (specified by the string Name) is passed back as the
result of this routine.

Arguments

Name

A string containing the name of the function to be called. This argument can be a
variable, which allows the called function to be determined at runtime.

Pi

The arguments to be passed to the function given by Name. These arguments are the
positional and keyword arguments documented for the called function, and are passed
to the called function exactly as if it had been called directly.

Keywords

None.

Examples

The following command indirectly calls the IDL function SQRT (the square root
function) with an argument of 4 and stores the result in the variable R:

R = CALL_FUNCTION('SQRT', 4)
IDL Reference Guide CALL_FUNCTION

210
Version History

Introduced: Pre 4.0

See Also

CALL_PROCEDURE, CALL_METHOD, EXECUTE
CALL_FUNCTION IDL Reference Guide

 211
CALL_METHOD

The CALL_METHOD function or procedure calls the object method specified by
Name, passing any additional parameters as its arguments.

Note
CALL_METHOD can also be used as a function or a procedure.

Although not as flexible as the EXECUTE function, CALL_METHOD is much
faster. Therefore, CALL_METHOD should be used in preference to EXECUTE
whenever possible.

Syntax

Result = CALL_METHOD(Name, ObjRef, [, P1, ..., Pn])

or

CALL_METHOD, Name, ObjRef, [, P1, ..., Pn]

Return Value

Returns the results generated by the named function method when applicable.

Arguments

Name

A string containing the name of the method to be called. This argument can be a
variable, which allows the called method to be determined at runtime.

ObjRef

A scalar object reference that will be passed to the method as the Self argument.

Pi

The arguments to be passed to the method given by Name. These arguments are the
positional and keyword arguments documented for the called method, and are passed
to the called method exactly as if it had been called directly.
IDL Reference Guide CALL_METHOD

212
Keywords

None.

Version History

Introduced: 5.1

See Also

CALL_FUNCTION, CALL_PROCEDURE, EXECUTE
CALL_METHOD IDL Reference Guide

 213
CALL_PROCEDURE

CALL_PROCEDURE calls the procedure specified by Name, passing any additional
parameters as its arguments.

Although not as flexible as the EXECUTE function, CALL_PROCEDURE is much
faster. Therefore, CALL_PROCEDURE should be used in preference to EXECUTE
whenever possible.

Syntax

CALL_PROCEDURE, Name [, P1, ..., Pn]

Arguments

Name

A string containing the name of the procedure do be called. This argument can be a
variable, which allows the called procedure to be determined at runtime.

Pi

The arguments to be passed to the procedure given by Name. These arguments are the
positional and keyword arguments documented for the called procedure, and are
passed to the called procedure exactly as if it had been called directly.

Example

The following example shows how to call the PLOT procedure indirectly with a
number of arguments. First, create a dataset for plotting by entering:

B = FINDGEN(100)

Call PLOT indirectly to create a polar plot by entering:

CALL_PROCEDURE, 'PLOT', B, B, /POLAR

A “spiral” plot should appear.

Version History

Introduced: Pre 4.0
IDL Reference Guide CALL_PROCEDURE

214
See Also

CALL_FUNCTION, CALL_METHOD, EXECUTE
CALL_PROCEDURE IDL Reference Guide

 215
CASE

The CASE statement selects one, and only one, statement for execution, depending
on the value of an expression. This expression is called the case selector expression.
Each statement that is part of a CASE statement is preceded by an expression that is
compared to the value of the selector expression. CASE executes by comparing the
CASE expression with each selector expression in the order written. If a match is
found, the statement is executed and control resumes directly below the CASE
statement.

The ELSE clause of the CASE statement is optional. If included, it matches any
selector expression, causing its code to be executed. For this reason, it is usually
written as the last clause in the CASE statement. The ELSE statement is executed
only if none of the preceding statement expressions match. If an ELSE clause is not
included and none of the values match the selector, an error occurs and program
execution stops.

The BREAK statement can be used within CASE statements to force an immediate
exit from the CASE.

In this CASE statement, only one clause is selected, and that clause is the first one
whose value is equal to the value of the case selector expression.

Tip
Each clause is tested in order, so it is most efficient to order the most frequently
selected clauses first.

CASE is similar to the SWITCH statement. For more information on using CASE
and other IDL program control statements, as well as the differences between CASE
and SWITCH, see Chapter 12, “Program Control” in the Building IDL Applications
manual.

Syntax

CASE expression OF

expression: statement

...
IDL Reference Guide CASE

216
expression: statement

[ELSE: statement]

ENDCASE

Examples

This example illustrates how the CASE statement, unlike SWITCH, executes only the
one statement that matches the case expression:

x=2

CASE x OF
1: PRINT, 'one'
2: PRINT, 'two'
3: PRINT, 'three'
4: PRINT, 'four'

ENDCASE

IDL Prints:

two

Version History

Introduced: Original
CASE IDL Reference Guide

 217
CATCH

The CATCH procedure provides a generalized mechanism for the handling of
exceptions and errors within IDL. Calling CATCH establishes an error handler for the
current procedure that intercepts all errors that can be handled by IDL, excluding
non-fatal warnings such as math errors.

When an error occurs, each active procedure, beginning with the offending procedure
and proceeding up the call stack to the main program level, is examined for an error
handler. If an error handler is found, control resumes at the statement after the call to
CATCH. The index of the error is returned in the argument to CATCH. The
!ERROR_STATE system variable is also set. If no error handlers are found, program
execution stops, an error message is issued, and control reverts to the interactive
mode. A call to ON_IOERROR in the procedure that causes an I/O error supersedes
CATCH, and takes the branch to the label defined by ON_IOERROR.

This mechanism is similar, but not identical to, the setjmp/longjmp facilities in C
and the catch/throw facilities in C++.

Error handling is discussed in more detail in Chapter 18, “Controlling Errors” in the
Building IDL Applications manual.

Syntax

CATCH, [Variable] [, /CANCEL]

Arguments

Variable

A named variable in which the error index is returned. When an error handler is
established by a call to CATCH, Variable is set to zero. If an error occurs, Variable is
set to the error index, and control is transferred to the statement after the call to
CATCH. The error index is also returned in the CODE field of the !ERROR_STATE
system variable, i.e., !ERROR_STATE.CODE.
IDL Reference Guide CATCH

218
Keywords

CANCEL

Set this keyword to cancel the error handler for the current procedure. This
cancellation does not affect other error handlers that may be established in other
active procedures.

Note
If the CANCEL keyword is set, the Variable argument must not be present.

Examples

The following procedure illustrates the use of CATCH:

PRO CATCH_EXAMPLE

; Define variable A:
A = FLTARR(10)

; Establish error handler. When errors occur, the index of the
; error is returned in the variable Error_status:
CATCH, Error_status

;This statement begins the error handler:
IF Error_status NE 0 THEN BEGIN

PRINT, 'Error index: ', Error_status
PRINT, 'Error message: ', !ERROR_STATE.MSG
; Handle the error by extending A:
A=FLTARR(12)
CATCH, /CANCEL

ENDIF

; Cause an error:
A[11]=12

; Even though an error occurs in the line above, program
; execution continues to this point because the event handler
; extended the definition of A so that the statement can be
; re-executed.
HELP, A

END
CATCH IDL Reference Guide

 219
Running the ABC procedure causes IDL to produce the following output and control
returns to the interactive prompt:

Error index: -144
Error message:
Attempt to subscript A with <INT (11)> is out of range.
A FLOAT = Array[12]

Version History

Introduced: Pre 4.0

See Also

!ERROR_STATE, ON_ERROR, ON_IOERROR, Chapter 18, “Controlling Errors”
in the Building IDL Applications manual.
IDL Reference Guide CATCH

220
CD

The CD procedure is used to set and/or change the current working directory. This
routine changes the working directory for the IDL session and any child processes
started from IDL during that session after the directory change is made. Under UNIX,
CD does not affect the working directory of the process that started IDL. The
PUSHD, POPD, and PRINTD procedures provide a convenient interface to CD.

Syntax

CD [, Directory] [, CURRENT=variable]

Arguments

Directory

A scalar string specifying the path of the new working directory. If Directory is
specified as a null string, the working directory is changed to the user’s home
directory (UNIX) or to the directory specified by !DIR (Windows). If this argument is
not specified, the working directory is not changed.

Keywords

CURRENT

If CURRENT is present, it specifies a named variable into which the current working
directory is stored as a scalar string. The returned directory is the working directory
before the directory is changed. Thus, you can obtain the current working directory
and change it in a single statement:

CD, new_dir, CURRENT=old_dir

Note
The return value of the CURRENT keyword does not include a directory separator
at the end of the string.

Examples

Windows

To change drives:

CD, 'C:'
CD IDL Reference Guide

 221
To specify a full path:

CD, 'C:\MyData\January'

To change from the C:\MyData directory to the C:\MyData\January directory:

CD, 'January'

To go back up a directory, use “..”. For example, if the current directory is
C:\MyData\January, you could go up to the C:\MyData directory with the
following command:

CD, '..'

If the current directory is C:\MyData\January, you could change to the
C:\MyData\February directory with the following command:

CD, '..\February'

Unix

To specify a full path:

CD, '/home/data/'

To change to the january subdirectory of the current directory:

CD, 'january'

To go back up a directory, use “..”. For example, if the current directory is
/home/data/january, you could go up to the /home/data/ directory with the
following command:

CD, '..'

If the current directory is /home/data/january, you could change to the
/home/data/february directory with the following command:

CD, '../february'

Version History

Introduced: Pre 4.0

See Also

PUSHD, POPD
IDL Reference Guide CD

222
CDF Routines

For information, see Chapter 2, “Common Data Format” in the IDL Scientific Data
Formats manual.
CDF Routines IDL Reference Guide

 223
CEIL

The CEIL function returns the closest integer greater than or equal to its argument.

Syntax

Result = CEIL(X [, /L64])

Return Value

If the input value X is integer type, Result has the same value and type as X.
Otherwise, Result is a 32-bit longword integer with the same structure as X.

Arguments

X

The value for which the ceiling function is to be evaluated. This value can be any
numeric type (integer, floating, or complex).

Keywords

L64

If set, the result type is 64-bit integer regardless of the input type. This is useful for
situations in which a floating point number contains a value too large to be
represented in a 32-bit integer.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
IDL Reference Guide CEIL

224
Examples

To print the ceiling function of 5.1, enter:

PRINT, CEIL(5.1)
; IDL prints:
6

To print the ceiling function of 3000000000.1, the result of which is too large to
represent in a 32-bit integer:

PRINT, CEIL(3000000000.1D, /L64)
; IDL prints:
3000000001

Version History

Introduced: Pre 4.0

See Also

COMPLEXROUND, FLOOR, ROUND
CEIL IDL Reference Guide

 225
CHEBYSHEV

The CHEBYSHEV function returns the forward or reverse Chebyshev polynomial
expansion of a set of data. Note: Results from this function are subject to roundoff
error given discontinuous data.

This routine is written in the IDL language. Its source code can be found in the file
chebyshev.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CHEBYSHEV(D, N)

Return Value

Returns the forward or reverse Chebyshev polynomial expansion of a set of data.

Arguments

D

A vector containing the values at the zeros of Chebyshev polynomial.

N

A flag that, if set to -1, returns a set of Chebyshev polynomials. If set to +1, the
original data is returned.

Keywords

None.

Version History

Introduced: Original

See Also

FFT, WTN
IDL Reference Guide CHEBYSHEV

226
CHECK_MATH

The CHECK_MATH function returns and clears the accumulated math error status.

Syntax

Result = CHECK_MATH([, MASK=bitmask] [, /NOCLEAR] [, /PRINT])

Return Value

The returned value is the sum of the bit values (described in the following table) of
the accumulated errors. Note that not all machines detect all errors.

Note that each type of error is only represented once in the return value—any number
of “Integer divided by zero” errors will result in a return value of 1.

The math error status is cleared (reset to zero) when CHECK_MATH is called, or
when errors are reported. Math errors are reported either never, when the interpreter
returns to an interactive prompt, or after execution of each IDL statement, depending
on the value of the !EXCEPT system variable (see “!EXCEPT” on page 3899). See
“Examples” below for further discussion.

Value Condition

0 No errors detected since the last interactive prompt or call to
CHECK_MATH

1 Integer divided by zero

2 Integer overflow

16 Floating-point divided by zero

32 Floating-point underflow

64 Floating-point overflow

128 Floating-point operand error. An illegal operand was
encountered, such as a negative operand to the SQRT or
ALOG functions, or an attempt to convert to integer a
number whose absolute value is greater than 231 - 1

Table 4: Math Error Status Values
CHECK_MATH IDL Reference Guide

 227
Keywords

MASK

If present, the mask of exceptions to check. Otherwise, all exceptions are checked.
Exceptions that are pending but not specified by MASK are not reported, and not
cleared. Set this keyword equal to the sum of the bit values for each exception to be
checked. For a list of the bit values corresponding to various exceptions, see
CHECK_MATH.

NOCLEAR

By default, CHECK_MATH returns the pending exceptions (as specified via the
MASK keyword) and clears them from its list of pending exceptions. If NOCLEAR
is set, the exceptions are not cleared and remain pending.

PRINT

Set this keyword to print an error message to the IDL command log if any
accumulated math errors exist. If this keyword is not present, CHECK_MATH
executes silently.

Examples

To simply check and clear the accumulated math error status using all the defaults,
enter:

PRINT, CHECK_MATH()

IDL prints the accumulated math error status code and resets to zero.

CHECK_MATH and !EXCEPT

Because the accumulated math error status is cleared when it is reported, the behavior
and appropriate use of CHECK_MATH depends on the value of the system variable
!EXCEPT.

• If !EXCEPT is set equal to 0, math exceptions are not reported automatically,
and thus CHECK_MATH will always return the error status accumulated since
the last time it was called.

• If !EXCEPT is set equal to 1, math exceptions are reported when IDL returns
to the interactive command prompt. In this case, CHECK_MATH will return
appropriate error codes when used within an IDL procedure, but will always
return zero when called at the IDL prompt.
IDL Reference Guide CHECK_MATH

228
• If !EXCEPT is set equal to 2, math exceptions are reported after each IDL
statement. In this case, CHECK_MATH will return appropriate error codes
only when used within an IDL statement, and will always return zero
otherwise.

For example:

;Set value of !EXCEPT to zero.
!EXCEPT=0

;Both of these operations cause errors.
PRINT, 1./0., 1/0

IDL prints:

Inf 1

The special floating-point value Inf is returned for 1./0. There is no integer analogue
to the floating-point Inf.

;Check the accumulated error status.
PRINT, CHECK_MATH()

IDL prints:

17

CHECK_MATH reports floating-point and integer divide-by-zero errors.

;Set value of !EXCEPT to one.
!EXCEPT=1

;Both of these operations cause errors.
PRINT, 1./0., 1/0

IDL prints:

Inf 1
% Program caused arithmetic error: Integer divide by 0
% Program caused arithmetic error: Floating divide by 0

This time IDL also prints error messages.

;Check the accumulated error status.
PRINT, CHECK_MATH()

IDL prints:

0

The status was reset.
CHECK_MATH IDL Reference Guide

 229
However, if we do not allow IDL to return to an interactive prompt before checking
the math error status:

;Set value of !EXCEPT to one.
!EXCEPT=1

;Call to CHECK_MATH happens before returning to the
;IDL command prompt.
PRINT, 1./0., 1/0 & PRINT, CHECK_MATH()

IDL prints:

Inf 1
17

In this case, the math error status code (17) is printed, but because the error status has
been cleared by the call to CHECK_MATH, no error messages are printed when IDL
returns to the interactive command prompt. Finally,

;Set value of !EXCEPT to two.
!EXCEPT=2

;Call to CHECK_MATH happens before returning to the
;IDL command prompt.
PRINT, 1./0., 1/0 & PRINT, CHECK_MATH()

IDL prints:

Inf 1
% Program caused arithmetic error: Integer divide by 0
% Program caused arithmetic error: Floating divide by 0
% Detected at $MAIN$
 0

Errors are printed before executing the CHECK_MATH function, so
CHECK_MATH reports no errors. However, if we include the call to
CHECK_MATH in the first PRINT command, we see the following:

;Call to CHECK_MATH is part of a single IDL statement.
PRINT, 1./0., 1/0, CHECK_MATH()

IDL prints:

Inf 1 17
IDL Reference Guide CHECK_MATH

230
Printing Error Messages

The following code fragment prints abbreviated names of errors that have occurred:

;Create a string array of error names.
ERRS = ['Divide by 0', 'Underflow', 'Overflow', $

'Illegal Operand']

;Get math error status.
J = CHECK_MATH()
FOR I = 4, 7 DO IF ISHFT(J, -I) AND 1 THEN $

;Check to see if an error occurred and print the corresponding
;error message.

PRINT, ERRS(I-4), ' Occurred'

Testing Critical Code

Example 1

Assume you have a critical section of code that is likely to produce an error. The
following example shows how to check for errors, and if one is detected, how to
repeat the code with different parameters.

; Clear error status from previous operations, and print error
; messages if an error exists:
JUNK = CHECK_MATH(/PRINT)

; Disable automatic printing of subsequent math errors:
!EXCEPT=0

;Critical section goes here.
AGAIN: ...

; Did an arithmetic error occur? If so, print error message and
; request new values:
IF CHECK_MATH() NE 0 THEN BEGIN
PRINT, 'Math error occurred in critical section.'

; Get new parameters from user:
READ, 'Enter new values.',...

; Enable automatic printing of math errors:
!EXCEPT=2

;And retry:
GOTO, AGAIN
ENDIF
CHECK_MATH IDL Reference Guide

 231
Example 2

This example demonstrates the use of the MASK keyword to check for a specific
error, and the NOCLEAR keyword to prevent exceptions from being cleared:

PRO EXAMPLE2_CHECKMATH

PRINT, 1./0
PRINT, CHECK_MATH(MASK=16,/NOCLEAR)
PRINT, CHECK_MATH(MASK=2,/NOCLEAR)

END

IDL prints:

Inf
16
0
% Program caused arithmetic error: Floating divide by 0

Version History

Introduced: Original

See Also

FINITE, ISHFT, MACHAR, “!VALUES” on page 3895, “!EXCEPT” on page 3899,
“Math Errors” in Chapter 18 of the Building IDL Applications manual.
IDL Reference Guide CHECK_MATH

232
CHISQR_CVF

The CHISQR_CVF function computes the cutoff value V in a Chi-square distribution
with Df degrees of freedom such that the probability that a random variable X is
greater than V is equal to a user-supplied probability P.

This routine is written in the IDL language. Its source code can be found in the file
chisqr_cvf.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CHISQR_CVF(P, Df)

Return Value

Returns computes the cutoff value V in a Chi-square distribution with Df degrees of
freedom such that the probability that a random variable X is greater than V is equal to
a user-supplied probability P.

Arguments

P

A non-negative single- or double-precision floating-point scalar, in the interval [0.0,
1.0], that specifies the probability of occurrence or success.

Df

A positive integer, single- or double-precision floating-point scalar that specifies the
number of degrees of freedom of the Chi-square distribution.

Keywords

None.

Examples

Use the following command to compute the cutoff value in a Chi-square distribution
with three degrees of freedom such that the probability that a random variable X is
greater than the cutoff value is 0.100. The result should be 6.25139.

PRINT, CHISQR_CVF(0.100, 3)
CHISQR_CVF IDL Reference Guide

 233
IDL prints:

6.25139

Version History

Introduced: 4.0

See Also

CHISQR_PDF, F_CVF, GAUSS_CVF, T_CVF
IDL Reference Guide CHISQR_CVF

234
CHISQR_PDF

The CHISQR_PDF function computes the probability P that, in a Chi-square
distribution with Df degrees of freedom, a random variable X is less than or equal to a
user-specified cutoff value V.

This routine is written in the IDL language. Its source code can be found in the file
chisqr_pdf.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CHISQR_PDF(V, Df)

Return Value

If both arguments are scalar, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of V and Df, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the input array.

If any of the arguments are double-precision, the result is double-precision, otherwise
the result is single-precision.

Arguments

V

A scalar or array that specifies the cutoff value(s).

Df

A positive scalar or array that specifies the number of degrees of freedom of the Chi-
square distribution.

Keywords

None.
CHISQR_PDF IDL Reference Guide

 235
Examples

Use the following command to compute the probability that a random variable X,
from the Chi-square distribution with three degrees of freedom, is less than or equal
to 6.25. The result should be 0.899939.

result = CHISQR_PDF(6.25, 3)
PRINT, result

IDL prints:

0.899939

Compute the probability that a random variable X from the Chi-square distribution
with three degrees of freedom, is greater than 6.25. The result should be 0.100061.

PRINT, 1 - chisqr_pdf(6.25, 3)

IDL prints:

0.100061

Version History

Introduced: 4.0

See Also

BINOMIAL, CHISQR_CVF, F_PDF, GAUSS_PDF, T_PDF
IDL Reference Guide CHISQR_PDF

236
CHOLDC

Given a positive-definite symmetric n by n array A, the CHOLDC procedure
constructs its Cholesky decomposition A = LLT, where L is a lower triangular array
and LT is the transpose of L.

CHOLDC is based on the routine choldc described in section 2.9 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Note
If you are working with complex inputs, instead use the LA_CHOLDC procedure.

Syntax

CHOLDC, A, P [, /DOUBLE]

Arguments

A

An n by n array. On input, only the upper triangle of A need be given. On output, L is
returned in the lower triangle of A, except for the diagonal elements, which are
returned in the vector P.

P

An n-element vector containing the diagonal elements of L.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

See “CHOLSOL” on page 238.
CHOLDC IDL Reference Guide

 237
Version History

Introduced: 4.0

See Also

CHOLSOL, LA_CHOLDC
IDL Reference Guide CHOLDC

238
CHOLSOL

The CHOLSOL function returns an n-element vector containing the solution to the
set of linear equations Ax = b, where A is the positive-definite symmetric array
returned by the CHOLDC procedure.

CHOLSOL is based on the routine cholsl described in section 2.9 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Note
If you are working with complex inputs, instead use the LA_CHOLSOL procedure.

Syntax

Result = CHOLSOL(A, P, B [, /DOUBLE])

Return Value

Returns an n-element vector containing the solution to the set of linear equations
Ax = b, where A is the positive-definite symmetric array returned by the CHOLDC.

Arguments

A

An n by n positive-definite symmetric array, as output by CHOLDC. Only the lower
triangle of A is accessed.

P

The diagonal elements of the Cholesky factor L, as computed by CHOLDC.

B

An n-element vector containing the right-hand side of the equation.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
CHOLSOL IDL Reference Guide

 239
Examples

To solve a positive-definite symmetric system Ax = b:

;Define the coefficient array:
A = [[6.0, 15.0, 55.0], $

[15.0, 55.0, 225.0], $
[55.0, 225.0, 979.0]]

;Define the right-hand side vector B:
B = [9.5, 50.0, 237.0]

;Compute Cholesky decomposition of A:
CHOLDC, A, P

;Compute and print the solution:
PRINT, CHOLSOL(A, P, B)

IDL prints:

-0.499998 -1.00000 0.500000

The exact solution vector is [-0.5, -1.0, 0.5].

Version History

Introduced: 4.0

See Also

CHOLDC, CRAMER, GS_ITER, LA_CHOLSOL, LU_COMPLEX, LUSOL,
SVSOL, TRISOL
IDL Reference Guide CHOLSOL

240
CINDGEN

The CINDGEN function returns a complex, single-precision, floating-point array
with the specified dimensions.

Syntax

Result = CINDGEN(D1[, ..., D8])

Return Value

Returns a complex, single-precision, floating-point array with the specified
dimensions. Each element of the array has its real part set to the value of its one-
dimensional subscript. The imaginary part is set to zero.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
CINDGEN IDL Reference Guide

 241
Examples

To create C, a 4-element vector of complex values with the real parts set to the value
of their subscripts, enter:

C = CINDGEN(4)

Version History

Introduced: Original

See Also

BINDGEN, DCINDGEN, DINDGEN, FINDGEN, INDGEN, LINDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
IDL Reference Guide CINDGEN

242
CIR_3PNT

The CIR_3PNT procedure returns the radius and center of a circle, given 3 points on
the circle. This is analogous to finding the circumradius and circumcircle of a
triangle; the center of the circumcircle is the point at which the three perpendicular
bisectors of the triangle formed by the points meet.

This routine is written in the IDL language. Its source code can be found in the file
cir_3pnt.pro in the lib subdirectory of the IDL distribution.

Syntax

CIR_3PNT, X, Y, R, X0, Y0

Arguments

X

A three-element vector containing the X-coordinates of the points.

Y

A three-element vector containing the Y-coordinates of the points.

R

A named variable that will contain the radius of the circle. The procedure returns 0.0
if the points are co-linear.

X0

A named variable that will contain the X-coordinate of the center of the circle. The
procedure returns 0.0 if the points are co-linear.

Y0

A named variable that will contain the Y-coordinate of the center of the circle. The
procedure returns 0.0 if the points are co-linear.

Keywords

None.
CIR_3PNT IDL Reference Guide

 243
Examples

X = [1.0, 2.0, 3.0]
Y = [1.0, 2.0, 1.0]
CIR_3PNT, X, Y, R, X0, Y0
PRINT, 'The radius is: ', R
PRINT, 'The center of the circle is at: ', X0, Y0

Version History

Introduced: Pre 4.0

See Also

PNT_LINE, SPH_4PNT
IDL Reference Guide CIR_3PNT

244
CLOSE

The CLOSE procedure closes the file units specified as arguments. All open files are
also closed when IDL exits.

Syntax

CLOSE[, Unit1, ..., Unitn] [, /ALL] [, EXIT_STATUS=variable] [, /FILE]
[, /FORCE]

Arguments

Uniti

The IDL file units to close.

Keywords

ALL

Set this keyword to close all open file units. In addition, any file units that were
allocated via GET_LUN are freed.

EXIT_STATUS

Set this keyword to a named variable that will contain the exit status reported by a
UNIX child process started via the UNIT keyword to SPAWN. This value is the exit
value reported by the process by calling EXIT, and is analogous to the value returned
by $? under most UNIX shells. If used with any other type of file, 0 is returned.
EXIT_STATUS is not allowed in conjunction with the ALL or FILE keywords.

FILE

Set this keyword to close all file units from 1 to 99. File units greater than 99, which
are associated with the GET_LUN and FREE_LUN procedures, are not affected.

FORCE

Overrides the IDL file output buffer and forces the file to be closed no matter what
errors occur in the process.

IDL buffers file output for performance reasons. If it is not possible to properly flush
this data when a file close is requested, an error is normally issued and the file
CLOSE IDL Reference Guide

 245
remains open. An example of this might be that your disk does not have room to write
the remaining data. This default behavior prevents data from being lost. To override it
and force the file to be closed no matter what errors occur in the process, specify
FORCE.

Examples

If file units 1 and 3 are open, they can both be closed at the same time by entering the
command:

CLOSE, 1, 3

Version History

Introduced: Original

See Also

OPEN
IDL Reference Guide CLOSE

246
CLUST_WTS

The CLUST_WTS function computes the weights (the cluster centers) of an m-
column, n-row array, where m is the number of variables and n is the number of
observations or samples.

This routine is written in the IDL language. Its source code can be found in the file
clust_wts.pro in the lib subdirectory of the IDL distribution.

For more information on cluster analysis, see:

Everitt, Brian S. Cluster Analysis. New York: Halsted Press, 1993. ISBN 0-470-
22043-0

Syntax

Result = CLUST_WTS(Array [, /DOUBLE] [, N_CLUSTERS=value]
[, N_ITERATIONS=integer] [, VARIABLE_WTS=vector])

Return Value

Returns an m-column, N_CLUSTERS-row array of cluster centers by computing the
weights (the cluster centers) of an m-column, n-row array, where m is the number of
variables and n is the number of observations or samples.

Arguments

Array

An m-column, n-row array of any data type except string, single- or double-precision
complex.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

N_CLUSTERS

Set this keyword equal to the number of cluster centers. The default is to compute n
cluster centers.
CLUST_WTS IDL Reference Guide

 247
N_ITERATIONS

Set this keyword equal to the number of iterations used when in computing the cluster
centers. The default is to use 20 iterations.

VARIABLE_WTS

Set this keyword equal to an m-element vector of floating-point variable weights. The
elements of this vector are used to give greater or lesser importance to each variable
(each column) in determining the cluster centers. The default is to give all variables
equal weighting using a value of 1.0.

Examples

See “CLUSTER” on page 248.

Version History

Introduced: 5.0

See Also

CLUSTER, “Multivariate Analysis” in Chapter 22 of the Using IDL manual.
IDL Reference Guide CLUST_WTS

248
CLUSTER

The CLUSTER function computes the classification of an m-column, n-row array,
where m is the number of variables and n is the number of observations or samples.
The classification is based upon a cluster analysis of sample-based distances.

This routine is written in the IDL language. Its source code can be found in the file
cluster.pro in the lib subdirectory of the IDL distribution.

For more information on cluster analysis, see:

Everitt, Brian S. Cluster Analysis. New York: Halsted Press, 1993. ISBN 0-470-
22043-0

Syntax

Result = CLUSTER(Array, Weights [, /DOUBLE] [, N_CLUSTERS=value])

Return Value

Results in a 1-column, n-row array of cluster number assignments that correspond to
each sample.

Arguments

Array

An M-column, N-row array of type float or double.

Weights

An array of weights (the cluster centers) computed using the CLUST_WTS function.
The dimensions of this array vary according to keyword values.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
CLUSTER IDL Reference Guide

 249
N_CLUSTERS

Set this keyword equal to the number of clusters. The default is based upon the row
dimension of the Weights array.

Examples

; Define an array with 4 variables and 10 observations:
array = $
[[1.5, 43.1, 29.1, 1.9], $
[24.7, 49.8, 28.2, 22.8], $
[30.7, 51.9, 7.0, 18.7], $
[9.8, 4.3, 31.1, 0.1], $
[19.1, 42.2, 0.9, 12.9], $
[25.6, 13.9, 3.7, 21.7], $
[1.4, 58.5, 27.6, 7.1], $
[7.9, 2.1, 30.6, 5.4], $
[22.1, 49.9, 3.2, 21.3], $
[5.5, 53.5, 4.8, 19.3]]

; Compute the cluster weights, using two distinct clusters:
weights = CLUST_WTS(array, N_CLUSTERS=2)

; Compute the classification of each sample:
result = CLUSTER(array, weights, N_CLUSTERS=2)

; Print each sample (each row) of the array and its corresponding
; cluster assignment:
FOR k = 0, N_ELEMENTS(result)-1 DO PRINT, $
array[*,k], result(k), FORMAT = '(4(f4.1, 2x), 5x, i1)'

IDL prints:

1.5 43.1 29.1 1.9 1
24.7 49.8 28.2 22.8 0
30.7 51.9 7.0 18.7 0
 9.8 4.3 31.1 0.1 1
19.1 42.2 0.9 12.9 0
25.6 13.9 3.7 21.7 0
 1.4 58.5 27.6 7.1 1
 7.9 2.1 30.6 5.4 1
22.1 49.9 3.2 21.3 0
 5.5 53.5 4.8 19.3 0

Version History

Introduced: 5.0
IDL Reference Guide CLUSTER

250
See Also

CLUST_WTS, PCOMP, STANDARDIZE, “Multivariate Analysis” in Chapter 22 of
the Using IDL manual.
CLUSTER IDL Reference Guide

 251
COLOR_CONVERT

The COLOR_CONVERT procedure converts colors to and from the RGB (Red
Green Blue), HLS (Hue Lightness Saturation), and HSV (Hue Saturation Value)
color systems. A keyword parameter indicates the type of conversion to be performed
(one of the keywords must be specified). The first three parameters contain the input
color triple(s) which may be scalars or arrays of the same size. The result is returned
in the last three parameters, O0, O1, and O2. RGB values are bytes in the range 0 to
255.

Hue is measured in degrees, from 0 to 360. Saturation, Lightness, and Value are
floating-point numbers in the range 0 to 1. A Hue of 0 degrees is the color red. Green
is 120 degrees. Blue is 240 degrees. A reference containing a discussion of the
various color systems is: Foley and Van Dam, Fundamentals of Interactive Computer
Graphics, Addison-Wesley Publishing Co., 1982.

Syntax

COLOR_CONVERT, I0, I1, I2, O0, O1, O2 {, /HLS_RGB | , /HSV_RGB | ,
/RGB_HLS | , /RGB_HSV}

Arguments

I0, I1, I2

The input color triple(s). These arguments may be either scalars or arrays of the same
length.

O0, O1, O2

The variables to receive the result. Their structure is copied from the input
parameters.

Keywords

HLS_RGB

Set this keyword to convert from HLS to RGB.

HSV_RGB

Set this keyword to convert from HSV to RGB.
IDL Reference Guide COLOR_CONVERT

252
RGB_HLS

Set this keyword to convert from RGB to HLS.

RGB_HSV

Set this keyword to convert from RGB to HSV.

Examples

The command:

COLOR_CONVERT, 255, 255, 0, h, s, v, /RGB_HSV

converts the RGB color triple (255, 255, 0), which is the color yellow at full intensity
and saturation, to the HSV system. The resulting hue in the variable h is 60.0 degrees.
The saturation and value, s and v, are set to 1.0.

Version History

Introduced: Pre 4.0

See Also

HLS, HSV
COLOR_CONVERT IDL Reference Guide

 253
COLOR_QUAN

The COLOR_QUAN function quantizes a TrueColor image and returns a pseudo-
color image and palette to display the image on standard pseudo-color displays. The
output image and palette can have from 2 to 256 colors.

COLOR_QUAN solves the general problem of accurately displaying decomposed,
TrueColor images, that contain a palette of up to 224 colors, on pseudo-color displays
that can only display 256 (or fewer) simultaneous colors.

Using COLOR_QUAN

One of two color quantization methods can be used:

• Method 1 is a statistical method that attempts to find the N colors that most
accurately represent the original color distribution. This algorithm uses a
variation of the Median Cut Algorithm, described in “Color Image
Quantization for Frame Buffer Display”, from Computer Graphics, Volume
16, Number 3 (July, 1982), Page 297. It repeatedly subdivides the color space
into smaller and smaller rectangular boxes, until the requested number of
colors are obtained.

The original colors are then mapped to the nearest output color, and the
original image is resampled to the new palette with optional Floyd-Steinberg
color dithering. The resulting pseudo-color image and palette are usually a
good approximation of the original image.

The number of colors in the output palette defaults to the number of colors
supported by the currently-selected graphics output device. The number of
colors can also be specified by the COLOR keyword parameter.

• Method 2, selected by setting the keyword parameter CUBE, divides the three-
dimensional color space into equal-volume cubes. Each color axis is divided
into CUBE segments, resulting in CUBE3 volumes. The original input image is
sampled to this color space using Floyd-Steinberg dithering, which distributes
the quantization error to adjacent pixels.

The CUBE method has the advantage that the color tables it produces are
independent of the input image, so that multiple quantized images can be
viewed simultaneously. The statistical method usually provides a better-
looking result and a smaller global error.

COLOR_QUAN can use the same color mapping for a series of images. See the
descriptions of the GET_TRANSLATION, MAP_ALL, and TRANSLATION
keywords, below.
IDL Reference Guide COLOR_QUAN

254
Syntax

Result = COLOR_QUAN(Image_R, Image_G, Image_B, R, G, B)

or

Result = COLOR_QUAN(Image, Dim, R, G, B)

Keywords: [, COLORS=integer{2 to 256}] [, CUBE={2 | 3 | 4 | 5 | 6} | ,
GET_TRANSLATION=variable [, /MAP_ALL]] [, /DITHER] [, ERROR=variable]
[, TRANSLATION=vector]

Note that the input image parameter can be passed as either three, separate color-
component arrays (Image_R, Image_G, Image_B) or as a three-dimensional array
containing all three components, Image, and a scalar, Dim, indicating the dimension
over which the colors are interleaved.

Return Value

Returns a pseudo-color image composed of 2 to 256 colors.

Arguments

Image_R, Image_G, Image_B

Arrays containing the red, green, and blue components of the decomposed TrueColor
image. For best results, the input image(s) should be scaled to the range of 0 to 255.

Image

A three-dimensional array containing all three components of the TrueColor image.

Dim

A scalar that indicates the method of color interleaving in the Image parameter. A
value of 1 indicates interleaving by pixel: (3, n, m). A value of 2 indicates interleaving
by row: (n, 3, m). A value of 3 indicates interleaving by image: (n, m, 3).
COLOR_QUAN IDL Reference Guide

 255
R, G, B

Three output byte arrays containing the red, green, and blue components of the output
palette.

Keywords

COLORS

The number of colors in the output palette. This value must be at least 2 and not
greater than 256. The default is the number of colors supported by the current
graphics output device.

CUBE

If this keyword is set, the color space is divided into CUBE3volumes, to which the
input image is quantized. This result is always Floyd-Steinberg dithered. The value of
CUBE can range from 2 to 6; providing from 23 = 8, to 63 = 216 output colors. If this
keyword is set, the COLORS, DITHER, and ERROR keywords are ignored.

DITHER

Set this keyword to dither the output image. Dithering can improve the appearance of
the output image, especially when using relatively few colors.

ERROR

Set this optional keyword to a named variable. A measure of the quantization error is
returned. This error is proportional to the square of the Euclidean distance, in RGB
space, between corresponding colors in the original and output images.

GET_TRANSLATION

Set this keyword to a named variable in which the mapping between the original
RGB triples (in the TrueColor image) and the resulting pseudo-color indices is
returned as a vector. Do not use this keyword if CUBE is set.

MAP_ALL

Set this keyword to establish a mapping for all possible RGB triples into pseudo-
color indices. Set this keyword only if GET_TRANSLATION is also present. Note
that mapping all possible colors requires more compute time and slightly degrades
the quality of the resultant color matching.
IDL Reference Guide COLOR_QUAN

256
TRANSLATION

Set this keyword to a vector of translation indices obtained by a previous call to
COLOR_QUAN using the GET_TRANSLATION keyword. The resulting image is
quantized using this vector.

Examples

The following code segment reads a TrueColor, row interleaved, image from a disk
file, and displays it on the current graphics display, using a palette of 128 colors:

;Open an input file:
OPENR, unit, 'XXX.DAT', /GET_LUN

;Dimensions of the input image:
a = BYTARR(512, 3, 480)

;Read the image:
READU, unit, a

;Close the file:
FREE LUN, unit

;Show the quantized image. The 2 indicates that the colors are
;interleaved by row:
TV, COLOR_QUAN(a, 2, r, g, b, COLORS=128)

;Load the new palette:
TVLCT, r, g, b

To quantize the image into 216 equal-volume color cubes, replace the call to
COLOR_QUAN with the following:

TV, COLOR_QUAN(a, 2, r, g, b, CUBE=6)

Version History

Introduced: Pre 4.0

See Also

PSEUDO
COLOR_QUAN IDL Reference Guide

 257
COLORMAP_APPLICABLE

The COLORMAP_APPLICABLE function determines whether the current visual
class supports the use of a colormap, and if so, whether colormap changes affect pre-
displayed Direct Graphics or if the graphics must be redrawn to pick up colormap
changes.

This routine is written in the IDL language. Its source code can be found in the file
colormap_applicable.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = COLORMAP_APPLICABLE(redrawRequired)

Return Value

The function returns a long value of 1 if the current visual class allows modification
of the color table, and 0 otherwise.

Arguments

redrawRequired

A named variable to retrieve a value indicating whether the visual class supports
automatic updating of graphics. The value is 0 if the graphics are updated
automatically, or 1 if the graphics must be redrawn to pick up changes to the
colormap.

Keywords

None.

Examples

To determine whether to redisplay an image after a colormap change:

result = COLORMAP_APPLICABLE(redrawRequired)
IF ((result GT 0) AND (redrawRequired GT 0)) THEN BEGIN

my_redraw
ENDIF
IDL Reference Guide COLORMAP_APPLICABLE

258
Version History

Introduced: 5.2
COLORMAP_APPLICABLE IDL Reference Guide

 259
COMFIT

The COMFIT function fits the paired data {xi, yi} to one of six common types of
approximating models using a gradient-expansion least-squares method.

This routine is written in the IDL language. Its source code can be found in the file
comfit.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = COMFIT(X, Y, A {, /EXPONENTIAL | , /GEOMETRIC | , /GOMPERTZ | ,
/HYPERBOLIC | , /LOGISTIC | , /LOGSQUARE} [, SIGMA=variable]
[, WEIGHTS=vector] [, YFIT=variable])

Return Value

Results in a vector containing the model parameters a0, a1, a2, etc.

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Y

An n-element integer, single-, or double-precision floating-point vector.

A

A vector of initial estimates for each model parameter. The length of this vector
depends upon the type of model selected.

Keywords

Note
One of the following keywords specifying a type of model must be set when using
COMFIT. If you do not specify a model, IDL will display a warning message when
COMFIT is called.
IDL Reference Guide COMFIT

260
EXPONENTIAL

Set this keyword to compute the parameters of the exponential model.

GEOMETRIC

Set this keyword to compute the parameters of the geometric model.

GOMPERTZ

Set this keyword to compute the parameters of the Gompertz model.

HYPERBOLIC

Set this keyword to compute the parameters of the hyperbolic model.

LOGISTIC

Set this keyword to compute the parameters of the logistic model.

LOGSQUARE

Set this keyword to compute the parameters of the logsquare model.

SIGMA

Set this keyword to a named variable that will contain a vector of standard deviations
for the computed model parameters.

y a0a1
x a2+=

y a0xa1 a2+=

y a0a1
a2x a3+=

y 1
a0 a1x+
--------------------=

y 1
a0a1

x a2+
----------------------=

y a0 a1 x() a2 x()2log+log+=
COMFIT IDL Reference Guide

 261
WEIGHTS

Set this keyword equal to a vector of weights for Yi. This vector should be the same
length as X and Y. The error for each term is weighted by WEIGHTSi when
computing the fit. Frequently, WEIGHTSi = 1.0/σ2

i, where σ is the measurement
error or standard deviation of Yi (Gaussian or instrumental weighting), or
WEIGHTS = 1/Y (Poisson or statistical weighting). If WEIGHTS is not specified,
WEIGHTSi is assumed to be 1.0.

YFIT

Set this keyword to a named variable that will contain an n-element vector of y-data
corresponding to the computed model parameters.

Examples

; Define two n-element vectors of paired data:
X = [2.27, 15.01, 34.74, 36.01, 43.65, 50.02, 53.84, 58.30, $

62.12, 64.66, 71.66, 79.94, 85.67, 114.95]
Y = [5.16, 22.63, 34.36, 34.92, 37.98, 40.22, 41.46, 42.81, $

43.91, 44.62, 46.44, 48.43, 49.70, 55.31]

; Define a 3-element vector of initial estimates for the logsquare
; model:
A = [1.5, 1.5, 1.5]

; Compute the model parameters of the logsquare model, A[0], A[1],
; & A[2]:
result = COMFIT(X, Y, A, /LOGSQUARE)

The result should be the 3-element vector: [1.42494, 7.21900, 9.18794].

Version History

Introduced: 4.0

See Also

CURVEFIT, LADFIT, LINFIT, LMFIT, POLY_FIT, SVDFIT
IDL Reference Guide COMFIT

262
COMMON

The COMMON statement creates a common block.

Note
For more information on using COMMON, see Chapter 3, “Constants and
Variables” in the Building IDL Applications manual.

Syntax

COMMON Block_Name, Variable1, ..., Variablen

Version History

Introduced: Original
COMMON IDL Reference Guide

 263
COMPILE_OPT

The COMPILE_OPT statement allows you to give the IDL compiler information that
changes some of the default rules for compiling the function or procedure within
which the COMPILE_OPT statement appears.

RSI recommends the use of

COMPILE_OPT IDL2

in all new code intended for use in a reusable library. We further recommend the use
of

COMPILE_OPT idl2, HIDDEN

in all such routines that are not intended to be called directly by regular users (e.g.
helper routines that are part of a larger package).

Note
For information on using COMPILE_OPT, see Chapter 4, “Procedures and
Functions” in the Building IDL Applications manual.

Syntax

COMPILE_OPT opt1 [, opt2, ..., optn]

Arguments

optn

This argument can be any of the following:

• IDL2 — A shorthand way of saying:

COMPILE_OPT DEFINT32, STRICTARR

• DEFINT32 — IDL should assume that lexical integer constants default to the
32-bit type rather than the usual default of 16-bit integers. This takes effect
from the point where the COMPILE_OPT statement appears in the routine
being compiled and remains in effect until the end of the routine. The
following table illustrates how the DEFINT32 argument changes the
interpretation of integer constants:
IDL Reference Guide COMPILE_OPT

264
• HIDDEN — This routine should not be displayed by HELP, unless the FULL
keyword to HELP is used. This directive can be used to hide helper routines
that regular IDL users are not interested in seeing.

A side-effect of making a routine hidden is that IDL will not print a “Compile
module” message for it when it is compiled from the library to satisfy a call to
it. This makes hidden routines appear built-in to the user.

• LOGICAL_PREDICATE — When running this routine, from the point
where the COMPILE_OPT statement appears until the end of the routine, treat

Constant Normal Type DEFINT32 Type

Without type specifier:

42 INT LONG

'2a'x INT LONG

42u UINT ULONG

'2a'xu UINT ULONG

With type specifier:

0b BYTE BYTE

0s INT INT

0l LONG LONG

42.0 FLOAT FLOAT

42d DOUBLE DOUBLE

42us UINT UINT

42ul ULONG ULONG

42ll LONG64 LONG64

42ull ULONG64 ULONG64

Table 5: Examples of the Effect of the DEFINT32 Argument
COMPILE_OPT IDL Reference Guide

 265
any non-zero or non-NULL predicate value as “true,” and any zero or NULL
predicate value as “false.”

Background

A predicate expression is an expression that is evaluated as being “true” or
“false” as part of a statement that controls program execution. IDL evaluates
such expressions in the following contexts:

• IF...THEN...ELSE statements

• ? : inline conditional expressions

• WHILE...DO statements

• REPEAT...UNTIL statements

• when evaluating the result from an INIT function method to determine if a
call to OBJ_NEW successfully created a new object

By default, IDL uses the following rules to determine whether an expression is
true or false:

• Integer — An integer is considered true if its least significant bit is 1, and
false otherwise. Hence, odd integers are true and even integers (including
zero) are false. This interpretation of integer truth values is sometimes
referred to as “bitwise,” reflecting the fact that the value of the least
significant bit determines the result.

• Other — Non-integer numeric types are true if they are non-zero, and
false otherwise. String and heap variables (pointers and object references)
are true if they are non-NULL, and false otherwise.

The LOGICAL_PREDICATE option alters the way IDL evaluates predicate
expressions. When LOGICAL_PREDICATE is set for a routine, IDL uses the
following rules to determine whether an expression is true or false:

• Numeric Types — A number is considered true if its value is non-zero,
and false otherwise.

• Other Types — Strings and heap variables (pointers and object
references) are considered true if they are non-NULL, or false otherwise.

Note on the NOT Operator

When using the LOGICAL_PREDICATE compile option, you must be aware
of the fact that applying the IDL NOT operator to integer data computes a
bitwise negation (1’s complement), and is generally not applicable for use in
logical computations. Consider the common construction:
IDL Reference Guide COMPILE_OPT

266
WHILE (NOT EOF(lun)) DO BEGIN
...
ENDWHILE

The EOF function returns 0 while the file specified by LUN has data left, and
returns 1 when hits the end of file. However, the expression “NOT 1” has the
numeric value -2. When the LOGICAL_PREDICATE option is not in use, the
WHILE statement sees -2 as false; if the LOGICAL_PREDICATE is in use, -2
is a true value and the above loop will not terminate as desired.

The proper way to write the above loop uses the ~ logical negation operator:

WHILE (~ EOF(lun)) DO BEGIN
...
ENDWHILE

It is worth noting that this version will work properly whether or not the
LOGICAL_PREDICATE compile option is in use. Logical negation
operations should always use the ~ operator in preference to the NOT operator,
reserving NOT exclusively for bitwise computations.

• OBSOLETE — If the user has !WARN.OBS_ROUTINES set to True,
attempts to compile a call to this routine will generate warning messages that
this routine is obsolete. This directive can be used to warn people that there
may be better ways to perform the desired task.

• STRICTARR — While compiling this routine, IDL will not allow the use of
parentheses to index arrays, reserving their use only for functions. Square
brackets are then the only way to index arrays. Use of this directive will
prevent the addition of a new function in future versions of IDL, or new
libraries of IDL code from any source, from changing the meaning of your
code, and is an especially good idea for library functions.

Use of STRICTARR can eliminate many uses of the FORWARD_FUNCTION
definition.

Note
STRICTARR has no effect on the use of parentheses to reference structure tags
using the tag index, which is not an array indexing operation. For example, no
syntax error will occur when compiling the following code:

COMPILE_OPT STRICTARR
mystruct = {a:0, b:1}
byindex_0 = mystruct.(0)
COMPILE_OPT IDL Reference Guide

 267
For more on referencing structure tags by index, see “Advanced Structure Usage” in
Chapter 7 of the Building IDL Applications manual.

• STRICTARRSUBS — When IDL subscripts one array using another array as
the source of array indices, the default behavior is to clip any out-of-range
indices into range and then quietly use the resulting data without error. This
behavior is described in “Array Subscripting” in Chapter 6 of the Building IDL
Applications manual. Specifying STRICTARRSUBS will instead cause IDL to
treat such out-of-range array subscripts within the body of the routine
containing the COMPILE_OPT statement as an error. The position of the
STRICTARRSUBS option within the module is not important: All
subscripting operations within the entire body of the specified routine will be
treated this way.

Version History

Introduced: 5.3.

STRICTARRSUBS option added: 5.6

LOGICAL_PREDICATE option added: 6.0
IDL Reference Guide COMPILE_OPT

268
COMPLEX

The COMPLEX function returns complex scalars or arrays given one or two scalars
or arrays.

Syntax

Result = COMPLEX(Real [, Imaginary] [, /DOUBLE])

or

Result = COMPLEX(Expression, Offset, D1 [, ..., D8] [, /DOUBLE])

Return Value

Returns complex scalars or arrays given one or two scalars or arrays. If only one
parameter is supplied, the imaginary part of the result is zero, otherwise it is set to the
value of the Imaginary parameter. Parameters are first converted to single-precision
floating-point. If either or both of the parameters are arrays, the result is an array,
following the same rules as standard IDL operators. If three parameters are supplied,
COMPLEX extracts fields of data from Expression.

Arguments

Real

Scalar or array to be used as the real part of the complex result.

Imaginary

Scalar or array to be used as the imaginary part of the complex result.

Expression

The expression from which data is to be extracted.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as complex data. See the
COMPLEX IDL Reference Guide

 269
description in Chapter 3, “Constants and Variables” in the Building IDL Applications
manual for details.

Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
If no dimension arguments are given, the result is taken to be scalar.

The Di arguments can be either an array or a series of scalar expressions specifying
the dimensions of the result. If a single argument is specified, it can be either a scalar
expression or an array of up to eight elements. If multiple arguments are specified,
they must all be scalar expressions. Up to eight dimensions can be specified.

When converting from a string argument, it is possible that the string does not contain
a valid floating-point value and no conversion is possible. The default action in such
cases is to print a warning message and return 0. The ON_IOERROR procedure can
be used to establish a statement to be jumped to in case of such errors.

Keywords

DOUBLE

Set this keyword to return a double-precision complex result. Setting this keyword is
equivalent to using the DCOMPLEX function, and is provided as a programming
convenience.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

Create a complex array from two integer arrays by entering the following commands:

; Create the first integer array:
A = [1,2,3]

; Create the second integer array:
B = [4,5,6]
IDL Reference Guide COMPLEX

270
COMPLEX IDL Reference Guide

 271
; Make A the real parts and B the imaginary parts of the new
; complex array:
C = COMPLEX(A, B)

; See how the two arrays were combined:
PRINT, C

IDL prints:

(1.00000, 4.00000)(2.00000, 5.00000)
(3.00000, 6.00000)

The real and imaginary parts of the complex array can be extracted as follows:

; Print the real part of the complex array C:
PRINT, 'Real Part: ', REAL_PART(C)

; Print the imaginary part of the complex array C:
PRINT, 'Imaginary Part: ', IMAGINARY(C)

IDL prints:

Real Part: 1.00000 2.00000 3.00000
Imaginary Part: 4.00000 5.00000 6.00000

Version History

Introduced: Original

See Also

BYTE, CONJ, DCOMPLEX, DOUBLE, FIX, FLOAT, IMAGINARY, LONG,
LONG64, REAL_PART, STRING, UINT, ULONG, ULONG64
IDL Reference Guide COMPLEX

272
COMPLEXARR

The COMPLEXARR function returns a complex, single-precision, floating-point
vector or array.

Syntax

Result = COMPLEXARR(D1[, ..., D8] [, /NOZERO])

Return Value

Returns a complex, single-precision, floating-point vector or array.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, COMPLEXARR sets every element of the result to zero. If the NOZERO
keyword is set, this zeroing is not performed, and COMPLEXARR executes faster.

Examples

To create an empty, 5-element by 5-element, complex array C, enter:

C = COMPLEXARR(5, 5)

Version History

Introduced: Original
COMPLEXARR IDL Reference Guide

 273
See Also

DBLARR, DCOMPLEXARR, FLTARR, INTARR, LON64ARR, LONARR,
MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
IDL Reference Guide COMPLEXARR

274
COMPLEXROUND

The COMPLEXROUND function rounds real and imaginary components of a
complex array.

This routine is written in the IDL language. Its source code can be found in the file
complexround.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = COMPLEXROUND(Input)

Return Value

Returns the result of rounding the real and imaginary components of the input array.
If the array is double-precision complex, then the result is also double-precision
complex.

Arguments

Input

The complex array to be rounded.

Keywords

None.

Examples

X = [COMPLEX(1.245, 3.88), COMPLEX(9.1, 0.3345)]
PRINT, COMPLEXROUND(X)

IDL prints:

(1.00000, 4.00000)(9.00000, 0.00000)

Version History

Introduced: Pre 4.0
COMPLEXROUND IDL Reference Guide

 275
See Also

ROUND
IDL Reference Guide COMPLEXROUND

276
COMPUTE_MESH_NORMALS

The COMPUTE_MESH_NORMALS function computes normal vectors for a set of
polygons described by the input array.

Syntax

Result = COMPUTE_MESH_NORMALS(fVerts[, iConn])

Return Value

Returns a 3 x M array containing a unit normal for each vertex in the input array.

Arguments

fVerts

A 3 x M array of vertices.

iConn

A connectivity array (see the POLYGONS keyword to IDLgrPolygon::Init). If no
iConn array is provided, it is assumed that the vertices in fVerts constitute a single
polygon.

Keywords

None.

Version History

Introduced: 5.1
COMPUTE_MESH_NORMALS IDL Reference Guide

 277
COND

The COND function returns the condition number of a real or complex two-
dimensional array A.

By default, COND uses the For the L1 and norms, the condition number
is computed form NORM(A)⋅NORM(INVERT(A)). If A is real and the inverse of A is
invalid (due to the singularity of A or floating-point errors in the INVERT function),
COND returns -1. If A is complex and the inverse of A is invalid (due to the
singularity of A), calling COND results in floating-point errors.

For the L2 norm, the condition number is defined as the ratio of the largest singular
value to the smallest. The singular values are computed using SVDC.

This routine is written in the IDL language. Its source code can be found in the file
cond.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = COND(A [, /DOUBLE] [, LNORM={0 | 1 | 2}])

Return Value

Returns the condition number of an n by n real or complex array A by explicitly
computing NORM(A)⋅NORM(A-1). If A is real and A-1 is invalid (due to the
singularity of A or floating-point errors in the INVERT function), COND returns -1.
If A is complex and A-1 is invalid (due to the singularity of A), calling COND results
in floating-point errors.

Arguments

A

The two-dimensional array. For LNORM = 0 or 1, the array A must be a square and
can be either real or complex. For LNORM = 2, the array A may be rectangular and
can only be real.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

L∞ L∞ L∞
IDL Reference Guide COND

278
LNORM

Set this keyword to an integer value to indicate which norm to use for the
computation. The possible values of this keyword are:

Examples

; Define a complex array A:
A = [[COMPLEX(1, 0), COMPLEX(2,-2), COMPLEX(-3, 1)], $

[COMPLEX(1,-2), COMPLEX(2, 2), COMPLEX(1, 0)], $
[COMPLEX(1, 1), COMPLEX(0, 1), COMPLEX(1, 5)]]

; Compute the condition number of the array using internal
; double-precision arithmetic:
PRINT, COND(A, /DOUBLE)

IDL prints:

5.93773

Version History

Introduced: Pre 4.0

See Also

DETERM, INVERT, NORM, SVDC

Value Description

0 Use the norm (the maximum absolute row sum norm).
This is the default.

1 Use the L1 norm (the maximum absolute column sum norm).

2 Use the L2 norm (the spectral norm). For LNORM = 2, A
cannot be complex.

Table 6: LNORM Keyword Values

L∞
COND IDL Reference Guide

 279
CONGRID

The CONGRID function shrinks or expands the size of an array by an arbitrary
amount. CONGRID is similar to REBIN in that it can resize a one, two, or three
dimensional array, but where REBIN requires that the new array size must be an
integer multiple of the original size, CONGRID will resize an array to any arbitrary
size. (REBIN is somewhat faster, however.) REBIN averages multiple points when
shrinking an array, while CONGRID just resamples the array.

This routine is written in the IDL language. Its source code can be found in the file
congrid.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CONGRID(Array, X, Y, Z [, /CENTER] [, CUBIC=value{-1 to 0}]
[, /INTERP] [, /MINUS_ONE])

Return Value

Returns the resized array. The returned array has the same number of dimensions as
the original array and is of the same data type.

Arguments

Array

A 1-, 2-, or 3-dimensional array to resize. Array can be any type except string or
structure.

X

The new X-dimension of the resized array. X must be an integer or a long integer, and
must be greater than or equal to 2.

Y

The new Y-dimension of the resized array. If the original array has only 1 dimension,
Y is ignored. If the original array has 2 or 3 dimensions Y MUST be present.
IDL Reference Guide CONGRID

280
Z

The new Z-dimension of the resized array. If the original array has only 1 or 2
dimensions, Z is ignored. If the original array has 3 dimensions then Z MUST be
present.

Keywords

CENTER

Set this keyword to shift the interpolation so that points in the input and output arrays
are assumed to lie at the midpoint of their coordinates rather than at their lower-left
corner.

CUBIC

Set this keyword to a value between -1 and 0 to use the cubic convolution
interpolation method with the specified value as the interpolation parameter. Setting
this keyword equal to a value greater than zero specifies a value of -1 for the
interpolation parameter. Park and Schowengerdt (see reference below) suggest that a
value of -0.5 significantly improves the reconstruction properties of this algorithm.
This keyword has no effect when used with 3-dimensional arrays.

Cubic convolution is an interpolation method that closely approximates the
theoretically optimum sinc interpolation function using cubic polynomials.
According to sampling theory, details of which are beyond the scope of this
document, if the original signal, f, is a band-limited signal, with no frequency
component larger than ω0, and f is sampled with spacing less than or equal to 1/(2ω0),
then f can be reconstructed by convolving with a sinc function: sinc(x) = sin(πx) /
(πx).

In the one-dimensional case, four neighboring points are used, while in the two-
dimensional case 16 points are used. Note that cubic convolution interpolation is
significantly slower than bilinear interpolation.

For further details see:

Rifman, S.S. and McKinnon, D.M., “Evaluation of Digital Correction Techniques for
ERTS Images; Final Report”, Report 20634-6003-TU-00, TRW Systems, Redondo
Beach, CA, July 1974.

S. Park and R. Schowengerdt, 1983 “Image Reconstruction by Parametric Cubic
Convolution”, Computer Vision, Graphics & Image Processing 23, 256.
CONGRID IDL Reference Guide

 281
INTERP

Set this keyword to force CONGRID to use linear interpolation when resizing a 1- or
2-dimensional array. CONGRID automatically uses linear interpolation if the input
array is 3-dimensional. When the input array is 1- or 2-dimensional, the default is to
employ nearest-neighbor sampling.

MINUS_ONE

Set this keyword to prevent CONGRID from extrapolating one row or column
beyond the bounds of the input array. For example, if the input array has the
dimensions (i, j) and the output array has the dimensions (x, y), then by default the
array is resampled by a factor of (i/x) in the X direction and (j/y) in the Y direction. If
MINUS_ONE is set, the array will be resampled by the factors (i-1)/(x-1) and (j-
1)/(y-1).

Examples

Given vol is a 3-D array with the dimensions (80, 100, 57), resize it to be a (90, 90,
80) array

vol = CONGRID(vol, 90, 90, 80)

Version History

Introduced: Original

See Also

REBIN
IDL Reference Guide CONGRID

282
CONJ

The CONJ function returns the complex conjugate of X. The complex conjugate of
the real-imaginary pair (x, y) is (x, -y). If X is not complex, a complex-valued copy of
X is used.

Syntax

Result = CONJ(X)

Return Value

Returns the complex conjugate of X.

Arguments

X

The value for which the complex conjugate is desired. If X is an array, the result has
the same structure, with each element containing the complex conjugate of the
corresponding element of X.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

Print the conjugate of the complex pair (4.0, 5.0) by entering:

PRINT, CONJ(COMPLEX(4.0, 5.0))

IDL prints:

(4.00000, -5.00000)
CONJ IDL Reference Guide

 283
Version History

Introduced: Original

See Also

CINDGEN, COMPLEX, COMPLEXARR, DCINDGEN, DCOMPLEX,
DCOMPLEXARR
IDL Reference Guide CONJ

284
CONSTRAINED_MIN

The CONSTRAINED_MIN procedure solves nonlinear optimization problems of the
following form:

Minimize or maximize gp(X), subject to:

glbi ≤ gi(X) ≤ gubi for i = 0,...,nfuns-1, i ≠ p

xlbj ≤ xj ≤ xubj for j = 0,...,nvars-1

X is a vector of nvars variables, x0 ,...,xnvars-1, and G is a vector of nfuns functions
g0 ,...,gnfuns-1, which all depend on X. Any of these functions may be nonlinear. Any
of the bounds may be infinite and any of the constraints may be absent. If there are no
constraints, the problem is solved as an unconstrained optimization problem. The
program solves problems of this form by the Generalized Reduced Gradient Method.
See References 1-4.

CONSTRAINED_MIN uses first partial derivatives of each function gi with respect
to each variable xj. These are automatically computed by finite difference
approximation (either forward or central differences).

CONSTRAINED_MIN is based on an implementation of the GRG algorithm
supplied by Windward Technologies, Inc. See Reference 11.

Syntax

CONSTRAINED_MIN, X, Xbnd, Gbnd, Nobj, Gcomp, Inform [, EPSTOP=value]
[, LIMSER=value] [, /MAXIMIZE] [, NSTOP=value] [, REPORT=filename]
[, TITLE=string]

Arguments

X

An nvars-element vector. On input, X contains initial values for the variables. On
output, X contains final values of the variable settings determined by
CONSTRAINED_MIN.

Xbnd

Bounds on variables. Xbnd is an nvars x 2 element array.

• Xbnd[j,0] is the lower bound for variable x[j].
CONSTRAINED_MIN IDL Reference Guide

 285
• Xbnd[j,1] is the upper bound for variable x[j].

• Use -1.0e30 to denote no lower bound and 1.0e30 for no upper bound.

Gbnd

Bounds on constraint functions. Gbnd is an nfuns x 2 element array.

• Gbnd[i,0] is the lower bound for function g[i].

• Gbnd[i,1] is the upper bound for function g[i].

• use -1.0e30 to denote no lower bound and 1.0e30 for no upper bound.

Bounds on the objective function are ignored; set them to 0.

Nobj

Index of the objective function.

Gcomp

A scalar string specifying the name of a user-supplied IDL function. This function
must accept an nvars-element vector argument x of variable values and return an
nfuns-element vector G of function values.

Inform

Termination status returned from CONSTRAINED_MIN.

Inform value Message

0 Kuhn-Tucker conditions satisfied.
This is the best possible indicator that an optimal point has been
found.

1 Fractional change in objective less than EPSTOP for NSTOP
consecutive iterations. See Keywords below.
This is not as good as Inform=0, but still indicates the likelihood
that an optimal point has been found.

2 All remedies have failed to find a better point.
User should check functions and bounds for consistency and,
perhaps, try other starting values.

Table 7: Inform Argument Values
IDL Reference Guide CONSTRAINED_MIN

286
3 Number of completed 1-dimensional searches exceeded
LIMSER. See Keywords below.
User should check functions and bounds for consistency and,
perhaps, try other starting values. It might help to increase
LIMSER. Use LIMSER=larger_value to do this.

4 Objective function is unbounded.

CONSTRAINED_MIN has observed dramatic change in the
objective function over several steps. This is a good indication
that the objective function is unbounded. If this is not the case,
the user should check functions and bounds for consistency.

5 Feasible point not found.
CONSTRAINED_MIN was not able to find a feasible point. If
the problem is believed to be feasible, the user should check
functions and bounds for consistency and perhaps try other
starting values.

6 Degeneracy has been encountered.
The point returned may be close to optimal. The user should
check functions and bounds for consistency and perhaps try
other starting values.

7 Noisy and nonsmooth function values. Possible singularity or
error in the function evaluations.

8 Optimization process terminated by user request.

9 Maximum number of function evaluations exceeded.

–1 Fatal Error. Some condition, such as nvars < 0, was
encountered. CONSTRAINED_MIN documented the condition
in the report and terminated. In this case, the user needs to
correct the input and rerun CONSTRAINED_MIN.

–2 Fatal Error. The report file could not be opened. Check the
filename specified via the REPORT keyword, and make sure
you have write privileges to the specified path.

Inform value Message

Table 7: Inform Argument Values
CONSTRAINED_MIN IDL Reference Guide

 287
Keywords

EPSTOP

Set this keyword to specify the CONSTRAINED_MIN convergence criteria. If the
fractional change in the objective function is less than EPSTOP for NSTOP
consecutive iterations, the program will accept the current point as optimal.
CONSTRAINED_MIN will accept the current point as optimal if the Kuhn-Tucker
optimality conditions are satisfied to EPSTOP. By default, EPSTOP = 1.0e-4.

LIMSER

If the number of completed one dimensional searches exceeds LIMSER,
CONSTRAINED_MIN terminates and returns inform = 3. By default: LIMSER =
10000.

MAXIMIZE

By default, the CONSTRAINED_MIN procedure performs a minimization. Set the
MAXIMIZE keyword to perform a maximization instead.

NSTOP

Set this keyword to specify the CONSTRAINED_MIN convergence criteria. If the
fractional change in the objective function is less than EPSTOP for NSTOP
consecutive iterations, CONSTRAINED_MIN will accept the current point as
optimal. By default, NSTOP = 3.

REPORT

Set this keyword to specify a name for the CONSTRAINED_MIN report file. If the
specified file does not exist, it will be created. Note that if the file cannot be created,
no error message will be generated. If the specified file already exists, it will be
overwritten. By default, CONSTRAINED_MIN does not create a report file.

–3 Fatal Error. Same as Inform = –1. In this case, the REPORT
keyword was not specified. Specify the REPORT keyword and
rerun CONSTRAINED_MIN, then check the report file for
more detail on the error.

Inform value Message

Table 7: Inform Argument Values
IDL Reference Guide CONSTRAINED_MIN

288
TITLE

Set this keyword to specify a title for the problem in the CONSTRAINED_MIN
report.

Examples

This example has 5 variables {X0, X1, ..., X4}, bounded above and below, a
quadratic objective function {G3}, and three quadratic constraints {G0, G1, G2},
with both upper and lower bounds. See the Himmelblau text [7], problem 11.

Minimize:

G3 = 5.3578547X2X2 + 0.8356891X0X4 + 37.293239X0 - 40792.141

Subject to:

0 < G0 = 85.334407 + 0.0056858X1X4 + 0.0006262X0X3 - 0.0022053X2X4 < 92

90 < G1 = 80.51249 + 0.0071317X1X4 + 0.0029955X0X1 + 0.0021813X2X2 <110

20 < G2 = 9.300961 + 0.0047026X2X4 + 0.0012547X0X2 + 0.0019085X2X3 < 25

and,

78 < X0 < 102
33 < X1 < 45
27 < X2 < 45
27 < X3 < 45
27 < X4 < 45

This problem is solved starting from X = {78, 33, 27, 27, 27} which is infeasible
because constraint G2 is not satisfied at this point.

The constraint functions and objective function are evaluated by HMBL11:

; Himmelblau Problem 11
; 5 variables and 4 functions
FUNCTION HMBL11, x

g = DBLARR(4)
g[0] = 85.334407 + 0.0056858*x[1]*x[4] + 0.0006262*x[0] $

*x[3] - 0.0022053*x[2]*x[4]
g[1] = 80.51249 + 0.0071317*x[1]*x[4] + 0.0029955*x[0] $

*x[1] + 0.0021813*x[2]*x[2]
g[2] = 9.300961 + 0.0047026*x[2]*x[4] + 0.0012547*x[0]* $

x[2] + 0.0019085*x[2]*x[3]
g[3] = 5.3578547*x[2]*x[2] + 0.8356891*x[0]*x[4] $

+ 37.293239*x[0] - 40792.141
RETURN, g
END
CONSTRAINED_MIN IDL Reference Guide

 289
; Example problem for CONSTRAINED_MIN
; Himmelblau Problem 11
; 5 variables and 3 constraints
; Constraints and objective defined in HMBL11
xbnd = [[78, 33, 27, 27, 27], [102, 45, 45, 45, 45]]
gbnd = [[0, 90, 20, 0], [92, 110, 25, 0]]
nobj = 3
gcomp = 'HMBL11'
title = 'IDL: Himmelblau 11'
report = 'hmbl11.txt'
x = [78, 33, 27, 27, 27]
CONSTRAINED_MIN, x, xbnd, gbnd, nobj, gcomp, inform, $

REPORT = report, TITLE = title
g = HMBL11(x)
; Print minimized objective function for HMBL11 problem:
PRINT, g[nobj]

References

1. Lasdon, L.S., Waren, A.D., Jain, A., and Ratner, M., “Design and Testing of a
Generalized Reduced Gradient Code for Nonlinear Programming”, ACM
Transactions on Mathematical Software, Vol. 4, No. 1, March 1978, pp. 34-50.

2. Lasdon, L.S. and Waren, A.D., “Generalized Reduced Gradient Software for
Linearly and Nonlinearly Constrained Problems”, in “Design and Implementation of
Optimization Software”, H. Greenberg, ed., Sijthoff and Noordhoff, pubs, 1979.

3. Abadie, J. and Carpentier, J. “Generalization of the Wolfe Reduced Gradient
Method to the Case of Nonlinear Constraints”, in Optimization, R. Fletcher (ed.),
Academic Press London; 1969, pp. 37-47.

4. Murtagh, B.A. and Saunders, M.A. “Large-scale Linearly Constrained
Optimization”, Mathematical Programming, Vol. 14, No. 1, January 1978, pp. 41-72.

5. Powell, M.J.D., “Restart Procedures for the Conjugate Gradient Method,”
Mathematical Programming, Vol. 12, No. 2, April 1977, pp. 241-255.

6. Colville, A.R., “A Comparative Study of Nonlinear Programming Codes,” I.B.M.
T.R. no. 320-2949 (1968).

7. Himmelblau, D.M., Applied Nonlinear Programming, McGraw-Hill Book Co.,
New York, 1972.

8. Fletcher, R., “A New Approach to Variable Metric Algorithms”, Computer Journal,
Vol. 13, 1970, pp. 317-322.
IDL Reference Guide CONSTRAINED_MIN

290
9. Smith, S. and Lasdon, L.S., Solving Large Sparse Nonlinear Programs Using
GRG, ORSA Journal on Computing, Vol. 4, No. 1,Winter 1992, pp. 1-15.

10. Luenbuerger, David G., Linear and Nonlinear Programming, Second Edition,
Addison-Wesley, Reading Massachusetts, 1984.

11. Windward Technologies, GRG2 Users’s Guide, 1997.

Version History

Introduced: 5.1
CONSTRAINED_MIN IDL Reference Guide

 291
CONTINUE

The CONTINUE statement provides a convenient way to immediately start the next
iteration of the enclosing FOR, WHILE, or REPEAT loop.

Note
Do not confuse the CONTINUE statement described here with the .CONTINUE
executive command. The two constructs are not related, and serve completely
different purposes.

Note
CONTINUE is not allowed within CASE or SWITCH statements. This is in
contrast with the C language, which does allow this.

For more information on using CONTINUE and other IDL program control
statements, see Chapter 12, “Program Control” in the Building IDL Applications
manual.

Syntax

CONTINUE

Examples

This example presents one way (not necessarily the best) to print the even numbers
between 1 and 10.

FOR I = 1,10 DO BEGIN
; If odd, start next iteration:
IF (I AND 1) THEN CONTINUE
PRINT, I

ENDFOR

Version History

Introduced: 5.4
IDL Reference Guide CONTINUE

292
CONTOUR

The CONTOUR procedure draws a contour plot from data stored in a rectangular
array or from a set of unstructured points. Both line contours and filled contour plots
can be created. Note that outline and fill contours cannot be drawn at the same time.
To create a contour plot with both filled contours and outlines, first create the filled
contour plot, then add the outline contours by calling CONTOUR a second time with
the OVERPLOT keyword.

Contours can be smoothed by using the MIN_CURVE_SURF function on the
contour data before contouring.

Using various keywords, described below, it is possible to specify contour levels,
labeling, colors, line styles, and other options. CONTOUR draws contours by
searching for each contour line and then following the line until it reaches a boundary
or closes.

Smoothing Contours

The MIN_CURVE_SURF function can be used to smoothly interpolate both
regularly and irregularly sampled surfaces before contouring. This function replaces
the older SPLINE keyword to CONTOUR, which was inaccurate and is no longer
supported. MIN_CURVE_SURF interpolates the entire surface to a relatively fine
grid before drawing the contours.

Syntax

CONTOUR, Z [, X, Y] [, C_ANNOTATION=vector_of_strings]
[, C_CHARSIZE=value] [, C_CHARTHICK=integer] [, C_COLORS=vector]
[, C_LABELS=vector{each element 0 or 1}] [, C_LINESTYLE=vector] [{, /FILL |
, /CELL_FILL} | [, C_ORIENTATION=degrees] [, C_SPACING=value]]
[, C_THICK=vector] [, /CLOSED] [, /DOWNHILL] [, /FOLLOW]
[, /IRREGULAR] [, /ISOTROPIC] [, LEVELS=vector] [, NLEVELS=integer{1 to
60}] [, MAX_VALUE=value] [, MIN_VALUE=value] [, /OVERPLOT]
[{, /PATH_DATA_COORDS, PATH_FILENAME=string, PATH_INFO=variable,
PATH_XY=variable} | , TRIANGULATION=variable] [, /PATH_DOUBLE]
[, /XLOG] [, /YLOG] [, ZAXIS={0 | 1 | 2 | 3 | 4}]

Graphics Keywords: Accepts all graphics keywords accepted by PLOT except for:
LINESTYLE, PSYM, SYMSIZE. See “Graphics Keywords Accepted” on page 302.
CONTOUR IDL Reference Guide

 293
Arguments

Z

A one- or two-dimensional array containing the values that make up the contour
surface. If arguments X and Y are provided, the contour is plotted as a function of the
(X, Y) locations specified by their contents. Otherwise, the contour is generated as a
function of the two-dimensional array index of each element of Z.

If the IRREGULAR keyword is set, X, Y, Z are all required, and are treated as
vectors. Each point has a value of Z[i] and a location of (X[i], Y[i]).

This argument is converted to double-precision floating-point before plotting. Plots
created with CONTOUR are limited to the range and precision of double-precision
floating-point values.

X

A vector or two-dimensional array specifying the X coordinates for the contour
surface. If X is a vector, each element of X specifies the X coordinate for a column of
Z (e.g., X[0] specifies the X coordinate for Z[0,*]). If X is a two-dimensional array,
each element of X specifies the X coordinate of the corresponding point in Z (i.e., Xij
specifies the X coordinate for Zij).

Y

A vector or two-dimensional array specifying the Y coordinates for the contour
surface. If Y a vector, each element of Y specifies the Y coordinate for a row of Z
(e.g., Y[0] specifies the Y coordinate for Z[*,0]). If Y is a two-dimensional array,
each element of Y specifies the Y coordinate of the corresponding point in Z (Yij
specifies the Y coordinate for Zij).

Keywords

C_ANNOTATION

The label to be drawn on each contour. Usually, contours are labeled with their value.
This parameter, a vector of strings, allows any text to be specified. The first label is
used for the first contour drawn, and so forth. If the LEVELS keyword is specified,
the elements of C_ANNOTATION correspond directly to the levels specified,
otherwise, they correspond to the default levels chosen by the CONTOUR procedure.
If there are more contour levels than elements in C_ANNOTATION, the remaining
levels are labeled with their values.
IDL Reference Guide CONTOUR

294
Use of this keyword implies use of the FOLLOW keyword.

Note
This keyword has no effect if the FILL or CELL_FILL keyword is set (i.e., if the
contours are drawn with solid-filled or line-filled polygons).

Example

To produce a contour plot with three levels labeled “low”, “medium”, and “high”:

CONTOUR, Z, LEVELS = [0.0, 0.5, 1.0], $
C_ANNOTATION = ['low', 'medium', 'high']

C_CHARSIZE

The size of the characters used to annotate contour labels. Normally, contour labels
are drawn at 3/4 of the size used for the axis labels (specified by the CHARSIZE
keyword or !P.CHARSIZE system variable. This keyword allows the contour label
size to be specified directly. Use of this keyword implies use of the FOLLOW
keyword.

C_CHARTHICK

The thickness of the characters used to annotate contour labels. Set this keyword
equal to an integer value specifying the line thickness of the vector drawn font
characters. This keyword has no effect when used with the hardware drawn fonts. The
default value is 1. Use of this keyword implies use of the FOLLOW keyword.

C_COLORS

The color index used to draw each contour. This parameter is a vector, converted to
integer type if necessary. If there are more contour levels than elements in
C_COLORS, the elements of the color vector are cyclically repeated.

Example

If C_COLORS contains three elements, and there are seven contour levels to be
drawn, the colors c0, c1, c2, c0, c1, c2, c0 will be used for the seven levels. To call
CONTOUR and set the colors to [100,150,200], use the command:

CONTOUR, Z, C_COLORS = [100,150,200]

C_LABELS

Specifies which contour levels should be labeled. By default, every other contour
level is labeled. C_LABELS allows you to override this default and explicitly specify
CONTOUR IDL Reference Guide

 295
the levels to label. This parameter is a vector, converted to integer type if necessary. If
the LEVELS keyword is specified, the elements of C_LABELS correspond directly
to the levels specified, otherwise, they correspond to the default levels chosen by the
CONTOUR procedure. Setting an element of the vector to zero causes that contour
label to not be labeled. A nonzero value forces labeling.

Use of this keyword implies use of the FOLLOW keyword.

Example

To produce a contour plot with four levels where all but the third level is labeled:

CONTOUR, Z, LEVELS = [0.0, 0.25, 0.75, 1.0], $
C_LABELS = [1, 1, 0, 1]

C_LINESTYLE

The line style used to draw each contour. As with C_COLORS, C_LINESTYLE is a
vector of line style indices. If there are more contour levels than line styles, the line
styles are cyclically repeated. See “LINESTYLE” on page 3875 for a list of available
styles.

Note
The cell drawing contouring algorithm draws all the contours in each cell, rather
than following contours. Since an entire contour is not drawn as a single operation,
the appearance of the more complicated linestyles will suffer. Use of the contour
following method (selected with the FOLLOW keyword) will give better looking
results in such cases.

Example

To produce a contour plot, with the contour levels directly specified in a vector V,
with all negative contours drawn with dotted lines, and with positive levels in solid
lines:

CONTOUR, Z, LEVELS = V, C_LINESTYLE = (V LT 0.0)

C_ORIENTATION

If the FILL keyword is set, this keyword can be set to the angle, in degrees
counterclockwise from the horizontal, of the lines used to fill contours. If neither
C_ORIENTATION nor C_SPACING are specified, the contours are solid filled.
IDL Reference Guide CONTOUR

296
C_SPACING

If the FILL keyword is set, this keyword can be used to control the distance, in
centimeters, between the lines used to fill the contours.

C_THICK

The line used to draw each contour level. As with C_COLORS, C_THICK is a vector
of line thickness values, although the values are floating point. If there are more
contours than thickness elements, elements are repeated. If omitted, the overall line
thickness specified by the THICK keyword parameter or !P.THICK is used for all
contours.

CELL_FILL

Set this keyword to produce a filled contour plot using a “cell filling” algorithm. Use
this keyword instead of FILL when you are drawing filled contours over a map, when
you have missing data, or when contours that extend off the edges of the contour plot.
CELL_FILL is less efficient than FILL because it makes one or more polygons for
each data cell. It also gives poor results when used with patterned (line) fills, because
each cell is assigned its own pattern. Otherwise, this keyword operates identically to
the FILL keyword, described below.

Tip
In order for CONTOUR to fill the contours properly when using a map projection,
the X and Y arrays (if supplied) must be arranged in increasing order. This ensures
that the polygons generated will be in counterclockwise order, as required by the
mapping graphics pipeline.

Warning
Do not draw filled contours over the poles on Cylindrical map projections. In this
case, the polar points map to lines on the map, and the interpolation becomes
ambiguous, causing errors in filling. One possible work-around is to limit the
latitudes to the range of -89.9 degrees to + 89.9 degrees, avoiding the poles.

CLOSED

Set this keyword to a nonzero value to close contours that intersect the plot
boundaries. After a contour hits a boundary, it follows the plot boundary until it
connects with its other boundary intersection. Set CLOSED=0 along with
PATH_INFO and/or PATH_XY to return path information for contours that are not
closed.
CONTOUR IDL Reference Guide

 297
DOWNHILL

Set this keyword to label each contour with short, perpendicular tick marks that point
in the “downhill” direction, making the direction of the grade readily apparent. If this
keyword is set, the contour following method is used in drawing the contours.

FILL

Set this keyword to produce a filled contour plot. The contours are filled with solid or
line-filled polygons. For solid polygons, use the C_COLOR keyword to specify the
color index of the polygons for each contour level. For line fills, use
C_ORIENTATION, C_SPACING, C_COLOR, C_LINESTYLE, and/or C_THICK to
specify attributes for the lines.

If the current device is not a pen plotter, each polygon is erased to the background
color before the fill lines are drawn, to avoid superimposing one pattern over another.

Contours that are not closed can not be filled because their interior and exterior are
undefined. Contours created from data sets with missing data may not be closed;
many map projections can also produce contours that are not closed. Filled contours
should not be used in these cases.

Note
If the current graphics device is the Z-buffer, the algorithm used when the FILL
keyword is specified will not work when a Z value is also specified with the
graphics keyword ZVALUE. In this situation, use the CELL_FILL keyword instead
of the FILL keyword.

FOLLOW

In IDL version 5, CONTOUR always uses a line-following method. The FOLLOW
keyword remains available for compatibility with existing code, but is no longer
necessary. As in previous versions of IDL, setting FOLLOW will cause CONTOUR
to draw contour labels.

IRREGULAR

Set this keyword to indicate that the input data is irregularly gridded. Setting
IRREGULAR is the same as performing an explicit triangulation. That is:

CONTOUR, Z, X, Y, /IRREGULAR

is the same as

TRIANGULATE, X, Y, tri ;Get triangulation
CONTOUR, Z, X, Y, TRIANGULATION=tri
IDL Reference Guide CONTOUR

298
ISOTROPIC

Set this keyword to force the scaling of the X and Y axes to be equal.

Note
The X and Y axes will be scaled isotropically and then fit within the rectangle
defined by the POSITION keyword; one of the axes may be shortened. See
“POSITION” on page 3877 for more information.

LEVELS

Specifies a vector containing the contour levels drawn by the CONTOUR procedure.
A contour is drawn at each level in LEVELS.

Example

To draw a contour plot with levels at 1, 100, 1000, and 10000:

CONTOUR, Z, LEVELS = [1, 100, 1000, 10000]

To draw a contour plot with levels at 50, 60, ..., 90, 100:

CONTOUR, Z, LEVELS = FINDGEN(6) * 10 + 50

MAX_VALUE

Data points with values above this value are ignored (i.e., treated as missing data)
when contouring. Cells containing one or more corners with values above
MAX_VALUE will have no contours drawn through them. Note that the IEEE
floating-point value NaN is also treated as missing data. (See “Special Floating-Point
Values” in Chapter 18 of the Building IDL Applications manual for more information
on IEEE floating-point values.)

MIN_VALUE

Data points with values less than this value are ignored (i.e., treated as missing data)
when contouring. Cells containing one or more corners with values below
MIN_VALUE will have no contours drawn through them. Note that the IEEE
floating-point value NaN is also treated as missing data. (See “Special Floating-Point
Values” in Chapter 18 of the Building IDL Applications manual for more information
on IEEE floating-point values.)

NLEVELS

The number of equally spaced contour levels that are produced by CONTOUR. If the
LEVELS parameter, which explicitly specifies the value of the contour levels, is
CONTOUR IDL Reference Guide

 299
present, this keyword has no effect. If neither parameter is present, approximately six
levels are drawn. NLEVELS should be a positive integer.

OVERPLOT

Set this keyword to make CONTOUR “overplot”. That is, the current graphics screen
is not erased, no axes are drawn and the previously established scaling remains in
effect. You must explicitly specify either the values of the contour levels or the
number of levels (via the NLEVELS keyword) when using this option, unless
geographic mapping coordinates are in effect.

PATH_DATA_COORDS

Set this keyword to cause the output contour positions to be measured in data units
rather than the default normalized units. This keyword is useful only if the PATH_XY
or PATH_FILENAME keywords are set.

PATH_DOUBLE

Set this keyword to indicate that the PATH_FILENAME, PATH_INFO, and
PATH_XY keywords should return vertex and contour value information as double-
precision floating-point values. The default is to return this information as single-
precision floating-point values.

PATH_FILENAME

Specifies the name of a file to contain the contour positions. If PATH_FILENAME is
present, CONTOUR does not draw the contours, but rather, opens the specified file
and writes the coordinates of the contours, into it. The file consists of a series of
logical records containing binary data. Each record is preceded with a header
structure defining the contour as follows:

If the PATH_DOUBLE keyword is not set:

{CONTOUR_HEADER, TYPE:0B, HIGH:0B, LEVEL:0, NUM:0L, VALUE:0.0}

If the PATH_DOUBLE keyword is set:

{CONTOUR_DBL_HEADER, TYPE:0B, HIGH:0B, LEVEL:0, NUM:0L,
VALUE:0.0D}
IDL Reference Guide CONTOUR

300
The fields are:

Following the header in each record are NUM X-coordinate values followed by NUM
Y-coordinate values. By default, these values are specified in normalized coordinates
unless the PATH_DATA_COORDS keyword is set.

PATH_INFO

Set this keyword to a named variable that will return path information for the
contours. This information can be used, along with data stored in a variable named by
the PATH_XY keyword, to trace closed contours. To get PATH_INFO and PATH_XY
with contours that are not closed, set the CLOSED keyword to 0. If PATH_INFO is
present, CONTOUR does not draw the contours, but rather records the path
information in an array of structures of the following type:

If the PATH_DOUBLE keyword is not set:

{CONTOUR_PATH_STRUCTURE, TYPE:0B, HIGH_LOW:0B, $
LEVEL:0, N:0L, OFFSET:0L, VALUE:0.0}

If the PATH_DOUBLE keyword is set:

{COUNTOUR_DBL_PATH_STRUCTURE, TYPE:0B, HIGH_LOW:0B, LEVEL:0,
N: 0L, OFFSET:0L, VALUE:0.0D}

Field Description

TYPE A byte that is zero if the contour is open, and one if it is
closed.

HIGH A byte that is 1 if the contour is closed and above its
surroundings, and is 0 if the contour is below. This field is
meaningless if the contour is not closed.

LEVEL A short integer with value greater or equal to zero (It is an
index into the LEVELS array).

NUM The longword number of data points in the contour.

VALUE The contour value. If the PATH_DOUBLE keyword is not
set, this is a single-precision floating-point value; if the
PATH_DOUBLE keyword is set, this is a double-precision
floating-point value.

Table 8: CONTOUR Fields
CONTOUR IDL Reference Guide

 301
The fields are:

See the examples section below for an example using the PATH_INFO and
PATH_XY keywords to return contour path information.

PATH_XY

Set this keyword to a named variable that returns the coordinates of a set of closed
polygons defining the closed paths of the contours. This information can be used,
along with data stored in a variable named by the PATH_INFO keyword, to trace
closed contours. To get PATH_XY and PATH_INFO with contours that are not
closed, set the CLOSED keyword to 0. If PATH_XY is present, CONTOUR does not
draw the contours, but rather records the path coordinates in the named array. If the
PATH_DOUBLE keyword is not set, the array will contain single-precision floating
point values; if the PATH_DOUBLE keyword is set, the array will contain double-
precision floating point values. By default, the values in the array are specified in
normalized coordinates unless the PATH_DATA_COORDS keyword is set.

Field Description

TYPE A byte that is zero if the contour is open, and one if it is
closed.

Note - If the CLOSE keyword is not explicitly set equal to
zero, all contours will be closed.

HIGH_LOW A byte that is 1 if the contour is above its surroundings, and
is 0 if the contour is below.

LEVEL A short integer indicating the index of the contour level,
from zero to the number of levels minus one.

N A long integer indicating the number of XY pairs in the
contour’s path.

OFFSET A long integer that is the offset into the array defined by
PATH_XY, representing the first XY coordinate for this
contour.

VALUE The contour value. If the PATH_DOUBLE keyword is not
set, this is a single-precision floating-point value; if the
PATH_DOUBLE keyword is set, this is a double-precision
floating-point value.

Table 9: PATH_INFO Fields
IDL Reference Guide CONTOUR

302
See the examples section below for an example using the PATH_INFO and
PATH_XY keywords to return contour path information.

TRIANGULATION

Set this keyword to a variable that contains an array of triangles returned from the
TRIANGULATE procedure. Providing triangulation data allows you to contour
irregularly gridded data directly, without gridding.

XLOG

Set this keyword to specify a logarithmic X axis.

YLOG

Set this keyword to specify a logarithmic Y axis.

ZAXIS

Set this keyword to an integer value to draw a Z axis for the CONTOUR plot.
CONTOUR draws no Z axis by default. This keyword is of use only if a three-
dimensional transformation is established. Possible values are:

• 1 - Draws Z axis from the lower right-hand corner of the plot

• 2 - Draws Z axis from the lower left-hand corner of the plot

• 3 - Draws Z axis from the upper left-hand corner of the plot

• 4 - Draws Z axis from the upper right-hand corner of the plot

Graphics Keywords Accepted

See Appendix B, “Graphics Keywords” for the description of graphics and plotting
keywords not listed above.

BACKGROUND, CHARSIZE, CHARTHICK, CLIP, COLOR, DATA, DEVICE,
FONT, NOCLIP, NODATA, NOERASE, NORMAL, POSITION, SUBTITLE, T3D,
THICK, TICKLEN, TITLE, [XYZ]CHARSIZE, [XYZ]GRIDSTYLE,
[XYZ]MARGIN, [XYZ]MINOR, [XYZ]RANGE, [XYZ]STYLE, [XYZ]THICK,
[XYZ]TICKFORMAT, [XYZ]TICKINTERVAL, [XYZ]TICKLAYOUT,
[XYZ]TICKLEN, [XYZ]TICKNAME, [XYZ]TICKS, [XYZ]TICKUNITS,
[XYZ]TICKV, [XYZ]TICK_GET, [XYZ]TITLE, ZVALUE.
CONTOUR IDL Reference Guide

 303
Examples

Example 1

This example creates a contour plot with 10 contour levels where every other contour
is labeled:

;Create a simple dataset to plot:
Z = DIST(100)

;Draw the plot:
CONTOUR, Z, NLEVELS=10, /FOLLOW, TITLE='Simple Contour Plot'

Example 2

This example shows the use of polygon filling and smoothing.

;Handle TrueColor displays:
DEVICE, DECOMPOSED=0

;Create a surface to contour (2D array of random numbers):
A = RANDOMU(seed, 5, 6)

;Smooth the dataset before contouring:
B = MIN_CURVE_SURF(A)

;Load discrete colors for contours:
TEK_COLOR

;Draw filled contours:
CONTOUR, B, /FILL, NLEVELS=5, C_COLOR=INDGEN(5)+2

;Overplot the contour lines with tickmarks:
CONTOUR, B, NLEVELS=5, /DOWNHILL, /OVERPLOT

Alternatively, we could draw line-filled contours by replacing the last two commands
with:

CONTOUR, B, C_ORIENTATION=[0, 22, 45]

CONTOUR, B, /OVERPLOT, NLEVELS=5

Example 3

The following example saves the closed path information of a set of contours and
plots the result:
IDL Reference Guide CONTOUR

304
; Create a 2D array of random numbers:
A = RANDOMU(seed, 8, 10)

; Smooth the dataset before contouring:
B = MIN_CURVE_SURF(A)

; Compute contour paths:
CONTOUR, B, PATH_XY=xy, PATH_INFO=info
FOR I = 0, (N_ELEMENTS(info) - 1) DO BEGIN

S = [INDGEN(info(I).N), 0]

; Plot the closed paths:
PLOTS, xy(*,INFO(I).OFFSET + S), /NORM

ENDFOR

Example 4

This example contours irregularly-gridded data without having to call TRIGRID.
First, use the TRIANGULATE procedure to get the Delaunay triangulation of your
data, then pass the triangulation array to CONTOUR:

;Make 50 normal X, Y points:
x = RANDOMN(seed, 50)
y = RANDOMN(seed, 50)

;Make the Gaussian:
Z = EXP(-(x^2 + y^2))

;Get triangulation:
TRIANGULATE, X, Y, tri

;Draw the contours:
CONTOUR, Z, X, Y, TRIANGULATION = tri

Version History

Introduced: Original

See Also

ICONTOUR, IMAGE_CONT, SHADE_SURF, SHOW3, SURFACE
CONTOUR IDL Reference Guide

 305
CONVERT_COORD

The CONVERT_COORD function transforms one or more sets of coordinates to and
from the coordinate systems supported by IDL.

The input coordinates X and, optionally, Y and/or Z can be given in data, device, or
normalized form by using the DATA, DEVICE, or NORMAL keywords. The default
input coordinate system is DATA. The keywords TO_DATA, TO_DEVICE, and
TO_NORMAL specify the output coordinate system.

If the input points are in 3D data coordinates, be sure to set the T3D keyword.

Warning
For devices that support windows, CONVERT_COORD can only provide valid
results if a window is open and current. Also, CONVERT_COORD only applies to
Direct Graphics devices.

Syntax

Result = CONVERT_COORD(X [, Y [, Z]] [, /DATA | , /DEVICE | , /NORMAL]
[, /DOUBLE][, /T3D] [, /TO_DATA | , /TO_DEVICE | , /TO_NORMAL])

Return Value

The result of the function is a (3, n) vector containing the (x, y, z) components of the n
output coordinates.

Arguments

X

A vector or scalar argument providing the X components of the input coordinates. If
only one argument is specified, X must be an array of either two or three vectors (i.e.,
(2,*) or (3,*)). In this special case, X[0,*] are taken as the X values, X[1,*] are
taken as the Y values, and, if present, X[2,*] are taken as the Z values.

Y

An optional argument providing the Y input coordinate(s).
IDL Reference Guide CONVERT_COORD

306
Z

An optional argument providing the Z input coordinate(s).

Keywords

DATA

Set this keyword if the input coordinates are in data space (the default).

DEVICE

Set this keyword if the input coordinates are in device space.

DOUBLE

Set this keyword to indicate that the returned coordinates should be double-precision.
If this keyword is not set, the default is to return single-precision coordinates (unless
double-precision arguments are input, in which case the returned coordinates will be
double-precision).

NORMAL

Set this keyword if the input coordinates are in normalized space.

T3D

Set this keyword if the 3D transformation !P.T is to be applied.

TO_DATA

Set this keyword if the output coordinates are to be in data space.

TO_DEVICE

Set this keyword if the output coordinates are to be in device space.

TO_NORMAL

Set this keyword if the output coordinates are to be in normalized space.
CONVERT_COORD IDL Reference Guide

 307
Examples

Convert, using the currently established viewing transformation, 11 points along the
parametric line x = t, y = 2t, z = t2, along the interval [0, 1] from data coordinates to
device coordinates:

; Establish a valid transformation matrix:
SURFACE, DIST(20), /SAVE

; Make a vector of X values:
X = FINDGEN(11)/10.

; Convert the coordinates. D will be a (3,11) element array:
D = CONVERT_COORD(X, 2*X, X^2, /T3D, /TO_DEVICE)

Version History

Introduced: Pre 4.0

See Also

CV_COORD
IDL Reference Guide CONVERT_COORD

308
CONVOL

The CONVOL function convolves an array with a kernel, and returns the result.
Convolution is a general process that can be used for various types of smoothing,
signal processing, shifting, differentiation, edge detection, etc. The CENTER
keyword controls the alignment of the kernel with the array and the ordering of the
kernel elements. If CENTER is explicitly set to 0, convolution is performed in the
strict mathematical sense, otherwise the kernel is centered over each data point.

Using CONVOL

Assume R = CONVOL(A, K, S), where A is an n-element vector, K is an m-element
vector (m < n), and S is the scale factor. If the CENTER keyword is omitted or set to 1:

where the value m/2 is determined by integer division. This means that the result of
the division is the largest integer value less than or equal to the fractional number.

If CENTER is explicitly set to 0:

In the two-dimensional, zero CENTER case where A is an m by n-element array, and
K is the l by l element kernel; the result R is an m by n-element array:

Rt

1
S
--- At i m 2⁄–+ Kii 0=

m 1–
∑ if m 2⁄ t n m 2⁄–<≤

0 otherwise





=

Rt

1
S
--- At i– Kii 0=

m 1–
∑ if t m 1–≥

0 otherwise





=

Rt u,

1
S
--- At i u j–,– Ki j,j 0=

l 1–
∑i 0=

l 1–
∑ if t l 1–≥ and u l 1–≥

0 otherwise






=

CONVOL IDL Reference Guide

 309
The centered case is similar, except the t-i and u-j subscripts are replaced by t+i-l/2
and u+j-l/2.

Syntax

Result = CONVOL(Array, Kernel [, Scale_Factor] [, /CENTER] [, /EDGE_WRAP]
[, /EDGE_TRUNCATE] [, MISSING=value] [, /NAN])

Return Value

Returns the result of the array convolution.

Arguments

Array

An array of any basic type except string. The result of CONVOL has the same type
and dimensions as Array.

If the Array parameter is of byte type, the result is clipped to the range of 0 to 255.
Negative results are set to 0, and values greater than 255 are set to 255.

Kernel

An array of any type except string. If the type of Kernel is not the same as Array, a
copy of Kernel is made and converted to the appropriate type before use. The size of
the kernel dimensions must be smaller than those of Array.

Note
CONVOL accepts non-square kernels including one-dimensional kernels.

Scale_Factor

A scale factor that is divided into each resulting value. This argument allows the use
of fractional kernel values and avoids overflow with byte or integer arguments. If
omitted, a scale factor of 1 is used.

Keywords

CENTER

Set or omit this keyword to center the kernel over each array point. If CENTER is
explicitly set to zero, the CONVOL function works in the conventional mathematical
IDL Reference Guide CONVOL

310
sense. In many signal and image processing applications, it is useful to center a
symmetric kernel over the data, thereby aligning the result with the original array.

Note that for the kernel to be centered, it must be symmetric about the point
K(FLOOR(m/2)), where m is the number of elements in the kernel.

EDGE_WRAP

Set this keyword to make CONVOL compute the values of elements at the edge of
Array by “wrapping” the subscripts of Array at the edge. For example, if CENTER is
set to zero:

where n is the number of elements in Array. The mod operator in the formula above is
defined as a mod b = a - b * floor(a/b). For example, -1 mod 5 is 4. If
neither EDGE_WRAP nor EDGE_TRUNCATE is set, CONVOL sets the values of
elements at the edges of Array to zero.

EDGE_TRUNCATE

Set this keyword to make CONVOL compute the values of elements at the edge of
Array by repeating the subscripts of Array at the edge. For example, if CENTER is
set to zero:

where n is the number of elements in Array. The “<” and “>” operators in the above
formula return the smaller and larger of their operands, respectively. If neither
EDGE_WRAP nor EDGE_TRUNCATE is set, CONVOL sets the values of elements
at the edges of Array to zero.

MISSING

Set this keyword to the numeric value to return for elements that contain no valid
points within the kernel. The default is the IEEE floating-point value NaN. This
keyword is only used if the NAN keyword is set.

Rt
1
S
--- A t i–()mod n()()Kii 0=

m 1–
∑[]





=

Rt
1
S
--- A t i–() 0 n 1–()<>()Kii 0=

m
∑





=

CONVOL IDL Reference Guide

 311
NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. (See “Special Floating-Point Values” in Chapter 18
of the Building IDL Applications manual for more information on IEEE floating-
point values.) Elements with the value NaN are treated as missing data, and are
ignored when computing the convolution for neighboring elements. In the Result,
missing elements are replaced by the convolution of all other valid points within the
kernel. If all points within the kernel are missing, then the result at that point is given
by the MISSING keyword.

Note
CONVOL should never be called without the NAN keyword if the input array may
possibly contain NaN values.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

Convolve a vector of random noise and a one-dimensional triangular kernel and plot
the result. Create a simple vector as the original dataset and plot it by entering:

A = RANDOMN(SEED, 100) & PLOT, A

Create a simple kernel by entering:

K = [1, 2, 3, 2, 1]

Convolve the two and overplot the result by entering:

OPLOT, CONVOL(A, K, TOTAL(K))

Version History

Introduced: Original
IDL Reference Guide CONVOL

312
See Also

BLK_CON
CONVOL IDL Reference Guide

 313
COORD2TO3

The COORD2TO3 function converts normalized X and Y screen coordinates to 3D
data coordinates.

Note
A valid 3D transform must exist in !P.T or be specified by the PTI keyword. The
axis scaling variables, !X.S, !Y.S and !Z.S must be valid.

This routine is written in the IDL language. Its source code can be found in the file
coord2to3.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = COORD2TO3(Mx, My, Dim, D0 [, PTI])

Return Value

Returns a three-element vector containing 3D data coordinates given the normalized
X and Y screen coordinates and one of the three data coordinates.

Arguments

Mx, My

The normalized X and Y screen coordinates.

Dim

A parameter used to specify which data coordinate is fixed. Use 0 for a fixed X data
coordinate, 1 for a fixed Y data coordinate, or 2 for a fixed Z data coordinate.

D0

The value of the fixed data coordinate.

PTI

The inverse of !P.T. If this parameter is not supplied, or set to 0, COORD2TO3
computes the inverse. If this routine is to be used in a loop, the caller should supply
PTI for highest efficiency.
IDL Reference Guide COORD2TO3

314
Keywords

None.

Examples

To return the data coordinates of the mouse, fixing the data Z value at 10, enter the
commands:

;Make sure a transformation matrix exists.
CREATE_VIEW

;Get the normalized mouse coords.
CURSOR, X, Y, /NORM

;Print the 3D coordinates.
PRINT, COORD2TO3(X, Y, 2, 10.0)

See Also

CONVERT_COORD, CREATE_VIEW, CV_COORD, SCALE3, T3D
COORD2TO3 IDL Reference Guide

 315
COPY_LUN

The COPY_LUN procedure copies data between two open files. It allows you to
transfer a known amount of data from one file to another without needing to have the
data available in an IDL variable. COPY_LUN can copy a fixed amount of data,
specified in bytes or lines of text, or it can copy from the current position of the file
pointer in the input file to the end of that file.

COPY_LUN copies data between open files. To copy entire files based on their
names, see the FILE_COPY procedure. To read and discard a known amount of data
from a file, see the SKIP_LUN.

Syntax

COPY_LUN, FromUnit, ToUnit [, Num] [, /EOF] [, /LINES]
[, /TRANSFER_COUNT]

Arguments

FromUnit

An integer that specifies the file unit for the file from which data is to be taken (the
source file). Data is copied from FromUnit, starting at the current position of the file
pointer. The file pointer is advanced as data is read. The file specified by FromUnit
must be open, and must not have been opened with the RAWIO keyword to OPEN.

ToUnit

An integer that specifies the file unit for the file to which data is to be written (the
destination file). Data is written to ToUnit, starting at the current position of the file
pointer. The file pointer is advanced as data is written. The file specified by ToUnit
must be open for output (OPENW or OPENU), and must not have been opened with
the RAWIO keyword to OPEN.

Num

The amount of data to transfer between the two files. This value is specified in bytes,
unless the LINES keyword is specified, in which case it is taken to be the number of
text lines. If Num is not specified, COPY_LUN acts as if the EOF keyword has been
set, and copies all data in FromUnit (the source file) from the current position of the
file pointer to the end of the file.
IDL Reference Guide COPY_LUN

316
If Num is specified and the source file comes to end of file before the specified
amount of data is transferred, COPY_LUN issues an end-of-file error. The EOF
keyword alters this behavior.

Keywords

EOF

Set this keyword to ignore the value given by Num (if present) and instead transfer all
data between the current position of the file pointer in FromUnit and the end of the
file.

Note
If EOF is set, no end-of-file error is issued even if the amount of data transferred
does not match the amount specified by Num. The TRANSFER_COUNT keyword
can be used with EOF to determine how much data was transferred.

LINES

Set this keyword to indicate that the Num argument specifies the number of lines of
text to be transferred. By default, the Num argument specifies the number of bytes of
data to transfer.

TRANSFER_COUNT

Set this keyword equal to a named variable that will contain the amount of data
transferred. If LINES is specified, this value is the number of lines of text. Otherwise,
it is the number of bytes. TRANSFER_COUNT is primarily useful when the Num
argument is not specified or the EOF keyword is present. If Num is specified and the
EOF keyword is not present, TRANSFER_COUNT will be the same as the value
specified for Num.

Examples

Copy the next 100000 bytes of data between two files:

COPY_LUN, FromUnit, ToUnit, 100000

Copy the next 8 lines of text between two files:

COPY_LUN, FromUnit, ToUnit, 8, /LINES

Copy the remainder of the data in one file to another, and use the
TRANSFER_COUNT keyword to determine how much data was copied:
COPY_LUN IDL Reference Guide

 317
COPY_LUN, FromUnit, ToUnit, /EOF, TRANSFER_COUNT=n

Copy the remaining lines of text from one file to another, and use the
TRANSFER_COUNT keyword to determine how many lines were transferred.

COPY_LUN, FromUnit, ToUnit, /EOF, /LINES, TRANSFER_COUNT=n

Version History

Introduced: 5.6

See Also

CLOSE, EOF, FILE_COPY, FILE_LINK, FILE_MOVE, OPEN, READ/READF,
SKIP_LUN, WRITEU
IDL Reference Guide COPY_LUN

318
CORRELATE

The CORRELATE function computes the linear Pearson correlation coefficient of
two vectors or the correlation matrix of an m x n array. Alternatively, this function
computes the covariance of two vectors or the covariance matrix of an m x n array.

This routine is written in the IDL language. Its source code can be found in the file
correlate.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CORRELATE(X [, Y] [, /COVARIANCE] [, /DOUBLE])

Return Value

If vectors of unequal lengths are specified, the longer vector is truncated to the length
of the shorter vector and a single correlation coefficient is returned. If an m x n array
is specified, the result will be an m x m array of linear Pearson correlation
coefficients, with the element i,j corresponding to correlation of the ith and jth
columns of the input array.

Arguments

X

A vector or an m x n array. X can be integer, single-, or double-precision floating-
point.

Y

An integer, single-, or double-precision floating-point vector. If X is an m x n array, Y
should not be supplied.

Keywords

COVARIANCE

Set this keyword to compute the sample covariance rather than the correlation
coefficient.
CORRELATE IDL Reference Guide

 319
DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

Define the data vectors.

X = [65, 63, 67, 64, 68, 62, 70, 66, 68, 67, 69, 71]
Y = [68, 66, 68, 65, 69, 66, 68, 65, 71, 67, 68, 70]

Compute the linear Pearson correlation coefficient of x and y. The result should be
0.702652:

PRINT, CORRELATE(X, Y)

IDL prints:

0.702652

Compute the covariance of x and y. The result should be 3.66667.

PRINT, CORRELATE(X, Y, /COVARIANCE)

IDL prints:

3.66667

Define an array with x and y as its columns.

A = TRANSPOSE([[X],[Y]])

Compute the correlation matrix.

PRINT, CORRELATE(A)

IDL prints:

1.00000 0.702652
0.702652 1.00000

Version History

Introduced: Pre 4.0

See Also

A_CORRELATE, C_CORRELATE, M_CORRELATE, P_CORRELATE,
R_CORRELATE
IDL Reference Guide CORRELATE

320
COS

The periodic function COS returns the trigonometric cosine of X.

Syntax

Result = COS(X)

Return Value

Returns the trigonometric cosine of X.

Arguments

X

The angle for which the cosine is desired, specified in radians. If X is double-
precision floating or complex, the result is of the same type. All other types are
converted to single-precision floating-point and yield floating-point results. When
applied to complex numbers:

COS(x) = (EXP(I*x) + EXP(-I*x))/2

where I is defined as COMPLEX(0, 1).

If X is an array, the result has the same structure, with each element containing the
cosine of the corresponding element of X.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
COS IDL Reference Guide

 321
Examples

Find the cosine of 0.5 radians and print the result by entering:

PRINT, COS(.5)

IDL prints:

0.877583

Version History

Introduced: Original

See Also

ACOS, COSH
IDL Reference Guide COS

322
COSH

The COSH function returns the hyperbolic cosine of X.

Syntax

Result = COSH(X)

Return Value

Returns the hyperbolic cosine of X.

Arguments

X

The value for which the hyperbolic cosine is desired, specified in radians. If X is
double-precision floating or complex, the result is of the same type. All other types
are converted to single-precision floating-point and yield floating-point results.
COSH is defined as:

COSH(u) = (eu + e-u) / 2

If X is an array, the result has the same structure, with each element containing the
hyperbolic cosine of the corresponding element of X.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

Find the hyperbolic cosine of 0.5 radians and print the result by entering:

PRINT, COSH(.5)
COSH IDL Reference Guide

 323
IDL prints:

1.12763

Version History

Introduced: Original

See Also

ACOS, COS
IDL Reference Guide COSH

324
CPU

The CPU procedure is used to change the values stored in the read-only !CPU system
variable, which in turn controls the way IDL uses the system processor or processors.

Note
Not all routines are affected by changes to the !CPU system variable. Those
routines that are affected can override some of the values in the !CPU system
variable by setting thread pool keywords, which change the way IDL uses the
system processor(s) during a single invocation of the routine. A list of thread pool
keywords appears at the end of the keywords list for each routine that is affected by
the state of the !CPU system variable.

Syntax

CPU [,TPOOL_MAX_ELTS = NumMaxElts] [,TPOOL_MIN_ELTS = NumMinElts]
[,TPOOL_NTHREADS = NumThreads] [,/VECTOR_ENABLE]

Arguments

None.

Keywords

TPOOL_MAX_ELTS

This keyword changes the value returned by !CPU.TPOOL_MAX_ELTS.

Set this keyword to a non-zero value to set the maximum number of data elements
involved in a computation that uses the thread pool. If the number of elements in the
computation exceeds the number contained in !CPU.TPOOL_MAX_ELTS, IDL will
not use the thread pool for the computation. Setting this value to 0 removes any limit
on maximum number of elements, and any computation with at least
!CPU.TPOOL_MIN_ELTS will use the thread pool.

See “Possible Drawbacks to the Use of the IDL Thread Pool” in Chapter 14 of the
Building IDL Applications manual for discussion of the circumstances under which it
may be useful to specify a maximum number of elements for computations that use
the thread pool.
CPU IDL Reference Guide

 325
TPOOL_MIN_ELTS

This keyword changes the value returned by !CPU.TPOOL_MIN_ELTS.

Set this keyword to a non-zero value to set the minimum number of data elements
involved in a computation that uses the thread pool. If the number of elements in the
computation is less than the number contained in !CPU.TPOOL_MIN_ELTS, IDL
will not use the thread pool for the computation. Use this keyword to prevent IDL
from using the thread pool on tasks that are too small to benefit from it.

See “Possible Drawbacks to the Use of the IDL Thread Pool” in Chapter 14 of the
Building IDL Applications manual for discussion of the circumstances under which it
may be useful to specify a minimum number of elements for computations that use
the thread pool.

TPOOL_NTHREADS

This keyword changes the value returned by !CPU.TPOOL.NTHREADS.

Set this keyword to the number of threads IDL should use when performing
computations that take advantage of the thread pool. By default, IDL will use
!CPU.HW_NCPU threads, so that each thread will have the potential to run in
parallel with the others. Set this keyword equal to 0 (zero) to ensure that
!CPU.HW_NCPU threads will be used. Set this keyword equal to 1 (one) to disable
use of the thread pool.

Note
For numerical computation, there is no benefit to using more threads than your
system has CPUs. However, depending on the size of the problem and the number
of other programs running on the system, there may be a performance advantage to
using fewer CPUs. See “Possible Drawbacks to the Use of the IDL Thread Pool” in
Chapter 14 of the Building IDL Applications manual for a discussion of the
circumstances under which using fewer than the maximum number of CPUs makes
sense.

VECTOR_ENABLE

This keyword changes the value returned by !CPU.VECTOR_ENABLE.

Set this keyword to enable use of the system’s vector unit (e.g. Macintosh
Altivec/Velocity Engine) if one is present. Set this keyword equal to 0 (zero)
explicitly disable such use. This keyword is ignored if the current system does not
support a vector unit (that is, if !CPU.HW_VECTOR =0).
IDL Reference Guide CPU

326
Examples

Configure !CPU so that by default, IDL will use two threads for computations that
involve more than 5000 data values.

CPU, TPOOL_MIN_ELTS=5000, TPOOL_NTHREADS=2

Version History

Introduced: 5.5

See Also

!CPU, Chapter 14, “Multithreading in IDL” in the Building IDL Applications manual.
CPU IDL Reference Guide

 327
CRAMER

The CRAMER function solves an n by n linear system of equations using Cramer’s
rule.

This routine is written in the IDL language. Its source code can be found in the file
cramer.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CRAMER(A, B [, /DOUBLE] [, ZERO=value])

Return Value

Returns the solution of an n by n linear system of equations using Cramer’s rule.

Arguments

A

An n by n single- or double-precision floating-point array.

B

An n-element single- or double-precision floating-point vector.

 Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

ZERO

Use this keyword to set the value of the floating-point zero. A floating-point zero on
the main diagonal of a triangular array results in a zero determinant. A zero
determinant results in a “Singular matrix” error and stops the execution of CRAMER.
For single-precision inputs, the default value is 1.0 × 10-6. For double-precision
inputs, the default value is 1.0 × 10-12.
IDL Reference Guide CRAMER

328
Examples

Define an array A and right-hand side vector B.

A = [[2.0, 1.0, 1.0], $
[4.0, -6.0, 0.0], $
[-2.0, 7.0, 2.0]]

B = [3.0, 10.0, -5.0]

;Compute the solution and print.
PRINT, CRAMER(A,B)

IDL prints:

1.00000 -1.00000 2.00000

Version History

Introduced: Pre 4.0

See Also

CHOLSOL, GS_ITER, LU_COMPLEX, LUSOL, SVSOL, TRISOL
CRAMER IDL Reference Guide

 329
CREATE_STRUCT

The CREATE_STRUCT function creates a structure given pairs of tag names and
values. CREATE_STRUCT can also be used to concatenate structures.

Syntax

Result = CREATE_STRUCT([Tag1, Values1, ..., Tagn, Valuesn] [, Structuresn]
[, NAME=string])

or

Result = CREATE_STRUCT([Tags, Values1, ..., Valuesn] [, Structuresn]
[, NAME=string])

Return Value

Returns a structure composed of given pairs of tag names and values.

Arguments

Tags

The structure tag names. Tag names may be specified either as scalar strings or a
single string array. If scalar strings are specified, values alternate with the tag names.
If a string array is provided, values must still be specified individually. Tag names
must be enclosed in quotes. Tag names may not be IDL Reserved Words, and must be
unique within a given structure, although the same tag name can be used in more than
one structure.

Note
If a tag name contains spaces, CREATE_STRUCT will replace the spaces with
underscores. For example, if you specify a tag name of 'my tag', the tag will be
created with the name 'my_tag'.
IDL Reference Guide CREATE_STRUCT

330
Values

The values for the structure fields. The number of Values arguments must match the
number of Tags arguments (if tags are specified as scalar strings) or the number of
elements of the Tags array (if tags are specified as a single array.)

Structures

One or more existing structure variables whose tags and values will be inserted into
the new structure. When concatenating structures in this manner, the following rules
apply:

• All tag names, whether specified via the Tags argument or in an existing
structure variable, must be unique.

• Names of named structures included via the Structures arguments are not used
in the newly-created structure.

• Structures arguments can be interspersed with groups of Tags and Values
arguments in the call to CREATE_STRUCT. Use caution, however, to ensure
that the number of Tags and Values in each group are equal, to avoid inserting a
structure variable as the value of a single tag when you mean to include the
structure’s data as individual tags and values.

Keywords

NAME

To create a named structure, set this keyword equal to a string specifying the structure
name. If this keyword is not present, an anonymous structure is created.

Examples

To create the anonymous structure { A: 1, B: 'xxx'} in the variable P, enter:

p = CREATE_STRUCT('A', 1, 'B', 'xxx')

To add the fields “FIRST” and “LAST” to the structure, enter the following:

p = CREATE_STRUCT('FIRST', 0, p, 'LAST', 3)

The resulting structure contains { FIRST: 0, A: 1, B: 'xxx', LAST: 3}.

Finally, consider the following statements:

s1 = {Struct1, Tag1:'AAA', Tag2:'BBB'}
s2 = {Struct2, TagA:100, TagB:200}
s3 = CREATE_STRUCT(NAME='Struct3', ['A','B','C'], 1, 2, s1, s2)
CREATE_STRUCT IDL Reference Guide

 331
Here, the variable s3 contains the following named structure:

{ Struct3, A: 1, B: 2, C: {Struct1, Tag1: 'AAA', Tag2: 'BBB'}, TagA: 100, TagB: 200 }

Note that the value of s3.C is itself a “Struct1” structure, since the structure variable
s1 was interpreted as a Values argument, whereas the structure variable s2 was
interpreted as a Structures argument, thus including the tags from the “Struct2”
structure directly in the new structure.

Version History

Introduced: Pre 4.0

See Also

IDL_VALIDNAME, N_TAGS, TAG_NAMES, Chapter 7, “Structures” in the
Building IDL Applications manual.
IDL Reference Guide CREATE_STRUCT

332
CREATE_VIEW

The CREATE_VIEW procedure sets the various system variables required to define a
coordinate system and a 3-D view. This procedure builds the system viewing matrix
(!P.T) in such a way that the correct aspect ratio of the data is maintained even if the
display window is not square. CREATE_VIEW also sets the “Data” to “Normal”
coordinate conversion factors (!X.S, !Y.S, and !Z.S) so that center of the unit cube
will be located at the center of the display window.

CREATE_VIEW sets the following IDL system variables:

This routine is written in the IDL language. Its source code can be found in the file
create_view.pro in the lib subdirectory of the IDL distribution.

Syntax

CREATE_VIEW [, AX=value] [, AY=value] [, AZ=value] [, PERSP=value]
[, /RADIANS] [, WINX=pixels] [, WINY=pixels] [, XMAX=scalar]
[, XMIN=scalar] [, YMAX=scalar] [, YMIN=scalar] [, ZFAC=value]
[, ZMAX=scalar] [, ZMIN=scalar] [, ZOOM=scalar or 3-element vector]

Arguments

This procedure has no required arguments.

Keywords

AX

A floating-point value specifying the orientation (X rotation) of the view. The default
is 0.0.

!P.T !X.S !Y.S !Z.S

 !P.T3D !X.Style !Y.Style !Z.Style

!P.Position !X.Range !Y.Range !Z.Range

!P.Clip !X.Margin !Y.Margin !Z.Margin

!P.Region
CREATE_VIEW IDL Reference Guide

 333
AY

A floating-point value specifying the orientation (Y rotation) of the view. The default
is 0.0.

AZ

A floating-point value specifying the orientation (Z rotation) of the view. The default
is 0.0.

PERSP

A floating-point value specifying the perspective projection distance. A value of 0.0
indicates an isometric projection (NO perspective). The default is 0.0.

RADIANS

Set this keyword if AX, AY, and AZ are specified in radians. The default is degrees.

WINX

A long integer specifying the X size, in pixels, of the window that the view is being
set up for. The default is 640.

WINY

A long integer specifying the Y size, in pixels, of the window that the view is being
set up for. The default is 512.

XMAX

A scalar specifying the maximum data value on the X axis. The default is 1.0.

XMIN

A scalar specifying the minimum data value on the X axis. The default is 0.0.

YMAX

A scalar specifying the maximum data value on the Y axis. The default is 1.0.

YMIN

A scalar specifying the minimum data value on the Y axis. The default is 0.0.
IDL Reference Guide CREATE_VIEW

334
ZFAC

Set this keyword to a floating-point value to expand or contract the view in the Z
dimension. The default is 1.0.

ZMAX

A scalar specifying the maximum data value on the Z axis. The default is 1.0.

ZMIN

A scalar specifying the minimum data value on the Z axis. The default is 0.0.

ZOOM

A floating-point number or 3-element vector specifying the view zoom factor. If
zoom is a single value then the view will be zoomed equally in all 3 dimensions. If
zoom is a 3-element vector then the view will be scaled zoom[0] in X, zoom[1] in Y,
and zoom[2] in Z. The default is 1.0.

Examples

Set up a view to display an iso-surface from volumetric data. First, create some data:

vol = FLTARR(40, 50, 30)
vol(3:36, 3:46, 3:26) = RANDOMU(S, 34, 44, 24)
FOR I = 0, 10 DO vol = SMOOTH(vol, 3)

Generate the iso-surface.

SHADE_VOLUME, vol, 0.2, polygon_list, vertex_list, /LOW

Set up the view. Note that the subscripts into the Vol array range from 0 to 39 in X, 0
to 49 in Y, and 0 to 29 in Z. As such, the 3-D coordinates of the iso-surface
(vertex_list) may have the same range. Set XMIN, YMIN, and ZMIN to zero (the
default), and set XMAX=39, YMAX=49, and ZMAX=29.

WINDOW, XSIZE = 600, YSIZE = 400
CREATE_VIEW, XMAX = 39, YMAX = 49, ZMAX = 29, $

AX = (-60.0), AZ = (30.0), WINX = 600, WINY = 400, $
ZOOM = (0.7), PERSP = (1.0)

Display the iso-surface in the specified view.

img = POLYSHADE(polygon_list, vertex_list, /DATA, /T3D)
TVSCL, img
CREATE_VIEW IDL Reference Guide

 335
Version History

Introduced: Pre 4.0

See Also

SCALE3, T3D
IDL Reference Guide CREATE_VIEW

336
CROSSP

The CROSSP function returns a vector that is the cross-product of two input vectors,
V1 and V2.

Syntax

Result = CROSSP(V1, V2)

Return Value

Returns a floating-point vector that is the cross-product of two 3-element vectors, V1
and V2.

Arguments

V1, V2

Three-element vectors.

Version History

Introduced: Original

See Also

“Matrix Multiplication” in Chapter 2 of the Building IDL Applications manual.
CROSSP IDL Reference Guide

 337
CRVLENGTH

The CRVLENGTH function computes the length of a curve with a tabular
representation, Y[i] = F(X[i]).

Warning
Data that is highly oscillatory requires a sufficient number of samples for an
accurate curve length computation.

This routine is written in the IDL language. Its source code can be found in the file
crvlength.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CRVLENGTH(X, Y [, /DOUBLE])

Return Value

Returns the curve length.

Arguments

X

An n-element single- or double-precision floating-point vector. X must contain at
least three elements, and values must be specified in ascending order. Duplicate X
values will result in a warning message.

Y

An n-element single- or double-precision floating-point vector.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

;Define a 21-element vector of X-values:
x = [-2.00, -1.50, -1.00, -0.50, 0.00, 0.50, 1.00, 1.50, 2.00, $
IDL Reference Guide CRVLENGTH

338
2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.50, $
7.00, 7.50, 8.00]

;Define a 21-element vector of Y-values:
y = [-2.99, -2.37, -1.64, -0.84, 0.00, 0.84, 1.64, 2.37, 2.99, $
3.48, 3.86, 4.14, 4.33, 4.49, 4.65, 4.85, 5.13, 5.51, $
6.02, 6.64, 7.37]

;Compute the length of the curve:
result = CRVLENGTH(x, y)

Print, result

IDL prints:

14.8115

Version History

Introduced: 5.0

See Also

INT_TABULATED, PNT_LINE
CRVLENGTH IDL Reference Guide

 339
CT_LUMINANCE

The CT_LUMINANCE function calculates the luminance of colors.

This routine is written in the IDL language. Its source code can be found in the file
ct_luminance.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CT_LUMINANCE([R, G, B] [, BRIGHT=variable] [, DARK=variable]
[, /READ_TABLES])

Return Value

The function returns an array containing the luminance values of the specified colors.
If the R, G, and B parameters are not specified, or if R is of integer, byte or long type,
the result is a longword array with the same number of elements as the input
arguments. Otherwise, the result is a floating-point array with the same number of
elements as the input arguments.

Arguments

R

An array representing the red color table. If omitted, the color values from either the
COLORS common block, or the current color table are used.

G

An array representing the green color table. This parameter is optional.

B

An array representing the blue color table. This parameter is optional.

Keywords

BRIGHT

Set this keyword to a named variable in which the array index of the brightest color is
returned.
IDL Reference Guide CT_LUMINANCE

340
DARK

Set this keyword to a named variable in which the array index of the darkest color is
returned.

READ_TABLES

Set this keyword, and don’t specify the R, G, and B arguments, to read colors directly
from the current colortable (using TVLCT, /GET) instead of using the COLORS
common block.

Version History

Introduced: Pre 4.0

See Also

GAMMA_CT, STRETCH
CT_LUMINANCE IDL Reference Guide

 341
CTI_TEST

The CTI_TEST function constructs a “contingency table” from an array of observed
frequencies and tests the hypothesis that the rows and columns are independent using
an extension of the chi-square goodness-of-fit test.

This routine is written in the IDL language. Its source code can be found in the file
cti_test.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CTI_TEST(Obfreq [, COEFF=variable] [, /CORRECTED]
[, CRAMV=variable] [, DF=variable] [, EXFREQ=variable]
[, RESIDUAL=variable])

Return Value

Returns a two-element vector containing the chi-square test statistic X2 and the one-
tailed probability of obtaining a value of X2 or greater.

Arguments

Obfreq

An m x n array containing observed frequencies. Obfreq can contain either integer,
single-, double-precision floating-point values.

Keywords

COEFF

Set this keyword to a named variable that will contain the Coefficient of Contingency.
The Coefficient of Contingency is a non-negative scalar, in the interval [0.0, 1.0],
which measures the degree of dependence within a contingency table. The larger the
value of COEFF, the greater the degree of dependence.

CORRECTED

Set this keyword to use the “Yate’s Correction for Continuity” when computing the
Chi-squared test statistic, X2. The Yate’s correction always decreases the magnitude
of X2. In general, this keyword should be set for small sample sizes.
IDL Reference Guide CTI_TEST

342
CRAMV

Set this keyword to a named variable that will contain Cramer’s V. Cramer’s V is a
non-negative scalar, in the interval [0.0, 1.0], which measures the degree of
dependence within a contingency table.

DF

Set this keyword to a named variable that will contain the number of degrees of
freedom used to compute the probability of obtaining the value of the Chi-squared
test statistic or greater. DF = (n - 1) * (m - 1) where m and n are the number of
columns and rows of the contingency table, respectively.

EXFREQ

Set this keyword to a named variable that will contain an array of m-columns and n-
rows containing expected frequencies. The elements of this array are often referred to
as the “cells” of the expected frequencies. The expected frequency of each cell is
computed as the product of row and column marginal frequencies divided by the
overall total of observed frequencies.

RESIDUAL

Set this keyword to a named variable that will contain an array of m-columns and n-
rows containing signed differences between corresponding cells of observed
frequencies and expected frequencies.

Examples

Define a 5-column and 4-row array of observed frequencies.

obfreq = [[748, 821, 786, 720, 672], $
[74, 60, 51, 66, 50], $
[31, 25, 22, 16, 15], $
[9, 10, 6, 5, 7]]

Test the hypothesis that the rows and columns of “obfreq” contain independent data
at the 0.05 significance level.

result = CTI_TEST(obfreq, COEFF = coeff)

The result should be the two-element vector [14.3953, 0.276181].

The computed value of 0.276181 indicates that there is no reason to reject the
proposed hypothesis at the 0.05 significance level. The Coefficient of Contingency
returned in the parameter “coeff” (coeff = 0.0584860) also indicates the lack of
CTI_TEST IDL Reference Guide

 343
dependence between the rows and columns of the observed frequencies. Setting the
CORRECTED keyword returns the two-element vector [12.0032, 0.445420] and
(coeff = 0.0534213) resulting in the same conclusion of independence.

Version History

Introduced: Pre 4.0

See Also

CORRELATE, M_CORRELATE, XSQ_TEST
IDL Reference Guide CTI_TEST

344
CURSOR

The CURSOR procedure is used to read the position of the interactive graphics cursor
from the current graphics device. Note that not all graphics devices have interactive
cursors. CURSOR enables the graphic cursor on the device and optionally waits for
the operator to position it. On devices that have a mouse, CURSOR normally waits
until a mouse button is pressed (or already down). If no mouse buttons are present,
CURSOR waits for a key on the keyboard to be pressed.

The system variable !MOUSE is set to the button status. Each mouse button is
assigned a bit in !MOUSE, bit 0 is the left most button, bit 1 the next, etc. See
“!MOUSE” on page 3899 for details.

Using CURSOR with Draw Widgets

Note that the CURSOR procedure is only for use with IDL graphics windows. It
should not be used with draw widgets. To obtain the cursor position and button state
information from a draw widget, examine the X, Y, PRESS, and RELEASE fields in
the structures returned by the draw widget in response to cursor events.

Using CURSOR with the TEK Device

Note that for the CURSOR procedure to work properly with Tektronix terminals, you
may need to execute the command, DEVICE, GIN_CHARS=6.

Syntax

CURSOR, X, Y [, Wait | [, /CHANGE | , /DOWN | , /NOWAIT | , /UP | , /WAIT]]
[, /DATA | , /DEVICE, | , /NORMAL]

Arguments

X

A named variable to receive the cursor’s current column position.

Y

A named variable to receive the cursor’s current row position.
CURSOR IDL Reference Guide

 345
Wait

An integer that specifies the conditions under which CURSOR returns. This
parameter can be used interchangeably with the keyword parameters listed below that
specify the type of wait. The default value is 1. The table below describes each type
of wait.

Note that not all modes of waiting work with all display devices.

Keywords

CHANGE

Set this keyword to wait for pointer movement or button transition within the
currently selected window.

DATA

Set this keyword to return X and Y in data coordinates.

DOWN

Set this keyword to wait for a button down transition within the currently selected
window.

DEVICE

Set this keyword to return X and Y in device coordinates.

Wait
Value

Corresponding
Keyword Action

0 NOWAIT Return immediately.

1 WAIT Return if a button is down.

2 CHANGE Return if a button is pressed, released, or
the pointer is moved.

3 DOWN Return when a button down transition is
detected.

4 UP Return when a button up transition is
detected.

Table 10: Values for CURSOR Wait Parameter
IDL Reference Guide CURSOR

346
NORMAL

Set this keyword to return X and Y in normalized coordinates.

NOWAIT

Set this keyword to read the pointer position and button status and return
immediately. If the pointer is not within the currently selected window, the device
coordinates -1, -1 are returned.

UP

Set this keyword to wait for a button up transition within the current window.

WAIT

Set this keyword to wait for a button to be depressed within the currently selected
window. If a button is already pressed, return immediately.

Examples

Activate the graphics cursor, select a point in the graphics window, and return the
position of the cursor in device coordinates. Enter:

CURSOR, X, Y, /DEVICE

Move the cursor over the graphics window and press the mouse button. The position
of the cursor in device coordinates is stored in the variables X and Y. To label the
location, enter:

XYOUTS, X, Y, 'X marks the spot.', /DEVICE

Version History

Introduced: Original

See Also

RDPIX, TVCRS, CURSOR_CROSSHAIR (and other CURSOR_ keywords),
WIDGET_DRAW, “!MOUSE” on page 3899
CURSOR IDL Reference Guide

 347
CURVEFIT

The CURVEFIT function uses a gradient-expansion algorithm to compute a non-
linear least squares fit to a user-supplied function with an arbitrary number of
parameters. The user-supplied function may be any non-linear function where the
partial derivatives are known or can be approximated. Iterations are performed until
the chi square changes by a specified amount, or until a maximum number of
iterations have been performed.

This routine is written in the IDL language. Its source code can be found in the file
curvefit.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CURVEFIT(X, Y, Weights, A [, Sigma] [, CHISQ=variable] [, /DOUBLE]
[, FITA=vector] [, FUNCTION_NAME=string] [, ITER=variable] [, ITMAX=value]
[, /NODERIVATIVE] [, STATUS={0 | 1 | 2}] [, TOL=value] [, YERROR=variable])

Return Value

Returns a vector of values for the dependent variables, as fitted by the function fit. If
A is double-precision or if the DOUBLE keyword is set, calculations are performed in
double-precision arithmetic, otherwise they are performed in single-precision
arithmetic.

Arguments

X

An n-element vector of independent variables.

Y

A vector of dependent variables. Y must have the same number of elements as F
returned by the user-defined function.

Weights

For instrumental (Gaussian) weighting, set Weightsi = 1.0/standard_deviation(Yi)
2.

For statistical (Poisson) weighting, Weightsi = 1.0/Yi. For no weighting, set
Weightsi = 1.0. If Weights is set to an undefined variable then no weighting will be
used.
IDL Reference Guide CURVEFIT

348
A

A vector with as many elements as the number of terms in the user-supplied function,
containing the initial estimate for each parameter. On return, the vector A contains the
fitted model parameters.

Sigma

A named variable that will contain a vector of standard deviations for the elements of
the output vector A.

Note
If Weights is omitted, then you are assuming that your supplied model is the correct
model for your data, and therefore, no independent goodness-of-fit test is possible.
In this case, the values returned for the Sigma argument are multiplied by
SQRT(CHISQ/(N*M)), where N is the number of points in X, and M is the number
of coefficients. See Section 15.2 of Numerical Recipes in C (Second Edition) for
details.

Keywords

CHISQ

Set this keyword equal to a named variable that will contain the value of the reduced
chi-squared.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

FITA

Set this keyword to a vector, with as many elements as A, which contains a zero for
each fixed parameter, and a non-zero value for elements of A to fit. If not supplied, all
parameters are taken to be non-fixed.

FUNCTION_NAME

Use this keyword to specify the name of the function to fit. If this keyword is omitted,
CURVEFIT assumes that the IDL procedure FUNCT is to be used. If FUNCT is not
already compiled, IDL compiles the function from the file funct.pro, located in the
lib subdirectory of the IDL distribution. FUNCT evaluates the sum of a Gaussian and
a second-order polynomial.
CURVEFIT IDL Reference Guide

 349
The function to be fit must be written as an IDL procedure and compiled prior to
calling CURVEFIT. The procedure must accept values of X (the independent
variable), and A (the fitted function’s initial parameter values). It must return values
for F (the function’s value at X), and optionally PDER (a 2D array of partial
derivatives).

The return value for F must have the same number of elements as Y. The return value
for PDER (if supplied) must be a 2D array with dimensions
[N_ELEMENTS(Y), N_ELEMENTS(A)].

See the Example section below for an example function.

ITER

Set this keyword equal to a named variable that will contain the actual number of
iterations performed.

ITMAX

Set this keyword to specify the maximum number of iterations. The default value is
20.

NODERIVATIVE

If this keyword is set, the routine specified by the FUNCTION_NAME keyword will
not be requested to provide partial derivatives. The partial derivatives will be
estimated by CURVEFIT using forward differences. If analytical derivatives are
available they should always be used.

STATUS

Set this keyword to a named variable that will contain an integer indicating the status
of the computation. Possible return values are:

0 The computation was successful.

1 The computation failed. Chi-square was increasing without bounds.

2 The computation failed to converge in ITMAX iterations.
IDL Reference Guide CURVEFIT

350
TOL

Use this keyword to specify the desired convergence tolerance. The routine returns
when the relative decrease in chi-squared is less than TOL in one iteration. The
default value is 1.0 x 10-3.

YERROR

Set this keyword to a named variable that will contain the standard error between
YFIT and Y.

Examples

Fit a function of the form F(x) = a * exp(b*x) + c to sample pairs contained
in arrays X and Y. The partial derivatives are easily computed symbolically:

df/da = EXP(b*x)
df/db = a * x * EXP(b*x)
df/dc = 1.0

First, define a procedure to return F(x) and the partial derivatives, given X. Note that
A is an array containing the values a, b, and c.

PRO gfunct, X, A, F, pder
bx = EXP(A[1] * X)
F = A[0] * bx + A[2]
CURVEFIT IDL Reference Guide

 351
;If the procedure is called with four parameters, calculate the
;partial derivatives.

IF N_PARAMS() GE 4 THEN $
pder = [[bx], [A[0] * X * bx], [replicate(1.0, N_ELEMENTS(X))]]

END

Compute the fit to the function we have just defined. First, define the independent and
dependent variables:

X = FLOAT(INDGEN(10))
Y = [12.0, 11.0, 10.2, 9.4, 8.7, 8.1, 7.5, 6.9, 6.5, 6.1]

;Define a vector of weights.
weights = 1.0/Y

;Provide an initial guess of the function’s parameters.
A = [10.0,-0.1,2.0]

;Compute the parameters.
yfit = CURVEFIT(X, Y, weights, A, SIGMA, FUNCTION_NAME='gfunct')

;Print the parameters returned in A.
PRINT, 'Function parameters: ', A

IDL prints:

Function parameters: 9.91120 -0.100883 2.07773

Thus, the function that best fits the data is:

f (x) = 9.91120(e-0.100883x) + 2.07773

Version History

Introduced: Original

YERROR keyword added: 5.6

See Also

COMFIT, GAUSS2DFIT, GAUSSFIT, LMFIT, POLY_FIT, REGRESS, SFIT,
SVDFIT
IDL Reference Guide CURVEFIT

352
CV_COORD

The CV_COORD function converts 2D and 3D coordinates between the rectangular,
polar, cylindrical, and spherical coordinate systems.

This routine is written in the IDL language. Its source code can be found in the file
cv_coord.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CV_COORD([, /DEGREES] [, /DOUBLE] [, FROM_CYLIN=cyl_coords |
, FROM_POLAR=pol_coords | , FROM_RECT=rect_coords |
, FROM_SPHERE=sph_coords] [, /TO_CYLIN | , /TO_POLAR | , /TO_RECT |
, /TO_SPHERE])

Return Value

If the value specified in the “FROM_” keyword is double precision, or if the
DOUBLE keyword is set, then all calculations are performed in double precision and
the returned value is double precision. Otherwise, single precision is used. If none of
the “FROM_” keyword are specified, 0 is returned. If none of the “TO_” keywords
are specified, the input coordinates are returned.

Arguments

This function has no required arguments. All data is passed in via keywords.

Keywords

DEGREES

If set, then the input and output coordinates are in degrees (where applicable).
Otherwise, the angles are in radians.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

FROM_CYLIN

A vector of the form [angle, radius, z], or a (3, n) array of cylindrical coordinates to
convert.
CV_COORD IDL Reference Guide

 353
FROM_POLAR

A vector of the form [angle, radius], or a (2, n) array of polar coordinates to convert.

FROM_RECT

A vector of the form [x, y] or [x, y, z], or a (2, n) or (3, n) array containing rectangular
coordinates to convert.

FROM_SPHERE

A vector of the form [longitude, latitude, radius], or a (3, n) array of spherical
coordinates to convert.

TO_CYLIN

If set, cylindrical coordinates are returned in a vector of the form [angle, radius, z], or
a (3, n) array.

TO_POLAR

If set, polar coordinates are returned in a vector of the form [angle, radius], or a (2, n)
array.

TO_RECT

If set, rectangular coordinates are returned in a vector of the form [x, y] or [x, y, z], or
a (2, n) or (3, n) array.

TO_SPHERE

If set, spherical coordinates are returned in a vector of the form [longitude, latitude,
radius], or a (3, n) array.

Examples

Convert from spherical to cylindrical coordinates:

sph_coord = [[45.0, -60.0, 10.0], [0.0, 0.0, 0.0]]
rect_coord = CV_COORD(FROM_SPHERE=sph_coord, /TO_CYLIN, /DEGREES)

Convert from rectangular to polar coordinates:

rect_coord = [10.0, 10.0]
polar_coord = CV_COORD(FROM_RECT=rect_coord, /TO_POLAR)
IDL Reference Guide CV_COORD

354
Version History

Introduced: Pre 4.0

See Also

CONVERT_COORD, COORD2TO3, CREATE_VIEW, SCALE3, T3D
CV_COORD IDL Reference Guide

 355
CVTTOBM

The CVTTOBM function converts a byte array in which each byte represents one
pixel into a “bitmap byte array” in which each bit represents one pixel. This is useful
when creating bitmap labels for buttons created with the WIDGET_BUTTON
function.

Most of IDL’s image file format reading functions (READ_BMP, READ_PICT, etc.)
return a byte array which must be converted before use as a button label. Note that
there is one exception to this rule; the READ_X11_BITMAP routine returns a bitmap
byte array that needs no conversion before use.

This routine is written in the IDL language. Its source code can be found in the file
cvttobm.pro in the lib subdirectory of the IDL distribution.

Note
IDL supports color bitmaps for button labels. The IDL GUIBuilder has a Bitmap
Editor that allows you to create color bitmaps for button labels. The BITMAP
keyword to WIDGET_BUTTON specifies that the button label is a color bitmap.

Syntax

Result = CVTTOBM(Array [, THRESHOLD=value{0 to 255}])

Return Value

Returns a bitmap byte array. Bitmap byte arrays are monochrome; by default,
CVTTOBM converts pixels that are darker than the median value to black and pixels
that are lighter than the median value to white. You can supply a different threshold
value via the THRESHOLD keyword.

Arguments

Array

A 2-dimensional pixel array, one byte per pixel.
IDL Reference Guide CVTTOBM

356
Keywords

THRESHOLD

A byte value (or an integer value between 0 and 255) to be used as a threshold value
when determining if a particular pixel is black or white. If THRESHOLD is not
specified, the threshold is calculated to be the average of the input array.

Examples

The following example creates a bitmap button label from a byte array:

; Create a byte array:
image = BYTSCL(DIST(100))
; Create a widget base:
base = WIDGET_BASE(/COLUMN)

; Use CVTTOBM to create a bitmap byte array for a button label:
button = WIDGET_BUTTON(base, VALUE = CVTTOBM(image))

; Realize the widget:
WIDGET_CONTROL, base, /REALIZE

Version History

Introduced: 5.0

See Also

WIDGET_BUTTON, XBM_EDIT, “Using the Bitmap Editor” in Chapter 24 of the
Building IDL Applications manual.
CVTTOBM IDL Reference Guide

 357
CW_ANIMATE

The CW_ANIMATE function creates a compound widget that displays an animated
sequence of images using off-screen windows knows as pixmaps. The speed and
direction of the display can be adjusted using the widget interface.

CW_ANIMATE provides the graphical interface used by the XINTERANIMATE
procedure, which is the preferred routine for displaying animation sequences in most
situations. Use this widget instead of XINTERANIMATE when you need to run
multiple instances of the animation widget simultaneously. Note that if more than one
animation widget is running, they will have to share resources and will display
images more slowly than a single instance of the widget.

This routine is written in the IDL language. Its source code can be found in the file
cw_animate.pro in the lib subdirectory of the IDL distribution.

Using CW_ANIMATE

Unlike XINTERANIMATE, using the CW_ANIMATE widget requires calls to two
separate procedures, CW_ANIMATE_LOAD and CW_ANIMATE_RUN, to load the
images to be animated and to run the animation. Alternatively, you can supply a
vector of pre-existing pixmap window IDs, eliminating the need to use
CW_ANIMATE_LOAD. The vector of pixmaps is commonly obtained from a call to
CW_ANIMATE_GETP applied to a previous animation widget. Once the images are
loaded, they are displayed by copying the images from the pixmap or buffer to the
visible draw widget.

See the documentation for CW_ANIMATE_LOAD, CW_ANIMATE_RUN, and
CW_ANIMATE_GETP for more information.

The only event returned by CW_ANIMATE indicates that the user has clicked on the
“End Animation” button. The parent application should use this as a signal to kill the
animation widget via WIDGET_CONTROL. When the widget is destroyed, the
pixmaps used in the animation are destroyed as well, unless they were saved by a call
to CW_ANIMATE_GETP.

See the animation widget’s help file (available by clicking the “Help” button on the
widget) for more information about the widget’s controls.

Syntax

Result = CW_ANIMATE(Parent, Sizex, Sizey, Nframes [, /NO_KILL]
[, OPEN_FUNC=string] [, PIXMAPS=vector] [, /TRACK] [, UNAME=string]
[, UVALUE=value])
IDL Reference Guide CW_ANIMATE

358
Return Value

This function returns the widget ID of the newly-created animation widget.

Arguments

Parent

The widget ID of the parent widget.

Sizex

The width of the displayed image, in pixels.

Sizey

The height of the displayed image, in pixels

Nframes

The number of frames in the animation sequence.

Keywords

NO_KILL

Set this keyword to omit the “End Animation” button from the animation widget.

OPEN_FUNC

Set this keyword equal to a scalar string specifying the name of a user-written
function that loads animation data. If a function is specified, an “Open ...” button is
added to the animation widget.

PIXMAPS

Use this keyword to provide the animation widget with a vector of pre-existing
pixmap (off screen window) IDs. This vector is usually obtained from a call to
CW_ANIMATE_GETP applied to a previous animation widget.

TRACK

Set this keyword to cause the frame slider to track the frame number of the currently-
displayed frame.
CW_ANIMATE IDL Reference Guide

 359
UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return information
on base widgets can be used with compound widgets.

See “Compound Widgets” in Chapter 26 of the Building IDL Applications manual for
a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_ANIMATE Widget

The only event returned by this widget indicates that the user has pressed the DONE
button. The parent application should use this as a signal to kill the animation widget
via WIDGET_CONTROL.

Examples

Assume the following event handler procedure exists:

PRO EHANDLER, EV
WIDGET_CONTROL, /DESTROY, EV.TOP
end

Tip
If you wish to create this event handler starting from the IDL command prompt,
remember to begin with the .RUN command.
IDL Reference Guide CW_ANIMATE

360
Enter the following commands to open the file ABNORM.DAT (a series of images of a
human heart) and load the images it contains into an array H.

OPENR, 1, FILEPATH('abnorm.dat', SUBDIR = ['examples','data'])
H = BYTARR(64, 64, 16)
READU, 1, H
CLOSE, 1
H = REBIN(H, 128, 128, 16)

Create an instance of the animation widget and load the frames. Note that because the
animation widget is realized before the call to CW_ANIMATE_LOAD, the frames
are displayed as they are loaded. This provides the user with an indication of how
things are progressing.

base = WIDGET_BASE(TITLE = 'Animation Widget')
animate = CW_ANIMATE(base, 128, 128, 16)
WIDGET_CONTROL, /REALIZE, base
FOR I=0,15 DO CW_ANIMATE_LOAD, animate, FRAME=I, IMAGE=H[*,*,I]

Save the pixmap window IDs for future use:

CW_ANIMATE_GETP, animate, pixmap_vect

Start the animation:

CW_ANIMATE_RUN, animate
XMANAGER, 'CW_ANIMATE Demo', base, EVENT_HANDLER = 'EHANDLER'

Pressing the “End Animation” button kills the application.

Figure 6: The animation interface created by CW_ANIMATE
CW_ANIMATE IDL Reference Guide

 361
Version History

Introduced: Pre 4.0

See Also

CW_ANIMATE_LOAD, CW_ANIMATE_RUN, CW_ANIMATE_GETP,
XINTERANIMATE
IDL Reference Guide CW_ANIMATE

362
CW_ANIMATE_GETP

The CW_ANIMATE_GETP procedure gets a copy of the vector of pixmap window
IDs being used by a CW_ANIMATE animation widget. If this routine is called,
CW_ANIMATE does not destroy the pixmaps when it is destroyed. You can then
provide the pixmaps to a later instance of CW_ANIMATE to re-use them, skipping
the pixmap creation and rendering step (CW_ANIMATE_LOAD).

CW_ANIMATE provides the graphical interface used by the XINTERANIMATE
procedure, which is the preferred routine for displaying animation sequences in most
situations. Use this widget instead of XINTERANIMATE when you need to run
multiple instances of the animation widget simultaneously. Note that if more than one
animation widget is running, they will have to share resources and will display
images more slowly than a single instance of the widget.

This routine is written in the IDL language. Its source code can be found in the file
cw_animate.pro in the lib subdirectory of the IDL distribution.

Syntax

CW_ANIMATE_GETP, Widget, Pixmaps [, /KILL_ANYWAY]

Arguments

Widget

The widget ID of the animation widget (created with CW_ANIMATE) that contains
the pixmaps.

Pixmaps

A named variable that will contain a vector of the window IDs of the pixmap
windows.

Keywords

KILL_ANYWAY

Set this keyword to ensure that the pixmaps are destroyed anyway when
CW_ANIMATE exits, despite the fact that CW_ANIMATE_GETP has been called.
CW_ANIMATE_GETP IDL Reference Guide

 363
Example

See “CW_ANIMATE” on page 357.

Version History

Introduced: Pre 4.0

See Also

CW_ANIMATE, CW_ANIMATE_LOAD, CW_ANIMATE_RUN,
XINTERANIMATE
IDL Reference Guide CW_ANIMATE_GETP

364
CW_ANIMATE_LOAD

The CW_ANIMATE_LOAD procedure creates an array of pixmaps which are loaded
into a CW_ANIMATE compound widget.

CW_ANIMATE provides the graphical interface used by the XINTERANIMATE
procedure, which is the preferred routine for displaying animation sequences in most
situations. Use this widget instead of XINTERANIMATE when you need to run
multiple instances of the animation widget simultaneously. Note that if more than one
animation widget is running, they will have to share resources and will display
images more slowly than a single instance of the widget.

This routine is written in the IDL language. Its source code can be found in the file
cw_animate.pro in the lib subdirectory of the IDL distribution.

Syntax

CW_ANIMATE_LOAD, Widget [, /CYCLE] [, FRAME=value{0 to NFRAMES}]
[, IMAGE=value] [, /ORDER] [, WINDOW=[window_num [, X0, Y0, Sx, Sy]]]
[, XOFFSET=pixels] [, YOFFSET=pixels]

Arguments

Widget

The widget ID of the animation widget (created with CW_ANIMATE) into which the
image should be loaded.

Keywords

CYCLE

Set this keyword to cause the animation to cycle. Normally, frames are displayed
going either forward or backward. If CYCLE is set, the animation reverses direction
after the last frame in either direction is displayed.

FRAME

The frame number to be loaded. This is a value between 0 and NFRAMES. If not
supplied, frame 0 is loaded.
CW_ANIMATE_LOAD IDL Reference Guide

 365
IMAGE

The image to be loaded. IMAGE can either be a 2D or a 3D (24-bit) image.

ORDER

Set this keyword to display images from the top down instead of the default bottom
up. This keyword is only used when loading images with the IMAGE keyword.

WINDOW

When this keyword is specified, an image is copied from an existing window to the
animation pixmap. Under some windowing systems, this technique is much faster
than reading from the display and then loading with the IMAGE keyword.

The value of this parameter is either an IDL window number (in which case the entire
window is copied), or a vector containing the window index and the rectangular
bounds of the area to be copied. For example:

WINDOW = [Window_Number, X0, Y0, Sx, Sy]

XOFFSET

The horizontal offset, in pixels from the left of the frame, of the image in the
destination window.

YOFFSET

The vertical offset, in pixels from the bottom of the frame, of the image in the
destination window.

Example

See the documentation for CW_ANIMATE for an example using this procedure.
Note that if the widget is realized before calls to CW_ANIMATE_LOAD, the frames
are displayed as they are loaded. This provides the user with an indication of how
things are progressing.

Version History

Introduced: Pre 4.0
IDL Reference Guide CW_ANIMATE_LOAD

366
See Also

CW_ANIMATE, CW_ANIMATE_GETP, CW_ANIMATE_RUN,
XINTERANIMATE
CW_ANIMATE_LOAD IDL Reference Guide

 367
CW_ANIMATE_RUN

The CW_ANIMATE_RUN procedure displays a series of images that have been
loaded into a CW_ANIMATE compound widget by a call to
CW_ANIMATE_LOAD.

CW_ANIMATE provides the graphical interface used by the XINTERANIMATE
procedure, which is the preferred routine for displaying animation sequences in most
situations. Use this widget instead of XINTERANIMATE when you need to run
multiple instances of the animation widget simultaneously. Note that if more than one
animation widget is running, they will have to share resources and will display
images more slowly than a single instance of the widget.

This routine is written in the IDL language. Its source code can be found in the file
cw_animate.pro in the lib subdirectory of the IDL distribution.

Syntax

CW_ANIMATE_RUN, Widget [, Rate{0 to 100}] [, NFRAMES=value] [, /STOP]

Arguments

Widget

The widget ID of the animation widget (created with CW_ANIMATE) that will
display the animation.

Rate

A value between 0 and 100 that represents the speed of the animation as a percentage
of the maximum display rate. The fastest animation has a value of 100 and the
slowest has a value of 0. The default animation rate is 100.

The animation rate can also be adjusted after the animation has begun by changing
the value of the “Animation Speed” slider.

Keywords

NFRAMES

Set this keyword equal to the number of frames to animate. This number must be less
than or equal to the Nframes argument to CW_ANIMATE.
IDL Reference Guide CW_ANIMATE_RUN

368
STOP

If this keyword is set, the animation is stopped.

Example

See “CW_ANIMATE” on page 357.

Version History

Introduced: Pre 4.0

See Also

CW_ANIMATE, CW_ANIMATE_GETP, CW_ANIMATE_LOAD,
XINTERANIMATE
CW_ANIMATE_RUN IDL Reference Guide

 369
CW_ARCBALL

The CW_ARCBALL function creates a compound widget for intuitively specifying
three-dimensional orientations.

The user drags a simulated track-ball with the mouse to interactively obtain arbitrary
rotations. Sequences of rotations may be cascaded. The rotations may be
unconstrained (about any axis), constrained to the view X, Y, or Z axes, or
constrained to the object’s X, Y, or Z axis.

This widget is based on “ARCBALL: A User Interface for Specifying Three-
Dimensional Orientation Using a Mouse,” by Ken Shoemake, Computer Graphics
Laboratory, University of Pennsylvania, Philadelphia, PA 19104.

This widget can generate any rotation about any axis. Note, however, that not all
rotations are compatible with the IDL SURFACE procedure, which is restricted to
rotations that project the object Z axis parallel to the view Y axis.

This routine is written in the IDL language. Its source code can be found in the file
cw_arcball.pro in the lib subdirectory of the IDL distribution.

Using CW_ARCBALL

Use the command:

WIDGET_CONTROL, id, GET_VALUE = matrix

to return the current 3x3 rotation matrix in the variable matrix.

You can set the arcball to new rotation matrix using the command:

WIDGET_CONTROL, id, SET_VALUE = matrix

after the widget is initially realized.

Syntax

Result = CW_ARCBALL(Parent [, COLORS=array] [, /FRAME]
[, LABEL=string] [, RETAIN={0 | 1 | 2}] [, SIZE=pixels] [, /UPDATE]
[, UNAME=string] [, UVALUE=value] [, VALUE=array])

Return Value

This function returns the widget ID of the newly-created ARCBALL widget.
IDL Reference Guide CW_ARCBALL

370
Arguments

Parent

The widget ID of the parent widget.

Keywords

COLORS

A 6-element array containing the color indices to be used.

• Colors[0] = view axis color,

• Colors[1] = object axis color,

• Colors[2] = XZ plane +Y side (body top) color,

• Colors[3] = YZ plane (fin) color,

• Colors[4] = XZ plane -Y side (body bottom),

• Colors[5] = background color.

For devices that are using indexed color (i.e., DECOMPOSED=0), the default value
for COLORS is [1,7,2,3,7,0], which yields good colors with the TEK_COLOR
table: (white, yellow, red, green, yellow, black). For devices that are using
decomposed color (i.e., DECOMPOSED=1), the default value is an array of
corresponding decomposed (rather than indexed) colors: (white, yellow, red, green,
yellow, black).

For more information on decomposed color, refer to the DECOMPOSED keyword to
the DEVICE routine.

FRAME

Set this keyword to draw a frame around the widget.

LABEL

Set this keyword to a string containing the widget’s label.

RETAIN

Set this keyword to zero, one, or two to specify how backing store should be handled
for the draw widget. RETAIN=0 specifies no backing store. RETAIN=1 requests that
CW_ARCBALL IDL Reference Guide

 371
the server or window system provide backing store. RETAIN=2 specifies that IDL
provide backing store directly. See “Backing Store” on page 3824 for details.

SIZE

The size of the square drawable area containing the arcball, in pixels. The default is
192.

UPDATE

Set this keyword to cause the widget will send an event each time the mouse button is
released after a drag operation. By default, events are only sent when the “Update”
button is pressed.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

VALUE

Set this keyword to a 3 x 3 array that will be the initial value for the rotation matrix.
VALUE must be a valid rotation matrix (no translation or perspective) where
TRANSPOSE(VALUE) = INVERSE(VALUE). This can be the upper-left corner of
!P.T after executing the command

T3D, /RESET, ROTATE = [x,y,z].

The default is the identity matrix.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return information
on base widgets can be used with compound widgets.
IDL Reference Guide CW_ARCBALL

372
In addition, you can use the GET_VALUE and SET_VALUE keywords to
WIDGET_CONTROL to obtain or set the 3 x 3 rotation matrix in the arcball widget.

See “Compound Widgets” in Chapter 26 of the Building IDL Applications manual for
a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_ARCBALL
Widget

Arcball widgets generate event structures with the following definition:

event = {ID:0L, TOP:0L, HANDLER:0L, VALUE:fltarr(3,3) }

The VALUE field contains the 3 x 3 array representing the new rotation matrix.

Examples

See the procedure ARCBALL_TEST, contained in the cw_arcball.pro file. To test
CW_ARCBALL, enter the following commands:

.RUN cw_arcball
ARCBALL_TEST

This results in the following:

Figure 7: The CW_ARCBALL widget.
CW_ARCBALL IDL Reference Guide

 373
Version History

Introduced: Pre 4.0

See Also

CREATE_VIEW, SCALE3, T3D
IDL Reference Guide CW_ARCBALL

374
CW_BGROUP

The CW_BGROUP function creates a widget base of buttons. It handles the details of
creating the proper base (standard, exclusive, or non-exclusive) and filling in the
desired buttons. Events for the individual buttons are handled transparently, and a
CW_BGROUP event returned. This event can return any one of the following:

• the index of the button within the base,

• the widget ID of the button,

• the name of the button,

• an arbitrary value taken from an array of user values.

Only buttons with textual names are handled by this widget. Bitmaps are not
understood.

This routine is written in the IDL language. Its source code can be found in the file
cw_bgroup.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CW_BGROUP(Parent, Names [, BUTTON_UVALUE=array]
[, COLUMN=value] [, EVENT_FUNC=string] [{, /EXCLUSIVE | ,
/NONEXCLUSIVE} | [, SPACE=pixels] [, XPAD=pixels] [, YPAD=pixels]]
[, FONT=font] [, FRAME=width] [, IDS=variable] [, /LABEL_LEFT=string | ,
/LABEL_TOP=string] [, /MAP] [, /NO_RELEASE] [, /RETURN_ID | ,
/RETURN_INDEX | , /RETURN_NAME] [, ROW=value] [, /SCROLL]
[, X_SCROLL_SIZE=width] [, Y_SCROLL_SIZE=height] [, SET_VALUE=value]
[, UNAME=string] [, UVALUE=value] [, XOFFSET=value] [, XSIZE=width]
[, YOFFSET=value] [, YSIZE=value])

Return Value

This function returns the widget ID of the newly-created button group widget.

Arguments

Parent

The widget ID of the parent widget.
CW_BGROUP IDL Reference Guide

 375
Names

A string array, one string per button, giving the name of each button.

Keywords

BUTTON_UVALUE

An array of user values to be associated with each button and returned in the event
structure. If this keyword is set, the user values are always returned, even if the any of
the RETURN_ID, RETURN_INDEX, or RETURN_NAME keywords are set.

COLUMN

Buttons will be arranged in the number of columns specified by this keyword.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget. This function is called with the return value structure
whenever a button is pressed, and follows the conventions for user-written event
functions.

EXCLUSIVE

Set this keyword to cause buttons to be placed in an exclusive base, in which only one
button can be selected at a time.

FONT

The name of the font to be used for the button titles. The font specified is a “device
font” (an X Windows font on Motif systems; a TrueType or PostScript font on
Windows systems). See “About Device Fonts” on page 3962 for details on specifying
names for device fonts. If this keyword is omitted, the default font is used.

FRAME

Specifies the width of the frame to be drawn around the base.

IDS

A named variable in which the button IDs will be stored, as a longword vector.
IDL Reference Guide CW_BGROUP

376
LABEL_LEFT

Set this keyword to a string creating a text label to the left of the buttons.

LABEL_TOP

Set this keyword to a string creating a text label above the buttons.

MAP

Set this keyword to cause the base to be mapped when the widget is realized (the
default).

NONEXCLUSIVE

Set this keyword to cause buttons to be placed in an non-exclusive base, in which any
number of buttons can be selected at once.

NO_RELEASE

If set, button release events will not be returned.

RETURN_ID

Set this keyword to return the widget ID of the button in the VALUE field of returned
events. This keyword is ignored if the BUTTON_UVALUE keyword is set.

RETURN_INDEX

Set this keyword to return the zero-based index of the button within the base in the
VALUE field of returned events. This keyword is ignored if the BUTTON_UVALUE
keyword is set. THIS IS THE DEFAULT.

RETURN_NAME

Set this keyword to return the name of the button within the base in the VALUE field
of returned events. This keyword is ignored if the BUTTON_UVALUE keyword is
set.

ROW

Buttons will be arranged in the number of rows specified by this keyword.
CW_BGROUP IDL Reference Guide

 377
SCROLL

If set, the base will include scroll bars to allow viewing a large base through a smaller
viewport.

SET_VALUE

Allows changing the current state of toggle buttons (i.e., exclusive and nonexclusive
groups of buttons). The behavior of SET_VALUE differs between EXCLUSIVE and
NONEXCLUSIVE CW_BGROUP widgets. With EXCLUSIVE CW_BGROUP
widgets, the argument to SET_VALUE is the id of the widget to be turned on. With
NONEXCLUSIVE CW_BGROUP widgets the argument to SET_VALUE should be
an array of on/off flags for the array of buttons.

SPACE

The space, in pixels, to be left around the edges of a row or column major base.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

XOFFSET

The X offset of the widget relative to its parent.

XPAD

The horizontal space, in pixels, between children of a row or column major base.

XSIZE

The width of the base.
IDL Reference Guide CW_BGROUP

378
X_SCROLL_SIZE

The width of the viewport if SCROLL is specified.

YOFFSET

The Y offset of the widget relative to its parent.

YPAD

The vertical space, in pixels, between children of a row or column major base.

YSIZE

The height of the base.

Y_SCROLL_SIZE

The height of the viewport if SCROLL is specified.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return information
on base widgets can be used with compound widgets.

In addition, you can use the GET_VALUE and SET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the button group. The values for
different types of CW_BGROUP widgets is shown in the table below:

See “Writing Compound Widgets” in Chapter 26 of the Building IDL Applications
manual for a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Type Value

normal None

exclusive Index of currently set button

non-exclusive Vector indicating the position
of each button (1-set, 0-unset)

Table 11: Button Group Values
CW_BGROUP IDL Reference Guide

 379
Widget Events Returned by the CW_BGROUP Widget

Button Group widgets generates event structures with the following definition:

event = {ID:0L, TOP:0L, HANDLER:0L, SELECT:0, VALUE:0 }

The SELECT field is passed through from the button event. VALUE is either the
INDEX, ID, NAME, or BUTTON_UVALUE of the button, depending on how the
widget was created.

Version History

Introduced: Pre 4.0

See Also

CW_PDMENU, WIDGET_BUTTON
IDL Reference Guide CW_BGROUP

380
CW_CLR_INDEX

The CW_CLR_INDEX function creates a compound widget for the selection of a
color index. A horizontal color bar is displayed. Clicking on the bar sets the color
index.

This routine is written in the IDL language. Its source code can be found in the file
cw_clr_index.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CW_CLR_INDEX(Parent [, COLOR_VALUES=vector |
[, NCOLORS=value] [, START_COLOR=value]]
[, EVENT_FUNC=‘function_name’] [, /FRAME] [, LABEL=string]
[, UNAME=string] [, UVALUE=value] [, VALUE=value] [, XSIZE=pixels]
[, YSIZE=pixels])

Return Value

This function returns the widget ID of the newly-created color index widget.

Arguments

Parent

The widget ID of the parent widget.

Keywords

COLOR_VALUES

A vector of color indices containing the colors to be displayed in the color bar. If
omitted, NCOLORS and START_COLOR specify the range of color indices.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget. This function is called with the return value structure
whenever a button is pressed, and follows the conventions for user-written event
functions.
CW_CLR_INDEX IDL Reference Guide

 381
FRAME

If set, a frame will be drawn around the widget.

LABEL

A text label that appears to the left of the color bar.

NCOLORS

The number of colors to place in the color bar. The default is !D.N_COLORS.

START_COLOR

Set this keyword to the starting color index, placed at the left of the bar.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

VALUE

Set this keyword to the index of the color that is to be initially selected. The default is
the START_COLOR.

XSIZE

The width of the color bar in pixels. The default is 192.

YSIZE

The height of the color bar in pixels. The default is 12.
IDL Reference Guide CW_CLR_INDEX

382
Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return information
on base widgets can be used with compound widgets.

In addition, you can use the GET_VALUE and SET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the color selection widget. The
value of a CW_CLR_INDEX widget is the index of the color selected.

See “Writing Compound Widgets” in Chapter 26 of the Building IDL Applications
manual for a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_CLR_INDEX
Widget

This widget generates event structures with the following definition:

Event = {CW_COLOR_INDEX, ID: base, TOP: ev.top, HANDLER: 0L,
VALUE:c}

The VALUE field is the color index selected.

Version History

Introduced: Pre 4.0

See Also

CW_COLORSEL, XLOADCT, XPALETTE
CW_CLR_INDEX IDL Reference Guide

 383
CW_COLORSEL

The CW_COLORSEL function creates a compound widget that displays all the
colors in the current colormap in a 16 x 16 (320 x 320 pixels) grid. To select a color
index, the user moves the mouse pointer over the desired color square and presses any
mouse button. Alternatively, the color index can be selected by moving one of the
three sliders provided around the grid.

This routine is written in the IDL language. Its source code can be found in the file
cw_colorsel.pro in the lib subdirectory of the IDL distribution.

Using CW_COLORSEL

The command:

WIDGET_CONTROL, widgetID, SET_VALUE = -1

informs the widget to initialize itself and redraw. It should be called when any of the
following happen:

• the widget is realized,

• the widget needs redrawing,

• the brightest or darkest color has changed.

To set the current color index, use the command:

WIDGET_CONTROL, widgetID, SET_VALUE = index

To retrieve the current color index and store it in the variable var, use the command:

WIDGET_CONTROL, widgetID, GET_VALUE = var

Syntax

Result = CW_COLORSEL(Parent [, /FRAME] [, UNAME=string]
[, UVALUE=value] [, XOFFSET=value] [, YOFFSET=value])

Return Value

This function returns the widget ID of the newly-created color index widget.
IDL Reference Guide CW_COLORSEL

384
Arguments

Parent

The widget ID of the parent widget.

Keywords

FRAME

If set, a frame is drawn around the widget.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

XOFFSET

The X offset position

YOFFSET

The Y offset position

Widget Events Returned by the CW_COLORSEL
Widget

This widget generates event structures with the following definition:

Event = {COLORSEL_EVENT, ID: base, TOP: ev.top, HANDLER: 0L, VALUE:c}

The VALUE field is the color index selected.
CW_COLORSEL IDL Reference Guide

 385
Version History

Introduced: Pre 4.0

See Also

CW_CLR_INDEX, XLOADCT, XPALETTE
IDL Reference Guide CW_COLORSEL

386
CW_DEFROI

The CW_DEFROI function creates a compound widget that allows the user to define
a region of interest within a widget draw window.

Warning
This is a modal widget. No other widget applications will be responsive while this
widget is in use. Also, since CW_DEFROI has its own event-handling loop, it
should not be created as a child of a modal base.

This routine is written in the IDL language. Its source code can be found in the file
cw_defroi.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CW_DEFROI(Draw [, IMAGE_SIZE=vector] [, OFFSET=vector]
[, /ORDER] [, /RESTORE] [, ZOOM=vector])

Return Value

The is function returns an array of subscripts defining the region. If no region is
defined, the scalar -1 is returned.

Arguments

Draw

The widget ID of draw window in which to draw the region. Note that the draw
window must have both BUTTON and MOTION events enabled (see
WIDGET_DRAW for more information).

Keywords

IMAGE_SIZE

The size of the underlying array, expressed as a two element vector: [columns, rows].
Default is the size of the draw window divided by the value of ZOOM.

OFFSET

The offset of lower left corner of image within the draw window. Default = [0,0].
CW_DEFROI IDL Reference Guide

 387
ORDER

Set this keyword to return inverted subscripts, as if the array were output from top to
bottom.

RESTORE

Set this keyword to restore the draw window to its previous appearance on exit.
Otherwise, the regions remain on the drawable.

ZOOM

If the image array was expanded (using REBIN, for example) specify this two
element vector containing the expansion factor in X and Y. Default = [1,1]. Both
elements of ZOOM must be integers.

Widget Events Returned by the CW_DEFROI Widget

Region definition widgets do not return an event structure.

Examples

The following two procedures create a region-of-interest widget and its event handler.
Create a file containing the program code using a text editor and compile using the
.RUN command, or type .RUN at the IDL prompt and enter the lines interactively.

First, create the event handler:

PRO test_event, ev

; The common block holds variables that are shared between the
; routine and its event handler:
COMMON T, draw, dbutt, done, image

; Define what happens when you click the "Draw ROI" button:
IF ev.id EQ dbutt THEN BEGIN

; The ROI definition will be stored in the variable Q:
Q = CW_DEFROI(draw)
IF (Q[0] NE -1) then BEGIN

; Show the size of the ROI definition array:
HELP, Q
; Duplicate the original image.
image2 = image

; Set the points in the ROI array Q equal to a single
; color value:
IDL Reference Guide CW_DEFROI

388
image2(Q)=!P.COLOR-1

; Get the window ID of the draw widget:
WIDGET_CONTROL, draw, GET_VALUE=W

; Set the draw widget as the current graphics window:
WSET, W

; Load the image plus the ROI into the draw widget:
TV, image2

ENDIF
ENDIF

; Define what happens when you click the "Done" button:
IF ev.id EQ done THEN WIDGET_CONTROL, ev.top, /DESTROY

END

Next, create a draw widget that can call CW_DEFROI. Note that you must specify
both button events and motion events when creating the draw widget, if it is to be
used with CW_DEFROI.

PRO test
COMMON T, draw, dbutt, done, image

; Create a base to hold the draw widget and buttons:
base = WIDGET_BASE(/COLUMN)

; Create a draw widget that will return both button and
; motion events:
draw = WIDGET_DRAW(base, XSIZE=256, YSIZE=256, /BUTTON, /MOTION)
dbutt = WIDGET_BUTTON(base, VALUE='Draw ROI')
done = WIDGET_BUTTON(base, VALUE='Done')
WIDGET_CONTROL, base, /REALIZE

; Get the widget ID of the draw widget:
WIDGET_CONTROL, draw, GET_VALUE=W

; Set the draw widget as the current graphics window:
WSET, W

; Create an original image:
image = BYTSCL(SIN(DIST(256)))

; Display the image in the draw widget:
TV, image
CW_DEFROI IDL Reference Guide

 389
; Start XMANAGER:
XMANAGER, "test", base

END

This results in the following:

Version History

Introduced: Pre 4.0

See Also

DEFROI

Figure 8: The Region of Interest Definition Widget
IDL Reference Guide CW_DEFROI

390
CW_FIELD

The CW_FIELD function creates a widget data entry field. The field consists of a
label and a text widget. CW_FIELD can create string, integer, or floating-point fields.
The default is an editable string field.

This routine is written in the IDL language. Its source code can be found in the file
cw_field.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CW_FIELD(Parent [, /ALL_EVENTS] [, /COLUMN]
[, FIELDFONT=font] [, /FLOATING | , /INTEGER | , /LONG | , /STRING]
[, FONT=string] [, FRAME=pixels] [, /NOEDIT] [, /RETURN_EVENTS] [, /ROW]
[, TEXT_FRAME=pixels] [, TITLE=string] [, UNAME=string] [, UVALUE=value]
[, VALUE=value] [, XSIZE=characters] [, YSIZE=lines])

Return Value

This function returns the widget ID of the newly-created field widget.

Arguments

Parent

The widget ID of the parent widget.

Keywords

ALL_EVENTS

Like RETURN_EVENTS but return an event whenever the contents of a text field
have changed.

COLUMN

Set this keyword to center the label above the text field. The default is to position the
label to the left of the text field.

FIELDFONT

A string containing the name of the font to use for the TEXT part of the field.
CW_FIELD IDL Reference Guide

 391
FLOATING

Set this keyword to have the field accept only floating-point values. Any number or
string entered is converted to its floating-point equivalent.

FONT

A string containing the name of the font to use for the TITLE of the field. The font
specified is a “device font” (an X Windows font on Motif systems; a TrueType or
PostScript font on Windows systems). See “About Device Fonts” on page 3962 for
details on specifying names for device fonts. If this keyword is omitted, the default
font is used.

FRAME

The width, in pixels, of a frame to be drawn around the entire field cluster. The
default is no frame.

INTEGER

Set this keyword to have the field accept only integer values. Any number or string
entered is converted to its integer equivalent (using FIX). For example, if 12.5 is
entered in this type of field, it is converted to 12.

LONG

Set this keyword to have the field accept only long integer values. Any number or
string entered is converted to its long integer equivalent (using LONG).

NOEDIT

Normally, the value in the text field can be edited. Set this keyword to make the field
non-editable.

RETURN_EVENTS

Set this keyword to make CW_FIELD return an event when a carriage return is
pressed in a text field. The default is not to return events. Note that the value of the
text field is always returned when the following command is used:

WIDGET_CONTROL, field, GET_VALUE = X

ROW

Set this keyword to position the label to the left of the text field. This is the default.
IDL Reference Guide CW_FIELD

392
STRING

Set this keyword to have the field accept only string values. Numbers entered in the
field are converted to their string equivalents. This is the default.

TEXT_FRAME

Set this keyword to the width in pixels of a frame to be drawn around the text field.
Note that this keyword is only a “hint” to the toolkit, and may be ignored in some
instances. Under Microsoft Windows, text widgets always have a frame of width 1
pixel.

TITLE

A string containing the text to be used as the label for the field. The default is “Input
Field”.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

VALUE

The initial value in the text widget. This value is automatically converted to the type
set by the STRING, INTEGER, and FLOATING keywords described below.

XSIZE

An explicit horizontal size (in characters) for the text input area. The default is to let
the window manager size the widget. Using the XSIZE keyword is not
recommended.

YSIZE

An explicit vertical size (in lines) for the text input area. The default is 1.
CW_FIELD IDL Reference Guide

 393
Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return information
on base widgets can be used with compound widgets.

In addition, you can use the GET_VALUE and SET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the field. If one of the
FLOATING, INTEGER, LONG, or STRING keywords to CW_FIELD is set, values
set with the SET_VALUE keyword to WIDGET_CONTROL will be forced to the
appropriate type. Values returned by the GET_VALUE keyword to
WIDGET_CONTROL will be of the type specified when the field widget is created.
Note that if the field contains string information, returned values will be contained in
a string array even if the field contains only a single string.

See “Writing Compound Widgets” in Chapter 26 of the Building IDL Applications
manual for a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_FIELD Widget

This widget generates event structures with the following definition:

event = { ID:0L, TOP:0L, HANDLER: 0L, VALUE:'', TYPE:0 , UPDATE:0}

The VALUE field is the value of the field. TYPE specifies the type of data contained
in the field and can be any of the following: 0=string, 1=floating-point, 2=integer,
3=long integer (the value of TYPE is determined by setting one of the STRING,
FLOAT, INTETER, or LONG keywords). UPDATE contains a zero if the field has
not been altered or a one if it has.

Examples

The code below creates a main base with a field cluster attached to it. The cluster
accepts string input, has the title “Name”, and has a frame around it:

base = WIDGET_BASE()
field = CW_FIELD(base, TITLE = "Name", /FRAME)
WIDGET_CONTROL, base, /REALIZE

Version History

Introduced: Pre 4.0
IDL Reference Guide CW_FIELD

394
See Also

WIDGET_LABEL, WIDGET_TEXT
CW_FIELD IDL Reference Guide

 395
CW_FILESEL

The CW_FILESEL function is a compound widget for file selection.

This routine is written in the IDL language. Its source code can be found in the file
cw_filesel.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CW_FILESEL (Parent [, /FILENAME] [, FILTER=string array]
[, /FIX_FILTER] [, /FRAME] [, /IMAGE_FILTER] [, /MULTIPLE | , /SAVE]
[, PATH=string] [, UNAME=string] [, UVALUE=value] [, /WARN_EXIST])

Return Value

This function returns the widget ID of the newly-created file selection widget.

Arguments

Parent

The widget ID of the parent.

Keywords

FILENAME

Set this keyword to have the initial filename filled in the filename text area.

FILTER

Set this keyword to an array of strings determining the filter types. If not set, the
default is “All Files”. All files containing the chosen filter string will be displayed as
possible selections. “All Files” is a special filter which returns all files in the current
directory.

Example:

FILTER=["All Files", ".txt"]

Multiple filter types may be used per filter entry, using a comma as the separator.

Example:

FILTER=[".jpg, .jpeg", ".txt, .text"]
IDL Reference Guide CW_FILESEL

396
FIX_FILTER

If set, the user can not change the file filter.

FRAME

If set, a frame is drawn around the widget.

IMAGE_FILTER

If set, the filter “Image Files” will be added to the end of the list of filters. If set, and
FILTER is not set, “Image Files” will be the only filter displayed. Valid image files
are determined from QUERY_IMAGE.

MULTIPLE

If set, the file selection list will allow multiple filenames to be selected. The filename
text area will not be editable in this case. It is illegal to specify both /SAVE and
/MULTIPLE.

PATH

Set this keyword to the initial path the widget is to start in. The default is the current
directory.

SAVE

Set this keyword to create a widget with a “Save” button instead of an “Open” button.
It is illegal to specify both /SAVE and /MULTIPLE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.
CW_FILESEL IDL Reference Guide

 397
WARN_EXIST

Set this keyword to produce a question dialog if the user selects a file that already
exists. This keyword is useful when creating a “write” dialog. The default is to allow
any filename to be quietly accepted, whether it exists or not.

Keywords to WIDGET_CONTROL

You can use the GET_UVALUE and SET_UVALUE keywords to
WIDGET_CONTROL to obtain or set the user value of this widget. Use the
command to read the currently selected filename (or filenames if MULTIPLE is set)
including the full path:

WIDGET_CONTROL, id, GET_VALUE=filenames

To set the value of the filename, use the following command:

WIDGET_CONTROL, id, SET_VALUE=value

where value is a scalar string (or string array) containing the filenames, including the
full path.

See “Compound Widgets” in Chapter 26 of the Building IDL Applications manual for
a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by CW_FILESEL

This widget generates event structures with the following definition:

Event = {FILESEL_EVENT, ID:0L, TOP:0L, HANDLER:0L,VALUE:'',
DONE:0L, FILTER:''}

The ID field is the widget ID of the CW_FILESEL widget. The TOP field contains
the widget ID of the top-level widget. The HANDLER field is always set to zero. The
VALUE field is a string containing the most recent filename selected, if any.

Note
Even if MULTIPLE is set, VALUE will only contain the most recently selected
filename. To retrieve all of the currently selected filenames, use the GET_VALUE
keyword to WIDGET_CONTROL.

The DONE field can be any of the following:

• 0 = User selected a file but didn’t double-click, or the user changed filters (in
this case the VALUE field will be an empty string.)
IDL Reference Guide CW_FILESEL

398
• 1 = User pressed “Open”/“Save” or double-clicked on a file.

• 2 = User pressed “Cancel”.

The FILTER field is a string containing the current filter.

Examples

This example creates a CW_FILESEL widget that is used to select image files for
display. Note how the DONE tag of the event structure returned by CW_FILESEL is
used to determine which button was pressed, and how the VALUE tag is used to
obtain the file that was selected:

PRO image_opener_event, event

WIDGET_CONTROL, event.top, GET_UVALUE=state, /NO_COPY

CASE event.DONE OF
0: BEGIN

state.file = event.VALUE
WIDGET_CONTROL, event.top, SET_UVALUE=state, /NO_COPY

END
1: BEGIN

IF (state.file NE '') THEN BEGIN
img = READ_IMAGE(state.file)
TV, img

ENDIF
WIDGET_CONTROL, event.top, SET_UVALUE=state, /NO_COPY

END
2: WIDGET_CONTROL, event.top, /DESTROY

ENDCASE

END

PRO image_opener

DEVICE, DECOMPOSED=0, RETAIN=2

base = WIDGET_BASE(TITLE ='Open Image', /COLUMN)
filesel = CW_FILESEL(base, /IMAGE_FILTER, FILTER='All Files')
file=''
state = {file:file}

WIDGET_CONTROL, base, /REALIZE
WIDGET_CONTROL, base, SET_UVALUE=state, /NO_COPY
XMANAGER, 'image_opener', base

END
CW_FILESEL IDL Reference Guide

 399
Version History

Introduced: 5.3

See Also

DIALOG_PICKFILE, FILEPATH
IDL Reference Guide CW_FILESEL

400
CW_FORM

The CW_FORM function is a compound widget that simplifies creating small forms
which contain text, numeric fields, buttons, lists, and droplists. Event handling is also
simplified.

This routine is written in the IDL language. Its source code can be found in the file
cw_form.pro in the lib subdirectory of the IDL distribution.

Using CW_FORM

The form has a value that is a structure with a tag/value pair for each field in the form.
Use the command

WIDGET_CONTROL, id, GET_VALUE=v

to read the current value of the form. To set the value of one or more tags, use the
command

WIDGET_CONTROL, id, SET_VALUE={ Tag:value, ..., Tag:value}

Syntax

Result = CW_FORM([Parent,] Desc [, /COLUMN] [, IDS=variable]
[, TITLE=string] [, UNAME=string] [, UVALUE=value])

Return Value

If the argument Parent is present, the returned value of this function is the widget ID
of the newly-created form widget. If Parent is omitted, the form realizes itself as a
modal, top-level widget and CW_FORM returns a structure containing the value of
each field in the form when the user finishes.

Arguments

Parent

The widget ID of the parent widget. Omit this argument to created a modal, top-level
widget.

Desc

A string array describing the form. Each element of the string array contains two or
more comma-delimited fields. Each string has the following format:
CW_FORM IDL Reference Guide

 401
'Depth, Item, Initial value, Settings'

Use the backslash character (“\”) to escape commas that appear within fields. To
include the backslash character, escape it with another backslash.

The fields are defined as follows:

• Depth

A digit defining the level at which the element will be placed on the form.
Nesting is used primarily for layout, with row or column bases.

This field must contain the digit 0, 1, or 2, with the following effects:

• 0 = continue the current nesting level.

• 1 = begin a new level under the current level.

• 2 = last element at the current level.

• Item

A label defining the type of element to be placed in the form. Item must be one
of the following: BASE, BUTTON, DROPLIST, FLOAT, INTEGER, LABEL,
LIST, or TEXT.

BASEs and LABELs do not return a value in the widget value structure. The
other items return the following value types:

Item Description

BUTTON An integer or integer array. For single buttons, the value
is 1 if the button is set, or 0 if it is not set. For exclusive
button groups, the value is the index of the currently set
button. For non-exclusive button groups, the value is an
array containing an element for each button. Array
elements are set to 1 if the corresponding button is set, or
0 if it is not set.

DROPLIST An integer. The value set in the widget value structure is
the zero-based index of the item is selected.

FLOAT A floating-point value. The value set in the widget value
structure is the floating-point value of the field.

INTEGER An integer. The value set in the widget value structure is
the integer value of the field.

Table 12: Values for the Item field
IDL Reference Guide CW_FORM

402
• Initial value

The initial value of the field. The Initial value field is left empty for BASEs.

For BUTTON, DROPLIST, and LIST items, the value field contains one or
more item names, separated by the | character. Strings do not need to be
enclosed in quotes. For example, the following line defines an exclusive button
group with buttons labeled “one,” “two,” and “three.”

'0, BUTTON, one|two|three, EXCLUSIVE'

For FLOAT, INTEGER, LABEL, and TEXT items, the value field contains the
initial value of the field.

• Settings

The Settings field contains one of the following keywords or keyword=value
pairs. Keywords are used to specify optional attributes or options. Any number
of keywords may be included in the description string.

Note that preceding keywords with a “/” character has no effect. Simply
including a keyword in the Settings field enables that option.

LIST An integer. The value set in the widget value structure is
the zero-based index of the item is selected.

TEXT A string. The value set in the widget value structure is the
string value of the field.

Keyword Description

CENTER Specifies alignment of LABEL items.

COLUMN If present, specifies column layout in BASES or
for BUTTON groups.

EXCLUSIVE If present, makes an exclusive set of BUTTONs.
The default is nonexclusive.

Table 13: Values for the Settings Field

Item Description

Table 12: Values for the Item field
CW_FORM IDL Reference Guide

 403
FONT=font name If present, the font for the item is specified. The
font specified is a “device font” (an X Windows
font on Motif systems; a TrueType or PostScript
font on Windows systems). See “About Device
Fonts” on page 3962 for details on specifying
names for device fonts. If this keyword is
omitted, the default font is used.

EVENT=function Specifies the name of a user-written event
function that is called whenever the element is
changed. The event function is called with the
widget event structure as a parameter. It may
return an event structure or zero to indicate that
no further event processing is desired.

FRAME If present, a frame is drawn around the item.
Valid only for BASEs.

LABEL_LEFT=label Place a label to the left of the item. This keyword
is valid with BUTTON, DROPLIST, FLOAT,
INTEGER and TEXT items.

LABEL_TOP=label Place a label above the item. This keyword is
valid with BUTTON, DROPLIST, FLOAT,
INTEGER and TEXT items.

LEFT Specifies alignment of LABEL items.

NO_RELEASE If present, exclusive and non-exclusive buttons
generate only select events. This keyword has no
effect on regular buttons.

QUIT If the form widget is created as a top-level,
modal widget, when the user activates an item
defined with this keyword, the form is destroyed
and its widget value returned in the widget value
structure of CW_FORM. For non-modal form
widgets, events generated by changing this item
have their QUIT field set to 1.

RIGHT Specifies alignment of LABEL items.

Keyword Description

Table 13: Values for the Settings Field (Continued)
IDL Reference Guide CW_FORM

404
Keywords

COLUMN

Set this keyword to make the orientation of the form vertical. If COLUMN is not set,
the form is laid out in a horizontal row.

IDS

Set this keyword equal to a named variable into which the widget id of each widget
corresponding to an element in the Desc array is stored.

TITLE

Set this keyword equal to a scalar string containing the title of the top level base.
TITLE is not used if the form widget has a parent widget.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget

ROW If present, specifies row layout in BASES or for
BUTTON groups.

SET_VALUE=value Sets the initial value of BUTTON groups or
DROPLISTs. For droplists and exclusive button
groups, value should be the zero-based index of
the item selected.

TAG=name The tag name of this element in the widget’s
value structure. If not specified, the tag name is
TAGnnn, where nnn is the zero-based index of
the item in the Desc array.

WIDTH=n Specifies the width, in characters, of a TEXT,
INTEGER, or FLOAT item.

Keyword Description

Table 13: Values for the Settings Field (Continued)
CW_FORM IDL Reference Guide

 405
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

Set this keyword equal to the user value associated with the form widget.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return information
on base widgets can be used with compound widgets.

In addition, you can use the GET_VALUE and SET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the form. The form has a value
that is a structure with a tag/value pair for each field in the form. Use the command

WIDGET_CONTROL, id, GET_VALUE=v

to read the current value of the form. To set the value of one or more tags, use the
command

WIDGET_CONTROL, id, SET_VALUE={ Tag:value, ..., Tag:value}

See “Compound Widgets” in Chapter 26 of the Building IDL Applications manual for
a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_FORM Widget

This widget generates event structures each time the value of the form is changed.
The event structure has the following definition:

Event = { ID:0L, TOP:0L, HANDLER:0L, TAG:'', VALUE:0, QUIT:0}

The ID field is the widget ID of the CW_FORM widget. The TOP field is the widget
ID of the top-level widget. The TAG field contains the tag name of the field that
changed. The VALUE field contains the new value of the changed field. The QUIT
field contains a zero if the quit flag is not set, or one if it is set.

Examples

Define a form with a label, two groups of vertical buttons (one non-exclusive and the
other exclusive), a text field, an integer field, and “OK” and “Done” buttons. If either
the “OK” or “Done” buttons are pressed, the form exits.
IDL Reference Guide CW_FORM

406
Begin by defining a string array describing the form:

desc = [$
'0, LABEL, Centered Label, CENTER', $
'1, BASE,, ROW, FRAME', $
'0, BUTTON, B1|B2|B3, LABEL_TOP=Nonexclusive:,' $
+ 'COLUMN, TAG=bg1', $
'2, BUTTON, E1|E2|E2, EXCLUSIVE,LABEL_TOP=Exclusive:,' $
+ 'COLUMN,TAG=bg2', $
'0, TEXT, , LABEL_LEFT=Enter File name:, WIDTH=12,' $
+ 'TAG=fname', $
'0, INTEGER, 0, LABEL_LEFT=File size:, WIDTH=6, TAG=fsize', $
'1, BASE,, ROW', $
'0, BUTTON, OK, QUIT,' $
+ 'TAG=OK', $
'2, BUTTON, Cancel, QUIT']

To use the form as a modal widget:

a = CW_FORM(desc, /COLUMN)

When the form is exited, (when the user presses the OK or Cancel buttons), a
structure is returned as the function’s value. We can examine the structure by
entering:

HELP, /STRUCTURE, a

Note
If the “Cancel” button is pressed, the “OK” field is set to 0.

To use CW_FORM inside another widget:

IDL Output Meaning

BG1 INT Array[3] Set buttons = 1, unset = 0.

BG2 INT 1 Second button of exclusive button
group was set.

FNAME STRING 'test.dat' Value of the text field

FSIZE LONG 120 Value of the integer field

OK LONG 1 This button was pressed

TAG8 LONG 0 This button wasn’t pressed

Table 14: Output from HELP, /STRUCTURE
CW_FORM IDL Reference Guide

 407
a = WIDGET_BASE(TITLE='Testing')
b = CW_FORM(a, desc, /COLUMN)
WIDGET_CONTROL, a, /REALIZE
XMANAGER, 'Test', a

The event handling procedure (in this example, called TEST_EVENT), may use the
TAG field of the event structure to determine which field changed and perform any
data validation or special actions required. It can also get and set the value of the
widget by calling WIDGET_CONTROL.

Version History

Introduced: 4.0
IDL Reference Guide CW_FORM

408
CW_FSLIDER

The CW_FSLIDER function creates a slider that selects floating-point values.

This routine is written in the IDL language. Its source code can be found in the file
cw_fslider.pro in the lib subdirectory of the IDL distribution.

Using CW_FSLIDER

To get or set the value of a CW_FSLIDER widget, use the GET_VALUE and
SET_VALUE keywords to WIDGET_CONTROL.

Note
The CW_FSLIDER widget is based on the WIDGET_SLIDER routine, which
accepts only integer values. Because conversion between integers and floating-point
numbers necessarily involves round-off errors, the slider value returned by
CW_FSLIDER may not exactly match the input value, even when a floating-point
number is entered in the slider’s text field as an ASCII value. For more information
on floating-point issues, see “Accuracy & Floating-Point Operations” in Chapter 22
of the Using IDL manual.

Syntax

Result = CW_FSLIDER(Parent [, /DOUBLE] [, /DRAG] [, /EDIT]
[, FORMAT=string] [, /FRAME] [, MAXIMUM=value] [, MINIMUM=value]
[, SCROLL=units] [, /SUPPRESS_VALUE] [, TITLE=string] [, UNAME=string]
[, UVALUE=value] [, VALUE=initial_value] [, XSIZE=length | {, /VERTICAL
[, YSIZE=height]}])

Return Value

This function returns the widget ID of the newly-created slider widget.

Arguments

Parent

The widget ID of the parent widget.
CW_FSLIDER IDL Reference Guide

 409
Keywords

DOUBLE

Set this keyword to return double-precision values in the VALUE field of widget
events generated by CW_FSLIDER. Explicitly set DOUBLE=0 to ensure that values
returned in the VALUE field are single-precision. By default, CW_FSLIDER will
return double-precision values if any of the values specified by the MINIMUM,
MAXIMUM, or VALUE keywords is double-precision, or single-precision
otherwise.

Note
The value returned by the GET_VALUE keyword to WIDGET_CONTROL is the
value contained in the VALUE field of the widget event structure.

DRAG

Set this keyword to cause events to be generated continuously when the slider is
adjusted. The default is DRAG=0, in which case events are generated only when the
mouse is released. Note that on slow systems, /DRAG performance can be
inadequate.

EDIT

Set this keyword to make the slider label editable. The default is EDIT=0. If EDIT is
set, the GET_VALUE keyword to WIDGET_CONTROL will return the value of the
slider label if it has been changed.

Note
If the user edits the slider label but does not press Enter, the slider position will not
be updated to the new value. In this case, the widget programmer is responsible for
using GET_VALUE to retrieve the new value of the slider label, followed by
SET_VALUE to set the new value and update the slider position.

FORMAT

Provides the format in which the slider value is displayed. This should be a format as
accepted by the STRING procedure. The default FORMAT is '(G13.6)'

FRAME

Set this keyword to have a frame drawn around the widget. The default is FRAME=0.
IDL Reference Guide CW_FSLIDER

410
MAXIMUM

The maximum value of the slider. The default is MAXIMUM=100.

MINIMUM

The minimum value of the slider. The default is MINIMUM=0.

SCROLL

Set the SCROLL keyword to a floating-point value specifying the number of floating-
point units the scroll bar should move when the user clicks the left mouse button
inside the slider area (Motif) or on the slider arrows (Windows), but not on the slider
itself. The default on both platforms is 0.01 x (MAXIMUM - MINIMUM), which is
1% of the slider range.

SUPPRESS_VALUE

If this keyword is set, the current slider value is not displayed.

TITLE

Set this keyword to a string defining the title of slider.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

VALUE

The initial value of the slider.

VERTICAL

If set, the slider will be oriented vertically. The default is horizontal.
CW_FSLIDER IDL Reference Guide

 411
XSIZE

The length of horizontal sliders.

YSIZE

The height of vertical sliders.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return information
on base widgets can be used with compound widgets.

You can use the GET_VALUE and SET_VALUE keywords to WIDGET_CONTROL
to obtain or set the value of the slider. In addition, you can use the SET_VALUE
keyword to change the minimum and maximum values of the slider by setting the
keyword equal to a three-element vector [value, min, max].

Note
The SET_SLIDER_MAX and SET_SLIDER_MIN keywords to
WIDGET_CONTROL and the SLIDER_MIN_MAX keyword to WIDGET_INFO
do not work with floating point sliders created with CW_FSLIDER.

See “Compound Widgets” in Chapter 26 of the Building IDL Applications manual for
a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_FSLIDER Widget

This widget generates event structures with the following definition:

Event = { ID:0L, TOP:0L, HANDLER:0L, VALUE:0.0, DRAG:0}

The VALUE field is the floating-point value selected by the slider. The DRAG field
reports on whether events are generated continuously (when the DRAG keyword is
set) or only when the mouse button is released (the default).

Version History

Introduced: Pre 4.0
IDL Reference Guide CW_FSLIDER

412
See Also

WIDGET_SLIDER
CW_FSLIDER IDL Reference Guide

 413
CW_LIGHT_EDITOR

The CW_LIGHT_EDITOR function creates a compound widget to edit properties of
existing IDLgrLight objects in a view. Lights cannot be added or removed from a
view using this widget. However, lights can be “turned off or on” by hiding or
showing them (i.e., HIDE property).

Syntax

Result = CW_LIGHT_EDITOR (Parent [, /DIRECTION_DISABLED]
[, /DRAG_EVENTS] [, FRAME=width] [, /HIDE_DISABLED] [, LIGHT=objref(s)]
[, /LOCATION_DISABLED] [, /TYPE_DISABLED] [, /UNAME=string]
[, UVALUE=value] [, XSIZE=pixels] [, YSIZE=pixels] [, XRANGE=vector]
[, YRANGE=vector] [, ZRANGE=vector])

Return Value

This function returns the widget ID of a newly-created light editor.

Arguments

Parent

The widget ID of the parent widget for the new light editor.

Keywords

DIRECTION_DISABLED

Set this keyword to make the direction widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.
The default is to allow this property to be changed.

DRAG_EVENTS

Set this keyword to cause events to be generated continuously while a slider in the
compound widget is being dragged or when the mouse cursor is being dragged across
the draw widget portion of the compound widget. By default, events are only
generated when the mouse comes to rest at its final position and the mouse button is
released.
IDL Reference Guide CW_LIGHT_EDITOR

414
When this keyword is set, a large number of events can be generated. On slower
machines, poor performance can result. Therefore, this option should only be used
when detailed or truly interactive control is required.

Note
Under Microsoft Windows, sliders do not generate these events, but behave just like
regular sliders.

FRAME

The value of this keyword specifies the width of a frame (in pixels) to be drawn
around the borders of the widget. Note that this keyword is only a ‘hint’ to the toolkit,
and may be ignored in some instances. The default is no frame.

HIDE_DISABLED

Set this keyword to make the hide widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.
The default is to allow this property to be changed.

LIGHT

Set this keyword to one or more object references to IDLgrLight to edit. This will
replace the current set of lights being edited with the list of lights from this keyword.

LOCATION_DISABLED

Set this keyword to make the location widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.
The default is to allow this property to be changed.

TYPE_DISABLED

Set this keyword to make the light type widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.
The default is to allow this property to be changed.

UNAME

Set this keyword to a string that can be used to identify the widget. You can associate
a name with each widget in a specific hierarchy, and then use that name to query the
widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
CW_LIGHT_EDITOR IDL Reference Guide

 415
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The ‘user value’ to be assigned to the widget. Each widget can contain a user-
specified value of any data type and organization. This value is not used by the widget
in any way, but exists entirely for the convenience of the IDL programmer. This
keyword allows you to set this value when the widget is first created. If UVALUE is
not present, the widget's initial user value is undefined.

XRANGE

A two-element vector defining the data range in the x direction. This keyword is used
to determine the valid range for the light's location and direction properties

XSIZE

The width of the drawable area in pixels. The default width is 180.

YRANGE

A two-element vector defining the data range in the y direction. This keyword is used
to determine the valid range for the light's location and direction properties.

YSIZE

The height of the drawable area in pixels. The default height is 180.

ZRANGE

A two-element vector defining the data range in the z direction. This keyword is used
to determine the valid range for the light's location and direction properties

WIDGET_CONTROL Keywords

The widget ID returned by this compound widget is actually the ID of the compound
widget's base widget. This means that many keywords to the WIDGET_CONTROL
and WIDGET_INFO routines that affect or return information on base widgets can be
used with this compound widget (e.g., UNAME, UVALUE).

GET_VALUE

Set this keyword to a named variable to contain the current value of the widget. An
IDLgrLight object reference of the currently selected light is returned. The value of a
widget can be set with the SET_VALUE keyword to this routine.
IDL Reference Guide CW_LIGHT_EDITOR

416
SET_VALUE

Sets the value of the specified light editor compound widget. This widget accepts an
IDLgrLight object reference of the light in the list of lights to make as the current
selection. The property values are retrieved from the light object and the light editor
controls are updated to reflect those properties.

Widget Events Returned by the CW_LIGHT_EDITOR
Widget

There are variations of the light editor event structure depending on the specific event
being reported. All of these structures contain the standard three fields (ID, TOP, and
HANDLER). The different light editor event structures are described below.

Light Selected

This is the type of structure returned when the light selected in the light list box is
modified by a user.

{ CW_LIGHT_EDITOR_LS, ID:0L, TOP:0L, HANDLER:0L, LIGHT:OBJ_NEW()}

LIGHT specifies the object ID of the new light selection.

Light Modified

This is the type of structure returned when the user has modified a light property. This
event maybe generated continuously if the DRAG_EVENTS keyword was set. See
DRAG_EVENTS above.

{ CW_LIGHT_EDITOR_LM, ID:0L, TOP:0L, HANDLER:0L}

The value of the light editor will need to be retrieved (i.e.,
CW_LIGHT_EDITOR_GET) in order to determine the extent of the actual user
modification.

Version History

Introduced: 5.3

See Also

CW_LIGHT_EDITOR_GET, CW_LIGHT_EDITOR_SET, IDLgrLight
CW_LIGHT_EDITOR IDL Reference Guide

 417
CW_LIGHT_EDITOR_GET

The CW_LIGHT_EDITOR_GET procedure gets the CW_LIGHT_EDITOR
properties.

Syntax

CW_LIGHT_EDITOR_GET, WidgetID [, DIRECTION_DISABLED=variable]
[, DRAG_ EVENTS=variable] [, HIDE_DISABLED=variable] [, LIGHT=variable]
[, LOCATION_DISABLED=variable] [, TYPE_DISABLED=variable]
[, XSIZE=variable] [, YSIZE=variable] [, XRANGE=variable]
[, YRANGE=variable] [, ZRANGE=variable]

Arguments

WidgetID

The widget ID of the CW_ LIGHT_EDITOR compound widget.

Keywords

DIRECTION_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the direction widget portion of the
compound widget unchangeable by the user. It will appear insensitive and will not
generate an event.

DRAG_ EVENTS

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to cause events to be generated continuously while a
slider in the compound widget is being dragged or when the mouse cursor is being
dragged across the draw widget portion of the compound widget.

When this keyword is set, a large number of events can be generated. On slower
machines, poor performance can result. Therefore, this option should only be used
when detailed or truly interactive control is required.
IDL Reference Guide CW_LIGHT_EDITOR_GET

418
Note
Under Microsoft Windows, sliders do not generate these events, but behave just like
regular sliders.

HIDE_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the hide widget portion of the compound
widget unchangeable by the user.

LIGHT

Set this keyword to a named variable that will contain one or more object references
to IDLgrLight.

LOCATION_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the location widget portion of the compound
widget unchangeable by the user.

TYPE_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the light type widget portion of the
compound widget unchangeable by the user.

XRANGE

Set this keyword to a named variable that will contain a two-element vector defining
the data range in the x direction.

XSIZE

Set this keyword to a named variable that will contain the width of the drawable area
in pixels.

YRANGE

Set this keyword to a named variable that will contain a two-element vector defining
the data range in the y direction.
CW_LIGHT_EDITOR_GET IDL Reference Guide

 419
YSIZE

Set this keyword to a named variable that will contain the height of the drawable area
in pixels.

ZRANGE

Set this keyword to a named variable that will contain a two-element vector defining
the data range in the z direction.

Version History

Introduced: 5.3

See Also

CW_LIGHT_EDITOR, CW_LIGHT_EDITOR_SET, IDLgrLight
IDL Reference Guide CW_LIGHT_EDITOR_GET

420
CW_LIGHT_EDITOR_SET

The CW_LIGHT_EDITOR procedure sets the CW_LIGHT_EDITOR properties.

Syntax

CW_LIGHT_EDITOR_SET, WidgetID [, /DIRECTION_DISABLED]
[, /DRAG_EVENTS] [, /HIDE_DISABLED] [, LIGHT=objref(s)]
[, /LOCATION_DISABLED] [, /TYPE_DISABLED] [, XSIZE=pixels]
[, YSIZE=pixels] [, XRANGE=vector] [, YRANGE=vector] [, ZRANGE=vector]

Arguments

WidgetID

The widget ID of the CW_ LIGHT_EDITOR compound widget.

Keywords

DIRECTION_DISABLED

Set this keyword to make the direction widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.

DRAG_EVENTS

Set this keyword to cause events to be generated continuously while a slider in the
compound widget is being dragged or when the mouse cursor is being dragged across
the draw widget portion of the compound widget.

When this keyword is set, a large number of events can be generated. On slower
machines, poor performance can result. Therefore, this option should only be used
when detailed or truly interactive control is required.

Note
Under Microsoft Windows, sliders do not generate these events, but behave just like
regular sliders.

HIDE_DISABLED

Set this keyword to make the hide widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.
CW_LIGHT_EDITOR_SET IDL Reference Guide

 421
LIGHT

Set this keyword to one or more object references to IDLgrLight to edit. This will
replace the current set of lights being edited with the list of lights from this keyword.

LOCATION_DISABLED

Set this keyword to make the location widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.

TYPE_DISABLED

Set this keyword to make the light type widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.

XRANGE

A two-element vector defining the data range in the x direction. This keyword is used
to determine the valid range for the light's location and direction properties.

XSIZE

The width of the drawable area in pixels.

YRANGE

A two-element vector defining the data range in the y direction. This keyword is used
to determine the valid range for the light's location and direction properties.

YSIZE

The height of the drawable area in pixels.

ZRANGE

A two-element vector defining the data range in the z direction. This keyword is used
to determine the valid range for the light's location and direction properties.

Version History

Introduced: 5.3

See Also

CW_LIGHT_EDITOR, CW_LIGHT_EDITOR_GET, IDLgrLight
IDL Reference Guide CW_LIGHT_EDITOR_SET

422
CW_ORIENT

The CW_ORIENT function creates a compound widget that provides a means to
interactively adjust the three-dimensional drawing transformation and resets the !P.T
system variable field to reflect the changed orientation.

This routine is written in the IDL language. Its source code can be found in the file
cw_orient.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CW_ORIENT(Parent [, AX=degrees] [, AZ=degrees] [, /FRAME]
[, TITLE=string] [, UNAME=string] [, UVALUE=value] [, XSIZE=width]
[, YSIZE=height])

Return Value

This function returns the widget ID of the newly-created orientation-adjustment
widget.

Arguments

Parent

The widget ID of the parent widget.

Keywords

AX

The initial rotation in the X direction. The default is 30 degrees.

AZ

The initial rotation in the Z direction. The default is 30 degrees.

FRAME

Set this keyword to draw a frame around the widget.

TITLE

The title of the widget.
CW_ORIENT IDL Reference Guide

 423
UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

XSIZE

Determines the width of the widget. The default is 100.

YSIZE

Determines the height of the widget. The default is 100.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return information
on base widgets can be used with compound widgets.

See “Compound Widgets” in Chapter 26 of the Building IDL Applications manual for
a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_ORIENT Widget

CW_ORIENT only returns events when the three dimensional drawing
transformation has been altered. The !P.T system variable field is automatically
updated to reflect the new orientation.

Version History

Introduced: Pre 4.0
IDL Reference Guide CW_ORIENT

424
See Also

CW_ARCBALL, T3D
CW_ORIENT IDL Reference Guide

 425
CW_PALETTE_EDITOR

The CW_PALETTE_EDITOR function creates a compound widget to display and
edit color palettes. The palette editor is a base that contains a drawable area to display
the color palette, a set of vectors that represent the palette and an optional histogram.

Graphics Area Components

Reference Color bar

A gray scale color bar is displayed at the top of the graphics area for reference
purposes.

Palette Colorbar

A color bar containing a display of the current palette is displayed below the
reference color bar.

Channel and Histogram Display

The palette channel vectors are displayed below the palette colorbar. The Red channel
is displayed in red, the Green channel in green, the Blue channel in blue, and the
optional Alpha channel in purple. The optional Histogram vector is displayed in
Cyan.

An area with a white background represents the current selection, with gray
background representing the area outside of the current selection. Yellow drag
handles are an additional indicator of the selection endpoints. These selection
endpoints represent the range for some editing operations. In addition, cursor X,Y
values and channel pixel values at the cursor location are displayed in a status area
below the graphics area.

Interactive Capabilities

Color Space

A droplist allows selection of RGB, HSV or HLS color spaces. RGB is the default
color space.

Note
Regardless of the color space in use, the color vectors retrieved with the
GET_VALUE keyword to widget control are always in the RGB color space.
IDL Reference Guide CW_PALETTE_EDITOR

426
Editing Mode

A droplist allows selection of the editing mode. Freehand is the default editing mode.

Unless noted below, editing operations apply only to the channel vectors currently
selected for editing and apply only to the portion of the vectors within the selection
indicators.

Editing Mode Description

Freehand The user can click and drag in the graphics area to draw a new
curve. Editable channel vectors will be modified to use the
new curve for that part of the X range within the selection that
was drawn in Freehand mode.

Line Segment A click, drag and release operation defines the start point and
end point of a line segment. Editable channel vectors will be
modified to use the new curve for that part of the X range
within the selection that was drawn in Line Segment mode.

Barrel Shift Click and drag operations in the horizontal direction cause the
editable curves to be shifted right or left, with the portion
which is shifted off the end of selection area wrapping around
to appear on the other side of the selection area. Only the
horizontal component of drag movement is used.

Slide Click and drag operations in the horizontal direction cause the
editable curves to be shifted right or left. Unlike the Barrel
Shift mode, the portion of the curves shifted off the end of the
selection area does not wrap around. Only the horizontal
component of drag movement is used.

Stretch Click and drag operations in the horizontal direction cause the
editable curves to be compressed or expanded. Only the
horizontal component of drag movement is used.

Table 15: CW_PALETTE_EDITOR Editing Mode Options
CW_PALETTE_EDITOR IDL Reference Guide

 427
The following table describes the buttons that provide editing operations but do not
require cursor input:

Channel Display and Edit

A row of checkboxes allows the user to indicate which channels of Red, Green, Blue
and the optional Alpha channel should be displayed. A second row of checkboxes
allows the user to indicate which channels should be edited by the current editing
operation. The checkboxes for the Alpha channel will be sensitive only if an Alpha
channel is loaded.

Button Operation

Ramp Causes the selected part of the editable curves to be replaced
with a linear ramp from 0 to 255.

Smooth Causes the selected part of the editable curves to be smoothed.

Posterize Causes the selected part of the editable curves to be replaced
with a series of steps.

Reverse Causes the selected part of the editable curves to be reversed in
the horizontal direction.

Invert Causes the selected part of the editable curves to be flipped in
the vertical direction.

Duplicate Causes the selected part of the editable curves to be
compressed by 50% and duplicated to produce two contiguous
copies of the channel vectors within the initial selection.

Load PreDefined Leads to additional choices of pre-defined palettes. Loading a
pre-defined palette replaces only the selected portion of the
editable color channels, respecting of the settings of the
selection endpoints and editable checkboxes. This allows
loading only a single channel or only a portion of a pre-
defined palette.

Table 16: CW_PALETTE_EDITOR Button Operations
IDL Reference Guide CW_PALETTE_EDITOR

428
Zoom

Four buttons allow the user to zoom the display of the palette:

Scrolling of the Palette Window

When the palette is zoomed to a scale greater than 1:1 the scroll bar at the bottom of
the graphics area can be used to view a different part of the palette.

Syntax

Result = CW_PALETTE_EDITOR (Parent [, DATA=array] [, FRAME=width]
[, HISTOGRAM=vector] [, /HORIZONTAL] [, SELECTION=[start, end]]
[, UNAME=string] [, UVALUE=value] [, XSIZE=width] [, YSIZE=height])

Return Value

This function returns the widget ID of the newly created palette editor.

Arguments

Parent

The widget ID of the parent widget for the new palette editor.

Keywords

DATA

A 3x256 byte array containing the initial color values for Red, Green and Blue
channels. The value supplied can also be a 4x256 byte array containing the initial
color values and the optional Alpha channel. The value supplied can also be an

Button Description

| | Zooms to show the current selection.

+ Zooms in 50%

- Zooms out 100%

1:1 Returns the display to the full palette

Table 17: Palette Zoom Options
CW_PALETTE_EDITOR IDL Reference Guide

 429
IDLgrPalette object reference. If an IDLgrPalette object reference is supplied it is
used internally and is not destroyed on exit. If an object reference is supplied the
ALPHA keyword to the CW_PALETTE_EDITOR_SET routine can be used to
supply the data for the optional Alpha channel.

FRAME

The value of this keyword specifies the width of a frame (in pixels) to be drawn
around the borders of the widget. Note that this keyword is only a “hint” to the
toolkit, and may be ignored in some instances. The default is no frame.

HISTOGRAM

A 256 element byte vector containing the values for the optional histogram curve.

HORIZONTAL

Set this keyword for a horizontal layout for the compound widget. This consists of
the controls to the right of the display area. The default is a vertical layout with the
controls below the display area.

SELECTION

The selection is a two element vector defining the starting and ending point of the
selection region of color indexes. The default is [0,255].

UNAME

Set this keyword to a string that can be used to identify the widget. You can associate
a name with each widget in a specific hierarchy, and then use that name to query the
widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The ‘user value’ to be assigned to the widget. Each widget can contain a user-
specified value of any data type and organization. This value is not used by the widget
in any way, but exists entirely for the convenience of the IDL programmer. This
keyword allows you to set this value when the widget is first created. If UVALUE is
not present, the widget's initial user value is undefined.
IDL Reference Guide CW_PALETTE_EDITOR

430
XSIZE

The width of the drawable area in pixels. The default width is 256.

YSIZE

The height of the drawable area in pixels. The default height is 256.

WIDGET_CONTROL Keywords for Palette Editor

The widget ID returned by this compound widget is actually the ID of the compound
widget's base widget. This means that many keywords to the WIDGET_CONTROL
and WIDGET_INFO routines that affect or return information on base widgets can be
used with this compound widget (e.g., UNAME, UVALUE).

GET_VALUE

Set this keyword to a named variable to contain the current value of the widget. A 3xn
(RGB) or 4xn (i.e., RGB and ALPHA) array containing the palette is returned.

The value of a widget can be set with the SET_VALUE keyword to this routine.

SET_VALUE

Sets the value of the specified palette editor compound widget. This widget accepts a
3xn (RGB) or 4xn (i.e., RGB and ALPHA) array representing the value of the palette
to be set. Another type of argument accepted is an IDLgrPalette object reference. If
an IDLgrPalette object reference is supplied it is used internally and is not destroyed
on exit.

Widget Events Returned by the
CW_PALETTE_EDITOR Widget

There are variations of the palette editor event structure depending on the specific
event being reported. All of these structures contain the standard three fields (ID,
TOP, and HANDLER). The different palette editor event structures are described
below.

Selection Moved

This is the type of structure returned when one of the vertical bars that define the
selection region is moved by a user.

{ CW_PALETTE_EDITOR_SM, ID:0L, TOP:0L, HANDLER:0L, SELECTION:[0,255]}
CW_PALETTE_EDITOR IDL Reference Guide

 431
SELECTION indicates a two element vector defining the starting and ending point of
the selection region of color indexes.

Palette Edited

This is the type of structure returned when the user has modified the color palette.

{ CW_PALETTE_EDITOR_PM, ID:0L, TOP:0L, HANDLER:0L}

The value of the palette editor will need to be retrieved (i.e., WIDGET_CONTROL,
GET_VALUE) in order to determine the extent of the actual user modification.

Version History

Introduced: 5.3

See Also

CW_PALETTE_EDITOR_GET, CW_PALETTE_EDITOR_SET, IDLgrPalette
IDL Reference Guide CW_PALETTE_EDITOR

432
CW_PALETTE_EDITOR_GET

The CW_PALETTE_EDITOR_GET procedure gets the CW_PALETTE_EDITOR
properties.

Syntax

CW_PALETTE_EDITOR_GET, WidgetID [, ALPHA=variable]
[, HISTOGRAM=variable]

Arguments

WidgetID

The widget ID of the CW_PALETTE_EDITOR compound widget.

Keywords

ALPHA

Set this keyword to a named variable that will contains the optional alpha curve.

HISTOGRAM

Set this keyword to a named variable that will contains the optional histogram curve.

Version History

Introduced: 5.3

See Also

CW_PALETTE_EDITOR, CW_PALETTE_EDITOR_SET, IDLgrPalette
CW_PALETTE_EDITOR_GET IDL Reference Guide

 433
CW_PALETTE_EDITOR_SET

The CW_PALETTE_EDITOR_SET procedure sets the CW_PALETTE_EDITOR
properties.

Syntax

CW_PALETTE_EDITOR_SET, WidgetID [, ALPHA=byte_vector]
[, HISTOGRAM=byte_vector]

Arguments

WidgetID

The widget ID of the CW_PALETTE_EDITOR compound widget.

Keywords

ALPHA

A 256 element byte vector that describes the alpha component of the color palette.
The alpha value may also be set to the scalar value zero to remove the alpha curve
from the display.

HISTOGRAM

The histogram is an vector to be plotted below the color palette. This keyword can be
used to display a distribution of color index values to facilitate editing the color
palette. The histogram value may also be set to the scalar value zero to remove the
histogram curve from the display.

Version History

Introduced: 5.3

See Also

CW_PALETTE_EDITOR, CW_PALETTE_EDITOR_GET, IDLgrPalette
IDL Reference Guide CW_PALETTE_EDITOR_SET

434
CW_PDMENU

The CW_PDMENU function creates widget pulldown menus. It has a simpler
interface than the XPDMENU procedure, which it replaces. Events for the individual
buttons are handled transparently, and a CW_PDMENU event returned. This event
can return any one of the following:

• the Index of the button within the base

• the widget ID of the button

• the name of the button.

• the fully qualified name of the button. This allows different sub-menus to
contain buttons with the same name in an unambiguous way.

Only buttons with textual names are handled by this widget. Bitmaps are not
understood.

This routine is written in the IDL language. Its source code can be found in the file
cw_pdmenu.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = CW_PDMENU(Parent, Desc [, /COLUMN] [, /CONTEXT_MENU]
[, DELIMITER=string] [, FONT=value] [, /MBAR [, /HELP]] [, IDS=variable]
[, /RETURN_ID | , /RETURN_INDEX | , /RETURN_NAME | ,
/RETURN_FULL_NAME] [, UNAME=string] [, UVALUE=value]
[, XOFFSET=value] [, YOFFSET=value])

Return Value

This function returns the widget ID of the newly-created pulldown menu widget.

Arguments

Parent

The widget ID of the parent widget.

Desc

An array of strings or structures. If Desc is an array of strings, each element contains
the flag field, followed by a backslash character, followed by the name of the menu
CW_PDMENU IDL Reference Guide

 435
item, optionally followed by another backslash character and the name of an event-
processing procedure for that element. A string element of the Desc array would look
like:

'n\item_name'

or

'n\item_name\event_proc'

where n is the flag field and item_name is the name of the menu item. The flag field is
a bitmask that controls how the button is interpreted; appropriate values for the flag
field are shown in the following table. If the event_proc field is present, it is the name
of an event-handling procedure for the menu element and all of its children.

If Desc is an array of structures, each structure has the following definition:

{CW_PDMENU_S, flags:0, name:''}

The name tag is a string field with the following components:

'item_name'

or

'item_name\event_proc'

where item_name is the name of the menu item. If the event_proc field is present, it is
the name of an event-handling procedure for the menu element and all of its children

The flags field is a bitmask that controls how the button is interpreted; appropriate
values for the flag field are shown in the following table. Note that if Desc is an array
of structures, you cannot specify individual event-handling procedures for each
element.

Value Meaning

0 This button is neither the beginning nor the end of a pulldown level.

1 This button is the root of a sub-pulldown menu. The sub-buttons start
with the next button.

2 This button is the last button at the current pulldown level. The next
button belongs to the same level as the current parent button. If the name
field is not specified (or is an empty string), no button is created, and the
next button is created one level up in the hierarchy.

Table 18: Button Flag Bit Meanings
IDL Reference Guide CW_PDMENU

436
Keywords

COLUMN

Set this keyword to create a vertical column of menu buttons. The default is to create
a horizontal row of buttons.

CONTEXT_MENU

Set this new keyword to create the pulldown menu within a in a context-sensitive
menu. If CONTEXT_MENU is set, Parent must be the widget ID of a base widget
with the CONTEXT_MENU keyword set.

For more on creating context menus, see“Context-Sensitive Menus” in Chapter 27 of
the Building IDL Applications manual and the CONTEXT_MENU keyword to
WIDGET_BASE.

DELIMITER

The character used to separate the parts of a fully qualified name in returned events.
The default is to use the “.” character.

FONT

The name of the font to be used for the button titles. The font specified is a “device
font” (an X Windows font on Motif systems; a TrueType or PostScript font on
Windows systems). See “About Device Fonts” on page 3962 for details on specifying
names for device fonts. If this keyword is omitted, the default font is used.

HELP

If the MBAR keyword is set, and one of the buttons on the menubar has the label
“help” (case insensitive) then that button is created with the /HELP keyword to give it
any special appearance it is supposed to have on a menubar. For example, Motif
expects help buttons to be on the right.

3 This button is the root of a sub-pulldown menu, but it is also the last
entry of the current level.

Value Meaning

Table 18: Button Flag Bit Meanings (Continued)
CW_PDMENU IDL Reference Guide

 437
IDS

A named variable in which the button IDs will be stored as a longword vector.

MBAR

Set this keyword to create a menubar pulldown. If MBAR is set, Parent must be the
widget ID of a menubar belonging to a top-level base, and the return value of
CW_PDMENU is this widget ID. For an example demonstrating the use of the
MBAR keyword, see Example 2 below. Also see the MBAR keyword to
WIDGET_BASE.

RETURN_ID

If this keyword is set, the VALUE field of returned events will contain the widget ID
of the button.

RETURN_INDEX

If this keyword is set, the VALUE field of returned events will contain the zero-based
index of the button within the base. THIS IS THE DEFAULT.

RETURN_NAME

If this keyword is set, the VALUE field of returned events will be the name of the
selected button.

RETURN_FULL_NAME

Set this keyword and the VALUE field of returned events will be the fully qualified
name of the selected button. This means that the names of all the buttons from the
topmost button of the pulldown menu to the selected one are concatenated with the
delimiter specified by the DELIMITER keyword. For example, if the top button was
named COLORS, the second level button was named BLUE, and the selected button
was named LIGHT, the returned value would be

COLORS.BLUE.LIGHT

This allows different submenus to have buttons with the same name (e.g.,
COLORS.RED.LIGHT).

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.
IDL Reference Guide CW_PDMENU

438
To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget. If the MBAR keyword is set, the value
specified for UVALUE is also assigned as the UVALUE of the parent menu (i.e., the
widget specified by the Parent argument in the call to CW_PDMENU).

XOFFSET

The X offset of the widget relative to its parent.

YOFFSET

The Y offset of the widget relative to its parent.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return information
on base widgets can be used with compound widgets.

See “Compound Widgets” in Chapter 26 of the Building IDL Applications manual for
a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_PDMENU Widget

This widget generates event structures with the following definition:

event = { ID:0L, TOP:0L, HANDLER:0L, VALUE:0 }

VALUE is either the INDEX, ID, NAME, or FULL_NAME of the button, depending
on how the widget was created.

Examples

Example 1

The following is the description of a menu bar with two buttons: “Colors” and “Quit”.
Colors is a pulldown containing the colors “Red”, “Green”, Blue”, “Cyan”, and
CW_PDMENU IDL Reference Guide

 439
“Magenta”. Blue is a sub-pulldown containing “Light”, “Medium”, “Dark”, “Navy”,
and “Royal.”

The following small program can be used with the above description to create the
specified menu:

PRO PD_EXAMPLE
desc = ['1\Colors' , $

'0\Red' , $
'0\Green' , $
'1\Blue' , $
'0\Light' , $
'0\Medium' , $
'0\Dark' , $
'0\Navy' , $
'2\Royal' , $
'0\Cyan' , $
'2\Magenta' , $
'2\Quit']

; Create the widget:
base = WIDGET_BASE()
menu = CW_PDMENU(base, desc, /RETURN_FULL_NAME)
WIDGET_CONTROL, /REALIZE, base

;Provide a simple event handler:
REPEAT BEGIN

ev = WIDGET_EVENT(base)
PRINT, ev.value

END UNTIL ev.value EQ 'Quit'
WIDGET_CONTROL, /DESTROY, base

END

The Desc array could also have been defined using a structure for each element. The
following array of structures creates the same menu as the array of strings shown
above. Note, however, that if the Desc array is composed of structures, you cannot
specify individual event-handling routines.

First, make sure CW_PDMENU_S structure is defined:

junk = {CW_PDMENU_S, flags:0, name:'' }

Define the menu:

desc = [{ CW_PDMENU_S, 1, 'Colors' }, $
{ CW_PDMENU_S, 0, 'Red' }, $
{ CW_PDMENU_S, 0, 'Green' }, $
{ CW_PDMENU_S, 1, 'Blue' }, $
{ CW_PDMENU_S, 0, 'Light' }, $
IDL Reference Guide CW_PDMENU

440
{ CW_PDMENU_S, 0, 'Medium' }, $
{ CW_PDMENU_S, 0, 'Dark' }, $
{ CW_PDMENU_S, 0, 'Navy' }, $
{ CW_PDMENU_S, 2, 'Royal' }, $
{ CW_PDMENU_S, 0, 'Cyan' }, $
{ CW_PDMENU_S, 2, 'Magenta' }, $
{ CW_PDMENU_S, 2, 'Quit' }]

Example 2

This example demonstrates the use of the MBAR keyword to CW_PDMENU to
populate the “Colors” menu item on a menu bar created using WIDGET_BASE.

PRO mbar_event, event

WIDGET_CONTROL, event.id, GET_UVALUE=uval

CASE uval OF
'Quit': WIDGET_CONTROL, /DESTROY, event.top

ELSE: PRINT, event.value
ENDCASE

END

PRO mbar

; Create the base widget:
base = WIDGET_BASE(TITLE = 'Example', MBAR=bar, XSIZE=200, $

UVALUE='base')

file_menu = WIDGET_BUTTON(bar, VALUE='File', /MENU)
file_bttn1=WIDGET_BUTTON(file_menu, VALUE='Quit', $

UVALUE='Quit')

colors_menu = WIDGET_BUTTON(bar, VALUE='Colors', /MENU)

; Define array for colors menu items:
desc = ['0\Red' , $

'0\Green' , $
'1\Blue' , $
'0\Light' , $
'0\Medium' , $
'0\Dark' , $
'0\Navy' , $
'2\Royal' , $
'0\Cyan' , $
'2\Magenta']
CW_PDMENU IDL Reference Guide

 441
; Create colors menu items. Note that the Parent argument is
; set to the widget ID of the parent menu:
colors = CW_PDMENU(colors_menu, desc, /MBAR, $

/RETURN_FULL_NAME, UVALUE='menu')

WIDGET_CONTROL, /REALIZE, base

XMANAGER, 'mbar', base, /NO_BLOCK

END

Version History

Introduced: Pre 4.0

See Also

CW_BGROUP, WIDGET_DROPLIST
IDL Reference Guide CW_PDMENU

442
CW_RGBSLIDER

The CW_RGBSLIDER function creates a compound widget that provides three
sliders for adjusting color values. The RGB, CMY, HSV, and HLS color systems can
all be used. No matter which color system is in use, the resulting color is always
supplied in RGB, which is the base system for IDL.

This routine is written in the IDL language. Its source code can be found in the file
cw_rgbslider.pro in the lib subdirectory of the IDL distribution.

Using CW_RGBSLIDER

The CW_RGBSLIDER widget consists of a pulldown menu which allows the user to
change between the supported color systems, and three color adjustment sliders,
allowing the user to select a new color value.

Syntax

Result = CW_RGBSLIDER(Parent [, /CMY | , /HSV | , /HLS | , /RGB]
[, /COLOR_INDEX | , GRAPHICS_LEVEL={1 | 2}] [, /DRAG] [, /FRAME]
[, LENGTH=value] [, UNAME=string] [, UVALUE=value] [, VALUE=[r, g, b]]
[, /VERTICAL])

Return Value

This function returns the widget ID of the newly-created color adjustment widget.

Arguments

Parent

The widget ID of the parent widget.

Keywords

CMY

If set, the initial color system used is CMY.
CW_RGBSLIDER IDL Reference Guide

 443
COLOR_INDEX

Set this keyword to display a small rectangle with the selected color. The color is
updated as the values are changed. The color initially displayed in this rectangle
corresponds to the value specified with the VALUE keyword. If using Object
Graphics, it is recommended that you set the GRAPHICS_LEVEL keyword to 2, in
which case the COLOR_INDEX keyword is ignored.

DRAG

Set this keyword and events will be generated continuously when the sliders are
adjusted. If not set, events will only be generated when the mouse button is released.
Note: On slow systems, /DRAG performance can be inadequate. The default is
DRAG = 0.

FRAME

If set, a frame will be drawn around the widget. The default is FRAME = 0.

GRAPHICS_LEVEL

Set this keyword to 2 to use Object Graphics. Set to 1 for Direct Graphics (the
default). If set to 2, a small rectangle is displayed with the selected color. The color is
updated as the values are changed. The color initially displayed in this rectangle
corresponds to the value specified with the VALUE keyword. If this keyword is set,
the COLOR_INDEX keyword is ignored.

HSV

If set, the initial color system used is HSV.

HLS

If set, the initial color system used is HLS.

LENGTH

The length of the sliders. The default = 256.

RGB

If set, the initial color system used is RGB. This is the default.
IDL Reference Guide CW_RGBSLIDER

444
UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

VALUE

Set this keyword to a 3-element [r, g, b] vector representing the initial RGB value for
the CW_RGBSLIDER widget. If the GRAPHICS_LEVEL keyword is set to 2, the
color swatch will also initially display this RGB value.

VERTICAL

If set, the sliders will be oriented vertically. The default is VERTICAL = 0.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return information
on base widgets can be used with compound widgets.

See “Compound Widgets” in Chapter 26 of the Building IDL Applications manual for
a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_RGBSLIDER
Widget

This widget generates event structures with the following definition:

event = {ID:0L, TOP:0L, HANDLER:0L, R:0B, G:0B, B:0B }
CW_RGBSLIDER IDL Reference Guide

 445
The ‘R’, ‘G’, and ‘B’ fields contain the Red, Green and Blue components of the
selected color. Note that CW_RGBSLIDER reports back the Red, Green, and Blue
values no matter which color system is selected.

Version History

Introduced: Pre 4.0

See Also

CW_CLR_INDEX, XLOADCT, XPALETTE
IDL Reference Guide CW_RGBSLIDER

446
CW_TMPL

The CW_TMPL procedure is a template for compound widgets that use the
XMANAGER. Use this template instead of writing your compound widgets from
“scratch”. This template can be found in the file cw_tmpl.pro in the lib
subdirectory of the IDL distribution.

Syntax

Result = CW_TMPL(Parent [, UNAME=string] [, UVALUE=value])

Arguments

Parent

The widget ID of the parent widget of the new compound widget.

Keywords

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

A user-specified value for the compound widget.

Version History

Introduced: Pre 4.0

See Also

XMNG_TMPL
CW_TMPL IDL Reference Guide

 447
CW_ZOOM

The CW_ZOOM function creates a compound widget that displays two images: an
original image in one window and a portion of the original image in another. The user
can select the center of the zoom region, the zoom scale, the interpolation style, and
the method of indicating the zoom center.

This routine is written in the IDL language. Its source code can be found in the file
cw_zoom.pro in the lib subdirectory of the IDL distribution.

Using CW_ZOOM

The value of the CW_ZOOM widget is the original, un-zoomed image to be
displayed (a two-dimensional array). To change the contents of the CW_ZOOM
widget, use the command:

WIDGET_CONTROL, id, SET_VALUE = array

where id is the widget ID of the CW_ZOOM widget and array is the image array.
The value of CW_ZOOM cannot be set until the widget has been realized. Note that
the size of the original window, set with the XSIZE and YSIZE keywords to
CW_ZOOM, must be the size of the input array.

To return the current zoomed image as displayed by CW_ZOOM in the variable
array, use the command:

WIDGET_CONTROL, id, GET_VALUE = array

Syntax

Result = CW_ZOOM(Parent [, /FRAME] [, MAX=scale] [, MIN=scale]
[, RETAIN={0 | 1 | 2}] [, SAMPLE=value] [, SCALE=value] [, /TRACK]
[, UNAME=string] [, UVALUE=value] [, XSIZE=width]
[, X_SCROLL_SIZE=width] [, X_ZSIZE=zoom_width] [, YSIZE=height]
[, Y_SCROLL_SIZE=height] [, Y_ZSIZE=zoom_height])

Return Value

This function returns the widget ID of the newly-created zoom widget.
IDL Reference Guide CW_ZOOM

448
Arguments

Parent

The widget ID of the parent widget.

Keywords

FRAME

If set, a frame will be drawn around the widget. The default is FRAME = 0.

MAX

The maximum zoom scale, which must be greater than or equal to 1. The default is
20.

MIN

The minimum zoom scale, which must be greater than or equal to 1. The default is 1.

RETAIN

Set this keyword to zero, one, or two to specify how backing store should be handled
for both windows. RETAIN=0 specifies no backing store. RETAIN=1 requests that
the server or window system provide backing store. RETAIN=2 specifies that IDL
provide backing store directly. See “Backing Store” on page 3824 for details.

SAMPLE

Set to zero for bilinear interpolation, or to a non-zero value for nearest neighbor
interpolation. Bilinear interpolation gives higher quality results, but requires more
time. The default is 0.

SCALE

The initial integer scale factor to use for the zoomed image. The default is SCALE =
4. The scale must be greater than or equal to 1.

TRACK

Set this keyword and events will be generated continuously as the cursor is moved
across the original image. If not set, events will only be generated when the mouse
button is released. Note: On slow systems, /TRACK performance can be inadequate.
The default is 0.
CW_ZOOM IDL Reference Guide

 449
UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

XSIZE

The width of the window (in pixels) for the original image. The default is XSIZE =
500. Note that XSIZE must be set to the width of the original image array for the
image to display properly.

X_SCROLL_SIZE

The width of the visible part of the original image. This may be smaller than the
actual width controlled by the XSIZE keyword. The default is 0, for no scroll bar.

X_ZSIZE

The width of the window for the zoomed image. The default is 250.

YSIZE

The height of the window (in pixels) for the original image. The default is 500. Note
that YSIZE must be set to the height of the original image array for the image to
display properly.

Y_SCROLL_SIZE

The height of the visible part of the original image. This may be smaller than the
actual height controlled by the YSIZE keyword. The default is 0, for no scroll bar.

Y_ZSIZE

The height of the window for the zoomed image. The default is 250.
IDL Reference Guide CW_ZOOM

450
Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget ID returned by most compound widgets is actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET_INFO routines that affect or return information
on base widgets can be used with compound widgets.

In addition, you can use the GET_VALUE and SET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the zoom widget. The value of the
CW_ZOOM widget is the original, un-zoomed image to be displayed (a two-
dimensional array). To change the contents of the CW_ZOOM widget, use the
command:

WIDGET_CONTROL, id, SET_VALUE = array

where id is the widget ID of the CW_ZOOM widget and array is the image array.
The value of CW_ZOOM cannot be set until the widget has been realized. Note that
the size of the original window, set with the XSIZE and YSIZE keywords to
CW_ZOOM, must be the size of the input array.

To return the current zoomed image as displayed by CW_ZOOM in the variable
array, use the command:

WIDGET_CONTROL, id, GET_VALUE = array

See “Compound Widgets” in Chapter 26 of the Building IDL Applications manual for
a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_ZOOM Widget

When the “Report Zoom to Parent” button is pressed, this widget generates event
structures with the following definition:

event = {ZOOM_EVENT, ID:0L, TOP:0L, HANDLER:0L, $
XSIZE:0L, YSIZE:0L, X0:0L, Y0:0L, X1:0L, Y1:0L }

The XSIZE and YSIZE fields contain the dimensions of the zoomed image. The X0
and Y0 fields contain the coordinates of the lower left corner of the original image,
and the X1 and Y1 fields contain the coordinates of the upper right corner of the
original image.

Examples

The following code samples illustrate a use of the CW_ZOOM widget.
CW_ZOOM IDL Reference Guide

 451
First, create an event-handler. Note that clicking on the widget’s “Zoom” button
displays IDL’s help output on the console.

PRO widzoom_event, event

WIDGET_CONTROL, event.id, GET_UVALUE=uvalue
CASE uvalue OF

'ZOOM': HELP, /STRUCT, event
'DONE': WIDGET_CONTROL, event.top, /DESTROY

ENDCASE

END

Next, create the widget program:

PRO widzoom

OPENR, lun, FILEPATH('people.dat', $
SUBDIR = ['examples','data']), /GET_LUN

image=BYTARR(192,192)
READU, lun, image
FREE_LUN, lun
sz = SIZE(image)

base=WIDGET_BASE(/COLUMN)
zoom=CW_ZOOM(base, XSIZE=sz[1], YSIZE=sz[2], UVALUE='ZOOM')
done=WIDGET_BUTTON(base, VALUE='Done', UVALUE='DONE')
WIDGET_CONTROL, base, /REALIZE

WIDGET_CONTROL, zoom, SET_VALUE=image
XMANAGER, 'widzoom', base

END

Once you have entered these programs, type “widzoom” at the IDL command prompt
to run the widget application.

Version History

Introduced: Pre 4.0

See Also

ZOOM, ZOOM_24
IDL Reference Guide CW_ZOOM

452
DBLARR

The DBLARR function create a double-precision, floating-point vector or array of
the specified dimensions.

Syntax

Result = DBLARR(D1[, ..., D8] [, /NOZERO])

Return Value

Returns a double-precision, floating-point vector or array.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, DBLARR sets every element of the result to zero. If NOZERO is set, this
zeroing is not performed and DBLARR executes faster.

Examples

To create D, an 3-element by 3-element, double-precision, floating-point array with
every element set to 0.0, enter:

D = DBLARR(3, 3)

Version History

Introduced: Original
DBLARR IDL Reference Guide

 453
See Also

COMPLEXARR, DCOMPLEXARR, FLTARR, INTARR, LON64ARR, LONARR,
MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
IDL Reference Guide DBLARR

454
DCINDGEN

The DCINDGEN function creates a complex, double-precision, floating-point array
with the specified dimensions. Each element of the array has its real part set to the
value of its one-dimensional subscript. The imaginary part is set to zero.

Syntax

Result = DCINDGEN(D1 [, ..., D8])

Return Value

Returns a complex, double-precision, floating-point array of the specified
dimensions.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
DCINDGEN IDL Reference Guide

 455
Examples

To create DC, a 4-element vector of complex values with the real parts set to the value
of their subscripts, enter:

DC = DCINDGEN(4)

Version History

Introduced: 4.0

See Also

BINDGEN, CINDGEN, DINDGEN, FINDGEN, INDGEN, LINDGEN, SINDGEN,
UINDGEN, UL64INDGEN, ULINDGEN
IDL Reference Guide DCINDGEN

456
DCOMPLEX

The DCOMPLEX function returns double-precision complex scalars or arrays given
one or two scalars or arrays. If only one parameter is supplied, the imaginary part of
the result is zero, otherwise it is set to the value of the Imaginary parameter.
Parameters are first converted to double-precision floating-point. If either or both of
the parameters are arrays, the result is an array, following the same rules as standard
IDL operators. If three parameters are supplied, DCOMPLEX extracts fields of data
from Expression.

Syntax

Result = DCOMPLEX(Real [, Imaginary])

or

Result = DCOMPLEX(Expression, Offset [, D1 [, ..., D8]])

Return Value

Returns double-precision complex scalars or arrays given one or two scalars or
arrays.

Arguments

Real

Scalar or array to be used as the real part of the complex result.

Imaginary

Scalar or array to be used as the imaginary part of the complex result.

Expression

The expression from which data is to be extracted.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as complex data. See the
description in Chapter 3, “Constants and Variables” in the Building IDL Applications
manual for details.
DCOMPLEX IDL Reference Guide

 457
Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
If no dimension arguments are given, the result is taken to be scalar.

The Di arguments can be either an array or a series of scalar expressions specifying
the dimensions of the result. If a single argument is specified, it can be either a scalar
expression or an array of up to eight elements. If multiple arguments are specified,
they must all be scalar expressions. Up to eight dimensions can be specified.

When converting from a string argument, it is possible that the string does not contain
a valid floating-point value and no conversion is possible. The default action in such
cases is to print a warning message and return 0. The ON_IOERROR procedure can
be used to establish a statement to be jumped to in case of such errors.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

Create a complex array from two integer arrays by entering the following commands:

; Create the first integer array:
A = [1,2,3]

; Create the second integer array:
B = [4,5,6]

; Make A the real parts and B the imaginary parts of the new
; complex array:
C = DCOMPLEX(A, B)

; See how the two arrays were combined:
PRINT, C
IDL Reference Guide DCOMPLEX

458
IDL prints:

(1.0000000, 4.0000000)(2.0000000, 5.0000000)
(3.0000000, 6.0000000)

The real and imaginary parts of the complex array can be extracted as follows:

; Print the real part of the complex array C:
PRINT, 'Real Part: ', REAL_PART(C)

; Print the imaginary part of the complex array C:
PRINT, 'Imaginary Part: ', IMAGINARY(C)

IDL prints:

Real Part: 1.0000000 2.0000000 3.0000000
Imaginary Part: 4.0000000 5.0000000 6.0000000

Version History

Introduced: 4.0

See Also

BYTE, COMPLEX, CONJ, DOUBLE, FIX, FLOAT, IMAGINARY, LONG,
LONG64, REAL_PART, STRING, UINT, ULONG, ULONG64
DCOMPLEX IDL Reference Guide

 459
DCOMPLEXARR

The DCOMPLEXARR function returns a complex, double-precision, floating-point
vector or array.

Syntax

Result = DCOMPLEXARR(D1 [, ..., D8] [, /NOZERO])

Return Value

Returns a complex, double-precision, floating-point vector or array of the specified
dimensions.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, DCOMPLEXARR sets every element of the result to zero. If the NOZERO
keyword is set, this zeroing is not performed, and DCOMPLEXARR executes faster.

Examples

To create an empty, 5-element by 5-element, complex array DC, enter:

DC = DCOMPLEXARR(5, 5)

Version History

Introduced: 4.0
IDL Reference Guide DCOMPLEXARR

460
See Also

COMPLEXARR, DBLARR, FLTARR, INTARR, LON64ARR, LONARR,
MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
DCOMPLEXARR IDL Reference Guide

 461
DEFINE_KEY

The DEFINE_KEY procedure programs the keyboard function Key with the string
Value, or with one of the actions specified by the available keywords.

DEFINE_KEY is primarily intended for use with IDL’s UNIX command line
interface, but it has limited applications in the Microsoft Windows environment as
well.

Note
Key bindings for the UNIX graphical interface (IDLDE) can be created via X
Window resources. See IDL’s resource file, located in your IDL distribution and
described in Chapter 8, “Customizing IDL on Motif Systems” in the Using IDL
manual, for details on key bindings.

Syntax

DEFINE_KEY, Key [, Value] [, /MATCH_PREVIOUS] [, /NOECHO]
[, /TERMINATE]

UNIX Keywords: [, /BACK_CHARACTER] [, /BACK_WORD] [, /CONTROL | ,
/ESCAPE] [, /DELETE_CHARACTER] [, /DELETE_CURRENT]
[, /DELETE_EOL] [, /DELETE_LINE] [, /DELETE_WORD] [, /END_OF_LINE]
[, /END_OF_FILE] [, /ENTER_LINE] [, /FORWARD_CHARACTER]
[, /FORWARD_WORD] [, /INSERT_OVERSTRIKE_TOGGLE] [, /NEXT_LINE]
[, /PREVIOUS_LINE] [, /RECALL] [, /REDRAW] [, /START_OF_LINE]

Arguments

Key

A scalar string containing the name of a function key to be programmed. IDL
maintains an internal list of function key names and the escape sequences they send.
Different keys are available for mapping in the UNIX command-line interface and the
Windows IDL Development Environment, as described below.

UNIX — Under UNIX, DEFINE_KEY allows you to set the values of two distinctly
different types of keys:

• Control characters: Any of the 26 control characters (CTRL+A through
CTRL+Z) can be associated with specific actions by specifying the
CONTROL keyword. Control characters are the unprintable ASCII characters
IDL Reference Guide DEFINE_KEY

462
at the beginning of the ASCII character set. They are usually entered by
holding down the Control key while the corresponding letter key is pressed.

• Function keys: Most terminals (and terminal emulators) send escape sequences
when a function key is pressed. An escape sequence is a sequence of characters
starting the ASCII Escape character. Escape sequences follow strict rules that
allow applications such as IDL to determine when the sequence is complete.
For instance, the left arrow key on most machines sends the sequence
<ESC>[D. The available function keys and the escape sequences they send
vary from keyboard to keyboard; IDL cannot be built to recognize all of the
different keyboards in existence. The ESCAPE keyword allows you to
program IDL with the escape sequences for your keyboard. When you press
the function key, IDL will recognize the sequence and take the appropriate
action.

If Key is not already on IDL’s internal list, you must use the ESCAPE keyword to
specify the escape sequence, otherwise, Key alone will suffice. The available function
keys and the escape sequences they send vary from keyboard to keyboard. The
SETUP_KEYS procedure should be used once at the beginning of the session to enter
the keys for the current keyboard. The following table describes the standard key
definitions.

Editing Key Function

Ctrl+A Move cursor to start of line

Ctrl+B Move cursor left one word

Ctrl+D EOF if current line is empty, EOL otherwise

Ctrl+E Move to end of line

Ctrl+F Move cursor right one word

Ctrl+K Erase from the cursor to the end of the line

Ctrl+N Move back one line in the recall buffer

Ctrl+R Retype current line

Ctrl+U Delete from current position to start of line

Ctrl+W Delete previous word

Ctrl+X Delete current character

Table 19: Standard Key Definitions for UNIX
DEFINE_KEY IDL Reference Guide

 463
Windows — Under Windows, function keys F2, F4, and F12 can be customized.

In IDL for Windows, three special variables can be used to expand the current
mouse selection, the current line, or the current filename into the output of
defined keys.

For example, to define F2 as a key that executes an IDL PRINT command with
the current mouse selection as its argument, use the command:

DEFINE_KEY, 'F2', 'PRINT, "%S"'

Backspace, Delete Delete previous character

ESC-I Overstrike/insert toggle

ESC-Delete Delete previous word

Up Arrow Move back one line in the recall buffer

Down Arrow Move forward one line in the recall buffer

Left Arrow Move left one character

Right Arrow Move right one character

R13 Move cursor left one word (Sun keyboards)

R15 Move cursor right one word (Sun keyboards)

^text Recall the first line containing text. If text is blank,
recall the previous line

Other Characters Insert character at the current cursor position

Variable Expansion

%f filename of the currently-selected IDL Editor window

%l number of the current line in an IDL Editor window

%s Currently-selected text from an IDL Output Log or
Editor window

Table 20: Variable expansions for defined keys

Editing Key Function

Table 19: Standard Key Definitions for UNIX (Continued)
IDL Reference Guide DEFINE_KEY

464
Dragging the mouse over any text in an IDL Editor or Output Log window and
pressing F2 causes the selected text to be given as the argument to the IDL
PRINT procedure. The %l and %f variables can be used in a similar fashion.

Value

The scalar string that will be printed (as if it had been typed manually at the
keyboard) when Key is pressed. If Value is not present, and no function is specified
for the key with one of the keywords, the key is cleared so that nothing happens when
it is pressed.

Keywords

BACK_CHARACTER (UNIX Only)

Set this keyword to program Key to move the current cursor position left one
character.

BACK_WORD (UNIX Only)

Set this keyword to program Key to move the current cursor position left one word.

CONTROL (UNIX Only)

Set this keyword to indicate that Key is the name of a control key. The default is for
Key to define a function key escape sequence. To view the names used by IDL for the
control keys, type the following at the Command Input Line:

HELP, /ALL_KEYS

Warning
The CONTROL and ESCAPE keywords are mutually exclusive and cannot be
specified together.

DELETE_CHARACTER (UNIX Only)

Set this keyword to program Key to delete the character to the left of the cursor.

DELETE_CURRENT (UNIX Only)

Set this keyword to program Key to delete the character directly underneath the
cursor.
DEFINE_KEY IDL Reference Guide

 465
DELETE_EOL (UNIX Only)

Set this keyword to program Key to delete from the cursor position to the end of the
line.

DELETE_LINE (UNIX Only)

Set this keyword to program Key to delete all characters to the left of the cursor.

DELETE_WORD (UNIX Only)

Set this keyword to programs Key to delete the word to the left of the cursor.

END_OF_LINE (UNIX Only)

Set this keyword to program Key to move the cursor to the end of the line.

END_OF_FILE (UNIX Only)

Set this keyword to program Key to exit IDL if the current line is empty, and to end
the current input line if the current line is not empty.

ENTER_LINE (UNIX Only)

Set this keyword to program Key to enter the current line (i.e., the action normally
performed by the “Return” key).

ESCAPE (UNIX Only)

A scalar string that specifies the escape sequence that corresponds to Key. See
“Defining New Function Keys” on page 468 for further details.

Warning
The CONTROL and ESCAPE keywords are mutually exclusive and cannot be
specified together.

FORWARD_CHARACTER (UNIX Only)

Set this keyword to program Key to move the current cursor position right one
character.

FORWARD_WORD (UNIX Only)

Set this keyword to program Key to move the current cursor position right one word.
IDL Reference Guide DEFINE_KEY

466
INSERT_OVERSTRIKE_TOGGLE (UNIX Only)

Set this keyword to program Key to toggle between “insert” and “overstrike” mode.
When characters are typed into the middle of a line, insert mode causes the trailing
characters to be moved to the right to make room for the new ones. Overstrike mode
causes the new characters to overwrite the existing ones.

MATCH_PREVIOUS

Set this keyword to program Key to prompt the user for a string, and then search the
saved command buffer for the most recently issued command that contains that
string. If a match is found, the matching command becomes the current command,
otherwise the last command entered is used. Under UNIX, the default match key is
the up caret “^” key when pressed in column 1.

NEXT_LINE (UNIX Only)

Set this keyword to program Key to move forward one command in the saved
command buffer and make that command the current one.

NOECHO

Set this keyword to enter the Value assigned to Key when pressed, without echoing
the string to the screen. This feature is useful for defining keys that perform such
actions as erasing the screen. If NOECHO is set, TERMINATE is also assumed to be
set.

PREVIOUS_LINE (UNIX Only)

Set this keyword to program Key to move back one command in the saved command
buffer and make that command the current one.

RECALL (UNIX Only)

Set this keyword to program Key to prompt the user for a command number. The
saved command corresponding to the entered number becomes the current command.
In order to view the currently saved commands and the number currently associated
with each, enter the IDL command:

HELP, /RECALL COMMANDS

Example

The RECALL operation remembers the last command number entered, and if the
user simply presses return, it recalls the command currently associated with that
saved number. Since the number associated with a given command increases by one
DEFINE_KEY IDL Reference Guide

 467
each time a new command is saved, this feature can be used to quickly replay a
sequence of commands.

IDL> PRINT, 1
1
IDL> PRINT, 2
2
IDL> HELP, /RECALL_COMMANDS
Recall buffer length: 20
1 PRINT, 2
2 PRINT, 1

User presses key tied to RECALL.

IDL>

Line 2 is requested.

Recall Line #: 2

Saved command 2 is recalled.

IDL> PRINT, 1
1

User presses return.

Recall Line #:

Saved command 2 is recalled again.

IDL> PRINT, 2
2

REDRAW (UNIX Only)

Set this keyword to program Key to retype the current line.

START_OF_LINE (UNIX Only)

Set this keyword to program Key to move the cursor to the start of the line.

TERMINATE

If this keyword is set, and Value is present, pressing Key terminates the current input
operation after its assigned value is entered. Essentially, an implicit carriage return is
added to the end of Value.
IDL Reference Guide DEFINE_KEY

468
Examples

Defining New Function Keys

Under UNIX, IDL can handle arbitrary function keys. When adding a definition for a
function key that is not built into IDL’s default list of recognized keys, you must use
the ESCAPE keyword to specify the escape sequence it sends. For example, to add a
function key named “HELP” which sends the escape sequence <Escape>[28~, use
the command:

DEFINE_KEY, 'HELP', ESCAPE = '\033[28~'

This command adds the HELP key to the list of keys understood by IDL. Since only
the key name and escape sequence were specified, pressing the HELP key will do
nothing. The Value argument, or one of the keywords provided to specify command
line editing functions, could have been included in the above statement to program it
with an action.

Once a key is defined using the ESCAPE keyword, it is contained in the internal list
of function keys. It can then be subsequently redefined without specifying the escape
sequence.

It is convenient to include commonly used key definitions in a startup file, so that
they will always be available. See “Startup Files” in Chapter 1 of the Using IDL
manual.

Usually, the SETUP_KEYS procedure is used to define the function keys found on
the keyboard, so it is not necessary to specify the ESCAPE keyword. For example, to
program key “F2” on a Sun keyboard to redraw the current line:

SETUP_KEYS
DEFINE_KEY, 'F2', /REDRAW

The CONTROL keyword alters the action that IDL takes when it sees the specified
characters defining the control keys. IDL may not be able to alter the behavior of
some control characters. For example, CTRL+S and CTRL+Q are usually reserved
by the operating system for flow control. Similarly, CTRL+Z is usually The UNIX
suspend character.

Example

CTRL+D is the UNIX end-of-file character. It is a common UNIX convention
(followed by IDL) for programs to quit upon encountering CTRL+D. However,
CTRL+D is also used by some text editors to delete characters. To disable IDL
default handling of CTRL+D, type the following:

DEFINE_KEY, /CONTROL, '^D'
DEFINE_KEY IDL Reference Guide

 469
To print a reminder of how to exit IDL properly, type the following:

DEFINE_KEY, /CONTROL, '^D', "print, 'Enter EXIT to quit IDL'", $
/NOECHO, /TERMINATE

To use CTRL+D to delete characters, type the following:

DEFINE_KEY, /CONTROL, '^D', /DELETE_CURRENT

Version History

Introduced: Original

See Also

GET_KBRD
IDL Reference Guide DEFINE_KEY

470
DEFINE_MSGBLK

The DEFINE_MSGBLK procedure defines and loads a new message block into the
currently running IDL session. Messages are issued from a message block using the
MESSAGE procedure, which handles the details of IDL message display, including
proper formatting, setting the values of the !ERROR_STATE system variable, and
displaying traceback information if execution halts. See MESSAGE for details.

A message block is a collection of messages that are loaded into IDL as a single unit.
Each block contains the messages required for a specific application. At startup, IDL
contains a single internal message block named IDL_MBLK_CORE, which contains
the standard messages required by the IDL system. Dynamically loadable modules
(DLMs) usually define additional message blocks for their own needs when they are
loaded. At the IDL programming level, the DEFINE_MSGBLK and
DEFINE_MSGBLK_FROM_FILE procedures can be used to define and load
message blocks. You can use the HELP, /MESSAGES command to see the currently
defined message blocks.

Syntax

DEFINE_MSGBLK, BlockName, ErrorNames, ErrorFormats
[, /IGNORE_DUPLICATE] [, PREFIX = PrefixStr]

Note
IDL will force the values of the message bock name, the individual message names,
and any message prefix string to upper case before installing the message block.
Because IDL is generally case-insensitive, you do not need to use upper case when
supplying these values to the DEFINE_MSGBLK or MESSAGE procedures. The
values stored in the !ERROR_STATE system variable will, however, be upper-case
strings. If you do string comparisons with values in !ERROR_STATE, you should
take this case-folding into account.

Arguments

BlockName

A string giving the name of the message block to be defined. Block names must be
unique within the IDL system. We recommend that you follow the advice given in
“Advice for Library Authors” in Chapter 4 of the Building IDL Applications manual
when selecting the message block name in order to avoid name conflicts. Use of the
PREFIX keyword is also recommended to enforce a consistent naming convention.
DEFINE_MSGBLK IDL Reference Guide

 471
ErrorNames

An array of strings giving the names of the messages defined by the message block.

ErrorFormats

An array of strings giving the formats for the messages defined by the message block.
Note that the format string can include both static text (displayed every time the error
is displayed) and dynamic text (specified when the error is generated by a call to the
MESSAGE procedure). Each format is matched with the corresponding name in
ErrorNames. For this reason, ErrorFormats should have the same number of
elements as ErrorNames. We recommend the use of the PREFIX keyword to enforce
a consistent naming scheme for your messages.

Error formats are simplified printf-style format strings. For more information on
format strings, see “C printf-Style Quoted String Format Code” in Chapter 10 of the
Building IDL Applications manual.

Keywords

IGNORE_DUPLICATE

Attempts to define a given BlockName more than once in the same IDL session
usually cause DEFINE_MSGBLK to issue an error and stop execution of the IDL
program. Specify IGNORE_DUPLICATE to cause DEFINE_MSGBLK to quietly
ignore attempts to redefine a message block. In this case, no error is issued and
execution continues. The original message block remains installed and available for
use.

PREFIX

It is a common and recommended practice to give each message name defined in
ErrorNames a common unique prefix that identifies it as an error from a specific
message block. However, specifying this prefix in each entry of ErrorNames is
tedious and error prone. The PREFIX keyword can be used to specify a prefix string
that will be added to each element of ErrorNames.

Examples

This example defines a message block called ROADRUNNER that contains 2
messages:
IDL Reference Guide DEFINE_MSGBLK

472
name = ['BADPLAN', 'RRNOTCAUGHT']
fmt = ['Bad plan detected: %s.', 'Road Runner not captured.']
DEFINE_MSGBLK, PREFIX = 'ACME_M_', 'ROADRUNNER', name, fmt

Once this message block is loaded, the ACME_M_BADPLAN message can be
issued using the following statement:

MESSAGE, NAME = 'acme_m_badplan', BLOCK = 'roadrunner', $
'Exploding bridge while standing underneath'

This MESSAGE statement produces the output similar to:

% Bad plan detected: Exploding bridge while standing underneath.
% Execution halted at: $MAIN$

The IDL command:

HELP, /STRUCTURES, !ERROR_STATE

can be used to examine the effect of this message on IDL’s error state.

Version History

Introduced: 5.5

See Also

DEFINE_MSGBLK_FROM_FILE, MESSAGE
DEFINE_MSGBLK IDL Reference Guide

 473
DEFINE_MSGBLK_FROM_FILE

The DEFINE_MSGBLK_FROM_FILE procedure reads the definition of a message
block from a file, and uses DEFINE_MSGBLK to load it into the currently running
IDL session. Messages are issued from a message block using the MESSAGE
procedure, which handles the details of IDL message display, including proper
formatting, setting the values of the !ERROR_STATE system variable, and displaying
traceback information if execution halts. See MESSAGE for details.

Note
For large message blocks, DEFINE_MSGBLK_FROM_FILE can be more
convenient than DEFINE_MSGBLK.

Format of Message Definition Files

A message definition file has a simple structure designed to ease the specification of
message blocks. Any line starting with the character @ specifies information about
the message block. Any line not starting with an @ character is ignored, and can be
used for comments, documentation, notes, or other human readable information. All
such text is ignored by DEFINE_MSGBLK_FROM_FILE.

There are three different types of lines starting with @ allowed in a message
definition file:

@IDENT name

Specifies the name of the message block being defined. There should be exactly one
such line in every message definition file. If the BLOCK keyword to
DEFINE_MSGBLK_FROM_FILE is specified, the @IDENT line is ignored and can
be omitted. RSI recommends always specifying an @IDENT line.

Note
IDL will force the string specified by the @IDENT line to upper case before
installing the message block. You do not need to use upper case when supplying the
@IDENT name string, but !ERROR_STATE.BLOCK will always contain an upper-
case string.

@PREFIX PrefixStr

If present, specifies a prefix string to be applied to the beginning of each message
name in the message block. There should be at most one such line in every message
definition file. If the PREFIX keyword to DEFINE_MSGBLK_FROM_FILE is
IDL Reference Guide DEFINE_MSGBLK_FROM_FILE

474
specified, the @PREFIX line is ignored and can be omitted. RSI recommends always
specifying an @PREFIX line.

Note
IDL will force the string specified by the @PREFIX line to upper case before
installing the message block. You do not need to use upper case when supplying the
@PREFIX PrefixStr string, but !ERROR_STATE.BLOCK will always contain an
upper-case string.

@ MessageName "MessageFormat"

Specifies a single message name and format string pair. The format string should be
delimited with double quotes. A message definition file should contain one such line
for every message it defines.

This routine is written in the IDL language. Its source code can be found in the file
define_msgblk_from_file.pro in the lib subdirectory of the IDL distribution.

Syntax

DEFINE_MSGBLK_FROM_FILE, Filename [, BLOCK = BlockName]
[, /IGNORE_DUPLICATE] [, PREFIX = PrefixStr] [, /VERBOSE]

Note
IDL will force the values of the message bock name, the individual message names,
and any message prefix string to upper case before installing the message block.
Because IDL is generally case-insensitive, you do not need to use upper case when
supplying these values to the DEFINE_MSGBLK_FROM_FILE or MESSAGE
procedures. The values stored in the !ERROR_STATE system variable will,
however, be upper-case strings. If you do string comparisons with values in
!ERROR_STATE, you should take this case-folding into account.

Arguments

Filename

The name of the file containing the message block definition. The contents of this file
must be formatted as described in the section “Format of Message Definition Files”.
DEFINE_MSGBLK_FROM_FILE IDL Reference Guide

 475
Keywords

BLOCK

If present, this keyword specifies the name of the message block. Normally, this
keyword is not specified, and an @IDENT line in the message file specifies the name
of the block. We recommend that you follow the advice given in “Advice for Library
Authors” in Chapter 4 of the Building IDL Applications manual when selecting this
name in order to avoid name clashes. Use of a prefix is also recommended to enforce
a consistent naming convention.

Note
IDL will force the string specified by the BLOCK keyword to upper case before
installing the message block. You do not need to use upper case when supplying the
BLOCK string to the DEFINE_MSGBLK_FROM_FILE procedure, but
!ERROR_STATE.BLOCK will always contain an upper-case string.

IGNORE_DUPLICATE

Attempts to define a given BlockName more than once in the same IDL session
usually cause DEFINE_MSGBLK to issue an error and stop execution of the IDL
program. Specify IGNORE_DUPLICATE to cause DEFINE_MSGBLK to quietly
ignore attempts to redefine a message block. In this case, no error is issued and
execution continues. The original message block remains installed and available for
use.

PREFIX

If present, this keyword specifies a prefix string to be applied to the beginning of each
message name in the message block. Normally, this keyword is not specified, and an
@PREFIX line in the message file specifies the prefix string. We recommend the use
of a prefix to enforce a consistent naming scheme for your messages.

Note
IDL will force the string specified by the PREFIX keyword to upper case before
installing the message block. You do not need to use upper case when supplying the
PREFIX string to the DEFINE_MSGBLK_FROM_FILE procedure, but
!ERROR_STATE.MSG_PREFIX will always contain an upper-case string.
IDL Reference Guide DEFINE_MSGBLK_FROM_FILE

476
VERBOSE

If set, causes DEFINE_MSGBLK_FROM_FILE to print informational messages
describing the message block loaded.

Examples

The following example uses the same message block as in the example given for
“DEFINE_MSGBLK” on page 470, but uses a message definition file to create the
message block. The first step is to create a message definition file called
roadruner.msg containing the following lines:

; Message definition file for ROADRUNNER message block
@IDENT roadrunner
@PREFIX ACME_M_
@ BADPLAN "Bad plan detected: %s."
@ RRNOTCAUGHT "Road Runner not captured."

Use the following statement to load in the message block:

DEFINE_MSGBLK_FROM_FILE, 'roadrunner.msg'

Note
A message block can only be defined once during an IDL session. If you see a
message that looks like this:

% Attempt to install an existing message block: ROADRUNNER.
% Execution halted at: $MAIN$

the ROADRUNNER message block has already been defined. You must either exit
and restart IDL or issue the .FULL_RESET_SESSION executive command.

Once this message block is loaded, the ACME_M_BADPLAN message can be
issued using the following statement:

MESSAGE, NAME = 'acme_m_badplan', BLOCK='roadrunner', $
'Exploding bridge while standing underneath'

This MESSAGE statement produces the output similar to:

% Bad plan detected: Exploding bridge while standing underneath.
% Execution halted at: $MAIN$

The IDL command:

HELP, /STRUCTURES, !ERROR_STATE

can be used to examine the effect of this message on IDL’s error state.
DEFINE_MSGBLK_FROM_FILE IDL Reference Guide

 477
Version History

Introduced: 5.5

See Also

 DEFINE_MSGBLK, MESSAGE
IDL Reference Guide DEFINE_MSGBLK_FROM_FILE

478
DEFROI

The DEFROI function defines an irregular region of interest of an image using the
image display system and the cursor and mouse. DEFROI only works for interactive,
pixel oriented devices with a cursor and an exclusive or writing mode. Regions may
have at most 1000 vertices.

Warning
DEFROI does not function correctly when used with draw widgets. See
CW_DEFROI.

This routine is written in the IDL language. Its source code can be found in the file
defroi.pro in the lib subdirectory of the IDL distribution.

Using DEFROI

After calling DEFROI, click in the image with the left mouse button to mark points
on the boundary of the region of interest. The points are connected in sequence.
Alternatively, press and hold the left mouse button and drag to draw a curved region.
Click the middle mouse button to erase points. The most recently-placed point is
erased first. Click the right mouse button to close the region. The function returns
after the region has been closed.

Syntax

Result = DEFROI(Sx, Sy [, Xverts, Yverts] [, /NOREGION] [, /NOFILL]
[, /RESTORE] [, X0=device_coord, Y0=device_coord] [, ZOOM=factor])

Return Value

Returns a vector of subscripts of the pixels inside the region. The lowest bit in which
the write mask is enabled is changed.

Arguments

Sx, Sy

Integers specifying the horizontal and vertical size of image, in pixels.

Xverts, Yverts

Named vectors that will contain the vertices of the enclosed region.
DEFROI IDL Reference Guide

 479
Keywords

NOREGION

Set this keyword to inhibit the return of the pixel subscripts.

NOFILL

Set this keyword to inhibit filling of the defined region on completion.

RESTORE

Set this keyword to restore the display to its original state upon completion.

X0, Y0

Set these keywords equal to the coordinates of the lower left corner of the displayed
image (in device coordinates). If omitted, the default value (0,0) is used.

ZOOM

Set this keyword equal to the zoom factor. If not specified, a value of 1 is assumed.

Example

; Create an image:
TVSCL, DIST(200,200)

; Call DEFROI. The cursor becomes active in the graphics window.
; Define a region and click the right mouse button:
X = DEFROI(200, 200)

; Print subscripts of points included in the defined region:
PRINT, X

Version History

Introduced: Original

See Also

CW_DEFROI
IDL Reference Guide DEFROI

480
DEFSYSV

The DEFSYSV procedure creates a new system variable called Name initialized to
Value.

Syntax

DEFSYSV, Name, Value [, Read_Only] [, EXISTS=variable]

Arguments

Name

A scalar string containing the name of the system variable to be created. All system
variable names must begin with the character ‘!’.

Value

An expression from which the type, structure, and initial value of the new system
variable is taken. Value can be a scalar, array, or structure.

Read_Only

If the Read_Only argument is present and nonzero, the value of the newly-created
system variable cannot be changed (i.e., the system variable is read-only, like the !PI
system variable). Otherwise, the value of the new system variable can be modified.

Keywords

EXISTS

Set this keyword to a named variable that returns 1 if the system variable specified by
Name exists. If this keyword is specified, Value can be omitted. For example, the
following commands could be used to check that the system variable XYZ exists:

DEFSYSV, '!XYZ', EXISTS = i
IF i EQ 1 THEN PRINT, '!XYZ exists' ELSE PRINT, $

'!XYZ does not exist'

Examples

To create a new, floating-point, scalar system variable called !NEWVAR with an
initial value of 2.0, enter:
DEFSYSV IDL Reference Guide

 481
DEFSYSV, '!NEWVAR', 2.0

You can both define and use a system variable within a single procedure:

PRO foo
DEFSYSV, '!foo', $

'Rocky, watch me pull a squirrel out of my hat!'

; Print !foo after defining it:
PRINT, !foo

END

Version History

Introduced: Original

See Also

Appendix D, “System Variables”
IDL Reference Guide DEFSYSV

482
DELVAR

The DELVAR procedure deletes variables from the main IDL program level.
DELVAR frees any memory used by the variable and removes it from the main
program’s symbol table. The following restrictions apply:

• DELVAR can only be called from the main program level.

• If a main program is created with the .RUN or .RNEW command, then each
time DELVAR is called, this main program is erased. Variables that are not
deleted remain unchanged.

Syntax

DELVAR, V1, ..., Vn

Arguments

Vi

One or more named variables to be deleted.

Examples

Suppose that the variable Q is defined at the main program level. Q can be deleted by
entering:

DELVAR, Q

Version History

Introduced: Pre 4.0

See Also

TEMPORARY
DELVAR IDL Reference Guide

 483
DERIV

The DERIV function performs numerical differentiation using 3-point, Lagrangian
interpolation.

Syntax

Result = DERIV([X,] Y)

Return Value

Returns the derivative of the numerical differentiation.

Arguments

X

Differentiate with respect to this variable. If omitted, unit spacing for Y (i.e., Xi = i)
is assumed.

Y

The variable to be differentiated.

Examples

X = [0.1, 0.3, 0.4, 0.7, 0.9]
Y = [1.2, 2.3, 3.2, 4.4, 6.6]
PRINT, DERIV(Y)
PRINT, DERIV(X,Y)

IDL prints:

1.20000 1.00000 1.05000 1.70000 2.70000
3.16666 7.83333 7.75000 8.20000 13.8000

Version History

Introduced: Original

See Also

DERIVSIG
IDL Reference Guide DERIV

484
DERIVSIG

The DERIVSIG function computes the standard deviation of a derivative as found by
the DERIV function, using the input variables of DERIV and the standard deviations
of those input variables.

Syntax

Result = DERIVSIG([X, Y, Sigx,] Sigy)

Return Value

Returns the standard deviation of a derivative as found by the DERIV function.

Arguments

X

Differentiate with respect to this variable. If omitted, unit spacing for Y (i.e., Xi = i)
is assumed.

Y

The variable to be differentiated. Omit if X is omitted.

Sigx

The standard deviation of X (either vector or constant). Use “0.0” if the abscissa is
exact; omit if X is omitted.

Sigy

The standard deviation of Y. Sigy must be a vector if the other arguments are omitted,
but may be either a vector or a constant if X, Y, and Sigx are supplied.

Keywords

None.

Version History

Introduced: Pre 4.0
DERIVSIG IDL Reference Guide

 485
See Also

DERIV
IDL Reference Guide DERIVSIG

486
DETERM

The DETERM function computes the determinant of an n by n array. LU
decomposition is used to represent the input array in triangular form. The determinant
is then computed as the product of diagonal elements of the triangular form. Row
interchanges are tracked during the LU decomposition to ensure the correct sign.

This routine is written in the IDL language. Its source code can be found in the file
determ.pro in the lib subdirectory of the IDL distribution.

Note
If you are working with complex inputs, instead use the LA_DETERM procedure.

Syntax

Result = DETERM(A [, /CHECK] [, /DOUBLE] [, ZERO=value])

Return Value

Returns the determinant of an n by n array

Arguments

A

An n by n single- or double-precision floating-point array.

Keywords

CHECK

Set this keyword to check A for singularity. The determinant of a singular array is
returned as zero if this keyword is set. Run-time errors may result if A is singular and
this keyword is not set.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
DETERM IDL Reference Guide

 487
ZERO

Use this keyword to set the absolute value of the floating-point zero. A floating-point
zero on the main diagonal of a triangular array results in a zero determinant. For
single-precision inputs, the default value is 1.0 x 10-6. For double-precision inputs,
the default value is 1.0 x 10-12. Setting this keyword to a value less than the default
may improve the precision of the result.

Examples

; Define an array A:
A = [[2.0, 1.0, 1.0], $

[4.0, -6.0, 0.0], $
[-2.0, 7.0, 2.0]]

; Compute the determinant:
PRINT, DETERM(A)

IDL prints:

-16.0000

Version History

Introduced: Original

See Also

COND, INVERT, LA_DETERM
IDL Reference Guide DETERM

488
DEVICE

The DEVICE procedure provides device-dependent control over the current graphics
device (as set by the SET_PLOT routine). The IDL graphics procedures and
functions are device-independent. That is, IDL presents the user with a consistent
interface to all devices. However, most devices have extra abilities that are not
directly available through this interface. DEVICE is used to access and control such
abilities. It is used by specifying various keywords that differ from device to device.

See Appendix A, “IDL Graphics Devices” for a description of the keywords available
for each graphics device.

Syntax

Note
Each keyword to DEVICE is followed by the device(s) to which it applies.

DEVICE

[, /AVANTGARDE | , /BKMAN | , /COURIER | , /HELVETICA | , /ISOLATIN1 | ,
/PALATINO | , /SCHOOLBOOK | , /SYMBOL | , /TIMES | , /ZAPFCHANCERY | ,
/ZAPFDINGBATS {PS}]
[, /AVERAGE_LINES{REGIS}]
[, /BINARY | , /NCAR | , /TEXT {CGM}]
[, BITS_PER_PIXEL={1 | 2 | 4 | 8}{PS}]
[, /BOLD{PS}]
[, /BOOK{PS}]
[, /BYPASS_TRANSLATION{WIN, X}]
[, /CLOSE{Z}]
[, /CLOSE_DOCUMENT{PRINTER}]
[, /CLOSE_FILE{CGM, HP, METAFILE, PCL, PS, REGIS, TEK}]
[, /COLOR{PCL, PS}]
[, COLORS=value{CGM, TEK}]
[, COPY=[Xsource, Ysource, cols, rows, Xdest, Ydest [, Window_index]]{WIN, X}]
[, /CURSOR_CROSSHAIR{WIN, X}]
[, CURSOR_IMAGE=value{16-element short int vector}{WIN, X}]
[, CURSOR_MASK=value{WIN, X}]
[, /CURSOR_ORIGINAL{WIN, X}]
[, CURSOR_STANDARD=value{WIN: arrow=32512,
I-beam=32513, hourglass=32514, black cross=32515, up arrow=32516,
size(NT)=32640, icon(NT)=32641, size NW-SE=32642, size NE-SW=32643, size E-
DEVICE IDL Reference Guide

 489
W=32644, size N-S=32645}{X: one of the values in file cursorfonts.h}]
[, CURSOR_XY=[x,y]{WIN, X}]
[, /DECOMPOSED{WIN, X}]
[, /DIRECT_COLOR{X}]
[, EJECT={0 | 1 | 2}{HP}]
[, ENCAPSULATED={0 | 1}{PS}]
[, ENCODING={1 (binary) | 2 (text) | 3 (NCAR binary)}{CGM}]
[, FILENAME=filename{CGM, HP, METAFILE, PCL, PS, REGIS, TEK}]
[, /FLOYD{PCL, X}]
[, FONT_INDEX=integer{PS}]
[, FONT_SIZE=points{PS}]
[, GET_CURRENT_FONT=variable{METAFILE, PRINTER, WIN, X}]
[, GET_DECOMPOSED=variable{WIN, X}]
[, GET_FONTNAMES=variable{METAFILE, PRINTER, WIN, X}]
[, GET_FONTNUM=variable{METAFILE, PRINTER, WIN, X}]
[, GET_GRAPHICS_FUNCTION=variable{WIN, X, Z}]
[, GET_PAGESIZE=variable{PRINTER}]
[, GET_SCREEN_SIZE=variable{WIN, X}]
[, GET_VISUAL_DEPTH=variable{WIN, X}]
[, GET_VISUAL_NAME=variable{WIN, X}]
[, GET_WINDOW_POSITION=variable{WIN, X}]
[, GET_WRITE_MASK=variable{X, Z}]
[, GIN_CHARS=number_of_characters{TEK}]
[, GLYPH_CACHE=number_of_glyphs{METAFILE, PRINTER, PS, WIN, Z}]
[, /INCHES{HP, PCL, METAFILE, PRINTER, PS}]
[, /INDEX_COLOR{METAFILE, PRINTER}]
[, /ITALIC{PS}]
[, /LANDSCAPE | , /PORTRAIT{HP, PCL, PRINTER, PS}]
[, LANGUAGE_LEVEL={1 | 2}{PS}]
[, /DEMI | , /LIGHT | , /MEDIUM | , /NARROW | , /OBLIQUE{PS}]
[, OPTIMIZE={0 | 1 | 2}{PCL}] [, /ORDERED{PCL, X}]
[, OUTPUT=scalar string{HP, PS}]
[, /PIXELS{PCL}]
[, PLOT_TO=logical unit num{REGIS, TEK}]
[, /PLOTTER_ON_OFF{HP}]
[, /POLYFILL{HP}]
[, PRE_DEPTH=value{PS}]
[, PRE_XSIZE=width{PS}]
[, PRE_YSIZE=height{PS}]
[, /PREVIEW{PS}]
[, PRINT_FILE=filename{WIN}]
IDL Reference Guide DEVICE

490
[, /PSEUDO_COLOR{X}]
[, RESET_STRING=string{TEK}]
[, RESOLUTION=value{PCL}]
[, RETAIN={0 | 1 | 2}{WIN, X}]
[, SCALE_FACTOR=value{PRINTER, PS}]
[, SET_CHARACTER_SIZE=[font size, line spacing]{CGM, HP, METAFILE, PCL,
PS, REGIS, TEK, WIN, X, Z}]
[, SET_COLORMAP=value{14739-element byte vector}{PCL}]
[, SET_COLORS=value{2 to 256}{Z}]
[, SET_FONT=scalar string{METAFILE, PRINTER, PS, WIN, Z}]
[, SET_GRAPHICS_FUNCTION=code{0 to 15}{WIN, X, Z}]
[, SET_RESOLUTION=[width, height]{Z}]
[, SET_STRING=string{TEK}]
[, SET_TRANSLATION=variable{X}]
[, SET_WRITE_MASK=value{0 to 2n-1 for n-bit system}{X, Z}]
[, STATIC_COLOR=value{bits per pixel}{X}]
[, STATIC_GRAY=value{bits per pixel}{X}]
[, /TEK4014{TEK}]
[, /TEK4100{TEK}]
[, THRESHOLD=value{PCL, X}]
[, TRANSLATION=variable{WIN, X}]
[, TRUE_COLOR=value{bits per pixel}{METAFILE, PRINTER, X}]
[, /TT_FONT{METAFILE, PRINTER, WIN, X, Z}]
[, /TTY{REGIS, TEK}]
[, /VT240 | , /VT241 | , /VT340 | , /VT341 {REGIS}]
[, WINDOW_STATE=variable{WIN, X}]
[, XOFFSET=value{HP, PCL, PRINTER, PS}]
[, XON_XOFF={0 | 1 (default)}{HP}]
[, XSIZE=width{HP, METAFILE, PCL, PRINTER, PS}]
[, YOFFSET=value{HP, PCL, PRINTER, PS}]
[, YSIZE=height{HP, PCL, METAFILE, PRINTER, PS}]
[, Z_BUFFERING={0 | 1 (default)}{Z}]

Keywords

See “Keywords Accepted by the IDL Devices” on page 3784.
DEVICE IDL Reference Guide

 491
Examples

The following example retains the name of the current graphics device, sets plotting
to the PostScript device, makes a PostScript file, then resets plotting to the original
device:

; The NAME field of the !D system variable contains the name of the
; current plotting device.
mydevice = !D.NAME

; Set plotting to PostScript:
SET_PLOT, 'PS'

; Use DEVICE to set some PostScript device options:
DEVICE, FILENAME='myfile.ps', /LANDSCAPE

; Make a simple plot to the PostScript file:
PLOT, FINDGEN(10)

; Close the PostScript file:
DEVICE, /CLOSE

; Return plotting to the original device:
SET_PLOT, mydevice

Version History

Introduced: Original
IDL Reference Guide DEVICE

492
DFPMIN

The DFPMIN procedure minimizes a user-written function Func of two or more
independent variables using the Broyden-Fletcher-Goldfarb-Shanno variant of the
Davidon-Fletcher-Powell method, using its gradient as calculated by a user-written
function Dfunc.

DFPMIN is based on the routine dfpmin described in section 10.7 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

DFPMIN, X, Gtol, Fmin, Func, Dfunc [, /DOUBLE] [, EPS=value]
[, ITER=variable] [, ITMAX=value] [, STEPMAX=value] [, TOLX=value]

Arguments

X

On input, X is an n-element vector specifying the starting point. On output, it is
replaced with the location of the minimum.

Gtol

An input value specifying the convergence requirement on zeroing the gradient.

Fmin

On output, Fmin contains the value at the minimum-point X of the user-supplied
function specified by Func.

Func

A scalar string specifying the name of a user-supplied IDL function of two or more
independent variables to be minimized. This function must accept a vector argument
X and return a scalar result.

For example, suppose we wish to find the minimum value of the function

y = (x0 – 3)4 + (x1 – 2)2

To evaluate this expression, we define an IDL function named MINIMUM:
DFPMIN IDL Reference Guide

 493
FUNCTION minimum, X
RETURN, (X[0] - 3.0)^4 + (X[1] - 2.0)^2

END

Dfunc

A scalar string specifying the name of a user-supplied IDL function that calculates
the gradient of the function specified by Func. This function must accept a vector
argument X and return a vector result.

For example, the gradient of the above function is defined by the partial derivatives:

We can write a function GRAD to express these relationships in the IDL language:

FUNCTION grad, X
RETURN, [4.0*(X[0] - 3.0)^3, 2.0*(X[1] - 2.0)]

END

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

EPS

Use this keyword to specify a number close to the machine precision. For single-
precision calculations, the default value is 3.0 x 10-8. For double-precision
calculations, the default value is 3.0 x 10-16.

ITER

Use this keyword to specify a named variable which returns the number of iterations
performed.

∂y
∂x0
-------- 4 x0 3–()3 ∂y

∂x1
--------, 2 x1 2–()= =
IDL Reference Guide DFPMIN

494
ITMAX

Use this keyword to specify the maximum number of iterations allowed. The default
value is 200.

STEPMAX

Use this keyword to specify the scaled maximum step length allowed in line searches.
The default value is 100.0

TOLX

Use this keyword to specify the convergence criterion on X values. The default value
is 4 x EPS.

Examples

To minimize the function MINIMUM:

PRO example_dfpmin

; Make an initial guess (the algorithm’s starting point):
X = [1.0, 1.0]

; Set the convergence requirement on the gradient:
Gtol = 1.0e-7

; Find the minimizing value:
DFPMIN, X, Gtol, Fmin, 'minimum', 'grad'

; Print the minimizing value:
PRINT, X

END

FUNCTION minimum, X
RETURN, (X[0] - 3.0)^4 + (X[1] - 2.0)^2

END

FUNCTION grad, X
RETURN, [4.0*(X[0] - 3.0)^3, 2.0*(X[1] - 2.0)]

END

IDL prints:

3.00175 2.00000
DFPMIN IDL Reference Guide

 495
Version History

Introduced: 4.0

See Also

AMOEBA, POWELL, SIMPLEX
IDL Reference Guide DFPMIN

496
DIAG_MATRIX

The DIAG_MATRIX function constructs a diagonal matrix from an input vector, or if
given a matrix, then DIAG_MATRIX will extract a diagonal vector.

Syntax

Result = DIAG_MATRIX(A [, Diag])

Return Value

• If given an input vector with n values, the result is an n-by-n array of the same
type. The DIAG_MATRIX function may also be used to construct subdiagonal
or superdiagonal arrays.

• If given an input n-by-m array, the result is a vector with MIN(n,m) elements
containing the diagonal elements. The DIAG_MATRIX function may also be
used to extract subdiagonals or superdiagonals.

Arguments

A

Either an n-element input vector to convert to a diagonal matrix, or a n-by-m input
array to extract a diagonal. A may be any numeric type.

Diag

An optional argument that specifies the subdiagonal (Diag < 0) or superdiagonal
(Diag > 0) to fill or extract. The default is Diag=0 which puts or extracts the values
along the diagonal. If A is a vector with the m elements, then the result is an n-by-n
array, where n = m + ABS(Diag). If A is an array, then the result is a vector whose
length depends upon the number of elements remaining along the subdiagonal or
superdiagonal.

Tip
The Diag argument may be used to easily construct tridiagonal arrays. For example,
the expression,

DIAG_MATRIX(VL,-1) + DIAG_MATRIX(V) + DIAG_MATRIX(VU,1)

will create an n-by-n array, where VL is an (n - 1)-element vector containing the
DIAG_MATRIX IDL Reference Guide

 497
subdiagonal values, V is an n-element vector containing the diagonal values, and
VU is an (n - 1)-element vector containing the superdiagonal values.

Keywords

None.

Examples

Create a tridiagonal matrix and extract the diagonal using the following program:

PRO ExDiagMatrix
; Convert three input vectors to a tridiagonal matrix:
diag = [1, -2, 3, -4]
sub = [5, 10, 15]
super = [3, 6, 9]
array = DIAG_MATRIX(diag) + $
DIAG_MATRIX(super, 1) + DIAG_MATRIX(sub, -1)
PRINT, 'DIAG_MATRIX array:'
PRINT, array

; Extract the diagonal:
PRINT, 'DIAG_MATRIX diagonal:'
PRINT, DIAG_MATRIX(array)
END

When this program is compiled and run, IDL prints:

DIAG_MATRIX array:
1 3 0 0
5 -2 6 0
0 10 3 9
0 0 15 -4
DIAG_MATRIX diagonal:
1 -2 3 -4

Version History

Introduced: 5.6

See Also

IDENTITY, MATRIX_MULTIPLY, “Multiplying Arrays” in Chapter 22 of the
Using IDL manual.
IDL Reference Guide DIAG_MATRIX

498
DIALOG_MESSAGE

The DIALOG_MESSAGE function creates a modal (blocking) dialog box that can be
used to display information for the user. The dialog must be dismissed, by clicking on
one of its option buttons, before execution of the widget program can continue.

This function differs from widgets in a number of ways. The DIALOG_MESSAGE
dialog does not exist as part of a widget tree, has no children, does not exist in an
unrealized state, and generates no events. Instead, the dialog is displayed whenever
this function is called. While the DIALOG_MESSAGE dialog is displayed, widget
activity is limited because the dialog is modal. The function does not return to its
caller until the user selects one of the dialog’s buttons. Once a button has been
selected, the dialog disappears.

There are four basic dialogs that can be displayed. The default type is “Warning”.
Other types can be selected by setting one of the keywords described below. Each
dialog type displays different buttons. Additionally any dialog can be made to show a
“Cancel” button by setting the CANCEL keyword. The four types of dialogs are
described in the table below:

Syntax

Result = DIALOG_MESSAGE(Message_Text [, /CANCEL]
[, /DEFAULT_CANCEL | , /DEFAULT_NO] [, DIALOG_PARENT=widget_id]
[, DISPLAY_NAME=string] [, /ERROR | , /INFORMATION | , /QUESTION]
[, RESOURCE_NAME=string] [, TITLE=string])

Return Value

DIALOG_MESSAGE returns a text string containing the text of the button selected
by the user. Possible returned values are “Yes”, “No”, “OK”, and “Cancel”.

Dialog Type Default Buttons

Error OK

Warning OK

Question Yes, No

Information OK

Table 21: Types of DIALOG_MESSAGE Dialogs
DIALOG_MESSAGE IDL Reference Guide

 499
Arguments

Message_Text

A scalar string or string array that contains the text of the message to be displayed. If
this argument is set to an array of strings, each array element is displayed as a
separate line of text.

Keywords

CANCEL

Set this keyword to add a “Cancel” button to the dialog.

DEFAULT_CANCEL

Set this keyword to make the “Cancel” button the default selection for the dialog. The
default selection is the button that is selected when the user presses the default
keystroke (usually Space or Return depending on the platform). Setting
DEFAULT_CANCEL implies that the CANCEL keyword is also set.

DEFAULT_NO

Set this keyword to make the “No” button the default selection for “Question”
dialogs. Normally, the default is “Yes”.

DIALOG_PARENT

Set this keyword to the widget ID of a widget over which the message dialog should
be positioned. When displayed, the DIALOG_MESSAGE dialog will be positioned
over the specified widget. Dialogs are often related to a non-dialog widget tree. The
ID of the widget in that tree to which the dialog is most closely related should be
specified.

DISPLAY_NAME

Set this keyword equal to a string indicating the name of the X Windows display on
which the dialog is to appear. This keyword is ignored if the DIALOG_PARENT
keyword is specified. This keyword is also ignored on Microsoft Windows platforms.

ERROR

Set this keyword to create an “Error” dialog. The default dialog type is “Warning”.
IDL Reference Guide DIALOG_MESSAGE

500
INFORMATION

Set this keyword to create an “Information” dialog. The default dialog type is
“Warning”.

QUESTION

Set this keyword to create a “Question” dialog. The default dialog type is “Warning”.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the dialog.
See “RESOURCE_NAME” on page 2157 for a complete discussion of this keyword.

TITLE

Set this keyword to a scalar string that contains the text of a title to be displayed in the
dialog frame. If this keyword is not specified, the dialog has the dialog type as its title
as shown in the table under DIALOG_MESSAGE.

Version History

Introduced: 5.0

See Also

XDISPLAYFILE
DIALOG_MESSAGE IDL Reference Guide

 501
DIALOG_PICKFILE

The DIALOG_PICKFILE function allows the user to interactively pick a file, or
multiple files, using the platform’s own native graphical file-selection dialog. The
user can also enter the name of a file that does not exist (see the description of the
WRITE keyword, below).

Syntax

Result = DIALOG_PICKFILE([, DEFAULT_EXTENSION=string]
[, /DIRECTORY] [, DIALOG_PARENT=widget_id] [, DISPLAY_NAME=string]
[, FILE=string] [, FILTER=string/string array] [, /FIX_FILTER]
[, GET_PATH=variable] [, GROUP=widget_id] [, /MULTIPLE_FILES]
[, /MUST_EXIST] [, /OVERWRITE_PROMPT] [, PATH=string]
[, /READ | , /WRITE] [, RESOURCE_NAME=string] [, TITLE=string])

Return Value

DIALOG_PICKFILE returns a string array that contains the full path name of the
selected file or files. If no file is selected, DIALOG_PICKFILE returns a null string.

Keywords

DEFAULT_EXTENSION

Set this keyword to a scalar string representing the default extension to be appended
onto the returned file name or names. If the returned file name already has an
extension, then the value set for this keyword is not appended. The string value set for
this keyword should not include a period (.).

Note
This keyword only applies to file names typed into the dialog. This keyword does
not apply to files selected within the dialog.

DIALOG_PARENT

Set this keyword to the widget ID of a widget to be used as the parent of this dialog.
IDL Reference Guide DIALOG_PICKFILE

502
DIRECTORY

Set this keyword to display only the existing directories in the current directory.
Individual files are not displayed.

DISPLAY_NAME

Set this keyword equal to a string that specifies the name of the X Windows display
on which the dialog should be displayed. This keyword is ignored on Microsoft
Windows platforms.

FILE

Set this keyword to a scalar string that contains the name of the initial file selection.
This keyword is useful for specifying a default filename.

On Windows, this keyword also has the effect of filtering the file list if a wildcard is
used, but this keyword should be used to specify a specific filename. To list only files
of a certain type, use the FILTER keyword.

FILTER

Set this keyword to a string value or an array of strings specifying the file types to be
displayed in the file list. This keyword is used to reduce the number of files displayed
in the file list. The user can modify the filter unless the FIX_FILTER keyword is set.
If the value contains a vector of strings, multiple filters are used to filter the files. The
filter *.* is automatically added to any filter you specify.

For example, to display only files of type .jpg, .tif, or .png in the file selection
window, you could use the following code:

filters = ['*.jpg', '*.tif', '*.png']
file = DIALOG_PICKFILE(/READ, FILTER = filters)

The filter list shown above is displayed as five options in the dialog:

*.jpg, *.tif, *.png
*.jpg
*.tif
*.png
.

Multiple file types can be included in a single filter by providing a semicolon-
separated list of types within the string. For example, to account for different
extensions used for similar file types, you could use the following code:

filters = ['*.jpg;*.jpeg', '*.tif;*.tiff', '*.png']
file = DIALOG_PICKFILE(/READ, FILTER = filters)
DIALOG_PICKFILE IDL Reference Guide

 503
The filter list shown above is displayed as five options in the dialog:

*.jpg, *.jpeg, *.tif, *.tiff, *.png
*.jpg, *.jpeg
*.tif, *.tiff
*.png
.

The FILTER keyword can optionally be set equal to an n x 2 array. In this case, the
first vector contains the file types, and the second vector contains a list of descriptions
that are displayed in the dialog in place of the file type strings. For example:

filters = [['*.jpg;*.jpeg', '*.tif;*.tiff', '*.png', '*.*'], $
['JPEG', 'TIFF', 'Bitmap', 'All files']]

file = DIALOG_PICKFILE(/READ, FILTER = filters)

The filter list shown above is displayed as four options in the dialog:

JPEG
TIFF
Bitmap
All files

Note
When an n x 2 array is provided, the *.* filter is not automatically added to the list.
If you want this filter included in the list, you must include it explicitly.

Under Microsoft Windows, the user cannot modify the displayed filter. The user can
enter a filter string in the Filename field to interactively update the list of files
displayed. For example, entering *.pro in the Filename field causes only .pro files
to be displayed.

FIX_FILTER

When this keyword is set, only files that satisfy the filter can be selected. The user has
no ability to modify the filter and the filter is not shown.

Under Microsoft Windows, the filter string can never be modified, but the user can
enter a filter string in the Filename field to interactively update the list of files
displayed even if FIX_FILTER is set.

GET_PATH

Set this keyword to a named variable in which the path of the selection is returned.
IDL Reference Guide DIALOG_PICKFILE

504
GROUP

This keyword is obsolete and has been replaced by the DIALOG_PARENT keyword.
Code that uses the GROUP keyword will continue to function as before, but we
suggest that all new code use DIALOG_PARENT.

MULTIPLE_FILES

Set this keyword to allow for multiple file selection in the file-selection dialog. When
you set this keyword, the user can select multiple files using the platform-specific
selection method. The currently selected files appear in the selection text field of the
dialog. With this keyword set, DIALOG_PICKFILE can return a string array that
contains the full path name of the selected file or files.

MUST_EXIST

Set this keyword to allow only files that already exist to be selected.

OVERWRITE_PROMPT

If this keyword is set along with the WRITE keyword and the user selects a file that
already exists, then a dialog will be displayed asking if the user wants to replace the
existing file or not. For multiple selections, the user is prompted separately for each
file. If the user selects No the file selection dialog is displayed again; if the user
selects Yes then the selection is allowed. This keyword has no effect unless the
WRITE keyword is also set.

PATH

Set this keyword to a string that contains the initial path from which to select files. If
this keyword is not set, the current working directory is used.

READ

Set this keyword to make the title of the dialog “Select File to Read”.

RESOURCE_NAME

Set this keyword equal to a string containing an X Window System resource name to
be applied to the dialog.

TITLE

Set this keyword to a scalar string to be used for the dialog title. If it is not specified,
the default title is “Please Select a File”.
DIALOG_PICKFILE IDL Reference Guide

 505
WRITE

Set this keyword to make the title of the dialog “Select File to Write”.

Examples

Create a DIALOG_PICKFILE dialog that lets users select only files with the
extension ‘pro’. Use the ‘Select File to Read’ title and store the name of the selected
file in the variable file. Enter:

file = DIALOG_PICKFILE(/READ, FILTER = '*.pro')

Version History

Introduced: 5.0

See Also

FILEPATH
IDL Reference Guide DIALOG_PICKFILE

506
DIALOG_PRINTERSETUP

The DIALOG_PRINTERSETUP function opens a native dialog for setting the
applicable properties for a particular printer.

Syntax

Result = DIALOG_PRINTERSETUP([PrintDestination]
[, DIALOG_PARENT=widget_id] [, DISPLAY_NAME=string]
[, RESOURCE_NAME=string] [, TITLE=string])

Return Value

DIALOG_PRINTERSETUP returns a nonzero value if the user pressed the “OK”
button in the dialog, or zero otherwise. You can programmatically begin printing
based on the value returned by this function.

Arguments

PrintDestination

An instance of the IDLgrPrinter object for which setup properties are to be set. If no
PrintDestination is specified, the printer used by the IDL Direct Graphics printer
device is modified.

Keywords

DIALOG_PARENT

Set this keyword to the widget ID of a widget to be used as the parent of this dialog.

DISPLAY_NAME

Set this keyword equal to a string indicating the name of the X Windows display on
which the dialog is to appear. This keyword is ignored if the DIALOG_PARENT
keyword is specified. This keyword is also ignored on Microsoft Windows platforms.

RESOURCE_NAME

Set this keyword equal to a string containing an X Window System resource name to
be applied to the dialog.
DIALOG_PRINTERSETUP IDL Reference Guide

 507
TITLE

Set this keyword equal to a string to be displayed on the dialog frame. This keyword
is ignored on Microsoft Windows platforms.

Version History

Introduced: 5.0

See Also

DIALOG_PRINTJOB, “The Printer Device” on page 3839
IDL Reference Guide DIALOG_PRINTERSETUP

508
DIALOG_PRINTJOB

The DIALOG_PRINTJOB function opens a native dialog that allows you to set
parameters for a printing job (number of copies to print, for example).

Syntax

Result = DIALOG_PRINTJOB([PrintDestination]
[, DIALOG_PARENT=widget_id] [, DISPLAY_NAME=string]
[, RESOURCE_NAME=string] [, TITLE=string])

Return Value

DIALOG_PRINTJOB returns a nonzero value if the user pressed the “OK” button in
the dialog, or zero otherwise. You can use the result of this function to
programmatically begin printing.

Arguments

PrintDestination

An instance of the IDLgrPrinter object for which a printing job is to be initiated. If no
PrintDestination is specified, the printer used by the IDL Direct Graphics printer
device is modified.

Keywords

DIALOG_PARENT

Set this keyword to the widget ID of a widget to be used as the parent of this dialog.

DISPLAY_NAME

Set this keyword to a string indicating the name of the X Windows display on which
the dialog is to appear. This keyword is ignored if the DIALOG_PARENT keyword is
specified. This keyword is also ignored on Microsoft Windows platforms.

RESOURCE_NAME

Set this keyword to a string containing an X Window System resource name to be
applied to the dialog.
DIALOG_PRINTJOB IDL Reference Guide

 509
TITLE

Set this keyword to a string to be displayed on the dialog frame. This keyword is
ignored on Microsoft Windows platforms.

Version History

Introduced: 5.0

See Also

DIALOG_PRINTERSETUP, “The Printer Device” on page 3839
IDL Reference Guide DIALOG_PRINTJOB

510
DIALOG_READ_IMAGE

The DIALOG_READ_IMAGE function is a graphical interface used for reading
image files. The interface is created as a modal dialog with an optional parent widget.

Syntax

Result = DIALOG_READ_IMAGE ([Filename] [, BLUE=variable]
[, DIALOG_PARENT=widget_id] [, FILE=variable] [, FILTER_TYPE=string]
[, /FIX_FILTER] [, GET_PATH=variable] [, GREEN=variable]
[, IMAGE=variable] [, PATH=string] [, QUERY=variable] [, RED=variable]
[,TITLE=string])

Return Value

This function returns 1 if the “Open” button was clicked, and 0 if the “Cancel” button
was clicked.

Arguments

Filename

An optional scalar string containing the full pathname of the file to be highlighted.

Keywords

BLUE

Set this keyword to a named variable that will contain the blue channel vector (if
any).

DIALOG_PARENT

The widget ID of a widget that calls DIALOG_READ_IMAGE. When this ID is
specified, a death of the caller results in the death of the DIALOG_READ_IMAGE
dialog. If DIALOG_PARENT is not specified, then the interface is created as a
modal, top-level widget.

FILE

Set this keyword to a named variable that will contain the selected filename with full
path when the dialog is created.
DIALOG_READ_IMAGE IDL Reference Guide

 511
FILTER_TYPE

Set this keyword to a scalar string containing the format type the dialog filter should
begin with. The default is “Image Files”. The user cannot modify the filter if the
FIX_FILTER keyword is set. Valid values are obtained from the list of supported
image types returned from QUERY_IMAGE. In addition, there is also the “All Files”
type. If set to “All Files”, queries will only happen on filename clicks, making the
dialog much more efficient.

Example:

FILTER='.jpg, .tiff'

FIX_FILTER

When this keyword is set, only files that satisfy the filter can be selected. The user has
no ability to modify the filter.

GET_PATH

Set this keyword to a named variable in which the path of the selection is returned.

GREEN

Set this keyword to a named variable that will contain the green channel vector (if
any).

IMAGE

Set this keyword to a named variable that will contain the image array read. If Cancel
was clicked, no action is taken.

PATH

Set this keyword to a string that contains the initial path from which to select files. If
this keyword is not set, the current working directory is used.

QUERY

Set this keyword to a named variable that will return the QUERY_IMAGE structure
associated with the returned image. If the “Cancel” button was pressed, the variable
set to this keyword is not changed. If an error occurred during the read, the
FILENAME field of the structure will be a null string.
IDL Reference Guide DIALOG_READ_IMAGE

512
RED

Set this keyword to a named variable that will contain the red channel vector (if any).

TITLE

Set this keyword to a scalar string to be used for the dialog title. If it is not specified,
the default title is “Select Image File”.

Version History

Introduced: 5.3

See Also

DIALOG_WRITE_IMAGE
DIALOG_READ_IMAGE IDL Reference Guide

 513
DIALOG_WRITE_IMAGE

The DIALOG_WRITE_IMAGE function is a graphical user interface used for
writing image files. The interface is created as a modal dialog with an optional parent
widget.

Syntax

Result = DIALOG_WRITE_IMAGE (Image [, R, G, B]
[, DIALOG_PARENT=widget_id] [, FILE=string] [, /FIX_TYPE] [, /NOWRITE]
[, OPTIONS=variable] [, PATH=string] [,TITLE=string] [, TYPE=variable]
[, /WARN_EXIST])

Return Value

This routine returns 1 if the “Save” button was clicked, and 0 if the “Cancel” button
was clicked.

Arguments

Image

The array to be written to the image file.

R, G, B

These are optional arguments defining the Red, Green, and Blue color tables to be
associated with the image array.

Keywords

DIALOG_PARENT

The widget ID of a widget that calls DIALOG_WRITE_IMAGE. When this ID is
specified, a death of the caller results in the death of the DIALOG_WRITE_IMAGE
dialog. If DIALOG_PARENT is not specified, then the interface is created as a
modal, top-level widget.

FILE

Set this keyword to a scalar string that contains the name of the initial file selection.
This keyword is useful for specifying a default filename.
IDL Reference Guide DIALOG_WRITE_IMAGE

514
FIX_TYPE

When this keyword is set, only files that satisfy the type can be selected. The user has
no ability to modify the type.

NOWRITE

Set this keyword to prevent the dialog from writing the file when “Save” is clicked.
No data conversions will take place when the save type is chosen.

OPTIONS

Set this keyword to a named variable to contain a structure of the chosen options by
the user, including the filename and image type chosen.

PATH

Set this keyword to a string that contains the initial path from which to select files. If
this keyword is not set, the current working directory is used.

TITLE

Set this keyword to a scalar string to be used for the dialog title. If it is not specified,
the default title is “Save Image File”.

TYPE

Set this keyword to a scalar string containing the format type the “Save as type” field
should begin with. The default is “TIFF”. The user can modify the type unless the
FIX_TYPE keyword is set. Valid values are obtained from the list of supported image
types returned from QUERY_IMAGE. The “Save as type” field will reflect the type
of the selected file (if one is selected).

WARN_EXIST

Set this keyword to produce a question dialog if the user selects a file that already
exists. The default is to quietly overwrite the file.

Version History

Introduced: 5.3

See Also

DIALOG_READ_IMAGE
DIALOG_WRITE_IMAGE IDL Reference Guide

 515
DIGITAL_FILTER

The DIGITAL_FILTER function returns the coefficients of a non-recursive, digital
filter for evenly spaced data points. Frequencies are expressed in terms of the Nyquist
frequency, 1/2T, where T is the time between data samples. Highpass, lowpass,
bandpass and bandstop filters may be constructed with this function.

This routine is written in the IDL language. Its source code can be found in the file
digital_filter.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = DIGITAL_FILTER(Flow, Fhigh, A, Nterms [, /DOUBLE])

Return Value

This function returns a vector of coefficients with (2 x Nterms + 1) elements.

Arguments

Flow

The lower frequency of the filter as a fraction of the Nyquist frequency

Fhigh

The upper frequency of the filter as a fraction of the Nyquist frequency. The
following conditions are necessary for various types of filters:

A

The filter power relative to the Gibbs phenomenon wiggles in decibels. 50 is a good
choice.

• No Filtering: Flow = 0, Fhigh = 1

• Low Pass: Flow = 0, 0 < Fhigh < 1

• High Pass: 0 < Flow < 1, Fhigh =1

• Band Pass: 0 < Flow < Fhigh < 1

• Band Stop: 0 < Fhigh < Flow < 1
IDL Reference Guide DIGITAL_FILTER

516
Nterms

The number of terms used to construct the filter.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision result. Set DOUBLE=0 to use single-precision for computations and to
return a single-precision result. The default is /DOUBLE if the Flow input is double
precision, otherwise the default is DOUBLE=0.

Examples

; Get coefficients:
Coeff = DIGITAL_FILTER(Flow, Fhigh, A, Nterms)
; Apply the filter:
Yout = CONVOL(Yin, Coeff)

Version History

Introduced: Original

DOUBLE keyword added: 5.6

See Also

CONVOL, LEEFILT, MEDIAN, SMOOTH
DIGITAL_FILTER IDL Reference Guide

 517
DILATE

The DILATE function implements the morphologic dilation operator on both binary
and grayscale images. For details on using DILATE, see “Using DILATE” on
page 517.

Using DILATE

Mathematical morphology is a method of processing digital images on the basis of
shape. A discussion of this topic is beyond the scope of this manual. A suggested
reference is: Haralick, Sternberg, and Zhuang, “Image Analysis Using Mathematical
Morphology,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
PAMI-9, No. 4, July, 1987, pp. 532-550. Much of this discussion is taken from that
article.

Briefly, the DILATE function returns the dilation of Image by the structuring element
Structure. This operator is commonly known as “fill”, “expand”, or “grow.” It can be
used to fill “holes” of a size equal to or smaller than the structuring element.

Used with binary images, where each pixel is either 1 or 0, dilation is similar to
convolution. Over each pixel of the image, the origin of the structuring element is
overlaid. If the image pixel is nonzero, each pixel of the structuring element is added
to the result using the “or” operator.

Letting A ⊕ B represent the dilation of an image A by structuring element B, dilation
can be defined as:

where (A)b represents the translation of A by b. Intuitively, for each nonzero element
bi,j of B, A is translated by i,j and summed into C using the “or” operator. For
example:

C A B⊕ A()b

b B∈
∪= =

0100

0100

0110

1000

0000

11⊕

0110

0110

0111

1100

0000

=

IDL Reference Guide DILATE

518
In this example, the origin of the structuring element is at (0,0).

Used with grayscale images, which are always converted to byte type, the DILATE
function is accomplished by taking the maximum of a set of sums. It can be used to
conveniently implement the neighborhood maximum operator with the shape of the
neighborhood given by the structuring element.

Openings and Closings

The opening of image B by structuring element K is defined as (B ⊗ K) ⊕ K. The
closing of image B by K is defined as (B ⊕ K) ⊗ K where the “o times” symbol
represents the erosion operator implemented by the IDL ERODE function.

As stated by Haralick et al, the result of iteratively applied dilations and erosions is an
elimination of specific image detail smaller than the structuring element without the
global geometric distortion of unsuppressed features. For example, opening an image
with a disk structuring element smooths the contour, breaks narrow isthmuses, and
eliminates small islands and sharp peaks or capes.

Closing an image with a disk structuring element smooths the contours, fuses narrow
breaks and long thin gulfs, eliminates small holes, and fills gaps on the contours.

Note
MORPH_OPEN and MORPH_CLOSE can also be used to perform these tasks.

Syntax

Result = DILATE(Image, Structure [, X0 [, Y0 [, Z0]]] [, /CONSTRAINED
[, BACKGROUND=value]] [, /GRAY [, /PRESERVE_TYPE | , /UINT | , /ULONG]]
[, VALUES=array])

Return Value

The DILATE function returns the dilation of Image by the structuring element
Structure.

Arguments

Image

A one-, two-, or three-dimensional array upon which the dilation is to be performed.
If the parameter is not of byte type, a temporary byte copy is obtained. If neither of
DILATE IDL Reference Guide

 519
the keywords GRAY or VALUES is present, the image is treated as a binary image
with all nonzero pixels considered as 1.

Structure

A one-, two-, or three-dimensional array that represents the structuring element.
Elements are interpreted as binary: values are either zero or nonzero. This argument
must have the same number of dimensions as Image.

X0, Y0, Z0

Optional parameters specifying the one-, two-, or three-dimensional coordinate of the
structuring element’s origin. If omitted, the origin is set to the center, ([Nx/2], [Ny/2],
[Nz/2]), where Nx, Ny, and Nz are the dimensions of the structuring element array. The
origin need not be within the structuring element.

Keywords

BACKGROUND

Set this keyword to the pixel value that is to be considered the background when
dilation is being performed in constrained mode. The default value is 0.

CONSTRAINED

If this keyword is set and grayscale dilation has been selected, the dilation algorithm
will operate in constrained mode. In this mode, a pixel is set to the value determined
by normal grayscale dilation rules in the output image only if the current value
destination pixel value matches the BACKGROUND pixel value. Once a pixel in the
output image has been set to a value other than the BACKGROUND value, it cannot
change.

GRAY

Set this keyword to perform grayscale, rather than binary, dilation. The nonzero
elements of the Structure parameter determine the shape of the structuring element
(neighborhood). If VALUES is not present, all elements of the structuring element are
0, yielding the neighborhood maximum operator.

PRESERVE_TYPE

Set this keyword to return the same type as the input array. This keyword only applies
if the GRAY keyword is set.
IDL Reference Guide DILATE

520
UINT

Set this keyword to return an unsigned integer array. This keyword only applies if the
GRAY keyword is set.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword only
applies if the GRAY keyword is set.

VALUES

An array with the same dimensions as Structure providing the values of the
structuring element. The presence of this parameter implies grayscale dilation. Each
pixel of the result is the maximum of the sum of the corresponding elements of
VALUE and the Image pixel value. If the resulting sum is greater than 255, the return
value is 255.

Examples

Example 1

This example thresholds a gray scale image at the value of 100, producing a binary
image. The result is then “opened” with a 3 pixel by 3 pixel square shape operator,
using the DILATE and ERODE operators. The effect is to remove holes, islands, and
peninsula smaller than the shape operator:

; Threshold and make binary image:
B = A GE

; Create the shape operator:
S = REPLICATE(1, 3, 3)

; "Opening" operator:
C = DILATE(ERODE(B, S), S)

; Show the result:
TVSCL, C

Example 2

For grayscale images, DILATE takes the neighborhood maximum, where the shape
of the neighborhood is given by the structuring element. Elements for which the
structuring element extends off the array are indeterminate. For example, assume you
have the following image and structuring element:
DILATE IDL Reference Guide

 521
image = BYTE([2,1,3,3,3,3,1,2])
s = [1,1]

If the origin of the structuring element is not specified in the call to DILATE, the
origin defaults to one half the width of the structuring element, which is 1 in this case.
Therefore, for the first element in the image array, the structuring element is aligned
with the image as depicted below:

This will cause an indeterminate value for the first element in the DILATE result. If
edge values are important, you must pad the image with as many zeros as there are
elements in the structuring element that extend off the array, in all dimensions. In this
case, you would need to pad the image with a single leading zero. If the structuring
element were s=[1,1,1,1], and you specified an origin of 2, the structuring
element would align with the image as follows:

Therefore, you would need to pad the image with at least two leading zeros and at
least one trailing zero. You would then perform the dilation operation on the padded
image, and remove the padding from the result.

The following code illustrates this method:

image = BYTE([2,1,3,3,3,3,1,2])
s = [1,1] ; Structuring element
PRINT, 'Image: '
PRINT, image

PRINT, 'Dilation using no padding: '
PRINT, DILATE(image, s, /GRAY)

result = DILATE([0, image], s, /GRAY)
PRINT, 'Dilation using padding: '
PRINT, result[1:N_ELEMENTS(image)]

IDL prints:

Image:
 2 1 3 3 3 3 1 2
Dilation using no padding:
 1 3 3 3 3 3 2 2
Dilation using padding:
 2 3 3 3 3 3 2 2
IDL Reference Guide DILATE

522
Version History

Introduced: Pre 4.0

See Also

ERODE, MORPH_CLOSE, MORPH_DISTANCE, MORPH_GRADIENT,
MORPH_HITORMISS, MORPH_OPEN, MORPH_THIN, MORPH_TOPHAT
DILATE IDL Reference Guide

 523
DINDGEN

The DINDGEN function creates a double-precision, floating-point array with the
specified dimensions. Each element of the array is set to the value of its one-
dimensional subscript.

Syntax

Result = DINDGEN(D1 [, ..., D8])

Return Value

Returns a double-precision, floating-point array of the specified dimensions.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
IDL Reference Guide DINDGEN

524
Examples

To create D, a 100-element, double-precision, floating-point array with each element
set to the value of its subscript, enter:

D = DINDGEN(100)

Version History

Introduced: Original

See Also

BINDGEN, CINDGEN, DCINDGEN, FINDGEN, INDGEN, LINDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
DINDGEN IDL Reference Guide

 525
DISSOLVE

The DISSOLVE procedure provides a digital “dissolve” effect for images. The
routine copies pixels from the image (arranged into square tiles) to the display in
pseudo-random order. This routine is written in the IDL language. Its source code can
be found in the file dissolve.pro in the lib subdirectory of the IDL distribution.

Syntax

DISSOLVE, Image [, DELAY=seconds] [, /ORDER] [, SIZ=pixels] [, X0=pixels,
Y0=pixels]

Arguments

Image

The image to be displayed. It is assumed that the image is already scaled. Byte-valued
images display most rapidly.

Keywords

DELAY

The wait between displaying tiles. The default is 0.01 second.

ORDER

The Image display order: 0 = bottom up (the default), 1 = top-down.

SIZ

Size of square tile. The default is 32 x 32 pixels.

X0, Y0

The X and Y offsets of the lower-left corner of the image on screen, in pixels.

Examples

Display an image using 16 x 16 pixel tiles:

DISSOLVE, DIST(200), SIZ=16
IDL Reference Guide DISSOLVE

526
Version History

Introduced: Pre 4.0

See Also

ERASE, TV
DISSOLVE IDL Reference Guide

 527
DIST

The DIST function creates an array in which each array element value is proportional
to its frequency. This array may be used for a variety of purposes, including
frequency-domain filtering.

This routine is written in the IDL language. Its source code can be found in the file
dist.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = DIST(N [, M])

Return Value

Returns a rectangular array in which the value of each element is proportional to its
frequency.

Arguments

N

The number of columns in the resulting array.

M

The number of rows in the resulting array. If M is omitted, the resulting array will be
N by N.

Keywords

None.

Examples

; Display the results of DIST as an image:
TVSCL, DIST(100)

Version History

Introduced: Original
IDL Reference Guide DIST

528
See Also

FFT
DIST IDL Reference Guide

 529
DLM_LOAD

Normally, IDL system routines that reside in dynamically loadable modules (DLMs)
are automatically loaded on demand when a routine from a DLM is called. The
DLM_LOAD procedure can be used to explicitly cause a DLM to be loaded.

Syntax

DLM_LOAD, DLMNameStr1 [, DLMNameStr2,..., DLMNameStrn]

Arguments

DLMNameStrn

A string giving the name of the DLM to be loaded. DLM_LOAD causes each named
DLM to be immediately loaded.

Keywords

None

Example

Force the JPEG DLM to be loaded:

DLM_LOAD, 'jpeg'

IDL prints:

% Loaded DLM: JPEG.

Version History

Introduced: 5.1
IDL Reference Guide DLM_LOAD

530
DLM_REGISTER

The DLM_REGISTER procedure registers a Dynamically Loadable Module (DLM)
in IDL that was not registered when starting IDL. This allows you to create DLMs
using the MAKE_DLL procedure and register them in your current session without
having to exit and restart IDL.

Warning
DLM_REGISTER intended as a convenience to be used when testing and
debugging DLMs or when running demonstration code included in the IDL
distribution. It is not the recommended way to make Dynamically Loadable
Modules known to your IDL session. By design, DLMs are registered when IDL
starts; among other things, this allows programs written in the IDL language that
call the routines in a DLM to be compiled before the DLM itself is loaded into IDL.
The mechanism involved is described in “Dynamically Loadable Modules” in
Chapter 21 of the External Development Guide manual; you should read and
understand this section before deciding to use DLM_REGISTER.

Syntax

DLM_REGISTER, DLMDefFilePath1 [, DLMDefFilePath2, ..., DLMDefFilePathn]

Arguments

DLMDefFilePathn

The name of the DLM module definition file to read.

Keywords

None.

Version History

Introduced: 5.4

See Also

“Dynamically Loadable Modules” in Chapter 21 of the External Development Guide
manual
DLM_REGISTER IDL Reference Guide

 531
DOC_LIBRARY

The DOC_LIBRARY procedure extracts documentation headers from one or more
IDL programs (procedures or functions). This command provides a standard interface
to the operating-system specific DL_DOS and DL_UNIX procedures.

The documentation header of the .pro file in question must have the following
format:

• The first line of the documentation block contains only the characters ;+,
starting in column 1.

• The last line of the documentation block contains only the characters ;-,
starting in column 1.

• All other lines in the documentation block contain a ; in column 1.

The file template.pro in the general subdirectory of the examples subdirectory
of the IDL distribution contains a template for creating your own documentation
headers.

This routine is supplied for users to view online documentation from their own IDL
programs. Though it could be used to view documentation headers from the lib
subdirectory of the IDL distribution, we do not recommend doing so. The
documentation headers on the files in the lib directory are used for historical
purposes—most do not contain the most current or accurate documentation for those
routines. The most current documentation for IDL’s built-in and library routines is
found in IDL’s online help system (enter ? at the IDL prompt).

This routine is written in the IDL language. Its source code can be found in the file
doc_library.pro in the lib subdirectory of the IDL distribution.

Syntax

DOC_LIBRARY [, Name] [, /PRINT]

UNIX keywords: [, DIRECTORY=string] [, /MULTI]

Arguments

Name

A string containing the name of the IDL routine in question. Under Windows or
UNIX, Name can be “*” to get information on all routines.
IDL Reference Guide DOC_LIBRARY

532
Keywords

DIRECTORY (UNIX Only)

A string containing the name of the directory to search. If omitted, the current
directory and !PATH are used.

MULTI (UNIX Only)

Set this keyword to allow printing of more than one file if the requested module exists
in more than one directory.

PRINT

Set this keyword to send the output of DOC_LIBRARY to the default printer. Under
UNIX, if PRINT is a string, it is interpreted as a shell command used for output with
the documentation from DOC_LIBRARY providing standard input (i.e.,
PRINT="cat > junk").

Obsolete Keywords

The following keywords are obsolete:

• FILE

• PATH

• OUTPUTS

For information on obsolete keywords, See Appendix I, “Obsolete Features”.

Examples

To view the documentation header for the library function DIST, enter:

DOC_LIBRARY, 'DIST'

Version History

Introduced: Original

See Also

MK_HTML_HELP
DOC_LIBRARY IDL Reference Guide

 533
DOUBLE

The DOUBLE function converts Expression into a double-precision floating-point
value.

Syntax

Result = DOUBLE(Expression[, Offset [, D1 [, ..., D8]]])

Return Value

Returns a double-precision floating-point value or array of the specified dimensions.
If Expression is a complex number, DOUBLE returns the real part.

Arguments

Expression

The expression to be converted to double-precision, floating-point.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as double-precision, floating-
point data. See the description in Chapter 3, “Constants and Variables” in the
Building IDL Applications manual for details.

Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
If no dimension arguments are given, the result is taken to be scalar.

The Di arguments can be either an array or a series of scalar expressions specifying
the dimensions of the result. If a single argument is specified, it can be either a scalar
expression or an array of up to eight elements. If multiple arguments are specified,
they must all be scalar expressions. Up to eight dimensions can be specified.

When converting from a string argument, it is possible that the string does not contain
a valid floating-point value and no conversion is possible. The default action in such
cases is to print a warning message and return 0. The ON_IOERROR procedure can
be used to establish a statement to be jumped to in case of such errors.
IDL Reference Guide DOUBLE

534
Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

Suppose that A contains the integer value 45. A double-precision, floating-point
version of A can be stored in B by entering:

B = DOUBLE(A)
PRINT, B

IDL prints:

45.000000

Version History

Introduced: Original

See Also

BYTE, COMPLEX, DCOMPLEX, FIX, FLOAT, LONG, LONG64, STRING,
UINT, ULONG, ULONG64
DOUBLE IDL Reference Guide

 535
DRAW_ROI

The DRAW_ROI procedure draws a region or group of regions to the current Direct
Graphics device. The primitives used to draw each ROI are based on the TYPE
property of the given IDLanROI object. The TYPE property selects between points,
polylines, and filled polygons.

Syntax

DRAW_ROI, oROI [, /LINE_FILL] [, SPACING=value]

Graphics Keywords: [, CLIP=[X0, Y0, X1, Y1]] [, COLOR=value] [, /DATA | ,
/DEVICE | , /NORMAL] [, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, /NOCLIP]
[, ORIENTATION=ccw_degrees_from_horiz] [, PSYM=integer{0 to 10}]
[, SYMSIZE=value] [, /T3D] [, THICK=value]

Arguments

oROI

A reference to an IDLanROI object to be drawn.

Keywords

LINE_FILL

Set this keyword to indicate that polygonal regions are to be filled with parallel lines,
rather than using the default solid fill. When using a line fill, the thickness, linestyle,
orientation, and spacing of the lines may be specified by keywords.

SPACING

The spacing, in centimeters, between the parallel lines used to fill polygons.

Graphics Keywords Accepted

CLIP, COLOR, DATA, DEVICE, LINESTYLE, NOCLIP, NORMAL,
ORIENTATION, PSYM, SYMSIZE, T3D, THICK
IDL Reference Guide DRAW_ROI

536
Examples

The following example displays an image and collects data for a region of interest.
The resulting ROI is displayed as a filled polygon.

PRO roi_ex
; Load and display an image.
img=READ_DICOM(FILEPATH('mr_knee.dcm',SUBDIR=['examples','data']))
TV, img

; Create a polygon region object.
oROI = OBJ_NEW('IDLanROI', TYPE=2)

; Print instructions.
PRINT,'To create a region:'
PRINT,' Left mouse: select points for the region.'
PRINT,' Right mouse: finish the region.'

; Collect first vertex for the region.
CURSOR, xOrig, yOrig, /UP, /DEVICE
oROI->AppendData, xOrig, yOrig
PLOTS, xOrig, yOrig, PSYM=1, /DEVICE

;Continue to collect vertices for region until right mouse button.
x1 = xOrig
y1 = yOrig
while !MOUSE.BUTTON ne 4 do begin

x0 = x1
y0 = y1
CURSOR, x1, y1, /UP, /DEVICE
PLOTS, [x0,x1], [y0,y1], /DEVICE
oROI->AppendData, x1, y1

endwhile
PLOTS, [x1,xOrig], [y1,yOrig], /DEVICE

; Draw the the region with a line fill.
DRAW_ROI, oROI, /LINE_FILL, SPACING=0.2, ORIENTATION=45, /DEVICE
END

Version History

Introduced: 5.3
DRAW_ROI IDL Reference Guide

 537
EFONT

The EFONT procedure provides a simple widget-based vector font editor and display.
Use this procedure to read and/or modify a local copy of the file hersh1.chr,
located in the resource/fonts subdirectory of the main IDL directory, which
contains the vector fonts used by IDL in plotting. This is a very rudimentary editor.
Click the “Help” button on the EFONT main menu for more information.

This routine is written in the IDL language. Its source code can be found in the file
efont.pro in the lib subdirectory of the IDL distribution.

Syntax

EFONT [, Init_Font] [, /BLOCK] [, GROUP=widget_id]

Arguments

Init_Font

The initial font index, from 3 to 29. The default is 3.

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting BLOCK=1 will cause all
widget applications to block, not just this application. For more information, see the
documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have EFONT
block, any earlier calls to XMANAGER must have been called with the
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

GROUP

The widget ID of the widget that calls EFONT. If GROUP is set, the death of the
caller results in the death of EFONT.
IDL Reference Guide EFONT

538
Version History

Introduced: Pre 4.0

See Also

SHOWFONT, XFONT
EFONT IDL Reference Guide

 539
EIGENQL

The EIGENQL function computes the eigenvalues and eigenvectors of an n-by-n real,
symmetric array using Householder reductions and the QL method with implicit
shifts.

This routine is written in the IDL language. Its source code can be found in the file
eigenql.pro in the lib subdirectory of the IDL distribution.

Note
If you are working with complex inputs, instead use the LA_EIGENQL function.

Syntax

Result = EIGENQL(A [, /ABSOLUTE] [, /ASCENDING] [, /DOUBLE]
[, EIGENVECTORS=variable] [, /OVERWRITE | , RESIDUAL=variable])

Return Value

This function returns an n-element vector containing the eigenvalues.

Arguments

A

An n-by-n symmetric single- or double-precision floating-point array.

Keywords

ABSOLUTE

Set this keyword to sort the eigenvalues by their absolute value (their magnitude)
rather than by their signed value.

ASCENDING

Set this keyword to return eigenvalues in ascending order (smallest to largest). If not
set or set to zero, eigenvalues are returned in descending order (largest to smallest).
The eigenvectors are correspondingly reordered.
IDL Reference Guide EIGENQL

540
DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

EIGENVECTORS

Set this keyword equal to a named variable that will contain the computed
eigenvectors in an n-by-n array. The ith row of the returned array contains the ith
eigenvalue. If no variable is supplied, the array will not be computed.

OVERWRITE

Set this keyword to use the input array for internal storage and to overwrite its
previous contents.

RESIDUAL

Use this keyword to specify a named variable that will contain the residuals for each
eigenvalue/eigenvector (λ/x) pair. The residual is based on the definition Ax –
(λ)x = 0 and is an array of the same size as A and the same type as Result. The rows

of this array correspond to the residuals for each eigenvalue/eigenvector pair.

Note
If the OVERWRITE keyword is set, the RESIDUAL keyword has no effect.

Examples

; Define an n-by-n real, symmetric array:
A = [[5.0, 4.0, 0.0, -3.0], $

[4.0, 5.0, 0.0, -3.0], $

[0.0, 0.0, 5.0, -3.0], $

[-3.0, -3.0, -3.0, 5.0]]

; Compute the eigenvalues and eigenvectors:
eigenvalues = EIGENQL(A, EIGENVECTORS = evecs, $

RESIDUAL = residual)

;Print the eigenvalues and eigenvectors:
PRINT, 'Eigenvalues: '
PRINT, eigenvalues
PRINT, 'Eigenvectors: '
PRINT, evecs
EIGENQL IDL Reference Guide

 541
IDL prints:

Eigenvalues:
12.0915 6.18662 1.00000 0.721870

Eigenvectors:
-0.554531 -0.554531 -0.241745 0.571446
-0.342981 -0.342981 0.813186 -0.321646
0.707107 -0.707107 -6.13503e-008-6.46503e-008
0.273605 0.273605 0.529422 0.754979

The accuracy of each eigenvalue/eigenvector (λ/x) pair may be checked by printing
the residual array:

PRINT, residual

The RESIDUAL array has the same dimensions as the input array and the same type
as the result. The residuals are contained in the rows of the RESIDUAL array. All
residual values should be floating-point zeros.

Version History

Introduced: 5.0

See Also

EIGENVEC, LA_EIGENQL, TRIQL
IDL Reference Guide EIGENQL

542
EIGENVEC

The EIGENVEC function computes the eigenvectors of an n-by-n real, non-
symmetric array using Inverse Subspace Iteration. Use ELMHES and HQR to find
the eigenvalues of an n-by-n real, nonsymmetric array.

This routine is written in the IDL language. Its source code can be found in the file
eigenvec.pro in the lib subdirectory of the IDL distribution.

Note
If you are working with complex inputs, instead use the LA_EIGENVEC function.

Syntax

Result = EIGENVEC(A, Eval [, /DOUBLE] [, ITMAX=value]
[, RESIDUAL=variable])

Return Value

This function returns a complex array with a column dimension equal to n and a row
dimension equal to the number of eigenvalues.

Arguments

A

An n-by-n nonsymmetric, single- or double-precision floating-point array.

EVAL

An n-element complex vector of eigenvalues.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

ITMAX

The maximum number of iterations allowed in the computation of each eigenvector.
The default value is 4.
EIGENVEC IDL Reference Guide

 543
RESIDUAL

Use this keyword to specify a named variable that will contain the residuals for each
eigenvalue/eigenvector (λ/x) pair. The residual is based on the definition Ax – λx = 0
and is an array of the same size and type as that returned by the function. The rows of
this array correspond to the residuals for each eigenvalue/eigenvector pair.

Examples

; Define an n-by-n real, nonsymmetric array:
A = [[1.0, -2.0, -4.0, 1.0], $

[0.0, -2.0, 3.0, 4.0], $
[2.0, -6.0, -1.0, 4.0], $
[3.0, -3.0, 1.0, -2.0]]

; Compute the eigenvalues of A using double-precision complex
; arithmetic and print the result:
eval = HQR(ELMHES(A), /DOUBLE)
PRINT, 'Eigenvalues: '
PRINT, eval
evec = EIGENVEC(A, eval, RESIDUAL = residual)

; Print the eigenvectors:
PRINT, 'Eigenvectors:'
PRINT, evec[*,0], evec[*,1], evec[*,2], evec[*,3]

IDL prints:

Eigenvalues:
(0.26366255, -6.1925899)(0.26366255, 6.1925899)
(-4.9384492, 0.0000000)(0.41112406, 0.0000000)
Eigenvectors:
(0.0076733129, -0.42912489)(0.40651652, 0.32973069)
(0.54537624, -0.28856257)(0.33149359, -0.22632585)
(-0.42145884, -0.081113711)(0.23867007, 0.46584824)
(-0.39497143, 0.47402647)(-0.28990600, 0.27760747)
(-0.54965842, 0.0000000)(-0.18401243, 0.0000000)
(-0.58124548, 0.0000000)(0.57111192, 0.0000000)
(0.79297048, 0.0000000)(0.50289130, 0.0000000)
(-0.049618509, 0.0000000)(0.34034720, 0.0000000)

You can check the accuracy of each eigenvalue/eigenvector (λ/x) pair by printing the
residual array. All residual values should be floating-point zeros.

Version History

Introduced: 4.0
IDL Reference Guide EIGENVEC

544
See Also

ELMHES, HQR, LA_EIGENVEC, TRIQL, TRIRED
EIGENVEC IDL Reference Guide

 545
ELMHES

The ELMHES function reduces a real, nonsymmetric n by n array A to upper
Hessenberg form. ELMHES is based on the routine elmhes described in section 11.5
of Numerical Recipes in C: The Art of Scientific Computing (Second Edition),
published by Cambridge University Press, and is used by permission.

Note
If you are working with complex inputs, instead use the LA_ELMHES function.

Syntax

Result = ELMHES(A [, /COLUMN] [, /DOUBLE] [, /NO_BALANCE])

Return Value

The result is an upper Hessenberg array with eigenvalues that are identical to those of
the original array A. The Hessenberg array is stored in the upper triangle and the first
subdiagonal. Elements below the subdiagonal should be ignored but are not
automatically set to zero.

Arguments

A

An n by n real, nonsymmetric array.

Keywords

COLUMN

Set this keyword if the input array A is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
IDL Reference Guide ELMHES

546
NO_BALANCE

Set this keyword to disable balancing. By default, a balancing algorithm is applied to
A. Balancing a nonsymmetric array is recommended to reduce the sensitivity of
eigenvalues to rounding errors.

Examples

See the description of the HQR for an example using this function.

Version History

Introduced: 4.0

See Also

EIGENVEC, HQR, LA_ELMHES, TRIQL, TRIRED
ELMHES IDL Reference Guide

 547
EMPTY

The EMPTY procedure causes all buffered output for the current graphics device to
be written. IDL uses buffered output on many display devices for reasons of
efficiency. This buffering leads to rare occasions where a program needs to be certain
that data are not waiting in a buffer, but have actually been output. EMPTY is a low-
level graphics routine. IDL graphics routines generally handle flushing of buffered
data transparently to the user, so the need for EMPTY is very rare.

Syntax

EMPTY

Arguments

None.

Keywords

None.

Version History

Introduced: Original

See Also

FLUSH
IDL Reference Guide EMPTY

548
ENABLE_SYSRTN

The ENABLE_SYSRTN procedure enables/disables IDL system routines. This
procedure is intended for use by runtime and callable IDL applications, and is not
generally useful for interactive use.

Special Cases

The following is a list of cases in which ENABLE_SYSRTN is unable to enable or
disable a requested routine. All such attempts are simply ignored without issuing an
error, allowing the application to run without error in different IDL environments:

• Attempts to enable/disable non-existent system routines.

• Attempts to enable a system routine disabled due to the mode in which IDL is
licensed, as opposed to being disabled via ENABLE_SYSRTN, are quietly
ignored (e.g. demo mode).

• The routines CALL_FUNCTION, CALL_METHOD, CALL_PROCEDURE,
and EXECUTE cannot be disabled via ENABLE_SYSRTN. However,
anything that can be called from them can be disabled, so this is not a
significant drawback.

Syntax

ENABLE_SYSRTN [, Routines] [, /DISABLE] [, /EXCLUSIVE] [, /FUNCTIONS]

Arguments

Routines

A string scalar or array giving the names of routines to be enabled or disabled. By
default, these are procedures, but this can be changed by setting the FUNCTIONS
keyword.

Keywords

DISABLE

By default, the Routines are enabled. Setting this keyword causes them to be disabled
instead.
ENABLE_SYSRTN IDL Reference Guide

 549
EXCLUSIVE

By default, ENABLE_SYSRTN does not alter routines not listed in Routines. If
EXCLUSIVE is set, the specified routines are taken to be the only routines that
should be enabled or disabled, and all other routines have the opposite action applied.

Therefore, setting EXCLUSIVE and not DISABLE means that the routines in the
Routines argument are enabled and all other system routines of the same type
(function or procedure) are disabled. Setting EXCLUSIVE and DISABLE means that
all listed routines are disabled and all others are enabled.

FUNCTIONS

Normally, the Routines argument specifies the names of procedures. Set the
FUNCTIONS keyword to manipulate functions instead.

Examples

To disable the PRINT procedure:

ENABLE_SYSRTN, /DISABLE, 'PRINT'

To enable the PRINT procedure and disable all other procedures:

ENABLE_SYSRTN, /EXCLUSIVE, 'PRINT'

To ensure all possible functions are enabled:

ENABLE_SYSRTN, /DISABLE, /EXCLUSIVE, /FUNCTIONS

In the last example, all named functions should be disabled and all other functions
should be enabled. Since no Routines argument is provided, this means that all
routines become enabled.

Version History

Introduced: 5.2.1
IDL Reference Guide ENABLE_SYSRTN

550
EOF

The EOF function tests the specified file unit for the end-of-file condition.

Note
The EOF function cannot be used with files opened with the RAWIO keyword to
the OPEN routines. Many of the devices commonly used with RAWIO signal their
end-of-file by returning a zero transfer count to the I/O operation that encounters
the end-of-file.

Syntax

Result = EOF(Unit)

Return Value

If the file pointer is positioned at the end of the file, EOF returns true (1), otherwise
false (0) is returned.

Arguments

Unit

The file unit to test for end-of-file.

Keywords

None.

Examples

If file unit number 1 is open, the end-of-file condition can be checked by examining
the value of the expression EOF(1). For example, the following IDL code reads and
prints a text file:

; Open the file test.lis:
OPENR, 1, 'test.lis'
; Define a string variable:
A = ''
; Loop until EOF is found:
WHILE ~ EOF(1) DO BEGIN
EOF IDL Reference Guide

 551
; Read a line of text:
READF, 1, A
; Print the line:
PRINT,

ENDWHILE
; Close the file:
CLOSE, 1

Version History

Introduced: Original

See Also

POINT_LUN
IDL Reference Guide EOF

552
EOS_* Routines

For information, see Chapter 5, “HDF-EOS” in the IDL Scientific Data Formats
manual.
EOS_* Routines IDL Reference Guide

 553
ERASE

The ERASE procedure erases the screen of the currently selected graphics device (or
starts a new page if the device is a printer). The device is reset to alphanumeric mode
if it has such a mode (e.g., Tektronix terminals).

Syntax

ERASE [, Background_Color] [, CHANNEL=value] [, COLOR=value]

Arguments

Background_Color

The color index for the screen to be erased to. If this argument is omitted, ERASE
resets the screen to the default background color (normally 0) stored in the system
variable !P.BACKGROUND. Providing a value for Background_Color overrides the
default.

Warning
Not all devices support this feature.

Keywords

CHANNEL

The channel or channel mask for the erase operation. This parameter has meaning
only when used with devices that support TrueColor or multiple-display channels.
The default value is !P.CHANNEL.

COLOR

Specifies the background color. Using this keyword is analogous to using the
Background_Color argument.

Examples

; Display a simple image in the current window:
TV, DIST(255)

; Erase the image from the window:
ERASE
IDL Reference Guide ERASE

554
Version History

Introduced: Original

See Also

SET_PLOT, WINDOW, WSET
ERASE IDL Reference Guide

 555
ERF

The ERF function returns the value of the error function:

Syntax

Result = ERF(Z)

Return Value

The result is double-precision if the argument is double-precision, otherwise the
result is floating-point. The result always has the same structure as Z. The ERF
function also accepts complex arguments.

Arguments

Z

The expression for which the error function is to be evaluated. Z may be complex.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

To find the error function of 0.4 and print the result, enter:

PRINT, ERF(0.4D)

erf x()
2

π
------- e

t2–
td

0

x

∫=
IDL Reference Guide ERF

556
IDL prints:

0.42839236

Version History

Introduced: Pre 4.0

Z argument accepts complex input: 5.6

See Also

ERFC, ERFCX, EXPINT, GAMMA, IGAMMA
ERF IDL Reference Guide

 557
ERFC

The ERFC function returns the value of the complementary error function:

Syntax

Result = ERFC(Z)

Return Value

The result is double-precision if the argument is double-precision, otherwise the
result is floating-point. The result always has the same structure as Z. The ERFC
function also accepts complex arguments.

Arguments

Z

The expression for which the complementary error function is to be evaluated. Z may
be complex.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

erfc x() 1 erf x()–
2

π
------- e

t2–
td

x

∞

∫= =
IDL Reference Guide ERFC

558
Examples

To find the complementary error function of 0.4 and print the result, enter:

PRINT, ERFC(0.4D)

IDL prints:

0.57160764

Version History

Introduced: Pre 4.0

Z argument accepts complex input: 5.6

See Also

ERFC, ERFCX
ERFC IDL Reference Guide

 559
ERFCX

The ERFCX function returns the value of the scaled complementary error function:

Syntax

Result = ERFCX(Z)

Return Value

The result is double-precision if the argument is double-precision, otherwise the
result is floating-point. The result always has the same structure as Z. The ERFCX
function also accepts complex arguments.

Arguments

Z

The expression for which the scaled complementary error function is to be evaluated.
Z may be complex.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

erfcx x() e
x2

erfc x()=
IDL Reference Guide ERFCX

560
Examples

To find the scaled complementary error function of 0.4 and print the result, enter:

PRINT, ERFCX(0.4D)

IDL prints:

0.67078779

Version History

Introduced: 5.5

Z argument accepts complex input: 5.6

See Also

ERF, ERFC
ERFCX IDL Reference Guide

 561
ERODE

The ERODE function implements the erosion operator on binary and grayscale
images and vectors. This operator is commonly known as “shrink” or “reduce”.

Using ERODE

See the description of the DILATE function for background on morphological
operators. Erosion is the dual of dilation. It does to the background what dilation does
to the foreground. Briefly, given an Image and a structuring element, Structure, the
ERODE function can be used to remove islands smaller than the structuring element.

Over each pixel of the image, the origin of the structuring element is overlaid. If each
nonzero element of the structuring element is contained in the image, the output pixel
is set to one. Letting A ⊗ B represent the erosion of an image A by structuring
element B, erosion can be defined as:

where (A)-b represents the translation of A by b. The structuring element B can be
visualized as a probe that slides across image A, testing the spatial nature of A at each
point. If B translated by i,j can be contained in A (by placing the origin of B at i,j),
then i,j belongs to the erosion of A by B. For example:

In this example, the origin of the structuring element is at (0, 0).

Used with grayscale images, which are always converted to byte type, the ERODE
function is accomplished by taking the minimum of a set of differences. It can be
used to conveniently implement the neighborhood minimum operator with the shape
of the neighborhood given by the structuring element.

Syntax

Result = ERODE(Image, Structure [, X0 [, Y0 [, Z0]]] [, /GRAY
[, /PRESERVE_TYPE | , /UINT | , /ULONG]] [, VALUES=array])

C A B⊗ A() b–

b B∈
∩= =

0100

0100

1110

1000

0000

11⊗

0000

0000

1100

0000

0000

=

IDL Reference Guide ERODE

562
Return Value

The ERODE function returns the erosion of Image by the structuring element
Structure.

Arguments

Image

A one-, two-, or three-dimensional array upon which the erosion is to be performed.
If this parameter is not of byte type, a temporary byte copy is obtained. If neither of
the keywords GRAY or VALUES is present, the image is treated as a binary image
with all nonzero pixels considered as 1.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element. The
elements are interpreted as binary values—either zero or nonzero. The structuring
element must have the same number of dimensions as Image.

X0, Y0, Z0

Optional parameters specifying the one-, two-, or three-dimensional coordinate of the
structuring element’s origin. If omitted, the origin is set to the center, ([Nx/2], [Ny/2],
[Nz/2]), where Nx, Ny, and Nz are the dimensions of the structuring element array. The
origin need not be within the structuring element.

Keywords

GRAY

Set this keyword to perform grayscale, rather than binary, erosion. Nonzero elements
of the Structure parameter determine the shape of the structuring element
(neighborhood). If VALUES is not present, all elements of the structuring element
are 0, yielding the neighborhood minimum operator.

PRESERVE_TYPE

Set this keyword to return the same type as the input array. This keyword only applies
if the GRAY keyword is set.
ERODE IDL Reference Guide

 563
UINT

Set this keyword to return an unsigned integer array. This keyword only applies if the
GRAY keyword is set.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword only
applies if the GRAY keyword is set.

VALUES

An array of the same dimensions as Structure providing the values of the structuring
element. The presence of this keyword implies grayscale erosion. Each pixel of the
result is the minimum of Image less the corresponding elements of VALUE. If the
resulting difference is less than zero, the return value will be zero.

Examples

Example 1

This example thresholds a grayscale image at the value of 100, producing a binary
image. The result is then “opened” with a 3 pixel by 3 pixel square shape operator,
using the ERODE and DILATE operators. The effect is to remove holes, islands, and
peninsula smaller than the shape operator:

; Threshold and make binary image:
B = A GE 100

; Create the shape operator:
S = REPLICATE(1, 3, 3)

; "Opening" operator:
C = DILATE(ERODE(B, S), S)

; Show the result:
TVSCL, C

Example 2

For grayscale images, ERODE takes the neighborhood minimum, where the shape of
the neighborhood is given by the structuring element. Elements for which the
structuring element extends off the array are indeterminate. For example, assume you
have the following image and structuring element:
IDL Reference Guide ERODE

564
image = BYTE([2,1,3,3,3,3,1,2])
s = [1,1]

If the origin of the structuring element is not specified in the call to ERODE, the
origin defaults to one half the width of the structuring element, which is 1 in this case.
Therefore, for the first element in the image array, the structuring element is aligned
with the image as depicted below:

This will cause an indeterminate value for the first element in the ERODE result. If
edge values are important, you must pad the image with as many elements as there
are elements in the structuring element that extend off the array, in all dimensions.
The value of the padding elements must be the maximum value in the image, since
ERODE calculates a neighborhood minimum. In this case, you would need to pad the
image with a single leading 3. If the structuring element were s=[1,1,1,1], and
you specified an origin of 2, the structuring element would align with the image as
follows:

Therefore, you would need to pad the image with at least two leading 3s and at least
one trailing 3. You would then perform the erosion operation on the padded image,
and remove the padding from the result.

The following code illustrates this method:

image = BYTE([2,1,3,3,3,3,1,2])
s = [1,1] ; Structuring element
PRINT, 'Image: '
PRINT, image

PRINT, 'Erosion using no padding: '
PRINT, ERODE(image, s, /GRAY)

result = ERODE([MAX(image), image], s, /GRAY)
PRINT, 'Erosion using padding: '
PRINT, result[1:N_ELEMENTS(image)]

IDL prints:

Image:
 2 1 3 3 3 3 1 2
Erosion using no padding:
 0 1 1 3 3 3 1 1
ERODE IDL Reference Guide

 565
Erosion using padding:
 2 1 1 3 3 3 1 1

Version History

Introduced: Pre 4.0

See Also

DILATE, MORPH_CLOSE, MORPH_DISTANCE, MORPH_GRADIENT,
MORPH_HITORMISS, MORPH_OPEN, MORPH_THIN, MORPH_TOPHAT
IDL Reference Guide ERODE

566
ERRPLOT

The ERRPLOT procedure plots error bars over a previously drawn plot.

This routine is written in the IDL language. Its source code can be found in the file
errplot.pro in the lib subdirectory of the IDL distribution.

Syntax

ERRPLOT, [X,] Low, High [, WIDTH=value]

Arguments

X

A vector containing the abscissa values at which the error bars are to be plotted. X
only needs to be provided if the abscissa values are not the same as the index
numbers of the plotted points.

Low

A vector of lower estimates, equal to data - error.

High

A vector of upper estimates, equal to data + error.

Keywords

WIDTH

The width of the error bars. The default is 1% of plot width.

Examples

To plot symmetrical error bars where Y is a vector of data values and ERR is a
symmetrical error estimate, enter:

; Plot data:
PLOT, Y

; Overplot error bars:
ERRPLOT, Y-ERR, Y+ERR
ERRPLOT IDL Reference Guide

 567
If error estimates are non-symmetrical, provide actual error estimates in the upper
and lower arguments.

; Plot data:
PLOT,Y

; Provide custom lower and upper bounds:
ERRPLOT, lower, upper

To plot Y versus a vector of abscissas:

; Plot data (X versus Y):
PLOT, X, Y

; Overplot error estimates:
ERRPLOT, X, Y-ERR, Y+ERR

Version History

Introduced: Original

See Also

OPLOTERR, PLOT, PLOTERR
IDL Reference Guide ERRPLOT

568
EXECUTE

The EXECUTE function compiles and executes one or more IDL statements
contained in a string at run-time.

Like the CALL_PROCEDURE and CALL_FUNCTION routines, calls to
EXECUTE can be nested. However, compiling the string at run-time is inefficient.
CALL_FUNCTION and CALL_PROCEDURE provide much of the functionality of
EXECUTE without imposing this limitation, and should be used instead of
EXECUTE whenever possible.

Syntax

Result = EXECUTE(String [, QuietCompile])

Return Value

EXECUTE returns true (1) if the string was successfully compiled and executed. If
an error occurs during either phase, the result is false (0).

Arguments

String

A string containing the command(s) to be compiled and executed.

QuietCompile

If this argument is set to a non-zero value, EXECUTE will not print the compiler
generated error messages (such as syntax errors). If QuietCompile is omitted or set to
0, EXECUTE will output such errors.

Keywords

None.

Examples

Create a string that holds a valid IDL command by entering:

com = 'PLOT, [0,1]'
EXECUTE IDL Reference Guide

 569
Execute the contents of the string by entering:

R = EXECUTE(com)

A plot should appear. You can confirm that the string was successfully compiled and
executed by checking that the value of R is 1.

Version History

Introduced: Original

See Also

CALL_FUNCTION, CALL_METHOD, CALL_PROCEDURE
IDL Reference Guide EXECUTE

570
EXIT

The EXIT procedure quits IDL and exits back to the operating system. All buffers are
flushed and open files are closed. The values of all variables that were not saved are
lost.

Syntax

EXIT [, /NO_CONFIRM] [, STATUS=code]

Arguments

None.

Keywords

NO_CONFIRM

Set this keyword to suppress any confirmation dialog that would otherwise be
displayed in a GUI version of IDL such as the IDL Development Environment.

STATUS

Set this keyword equal to an exit status code that will be returned when IDL exits. For
example, on a UNIX system using the Bourne shell:

Start IDL:

$ idl

Exit IDL specifying exit status 45:

IDL> exit, status=45

Display last exit status code:

$ echo $?

The following displays:

45

Version History

Introduced: Original
EXIT IDL Reference Guide

 571
See Also

CLOSE, FLUSH, STOP, WAIT
IDL Reference Guide EXIT

572
EXP

The EXP function returns the natural exponential function of Expression.

Syntax

Result = EXP(Expression)

Return Value

Returns the natural exponential function of the given Expression.

Arguments

Expression

The expression to be evaluated. If Expression is double-precision floating or
complex, the result is of the same type. All other types are converted to single-
precision floating-point and yield floating-point results. The definition of the
exponential function for complex arguments is:

EXP(x) = COMPLEX(eR cos I, eR sin I)

where:

R = real part of x, and I = imaginary part of x. If Expression is an array, the
result has the same structure, with each element containing the result for the
corresponding element of Expression.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
EXP IDL Reference Guide

 573
Examples

Plot a Gaussian with a 1/e width of 10 and a center of 50 by entering:

PLOT, EXP(-(FINDGEN(100)/10. - 5.0)^2)

Version History

Introduced: Original

See Also

ALOG
IDL Reference Guide EXP

574
EXPAND

The EXPAND procedure shrinks or expands a two-dimensional array, using bilinear
interpolation. It is similar to the CONGRID and REBIN routines.

This routine is written in the IDL language. Its source code can be found in the file
expand.pro in the lib subdirectory of the IDL distribution.

Syntax

EXPAND, A, Nx, Ny, Result [, FILLVAL=value] [, MAXVAL=value]

Arguments

A

A two-dimensional array to be magnified.

Nx

Desired size of the X dimension, in pixels.

Ny

Desired size of the Y dimension, in pixels.

Result

A named variable that will contain the magnified array.

Keywords

FILLVAL

Set this keyword equal to the value to use when elements larger than MAXVAL are
encountered. The default is -1.

MAXVAL

Set this keyword equal to the largest desired value. Elements greater than this value
are set equal to the value of the FILLVAL keyword.
EXPAND IDL Reference Guide

 575
Version History

Introduced: Pre 4.0

See Also

CONGRID, REBIN
IDL Reference Guide EXPAND

576
EXPAND_PATH

The EXPAND_PATH function is used to expand a simple path-definition string into a
full path listing for use with the !PATH, !DLM_PATH, and !HELP_PATH system
variables.

• !PATH is a list of locations where IDL searches for currently undefined
procedures and functions.

• !DLM_PATH is a list of locations where IDL searches for dynamically
loadable modules.

• !HELP_PATH is a list of locations where IDL searches for online help files
when the online help facility is used.

Note
The mechanism used by EXPAND_PATH to expand the path-definition string is the
same as that is used to expand the contents of the environment variables
IDL_PATH, IDL_DLM_PATH, and IDL_HELP_PATH at startup. See “The Path
Definition String” below for more information.

The Path Definition String

EXPAND_PATH accepts a single argument, a scalar string that contains a simple
path-definition string. EXPAND_PATH expands the path-definition string into a list
of directories that can be assigned to the !PATH, !DLM_PATH, or !HELP_PATH
system variables.

Note
The syntax of the path definition string describe here can also be used when setting
the IDL_PATH, IDL_DLM_PATH, and IDL_HELP_PATH environment variables.
When IDL reads the environment variable at startup, it will treat the contents of the
environment variable in the same way EXPAND_PATH treats the path definition
string.

IDL supports the following special notations within the path definition string:

• Using “+” — When IDL encounters a “+” in front of a directory name, it
searches the directory and all of its subdirectories for files of the appropriate
type for the given path:
EXPAND_PATH IDL Reference Guide

 577
• IDL program files (.pro or .sav) if neither the DLM nor the HELP
keywords to EXPAND_PATH are present, or in the IDL_PATH
environment variable.

• Dynamically Loadable Module files (.dlm) if the DLM keyword to
EXPAND_PATH is present, or in the IDL_DLM_PATH environment
variable.

• Files that can be used by IDL’s online help system, if the HELP keyword
to EXPAND_PATH is present, or in the IDL_HELP_PATH environment
variable. On UNIX platforms, help files are Adobe Portable Document
Format (.pdf) files, HTML format (.html or .htm) files, or have the file
extension.help . On Windows systems, help files can be either HTML
Help (.chm), WinHelp (.hlp), PDF (.pdf), or HTML (.html or .htm)
files.

Any directory containing one or more of the appropriate type of file is added to
the path.

If the “+” is not present, the specified directory is added to the path regardless
of its contents.

Order of Expanded Directories

When expanding a path segment starting with “+”, IDL ensures that all
directories containing the appropriate type files are placed in the path string.
The order in which the directories in such an expanded path segment appear is
completely unspecified, and does not necessarily correspond to any specific
order (such as top-down alphabetized). This allows IDL to construct the path
in the fastest possible way and speeds the process of loading paths from
environment variables at startup. This is only a problem if two subdirectories
in such a hierarchy contain a file with the same name.

If the order in which “+” expands directories is a problem for your application,
you should add the directories to the path explicitly and not use “+”. Only the
order of the files within a given “+” entry are determined by IDL. It never
reorders !PATH (or !DLM_PATH or !HELP_PATH) in any other way. You can
therefore obtain any search order you desire by writing the path explicitly.

• Using “<IDL_DEFAULT>” — IDL replaces any an occurrence of the token
<IDL_DEFAULT> in a path definition string with the default value IDL would
have used if no environment variable or preference were set. The actual value
of this placeholder depends on where IDL has been installed. Hence, to view
IDL’s default path:

PRINT, EXPAND_PATH('<IDL_DEFAULT>')
IDL Reference Guide EXPAND_PATH

578
To append your own directory after IDL’s default DLM path using the
IDL_DLM_PATH environment variable (under UNIX):

% setenv IDL_DLM_PATH "<IDL_DEFAULT>:/your/path/here"

(Setting the Windows environment variable IDL_DLM_PATH to a similar
string would produce the same result on a Windows system.) This substitution
allows you to set up your paths without having to hard-code IDL’s defaults into
your startup scripts or environment variables.

Note that the actual path that the token <IDL_DEFAULT> expands to depends
on the context in which it is used. The default path for .pro and .sav files is
different from the default path for .dlm files or help files. To see this, enter the
following statements into IDL:

PRINT, EXPAND_PATH('<IDL_DEFAULT>')
PRINT, EXPAND_PATH('<IDL_DEFAULT>', /DLM)
PRINT, EXPAND_PATH('<IDL_DEFAULT>', /HELP)

• Using “<IDL_BIN_DIRNAME>” — IDL replaces any an occurrence of the
token <IDL_BIN_DIRNAME> in a path definition string with the name of the
subdirectory within the installed IDL distribution where binaries for the
current system are kept. This feature is useful for distributing packages of
DLMs (Dynamically Loadable Modules) with support for multiple operating
system and hardware combinations.

• Using “<IDL_VERSION_DIRNAME>” — IDL replaces any an occurrence of
the token <IDL_VERSION_DIRNAME> in a path definition string with a unique
name for the IDL version that is currently running. This feature can be
combined with <IDL_BIN_DIRNAME> to easily distribute packages of DLMs
with support for multiple IDL versions, operating systems, and hardware
platforms.

Note
See “!DLM_PATH” on page 3904 for examples using the <IDL_BIN_DIRNAME>
and <IDL_VERSION_DIRNAME> tokens.

Syntax

Result = EXPAND_PATH(String [, /ALL_DIRS] [, /ARRAY] [, COUNT=variable]
[, /DLM] [, /HELP])
EXPAND_PATH IDL Reference Guide

 579
Return Value

Returns a list of directories that can be assigned to the !PATH, !DLM_PATH, or
!HELP_PATH system variables given a string path to be expanded.

Arguments

String

A scalar string containing the path-definition string to be expanded. See “The Path
Definition String” for details.

Keywords

ALL_DIRS

Set this keyword to return all directories without concern for their contents,
otherwise, EXPAND_PATH only returns those directories that contain .pro or .sav
files.

ARRAY

Set this keyword to return the result as a string array with each element containing
one path segment. In this case, there is no need for a separator character and none is
supplied. Normally, the result is a string array with the various path segments
separated with the correct special delimiter character for the current operating
system.

COUNT

Set this keyword to a named variable which returns the number of path segments
contained in the result.

DLM

Set this keyword to return those directories that contain IDL Dynamically Loadable
Module (.dlm) description files.

HELP

Set this keyword to return directories that contain help files. On UNIX platforms,
help files are in Adobe Portable Document Format (.pdf), HTML format (.html or
.htm), or have the file extension .help . On Windows systems, help files can be
IDL Reference Guide EXPAND_PATH

580
either HTML Help (.chm), WinHelp (.hlp), PDF (.pdf), or HTML (.html or
.htm) files.

Examples

Example 1

Assume you have the following directory structure:

/home
myfile.txt
/programs

/pro
myfile.pro

Search the /home directory and all its subdirectories, and return the directories
containing .pro and .sav files:

PRINT, EXPAND_PATH('+/home')

IDL prints:

/home/programs/pro

Example 2

Search the same directory, but this time return all directories, not just those
containing .pro and .sav files:

PRINT, EXPAND_PATH('+home', /ALL_DIRS)

IDL prints:

/home/programs/pro:/home/programs

Example 3

Print the default value of the !DLM_PATH system variable:

PRINT, EXPAND_PATH('<IDL_DEFAULT>', /DLM)

Version History

Introduced: Pre 4.0

Modified to use the <IDL_*_PATH> syntax: 5.6
EXPAND_PATH IDL Reference Guide

 581
See Also

“Running IDL Program Files” in Chapter 9 of the Using IDL manual and “IDL
Environment System Variables” on page 3902.
IDL Reference Guide EXPAND_PATH

582
EXPINT

The EXPINT function returns the value of the exponential integral En(x).

EXPINT is based on the routine expint described in section 6.3 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = EXPINT(N, X [, /DOUBLE] [, EPS=value] [, ITER=variable]
[, ITMAX=value])

Return Value

Returns the exponential integral En(x).

Arguments

N

An integer specifying the order of En(x). N can be either a scalar or an array.

X

The value at which En(x) is evaluated. X can be either a scalar or an array.

Note: If an array is specified for both N and X, then EXPINT evaluates En(x) for each
Ni and Xi. If either N or X is a scalar and the other an array, the scalar is paired with
each array element in turn.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
Set this keyword to zero to return a single-precision result.

Note
All internal computations are done using double-precision arithmetic.
EXPINT IDL Reference Guide

 583
EPS

Use this keyword to specify a number close to the desired relative error. The default
value is 3.0 x 10-12.

ITER

Set this keyword equal to a named variable that will contain the actual number of
iterations performed.

ITMAX

An input integer specifying the maximum allowed number of iterations. The default
value is 100000.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

To compute the value of the exponential integral at the following X values:

; Define the parametric X values:
X = [1.00, 1.05, 1.27, 1.34, 1.38, 1.50]

; Compute the exponential integral of order 1:
result = EXPINT(1, X)

; Print the result:
PRINT, result

IDL prints:

0.219384 0.201873 0.141911 0.127354 0.119803 0.100020

This is the exact solution vector to six-decimal accuracy.
IDL Reference Guide EXPINT

584
Version History

Introduced: 4.0

ITER keyword added: 5.6

See Also

ERF
EXPINT IDL Reference Guide

 585
EXTRAC

The EXTRAC function returns a defined portion of an array or vector. The main
advantage to EXTRAC is that, when parts of the specified subsection lie outside the
bounds of the array, zeros are returned for these outlying elements. It is usually more
efficient to use the array subscript ranges (the “:” operator; see “Subscript Ranges” in
Chapter 6 of the Building IDL Applications manual) to perform such operations.

EXTRAC was originally a built-in system procedure in the PDP-11 version of IDL,
and was retained in that form in the original VAX/VMS IDL for compatibility. Most
applications of the EXTRAC function are more concisely written using subscript
ranges (e.g., X(10:15)). EXTRAC has been rewritten as a library function that
provides the same interface as the previous versions.

Note
If you know that the subarray will never lie beyond the edges of the array, it is more
efficient to use array subscript ranges (the “:” operator) to extract the data instead of
EXTRAC.

This routine is written in the IDL language. Its source code can be found in the file
extrac.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = EXTRAC(Array, C1, C2, ..., Cn, S1, S2, ..., Sn)

Return Value

Returns any rectangular sub-matrix or portion of the parameter array.

Arguments

Array

The array from which the subarray will be copied.

Ci

The starting subscript in Array for the subarray. There should be one Ci for each
dimension of Array. These arguments must be integers.
IDL Reference Guide EXTRAC

586
Si

The size of each dimension. The result will have dimensions of (S1, S2, ..., Sn). There
should be one Si for each dimension of Array. These arguments must be non-
negative.

Keywords

None.

Examples

Extracting elements from a vector:

; Create a 1000 element floating-point vector with each element set
; to the value of its subscript:
A = FINDGEN(1000)
; Extract 300 points starting at A[200] and extending to A[499]:
B = EXTRAC(A, 200, 300)

In the next example, the first 50 elements extracted — B[0] to B[49] — lie outside
the bounds of the vector and are set to 0. The value of B[50] is the same as the value
of A[0], and the value of B[51] is equal to A[1]which is 1. Enter:

; Create a 1000 element vector:
A = FINDGEN(1000)
; Extract 50 elements, 49 of which lie outside the bounds of A:
B = EXTRAC(A, -50, 100)

The following commands illustrate the use of EXTRAC with multi-dimensional
arrays:

; Make a 64 by 64 array:
A = INTARR(64,64)
; Extract a 32 by 32 portion starting at A(20,30):
B = EXTRAC(A, 20, 30, 32, 32)

As suggested in the discussion above, a better way to perform the same operation as
the previous line is:

; Use the array subscript operator instead of EXTRAC:
B = A(20:51, 30:61)

Extract the 20th column and 32nd row of A:

; Extract 20th column of A:
B = EXTRAC(A, 19, 0, 1, 64)
; Extract 32nd row of A:
B = EXTRAC(A, 0, 31, 64, 1)
EXTRAC IDL Reference Guide

 587
Take a 32 BY 32 matrix from A starting at A(40,50):

; Note that those points beyond the boundaries of A are set to 0:
B = EXTRAC(A, 40, 50, 32, 32)

Version History

Introduced: Pre 4.0

See Also

“Subscript Ranges” in Chapter 6 of the Building IDL Applications manual.
IDL Reference Guide EXTRAC

588
EXTRACT_SLICE

The EXTRACT_SLICE function extracts a specified planar slice of volumetric data.
This function allows for a rotation or vector form of the slice equation. In the vector
form, the slice plane is governed by the plane equation (ax+by+cz+d = 0) and a single
vector which defines the x direction. This form is more common throughout the IDL
polygon interface. In the rotation form, the slicing plane can be oriented at any angle
and can pass through any desired location in the volume.

This function allows for a vertex grid to be generated without sampling the data. In
this form, the vertices could be used to sample additional datasets or used to form
polygonal meshes. It would also be useful to return the planar mesh connectivity in
this case.

Support for anisotropic data volumes is included via an ANISOTROPY keyword.
This is an important feature in the proper interpolation of common medical imaging
data.

This routine is written in the IDL language. Its source code can be found in the file
extract_slice.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = EXTRACT_SLICE(Vol, Xsize, Ysize, Xcenter, Ycenter, Zcenter, Xrot, Yrot,
Zrot [, ANISOTROPY=[xspacing, yspacing, zspacing]] [, /CUBIC]
[, OUT_VAL=value] [, /RADIANS] [, /SAMPLE] [, VERTICES=variable])

or

Result = EXTRACT_SLICE(Vol, Xsize, Ysize, Xcenter, Ycenter, Zcenter,
PlaneNormal, Xvec [, ANISOTROPY=[xspacing, yspacing, zspacing]] [, /CUBIC]
[, OUT_VAL=value] [, /RADIANS] [, /SAMPLE] [, VERTICES=variable])

Return Value

Returns a two-dimensional planar slice extracted from 3-D volumetric data or returns
a vertex grid in the form of a [3,n] array of vertices.
EXTRACT_SLICE IDL Reference Guide

 589
Arguments

PlaneNormal

Set this input argument to a 3 element array. The values are interpreted as the normal
of the slice plane.

Xvec

Set this input argument to a 3 element array. The three values are interpreted as the 0
dimension directional vector. This should be a unit vector.

Vol

The volume of data to slice. This argument is a three-dimensional array of any type
except string or structure. The planar slice returned by EXTRACT_SLICE has the
same data type as Vol.

Xsize

The desired X size (dimension 0) of the returned slice. To preserve the correct aspect
ratio of the data, Xsize should equal Ysize. For optimal results, set Xsize and Ysize to
be greater than or equal to the largest of the three dimensions of Vol.

Ysize

The desired Ysize (dimension 1) of the returned slice. To preserve the correct aspect
ratio of the data, Ysize should equal Xsize. For optimal results, set Xsize and Ysize to
be greater than or equal to the largest of the three dimensions of Vol.

Xcenter

The X coordinate (index) of the point within the volume that the slicing plane passes
through. The center of the slicing plane passes through Vol at the coordinate (Xcenter,
YCenter, Zcenter).

Ycenter

The Y coordinate (index) of the point within the volume that the slicing plane passes
through. The center of the slicing plane passes through Vol at the coordinate (Xcenter,
YCenter, Zcenter).
IDL Reference Guide EXTRACT_SLICE

590
Zcenter

The Z coordinate (index) of the point within the volume that the slicing plane passes
through. The center of the slicing plane passes through Vol at the coordinate (Xcenter,
YCenter, Zcenter).

Xrot

The X-axis rotation of the slicing plane, in degrees. Before transformation, the slicing
plane is parallel to the X-Y plane. The slicing plane transformations are performed in
the following order:

• Rotate Z_rot degrees about the Z axis.

• Rotate Y_rot degrees about the Y axis.

• Rotate X_rot degrees about the X axis.

• Translate the center of the plane to Xcenter, Ycenter, Zcenter.

Yrot

The Y-axis rotation of the slicing plane, in degrees.

Zrot

The orientation Z-axis rotation of the slicing plane, in degrees.

Keywords

ANISOTROPY

Set this keyword to a three-element array. This array specifies the spacing between
the planes of the input volume in grid units of the (isotropic) output image.

OUT_VAL

Set this keyword to a value that will be assigned to elements of the returned slice that
lie outside of the original volume.

RADIANS

Set this keyword to indicate that Xrot, Yrot, and Zrot are in radians. The default is
degrees.
EXTRACT_SLICE IDL Reference Guide

 591
SAMPLE

Set this keyword to perform nearest neighbor sampling when computing the returned
slice. The default is to use bilinear interpolation. A small reduction in execution time
results when SAMPLE is set and the OUT_VAL keyword is not used.

VERTICES

Set this output keyword to a named variable in which to return a [3,Xsize,Ysize]
floating point array. This is an array of the x, y, z sample locations for each pixel in
the normal output.

Obsolete Keywords

The following keywords are obsolete:

• CUBIC

For information on obsolete keywords, See Appendix I, “Obsolete Features”.

Examples

Display an oblique slice through volumetric data:

; Create some data:
vol = RANDOMU(s, 40, 40, 40)

; Smooth the data:
FOR i=0, 10 DO vol = SMOOTH(vol, 3)

; Scale the smoothed part into the range of bytes:
vol = BYTSCL(vol(3:37, 3:37, 3:37))

; Extract a slice:
slice = EXTRACT_SLICE(vol, 40, 40, 17, 17, 17, 30.0, 30.0, 0.0, $

OUT_VAL=0B)

; Display the 2D slice as a magnified image:
TVSCL, REBIN(slice, 400, 400)

Version History

Introduced: Pre 4.0
IDL Reference Guide EXTRACT_SLICE

592
See Also

SLICER3
EXTRACT_SLICE IDL Reference Guide

 593
F_CVF

The F_CVF function computes the cutoff value V in an F distribution with degrees of
freedom in the numerator and degrees of freedom in the denominator such that the
probability that a random variable X is greater than V is equal to a user-supplied
probability P.

This routine is written in the IDL language. Its source code can be found in the file
f_cvf.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = F_CVF(P, Dfn, Dfd)

Return Value

Returns the cutoff value V, given a distribution F, with specified degrees of freedom in
the numerator and denominator.

Arguments

P

A non-negative single- or double-precision floating-point scalar, in the interval [0.0,
1.0], that specifies the probability of occurrence or success.

Dfn

A positive integer, single- or double-precision floating-point scalar that specifies the
number of degrees of freedom of the F distribution numerator.

Dfd

A positive integer, single- or double-precision floating-point scalar that specifies the
number of degrees of freedom of the F distribution denominator.

Keywords

None.
IDL Reference Guide F_CVF

594
Examples

Use the following command to compute the cutoff value in an F distribution with ten
degrees of freedom in the numerator and six degrees of freedom in the denominator
such that the probability that a random variable X is greater than the cutoff value is
0.01. The result should be 7.87413:

PRINT, F_CVF(0.01, 10, 6)

Version History

Introduced: 4.0

See Also

CHISQR_CVF, F_PDF, GAUSS_CVF, T_CVF
F_CVF IDL Reference Guide

 595
F_PDF

The F_PDF function computes the probability P that, in an F distribution with
defined degrees of freedom in the numerator and denominator, a random variable X is
less than or equal to a user-specified cutoff value V.

This routine is written in the IDL language. Its source code can be found in the file
f_pdf.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = F_PDF(V, Dfn, Dfd)

Return Value

If all arguments are scalar, the function returns a scalar. If all arguments are arrays,
the function matches up the corresponding elements of V, Dfn, and Dfd, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other arguments are arrays, the function uses the scalar value with each element
of the arrays, and returns an array with the same dimensions as the smallest input
array.

If any of the arguments are double-precision, the result is double-precision, otherwise
the result is single-precision.

Arguments

V

A scalar or array that specifies the cutoff value(s).

Dfn

A positive scalar or array that specifies the number of degrees of freedom of the F
distribution numerator.

Dfd

A positive scalar or array that specifies the number of degrees of freedom of the F
distribution denominator.
IDL Reference Guide F_PDF

596
Keywords

None.

Examples

Use the following command to compute the probability that a random variable X,
from the F distribution with five degrees of freedom in the numerator and 24 degrees
of freedom in the denominator, is less than or equal to 3.90. The result should be
0.990059:

PRINT, F_PDF(3.90, 5, 24)

Version History

Introduced: 4.0

See Also

BINOMIAL, CHISQR_PDF, F_CVF, GAUSS_PDF, T_PDF
F_PDF IDL Reference Guide

 597
FACTORIAL

The FACTORIAL function computes the factorial N! For integers, the factorial is
computed as (N) ⋅ (N – 1) ⋅ (N – 2) ⋅ ... ⋅ 3 ⋅ 2 ⋅ 1. For non-integers the factorial is
computed using GAMMA(N+1).

This routine is written in the IDL language. Its source code can be found in the file
factorial.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = FACTORIAL(N [, /STIRLING] [, /UL64])

Return Value

Returns the product of the non-negative scalar value or array of values.

Arguments

N

A non-negative scalar or array of values.

Note
Large values of N will cause floating-point overflow errors. The maximum size of N
varies with machine architecture. On machines that support the IEEE standard for
floating-point arithmetic, the maximum value of N is 170. See MACHAR for a
discussion of machine-specific parameters affecting floating-point arithmetic.

Keywords

STIRLING

Set this keyword to use Stirling’s asymptotic formula to approximate N!:

where e is the base of the natural logarithm.

N! 2πN
N
e

N
=

IDL Reference Guide FACTORIAL

598
UL64

Set this keyword to return the results as unsigned 64-bit integers. This keyword is
ignored if STIRLING is set.

Note
Unsigned 64-bit integers will overflow for values of N greater than 20.

Examples

Compute 20!:

PRINT, FACTORIAL(20)

IDL prints:

2.4329020e+18

Version History

Introduced: Pre 4.0

See Also

BINOMIAL, TOTAL
FACTORIAL IDL Reference Guide

 599
FFT

The FFT function returns a result equal to the complex, discrete Fourier transform of
Array. The result of this function is a single- or double-precision complex array.

The discrete Fourier transform, F(u), of an N-element, one-dimensional function,
f(x), is defined as:

And the inverse transform, (Direction > 0), is defined as:

If the keyword OVERWRITE is set, the transform is performed in-place, and the
result overwrites the original contents of the array.

Running Time

For a one-dimensional FFT, running time is roughly proportional to the total number
of points in Array times the sum of its prime factors. Let N be the total number of
elements in Array, and decompose N into its prime factors:

Running time is proportional to:

where T3 ~ 4T2. For example, the running time of a 263 point FFT is approximately
10 times longer than that of a 264 point FFT, even though there are fewer points. The
sum of the prime factors of 263 is 264 (1 + 263), while the sum of the prime factors
of 264 is 20 (2 + 2 + 2 + 3 + 11).

F u()
1
N
---- f x()exp j2πux N⁄–[]

x 0=

N 1–

∑=

f x() F u()exp j2πux N⁄[]

u 0=

N 1–

∑=

N 2K2 3K3 5K5...⋅ ⋅=

T0 N T1 2K2T2 T3 3K3 5K5 ...+ +()+ +()+
IDL Reference Guide FFT

600
Syntax

Result = FFT(Array [, Direction] [, DIMENSION=vector] [, /DOUBLE]
[, /INVERSE] [, /OVERWRITE])

Return Value

FFT returns a complex array that has the same dimensions as the input array. The
output array is ordered in the same manner as almost all discrete Fourier transforms.
Element 0 contains the zero frequency component, F0. The array element F1 contains
the smallest, nonzero positive frequency, which is equal to 1/(Ni Ti), where Ni is the
number of elements and Ti is the sampling interval of the ith dimension. F2
corresponds to a frequency of 2/(Ni Ti). Negative frequencies are stored in the reverse
order of positive frequencies, ranging from the highest to lowest negative
frequencies.

Note
The FFT function can be performed on functions of up to eight (8) dimensions. If a
function has n dimensions, IDL performs a transform in each dimension separately,
starting with the first dimension and progressing sequentially to dimension n. For
example, if the function has two dimensions, IDL first does the FFT row by row,
and then column by column.

For an even number of points in the ith dimension, the frequencies corresponding to
the returned complex values are:

0, 1/(NiTi), 2/(NiTi), ..., (Ni/2-1)/(NiTi), 1/(2/Ti), -(Ni/2-1)/(NiTi), ..., -1/(NiTi)

where 1/(2Ti) is the Nyquist critical frequency.

For an odd number of points in the ith dimension, the frequencies corresponding to
the returned complex values are:

0, 1/(NiTi), 2/(NiTi), ..., (Ni/2-0.5)/(NiTi), -(Ni/2-0.5)/(NiTi), ..., -1/(NiTi)

Arguments

Array

The array to which the Fast Fourier Transform should be applied. If Array is not of
complex type, it is converted to complex type. The dimensions of the result are
identical to those of Array. The size of each dimension may be any integer value and
FFT IDL Reference Guide

 601
does not necessarily have to be an integer power of 2, although powers of 2 are
certainly the most efficient.

Direction

Direction is a scalar indicating the direction of the transform, which is negative by
convention for the forward transform, and positive for the inverse transform. If
Direction is not specified, the forward transform is performed.

A normalization factor of 1/N, where N is the number of points, is applied during the
forward transform.

Note
When transforming from a real vector to complex and back, it is slightly faster to
set Direction to 1 in the real to complex FFT.

Note also that the value of Direction is ignored if the INVERSE keyword is set.

Keywords

DIMENSION

Set this keyword to the dimension across which to calculate the FFT. If this keyword
is not present or is zero, then the FFT is computed across all dimensions of the input
array. If this keyword is present, then the FFT is only calculated only across a single
dimension. For example, if the dimensions of Array are N1, N2, N3, and
DIMENSION is 2, the FFT is calculated only across the second dimension.

DOUBLE

Set this keyword to a value other than zero to force the computation to be done in
double-precision arithmetic, and to give a result of double-precision complex type. If
DOUBLE is set equal to zero, computation is done in single-precision arithmetic and
the result is single-precision complex. If DOUBLE is not specified, the data type of
the result will match the data type of Array.

INVERSE

Set this keyword to perform an inverse transform. Setting this keyword is equivalent
to setting the Direction argument to a positive value. Note, however, that setting
INVERSE results in an inverse transform even if Direction is specified as negative.
IDL Reference Guide FFT

602
OVERWRITE

If this keyword is set, and the Array parameter is a variable of complex type, the
transform is done “in-place”. The result overwrites the previous contents of the
variable. For example, to perform a forward, in-place FFT on the variable a:

a = FFT(a, -1, /OVERWRITE)

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Note
Specifically, FFT will use the thread pool to overlap the inner loops of the
computation when used on data with dimensions which have factors of 2, 3, 4, or 5.
The prime-number DFT does not use the thread pool, as doing so would yield a
relatively small benefit for the complexity it would introduce. Our experience
shows that the improvement in performance from using the thread pool for FFT is
highly dependent upon many factors (data length and dimensions, single vs. double
precision, operating system, and hardware) and can vary between platforms.

Examples

Display the log of the power spectrum of a 100-element index array by entering:

PLOT, /YLOG, ABS(FFT(FINDGEN(100), -1))

As a more complex example, display the power spectrum of a 100-element vector
sampled at a rate of 0.1 seconds per point. Show the 0 frequency component at the
center of the plot and label the abscissa with frequency:

; Define the number of points:
N = 100

; Define the interval:
T = 0.1

; Midpoint+1 is the most negative frequency subscript:
N21 = N/2 + 1
FFT IDL Reference Guide

 603
; The array of subscripts:
F = INDGEN(N)
; Insert negative frequencies in elements F(N/2 +1), ..., F(N-1):
F[N21] = N21 -N + FINDGEN(N21-2)
IDL Reference Guide FFT

604
; Compute T0 frequency:
F = F/(N*T)

; Shift so that the most negative frequency is plotted first:
PLOT, /YLOG, SHIFT(F, -N21), SHIFT(ABS(FFT(F, -1)), -N21)

Compute the FFT of a two-dimensional image by entering:

; Create a cosine wave damped by an exponential.
n = 256
x = FINDGEN(n)
y = COS(x*!PI/6)*EXP(-((x - n/2)/30)^2/2)

; Construct a two-dimensional image of the wave.
z = REBIN(y, n, n)
; Add two different rotations to simulate a crystal structure.
z = ROT(z, 10) + ROT(z, -45)
WINDOW, XSIZE=540, YSIZE=540
LOADCT, 39
TVSCL, z, 10, 270

; Compute the two-dimensional FFT.
f = FFT(z)
logpower = ALOG10(ABS(f)^2) ; log of Fourier power spectrum.
TVSCL, logpower, 270, 270

; Compute the FFT only along the first dimension.
f = FFT(z, DIMENSION=1)
logpower = ALOG10(ABS(f)^2) ; log of Fourier power spectrum.
TVSCL, logpower, 10, 10

; Compute the FFT only along the second dimension.
f = FFT(z, DIMENSION=2)
logpower = ALOG10(ABS(f)^2) ; log of Fourier power spectrum.
TVSCL, logpower, 270, 10

Version History

Introduced: Original

See Also

HILBERT
FFT IDL Reference Guide

 605
FILE_BASENAME

The FILE_BASENAME function returns the basename of a file path. A file path is a
string containing one or more segments consisting of names separated by directory
delimiter characters (slash (/) under UNIX, or backslash (\) under Microsoft
Windows). The basename is the final rightmost segment of the file path; it is usually a
file, but can also be a directory name. See “Rules used by FILE_BASENAME” on
page 606 for additional information.

Note
FILE_BASENAME operates on strings based strictly on their syntax. The Path
argument need not refer to actual or existing files.

FILE_BASENAME is based on the standard UNIX basename(1) utility.

Note
To retrieve the leftmost portion of the file path (the dirname), use the
FILE_DIRNAME function.

Syntax

Result = FILE_BASENAME(Path [, RemoveSuffix] [, /FOLD_CASE])

Return Value

A scalar string or string array containing the basename for each element of the Path
argument.

Arguments

Path

A scalar string or string array containing paths for which the basename is desired.

Note
Under Microsoft Windows, the backslash (\) character is used to separate
directories within a path. For compatibility with UNIX, and general convenience,
the forward slash (/) character is also accepted as a directory separator in the Path
argument.
IDL Reference Guide FILE_BASENAME

606
RemoveSuffix

An optional scalar string or 1-element string array specifying a filename suffix to be
removed from the end of the basename, if present.

Note
If the entire basename string matches the suffix, the suffix is not removed.

Keywords

FOLD_CASE

By default, FILE_BASENAME follows the case sensitivity policy of the underlying
operating system when attempting to match a string specified by the RemoveSuffix
argument. By default, matches are case sensitive on UNIX platforms, and case
insensitive on Microsoft Windows platforms. The FOLD_CASE keyword is used to
change this behavior. Set it to a non-zero value to cause FILE_BASENAME to do all
string matching case insensitively. Explicitly set FOLD_CASE equal to zero to cause
all string matching to be case sensitive.

Note
The value of the FOLD_CASE keyword is ignored if the RemoveSuffix argument is
not present.

Rules used by FILE_BASENAME

FILE_BASENAME makes a copy of the input file path string, then modifies the copy
according to the following rules:

• If Path is a NULL string, then FILE_BASENAME returns a NULL string.

• If Path consists entirely of directory delimiter characters, the result of
FILE_BASENAME is a single directory delimiter character.

• If there are any trailing directory delimiter characters, they are removed.

• Under Microsoft Windows, remove any of the following, if present:

• The drive letter and colon (for file paths of the form
c:\directory\file).

• The initial double-backslash and host name (for UNC file paths of the
form \\host\share\directory\file).
FILE_BASENAME IDL Reference Guide

 607
• If any directory delimiter characters remain, all characters up to and including
the last directory delimiter are removed.

• If the RemoveSuffix argument is present, is not identical to the characters
remaining, and matches the suffix of the characters remaining, the suffix is
removed. Otherwise, the Result is not modified by this step. The case
sensitivity of the string comparison used in this step is controlled by the
FOLD_CASE keyword.

Examples

The following command prints the basename of an IDL .pro file, removing the
.pro suffix:

PRINT, FILE_BASENAME('/usr/local/rsi/idl/lib/dist.pro', '.pro')

IDL prints:

dist

Similarly, the following command prints the basenames of all .pro files in the lib
subdirectory of the IDL distribution that begin with the letter “I,” performing a case
insensitive match for the suffix:

PRINT, FILE_BASENAME(FILE_SEARCH(FILEPATH('lib')+'/i*.pro'),
'.pro', /FOLD_CASE)

Version History

Introduced: 6.0

See Also

FILE_DIRNAME, PATH_SEP, STREGEX, STRMID, STRPOS, STRSPLIT
IDL Reference Guide FILE_BASENAME

608
FILE_CHMOD

The FILE_CHMOD procedure allows you to change the current access permissions
(sometimes known as modes on UNIX platforms) associated with a file or directory.
File modes are specified using the standard Posix convention of three protection
classes (user, group, other), each containing three attributes (read, write, execute).
These permissions can be specified as an octal bitmask in which desired permissions
have their associated bit set and unwanted ones have their bits cleared. This is the
same format familiar to users of the UNIX chmod(1) command).

Keywords are available to specify permissions without the requirement to specify a
bitmask, providing a simpler way to handle many situations. All of the keywords
share a similar behavior: Setting them to a non-zero value adds the specified
permission to the Mode argument. Setting the keyword to 0 removes that permission.

To find the current protection settings for a given file, you can use the GET_MODE
keyword to the FILE_TEST function.

Syntax

FILE_CHMOD, File [, Mode] [, /A_EXECUTE |, /A_READ |, /A_WRITE]
[, /G_EXECUTE | /G_READ | , /G_WRITE] [, /NOEXPAND_PATH]
[, /O_EXECUTE | /O_READ | , /O_WRITE]
[, /U_EXECUTE | /U_READ | , /U_WRITE]

UNIX-Only Keywords: [, /SETGID] [, /SETUID] [, /STICKY_BIT]

Arguments

File

A scalar or array of file or directory names for which protection modes will be
changed.

Mode

An optional bit mask specifying the absolute protection settings to be applied to the
files. If Mode is not supplied, FILE_CHMOD looks up the current modes for the file
and uses it instead. Any additional modes specified via keywords are applied relative
to the value in Mode. Setting a keyword adds the necessary mode bits to Mode, and
clearing it by explicitly setting a keyword to 0 removes those bits from Mode.
FILE_CHMOD IDL Reference Guide

 609
The values of the bits in these masks correspond to those used by the UNIX
chmod(2) system call and chmod(1) user command, and are given in the following
table. Since these bits are usually manipulated in groups of three, octal notation is
commonly used when referring to them. When constructing a mode, the following
platform specific considerations should be kept in mind:

• The setuid, setgid, and sticky bits are specific to the UNIX operating system,
and have no meaning elsewhere. FILE_CHMOD ignores them on non-UNIX
systems. The UNIX kernel may quietly refuse to set the sticky bit if you are
not the root user. Consult the chmod(2) man page for details.

• The Microsoft Windows operating system does not have 3 permission classes
like UNIX does. Therefore, setting for all three classes are combined into a
single request.

• The Microsoft Windows operating system always allows read access to any
files visible to a program. FILE_CHMOD therefore ignores any requests to
remove read access.

• The Microsoft Windows operating system does not maintain an execute bit for
files, but instead uses the file suffix to decide if a file is executable.
FILE_CHMOD cannot change the execution status of a file in the Windows
environment; such requests are quietly ignored.

Bit Octal Mask Meaning

12 '4000'o Setuid: Set user ID on execution.

11 '2000'o Setgid: Set group ID on execution.

10 '1000'o Turn on sticky bit. See the UNIX documentation
on chmod(2) for details.

9 '0400'o Allow read by owner.

8 '0200'o Allow write by owner.

7 '0100'o Allow execute by owner.

6 '0040'o Allow read by group.

5 '0020'o Allow write by group.

4 '0010'o Allow execute by group.

3 '0004'o Allow read by others.

Table 22: UNIX chmod(2) mode bits
IDL Reference Guide FILE_CHMOD

610
Keywords

A_EXECUTE

Execute access for all three (user, group, other) categories.

A_READ

Read access for all three (user, group, other) categories.

A_WRITE

Write access for all three (user, group, other) categories.

G_EXECUTE

Execute access for the group category.

G_READ

Read access for the group category.

G_WRITE

Write access for the group category.

NOEXPAND_PATH

Set this keyword to cause FILE_CHMOD to use the File argument exactly as
specified, without applying the usual file path expansion.

O_EXECUTE

Execute access for the other category.

O_READ

Read access for the other category.

2 '0002'o Allow write by others.

1 '0001'o Allow execute by others.

Bit Octal Mask Meaning

Table 22: UNIX chmod(2) mode bits (Continued)
FILE_CHMOD IDL Reference Guide

 611
O_WRITE

Write access for the other category.

SETGID (UNIX Only)

The Set Group ID bit.

SETUID (UNIX Only)

The Set User ID bit.

STICKY_BIT (UNIX Only)

Sets the sticky bit.

U_EXECUTE

Execute access for the user category.

U_READ

Read access for the user category.

U_WRITE

Write access for the user category.

Examples

In the first example, we make the file moose.dat read only to everyone except the
owner of the file, but not change any other settings:

FILE_CHMOD, 'moose.dat', /U_WRITE, G_WRITE=0, O_WRITE=0

In the next example, we make the file readable and writable to the owner and group,
but read-only to anyone else, and remove any other modes:

FILE_CHMOD, 'moose.dat', '664'o

Version History

Introduced: 5.4
IDL Reference Guide FILE_CHMOD

612
FILE_COPY

The FILE_COPY procedure copies files, or directories of files, to a new location. The
copies retain the permission settings of the original files, and belong to the user that
performed the copy. See “Rules Used By FILE_COPY” on page 614 for additional
information.

FILE_COPY copies files based on their names. To copy data between open files, see
the COPY_LUN procedure.

Syntax

FILE_COPY, SourcePath, DestPath [, /ALLOW_SAME] [, /NOEXPAND_PATH]
[, /OVERWRITE] [, /RECURSIVE] [, /REQUIRE_DIRECTORY] [, /VERBOSE]

UNIX-Only Keywords: [, /COPY_NAMED_PIPE] [, /COPY_SYMLINK]
[, /FORCE]

Arguments

SourcePath

A scalar string or string array containing the names of the files or directories to be
copied.

Note
If SourcePath contains a directory, the RECURSIVE keyword must be set.

DestPath

A scalar string or string array containing the names of the destinations to which the
files and directories specified by SourcePath are to be copied. If more than one file is
to be copied to a given destination, that destination must exist and be a directory.

Keywords

ALLOW_SAME

Attempting to copy a file on top of itself by specifying the same file for SourcePath
and DestPath is usually considered to be an error. If the ALLOW_SAME keyword is
set, no copying is done and the operation is considered successful.
FILE_COPY IDL Reference Guide

 613
COPY_NAMED_PIPE (UNIX Only)

When FILE_COPY encounters a UNIX named pipe (also called a fifo) in SourcePath,
it usually opens it as a regular file and attempts to copy data from it to the destination
file. If COPY_NAMED_PIPE is set, FILE_COPY will instead replicate the pipe,
creating a new named pipe at the destination using the system mkfifo() function.

COPY_SYMLINK (UNIX Only)

When FILE_COPY encounters a UNIX symbolic link in SourcePath, it attempts to
copy the file or directory pointed to by the link. If COPY_SYMLINK is set,
FILE_COPY will instead create a symbolic link at the destination with the same
name as the source symbolic link, and pointing to the same path as the source.

FORCE (UNIX Only)

Even if the OVERWRITE keyword is set, FILE_COPY does not overwrite files that
have their file permissions set to prevent it. If the FORCE keyword is set, such files
are quietly removed to make way for the overwrite operation to succeed.

Note
FORCE does not imply OVERWRITE; both must be specified to overwrite a
protected file.

NOEXPAND_PATH

Set this keyword to cause FILE_COPY to use SourcePath and DestPath exactly as
specified, without expanding any wildcard characters or environment variable names
included in the paths. See FILE_SEARCH for details on path expansion.

OVERWRITE

Set this keyword to allow FILE_COPY to overwrite an existing file.

RECURSIVE

Set this keyword to cause directories specified by SourcePath to be copied to
DestPath recursively, preserving the hierarchy and names of the files from the source.
If SourcePath includes one or more directories, the RECURSIVE keyword must be
set.

Note
On a UNIX system, when performing a recursive copy on a directory hierarchy that
includes files that are links to other files, the destination files will be copies, not
IDL Reference Guide FILE_COPY

614
links. Setting the COPY_SYMLINK keyword will cause files that are symbolic
links to be copied as symbolic links, but FILE_COPY does not include a similar
facility for copying hard links. See the description of the FILE_LINK for more
information on UNIX file links.

REQUIRE_DIRECTORY

Set this keyword to cause FILE_COPY to require that DestPath exist and be a
directory.

VERBOSE

Set this keyword to cause FILE_COPY to issue an informative message for every file
copy operation it carries out.

Rules Used By FILE_COPY

The following rules govern how FILE_COPY operates:

• The arguments to FILE_COPY can be scalar or array. If both arguments are
arrays, the arrays must contain the same number of elements; in this case, the
files are copied pairwise, with each file from SourcePath being copied to the
corresponding file in the DestPath. If SourcePath is an array and DestPath is a
scalar, all files in SourcePath are copied to the single location given by
DestPath, which must exist and be a directory.

• Elements of SourcePath may use wildcard characters (as accepted by the
FILE_SEARCH function) to specify multiple files. All the files matched for a
given element of SourcePath are copied to the location specified by the
corresponding element of DestPath. If multiple files are copied to a single
element of DestPath, that element must exist and be a directory.

• If a file specified in DestPath does not exist, the corresponding file from
SourcePath is copied using the name specified by DestPath. Any parent
directories to the file specified by DestPath must already exist.

• If DestPath names an existing regular file, FILE_COPY will not overwrite it,
unless the OVERWRITE keyword is specified.

• If DestPath names an existing directory and SourcePath names a regular (non-
directory) file, then FILE_COPY creates a file with the same name as the file
given by SourcePath within the DestPath directory.

• If DestPath specifies an existing directory and SourcePath also names a
directory, and the RECURSIVE keyword is set, FILE_COPY checks for the
FILE_COPY IDL Reference Guide

 615
existence of a subdirectory of DestPath with the same name as the source
directory. If this subdirectory does not exist, it is created using the same
permissions as the directory being copied. Then, all the files and directories
underneath the source directory are copied to this subdirectory. FILE_COPY
will refuse to overwrite existing files within the destination subdirectory unless
the OVERWRITE keyword is in effect.

Examples

Make a backup copy of a file named myroutine.pro in the current working
directory:

FILE_COPY, 'myroutine.pro', 'myroutine.pro.backup'

Create a subdirectory named BACKUP in the current working directory and copy all
.pro files, makefile, and mydata.dat into it:

FILE_MKDIR, 'BACKUP'
FILE_COPY, ['*.pro', 'makefile', 'mydata.dat'], 'BACKUP'

Version History

Introduced: 5.6

See Also

COPY_LUN, FILE_LINK, FILE_MOVE
IDL Reference Guide FILE_COPY

616
FILE_DELETE

The FILE_DELETE procedure deletes a file or empty directory, if the process has the
necessary permissions to remove the file as defined by the current operating system.
FILE_CHMOD can be used to change file protection settings.

Note
On UNIX, if a file to be deleted is a symbolic link, FILE_DELETE deletes the link
itself, and not the file that the link points to.

Operating System Syntax

The syntax used to specify directories for removal depends on the operating system
in use, and is in general the same as you would use when issuing commands to the
operating system command interpreter.

Microsoft Windows users must be careful to not specify a trailing backslash at the
end of a specification. For example:

FILE_DELETE, 'c:\mydir\myfile'

and not:

FILE_DELETE, 'c:\mydir\myfile\'

Syntax

FILE_DELETE, File1 [,... Filen] [, /ALLOW_NONEXISTENT]
[, /NOEXPAND_PATH] [, /QUIET] [, /RECURSIVE] [, /VERBOSE]

Arguments

Filei

A scalar or array of file or directory names to be deleted, one name per string
element. Directories must be specified in the native syntax for the current operating
system. See “Operating System Syntax” below for additional details.
FILE_DELETE IDL Reference Guide

 617
Keywords

ALLOW_NONEXISTENT

If set, FILE_DELETE will quietly ignore attempts to delete a non-existent file. Other
errors will still be reported. The QUIET keyword can be used instead to suppress all
errors.

NOEXPAND_PATH

Set this keyword to cause FILE_DELETE to use the File argument exactly as
specified, without applying the usual file path expansion.

QUIET

FILE_DELETE will normally issue an error if it is unable to remove a requested file
or directory. If QUIET is set, no error is issued and FILE_DELETE simply moves on
to the next requested item.

RECURSIVE

By default, FILE_DELETE will refuse to delete directories that are not empty. If
RECURSIVE is set, FILE_DELETE will instead quietly delete all files contained
within that directory and any subdirectories below it, and then remove the directory
itself.

Warning
Recursive delete is a very powerful and useful operation. However, it is a relatively
dangerous command with the ability to rapidly destroy a great deal of data. Once
deleted, files cannot be recovered unless you have a separate backup, so a mistaken
recursive delete can be very damaging. Be very careful to specify correct arguments
to FILE_DELETE when using the RECURSIVE keyword.

VERBOSE

The VERBOSE keyword causes FILE_DELETE to issue an informative message for
every file it deletes.

Examples

In this example, we remove an empty directory named moose:

FILE_DELETE, 'moose'
IDL Reference Guide FILE_DELETE

618
Version History

Introduced: 5.4

ALLOW_NONEXISTENT and VERBOSE keywords added: 5.6
FILE_DELETE IDL Reference Guide

 619
FILE_DIRNAME

The FILE_DIRNAME function returns the dirname of a file path. A file path is a
string containing one or more segments consisting of names separated by directory
delimiter characters (slash (/) under UNIX, or backslash (\) under Microsoft
Windows). The dirname is all of the file path except for the final rightmost segment,
which is usually a file name, but can also be a directory name. See “Rules use by
FILE_DIRNAME” on page 620 for additional information.

Note
FILE_DIRNAME operates on strings based strictly on their syntax. The Path
argument need not refer to actual or existing files.

FILE_DIRNAME is based on the standard Unix dirname(1) utility.

Note
To retrieve the rightmost portion of the file path (the basename), use the
FILE_BASENAME function.

Syntax

Result = FILE_DIRNAME(Path [, /MARK_DIRECTORY])

Return Value

A scalar string or string array containing the dirname for each element of the Path
argument.

Note
By default, the dirname does not include a final directory separator character; this
behavior can be changed using the MARK_DIRECTORY keyword.

Note
On Windows platforms, the string returned by FILE_DIRNAME always uses the
backslash (\) as the directory separator character, even if the slash (/) was used in
the Path argument.
IDL Reference Guide FILE_DIRNAME

620
Arguments

Path

A scalar string or string array containing paths for which the dirname is desired.

Note
Under Microsoft Windows, the backslash (\) character is used to separate
directories within a path. For compatibility with UNIX, and general convenience,
the forward slash (/) character is also accepted as a directory separator in the Path
argument. However, all results produced by FILE_DIRNAME on Windows
platforms use the standard backslash for this purpose, regardless of the separator
character used in the input Path argument.

Keywords

MARK_DIRECTORY

Set this keyword to include a directory separator character at the end of the returned
directory name string. Including the directory character allows you to concatenate a
file name to the end of the directory name string without having to supply the
separator character manually. This is convenient for cross platform programming, as
the separator characters differ between operating systems.

Rules use by FILE_DIRNAME

FILE_DIRNAME makes a copy of the input path string, and then modifies the copy
according to the following rules:

• If Path is a NULL string, then FILE_DIRNAME returns a single dot (.)
character, representing the current working directory of the IDL process.

• Under Microsoft Windows, a file path can start with either of the following:

• A drive letter and a colon (for file paths of the form
c:\directory\file).

• An initial double-backslash and a host name (for UNC file paths of the
form \\host\share\directory\file).

If either of these are present in Path, they are considered to be part of the
dirname, and are copied to the result without interpretation by the remaining
steps below.
FILE_DIRNAME IDL Reference Guide

 621
• If Path consists entirely of directory delimiter characters, the result of
FILE_DIRNAME is a single directory delimiter character (prefixed by a
Windows drive letter and colon or a UNC prefix, if necessary).

• All characters to the right of the rightmost directory delimiter character are
removed.

• All trailing directory delimiter characters are removed.

• If the MARK_DIRECTORY keyword is set, a single directory delimiter
character is appended to the end.

Examples

The following statements print the directory in which IDL locates the file dist.pro
when it needs a definition for the DIST function. (DIST is part of the standard IDL
user library, included with IDL):

temp = DIST(4) ; Ensure that DIST is compiled
PRINT, FILE_DIRNAME((ROUTINE_INFO('DIST', $

/FUNCTION, /SCOURE)).path)

Depending on the platform and location where IDL is installed, IDL prints something
like:

/usr/local/rsi/idl/lib

Version History

Introduced: 6.0

See Also

FILE_BASENAME, PATH_SEP, STREGEX, STRMID, STRPOS, STRSPLIT
IDL Reference Guide FILE_DIRNAME

622
FILE_EXPAND_PATH

The FILE_EXPAND_PATH function expands a given file or partial directory name to
its fully qualified name regardless of the current working directory.

Note
This routine should be used only to make sure that file paths are fully qualified, but
not to expand wildcard characters (e.g. *). The behavior of FILE_EXPAND_PATH
when it encounters a wildcard is platform dependent, and should not be depended
on. These differences are due to the underlying operating system, and are beyond
IDL’s control. To expand wildcards and obtain fully qualified paths, combine the
FINDFILE function with FILE_EXPAND_PATH:

A = FILE_EXPAND_PATH(FINDFILE('*.pro'))

Alternatively, use the FILE_SEARCH function with the FULLY_QUALIFY_PATH
keyword:

A = FILE_SEARCH('*.pro', /FULLY_QUALIFY_PATH)

Syntax

Result = FILE_EXPAND_PATH (Path)

Return Value

FILE_EXPAND_PATH returns a fully qualified file path that completely specifies the
location of Path without the need to consider the user’s current working directory.

Arguments

Path

A scalar or array of file or directory names to be fully qualified.

Keywords

None.
FILE_EXPAND_PATH IDL Reference Guide

 623
Examples

In this example, we change directories to the IDL lib directory and expand the file
path for the DIST function:

cd, FILEPATH('', SUBDIRECTORY=['lib'])
print, FILE_EXPAND_PATH('dist.pro')

This results in the following if run on a UNIX system:

/usr/local/rsi/idl_5.4/lib/dist.pro

Version History

Introduced: 5.4

See Also

FILE_SEARCH, FINDFILE
IDL Reference Guide FILE_EXPAND_PATH

624
FILE_INFO

The FILE_INFO function returns status information about a specified file.

Syntax

Result = FILE_INFO(Path [, /NOEXPAND_PATH])

Return Value

The FILE_INFO function returns a structure expression of type FILE_INFO
containing status information about the specified file or files. The result will contain
one structure for each element in the Path argument.

Fields of the FILE_INFO Structure

The FILE_INFO structure consists of the following fields:

Field Name Meaning

NAME The name of the file.

EXISTS True (1) if the file exists. False (0) if it does not
exist.

READ True (1) if the file is exists and is readable by the
user. False (0) if it is not readable.

WRITE True (1) if the file exists and is writable by the
user. False (0) if it is not writable.

EXECUTE True (1) if the file exists and is executable by the
user. False (0) if it is not executable. The source of
this information differs between operating
systems:

UNIX: IDL checks the execute bit maintained by
the operating system.

Microsoft Windows: The determination is made
on the basis of the file name extension (e.g. .exe).

Table 23: Fields of the FILE_INFO Structure
FILE_INFO IDL Reference Guide

 625
REGULAR True (1) if the file exists and is a regular disk file
and not a directory, pipe, socket, or other special
file type. False (0) if it is not a regular disk file (it
maybe a directory, pipe, socket, or other special
file type).

DIRECTORY True (1) if the file exists and is a directory. False
(0) if it is not a directory.

BLOCK_SPECIAL True (1) if the file exists and is a UNIX block
special device. On non-UNIX operating systems,
this field will always be False (0).

CHARACTER_SPECIAL True (1) if the file exists and is a UNIX character
special device. On non-UNIX operating systems,
this field will always be False (0).

NAMED_PIPE True (1) if the file exists and is a UNIX named
pipe (fifo) device. On non-UNIX operating
systems, this field will always be False (0).

SETGID True (1) if the file exists and has its Set-Group-ID
bit set. On non-UNIX operating systems, this field
will always be False (0).

SETUID True (1) if the file exists and has its Set-User-ID
bit set. On non-UNIX operating systems, this field
will always be False (0).

SOCKET True (1) if the file exists and is a UNIX domain
socket. On non-UNIX operating systems, this field
will always be False (0).

STICKY_BIT True (1) if the file exists and has its sticky bit set.
On non-UNIX operating systems, this field will
always be False (0).

SYMLINK True (1) if the file exists and is a UNIX symbolic
link. On non-UNIX operating systems, this field
will always be False (0).

Field Name Meaning

Table 23: Fields of the FILE_INFO Structure (Continued)
IDL Reference Guide FILE_INFO

626
Arguments

Path

A string or string array containing the path or paths to the file or files about which
information is required.

Keywords

NOEXPAND_PATH

If specified, FILE_INFO uses Path exactly as specified, without applying the usual
file path expansion.

DANGLING_SYMLINK True (1) if the file exists and is a UNIX symbolic
link that points at a non-existent file. On non-
UNIX operating systems, this field will always be
False (0).

ATIME, CTIME, MTIME The date of last access, date of creation, and date
of last modification given in seconds since 1
January 1970 UTC. Use the SYSTIME function to
convert these dates into a textual representation.

Note that some file systems do not maintain all of
these dates (e.g. MS DOS FAT file systems), and
may return 0. On some non-UNIX operating
systems, access time is not maintained, and
ATIME and MTIME will always return the same
date.

SIZE The current length of the file in bytes. If Path is
not to a regular file (possibly to a directory, pipe,
socket, or other special file type), the value of
SIZE will not contain any useful information.

Field Name Meaning

Table 23: Fields of the FILE_INFO Structure (Continued)
FILE_INFO IDL Reference Guide

 627
Examples

To get information on the file dist.pro within the IDL User Library:

HELP,/STRUCTURE, FILE_INFO(FILEPATH('dist.pro', $
SUBDIRECTORY = 'lib'))

Executing the above command will produce output similar to:

** Structure FILE_INFO, 21 tags, length=72:
NAME STRING '/usr/local/rsi/idl/lib/dist.pro'
EXISTS BYTE 1
READ BYTE 1
WRITE BYTE 0
EXECUTE BYTE 0
REGULAR BYTE 1
DIRECTORY BYTE 0
BLOCK_SPECIAL BYTE 0
CHARACTER_SPECIAL BYTE 0
NAMED_PIPE BYTE 0
SETGID BYTE 0
SETUID BYTE 0
SOCKET BYTE 0
STICKY_BIT BYTE 0
SYMLINK BYTE 0
DANGLING_SYMLINK BYTE 0
MODE LONG 420
ATIME LONG64 970241431
CTIME LONG64 970241595
MTIME LONG64 969980845
SIZE LONG64 1717

Version History

Introduced: 5.5

See Also

FILE_TEST, FSTAT
IDL Reference Guide FILE_INFO

628
FILE_LINES

The FILE_LINES function reports the number of lines of text contained within the
specified file or files.

Text files containing data are very common. To read such a file usually requires
knowing how many lines of text it contains. Under UNIX and Windows, there is no
special text file type, and it is not possible to tell how many lines are contained in a
file from basic file attributes. Rather, lines are encoded using a special character or
characters at the end of each line:

• UNIX operating systems use an ASCII linefeed (LF) character at the end of
each line.

• Older Macintosh systems (prior to the UNIX-based Mac OS X) use a carriage
return (CR).

• Microsoft Windows uses a two character CR/LF sequence.

The only way to determine the number of lines of text contained within a file is to
open it and count lines while reading and skipping over them until the end of the file
is encountered. Since files are often copied from one type of system to another
without going through the proper line termination conversion, portable software
needs to be able to recognize any of these terminations, regardless of the system
being used. FILE_LINES performs this operation in an efficient and portable manner,
handling all three of the line termination conventions listed above.

This routine works by opening the file and reading the data contained within. It is
therefore only suitable for regular disk files, and only when access to that file is fast
enough to justify reading it more than once. For other types of files, other approaches
are necessary, such as:

• Reading the file once, using an adaptive (expandable) data structure, counting
the number of lines as they are input, and growing the data structure as
necessary.

• Building a header into your file format that includes the necessary information,
or somehow embedding the number of lines into the file data.

• Maintaining file information in a separate file associated with each file.

• Using a self describing data format that avoids these issues.

This routine assumes that the specified file or files contain only lines of text. It is
unable to correctly count lines in files that contain binary data, or which do not use
the standard line termination characters. Results are undefined for such files.
FILE_LINES IDL Reference Guide

 629
Note that FILE_LINES is equivalent to the following IDL code:

FUNCTION file_lines, filename
OPENR, unit, filename, /GET_LUN
str = ''
count = 0ll
WHILE ~ EOF(unit) DO BEGIN

READF, unit, str
count = count + 1

ENDWHILE
FREE_LUN, unit
RETURN, count

END

The primary advantage of FILE_LINES over the IDL version shown here is
efficiency. FILE_LINES is able to avoid the overhead of the WHILE loop as well as
not having to create an IDL string for each line of the file.

Syntax

Result = FILE_LINES(Path [,/COMPRESS] [, /NOEXPAND_PATH])

Return Value

Returns the number of lines of text contained within the specified file or files. If an
array of file names is specified via the Path parameter, the return value is an array
with the same number of elements as Path, with each element containing the number
of lines in the corresponding file.

Arguments

Path

A scalar string or string array containing the names of the text files for which the
number of lines is desired.

Keywords

COMPRESS

If this keyword is set, FILE_LINES assumes that the files specified in Path contain
data compressed in the standard GZIP format, and decompresses the data in order to
count the number of lines. See the description of the COMPRESS keyword to the
OPEN procedure for additional information.
IDL Reference Guide FILE_LINES

630
NOEXPAND_PATH

If this keyword is set, FILE_LINES uses Path exactly as specified, without expanding
any wildcard characters or environment variable names included in the path. See
FILE_SEARCH for details on path expansion.

Examples

Read the contents of the text file mydata.dat into a string array.

nlines = FILE_LINES('mydata.dat')
sarr = STRARR(nlines)
OPENR, unit, 'mydata.dat',/GET_LUN
READF, unit, sarr
FREE_LUN, unit

Version History

Introduced: 5.6

COMPESS keyword: 6.0

See Also

OPEN, READ/READF
FILE_LINES IDL Reference Guide

 631
FILE_LINK

The FILE_LINK procedure creates UNIX file links, both regular (hard) and
symbolic. FILE_LINK is available only under UNIX.

A hard link is a directory entry that references a file. UNIX allows multiple such links
to exist simultaneously, meaning that a given file can be referenced by multiple
names. All such links are fully equivalent references to the same file (there are no
concepts of primary and secondary names). All files carry a reference count that
contains the number of hard links that point to them; deleting a link to a file does not
remove the actual file from the filesystem until the last hard link to the file is
removed. The following limitations on hard links are enforced by the operating
system:

• Hard links may not span filesystems, as hard linking is only possible within a
single filesystem.

• Hard links may not be created between directories, as doing so has the
potential to create infinite circular loops within the hierarchical UNIX
filesystem. Such loops will confuse many system utilities, and can even cause
filesystem damage.

A symbolic link is an indirect pointer to a file; its directory entry contains the name of
the file to which it is linked. Symbolic links may span filesystems and may refer to
directories.

Many users find symbolic links easier to understand and use. Due to their generality
and lack of restriction, RSI recommends their use over hard links for most purposes.
FILE_LINK creates symbolic links by default.

See “Rules Used by FILE_LINK” on page 632 for information on how FILE_LINK
interprets its arguments.

Syntax

FILE_LINK, SourcePath, DestPath [, /ALLOW_SAME] [, /HARDLINK]
[, /NOEXPAND_PATH] [, /VERBOSE]

Arguments

SourcePath

A scalar string or string array containing the names of the files or directories to be
linked.
IDL Reference Guide FILE_LINK

632
DestPath

A scalar string or string array containing the names of the destinations to which the
files and directories given by SourcePath are to be linked. If more than one file is to
be linked to a given destination, that destination must exist and be a directory.

Keywords

ALLOW_SAME

Attempting to link a file to itself by specifying the same file for SourcePath and
DestPath is usually considered to be an error. If the ALLOW_SAME keyword is set,
no link is created and the operation is considered to be successful.

HARDLINK

Set this keyword to create hard links. By default, FILE_LINK creates symbolic links.

NOEXPAND_PATH

Set this keyword to cause FILE_LINK to use SourcePath and DestPath exactly as
specified, without expanding any wildcard characters or environment variable names
included in the paths. See FILE_SEARCH for details on path expansion.

VERBOSE

Set this keyword to cause FILE_LINK to issue an informative message for every file
link operation it carries out.

Rules Used by FILE_LINK

The following rules govern how FILE_LINK operates:

• The arguments to FILE_LINK can be scalar or array. If both arguments are
arrays, they must contain the same number of elements, and the files are
paired, with each file from SourcePath being linked to the corresponding file in
the DestPath. If SourcePath is an array and DestPath is a scalar, all links are
created in the single location given by DestPath, which must exist and be a
directory.

• Elements of SourcePath may use wildcard characters (as accepted by the
FILE_SEARCH function) to specify multiple files. All the files matched for a
given element of SourcePath are linked to the corresponding element of
FILE_LINK IDL Reference Guide

 633
DestPath. If multiple files are linked to a single element of DestPath, that
element must exist and be a directory.

• If a file specified in DestPath does not exist, the corresponding file from
SourcePath is linked using the name specified by DestPath. Any parent
directories to the filename specified by DestPath must already exist.

• If DestPath names an existing regular file, FILE_LINK will not overwrite it.

• If DestPath names an existing directory, a link with the same name as the
source file is created in the directory. This is primarily of interest with hard
links.

Examples

Create a symbolic link named current.dat in the current working directory,
pointing to the file /master/data/saturn7.dat:

FILE_LINK, '/master/data/saturn7.dat', 'current.dat'

Version History

Introduced: 5.6

See Also

COPY_LUN, FILE_COPY, FILE_MOVE, FILE_READLINK
IDL Reference Guide FILE_LINK

634
FILE_MKDIR

The FILE_MKDIR procedure creates a new directory, or directories, with the default
access permissions for the current process.

Note
Use the FILE_CHMOD procedure to alter access permissions.

If a specified directory has non-existent parent directories, FILE_MKDIR
automatically creates all the intermediate directories as well.

Syntax

FILE_MKDIR, File1 [,... FileN] [, /NOEXPAND_PATH]

Arguments

FileN

A scalar or array of directory names to be created, one name per string element.
Directories must be specified in the native syntax for the current operating system.

Keywords

NOEXPAND_PATH

Set this keyword to cause FILE_MKDIR to use the File argument exactly as
specified, without applying the usual file path expansion.

Examples

To create a subdirectory named moose in the current working directory:

FILE_MKDIR, 'moose'

Version History

Introduced: 5.4
FILE_MKDIR IDL Reference Guide

 635
FILE_MOVE

The FILE_MOVE procedure renames files and directories, effectively moving them
to a new location. The moved files retain their permission and ownership attributes.
Within a given filesystem or volume, FILE_MOVE does not copy file data. Rather, it
simply changes the file names by updating the directory structure of the filesystem.
This operation is fast and safe, but is only possible within a single filesystem.
Attempts to move a regular file from one filesystem to another are carried out by
copying the file using FILE_COPY, and then deleting the original file. It is an error to
attempt to use FILE_MOVE to move a directory from one filesystem to another.

See “Rules Used by FILE_MOVE” on page 636 for information on how
FILE_MOVE interprets its arguments.

Syntax

FILE_MOVE, SourcePath, DestPath [, /ALLOW_SAME] [, /NOEXPAND_PATH]
[, /OVERWRITE] [, /REQUIRE_DIRECTORY] [, /VERBOSE]

Arguments

SourcePath

A scalar string or string array containing the names of the files or directories to be
moved.

DestPath

A scalar string or string array containing the names of the destinations to which the
files and directories specified by SourcePath are to be moved. If more than one file is
to be moved to a given destination, that destination must exist and be a directory.

Keywords

ALLOW_SAME

Attempting to move a file on top of itself by specifying the same file for SourcePath
and DestPath is usually considered to be an error. If the ALLOW_SAME keyword is
set, no renaming is done and the operation is considered to be successful.
IDL Reference Guide FILE_MOVE

636
NOEXPAND_PATH

Set this keyword to cause FILE_MOVE to use SourcePath and DestPath exactly as
specified, without expanding any wildcard characters or environment variable names
included in the paths. See FILE_SEARCH for details on path expansion.

OVERWRITE

Set this keyword to allow FILE_MOVE to overwrite an existing file.

REQUIRE_DIRECTORY

Set this keyword to cause FILE_MOVE to require that DestPath exist and be a
directory.

VERBOSE

Set this keyword to cause FILE_MOVE to issue an informative message for every file
move operation it carries out.

Rules Used by FILE_MOVE

The following rules govern how FILE_MOVE operates:

• The arguments to FILE_MOVE can be scalar or array. If both arguments are
arrays, they must contain the same number of elements, and the files are
moved in pairs, with each file from SourcePath being renamed to the
corresponding file in the DestPath. If SourcePath is an array and DestPath is a
scalar, all files in SourcePath are renamed to the single location given by
DestPath, which must exist and be a directory.

• Elements of SourcePath may use wildcard characters (as accepted by the
FILE_SEARCH function) to specify multiple files. All the files matched for
that element of SourcePath are renamed to the location specified by the
corresponding element of DestPath. If multiple files are renamed to a single
element of DestPath, that element must exist and be a directory.

• If a file specified in DestPath does not exist, the corresponding file from
SourcePath is moved using the name specified by DestPath. Any parent
directories to the filename specified by DestPath must already exist.

• If DestPath names an existing regular file, FILE_MOVE will not overwrite it,
unless the OVERWRITE keyword is specified.

• If DestPath names an existing directory and SourcePath names a regular (non-
directory) file, the source file is moved into the specified directory.
FILE_MOVE IDL Reference Guide

 637
• If DestPath specifies an existing directory and SourcePath also names a
directory, FILE_MOVE checks for the existence of a subdirectory of DestPath
with the same name as the source directory. If this subdirectory does not exist,
the source directory is moved to the specified location. If the subdirectory does
exist, an error is issued, and the rename operation is not carried out.

Examples

Rename the file backup.dat to primary.dat in the current working directory:

FILE_MOVE, 'backup.dat', 'primary.dat'

Create a subdirectory named BACKUP in the current working directory and move all
.pro files, makefile, and mydata.dat into it:

FILE_MKDIR, 'BACKUP'
FILE_MOVE, ['*.pro', 'makefile', 'mydata.dat'], 'BACKUP'

Version History

Introduced: 5.6

See Also

COPY_LUN, FILE_COPY, FILE_LINK
IDL Reference Guide FILE_MOVE

638
FILE_READLINK

The FILE_READLINK function returns the path pointed to by UNIX symbolic links.

Syntax

Result = FILE_READLINK(Path [, /ALLOW_NONEXISTENT]
[, /ALLOW_NONSYMLINK] [, /NOEXPAND_PATH])

Return Value

Returns the path associated with a symbolic link.

Arguments

Path

A scalar string or string array containing the names of the symbolic links to be
translated.

Keywords

ALLOW_NONEXISTENT

Set this keyword to return a NULL string rather than throwing an error if Path
contains a non-existent file.

ALLOW_NONSYMLINK

Set this keyword to return a NULL string rather than throwing an error if Path
contains a path to a file that is not a symbolic link.

NOEXPAND_PATH

Set this keyword to cause FILE_READLINK to use Path exactly as specified,
without expanding any wildcard characters or environment variable names included
in the path. See FILE_SEARCH for details on path expansion.
FILE_READLINK IDL Reference Guide

 639
Examples

Under Mac OS X, the /etc directory is actually a symbolic link. The following
statement reads it and returns the location to which the link points:

path = FILE_READLINK('/etc')

It is possible to have chains of symbolic links, each pointing to another. The
following function uses FILE_READLINK to iteratively translate such links until it
finds the actual file:

FUNCTION RESOLVE_SYMLINK, path

savepath = path ; Remember last successful translation
WHILE (path NE '') DO BEGIN
path = FILE_READLINK(path, /ALLOW_NONEXISTENT, $

/ALLOW_NONSYMLINK)
IF (path NE '') THEN BEGIN

; If returned path is not absolute, use it to replace the
; last path segment of the previous path.
IF (STRMID(path, 0, 1) NE '/') THEN BEGIN

last = STRPOS(savepath, '/', /REVERSE_SEARCH)
IF (last NE -1) THEN path = STRMID(savepath, 0, last) $

+ '/' + path
ENDIF
savepath = path

ENDIF
ENDWHILE

; FILE_EXPAND_PATH removes redundant things like /./ from
; the result.
RETURN, FILE_EXPAND_PATH(savepath)

END

Version History

Introduced: 5.6

See Also

FILE_LINK
IDL Reference Guide FILE_READLINK

640
FILE_SAME

It is common for a given file to be accessible via more than one name. For example, a
relative path and a fully-qualified path to the same file are considered different
names, since the strings that make up the paths are not lexically identical. In addition,
under UNIX, the widespread use of links (hard and symbolic) makes multiple names
for the same file very common.

The FILE_SAME function is used to determine if two different file names refer to the
same underlying file.

The mechanism used to determine whether two names refer to the same file depends
on the operating system in use:

UNIX: Under UNIX, all files are uniquely identified by two integer values: the
filesystem that contains the file and the inode number, which identifies the file within
the filesystem. If the input arguments are lexically identical, FILE_SAME will return
True, regardless of whether the file specified actually exists. Otherwise, FILE_SAME
compares the device and inode numbers of the two files, and returns True if they are
identical, or False otherwise.

Windows: Unlike UNIX, Microsoft Windows identifies files solely by their names.
FILE_SAME therefore expands the two supplied paths to their fully qualified forms,
and then performs a simple case insensitive string comparison to determine if the
paths are identical. This is reliable for local disk files, but can produce incorrect
results under some circumstances:

• UNC network paths can expand to different, but equivalent, paths. For
example, a network server may be referred to by either a name or an IP
address.

• Network attached storage can have mechanisms for giving multiple names to
the same file, but to the Windows client system the names will appear to refer
to different files. For example, a UNIX server using Samba software to serve
files to machines on a Windows network can use symbolic links to produce
two names for the same file, but these will appear as two distinct files to a
Windows machine.

For these reasons, FILE_SAME is primarily of interest on UNIX systems. Under
Windows, RSI recommends its use only on local files.

Syntax

Result = FILE_SAME(Path1, Path2 [, /NOEXPAND_PATH])
FILE_SAME IDL Reference Guide

 641
Return Value

FILE_SAME returns True (1) if two filenames refer to the same underlying file, or
False (0) otherwise. If either or both of the input arguments are arrays of file names,
the result is an array, following the same rules as standard IDL operators.

Arguments

Path1, Path2

Scalar or array string values containing the two file paths to be compared.

Keywords

NOEXPAND_PATH

Set this keyword to cause FILE_SAME to use the Path arguments exactly as
specified, without expanding any wildcard characters or environment variable names
included in the paths. See FILE_SEARCH for details on path expansion. The utility
of doing this depends on the operating system in use:

UNIX: Under UNIX, path expansion is not necessary unless the Path arguments use
shell meta characters or environment variables.

Windows: By default, FILE_SAME expands the supplied paths to their fully
qualified forms in order to be able to compare them. Preventing this path expansion
cripples its ability to make a useful comparison, and is not recommended.

Examples

UNIX command shells often provide the HOME environment variable to point at the
user’s home directory. Many shells also expand the '~' character to point at the
home directory. The following IDL statement determines if these two mechanisms
refer to the same directory:

PRINT, FILE_SAME('~', '$HOME')

On a UNIX system, the following statement determines if the current working
directory is the same as your home directory:

PRINT, FILE_SAME('.', '$HOME')

On some BSD-derived UNIX systems, the three commands /bin/cp, /bin/ln,
and /bin/mv are actually three hard links to the same binary file. The following
statement will print the number 1 if this is true on your system:
IDL Reference Guide FILE_SAME

642
PRINT, TOTAL(FILE_SAME('/bin/cp', ['/bin/ln', '/bin/mv'])) EQ 2

Under Mac OS X, the /etc directory is actually a symbolic link to /private/etc.
As a result, the following lines of code provide a simple test to determine whether
Mac OS X is the current platform:

IF FILE_SAME('/etc', '/private/etc') THEN $
PRINT, 'Running Mac OS X' ELSE $
PRINT, 'Not Running Mac OS X'

Note
The above lines are shown simply as an example; checking the value of
!VERSION.OS_FAMILY is a more reliable method of determining which
operating system is in use.

Version History

Introduced: 5.6

See Also

FILE_EXPAND_PATH, FILE_INFO, FILE_SEARCH, FILE_TEST
FILE_SAME IDL Reference Guide

 643
FILE_SEARCH

The FILE_SEARCH function returns a string array containing the names of all files
matching the input path specification. Input path specifications may contain wildcard
characters, enabling them to match multiple files. A relative path is a file path that
can only be unambiguously interpreted by basing it relative to some other known
location. Usually, this location is the current working directory for the process. A
fully qualified path is a complete and unambiguous path that can be interpreted
directly. For example, bin/idl is a relative path, while
/usr/local/rsi/idl/bin/idl is a fully qualified path. By default,
FILE_SEARCH follows the format of the input to decide whether to return relative or
fully-qualified paths.

The wildcards understood by FILE_SEARCH are based on those used by standard
UNIX tools. They are described in “Supported Wildcards and Expansions” on
page 643.

Note
RSI strongly recommends the use of the FILE_SEARCH function in place of the
FINDFILE function. FILE_SEARCH is more platform-independent, provides
greater functionality, and is easier to use than FINDFILE. FILE_SEARCH is
ultimately intended as a replacement for FINDFILE.

Supported Wildcards and Expansions

The wildcards understood by FILE_SEARCH are based on those used by the
standard UNIX shell /bin/sh (the ?, *, [, and], characters, and environment
variables) with some enhancements commonly found in the C-shell /bin/csh (the
~, {, and } characters). These wildcards are processed identically across all IDL
supported platforms. The supported wildcards are shown in the following table:

Wildcard Description

* Matches any string, including the null string.

? Matches any single character.

Table 24: Supported Wildcards and Espansions
IDL Reference Guide FILE_SEARCH

644
These wildcards can appear anywhere in an input file specification, with the
following exceptions:

[...] Matches any one of the enclosed characters. A pair of
characters separated by “-” matches any character lexically
between the pair, inclusive. If the first character following the
opening bracket ([) is a ! or ^, any character not enclosed is
matched.

{str, str, ...} Expand to each string (or filename-matching pattern) in the
comma-separated list.

~

~user

If used at start of input file specification, is replaced with the
path to the appropriate home directory. See the description of
the EXPAND_TILDE keyword for details.

$var Replace with value of the named environment variable. See
the description of the EXPAND_ENVIRONMENT keyword
for full details.

${var} Replace ${var} with the value of the var environment
variable. If var is not found in the environment, ${var} is
replaced with a null string. This format is useful when the
environment variable reference sits directly next to unrelated
text, as the use of the {} brackets make it possible for IDL to
determine where the environment variable ends and the
remaining text starts (e.g. ${mydir} other text).

${var:-alttext} If environment variable var is present in the environment and
has a non-NULL value, then substitute that value. If var is not
present, or has a NULL value, then substitute the alternative
text (alttext) provided instead.

${var-alttext} If environment variable var is present in the environment
(even if it has a NULL value) then substitute that value. If var
is not present, then substitute the alternative text (alttext)
provided instead.

Wildcard Description

Table 24: Supported Wildcards and Espansions (Continued)
FILE_SEARCH IDL Reference Guide

 645
Tilde (~)

The tilde character is only considered to be a wildcard if it is the first character in the
input file specification and the EXPAND_TILDE keyword is set. Otherwise, it is
treated as a regular character.

Microsoft Windows UNC Paths

On a local area network, Microsoft Windows offers an alternative to the drive letter
syntax for accessing files. The Universal Naming Convention (UNC) allows for
specification of paths on other hosts using the syntax:

\\hostname\sharename\dir\dir\...\file

UNC paths are distinguished from normal paths by the use of two initial slashes in
the path. FILE_SEARCH can process such paths, but wildcard characters are not
allowed in the hostname or sharename segments. Wildcards are allowed for
specifying directories and files. For performance reasons, RSI does not recommend
using the recursive form of FILE_SEARCH with UNC paths on very large directory
trees.

Filename Matching Issues

When using FILE_SEARCH, you should be aware of the following issues:

Initial Dot Character

The default is for wildcards not to match the dot (.) character if it occurs as the first
character of a directory or file name. This follows the convention of UNIX shells,
which treat such names as hidden files. In order to match such files, you can take any
of the following actions:

• Explicitly include the dot character at the start of your pattern (e.g. “.*”).

• Specify the MATCH_INITIAL_DOT keyword, which changes the dot
matching policy so that wildcards will match any names starting with dot
(except for the special “.” and “..” directories).

• Specify the MATCH_ALL_INITIAL_DOT keyword, which changes the dot
matching policy so that wildcards will match any names starting with dot
(including the special “.” and “..” directories).

File Path Syntax

The syntax allowed for file paths differs between operating systems. FILE_SEARCH
always processes file paths using the syntax rules for the platform on which the IDL
session is running. As a convenience for Microsoft Windows users, Windows IDL
IDL Reference Guide FILE_SEARCH

646
accepts UNIX style forward slashes as well as the usual backslashes as path
separators.

Differing Defaults Between Platforms

The different operating systems supported by IDL have some conventions for
processing file paths that are inherently incompatible. If FILE_SEARCH attempted
to force an identical default policy for these features across all platforms, the
resulting routine would be inconvenient to use on all platforms. FILE_SEARCH
resolves this inherent tension between convenience and control in the following way:

• These features are controlled by keywords which are listed in the table below.
If a keyword is not explicitly specified, FILE_SEARCH will determine an
appropriate default for that feature based on the conventions of the underlying
operating system. Hence, FILE_SEARCH will by default behave in a way that
is reasonable on the platform it is used on.

• If one of these keywords is explicitly specified, FILE_SEARCH will use its
value to determine support for that feature. Hence, if the keyword is used,
FILE_SEARCH will behave identically on all platforms. If maximum cross-
platform control is desired, you can achieve it by specifying all the relevant
keywords.

The keywords that have different defaults on different platforms are listed in the
following table:

Wildcard Keyword Default
UNIX

Default
Win

$var
${var}
${var:-alttext}
${var-alttext}

EXPAND_ENVIRONMENT yes no

~ EXPAND_TILDE yes no

FOLD_CASE no yes

Table 25: Defaults Between Platforms
FILE_SEARCH IDL Reference Guide

 647
Syntax

Result = FILE_SEARCH(Path_Specification)

or for recursive searching,

Result = FILE_SEARCH(Dir_Specification, Recur_Pattern)

Keywords: [, COUNT=variable] [, /EXPAND_ENVIRONMENT]
[, /EXPAND_TILDE] [, /FOLD_CASE] [, /FULLY_QUALIFY_PATH]
[, /ISSUE_ACCESS_ERROR] [, /MARK_DIRECTORY]
[, /MATCH_INITIAL_DOT | /MATCH_ALL_INITIAL_DOT] [, /NOSORT]
[, /QUOTE] [, /TEST_DIRECTORY] [, /TEST_EXECUTABLE]
[, /TEST_READ] [, /TEST_REGULAR] [, /TEST_WRITE]
[, /TEST_ZERO_LENGTH]

UNIX-Only Keywords: [, /TEST_BLOCK_SPECIAL]
[, /TEST_CHARACTER_SPECIAL] [, /TEST_DANGLING_SYMLINK]
[, /TEST_GROUP] [, /TEST_NAMED_PIPE] [, /TEST_SETGID]
[, /TEST_SETUID] [, /TEST_SOCKET] [, /TEST_STICKY_BIT]
[, /TEST_SYMLINK] [, /TEST_USER]

Return Value

Returns all matched filenames in a string array, one file name per array element. If no
files exist with names matching the input arguments, a null scalar string is returned
instead of a string array.

If the input path is relative, the results will be relative. If the input is fully qualified,
the results will also be fully qualified. If you specify the FULLY_QUALIFY_PATH
keyword, the results will be fully qualified no matter which form of input is used.
FILE_SEARCH returns results based on standard and recursive searches:

• Standard: When called with a single Path_Specification argument,
FILE_SEARCH returns all files that match that specification. This is the same
operation, sometimes referred to as file globbing, performed by most operating
system command interpreters when wildcard characters are used in file
specifications.

• Recursive: When called with two arguments, FILE_SEARCH performs
recursive searching of directory hierarchies. In a recursive search,
FILE_SEARCH looks recursively for any and all subdirectories in the file
hierarchy rooted at the Dir_Specification argument. Within each of these
subdirectories, it returns the names of all files that match the pattern in the
IDL Reference Guide FILE_SEARCH

648
Recur_Pattern argument. This operation is similar to that performed by the
UNIX find(1) command.

Note
To avoid going into an infinite loop, the FILE_SEARCH routine does not follow
symbolic links.

Arguments

Any of the arguments described in this section can contain wildcard characters, as
described in “Supported Wildcards and Expansions” on page 643.

Path_Specification

A scalar or array variable of string type, containing file paths to match. If
Path_Specification is not supplied, or if it is supplied as a null string, FILE_SEARCH
uses a default pattern of '*', which matches all files in the current directory.

Dir_Specification

A scalar or array variable of string type, containing directory paths within which
FILE_SEARCH will perform recursive searching for files matching the
Recur_Pattern argument. FILE_SEARCH examines Dir_Specification, and any
directory found below it, and returns the paths of any files in those directories that
match Recur_Pattern. If Dir_Specification is supplied as a null string,
FILE_SEARCH searches the current directory.

Recur_Pattern

A scalar string containing a pattern for files to match in any of the directories
specified by the Dir_Specification argument. If Recur_Pattern is supplied as a null
string, FILE_SEARCH uses a default pattern of '*', which matches all files in the
specified directories.

Keywords

COUNT

A named variable into which the number of files found is placed. If no files are found,
a value of 0 (zero) is returned.
FILE_SEARCH IDL Reference Guide

 649
EXPAND_ENVIRONMENT

By default, FILE_SEARCH follows the conventions of the underlying operating
system to determine whether it should expand environment variable references in
input file specification patterns. The default is to do such expansions under UNIX,
and not to do them under Microsoft Windows. The EXPAND_ENVIRONMENT
keyword is used to change this behavior. Set it to a non-zero value to cause
FILE_SEARCH to perform environment variable expansion on all platforms. Set it to
zero to disable such expansion.

The syntax for expanding environment variables in an input file pattern is based on
that supported by the standard UNIX shell (/bin/sh), as described in “Supported
Wildcards and Expansions” on page 643.

EXPAND_TILDE

Users of the UNIX C-shell (/bin/csh), and other tools influenced by it, are familiar
with the use of a tilde (~) character at the beginning of a path to denote a home
directory. A tilde by itself at the beginning of the path (e.g. ~/directory/file) is
equivalent to the home directory of the user executing the command, while a tilde
followed by the name of a user (e.g. ~user/directory/file) is expanded to the
home directory of the named user.

By default, FILE_SEARCH follows the conventions of the underlying operating
system in deciding whether to expand a leading tilde or to treat it as a literal
character. Hence, the default is to expand the leading tilde under UNIX, and not
under Microsoft Windows. The EXPAND_TILDE keyword is used to change this
behavior.

Set EXPAND_TILDE to 0 (zero) to disable tilde expansion on all platforms. Set it to
a non-zero value to enable tilde expansion.

Note
Under Microsoft Windows, only the plain form of tilde is recognized. Attempts to
use the ~user form will cause IDL to issue an error. IDL uses the HOME and
HOMEPATH environment variables to obtain a home directory for the current
Windows user.

FOLD_CASE

By default, FILE_SEARCH follows the case sensitivity policy of the underlying
operating system. By default, matches are case sensitive on UNIX platforms, and
case insensitive on Microsoft Windows platforms. The FOLD_CASE keyword is
used to change this behavior. Set it to a non-zero value to cause FILE_SEARCH to do
IDL Reference Guide FILE_SEARCH

650
all file matching case insensitively. Explicitly set FOLD_CASE equal to zero to cause
all file matching to be case sensitive.

RSI does not recommend changing the default value of FOLD_CASE, for the
following reasons:

• Under UNIX, case-insensitive file searching (that is, setting FOLD_CASE=1)
can lead to confusing behavior, since files with the same name in different
combinations of upper- and lower-case letters are actually distinct files that can
exist simultaneously in the same directory. However, case insensitivity can be
useful under UNIX when combined with wildcards in order to find all
instances of a given file type without regard to case. For example, the
following will find all files in the current directory that end with a .dat
extension without regard to the case of the extension:

datafiles = FILE_SEARCH('*.dat', /FOLD_CASE)

• Under Windows, case-sensitive file searching (that is, setting
FOLD_CASE=0) is rarely useful, since files with the same name in different
combinations of upper- and lower-case letters cannot exist simultaneously in
the same directory, and a case-insensitive search will return any version.

FULLY_QUALIFY_PATH

If set, FILE_SEARCH expands all returned file paths so that they are complete.
Under UNIX, this means that all files are specified relative to the root of the file
system. On Windows platforms, it means that all files are specified relative to the
drive on which they are located. By default, FILE_SEARCH returns fully qualified
paths when the input specification is fully qualified, and returns relative paths
otherwise. For example:

CD, '/usr/local/rsi/idl/bin'
PRINT, FILE_SEARCH('idl')
idl
PRINT, FILE_SEARCH('idl',/FULLY_QUALIFY_PATH)
/usr/local/rsi/idl/bin/idl

Under Microsoft Windows, any use of a drive letter colon (:) character implies full
qualification, even if the path following the colon does not start with a slash character.

ISSUE_ACCESS_ERROR

If the IDL process lacks the necessary permission to access a directory included in
the input specification, FILE_SEARCH will normally skip over it quietly and not
include it in the generated results. Set ISSUE_ACCESS_ERROR to cause an error to
be issued instead.
FILE_SEARCH IDL Reference Guide

 651
MARK_DIRECTORY

If set, all directory paths are returned with a path separator character appended to the
end. This allows the caller to concatenate a file name directly to the end without
having to supply a separator character first. This is convenient for cross-platform
programming, as the separator characters differ between operating systems:

PRINT, FILE_SEARCH(!DIR)
/usr/local/rsi/idl
PRINT, FILE_SEARCH(!DIR, /MARK_DIRECTORY)
/usr/local/rsi/idl/

MATCH_ALL_INITIAL_DOT

By default, wildcards do not match leading dot (.) characters, and FILE_SEARCH
does not return the names of files that start with the dot (.) character unless the
leading dot is actually contained within the search string. Set
MATCH_ALL_INITIAL_DOT to change this policy so that wildcards will match all
files starting with a dot, including the special “.” (current directory) and “..” (parent
directory) entries. RSI recommends the use of the MATCH_INITIAL_DOT keyword
instead of MATCH_ALL_INITIAL_DOT for most purposes.

MATCH_INITIAL_DOT

MATCH_INITIAL_DOT serves the same function as
MATCH_ALL_INITIAL_DOT, except that the special “.” (current directory) and “..”
(parent directory) directories are not included.

NOSORT

If set, FILE_SEARCH will not sort the list of files returned by the operating system.
On some operating systems, particularly UNIX, this can make FILE_SEARCH
execute faster. Under Microsoft Windows, setting NOSORT has no effect, since the
operating system returns a sorted list of files to IDL.

QUOTE

FILE_SEARCH usually treats all wildcards found in the input specification as having
the special meanings described in “Supported Wildcards and Expansions” on
page 643. This means that such characters cannot normally be used as plain literal
characters in file names. For example, it is not possible to match a file that contains a
literal asterisk character in its name because asterisk is interpreted as the “match zero
or more characters” wildcard.
IDL Reference Guide FILE_SEARCH

652
If the QUOTE keyword is set, the backslash character can be used to escape any
character so that it is treated as a plain character with no special meaning. In this
mode, FILE_SEARCH replaces any two-character sequence starting with a backslash
with the second character of the pair. In the process, any special wildcard meaning
that character might have had disappears, and the character is treated as a literal.

If QUOTE is set, any literal backslash characters in your path must themselves be
escaped with a backslash character. This is especially important for Microsoft
Windows users, because the directory separator character for that platform is the
backslash. Windows IDL also accepts UNIX-style forward slashes for directory
separators, so Windows users have two choices in handling this issue:

Result = FILE_SEARCH('C:\\home\\bob*.dat', /QUOTE)
Result = FILE_SEARCH('C:/home/bob/*.dat', /QUOTE)

On a Windows system, either of these options gives the path to a file named *.dat.

TEST_BLOCK_SPECIAL (UNIX Only)

Only include a matching file if it is a block special device.

TEST_CHARACTER_SPECIAL (UNIX Only)

Only include a matching file if it is a character special device.

TEST_DANGLING_SYMLINK (UNIX Only)

Only include a matching file if it is a symbolic link that points at a non-existent file.

TEST_DIRECTORY

Only include a matching file if it is a directory.

TEST_EXECUTABLE

Only include a matching file if it is executable. The source of this information differs
between operating systems:

UNIX: IDL checks the per-file information (the execute bit) maintained by the
operating system.

Microsoft Windows: The determination is made on the basis of the file name
extension (e.g. .exe).
FILE_SEARCH IDL Reference Guide

 653
TEST_GROUP (UNIX Only)

Only include a matching file if it belongs to the same effective group ID (GID) as the
IDL process.

TEST_NAMED_PIPE (UNIX Only)

Only include a matching file if it is a named pipe (fifo) device.

TEST_READ

Only include a matching file if it is readable by the user.

Note
This keyword does not support Access Control List (ACL) settings for files.

TEST_REGULAR

Only include a matching file if it is a regular disk file and not a directory, pipe, socket,
or other special file type.

TEST_SETGID (UNIX Only)

Only include a matching file if it has its Set-Group-ID bit set.

TEST_SETUID (UNIX Only)

Only include a matching file if it has its Set-User-ID bit set.

TEST_SOCKET (UNIX Only)

Only include a matching file if it is a UNIX domain socket.

TEST_STICKY_BIT (UNIX Only)

Only include a matching file if it has its sticky bit set.

TEST_SYMLINK (UNIX Only)

Only include a matching file if it is a symbolic link that points at an existing file.

TEST_USER (UNIX Only)

Only include a matching file if it belongs to the same effective user ID (UID) as the
IDL process.
IDL Reference Guide FILE_SEARCH

654
TEST_WRITE

Only include a matching file if it is writable by the user.

Note
This keyword does not support Access Control List (ACL) settings for files.

TEST_ZERO_LENGTH

Only include a matching file if it has zero length.

Note
The length of a directory is highly system-dependent and does not necessarily
correspond to the number of files it contains. In particular, it is possible for an
empty directory to report a non-zero length. RSI does not recommend using the
TEST_ZERO_LENGTH keyword on directories, as the information returned
cannot be used in a meaningful way.

TEST_* Keywords

The keywords with names that start with the TEST_ prefix allow you to filter the list
of resulting file paths based on various criteria. If you remove the TEST_ prefix from
these keywords, they correspond directly to the same keywords to the FILE_TEST
function, and are internally implemented by the same test code. One could therefore
use FILE_TEST instead of the TEST_ keywords to FILE_SEARCH. For example,
the following statement locates all subdirectories of the current directory:

Result = FILE_SEARCH(/TEST_DIRECTORY)

It is equivalent to the following statements, using FILE_TEST:

result = FILE_SEARCH()
idx = where(FILE_TEST(result, /DIRECTORY), count)
result = (count eq 0) ? '' : result[idx]

The TEST_* keywords are more succinct, and can be more efficient in the common
case in which FILE_SEARCH generates a long list of results, only to have
FILE_TEST discard most of them.
FILE_SEARCH IDL Reference Guide

 655
Examples

Example 1

Find all files in the current working directory:

Result = FILE_SEARCH()

Example 2

Find all IDL program (*.pro) files in the current working directory:

Result = FILE_SEARCH('*.pro')

Example 3

Under Microsoft Windows, find all files in the top level directories of all drives other
than the floppy drives:

Result=FILE_SEARCH('[!ab]:*')

This example relies on the following:

• FILE_SEARCH allows wildcards within the drive letter part of an input file
specification.

• Drives A and B are always floppies, and are not used by Windows for any
other type of drive.

Example 4

Find all files in the user’s home directory that start with the letters A-D. Match both
upper and lowercase letters:

Result = FILE_SEARCH('~/[a-d]*', /EXPAND_TILDE, /FOLD_CASE)

Example 5

Find all directories in the user’s home directory that start with the letters A-D. Match
both upper and lowercase letters:

Result = FILE_SEARCH('~/[a-d]*', /EXPAND_TILDE, /FOLD_CASE, $
/TEST_DIRECTORY)
IDL Reference Guide FILE_SEARCH

656
Example 6

Recursively find all subdirectories found underneath the user’s home directory that
do not start with a dot character:

Result = FILE_SEARCH('$HOME', '*', /EXPAND_ENVIRONMENT, $
/TEST_DIRECTORY)

Example 7

Recursively find all subdirectories found underneath the user’s home directory,
including those that start with a dot character, but excluding the special “.” and “..”
directories:

Result = FILE_SEARCH('$HOME', '*', /MATCH_INITIAL_DOT, $
/EXPAND_ENVIRONMENT, /TEST_DIRECTORY)

Example 8

Find all .pro and .sav files in an IDL library search path, sorted by directory, in the
order IDL searches for them:

Result = FILE_SEARCH(STRSPLIT(!PATH, PATH_SEP(/SEARCH_PATH), $
/EXTRACT) + '/*.{pro,sav}')

Colon (:) is the UNIX path separator character, so the call to STRSPLIT breaks the
IDL search path into an array of directories. To each directory name, we concatenate
the wildcards necessary to match any .pro or .sav files in that directory. When this
array is passed to FILE_SEARCH, it locates all files that match these specifications.
FILE_SEARCH sorts all of the files found by each input string. The files for each
string are then placed into the output array in the order they were searched for.

Example 9

Recursively find all directories in your IDL distribution:

Result = FILE_SEARCH(!DIR, '*', /TEST_DIRECTORY)

Version History

Introduced: 5.5

See Also

FILE_TEST, FILEPATH, FINDFILE, GETENV
FILE_SEARCH IDL Reference Guide

 657
FILE_TEST

The FILE_TEST function checks files for existence and other attributes without
having to first open the file.

Syntax

Result = FILE_TEST(File [, /DIRECTORY | , /EXECUTABLE | , /READ |
, /REGULAR | , /WRITE | , /ZERO_LENGTH] [, GET_MODE=variable]
[, /NOEXPAND_PATH])

UNIX-Only Keywords: [, /BLOCK_SPECIAL | , /CHARACTER_SPECIAL |
, /DANGLING_SYMLINK | , /GROUP | , /NAMED_PIPE | , /SETGID | , /SETUID |
, /SOCKET | , /STICKY_BIT | , /SYMLINK | , /USER]

Return Value

FILE_TEST returns 1 (true), if the specified file exists and all of the attributes
specified by the keywords are also true. If no keywords are present, a simple test for
existence is performed. If the file does not exist or one of the specified attributes is
not true, then FILE_TEST returns 0 (false).

Arguments

File

A scalar or array of file names to be tested. The result is of type integer with the same
number of elements as File.

Keywords

BLOCK_SPECIAL (UNIX Only)

Set this keyword to return 1 (true) if File exists and is a block special device.

CHARACTER_SPECIAL (UNIX Only)

Set this keyword to return 1 (true) if File exists and is a character special device.
IDL Reference Guide FILE_TEST

658
DANGLING_SYMLINK (UNIX Only)

Set this keyword to return 1 (true) if File is a symbolic link that points at a non-
existent file.

DIRECTORY

Set this keyword to return 1 (true) if File exists and is a directory.

EXECUTABLE

Set this keyword to return 1 (true) if File exists and is executable. The source of this
information differs between operating systems:

• UNIX: IDL checks the per-file information (the execute bit) maintained by the
operating system.

• Microsoft Windows: The determination is made on the basis of the file name
extension (e.g. .exe).

GET_MODE

Set this keyword to a named variable to receive the UNIX style mode (permission)
mask for the specified file. The bits in these masks correspond to those used by the
UNIX chmod(2) system call, and are explained in detail in the description of the
Mode argument to the FILE_CHMOD procedure. When interpreting the value
returned by this keyword, the following platform specific details should be kept in
mind:

• The setuid, setgid, and sticky bits are specific to the UNIX operating system,
and will never be returned on any other platform. Consult the chmod(2) man
page and/or other UNIX programming documentation for more details.

• The Microsoft Windows operating system does not have 3 permission classes
like UNIX does. Therefore, IDL returns the same settings for all three classes.

• The Microsoft Windows operating system does not maintain an execute bit for
files, but instead uses the file suffix to decide if a file is executable.

GROUP (UNIX Only)

Set this keyword to return 1 (true) if File exists and belongs to the same effective
group ID (GID) as the IDL process.

NAMED_PIPE (UNIX Only)

Set this keyword to return 1 (true) if File exists and is a named pipe (fifo) device.
FILE_TEST IDL Reference Guide

 659
NOEXPAND_PATH

Set this keyword to cause FILE_TEST to use the File argument exactly as specified,
without applying the usual file path expansion.

READ

Set this keyword to return 1 (true) if File exists and is readable by the user.

REGULAR

Set this keyword to return 1 (true) if File exists and is a regular disk file and not a
directory, pipe, socket, or other special file type.

SETGID (UNIX Only)

Set this keyword to return 1 (true) if File exists and has its Set-Group-ID bit set.

SETUID (UNIX Only)

Set this keyword to return 1 (true) if File exists and has its Set-User-ID bit set.

SOCKET (UNIX Only)

Set this keyword to return 1 (true) if File exists and is a UNIX domain socket.

STICKY_BIT (UNIX Only)

Set this keyword to return 1 (true) if File exists and has its sticky bit set.

SYMLINK (UNIX Only)

Set this keyword to return 1 (true) if File exists and is a symbolic link that points at an
existing file.

USER (UNIX Only)

Set this keyword to return 1 (true) if File exists and belongs to the same effective user
ID (UID) as the IDL process.

WRITE

Set this keyword to return 1 (true) if File exists and is writable by the user.

ZERO_LENGTH

Set this keyword to return 1 (true) if File exists and has zero length.
IDL Reference Guide FILE_TEST

660
Note
The length of a directory is highly system dependent and does not necessarily
correspond to the number of files it contains. In particular, it is possible for an
empty directory to report a non-zero length. RSI does not recommend using the
ZERO_LENGTH keyword on directories, as the information returned cannot be
used in a meaningful way.

Examples

Does my IDL distribution support the IRIX operating system?

result = FILE_TEST(!DIR + '/bin/bin.sgi', /DIRECTORY)
PRINT, 'IRIX IDL Installed: ', result ? 'yes' : 'no'

Version History

Introduced: 5.4

See Also

FILE_INFO, FILE_SEARCH, FSTAT
FILE_TEST IDL Reference Guide

 661
FILE_WHICH

The FILE_WHICH function separates a specified file path into its component
directories, and searches each directory in turn for a specific file. This command is
modeled after the UNIX which(1) command.

This routine is written in the IDL language. Its source code can be found in the file
file_which.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = FILE_WHICH([Path,] File [, /INCLUDE_CURRENT_DIR])

Return Value

Returns the path for the first file for the given name found by searching the specified
path. If FILE_WHICH does not find the desired file, a NULL string is returned.

Arguments

Path

A search path to be searched. If Path is not present, the value of the IDL !PATH
system variable is used.

File

The file to look for in the directories given by Path.

Keywords

INCLUDE_CURRENT_DIR

If set, FILE_WHICH looks in the current directory before starting to search Path for
File. When IDL searches for a routine to compile, it looks in the current working
directory before searching !PATH. The INCLUDE_CURRENT_DIR keyword allows
FILE_WHICH to mimic this behavior.

Examples

To find the location of this routine:

Result = FILE_WHICH('file_which.pro')
IDL Reference Guide FILE_WHICH

662
To find the location of the UNIX ls command:

Result = FILE_WHICH(getenv('PATH'), 'ls')

Version History

Introduced: 5.4
FILE_WHICH IDL Reference Guide

 663
FILEPATH

The FILEPATH function returns the fully-qualified path to a file contained in the IDL
distribution. Operating system dependencies are taken into consideration. This
routine is used by RSI to make the library routines portable. This routine is written in
the IDL language. Its source code can be found in the file filepath.pro in the lib
subdirectory of the IDL distribution.

Syntax

Result = FILEPATH(Filename [, ROOT_DIR=string]
[, SUBDIRECTORY=string/string_array] [, /TERMINAL] [, /TMP])

Return Value

Returns the fully-qualified path to a specified file.

Arguments

Filename

A string containing the name of the file to be found. The file should be specified in all
lowercase characters. No device or directory information should be included.

Keywords

ROOT_DIR

A string containing the name of the directory from which the resulting path should be
based. If not present, the value of !DIR is used. This keyword is ignored if
TERMINAL or TMP are specified.

SUBDIRECTORY

The name of the subdirectory in which the file should be found. If this keyword is
omitted, the main IDL directory is used. This variable can be either a scalar string or
a string array with the name of each level of subdirectory depth represented as an
element of the array.

For example, to get a path to the file filepath.pro in IDL’s lib subdirectory,
enter:

path = FILEPATH('filepath.pro',SUBDIR=['lib'])
IDL Reference Guide FILEPATH

664
TERMINAL

Set this keyword to return the filename of the user’s terminal.

TMP

Set this keyword to indicate that the specified file is a scratch file. Returns a path to
the proper place for temporary files under the current operating system.

Under Microsoft Windows, FILEPATH checks to see if the following environment
variables are set—TMP, TEMP, WINDIR—and uses the value of the first one it finds.
If none of these environment variables exists, \TMP is used as the temporary
directory.

Examples

Open the IDL distribution file people.dat:

OPENR, 1, FILEPATH('people.dat', SUBDIRECTORY=['examples','data'])

Version History

Introduced: Pre 4.0

See Also

FILE_SEARCH, FINDFILE, PATH_SEP
FILEPATH IDL Reference Guide

 665
FINDFILE

The FINDFILE function retrieves a list of files that match File_Specification.

Note
RSI strongly recommends the use of the FILE_SEARCH function, included in IDL
5.5 and later, in place of the FINDFILE function. FILE_SEARCH offers many
advantages over FINDFILE, including cross-platform consistency in wildcard
syntax, uniform presentation of results, filtering by file attributes, and, under UNIX,
freedom from performance and number of file limitations encountered by
FINDFILE.

Platform specific differences are described below:

• Under UNIX, to include all the files in any subdirectories, use the * wildcard
character in the File_Specification, such as in
result = FINDFILE('/path/*'). If File_Specification contains only a
directory, with no file information, only files in that directory are returned.

• Under Windows, FINDFILE appends a “\” character to the end of the returned
file name if the file is a directory. To refer to all the files in a specific directory
only, use result = FINDFILE('\path*').

Syntax

Result = FINDFILE(File_Specification [, COUNT=variable])

Return Value

All matched filenames are returned in a string array, one file name per array element.
If no files exist with names matching the File_Specification, a null scalar string is
returned instead of a string array. FINDFILE returns the full path only if the path
itself is specified in File_Specification. See the “Examples” section below for details.

Arguments

File_Specification

A scalar string used to find files. The string can contain any valid command-
interpreter wildcard characters. If File_Specification contains path information, that
path information is included in the returned value. If File_Specification is omitted,
the names of all files in the current directory are returned.
IDL Reference Guide FINDFILE

666
Keywords

COUNT

A named variable into which the number of files found is placed. If no files are found,
a value of 0 is returned.

Examples

To print the file names of all the UNIX files with .dat extensions in the current
directory, use the command:

PRINT, FINDFILE('*.dat')

To print the full path names of all .pro files in the IDL lib directory that begin with
the letter “x”, use the command:

PRINT, FINDFILE('/usr/local/rsi/idl/lib/x*.pro')

To print the path names of all .pro files in the profiles subdirectory of the current
directory (a relative path), use the command:

PRINT, FINDFILE('profiles/*.pro')

Note that the values returned are (like the File_Specification) relative path names.
Use caution when comparing values against this type of relative path specification.

Version History

Introduced: Original

See Also

FILE_SEARCH, FILEPATH
FINDFILE IDL Reference Guide

 667
FINDGEN

The FINDGEN function creates a floating-point array of the specified dimensions.
Each element of the array is set to the value of its one-dimensional subscript.

Syntax

Result = FINDGEN(D1 [, ..., D8])

Return Value

Returns a single-precision, floating-point array of the specified dimensions.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

To create F, a 6-element vector of single-precision, floating-point values where each
element is set to the value of its subscript, enter:
IDL Reference Guide FINDGEN

668
F = FINDGEN(6)

The value of F[0] is 0.0, F[1] is 1.0, and so on.

Version History

Introduced: Original

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, INDGEN, LINDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
FINDGEN IDL Reference Guide

 669
FINITE

The FINITE function identifies whether or not a given argument is finite.

Syntax

Result = FINITE(X [, /INFINITY] [, /NAN] [, SIGN=value])

Return Value

Returns 1 (True) if its argument is finite. If the argument is infinite or not a defined
number (NaN), the FINITE function returns 0 (False). The result is a byte expression
of the same structure as the argument X.

Note
See “Special Floating-Point Values” in Chapter 18 of the Building IDL Applications
manual for more information on IEEE floating-point values.

Arguments

X

A floating-point, double-precision, or complex scalar or array expression. Strings are
first converted to floating-point. This function is meaningless for byte, integer, or
longword arguments.

Keywords

INFINITY

If INFINITY is set, FINITE returns True if X is positive or negative infinity, and it
returns False otherwise.

NAN

If NAN is set, FINITE returns True if X is “Not A Number” (NaN), otherwise it
returns False.
IDL Reference Guide FINITE

670
SIGN

If the INFINITY or NAN keyword is set, then set this keyword to one of the
following values:

If neither the INFINITY nor NAN keyword is set, then this keyword is ignored.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

Example 1

To find out if the logarithm of 5.0 is finite, enter:

PRINT, FINITE(ALOG(5.0))

IDL prints “1” because the argument is finite.

Value Description

> 0 If the INFINITY keyword is set, return True (1) if X is positive
infinity, False (0) otherwise. If the NAN keyword is set, return
True (1) if X is +NaN (negative sign bit is not set), False (0)
otherwise.

0 (the default) The sign of X (positive or negative) is ignored.

< 0 If the INFINITY is set, return True (1) if X is negative infinity,
False (0) otherwise. If the NAN keyword is set, return True (1)
if X is -NaN (negative sign bit is set), False (0) otherwise.

Table 26: SIGN Keyword Values
FINITE IDL Reference Guide

 671
Example 2

To determine which elements of an array are infinity or NaN (Not a Number) values:

A = FLTARR(10)

; Set some values to +/-NaN and positive or negative Infinity:
A[3] = !VALUES.F_NAN
A[4] = -!VALUES.F_NAN
A[6] = !VALUES.F_INFINITY
A[7] = -!VALUES.F_INFINITY

Find the location of values in A that are positive or negative

Infinity:
PRINT, WHERE(FINITE(A, /INFINITY))

IDL prints:

 6 7

Find the location of values in A that are NaN:

PRINT, WHERE(FINITE(A, /NAN))

IDL prints:

 3 4

Find the location of values in A that are negative Infinity:

PRINT, WHERE(FINITE(A, /INFINITY, SIGN=-1))

IDL prints:

 7

Find the location of values in A that are +NaN:

PRINT, WHERE(FINITE(A, /NAN, SIGN=1))

IDL prints:

 3

Note
On some platforms, there is no distinction between +NaN and -NaN.

Version History

Introduced: Original
IDL Reference Guide FINITE

672
See Also

CHECK_MATH, MACHAR, !VALUES, “Special Floating-Point Values” on
page 434.
FINITE IDL Reference Guide

 673
FIX

The FIX function converts a given expression to an integer type. Optionally, the
conversion type can be specified at runtime, allowing flexible runtime type-
conversion to arbitrary types.

Syntax

Result = FIX(Expression [, Offset [, D1 [, ..., D8]]] [, /PRINT]
[, TYPE=type code{0 to 15}])

Return Value

Returns a result equal to Expression converted to integer type.

Arguments

Expression

The expression to be converted.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as integer data. See the
description in Chapter 3, “Constants and Variables” in the Building IDL Applications
manual for details.

The Offset and Dimi arguments are not allowed when converting to or from the string
type.

Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
If no dimension arguments are given, the result is taken to be scalar.

The Di arguments can be either an array or a series of scalar expressions specifying
the dimensions of the result. If a single argument is specified, it can be either a scalar
expression or an array of up to eight elements. If multiple arguments are specified,
they must all be scalar expressions. Up to eight dimensions can be specified.

The Offset and Di arguments are not allowed when converting to or from the string
type.
IDL Reference Guide FIX

674
Keywords

PRINT

Set this keyword to specify that any special-case processing when converting
between string and byte data, or the reverse, should be suppressed. The PRINT
keyword is ignored unless the TYPE keyword is used to convert to these types.

TYPE

FIX normally converts Expression to the integer type. If TYPE is specified, it is the
type code to set the type of the conversion. This feature allows dynamic type
conversion, where the desired type is not known until runtime, to be carried out
without the use of large CASE or IF...THEN logic. When TYPE is specified, FIX
behaves as if the appropriate type conversion routine for the desired type had been
called. See the “See Also” list below for the complete list of such routines.

When using the TYPE keyword to convert BYTE data to STRING or the reverse, you
should be aware of the special-case processing that the BYTE and STRING functions
do in this case. To prevent this, and get a simple type conversion in these cases, you
must specify the PRINT keyword.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

Convert the floating-point array [2.2, 3.0, 4.5] to integer type and store the new array
in the variable I by entering:

I = FIX([2.2, 3.0, 4.5])

Version History

Introduced: Original
FIX IDL Reference Guide

 675
See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FLOAT, LONG, LONG64, STRING,
UINT, ULONG, ULONG64
IDL Reference Guide FIX

676
FLICK

The FLICK procedure causes the display to flicker between two output images at a
given rate.

This routine is written in the IDL language. Its source code can be found in the file
flick.pro in the lib subdirectory of the IDL distribution.

Syntax

FLICK, A, B [, Rate]

Arguments

A

Byte image number 1, scaled from 0 to 255.

B

Byte image number 2, scaled from 0 to 255.

Rate

The flicker rate. The default is 1.0 sec/frame

Keywords

None.

Version History

Introduced: Original

See Also

CW_ANIMATE, XINTERANIMATE
FLICK IDL Reference Guide

 677
FLOAT

The FLOAT function converts a given Expression into a single-precision floating-
point value.

Syntax

Result = FLOAT(Expression [, Offset [, D1 [, ..., D8]]])

Return Value

Returns the conversion of the given expression into single-precision floating point
values. If Expression is a complex number, FLOAT returns the real part.

Arguments

Expression

The expression to be converted to single-precision floating-point.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as single-precision floating
point data.

Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
If no dimension arguments are given, the result is taken to be scalar.

The Di arguments can be either an array or a series of scalar expressions specifying
the dimensions of the result. If a single argument is specified, it can be either a scalar
expression or an array of up to eight elements. If multiple arguments are specified,
they must all be scalar expressions. Up to eight dimensions can be specified.

When converting from a string argument, it is possible that the string does not contain
a valid floating-point value and no conversion is possible. The default action in such
cases is to print a warning message and return 0. The ON_IOERROR procedure can
be used to establish a statement to be jumped to in case of such errors.
IDL Reference Guide FLOAT

678
Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

If A contains the integer value 6, it can be converted to floating-point and stored in the
variable B by entering:

B = FLOAT(A)

Version History

Introduced: Original

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, LONG, LONG64, STRING,
UINT, ULONG, ULONG64
FLOAT IDL Reference Guide

 679
FLOOR

The FLOOR function returns the closest integer less than or equal to its argument.

Syntax

Result = FLOOR(X [, /L64])

Return Value

If the input argument X is an integer type, Result has the same value and type as X.
Otherwise, Result is a 32-bit longword integer with the same structure as X.

Arguments

X

The value for which the FLOOR function is to be evaluated. This value can be any
numeric type (integer, floating, or complex).

Keywords

L64

If set, the result type is 64-bit integer regardless of the input type. This is useful for
situations in which a floating point number contains a value too large to be
represented in a 32-bit integer.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
IDL Reference Guide FLOOR

680
Examples

To print the floor function of 5.9, enter:

PRINT, FLOOR(5.9)
; IDL prints:
5

To print the floor function of 3000000000.1, the result of which is too large to
represent in a 32-bit integer:

PRINT, FLOOR(3000000000.1D, /L64)
; IDL prints:
3000000000

Version History

Introduced: Pre 4.0

See Also

CEIL, COMPLEXROUND, ROUND
FLOOR IDL Reference Guide

 681
FLOW3

The FLOW3 procedure draws lines representing a 3D flow/velocity field. Note that
the 3D scaling system must be in place before calling FLOW3. This procedure works
best with Z buffer output device.

This routine is written in the IDL language. Its source code can be found in the file
flow3.pro in the lib subdirectory of the IDL distribution.

Syntax

FLOW3, Vx, Vy, Vz [, ARROWSIZE=value] [, /BLOB] [, LEN=value]
[, NSTEPS=value] [, NVECS=value] [, SX=vector, SY=vector, SZ=vector]

Arguments

Vx, Vy, Vz

3D arrays containing X, Y, and Z components of the field.

Keywords

ARROWSIZE

Size of arrowheads (default = 0.05).

BLOB

Set this keyword to draw a blob at the beginning of each flow line and suppress the
arrows.

LEN

Length of each step used to follow flow lines (default = 2.0). Expressed in units of
largest field vector (i.e., the length of the longest step is set to len times the grid
spacing.

NSTEPS

Number of steps used to follow the flow lines (default = largest dimension of Vx / 5).
IDL Reference Guide FLOW3

682
NVECS

Number of random flow lines to draw (default = 200). Only used if Sx, Sy, Sz are not
present.

SX, SY, SZ

Optional vectors containing the starting coordinates of the flow lines. If omitted
random starting points are chosen.

Examples

; Create a set of random three-dimensional arrays to represent
; the field:
vx = RANDOMU(seed, 5, 5, 5)
vy = RANDOMU(seed, 5, 5, 5)
vz = RANDOMU(seed, 5, 5, 5)

; Set up the 3D scaling system:
SCALE3, xr=[0,4], yr=[0,4], zr = [0,4]

; Plot the vector field:
FLOW3, vx, vy, vz

Version History

Introduced: Pre 4.0

See Also

VEL, VELOVECT
FLOW3 IDL Reference Guide

 683
FLTARR

The FLTARR function creates a floating-point vector or array of the specified
dimensions.

Syntax

Result = FLTARR(D1 [, ..., D8] [, /NOZERO])

Return Value

Returns a single-precision, floating-point vector or array.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, FLTARR sets every element of the result to zero. Set this keyword to
inhibit zeroing of the array elements and cause FLTARR to execute faster.

Examples

Create F, a 3-element by 3-element floating-point array with each element set to 0.0
by entering:

F = FLTARR(3, 3)

Version History

Introduced: Original
IDL Reference Guide FLTARR

684
See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, INTARR, LON64ARR,
LONARR, MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
FLTARR IDL Reference Guide

 685
FLUSH

The FLUSH procedure causes all buffered output on the specified file units to be
written. IDL uses buffered output for reasons of efficiency. This buffering leads to
rare occasions where a program needs to be certain that output data are not waiting in
a buffer, but have actually been output.

Syntax

FLUSH, Unit1, ..., Unitn

Arguments

Uniti

The file units (logical unit numbers) to flush.

Version History

Introduced: Original

See Also

CLOSE, EMPTY, EXIT
IDL Reference Guide FLUSH

686
FOR

The FOR statement executes one or more statements repeatedly, incrementing or
decrementing a variable with each repetition, until a condition is met.

Note
For more information on using FOR and other IDL program control statements, see
Chapter 12, “Program Control” in the Building IDL Applications manual.

Syntax

FOR variable = init, limit [, Increment] DO statement

or

FOR variable = init, limit [, Increment] DO BEGIN

statements

ENDFOR

Examples

The following example iterates over the elements of an array, printing the value of
each element:

array = ['one', 'two', 'three']
n = N_ELEMENTS(array)
FOR i=0,n-1 DO BEGIN
 PRINT, array[i]
ENDFOR

Version History

Introduced: Original
FOR IDL Reference Guide

 687
FORMAT_AXIS_VALUES

The FORMAT_AXIS_VALUES function converts a vector of numeric values into a
vector of string values. This routine uses the same rules for formatting as do the axis
routines that label tick marks given a set of tick values.

Syntax

Result = FORMAT_AXIS_VALUES(Values)

Return Value

Returns a vector of formatted string values from an input vector of numeric values.

Arguments

Values

Set this argument to a vector of numeric values to be formatted.

Keywords

None.

Examples

Suppose we have a vector of axis values:

axis_values = [7.9, 12.1, 15.3, 19.0]

Convert these values into an array of strings:

new_values = FORMAT_AXIS_VALUES(axis_values)
HELP, new_values
PRINT, new_values
PRINT, axis_values

IDL prints:

NEW_VALUES STRING = Array[4]
7.9 12.1 15.3 19.0
7.90000 12.1000 15.3000 19.0000
IDL Reference Guide FORMAT_AXIS_VALUES

688
Version History

Introduced: 5.1
FORMAT_AXIS_VALUES IDL Reference Guide

 689
FORWARD_FUNCTION

The FORWARD_FUNCTION statement causes argument(s) to be interpreted as
functions rather than variables (versions of IDL prior to 5.0 used parentheses to
declare arrays).

Note
For information on using the FORWARD_FUNCTION statement, see Chapter 4,
“Procedures and Functions” in the Building IDL Applications manual.

Syntax

FORWARD_FUNCTION Name1, Name2, ..., Namen

Version History

Introduced: Pre 4.0
IDL Reference Guide FORWARD_FUNCTION

690
FREE_LUN

The FREE_LUN procedure deallocates previously-allocated file units. This routine is
usually used with file units allocated with GET_LUN, but it will also close any other
specified file unit. If the specified file units are open, they are closed prior to the
deallocation.

Syntax

FREE_LUN [, Unit1, ..., Unitn] [, EXIT_STATUS=variable] [, /FORCE]

Arguments

Uniti

The IDL file units (logical unit numbers) to deallocate.

Keywords

EXIT_STATUS

Set this keyword to a named variable that will contain the exit status reported by a
UNIX child process started via the UNIT keyword to SPAWN. This value is the exit
value reported by the process by calling EXIT, and is analogous to the value returned
by $? under most UNIX shells.

FORCE

Set this keyword to override the IDL file output buffer and force the file to be closed
no matter what errors occur in the process.

IDL buffers file output for performance reasons. If it is not possible to properly flush
this data when a file close is requested, an error is normally issued and the file
remains open. An example of this might be that your disk does not have room to write
the remaining data. This default behavior prevents data from being lost. To override it
and force the file to be closed no matter what errors occur in the process, specify
FORCE.

Examples

See the example for the GET_LUN procedure.
FREE_LUN IDL Reference Guide

 691
Version History

Introduced: Original

See Also

CLOSE, GET_LUN
IDL Reference Guide FREE_LUN

692
FSTAT

The FSTAT function returns status information about a specified file unit.

Syntax

Result = FSTAT(Unit)

Return Value

The FSTAT function returns a structure expression of type FSTAT (or FSTAT64 in
the case of files that are longer than 2^31-1 bytes in length) containing status
information about a specified file unit. The contents of this structure are documented
in “The FSTAT Function” in Chapter 10 of the Building IDL Applications manual.

Fields of the FSTAT Structure

The following descriptions are of fields in the structure returned by the FSTAT
function. They are not keywords to FSTAT.

• UNIT — The IDL logical unit number (LUN).

• NAME — The name of the file.

• OPEN — Nonzero if the file unit is open. If OPEN is zero, the remaining
fields in FSTAT will not contain useful information.

• ISATTY — Nonzero if the file is actually a terminal instead of a normal file.
For example, if you are using an xterm window on a UNIX system and you
invoke FSTAT on logical unit 0 (standard input), ISATTY will be set to 1.

• ISAGUI — Nonzero if the file is actually a Graphical User Interface (for
example, a logical unit associated with the IDL Development Environment).
Thus, if you are using the IDLDE and you invoke FSTAT on logical unit 0
(standard input), ISAGUI will be set to 1.

• INTERACTIVE — Nonzero if either ISATTY or ISAGUI is nonzero.

• XDR — Nonzero if the file was opened with the XDR keyword, and is
therefore considered to contain data in the XDR format.

• COMPRESS — Nonzero if the file was opened with the COMPRESS
keyword, and is therefore considered to contain compressed data in the GZIP
format.

• READ — Nonzero if the file is open for read access.
FSTAT IDL Reference Guide

 693
• WRITE — Nonzero if the file is open for write access.

• ATIME, CTIME, MTIME — The date of last access, date of creation, and
date of last modification given in seconds since 1 January 1970 UTC. Use the
SYSTIME function to convert these dates into a textual representation.

Note
Some file systems do not maintain all of these dates (e.g. MS DOS FAT file
systems), and may return 0. On some non-UNIX operating systems, access time is
not maintained, and ATIME and MTIME will always return the same date.

• TRANSFER_COUNT — The number of scalar IDL data items transferred in
the last input/output operation on the unit. This is set by the following IDL
routines: READU, WRITEU, PRINT, PRINTF, READ, and READF.
TRANSFER_COUNT is useful when attempting to recover from input/output
errors.

• CUR_PTR — The current position of the file pointer, given in bytes from the
start of the file. If the device is a terminal (ISATTY is nonzero), the value of
CUR_PTR will not contain useful information. When reporting on file units
opened with the COMPRESS keyword to OPEN, the position reported by
CUR_PTR is the “logical” position—the position it would be at in the
uncompressed version of the same file.

• SIZE — The current length of the file in bytes. If the device is a terminal
(ISATTY is nonzero), the value of SIZE will not contain useful information.
When reporting on file units opened with the COMPRESS keyword to OPEN,
the size reported by SIZE is the compressed size of the actual file, and not the
logical length of the uncompressed data contained within. This is inconsistent
with the position reported by CUR_PTR. The reason for reporting the size in
this way is that the logical length of the data cannot be known without reading
the entire file from beginning to end and counting the uncompressed bytes, and
this would be extremely inefficient.

• REC_LEN — This field is obsolete and will always contain zero.

Arguments

Unit

The file unit about which information is required. This parameter can be an integer or
an associated variable, in which case information about the variable’s associated file
is returned.
IDL Reference Guide FSTAT

694
Keywords

None.

Examples

If file unit number 1 is open, the FSTAT information on that unit can be seen by
entering:

PRINT, FSTAT(1)

Specific information can be obtained by referring to single fields within the structure
returned by FSTAT. The following code prints the name and length of the file open on
unit 1:

; Put FSTAT information in variable A:
A = FSTAT(1)

; Print the name and size fields:
PRINT, 'File: ', A.NAME, ' is ', A.SIZE, ' bytes long.'

Version History

Introduced: Original

See Also

ASSOC, FILE_INFO, FILE_TEST, OPEN
FSTAT IDL Reference Guide

 695
FULSTR

The FULSTR restores a row-indexed sparse array to full storage mode. If the sparse
array was created with the SPRSIN function using the THRESH keyword, any values
in the original array that were below the specified threshold are replaced with zeros.

Syntax

Result = FULSTR(A)

Return Value

Returns a given array to full storage mode.

Arguments

A

A row-indexed sparse array created by the SPRSIN function.

Keywords

None.

Examples

Suppose we have converted an array to sparse storage format with the following
commands:

A = [[5.0, -0.2, 0.1], $
[3.0, -2.0, 0.3], $
[4.0, -1.0, 0.0]]

; Convert to sparse storage mode. All elements of the array A that
; have absolute values less than THRESH are set to zero:
sparse = SPRSIN(A, THRESH=0.5)

The variable SPARSE now contains a representation of the array A in structure form.
To restore the array from the sparse-format structure:
IDL Reference Guide FULSTR

696
; Restore the array:
result = FULSTR(sparse)

; Print the result:
PRINT, result

IDL prints:

5.00000 0.00000 0.00000
3.00000 -2.00000 0.00000
4.00000 -1.00000 0.00000

Note that the elements with an absolute value less than the specified threshold have
been set to zero.

Version History

Introduced: 4.0

See Also

LINBCG, SPRSAB, SPRSAX, SPRSIN, SPRSTP, READ_SPR, WRITE_SPR
FULSTR IDL Reference Guide

 697
FUNCT

The FUNCT procedure evaluates the sum of a Gaussian and a 2nd-order polynomial
and optionally returns the value of its partial derivatives. Normally, this function is
used by CURVEFIT to fit the sum of a line and a varying background to actual data.

This routine is written in the IDL language. Its source code can be found in the file
funct.pro in the lib subdirectory of the IDL distribution.

Syntax

FUNCT, X, A, F [, Pder]

Arguments

X

A vector of values for the independent variable.

A

A vector of coefficients for the equations:

F

A named variable that will contain the value of the function at each Xi.

Pder

A named variable that will contain an array of the size (N_ELEMENTS(X),6) that
contains the partial derivatives. Pder(i,j) represents the derivative at the ith point with
respect to jthparameter.

Version History

Introduced: 4.0

F A0e
Z2– 2⁄

A3 A4X A5X2+ + +=

Z X A1–() A2⁄=
IDL Reference Guide FUNCT

698
See Also

CURVEFIT
FUNCT IDL Reference Guide

 699
FUNCTION

The FUNCTION statement defines a function.

Note
For information on using the FUNCTION statement, see Chapter 4, “Procedures
and Functions” in the Building IDL Applications manual.

Syntax

FUNCTION Function_Name, parameter1, ..., parametern

Version History

Introduced: Original
IDL Reference Guide FUNCTION

700
FV_TEST

The FV_TEST function computes the F-statistic and the probability that two sample
populations X and Y have significantly different variances. X and Y may be of
different lengths. The F-statistic formula for sample populations x and y with means x
and y is defined as:

where x = (x0, x1, x2, ..., xN-1) and y = (y0, y1, y2 ..., yM-1)

This routine is written in the IDL language. Its source code can be found in the file
fv_test.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = FV_TEST(X, Y)

Return Value

The result is a two-element vector containing the F-statistic and its significance. The
significance is a value in the interval [0.0, 1.0]; a small value (0.05 or 0.01) indicates
that X and Y have significantly different variances. This type of test is often referred
to as the F-variance test.

Arguments

X

An n-element integer, single- or double-precision floating-point vector.

Y

An m-element integer, single- or double-precision floating-point vector.

F
M 1–
N 1–
-------------- 

 

xj x–()
2 1

N
---- xj x–()

j 0=

N 1–

∑
2

–

j 0=

N 1–

∑

yj y–()
2 1

M
----- yj y–()

j 0=

M 1–

∑
2

–

j 0=

M 1–

∑

---=
FV_TEST IDL Reference Guide

 701
Keywords

None.

Examples

; Define two n-element sample populations:
X = [257, 208, 296, 324, 240, 246, 267, 311, 324, 323, 263, $

305, 270, 260, 251, 275, 288, 242, 304, 267]
Y = [201, 56, 185, 221, 165, 161, 182, 239, 278, 243, 197, $

271, 214, 216, 175, 192, 208, 150, 281, 196]

; Compute the F-statistic (of X and Y) and its significance:
PRINT, FV_TEST(X, Y)

IDL prints:

2.48578 0.0540116

The result indicates that X and Y have significantly different variances.

Version History

Introduced: 4.0

See Also

KW_TEST, MOMENT, RS_TEST, S_TEST, TM_TEST
IDL Reference Guide FV_TEST

702
FX_ROOT

The FX_ROOT function computes a real or complex root of a univariate nonlinear
function using an optimal Müller’s method.

This routine is written in the IDL language. Its source code can be found in the file
fx_root.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = FX_ROOT(X, Func [, /DOUBLE] [, ITMAX=value] [, /STOP]
[, TOL=value])

Return Value

The return value is the real or complex root of a univariate nonlinear function. Which
root results depends on the initial guess provided for this routine.

Arguments

X

A 3-element real or complex initial guess vector. Real initial guesses may result in
real or complex roots. Complex initial guesses will result in complex roots.

Func

A scalar string specifying the name of a user-supplied IDL function that defines the
univariate nonlinear function. This function must accept the vector argument X.

For example, suppose we wish to find a root of the following function:

We write a function FUNC to express the function in the IDL language:

FUNCTION func, X
RETURN, EXP(SIN(X)^2 + COS(X)^2 - 1) - 1

END

y e
x2 x2 1–cos+sin()

1–=
FX_ROOT IDL Reference Guide

 703
Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

ITMAX

The maximum allowed number of iterations. The default is 100.

STOP

Use this keyword to specify the stopping criterion used to judge the accuracy of a
computed root r(k). Setting STOP = 0 (the default) checks whether the absolute value
of the difference between two successively-computed roots, | r(k) - r(k+1) | is less
than the stopping tolerance TOL. Setting STOP = 1 checks whether the absolute
value of the function FUNC at the current root, | FUNC(r(k)) |, is less than TOL.

TOL

Use this keyword to specify the stopping error tolerance. The default is 1.0 x 10-4.

Examples

This example finds the roots of the function FUNC defined above:

; First define a real 3-element initial guess vector:
x = [0.0, -!pi/2, !pi]

; Compute a root of the function using double-precision
; arithmetic:
root = FX_ROOT(X, 'FUNC', /DOUBLE)

; Check the accuracy of the computed root:
PRINT, EXP(SIN(ROOT)^2 + COS(ROOT)^2 - 1) - 1

IDL prints:

0.0000000

We can also define a complex 3-element initial guess vector:

x = [COMPLEX(-!PI/3, 0), COMPLEX(0, !PI), COMPLEX(0, -!PI/6)]

; Compute the root of the function:
root = FX_ROOT(x, 'FUNC')
IDL Reference Guide FX_ROOT

704
; Check the accuracy of the computed complex root:
PRINT, EXP(SIN(ROOT)^2 + COS(ROOT)^2 - 1) - 1

IDL prints:

(0.00000, 0.00000)

Version History

Introduced: Pre 4.0

See Also

BROYDEN, NEWTON, FZ_ROOTS
FX_ROOT IDL Reference Guide

 705
FZ_ROOTS

The FZ_ROOTS function is used to find the roots of an m-degree complex
polynomial, using Laguerre’s method.

FZ_ROOTS is based on the routine zroots described in section 9.5 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = FZ_ROOTS(C [, /DOUBLE] [, EPS=value] [, /NO_POLISH])

Return Value

Returns an m-element complex vector containing the roots of an m-degree complex
polynomial.

Arguments

C

A vector of length m+1 containing the coefficients of the polynomial, in ascending
order (see example). The type can be real or complex.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

EPS

The desired fractional accuracy. The default value is 2.0 x 10-6.

NO_POLISH

Set this keyword to suppress the usual polishing of the roots by Laguerre’s method.
IDL Reference Guide FZ_ROOTS

706
Examples

Example 1: Real coefficients yielding real roots.

Find the roots of the polynomial:

P (x) = 6x3 - 7x2 - 9x - 2

The exact roots are -1/2, -1/3, 2.0.

coeffs = [-2.0, -9.0, -7.0, 6.0]
roots = FZ_ROOTS(coeffs)
PRINT, roots

IDL prints:

(-0.500000, 0.00000)(-0.333333, 0.00000)(2.00000, 0.00000)

Example 2: Real coefficients yielding complex roots.

Find the roots of the polynomial:

P (x) = x4 + 3x2 + 2

The exact roots are:

coeffs = [2.0, 0.0, 3.0, 0.0, 1.0]
roots = FZ_ROOTS(coeffs)
PRINT, roots

IDL Prints:

(0.00000, -1.41421)(0.00000, 1.41421)
(0.00000, -1.00000)(0.00000, 1.00000)

Example 3: Real and complex coefficients yielding real and complex roots.

Find the roots of the polynomial:

P (x) = x3+ (-4 - i4)x2 + s (-3 + i4)x + (18 + i24)

The exact roots are –2.0, 3.0, (3.0 + i4.0)

coeffs = [COMPLEX(18,24), COMPLEX(-3,4), COMPLEX(-4,-4), 1.0]
roots = FZ_ROOTS(coeffs)
PRINT, roots

IDL Prints:

(-2.00000, 0.00000) (3.00000, 0.00000) (3.00000, 4.00000)
FZ_ROOTS IDL Reference Guide

 707
Version History

Introduced: 4.0

See Also

FX_ROOT, BROYDEN, NEWTON, POLY
IDL Reference Guide FZ_ROOTS

708
GAMMA

The GAMMA function returns the gamma function of Z.

The gamma function is defined as:

Use the LNGAMMA function to obtain the natural logarithm of the gamma function
when there is a possibility of overflow.

Syntax

Result = GAMMA(Z)

Return Value

If Z is double-precision, the result is double-precision (either double or double
complex), otherwise the result is single-precision (either float or complex).

Arguments

Z

The expression for which the gamma function will be evaluated. Z may be complex.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established

Γ x() tx 1– e t– td

0

∞

∫≡
GAMMA IDL Reference Guide

 709
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

Plot the gamma function over the range 0.01 to 1.0 with a step size of 0.01 by
entering:

Z = FINDGEN(99)/100. + 0.01
PLOT, Z, GAMMA(Z)

Version History

Introduced: Original

Z argument accepts complex input: 5.6

See Also

BETA, IBETA, IGAMMA, LNGAMMA
IDL Reference Guide GAMMA

710
GAMMA_CT

The GAMMA_CT procedure applies gamma correction to a color table.

This routine is written in the IDL language. Its source code can be found in the file
gamma_ct.pro in the lib subdirectory of the IDL distribution.

Syntax

GAMMA_CT, Gamma [, /CURRENT] [, /INTENSITY]

Arguments

Gamma

The value of gamma correction. A value of 1.0 indicates a linear ramp (i.e., no
gamma correction). Higher values of Gamma give more contrast. Values less than 1.0
yield lower contrast.

Keywords

CURRENT

Set this keyword to apply correction from the “current” color table (i.e., the values
R_CURR, G_CURR, and B_CURR in the COLORS common block). Otherwise,
correction is applied from the “original” color table (i.e., the values R_ORIG,
G_ORIG, and B_ORIG in the COLORS common block). The gamma corrected color
table is always saved in the “current” table (R_CURR, G_CURR, B_CURR) and the
new table is loaded.

INTENSITY

Set this keyword to correct the individual intensities of each color in the colortable.
Otherwise, the colors are shifted according to the gamma function.

Version History

Introduced: Pre 4.0

See Also

PSEUDO, STRETCH, XLOADCT
GAMMA_CT IDL Reference Guide

 711
GAUSS_CVF

The GAUSS_CVF function computes the cutoff value V in a standard Gaussian
(normal) distribution with a mean of 0.0 and a variance of 1.0 such that the
probability that a random variable X is greater than V is equal to a user-supplied
probability P.

This routine is written in the IDL language. Its source code can be found in the file
gauss_cvf.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = GAUSS_CVF(P)

Return Value

Returns the cutoff value V in a standard Gaussian (normal) distribution with a mean
of 0.0 and a variance of 1.0.

Arguments

P

A non-negative single- or double-precision floating-point scalar, in the interval [0.0,
1.0], that specifies the probability of occurrence or success.

Keywords

None.

Examples

Use the following command to compute the cutoff value in a Gaussian distribution
such that the probability that a random variable X is greater than the cutoff value is
0.025:

PRINT, GAUSS_CVF(0.025)

IDL prints:

1.95997
IDL Reference Guide GAUSS_CVF

712
Version History

Introduced: 4.0

See Also

CHISQR_CVF, F_CVF, GAUSS_PDF, T_CVF
GAUSS_CVF IDL Reference Guide

 713
GAUSS_PDF

The GAUSS_PDF function computes the probability P that, in a standard Gaussian
(normal) distribution with a mean of 0.0 and a variance of 1.0, a random variable X is
less than or equal to a user-specified cutoff value V.

This routine is written in the IDL language. Its source code can be found in the file
gauss_pdf.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = GAUSS_PDF(V)

Return Value

This function returns a scalar or array with the same dimensions as V. If V is double-
precision, the result is double-precision, otherwise the result is single-precision.

Arguments

V

A scalar or array that specifies the cutoff value(s).

Keywords

None.

Examples

Example 1

Compute the probability that a random variable X, from the standard Gaussian
(normal) distribution, is less than or equal to 2.44:

PRINT, GAUSS_PDF(2.44)

IDL Prints:

0.992656
IDL Reference Guide GAUSS_PDF

714
Example 2

Compute the probability that a random variable X, from the standard Gaussian
(normal) distribution, is less than or equal to 10.0 and greater than or equal to 2.0:

PRINT, GAUSS_PDF(10.0) - GAUSS_PDF(2.0)

IDL Prints:

0.0227501

Example 3

Compute the probability that a random variable X, from the Gaussian (normal)
distribution with a mean of 0.8 and a variance of 4.0, is less than or equal to 2.44:

PRINT, GAUSS_PDF((2.44 - 0.80)/SQRT(4.0))

IDL Prints:

0.793892

Version History

Introduced: 4.0

See Also

BINOMIAL, CHISQR_PDF, F_PDF, GAUSS_CVF, T_PDF
GAUSS_PDF IDL Reference Guide

 715
GAUSS2DFIT

The GAUSS2DFIT function fits a two-dimensional, elliptical Gaussian equation to
rectilinearly gridded data.

Z = F(x, y)

where:

And the elliptical function is:

The parameters of the ellipse U are:

• Axis lengths are 2a and 2b, in the unrotated X and Y axes, respectively.

• Center is at (h, k).

• Rotation of T radians from the X axis, in the clockwise direction.

The rotated coordinate system is defined as:

The rotation is optional, and can be forced to 0, making the major and minor axes of
the ellipse parallel to the X and Y axes.

Coefficients of the computed fit are returned in argument A.

F x y,() A0 A1e
U 2⁄–

+=

U x' a⁄()2
y' b⁄()2

+=

x' x h–() T y k–() Tsin–cos=

y' x h–() T y k–() Tcos+sin=
IDL Reference Guide GAUSS2DFIT

716
Procedure Used and Other Notes

The peak/valley is found by first smoothing Z and then finding the maximum or
minimum, respectively. GAUSSFIT is then applied to the row and column running
through the peak/valley to estimate the parameters of the Gaussian in X and Y.
Finally, CURVEFIT is used to fit the 2D Gaussian to the data.

Be sure that the 2D array to be fit contains the entire peak/valley out to at least 5 to 8
half-widths, or the curve-fitter may not converge.

This is a computationally-intensive routine. The time required is roughly proportional
to the number of elements in Z.

This routine is written in the IDL language. Its source code can be found in the file
gauss2dfit.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = GAUSS2DFIT(Z, A [, X, Y] [, /NEGATIVE] [, /TILT])

Arguments

Z

The dependent variable. Z should be a two-dimensional array with dimensions (Nx,
Ny). Gridding in the array must be rectilinear.

A

A named variable in which the coefficients of the fit are returned. A is returned as a
seven element vector the coefficients of the fitted function. The meanings of the seven
elements in relation to the discussion above is:

• A[0] = A0= constant term

• A[1] = A1= scale factor

• A[2] = a = width of Gaussian in the X direction

• A[3] = b = width of Gaussian in the Y direction

• A[4] = h = center X location

• A[5] = k = center Y location.

• A[6] = T = Theta, the rotation of the ellipse from the X axis in radians, counter-
clockwise.
GAUSS2DFIT IDL Reference Guide

 717
X

An optional vector with Nx elements that contains the X values of Z (i.e., Xiis the X
value for Zi,j. If this argument is omitted, a regular grid in X is assumed, and the X
location of Zi,j = i.

Y

An optional vector with Ny elements that contains the Y values of Z (i.e., Yj is the Y
value for Zi,j. If this argument is omitted, a regular grid in Y is assumed, and the Y
location of Zi,j = j.

Keywords

NEGATIVE

Set this keyword to indicate that the Gaussian to be fitted is a valley (such as an
absorption line). By default, a peak is fit.

TILT

Set this keyword to allow the orientation of the major and minor axes of the ellipse to
be unrestricted. The default is that the axes of the ellipse must be parallel to the X and
Y axes. Therefore, in the default case, A[6] is always returned as 0.

Examples

This example creates a 2D gaussian, adds random noise and then applies
GAUSS2DFIT.

; Define array dimensions:
nx = 128 & ny = 100
; Define input function parameters:
A = [5., 10., nx/6., ny/10., nx/2., .6*ny]
; Create X and Y arrays:
X = FINDGEN(nx) # REPLICATE(1.0, ny)
Y = REPLICATE(1.0, nx) # FINDGEN(ny)
; Create an ellipse:
U = ((X-A[4])/A[2])^2 + ((Y-A[5])/A[3])^2
; Create gaussian Z:
Z = A[0] + A[1] * EXP(-U/2)
; Add random noise, SD = 1:
Z = Z + RANDOMN(seed, nx, ny)
; Fit the function, no rotation:
yfit = GAUSS2DFIT(Z, B)
; Report results:
IDL Reference Guide GAUSS2DFIT

718
PRINT, 'Should be: ', STRING(A, FORMAT='(6f10.4)')
PRINT, 'Is: ', STRING(B(0:5), FORMAT='(6f10.4)')

Version History

Introduced: 4.0.1

See Also

COMFIT, GAUSSFIT, POLY_FIT, REGRESS, SFIT, SVDFIT
GAUSS2DFIT IDL Reference Guide

 719
GAUSSFIT

The GAUSSFIT function computes a non-linear least-squares fit to a function f (x)
with from three to six unknown parameters. f (x) is a linear combination of a
Gaussian and a quadratic; the number of terms is controlled by the keyword
parameter NTERMS.

This routine is written in the IDL language. Its source code can be found in the file
gaussfit.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = GAUSSFIT(X, Y [, A] [, CHISQ=variable] [, ESTIMATES=array]
[, MEASURE_ERRORS=vector] [, NTERMS=integer{3 to 6}] [, SIGMA=variable]
[, YERROR=variable])

Return Value

Returns three to six values that are the non-linear least squares fit to a function f (x).

Arguments

X

An n-element vector of independent variables.

Y

A vector of dependent variables, the same length as X.

A

A named variable that will contain the coefficients A of the fit.

Keywords

CHISQ

Set this keyword to a named variable that will contain the value of the chi-square
goodness-of-fit.
IDL Reference Guide GAUSSFIT

720
ESTIMATES

Set this keyword equal to an array of starting estimates for the parameters of the
equation. If the NTERMS keyword is specified, the ESTIMATES array should have
NTERMS elements. If NTERMS is not specified, the ESTIMATES array should have
six elements. If the ESTIMATES array is not specified, estimates are calculated by
first subtracting a constant (if NTERMS >= 4) or a linear term (if NTERMS >= 5),
and then forming a simple estimate of the Gaussian coefficients.

MEASURE_ERRORS

Set this keyword to a vector containing standard measurement errors for each point
Y[i]. This vector must be the same length as X and Y.

Note
For Gaussian errors (e.g., instrumental uncertainties), MEASURE_ERRORS
should be set to the standard deviations of each point in Y. For Poisson or statistical
weighting, MEASURE_ERRORS should be set to SQRT(Y).

NTERMS

Set this keyword to an integer value between three and six to specify the function to
be used for the fit. The values correspond to the functions shown below. In all cases:

z
x A1–

A2
---------------=
GAUSSFIT IDL Reference Guide

 721
NTERMS=6

NTERMS=5

NTERMS=4

NTERMS=3

NTERMS=6 is the default setting. Here, A0 is the height of the Gaussian, A1 is the
center of the Gaussian, A2 is the width (the standard deviation) of the Gaussian, A3 is
the constant term, A4 is the linear term, and A5 is the quadratic term.

Tip
The full width at half maximum (FWHM) of the Gaussian may be computed as
2*SQRT(2*ALOG(2))*A2.

SIGMA

Set this keyword to a named variable that will contain the 1-sigma error estimates of
the returned parameters.

Note
If MEASURE_ERRORS is omitted, then you are assuming that a polynomial is the
correct model for your data, and therefore, no independent goodness-of-fit test is
possible. In this case, the values returned in SIGMA are multiplied by
SQRT(CHISQ/(N*M)), where N is the number of points in X, and M is the number
of coefficients. See Section 15.2 of Numerical Recipes in C (Second Edition) for
details.

f x() A0e

z2–
2

A3 A4x A5x
2

+ + +=

f x() A0e

z2–
2

A3 A4x+ +=

f x() A0e

z2–
2

A3+=

f x() A0e

z2–
2

=

IDL Reference Guide GAUSSFIT

722
YERROR

Set this keyword to a named variable that will contain the standard error between
YFIT and Y.

Examples

The following example shows how to use GAUSSFIT to fit to four different
functions, with NTERMS=3,4,5,6. To simulate actual data, random noise has been
added to each function.

pro ex_gaussfit

; Define the independent variable.
n = 101
x = (FINDGEN(n)-(n/2))/4

; Define the coefficients.
a = [4.0, 1.0, 2.0, 1.0, 0.25, 0.01]
print, 'Expected: ', a
z = (x - a[1])/a[2] ; Gaussian variable
!P.MULTI = [0,2,2] ; set up 2x2 plot window
seed = 123321 ; Pick a starting seed value

for nterms=3,6 do begin
; Define the dependent variables. Start with random noise.
y = 0.4*RANDOMN(seed, n)

; Use a switch statement so we fall through to each term.
switch nterms of

6: y = y + a[5]*x^2
5: y = y + a[4]*x
4: y = y + a[3]
3: y = y + a[0]*exp(-z^2/2)

endswitch
GAUSSFIT IDL Reference Guide

 723
; Fit the data to the function, storing coefficients in
; coeff:
yfit = GAUSSFIT(x, y, coeff, NTERMS=nterms)
print, 'Result: ', coeff[0:nterms-1]
; Plot the original data and the fitted curve:
PLOT, x, y, TITLE='nterms='+STRTRIM(nterms,2)
OPLOT, x, yfit, THICK=2

endfor
end

When this program is compiled and executed, IDL prints the following results:

IDL> ex_gaussfit
Expected: 4.00000 1.00000 2.00000 1.00000 0.250000 0.0500000
Result: 3.95437 1.03176 2.07216
Result: 4.38669 0.948479 1.84426 0.909676
Result: 3.93348 0.839296 2.02112 1.05237 0.249002
Result: 3.80389 0.993375 2.07302 1.16684 0.249051 0.0484357

Version History

Introduced: Original

CHISQ, SIGMA, and YERROR keywords added: 5.6

See Also

COMFIT, CURVEFIT, GAUSS2DFIT, POLY_FIT, REGRESS, SFIT, SVDFIT
IDL Reference Guide GAUSSFIT

724
GAUSSINT

The GAUSSINT function evaluates the integral of the Gaussian probability function.

The Gaussian integral is defined as:

Syntax

Result = GAUSSINT(X)

Return Value

Returns the result of the Gaussian probability function integral evaluation. If X is
double-precision, the result is double-precision, otherwise the argument is converted
to floating-point and the result is floating-point. The result has the same structure as
the input argument, X.

Arguments

X

The expression for which the Gaussian integral is to be evaluated.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established

Gaussint x()
1

2π
---------- e t2– 2⁄ td

∞–

x

∫≡
GAUSSINT IDL Reference Guide

 725
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

Plot the Gaussian probability function over the range -5 to 5 with a step size of 0.1by
entering:

X = FINDGEN(101)/10. - 5.
PLOT, X, GAUSSINT(X)

Version History

Introduced: Original

See Also

GAUSS_CVF, GAUSS_PDF
IDL Reference Guide GAUSSINT

726
GET_DRIVE_LIST

The GET_DRIVE_LIST function returns valid drive or volume names for the file
system. Under Microsoft Windows, keywords can be used to specify that only drives
of certain types should be returned.

Note
The UNIX operating system presents all files within a single unified file hierarchy,
and does not support the concept of drive letters or volume names. As such,
GET_DRIVE_LIST always returns a scalar null string under UNIX.

Syntax

Result = GET_DRIVE_LIST([COUNT=variable])

Windows-Only Keywords: [, /CDROM] [, /FIXED] [, /REMOTE]
[, /REMOVABLE]

Return Value

Returns a string array of the names of valid drives / volumes for the file system. If
GET_DRIVE_LIST has no drives to return, it returns a scalar null string.

Arguments

None.

Keywords

Note
If a Windows-only keyword is specified, only drives of the specified types are
reported.

CDROM (Windows Only)

If set, compact disk drives are reported. Note that although CDROM devices are
removable, they are treated as a special case, and the REMOVABLE keyword does
not apply to them.
GET_DRIVE_LIST IDL Reference Guide

 727
COUNT

A named variable into which the number of drives/volumes found is placed. If no
drives/volumes are found, a value of zero is returned. Under UNIX, the value
returned by this keyword will always be zero.

FIXED (Windows Only)

If set, hard drives physically attached to the current system are reported.

REMOTE (Windows Only)

If set, remote (i.e. network) drives are reported.

REMOVABLE (Windows Only)

If set, removable media devices (e.g. floppy, zip drive) other than CDROMs are
reported.

Examples

Under Windows, the following will report all local hard drives:

drives = GET_DRIVE_LIST(/FIXED)

This statement obtains the names of all floppy drives, cdroms, and other removable
media drives:

drives = GET_DRIVE_LIST(/CDROM, /REMOVABLE)

Version History

Introduced: 5.3
IDL Reference Guide GET_DRIVE_LIST

728
GET_KBRD

The GET_KBRD function returns the next character available from the standard
input (IDL file unit 0).

Note
GET_KBRD is intended for use in IDL’s UNIX command-line mode. While
GET_KBRD will return values for some characters when run from the IDL
Development Environment (either UNIX or Microsoft Windows), other characters
are treated as special cases by the underlying windowing system, and may not be
returned by GET_KBRD.

Syntax

Result = GET_KBRD(Wait)

Return Value

Returns a one-character string containing the next available character that is input
from the keyboard.

Arguments

Wait

If Wait is zero, GET_KBRD returns the null string if there are no characters in the
terminal type-ahead buffer. If it is nonzero, the function waits for a character to be
typed before returning.

Keywords

None.

Examples

To wait for keyboard input and store one character in the variable R, enter:

R = GET_KBRD(1)

Press any key to return to the IDL prompt. To see the character that was typed, enter:

PRINT, R
GET_KBRD IDL Reference Guide

 729
The following code fragment reads one character at a time and echoes that character’s
numeric code. It quits when a “q” is entered:

REPEAT BEGIN
A = GET_KBRD(1)
PRINT, BYTE(A)

ENDREP UNTIL A EQ 'q'

Note
The GET_KBRD function can be used to return Windows special characters (in
addition to standard keyboard characters), created by holding down the Alt key and
entering the character’s ANSI equivalent. For example, to return the paragraph
marker (¶), ANSI number 0182, enter:

C = GET_KBRD(1)

While GET_KBRD is waiting, press and hold the Alt key and type 0182 on the
numeric keypad. When the IDL prompt returns, enter:

PRINT, C

IDL prints the paragraph marker,“¶”.

GET_KBRD cannot be used to return control characters or other editing keys (e.g.,
Delete, Backspace, etc.). These characters are used for keyboard shortcuts and
command line editing only. GET_KBRD can be used to return the Enter key.

Version History

Introduced: Original

See Also

READ/READF
IDL Reference Guide GET_KBRD

730
GET_LUN

The GET_LUN procedure allocates a file unit from a pool of free units. Instead of
writing routines to assume the use of certain file units, IDL functions and procedures
should use GET_LUN to reserve unit numbers in order to avoid conflicts with other
routines. Use FREE_LUN to free the file units when finished.

Syntax

GET_LUN, Unit

Arguments

Unit

The named variable into which GET_LUN should place the file unit number. Unit is
converted into a longword integer in the process. The file unit number obtained is in
the range 100 to 128.

Keywords

None.

Examples

Instead of explicitly specifying a file unit number that may already be used, use
GET_LUN to obtain a free one and store the result in the variable U by entering:

GET_LUN, U

Now U can be used in opening a file:

OPENR, U, 'file.dat'

Once the data from “file.dat” has been read, the file can be closed and the file unit can
be freed with the command:

FREE_LUN, U

Note also that OPENR has a GET_LUN keyword that allows you to simultaneously
obtain a free file unit and open a file. The following command performs the same
tasks as the first two commands above:

OPENR, U, 'file.dat', /GET_LUN
GET_LUN IDL Reference Guide

 731
Version History

Introduced: Original

See Also

FREE_LUN, OPEN
IDL Reference Guide GET_LUN

732
GET_SCREEN_SIZE

The GET_SCREEN_SIZE function returns size, measured in device units, of the
screen.

Syntax

Result = GET_SCREEN_SIZE([Display_name] [, RESOLUTION=variable])

X Windows Keywords: [, DISPLAY_NAME=string]

Return Value

Returns a two-element vector of the form [width, height] that represents the
dimensions, measured in device units, of the screen

Arguments

Display_name (X Only)

A string indicating the name of the X Windows display that should be used to
determine the screen size.

Keywords

DISPLAY_NAME (X Only)

Set this keyword equal to a string indicating the name of the X Windows display that
should be used to determine the screen size. Setting this keyword is equivalent to
setting the optional Display_name argument.

RESOLUTION

Set this keyword equal to a named variable that will contain a two-element vector,
[xres, yres], specifying the screen resolution in cm/pixel.

Examples

You can find the dimensions and screen resolution of your screen by entering the
following:

dimensions = GET_SCREEN_SIZE(RESOLUTION=resolution)
PRINT, dimensions, resolution
GET_SCREEN_SIZE IDL Reference Guide

 733
For the screen on which this was tested, IDL prints:

1280.00 1024.00
0.0282031 0.0281250

Version History

Introduced: 5.0
IDL Reference Guide GET_SCREEN_SIZE

734
GETENV

The GETENV function returns the value of one or more specified environment
variables from the environment of the IDL process.

About the Process Environment

Every process has an environment consisting of environment variables, each of which
has an associated string value. Some environment variables always exist, such as
PATH, which tells the shell where to look for programs. Others can be added by the
user, either interactively via a shell, via a UNIX startup file such as .login, or a via
a Windows control panel.

When a process is created, it is given a copy of the environment from its parent
process. IDL is no exception to this; when started, it inherits a copy of the
environment of its parent process, which may be an interactive shell, the windowing
system’s desktop environment, or some other process. In turn, any child process
created by IDL (such as those from the SPAWN procedure) inherits a copy of IDL’s
current environment.

Note
It is important to realize that environment variables are not an IDL feature; they are
part of every process. Although they can serve as a form of global memory, it is best
to avoid using them in that way. Instead, IDL heap variables (pointers or object
references), IDL system variables, or common blocks should be used in that role.
Environment variables should be used for communicating with child processes. One
example is setting the value of the SHELL environment variable prior to calling
SPAWN to change the shell executed by SPAWN.

Syntax

Result = GETENV(Name)

UNIX-Only Keywords: [, /ENVIRONMENT]

Return Value

Returns the value of the environment variable Name from the environment of the IDL
process, or a null string if Name does not exist in the environment. If Name is an
array, the result has the same structure, with each element containing the value for the
corresponding element of Name.
GETENV IDL Reference Guide

 735
Arguments

Name

A scalar string or string array variable containing the names of environment variables
for which values are desired.

Special Handling of the IDL_TMPDIR Environment Variable

If you specify 'IDL_TMPDIR' as the value of Name, and an environment variable
with that name exists, GETENV returns its defined value as usual. However, if
IDL_TMPDIR is not defined, GETENV returns the path of the location where IDL's
internals believe temporary files should be written on your system:

• On UNIX systems, IDL uses the value of the standard TMPDIR environment
variable. If TMPDIR is not defined, IDL chooses a reasonable temporary
directory based on operating system and vendor conventions.

• On Windows systems, IDL uses the value provided by Windows, which is the
first of the following that is defined: the value of the TMP environment
variable, the value of the TEMP environment variable, or the default value for
the current Windows version.

Using IDL_TMPDIR in this manner makes it simple for code written in IDL to use
the same temporary directory as IDL itself uses, and provides an easy way for the
user to override the default.

Keywords

ENVIRONMENT (UNIX Only)

If set, returns a string array containing all entries in the current process, one variable
per entry, in the SETENV format (Variable=Value). If ENVIRONMENT is set, the
Name argument should not be supplied.

Examples

To print the name of the current UNIX shell, enter the command:

PRINT, 'The current shell is: ', GETENV('SHELL')

To store the path to the directory where IDL believes temporary files should be placed
in the variable mytemp, use the following statement:

mytemp = GETENV('IDL_TMPDIR')
IDL Reference Guide GETENV

736
See Also

SETENV

Version History

Introduced: Original
GETENV IDL Reference Guide

 737
GOTO

The GOTO statement transfers program control to point specified by a label. The
GOTO statement is generally considered to be a poor programming practice that
leads to unwieldy programs. Its use should be avoided. However, for those cases in
which the use of a GOTO is appropriate, IDL does provide the GOTO statement.

Note that using a GOTO to jump into the middle of a loop results in an error.

Warning
You must be careful in programming with GOTO statements. It is not difficult to get
into a loop that will never terminate, especially if there is not an escape (or test)
within the statements spanned by the GOTO.

For information on using GOTO and other IDL program control statements, see
Chapter 12, “Program Control” in the Building IDL Applications manual.

Syntax

GOTO, label

Examples

In the following example, the statement at label JUMP1 is executed after the GOTO
statement, skipping any intermediate statements:

GOTO, JUMP1
PRINT, 'Skip this' ; This statement is skipped
PRINT, 'Skip this' ; This statement is also skipped
JUMP1: PRINT, 'Do this'

The label can also occur before the GOTO statement that refers to the label, but you
must be careful to avoid an endless loop. GOTO statements are frequently the
subjects of IF statements, as in the following statement:

IF A NE G THEN GOTO, MISTAKE

Version History

Introduced: Original
IDL Reference Guide GOTO

738
GRID_INPUT

The GRID_INPUT procedure preprocesses and sorts two-dimensional scattered data
points, and removes duplicate values. This procedure is also used for converting
spherical coordinates to Cartesian coordinates.

Syntax

GRID_INPUT, X, Y, F, X1, Y1, F1 [, DUPLICATES=string] [, EPSILON=value]
[, EXCLUDE=vector]

or

GRID_INPUT, Lon, Lat, F, Xyz, F1, /SPHERE [, /DEGREES]
[, DUPLICATES=string] [, EPSILON=value] [, EXCLUDE=vector]

or

GRID_INPUT, R, Theta, F, X1, Y1, F1, /POLAR [, /DEGREES]
[, DUPLICATES=string] [, EPSILON=value] [, EXCLUDE=vector]

Arguments

X, Y

These are input arguments for scattered data points, where X, and Y are location. All
of these arguments are N point vectors.

F

The function value at each location in the form of an N point vector.

Lon, Lat

These are input arguments representing scattered data points on a sphere, specifying
location (longitude and latitude). All are N point vectors. Lon, Lat are in degrees or
radians (default).

R, Theta

These are scattered data point input arguments representing the R and Theta polar
coordinate location in degrees or radians (default). All arguments are N point vectors.
GRID_INPUT IDL Reference Guide

 739
X1, Y1, F1

These output arguments are processed and sorted single precision floating point data
which are passed as the input points to the GRIDDATA function.

Xyz

Upon return, a named variable that contains a 3-by-n array of Cartesian coordinates
representing points on a sphere.

Keywords

DEGREES

By default, all angular inputs and keywords are assumed to be in radian units. Set the
DEGREES keyword to change the angular input units to degrees.

DUPLICATES

Set this keyword to a string indicating how duplicate data points are handled per the
following table. The case (upper or lower) is ignored. The default setting for
DUPLICATES is “First”.

String Meaning

"First" Retain only the first encounter of the duplicate
locations.

"Last" Retain only the last encounter of the duplicate
locations.

"All" Retains all locations, which is invalid for any gridding
technique that requires a TRIANGULATION. Some
methods, such as Inverse Distance or Polynomial
Regression with no search criteria can handle
duplicates.

"Avg" Retain the average F value of the duplicate locations.

"Midrange" Retain the average of the minimum and maximum
duplicate locations ((Max(F) + Min (F)) / 2).

Table 27: DUPLICATE Keyword Values
IDL Reference Guide GRID_INPUT

740
EPSILON

The tolerance for finding duplicates. Points within EPSILON distance of each other
are considered duplicates. For spherical coordinates, EPSILON is in units of angular
distance, as set by the DEGREES keyword.

EXCLUDE

An N-point vector specifying the indices of the points to exclude.

POLAR

Set to indicate inputs are in polar coordinates.

SPHERE

Set to indicate inputs are in spherical coordinates. In this case, the output argument
Xyz is set to a 3-by-n array containing the spherical coordinates converted to 3-
dimensional Cartesian points on a sphere.

Examples

The following example uses the data from the irreg_grid1.txt ASCII file
included in the examples/data subdirectory of the IDL distribution. This file
contains scattered elevation data of a model of an inlet. This scattered elevation data
contains two duplicate locations. The GRID_INPUT procedure is used to omit the
duplicate locations.

; Import the Data:

; Determine the path to the file.
file = FILE_SEARCH(!DIR, 'irreg_grid1.txt')

; Import the data from the file into a structure.

"Min" Retain the minimum of the duplicate locations
(Min(F)).

"Max" Retain the maximum of the duplicate locations
(Max(F)).

String Meaning

Table 27: DUPLICATE Keyword Values (Continued)
GRID_INPUT IDL Reference Guide

 741
dataStructure = READ_ASCII(file)

; Get the imported array from the first field of
; the structure.
dataArray = TRANSPOSE(dataStructure.field1)

; Initialize the variables of this example from
; the imported array.
x = dataArray[*, 0]
y = dataArray[*, 1]
data = dataArray[*, 2]

; Display the Data:

; Scale the data to range from 1 to 253 so a color table can be
; applied. The values of 0, 254, and 255 are reserved as outliers.
scaled = BYTSCL(data, TOP = !D.TABLE_SIZE - 4) + 1B

; Load the color table. If you are on a TrueColor, set the
; DECOMPOSED keyword to the DEVICE command before running a
; color table related routine.
DEVICE, DECOMPOSED = 0
LOADCT, 38

; Open a display window and plot the data points.
WINDOW, 0
PLOT, x, y, /XSTYLE, /YSTYLE, LINESTYLE = 1, $

TITLE = 'Original Data, Scaled (1 to 253)', $
XTITLE = 'x', YTITLE = 'y'

; Now display the data values with respect to the color table.
FOR i = 0L, (N_ELEMENTS(x) - 1) DO PLOTS, x[i], y[i], PSYM = -1, $

SYMSIZE = 2., COLOR = scaled[i]

; Preprocess and sort the data. GRID_INPUT will
; remove any duplicate locations.
GRID_INPUT, x, y, data, xSorted, ySorted, dataSorted

; Display the results from GRID_INPUT:

; Scale the resulting data.
scaled = BYTSCL(dataSorted, TOP = !D.TABLE_SIZE - 4) + 1B

; Open a display window and plot the resulting data points.
WINDOW, 1
PLOT, xSorted, ySorted, /XSTYLE, /YSTYLE, LINESTYLE = 1, $

TITLE = 'The Data Preprocessed and Sorted, Scaled (1 to 253)', $
XTITLE = 'x', YTITLE = 'y'
IDL Reference Guide GRID_INPUT

742
; Now display the resulting data values with respect to the color
; table.
FOR i = 0L, (N_ELEMENTS(xSorted) - 1) DO PLOTS, $

xSorted[i], ySorted[i], PSYM = -1, COLOR = scaled[i], $
SYMSIZE = 2.

Version History

Introduced: 5.5

See Also

GRIDDATA
GRID_INPUT IDL Reference Guide

 743
GRID_TPS

The GRID_TPS function uses thin plate splines to interpolate a set of values over a
regular two dimensional grid, from irregularly sampled data values. Thin plate splines
are ideal for modeling functions with complex local distortions, such as warping
functions, which are too complex to be fit with polynomials.

Given n points, (xi, yi) in the plane, a thin plate spline can be defined as:

with the constraints:

where ri
2 = (x-xi)

2 + (y-yi)
2. A thin plate spline (TPS) is a smooth function, which

implies that it has continuous first partial derivatives. It also grows almost linearly
when far away from the points (xi, yi). The TPS surface passes through the original
points: f(xi, yi) = zi.

Note
GRID_TPS requires at least 7 noncolinear points.

Syntax

Result = GRID_TPS (Xp, Yp, Values [, COEFFICIENTS=variable]
[, NGRID=[nx, ny]] [, START=[x0, y0]] [, DELTA=[dx, dy]])

Return Value

An array of dimension (nx, ny) of interpolated values. If the values argument is a two-
dimensional array, the output array has dimensions (nz, nx, ny), where nz is the
leading dimension of the values array allowing for the interpolation of arbitrarily
sized vectors in a single call. Keywords can be used to specify the grid dimensions,
size, and location.

f x y,() a0 a+ 1x a2y
1
2
--- biri

2
ri

2
log

i 0=

n 1–

∑+ +=

bi

i 1=

n 1–

∑ bixi biyi 0=

i 0=

n 1–

∑=

i 1=

n 1–

∑=
IDL Reference Guide GRID_TPS

744
Note
If the Cholesky factorization used within GRID_TPS fails, then Result will be a
scalar -1.

Arguments

Xp

A vector of x points.

Yp

A vector of y points, with the same number of elements as the Xp argument.

Values

A vector or two-dimensional array of values to interpolate. If values are a two-
dimensional array, the leading dimension is the number of values for which
interpolation is performed.

Keywords

COEFFICIENTS

A named variable in which to store the resulting coefficients of the thin plate spline
function for the last set of Values. The first N elements, where N is the number of
input points, contain the coefficients bi, in the previous equation. Coefficients with
subscripts n, n+1, and n+2, contain the values of a0, a1, and a2, in the above equation.

DELTA

A two-element array of the distance between grid points (dx, dy). If a scalar is passed,
the value is used for both dx and dy. The default is the range of the xp and yp arrays
divided by (nx – 1, ny – 1).

NGRID

A two-element array of the size of the grid to interpolate (nx, ny). If a scalar is passed,
the value is used for both nx and ny. The default value is [25, 25].
GRID_TPS IDL Reference Guide

 745
START

A two-element array of the location of grid point (x0, y0). If a scalar is passed, the
value is used for both x0 and y0. The default is the minimum values in the xp and yp
arrays.

References

I. Barrodale, et al, “Note: Warping digital images using thin plate splines”, Pattern
Recognition, Vol 26, No. 2, pp 375-376, 1993.

M. J. D. Powell, “Tabulation of thin plate splines on a very fine two-dimensional
grid”, Report No. DAMTP 1992/NA2, University of Cambridge, Cambridge, U.K.
(1992).

Examples

The following example creates a set of 25 random values defining a surface on a
square, 100 units on a side, starting at the origin. Then, we use GRID_TPS to create a
regularly gridded surface, with dimensions of 101 by 101 over the square, which is
then displayed. The same data set is then interpolated using TRIGRID, and the two
results are displayed for comparison.

;X values
x = RANDOMU(seed, 25) * 100

;Y values
y = RANDOMU(seed, 25) * 100

;Z values
z = RANDOMU(seed, 25) * 10

z1 = GRID_TPS(x, y, z, NGRID=[101, 101], START=[0,0], DELTA=[1,1])

;Show the result
SHADE_SURF, z1, TITLE='TPS'

;Grid using TRIGRID
TRIANGULATE, x, y, tr, bounds

z2 = TRIGRID(x, y, z, tr, [1,1], [0,0,100, 100], $
EXTRAPOLATE=bounds)

;Show triangulated surface
SHADE_SURF, z2, TITLE='TRIGRID - Quintic'
IDL Reference Guide GRID_TPS

746
Version History

Introduced: 5.2

See Also

MIN_CURVE_SURF
GRID_TPS IDL Reference Guide

 747
GRID3

The GRID3 function fits a smooth function to a set of 3D scattered nodes (xi, yi, zi)
with associated data values (fi). The function can be sampled over a set of user-
specified points, or over an arbitrary 3D grid which can then be viewed using the
SLICER3 procedure.

GRID3 uses the method described in Renka, R. J., “Multivariate Interpolation of
Large Sets of Scattered Data,” ACM Transactions on Mathematical Software, Vol. 14,
No. 2, June 1988, Pages 139-148, which has been referred to as the Modified
Shepard’s Method. The function described by this method has the advantages of
being equal to the values of fi, at each (xi, yi, zi), and being smooth (having continuous
first partial derivatives).

Syntax

Result = GRID3(X, Y, Z, F, Gx, Gy, Gz [, DELTA=scalar/vector] [, DTOL=value]
[, GRID=value] [, NGRID=value] [, START=[x, y, z]])

Return Value

If no optional or keyword parameters are supplied, GRID3 produces a regularly-
sampled volume with dimensions of (25, 25, 25), made up of single-precision,
floating-point values, enclosing the original data points.

Arguments

X, Y, Z and F

Arrays containing the locations of the data points, and the value of the variable to be
interpolated at that point. X, Y, Z, and F must have the same number of elements (with
a minimum of 10 elements per array) and are converted to floating-point if necessary.

Note
For the greatest possible accuracy, the arrays X, Y, and Z should be scaled to fit in
the range [0,1].

Gx, Gy, and Gz

Optional arrays containing the locations within the volume to be sampled (if the
GRID keyword is not set), or the locations along each axis of the sampling grid (if the
IDL Reference Guide GRID3

748
GRID keyword is set). If these parameters are supplied, the keywords DELTA,
NGRID, and START are ignored.

If the keyword GRID is not set, the result has the same number of elements as Gx, Gy,
and Gz. The ith element of the result contains the value of the interpolate at (Gxi, Gyi,
Gzi). The result has the same dimensions as Gx.

If the GRID keyword is set, the result of GRID3 is a three-dimensional, single-
precision, floating-point array with dimensions of (Nx, Ny, Nz), where Nx, Ny, and Nz
are the number of elements in Gx, Gy, and Gz, respectively.

Keywords

DELTA

Set this keyword to a three-element vector or a scalar that specifies the grid spacing in
the X, Y, and Z dimensions. The default spacing produces NGRID samples within the
range of each axis.

DTOL

The tolerance for detecting an ill-conditioned system of equations. The default value
is 0.01, which is appropriate for small ranges of X, Y, and Z. For large ranges of X, Y,
or Z, it may be necessary to decrease the value of DTOL. If you receive the error
message “GRID3: Ill-conditioned matrix or all nodes co-planar,” try decreasing the
value of DTOL.

GRID

This keyword specifies the interpretation of Gx, Gy, and Gz. The default value for
GRID is zero if Gx, Gy, and Gz are supplied, otherwise a regularly-gridded volume is
produced.

NGRID

The number of samples along each axis. NGRID can be set to a scalar, in which case
each axis has the same number of samples, or to a three-element array containing the
number of samples for each axis. The default value for NGRID is 25.

START

A three-element array that specifies the starting value for each grid. The default value
for START is the minimum value in the respective X, Y, and Z array.
GRID3 IDL Reference Guide

 749
Examples

Produce a set random points within the (0,1) unit cube and simulate a function:

; Number of irregular samples:
N = 300

; Generate random values between 0 and 1:
X = RANDOMU(SEED, N)
Y = RANDOMU(SEED, N)
Z = RANDOMU(SEED, N)

; The function to simulate:
F = (X-.5)^2 + (Y-.5)^2 + Z

; Return a cube with 25 equal-interval samples along each axis:
Result = GRID3(X, Y, Z, F)

; Return a cube with 11 elements along each dimension, which
; samples each axis at (0, 0.1, ..., 1.0):
Result = GRID3(X, Y, Z, F, START=[0., 0., 0], $

DELTA=0.1, NGRID=10)

The same result is produced by the statements:

; Create sample values:
S = FINDGEN(11) / 10.
Result = GRID3(X, Y, Z, F, S, S, S, /GRID)

Version History

Introduced: Pre 4.0

See Also

SLICER3
IDL Reference Guide GRID3

750
GRIDDATA

The GRIDDATA function interpolates scattered data values and locations sampled on
a plane or a sphere to a regular grid. This is accomplished using one of several
available methods. The function result is a two-dimensional floating point array.
Computations are performed in single precision floating point. Interpolation methods
supported by this function are as follows:

Syntax

Interleaved

Result = GRIDDATA(X, F)

Planar

Result = GRIDDATA(X, Y, F)

Sphere From Cartesian Coordinates

Result = GRIDDATA(X, Y, Z, F, /SPHERE)

Sphere From Spherical Coordinates

Result = GRIDDATA(Lon, Lat, F, /SPHERE)

Inverse Distance Keywords:
[, METHOD='InverseDistance' | /INVERSE_DISTANCE]
[, ANISOTROPY=vector] [, /DEGREES] [, DELTA=vector]
[, DIMENSION=vector] [, TRIANGLES=array [, EMPTY_SECTORS=value]
[, MAX_PER_SECTOR=value] [, MIN_POINTS=value]
[, SEARCH_ELLIPSE=vector]] [, FAULT_POLYGONS=vector]
[, FAULT_XY=array] [, /GRID, XOUT=vector, YOUT=vector]
[, MISSING=value] [, POWER=value] [, SECTORS={1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 }]
[, SMOOTHING=value] [, /SPHERE] [, START=vector]

• Inverse Distance (default) • Natural Neighbor

• Kriging • Nearest Neighbor

• Linear • Polynomial Regression

• Minimum Curvature • Quintic

• Modified Shepard’s • Radial Basis Function
GRIDDATA IDL Reference Guide

 751
Kriging Keywords: METHOD='Kriging' | /KRIGING [, ANISOTROPY=vector]
[, DELTA=vector] [, DIMENSION=vector]
[, TRIANGLES=array [, EMPTY_SECTORS=value]
[, MAX_PER_SECTOR=value] [, MIN_POINTS=value]
[, SEARCH_ELLIPSE=vector]] [, FAULT_POLYGONS=vector]
[, FAULT_XY=array] [, /GRID, XOUT=vector, YOUT=vector]
[, MISSING=value] [, SECTORS={1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 }] [, /SPHERE]
[, START=vector] [, VARIOGRAM=vector]

Linear Interpolation Keywords:
METHOD='Linear' | /LINEAR , TRIANGLES=array [, DELTA=vector]

[, DIMENSION=vector] [, /GRID, XOUT=vector, YOUT=vector]
[, MISSING=value] [, START=vector]

Minimum Curvature Keywords:
METHOD='MinimumCurvature' | /MIN_CURVATURE [, DELTA=vector]
[, DIMENSION=vector] [, START=vector]

Modified Shepard’s Keywords: METHOD='ModifiedShepards' | /SHEPARDS,
TRIANGLES=array [, ANISOTROPY=vector] [, DELTA=vector]
[, DIMENSION=vector] [, EMPTY_SECTORS=value]
[, FAULT_POLYGONS=vector] [, FAULT_XY=array] [, /GRID, XOUT=vector,
YOUT=vector] [, MAX_PER_SECTOR=value] [, MIN_POINTS=value]
[, MISSING=value] [, NEIGHBORHOOD=array] [, SEARCH_ELLIPSE=vector]
[, SECTORS={1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 }] [, START=vector]

Natural Neighbor Keywords:
METHOD='NaturalNeighbor' | /NATURAL_NEIGHBOR, TRIANGLES=array
[, /DEGREES] [, DELTA=vector] [, DIMENSION=vector]
[, /GRID, XOUT=vector, YOUT=vector] [, MISSING=value]
[, /SPHERE] [, START=vector]

Nearest Neighbor Keywords:
METHOD='NearestNeighbor' | /NEAREST_NEIGHBOR, TRIANGLES=array
[, /DEGREES] [, DELTA=vector] [, DIMENSION=vector]
[, FAULT_POLYGONS=vector] [, FAULT_XY=array] [, /GRID, XOUT=vector,
YOUT=vector] [, MISSING=value] [, /SPHERE] [, START=vector]
IDL Reference Guide GRIDDATA

752
Polynomial Regression Keywords:
METHOD='PolynomialRegression' | /POLYNOMIAL_REGRESSION,
[, DELTA=vector] [, DIMENSION=vector]
[, TRIANGLES=array [, EMPTY_SECTORS=value]
[, MAX_PER_SECTOR=value] [, MIN_POINTS=value]
[, SEARCH_ELLIPSE=vector]] [, FAULT_POLYGONS=vector]
[, FAULT_XY=array] [, /GRID, XOUT=vector, YOUT=vector]
[, MISSING=value] [, POWER=value] [, SECTORS={1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 }]
[, START=vector]

Quintic Keywords: METHOD='Quintic' | /QUINTIC, TRIANGLES=array
[, DELTA=vector] [, DIMENSION=vector] [, MISSING=value]
[, START=vector]

Radial Basis Function Keywords:
METHOD='RadialBasisFunction' | /RADIAL_BASIS_FUNCTION,
[, ANISOTROPY=vector] [, /DEGREES] [, DELTA=vector]
[, DIMENSION=vector] [, TRIANGLES=array [, EMPTY_SECTORS=value]
[, MAX_PER_SECTOR=value] [, MIN_POINTS=value]
[, SEARCH_ELLIPSE=vector]] [, FAULT_POLYGONS=vector]
[, FAULT_XY=array] [, FUNCTION_TYPE={ 0 | 1 | 2 | 3 | 4 }]
[, /GRID, XOUT=vector, YOUT=vector] [, MISSING=value]
[, SECTORS={1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 }] [, SMOOTHING=value] [, /SPHERE]
[, START=vector]

Return Value

Result is a two-dimensional floating point array. Computations are preformed in
single precision floating point.

Arguments

X [, Y [, Z]]

The point locations. If only one input coordinate parameter is supplied, the points are
interleaved; for the Cartesian coordinate system the points are 2-by-n dimensions;
and 3-by-n for a sphere in Cartesian coordinates.

F

The function value at each location in the form of an n-point vector.
GRIDDATA IDL Reference Guide

 753
Note
GRIDDATA will use the minimum number of points specified in any of the X, Y, Z,
or F array arguments as the number of input points and function values.

Lon, Lat

These arguments contain the locations (on a sphere) of the data points (similar to X,
and Y) but are in degrees or radians (default) depending on the use of the keyword
DEGREES.

Keywords

ANISOTROPY

This keyword is a vector describing an ellipse (see the description for the
SEARCH_ELLIPSE keyword). All points on the circumference of the ellipse have an
equal influence on a point at the center of the ellipse.

For example, assume that atmospheric data are being interpolated, with one
dimension being altitude, and the other dimension representing distance from a point.
If the vertical mixing is half that of the horizontal mixing, a point 100 units from an
interpolate and at the same level has the same influence as a point 50 units above or
below the interpolate at the same horizontal location. This effect requires setting the
ANISOTROPY keyword to [2, 1, 0] which forms an ellipse with an X-axis length
twice as long as its Y-axis length.

DEGREES

By default, all angular inputs and keywords are assumed to be in radian units. Set the
DEGREES keyword to change the angular input units to degrees.

DELTA

A two-element array specifying the grid spacing in X and Y.

If this keyword is not specified, or if either element is set equal to zero, the grid
spacing is determined from the values of the DIMENSION and START keywords,
according to the following rules:

• DELTA[0] = (max(x) - START[0])/(DIMENSION - 1)

• DELTA[1] = (max(y) - START[1])/(DIMENSION - 1)

DELTA can also be set to a scalar value to be used for the grid size in both X and Y.
IDL Reference Guide GRIDDATA

754
This keyword is ignored if the GRID, XOUT and YOUT keywords are specified.

DIMENSION

A two element array specifying the grid dimensions in X and Y. Default value is 25
for each dimension. This keyword can also be set to a scalar value to be used for the
grid spacing in both X and Y.

This keyword is ignored if the GRID, XOUT and YOUT keywords are specified.

EMPTY_SECTORS

This keyword defines the search rules for the maximum number of sectors that may
be empty when interpolating at each point. If this number or more sectors contain no
data points, considering the search ellipse and/or the fault polygons, the resulting
interpolant is the missing data value.

Note
The TRIANGLES keyword is required when the EMPTY_SECTORS,
MAX_PER_SECTOR, MIN_POINTS, or SEARCH_ELLIPSE keywords are used.

FAULT_POLYGONS

Set this keyword to an array containing one or more polygon descriptions. A polygon
description is an integer or longword array of the form: [n, i0, i1, ..., in–1], where n is
the number of vertices that define the polygon, and i0...in–1 are indices into the
FAULT_XY vertices. The FAULT_POLYGON array may contain multiple polygon
descriptions that have been concatenated. To have this keyword ignore an entry in the
FAULT_POLYGONS array, set the vertex count, n, and all associated indices to 0. To
end the drawing list, even if additional array space is available, set n to –1. If this
keyword is not specified, a single connected polygon is generated from FAULT_XY.

Note
FAULT_POLYGONS are not supported with spherical gridding.

FAULT_XY

The a 2-by-n array specifying the coordinates of points on the fault lines/polygons.

Note
FAULT_XY is not supported with spherical gridding.
GRIDDATA IDL Reference Guide

 755
FUNCTION_TYPE

Note
This keyword is only used with the Radial Basis Function method of interpolation.

Set this keyword to one of the values shown in the following table to indicate which
basis function to use. Default is 0, the Inverse Multiquadric function.

GRID

The GRID keyword controls how the XOUT and YOUT vectors specify where
interpolates are desired.

If GRID is set, XOUT and YOUT must also be specified. Interpolation is performed
on a regular or irregular grid specified by the vectors XOUT with m elements and
YOUT with n elements. The Result is an m-by-n grid with point [i, j] resulting from
the interpolation at (XOUT[i], YOUT[j]). When XOUT and YOUT are used, the
DELTA, DIMENSION and START keywords are ignored.

INVERSE_DISTANCE

Selects the Inverse Distance method of interpolation.

Value Function Type Used Equation

0 Inverse Multiquadric

1 Multilog

2 Multiquadric

3 Natural Cubic Spline

4 Thin Plate Spline

Note - In the equations, h = the anisotropically scaled distance from the interpolant
to the node, and R2 = the value of the SMOOTHING keyword.

B h() 1 h
2

R
2

+()⁄=

B h() h
2

R
2

+()log=

B h() h
2

R
2

+=

B h() h
2

R
2

+()
3 2⁄

=

B h() h
2

R
2

+() h
2

R
2

+()log=
IDL Reference Guide GRIDDATA

756
KRIGING

Selects the Kriging method of interpolation. The variogram type for the Kriging
method is set by default, however the VARIOGRAM keyword can be used to set
variogram parameters.

LINEAR

Selects the Linear method of interpolation. The TRIANGLES keyword is required
when the LINEAR keyword is used.

MAX_PER_SECTOR

This keyword defines the search rules for the maximum number of data points to
include in each sector when interpolating. Search rules effectively limit the number
of data points used in computing each interpolate. For example, to use the nearest n
nodes to compute each interpolant, specify MAX_PER_SECTOR = n and use the
TRIANGLES keyword.

Note
The TRIANGLES keyword is required when the EMPTY_SECTORS,
MAX_PER_SECTOR, MIN_POINTS, or SEARCH_ELLIPSE keywords are used.

METHOD

A string containing one of the method names as shown in the following table. The
default for METHOD is “InverseDistance”.

Note
The interpolation method can be chosen using the METHOD keyword set to the
specific string, or by setting the corresponding method name keyword.

There are no spaces between words in the method strings and the strings are case
insensitive.

Method String Meaning

"InverseDistance" Data points closer to the grid points have more effect
than those which are further away.

Table 28: METHOD Keyword Values
GRIDDATA IDL Reference Guide

 757
MIN_CURVATURE

Selects the Minimum Curvature method of interpolation.

Note
If the Cholesky factorization used within the Minimum Curvature method fails,
then a scalar -1 will be returned instead of the two-dimensional array.

"Kriging" Data points and their spatial variance are used to
determine trends which are applied to the grid points.

"Linear" Grid points are linearly interpolated from triangles
formed by Delaunay triangulation.

"MinimumCurvature" A plane of grid points is conformed to the data points
while trying to minimize the amount of bending in the
plane.

"ModifiedShepards" Inverse Distance weighted with the least squares
method.

"NaturalNeighbor" Each interpolant is a linear combination of the three
vertices of its enclosing Delaunay triangle and their
adjacent vertices.

"NearestNeighbor" The grid points have the same value as the nearest data
point.

"PolynomialRegression" Each interpolant is a least-squares fit of a polynomial
in X and Y of the specified power to the specified data
points.

"Quintic" Grid points are interpolated with quintic polynomials
from triangles formed by Delaunay triangulation.

"RadialBasisFunction" The effects of data points are weighted by a function
of their radial distance from a grid point.

Method String Meaning

Table 28: METHOD Keyword Values
IDL Reference Guide GRIDDATA

758
MIN_POINTS

If fewer than this number of data points are encountered in all sectors, the value of the
resulting grid point is set to the value of the MISSING keyword.

The MIN_POINTS keyword also indicates the number of closest points used for each
local fit, if SEARCH_ELLIPSE isn’t specified.

Note
The TRIANGLES keyword is required when the EMPTY_SECTORS,
MAX_PER_SECTOR, MIN_POINTS, or SEARCH_ELLIPSE keywords are used.

MISSING

Set this keyword to the value to use for missing data values. Default is 0.

NATURAL_NEIGHBOR

Selects the Natural Neighbor method of interpolation.

Note
The TRIANGLES keyword is required when the NATURAL_NEIGHBOR
keyword is used.

NEAREST_NEIGHBOR

Selects the Nearest Neighbor method of interpolation.

Note
The TRIANGLES keyword is required when the NEAREST_NEIGHBOR
keyword is used.

NEIGHBORHOOD

Note
The NEIGHBORHOOD keyword is only used for the Modified Shepard’s method
of interpolation.

A two-element array, [Nq, Nw] defining the quadratic fit, Nq, and weighting, Nw,
neighborhood sizes for the Modified Shepard’s method. The default for Nq is the
smaller of 13 and the number of points minus 1, with a minimum of 5. The default for
Nw is the smaller of 19 and the number of points. The Modified Shepard’s method
GRIDDATA IDL Reference Guide

 759
first computes the coefficients of a quadratic fit for each input point, using its Nq
closest neighbors.

When interpolating an output point, the quadratic fits from the Nw closest input
points are weighted inversely by a function of distance and then combined. The size
of the neighborhood used for Shepard’s method interpolation may also be specified
by the search rules keywords.

POLYNOMIAL_REGRESSION

Selects the Polynomial Regression method for interpolation. The power of the
polynomial regression is set to 2 by default, however the POWER keyword can be
used to change the power to 1 or 3.

The function fit to each interpolant corresponding to the POWER keyword set equal
to 1, 2 (the default), and 3 respectively is as follows:

By inspection, a minimum of three data points are required to fit the linear
polynomial, six data points for the second polynomial equation (where POWER = 2),
and ten data points for the third polynomial (POWER = 3). If not enough data points
exist for a given interpolant, the missing data values are set to the value of the
MISSING keyword.

POWER

The weighting power of the distance, or the maximum order in the polynomial fitting
function. For polynomial regression, this value is either 1, 2 (the default), or 3.

Note
The POWER keyword is only used for the Inverse Distance and Polynomial
Regression methods of interpolation.

QUINTIC

Selects the triangulation with Quintic interpolation method.

Note
The TRIANGLES keyword is required when the QUINTIC keyword is used.

F x y(,) a0 a1x a2y+ +=

F x y(,) a0 a1x a2y a3x
2

a4y
2

a5xy+ + + + +=

F x y(,) a0 a1x a2y a3x
2

a4y
2

a5xy a6x
3

a7y
3

a8x
2
y a9xy

2
+ + + + + + + + +=
IDL Reference Guide GRIDDATA

760
RADIAL_BASIS_FUNCTION

Selects the Radial Basis Function method of interpolation.

SEARCH_ELLIPSE

This keyword defines the search rules as a scalar or vector of from 1 to 3 elements
that specify an ellipse or circle in the form [R1], [R1, R2], or [R1, R2, Theta]. R1 is
one radius, R2 the other radius, and Theta describes the angle between the X-axis to
the R1-axis, counterclockwise, in degrees or radians as specified by the DEGREES
keyword. Only data points within this ellipse, centered on the location of the
interpolate, are considered. If not specified, or 0, this distance test is not applied.
Search rules effectively limit the number of data points used in computing each
interpolate.

For example, to only consider data points within a distance of 5 units of each
interpolant, specify the keyword as SEARCH_ELLIPSE = 5.

Note
The TRIANGLES keyword is required when the EMPTY_SECTORS,
MAX_PER_SECTOR, MIN_POINTS, or SEARCH_ELLIPSE keywords are used.

SECTORS

This keyword defines the search rules for the number of sectors used in applying the
MAX_SECTOR, EMPTY_SECTORS, and MIN_POINTS tests, an integer from 1
(the default setting) to 8.

SHEPARDS

Selects the Modified Shepard’s method of interpolation. The parameters for the
Modified Shepard’s method are set by default, however the NEIGHBORHOOD
keyword can be used to modify the parameters.

Note
The TRIANGLES keyword is required when the SHEPARDS keyword is used.

SMOOTHING

A scalar value defining the smoothing radius. For the Radial Basis Function method,
if SMOOTHING is not specified, the default value is equal to the average point
spacing, assuming a uniform distribution. For the Inverse Distance method, the
default value is 0, implying no smoothing.
GRIDDATA IDL Reference Guide

 761
Note
The SMOOTHING keyword is used only for the Inverse Distance and Radial Basis
Function methods of interpolation.

SPHERE

If set, data points lie on the surface of a sphere.

START

A scalar or a two-element array specifying the start of the grid in X and Y. Default
value is [min(x), min(y)].

This keyword is ignored if the GRID, XOUT and YOUT keywords are specified.

TRIANGLES

A 3-by-nt longword array describing the connectivity of the input points, as returned
by TRIANGULATE, where nt is the number of triangles. If duplicate point locations
are input and the TRIANGLES keyword is present, only one of the points is
considered.

Note
The TRIANGLES keyword is required for the Natural Neighbor, Nearest Neighbor,
Modified Shepard’s, Linear, and Quintic Interpolation methods.

Note
The TRIANGLES keyword is required when the EMPTY_SECTORS,
MAX_PER_SECTOR, MIN_POINTS, or SEARCH_ELLIPSE keywords are used.

VARIOGRAM

Specifies the variogram type and parameters for the Kriging method. This parameter
is a vector of one to four elements in the form of: [Type, Range, Nugget, Scale]. The
Type is encoded as: 1 for linear, 2 for exponential, 3 for gaussian, 4 for spherical.
Defaults values are: Type is exponential, Range is 8 times the average point spacing
assuming a uniform distribution, Nugget is zero, and Scale is 1.

Note
The VARIOGRAM keyword is only used with the Kriging method of interpolation.
IDL Reference Guide GRIDDATA

762
The following functions are used to model the variogram functions:

Linear Covariance:

Exponential Covariance:

Gaussian Covariance:

Spherical Covariance:

where d is the distance from one point to another, R is the range value, N is the nugget
value, and S is the scale value.

XOUT

If the GRID keyword is set, use XOUT to specify irregularly spaced rectangular
output grids. If XOUT is specified, YOUT must also be specified. When XOUT and
YOUT are used, the DELTA, DIMENSION and START keywords are ignored.

If GRID is not set (the default), the location vectors XOUT and YOUT directly
contain the X and Y values of the interpolates, and must have the same number of
elements. The Result has the same structure and number of elements as XOUT and
YOUT, with point [i] resulting from the interpolation at (XOUT[i], YOUT[i]).

Covariance
N if d 0=

Sd if d R<
0 if d R>

=

Covariance
N S+ if d 0=

Se
3d– R⁄()

if d 0>
=

Covariance
N S+ if d 0=

Se
3d– 2 R2⁄()

if d 0>
=

Covariance
N S+ if d 0=

S 1.5S d R⁄()– 0.5 d R⁄()3
+ if d R<

0 if d R>

=

GRIDDATA IDL Reference Guide

 763
YOUT

If the GRID keyword is set, use YOUT to specify irregularly spaced rectangular
output grids. If YOUT is specified, XOUT must also be specified. When XOUT and
YOUT are used, the DELTA, DIMENSION and START keywords are ignored.

If GRID is not set (the default), the location vectors XOUT and YOUT directly
contain the X and Y values of the interpolates, and must have the same number of
elements. The Result has the same structure and number of elements as XOUT and
YOUT, with point [i] resulting from the interpolation at (XOUT[i], YOUT[i]).

Examples

Example 1

This example interpolates a data set measured on an irregular grid. Various types of
the Inverse Distance interpolation method (the default method) are used in this
example.

; Create a dataset of N points.
n = 100 ;# of scattered points
seed = -121147L ;For consistency
x = RANDOMU(seed, n)
y = RANDOMU(seed, n)

; Create a dependent variable in the form a function of (x,y)
; with peaks & valleys.
f = 3 * EXP(-((9*x-2)^2 + (7-9*y)^2)/4) + $

3 * EXP(-((9*x+1)^2)/49 - (1-0.9*y)) + $
2 * EXP(-((9*x-7)^2 + (6-9*y)^2)/4) - $
EXP(-(9*x-4)^2 - (2-9*y)^2)

; Initialize display.
WINDOW, 0, XSIZE = 512, YSIZE = 768, TITLE = 'Inverse Distance'
!P.MULTI = [0, 1, 3, 0, 0]

; Inverse distance: Simplest default case which produces a 25 x
; 25 grid.
grid = GRIDDATA(x, y, f)
SURFACE, grid, CHARSIZE = 3, TITLE = 'Simple Example'

; Default case, Inverse distance.
grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51)
SURFACE, grid, CHARSIZE = 3, TITLE = 'Larger Grid'

; Inverse distance + smoothing.
grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $
IDL Reference Guide GRIDDATA

764
SMOOTH = 0.05)
SURFACE, grid, CHARSIZE = 3, TITLE = 'Smoothing'

; Set system variable back to default value.
!P.MULTI = 0

Example 2

This example uses the same data as the previous one, however in this example we use
the Radial Basis Function and the Modified Shepard’s interpolation methods.

; Create a dataset of N points.
n = 100 ;# of scattered points
seed = -121147L ;For consistency
x = RANDOMU(seed, n)
y = RANDOMU(seed, n)

; Create a dependent variable in the form of a function of (x,y)
; with peaks & valleys.
f = 3 * EXP(-((9*x-2)^2 + (7-9*y)^2)/4) + $

3 * EXP(-((9*x+1)^2)/49 - (1-0.9*y)) + $
2 * EXP(-((9*x-7)^2 + (6-9*y)^2)/4) - $
EXP(-(9*x-4)^2 - (2-9*y)^2)

; Initialize display.
WINDOW, 0, XSIZE = 512, YSIZE = 512, $
 TITLE = 'Different Methods of Gridding'
!P.MULTI = [0, 1, 2, 0, 0]

; Use radial basis function with multilog basis function.
grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $

/RADIAL_BASIS_FUNCTION, FUNCTION_TYPE = 1)
SURFACE, grid, CHARSIZE = 3, TITLE = 'Radial Basis Function'

; The following example requires triangulation.
TRIANGULATE, x, y, tr

; Use Modified Shepard's method.
grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $

TRIANGLES = tr, /SHEPARDS)
SURFACE, grid, CHARSIZE = 3, TITLE = "Modified Shepard's Method"

; Set system variable back to default value.
!P.MULTI = 0
GRIDDATA IDL Reference Guide

 765
Example 3

This example uses the same data as the previous ones, however in this example we
use various types of the Polynomial Regression interpolation method.

; Create a dataset of N points.
n = 100 ;# of scattered points
seed = -121147L ;For consistency
x = RANDOMU(seed, n)
y = RANDOMU(seed, n)

; Create a dependent variable in the form a function of (x,y)
; with peaks & valleys.
f = 3 * EXP(-((9*x-2)^2 + (7-9*y)^2)/4) + $

3 * EXP(-((9*x+1)^2)/49 - (1-0.9*y)) + $
2 * EXP(-((9*x-7)^2 + (6-9*y)^2)/4) - $
EXP(-(9*x-4)^2 - (2-9*y)^2)

; Initialize display.
WINDOW, 0, XSIZE = 512, YSIZE = 768, $

TITLE = 'Polynomial Regression'
!P.MULTI = [0, 1, 3, 0, 0]

; The following examples require the triangulation.
TRIANGULATE, x, y, tr

; Fit with a 2nd degree polynomial in x and y. This fit considers
; all points when fitting the surface, obliterating the individual
; peaks.
grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $
 TRIANGLES = tr, /POLYNOMIAL_REGRESSION)
SURFACE, grid, CHARSIZE = 3, TITLE = 'Global Degree 2 Polynomial'

; Fit with a 2nd degree polynomial in x and y, but this time use
; only the 10 closest nodes to each interpolant. This provides a
; relatively smooth surface, but still shows the individual peaks.
grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $
 TRIANGLES = tr, /POLYNOMIAL_REGRESSION, MAX_PER_SECTOR = 10)
SURFACE, grid, CHARSIZE = 3, TITLE = 'Local Polynomial, 10 Point'

; As above, but use only the nodes within a distance of 0.4 when
; fitting each interpolant.
grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $
 TRIANGLES = tr, /POLYNOMIAL_REGRESSION, SEARCH_ELLIPSE = 0.4)
SURFACE, grid, CHARSIZE = 3, $
 TITLE = 'Local Polynomial, Radius = 0.4'

!P.MULTI = 0 ; Set system variable back to default value.
IDL Reference Guide GRIDDATA

766
Example 4

This example uses the same data as the previous ones, however in this example we
show how to speed up the interpolation by limiting the interpolation to the local area
around each interpolate.

; Create a dataset of N points.\.
n = 100 ;# of scattered points
seed = -121147L ;For consistency
x = RANDOMU(seed, n)
y = RANDOMU(seed, n)

; Create a dependent variable in the form a function of (x,y)
; with peaks & valleys.
f = 3 * EXP(-((9*x-2)^2 + (7-9*y)^2)/4) + $

3 * EXP(-((9*x+1)^2)/49 - (1-0.9*y)) + $
2 * EXP(-((9*x-7)^2 + (6-9*y)^2)/4) - $
EXP(-(9*x-4)^2 - (2-9*y)^2)

; Note: the inverse distance, kriging, polynomial regression, and
; radial basis function methods are, by default, global methods in
; which each input node affects each output node. With these
; methods, large datasets can require a prohibitively long time to
; compute unless the scope of the interpolation is limited to a
; local area around each interpolate by specifying search rules.
; In fact, the radial basis function requires time proportional to
; the cube of the number of input points.

; For example, with 2,000 input points, a typical workstation
; required 500 seconds to interpolate a 10,000 point grid using
; radial basis functions. By limiting the size of the fit to the
; 20 closest points to each interpolate, via the MIN_POINTS
; keyword, the time required dropped to less than a second.

; Initialize display.
WINDOW, 0, XSIZE = 512, YSIZE = 512, $

TITLE = 'Radial Basis Function'
!P.MULTI = [0, 1, 2, 0, 0]

; Slow way:
grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $

/RADIAL_BASIS_FUNCTION)
SURFACE, grid, CHARSIZE = 3, TITLE = 'All Points'

; The following example requires triangulation.
TRIANGULATE, x, y, tr

; Faster way:
grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $
GRIDDATA IDL Reference Guide

 767
/RADIAL_BASIS_FUNCTION, MIN_POINTS = 15, TRIANGLES = tr)
SURFACE, grid, CHARSIZE = 3, TITLE = 'Nearest 15 Points'

; Set system variable back to default value.
!P.MULTI = 0

Example 5

This example interpolates a spherical data set measured on an irregular grid. We use
the Kriging and Natural Neighbors interpolation methods in this example.

; Create a 100 scattered points on a sphere and form a function
; of their latitude and longitude. Then grid them to a 2 degree
; grid over the sphere, display a Mollweide projection map, and
; overlay the contours of the result on the map.

; Create a dataset of N points.
n = 100
; A 2 degree grid with grid dimensions.
delta = 2
dims = [360, 180]/delta
; Longitude and latitudes
lon = RANDOMU(seed, n) * 360 - 180
lat = RANDOMU(seed, n) * 180 - 90
; The lon/lat grid locations
lon_grid = FINDGEN(dims[0]) * delta - 180
lat_grid = FINDGEN(dims[1]) * delta - 90

; Create a dependent variable in the form of a smoothly varying
; function.
f = SIN(2*lon*!DTOR) + COS(lat*!DTOR) ;

; Initialize display.
WINDOW, 0, XSIZE = 512, YSIZE = 768, TITLE = 'Spherical Gridding'
!P.MULTI = [0, 1, 3, 0, 0]

; Kriging: Simplest default case.
z = GRIDDATA(lon, lat, f, /KRIGING, /DEGREES, START = 0, /SPHERE, $

DELTA = delta, DIMENSION = dims)
MAP_SET, /MOLLWEIDE, /ISOTROPIC, /HORIZON, /GRID, CHARSIZE = 3, $

TITLE = 'Sphere: Kriging'
CONTOUR, z, lon_grid, lat_grid, /OVERPLOT, NLEVELS = 10, /FOLLOW

; This example is the same as above, but with the addition of a
; call to QHULL to triangulate the points on the sphere, and to
; then interpolate using the 10 closest points. The gridding
; portion of this example requires about one-fourth the time as
; above.
QHULL, lon, lat, tr, /DELAUNAY, SPHERE = s
IDL Reference Guide GRIDDATA

768
z = GRIDDATA(lon, lat, f, /DEGREES, START = 0, DELTA = delta, $
DIMENSION = dims, TRIANGLES = tr, MIN_POINTS = 10, /KRIGING, $
/SPHERE)

MAP_SET, /MOLLWEIDE, /ISOTROPIC, /HORIZON, /GRID, /ADVANCE, $
CHARSIZE = 3, TITLE = 'Sphere: Kriging, 10 Closest Points'

CONTOUR, z, lon_grid, lat_grid, /OVERPLOT, NLEVELS = 10, /FOLLOW

; This example uses the natural neighbor method, which is about
; four times faster than the above example but does not give as
; smooth a surface.
z = GRIDDATA(lon, lat, f, /DEGREES, START = 0, DELTA = delta, $

DIMENSION = dims, /SPHERE, /NATURAL_NEIGHBOR, TRIANGLES = tr)
MAP_SET, /MOLLWEIDE, /ISOTROPIC, /HORIZON, /GRID, /ADVANCE, $

CHARSIZE = 3, TITLE = 'Sphere: Natural Neighbor'
CONTOUR, z, lon_grid, lat_grid, /OVERPLOT, NLEVELS = 10, /FOLLOW

; Set system variable back to default value.
!P.MULTI = 0

Example 6

The following example uses the data from the irreg_grid1.txt ASCII file. This
file contains scattered elevation data of a model of an inlet. This scattered elevation
data contains two duplicate locations.

The GRID_INPUT procedure is used to omit the duplicate locations for the
GRIDDATA function. The GRIDDATA function is then used to grid the data using
the Radial Basis Function method. This method is specified by setting the METHOD
keyword the RadialBasisFunction string, although it could easily be done using
the RADIAL_BASIS_FUNCTION keyword.

; Import the Data:

; Determine the path to the file.
file = FILEPATH('irreg_grid1.txt', $

SUBDIRECTORY = ['examples', 'data'])

; Import the data from the file into a structure.
dataStructure = READ_ASCII(file)

; Get the imported array from the first field of
; the structure.
dataArray = TRANSPOSE(dataStructure.field1)

; Initialize the variables of this example from
; the imported array.
x = dataArray[*, 0]
y = dataArray[*, 1]
GRIDDATA IDL Reference Guide

 769
data = dataArray[*, 2]

; Display the Data:

; Scale the data to range from 1 to 253 so a color table can be
; applied. The values of 0, 254, and 255 are reserved as outliers.
scaled = BYTSCL(data, TOP = !D.TABLE_SIZE - 4) + 1B

; Load the color table. If you are on a TrueColor, set the
; DECOMPOSED keyword to the DEVICE command before running a
; color table related routine.
DEVICE, DECOMPOSED = 0
LOADCT, 38

; Open a display window and plot the data points.
WINDOW, 0
PLOT, x, y, /XSTYLE, /YSTYLE, LINESTYLE = 1, $

TITLE = 'Original Data, Scaled (1 to 253)', $
XTITLE = 'x', YTITLE = 'y'

; Now display the data values with respect to the color table.
FOR i = 0L, (N_ELEMENTS(x) - 1) DO PLOTS, x[i], y[i], PSYM = -1, $

SYMSIZE = 2., COLOR = scaled[i]

; Grid the Data and Display the Results:

; Preprocess and sort the data. GRID_INPUT will
; remove any duplicate locations.
GRID_INPUT, x, y, data, xSorted, ySorted, dataSorted

; Initialize the grid parameters.
gridSize = [51, 51]

; Use the equation of a straight line and the grid parameters to
; determine the x of the resulting grid.
slope = (MAX(xSorted) - MIN(xSorted))/(gridSize[0] - 1)
intercept = MIN(xSorted)
xGrid = (slope*FINDGEN(gridSize[0])) + intercept

; Use the equation of a straight line and the grid parameters to
; determine the y of the resulting grid.
slope = (MAX(ySorted) - MIN(ySorted))/(gridSize[1] - 1)
intercept = MIN(ySorted)
yGrid = (slope*FINDGEN(gridSize[1])) + intercept

; Grid the data with the Radial Basis Function method.
grid = GRIDDATA(xSorted, ySorted, dataSorted, $
 DIMENSION = gridSize, METHOD = 'RadialBasisFunction')
IDL Reference Guide GRIDDATA

770
; Open a display window and contour the Radial Basis Function
; results.
WINDOW, 1
scaled = BYTSCL(grid, TOP = !D.TABLE_SIZE - 4) + 1B
CONTOUR, scaled, xGrid, YGrid, /XSTYLE, /YSTYLE, /FILL, $

LEVELS = BYTSCL(INDGEN(18), TOP = !D.TABLE_SIZE - 4) + 1B, $
C_COLORS = BYTSCL(INDGEN(18), TOP = !D.TABLE_SIZE - 4) + 1B, $
TITLE = 'The Resulting Grid with Radial Basis Function', $
XTITLE = 'x', YTITLE = 'y'

Example 7

The following example uses the data from the irreg_grid1.txt ASCII file. This
file contains scattered elevation data of a model of an inlet. This scattered elevation
data contains two duplicate locations. The same data is used in the previous example.

The GRID_INPUT procedure is used to omit the duplicate locations for the
GRIDDATA function. The GRIDDATA function is then used to grid the data using
the Radial Basis Function method. This method is specified by setting the METHOD
keyword the RadialBasisFunction string, although it could easily be done using
the RADIAL_BASIS_FUNCTION keyword.

Faulting is also applied in this example. First, a fault area is placed around the right
side of the dataset. This fault area contains data points. The data points within this
area are gridded separately from the points outside of the fault area.

Then, a fault area is defined within an region that does not contain any data points.
Since this fault area does not contain any points, the grid within this region simply
results to the value defined by the MISSING keyword. The points outside of the fault
area are gridded independent of the fault region.

; Import the Data:

; Determine the path to the file.
file = FILEPATH('irreg_grid1.txt', $

SUBDIRECTORY = ['examples', 'data'])

; Import the data from the file into a structure.
dataStructure = READ_ASCII(file)

; Get the imported array from the first field of
; the structure.
dataArray = TRANSPOSE(dataStructure.field1)

; Initialize the variables of this example from
; the imported array.
x = dataArray[*, 0]
y = dataArray[*, 1]
GRIDDATA IDL Reference Guide

 771
data = dataArray[*, 2]

; Grid the Data and Display the Results:

; Preprocess and sort the data. GRID_INPUT will
; remove any duplicate locations.
GRID_INPUT, x, y, data, xSorted, ySorted, dataSorted

; Initialize the grid parameters.
gridSize = [51, 51]

; Use the equation of a straight line and the grid parameters to
; determine the x of the resulting grid.
slope = (MAX(xSorted) - MIN(xSorted))/(gridSize[0] - 1)
intercept = MIN(xSorted)
xGrid = (slope*FINDGEN(gridSize[0])) + intercept

; Use the equation of a straight line and the grid parameters to
; determine the y of the resulting grid.
slope = (MAX(ySorted) - MIN(ySorted))/(gridSize[1] - 1)
intercept = MIN(ySorted)
yGrid = (slope*FINDGEN(gridSize[1])) + intercept

; Initialize display.
DEVICE, DECOMPOSED = 0
LOADCT, 38
WINDOW, 0, XSIZE = 600, YSIZE = 600, $

TITLE = 'The Resulting Grid from the Radial Basis Function '+ $
'Method with Faulting'

!P.MULTI = [0, 1, 2, 0, 0]

; Define a fault area, which contains data points.
faultVertices = [[2200, 4000], [2200, 3000], [2600, 2700], $

[2600, -50], [5050, -50], [5050, 4000], [2200, 4000]]
faultConnectivity = [7, 0, 1, 2, 3, 4, 5, 6, -1]

; Grid the data with faulting using the Radial Basis Function
; method.
grid = GRIDDATA(xSorted, ySorted, dataSorted, $

DIMENSION = gridSize, METHOD = 'RadialBasisFunction', $
FAULT_XY = faultVertices, FAULT_POLYGONS = faultConnectivity, $
MISSING = MIN(dataSorted))

; Display grid results.
CONTOUR, BYTSCL(grid), xGrid, YGrid, /XSTYLE, /YSTYLE, /FILL, $

LEVELS = BYTSCL(INDGEN(18)), C_COLORS = BYTSCL(INDGEN(18)), $
TITLE = 'Fault Area Contains Data ' + $
'(Fault Area in Dashed Lines)', XTITLE = 'x', YTITLE = 'y'
IDL Reference Guide GRIDDATA

772
; Display outline of fault area.
PLOTS, faultVertices, /DATA, LINESTYLE = 2, THICK = 2

; Define a fault area, which does not contain data points.
faultVertices = [[2600, -50], [2800, -50], [2800, 2700], $

[2400, 3000], [2400, 4000], [2200, 4000], [2200, 3000], $
[2600, 2700], [2600, -50]]

faultConnectivity = [9, 0, 1, 2, 3, 4, 5, 6, 7, 8, -1]

; Grid the data with faulting using the Radial Basis Function
; method.
grid = GRIDDATA(xSorted, ySorted, dataSorted, $

DIMENSION = gridSize, METHOD = 'RadialBasisFunction', $
FAULT_XY = faultVertices, FAULT_POLYGONS = faultConnectivity, $
MISSING = MIN(dataSorted))

; Display grid results.
CONTOUR, BYTSCL(grid), xGrid, YGrid, /XSTYLE, /YSTYLE, /FILL, $

LEVELS = BYTSCL(INDGEN(18)), C_COLORS = BYTSCL(INDGEN(18)), $
TITLE = 'Fault Area Does Not Contain Data '+ $
'(Fault Area in Dashed Lines)', XTITLE = 'x', YTITLE = 'y'

; Display outline of fault area.
PLOTS, faultVertices, /DATA, LINESTYLE = 2, THICK = 2

; Set system variable back to default value.
!P.MULTI = 0

References

Kriging

Isaaks, E. H., and Srivastava, R. M., An Introduction to Applied Geostatistics, Oxford
University Press, New York, 1989.

Minimum Curvature

Barrodale, I., et al, "Warping Digital Images Using Thin Plate Splines", Pattern
Recognition, Vol 26, No 2, pp. 375-376., 1993.

Powell, M.J.D., "Tabulation of thin plate splines on a very fine two-dimensional
grid", Report No. DAMTP 1992/NA2, University of Cambridge, Cambridge, U.K.
1992.
GRIDDATA IDL Reference Guide

 773
Modified Shepard’s

Franke, R., and Nielson, G. , "Smooth Interpolation of Large Sets of Scattered Data",
International Journal for Numerical Methods in Engineering, v. 15, 1980, pp. 1691-
1704.

Renka, R. J., Algorithm 790 - CSHEP2D: Cubic Shepard Method for Bivariate
Interpolation of Scattered Data, Robert J. Renka, ACM Trans. Math Softw. 25, 1
(March 1999), pp. 70-73.

Shepard, D., "A Two Dimensional Interpolation Function for Irregularly Spaced
Data", Proc. 23rd Nat. Conf. ACM, 1968, pp. 517-523.

Natural Neighbor

Watson, D. F., Contouring: A Guide to the Analysis and Display of Spatial Data,
Pergamon Press, ISBN 0 08 040286 0, 1992.

Watson, D. F., Nngridr - An Implementation of Natural Neighbor Interpolation,
David Watson, P.O. Box 734, Clarement, WA 6010, Australia, 1994.

Quintic

Akima, H., Algorithm 761 - Scattered-data Surface Fitting that has the Accuracy of a
Cubic Polynomial, Hiroshi Akima, ACM Trans. Math. Softw. 22, 3 (Sep. 1996), pp.
362 - 371.

Renka, R.J., "A Triangle-based C1 Interpolation Method", Rocky Mountain Journal
of Mathematics, Vol 14, No. 1, 1984.

Radial Basis Function

Franke, R., A Critical Comparison of Some Methods for Interpolation of Scattered
Data, Naval Postgraduate School, Technical Report, NPS 53-79-003, 1979.

Hardy, R.L., "Theory and Applications of the Multiquadric-biharmonic Method",
Computers Math. With Applic, v 19, no. 8/9, 1990, pp.163-208.

Version History

Introduced: 5.5

See Also

GRID_INPUT
IDL Reference Guide GRIDDATA

774
GS_ITER

The GS_ITER function solves an n by n linear system of equations using Gauss-
Seidel iteration with over- and under-relaxation to enhance convergence.

Note
The equations must be entered in diagonally dominant form to guarantee
convergence. A system is diagonally dominant if the diagonal element in a given
row is greater than the sum of the absolute values of the non-diagonal elements in
that row.

This routine is written in the IDL language. Its source code can be found in the file
gs_iter.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = GS_ITER(A, B [, /CHECK] [, /DOUBLE] [, LAMBDA=value{0.0 to 2.0}]
[, MAX_ITER=value] [, TOL=value] [, X_0=vector])

Return Value

Returns the solution to the linear system of equations of the specified dimensions.

Arguments

A

An n by n integer, single-, or double-precision floating-point array. On output, A is
divided by its diagonal elements. Integer input values are converted to single-
precision floating-point values.

B

A vector containing the right-hand side of the linear system Ax=b. On output, B is
divided by the diagonal elements of A.
GS_ITER IDL Reference Guide

 775
Keywords

CHECK

Set this keyword to check the array A for diagonal dominance. If A is not in
diagonally dominant form, GS_ITER reports the fact but continues processing on the
chance that the algorithm may converge.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

LAMBDA

A scalar value in the range: [0.0, 2.0]. This value determines the amount of
relaxation. Relaxation is a weighting technique used to enhance convergence.

• If LAMBDA = 1.0, no weighting is used. This is the default.

• If 0.0 ≤ LAMBDA < 1.0, convergence improves in oscillatory and non-
convergent systems.

• If 1.0 < LAMBDA ≤ 2.0, convergence improves in systems already known to
converge.

MAX_ITER

The maximum allowed number of iterations. The default value is 30.

TOL

The relative error tolerance between current and past iterates calculated as:
((current-past)/current). The default is 1.0 × 10-4.

X_0

An n-element vector that provides the algorithm’s starting point. The default is [1.0,
1.0, ... , 1.0].

Example

; Define an array A:
A = [[1.0, 7.0, -4.0], $

[4.0, -4.0, 9.0], $
[12.0, -1.0, 3.0]]
IDL Reference Guide GS_ITER

776
; Define the right-hand side vector B:
B = [12.0, 2.0, -9.0]

; Compute the solution to the system:
RESULT = GS_ITER(A, B, /CHECK)

IDL prints:

Input matrix is not in Diagonally Dominant form.
Algorithm may not converge.
% GS_ITER: Algorithm failed to converge within given parameters.

Since the A represents a system of linear equations, we can reorder it into diagonally
dominant form by rearranging the rows:

A = [[12.0, -1.0, 3.0], $
[1.0, 7.0, -4.0], $
[4.0, -4.0, 9.0]]

; Make corresponding changes in the ordering of B:
B = [-9.0, 12.0, 2.0]

; Compute the solution to the system:
RESULT = GS_ITER(A, B, /CHECK)

IDL prints:

-0.999982 2.99988 1.99994

Version History

Introduced: Pre 4.0

See Also

CRAMER, LU_COMPLEX, CHOLSOL, LUSOL, SVSOL, TRISOL
GS_ITER IDL Reference Guide

 777
H_EQ_CT

The H_EQ_CT procedure histogram-equalizes the color tables for an image or a
region of the display. A pixel-distribution histogram is obtained, the cumulative
integral is taken and scaled, and the result is applied to the current color table.

This routine is written in the IDL language. Its source code can be found in the file
h_eq_ct.pro in the lib subdirectory of the IDL distribution.

Syntax

H_EQ_CT [, Image]

Arguments

Image

A two-dimensional byte array representing the image whose histogram is to be used
in determining the new color tables. If this value is omitted, the user is prompted to
mark the diagonal corners of a region of the display. If Image is specified, it is
assumed that the image is loaded into the current IDL window. Image must be scaled
the same way as the image loaded to the display.

Keywords

None.

Version History

Introduced: Pre 4.0

See Also

H_EQ_INT
IDL Reference Guide H_EQ_CT

778
H_EQ_INT

The H_EQ_INT procedure interactively histogram-equalizes the color tables of an
image or a region of the display. By moving the cursor across the screen, the amount
of histogram-equalization can be varied.

Either the image parameter or a region of the display marked by the user is used to
obtain a pixel-distribution histogram. The cumulative integral is taken and scaled and
the result is applied to the current color tables.

This routine is written in the IDL language. Its source code can be found in the file
h_eq_int.pro in the lib subdirectory of the IDL distribution.

Using the H_EQ_INT Interface

A window is created and the histogram equalization function is plotted. A linear ramp
is overplotted. Move the cursor from left to right to vary the amount of histogram
equalization applied to the color tables from 0 to 100%. Press the right mouse button
to exit.

Syntax

H_EQ_INT [, Image]

Arguments

Image

A two-dimensional byte array representing the image whose histogram is to be used
in determining the new color tables. If this value is omitted, the user is prompted to
mark the diagonal corners of a region of the display. If Image is specified, it is
assumed that the image is loaded into the current IDL window. Image must be scaled
the same way as the image loaded to the display.

Keywords

None.

Version History

Introduced: Pre 4.0
H_EQ_INT IDL Reference Guide

 779
See Also

H_EQ_CT
IDL Reference Guide H_EQ_INT

780
H5_* Routines

For information, see Chapter 3, “Hierarchical Data Format - HDF5” in the IDL
Scientific Data Formats manual.
H5_* Routines IDL Reference Guide

 781
H5_BROWSER

The H5_BROWSER function presents a graphical user interface for viewing and
reading HDF5 files. The browser provides a tree view of the HDF5 file or files, a data
preview window, and an information window for the selected objects. The browser
may be created as either a selection dialog with Open/Cancel buttons, or as a
standalone browser that can import data to the IDL main program level.

Note
This function is not part of the standard HDF5 interface, but is provided as a
programming convenience.

Syntax

Result = H5_BROWSER([Files] [, /DIALOG_READ])

Return Value

If the DIALOG_READ keyword is specified then the Result is a structure containing
the selected group or dataset (as described in the H5_PARSE function), or a zero if
the Cancel button was pressed. If the DIALOG_READ keyword is not specified then
the Result is the widget ID of the HDF5 browser.

Arguments

Files

An optional scalar string or string array giving the name of the files to initially open.
Additional files may be opened interactively. If Files is not provided then the user is
automatically presented with a File Open dialog upon startup.

Keywords

DIALOG_READ

If this keyword is set then the HDF5 browser is created as a modal Open/Cancel
dialog instead of a standalone GUI. In this case, the IDL command line is blocked,
and no further input is taken until the Open or Cancel button is pressed. If the
GROUP_LEADER keyword is specified, then that widget ID is used as the group
leader, otherwise a default group leader base is created.
IDL Reference Guide H5_BROWSER

782
All keywords to WIDGET_BASE, such as GROUP_LEADER and TITLE, are
passed on to the top-level base.

Graphical User Interface Options

Open HDF5 file

Click on this button to bring up a file selection dialog. Multiple files may be selected
for parsing. All selected files are added to the tree view.

Show preview

If this toggle button is selected, then the data within datasets will be shown in the
preview window. One-dimensional datasets will be shown as line plots. Two-
dimensional datasets will be shown as images, along with any provided image
palettes. For three or higher-dimensional datasets, a two dimensional slice will be
shown.

Fit in window

If this toggle button is selected, then the preview image will be scaled larger or
smaller to fit within the preview window. The aspect ratio of the image will be
unchanged.

Flip vertical

If this toggle button is selected, then the preview image will flipped from top to
bottom.

Flip horizontal

If this toggle button is selected, then the preview image will flipped from left to right.

Note
If the DIALOG_READ keyword is present then the following options are available:

Open

Click on this button to close the HDF5 browser, and return an IDL structure
containing the selected group or dataset, as described in the H5_PARSE function.

Cancel

Click on this button to close the HDF5 browser, and return a scalar zero for the result.
H5_BROWSER IDL Reference Guide

 783
Note
If the DIALOG_READ keyword is not present then the following options are
available:

Variable name for import

Set this text string to the name of the IDL variable to construct when importing HDF5
data to IDL structures. If the entered name is not a valid IDL identifier, then a valid
identifier will be constructed by converting all non-alphanumeric characters to
underscores.

Include data

If this toggle button is selected, then all data within the selected datasets will be read
in from the HDF5 file and included in the IDL structure.

Import to IDL

Click on this button to import the currently selected HDF5 object into the IDL main
program level. Imported variables will consist of a nested hierarchy of IDL
structures, as described in the H5_PARSE function.

Done

Click on this button to close the HDF5 browser.

Example

The following example starts up the HDF5 browser on a sample file:

File = FILEPATH('hdf5_test.h5', SUBDIR=['examples','data'])
Result = H5_BROWSER(File)

Version History

Introduced 5.6

See Also

H5_PARSE
IDL Reference Guide H5_BROWSER

784
HANNING

The HANNING function is used to create a “window” for Fourier Transform
filtering. It can be used to create both Hanning and Hamming windows.

This routine is written in the IDL language. Its source code can be found in the file
hanning.pro in the lib subdirectory of the IDL distribution.

The Hanning window is defined as:

 w(k) = alpha - (1-alpha)*cos(2 pi k/ N), k = 0,1,...,N-1

where alpha=0.5 for the Hanning, and alpha=0.54 for the Hamming window.

Note
Because of the factor of 1/N (rather than 1/(N-1)) in the above equation, the
Hanning filter is not exactly symmetric, and does not go to zero at the last point.
The factor of 1/N is chosen to give the best behavior for spectral estimation of
discrete data.

Syntax

Result = HANNING(N1 [, N2] [, ALPHA=value{0.5 to 1.0}] [, /DOUBLE])

Return Value

If only N1 is specified, this function returns an array of dimensions [N1]. If both N1
and N2 are specified, this function returns an array of dimensions [N1, N2]. If any of
the inputs are double-precision or if the DOUBLE keyword is set, the result is
double-precision, otherwise the result is single-precision.

Arguments

N1

The number of columns in the resulting array.

N2

The number of rows in the resulting array.
HANNING IDL Reference Guide

 785
Keywords

ALPHA

Set this keyword equal to the width parameter of a generalized Hamming window.
ALPHA must be in the range of 0.5 to 1.0. If ALPHA = 0.5 (the default) the function
is called a “Hanning” window. If ALPHA = 0.54, the result is called a “Hamming”
window.

DOUBLE

Set this keyword to force the computations to be done in double-precision arithmetic.

Examples

; Construct a time series with three sine waves.
n = 1024
dt = 0.02
w = 2*!DPI*dt*DINDGEN(n)
x = -0.3d + SIN(2.8d * w) + SIN(6.25d * w) + SIN(11.0d * w)
; Find the power spectrum with and without the Hanning filter.
han = HANNING(n, /DOUBLE)
powerHan = ABS(FFT(han*x))^2
powerUnfilt = ABS(FFT(x))^2
freq = FINDGEN(n)/(n*dt)
; Plot the results.
PLOT, freq, powerHan, /XLOG, /YLOG, $
 XRANGE=[1,1./(2*dt)], XSTYLE=1, $
 TITLE='Power spectrum with Hanning (solid) and without
(dashed)'
OPLOT, freq, powerUnfilt, LINESTYLE=2

Version History

Introduced: Original

See Also

FFT
IDL Reference Guide HANNING

786
HDF_* Routines

For information, see Chapter 4, “Hierarchical Data Format” in the IDL Scientific
Data Formats manual.
HDF_* Routines IDL Reference Guide

 787
HDF_BROWSER

The HDF_BROWSER function presents a graphical user interface (GUI) that allows
the user to view the contents of a Hierarchical Data Format (HDF), HDF-EOS, or
NetCDF file, and prepare a template for the extraction of HDF data and metadata into
IDL. The output template is an IDL structure that may be used when reading HDF
files with the HDF_READ routine. If you have several HDF files of identical form,
the returned template from HDF_BROWSER may be reused to extract data from
these files with HDF_READ. If you do not need a multi-use template, you may call
HDF_READ directly.

Graphical User Interface Menu Options

The following options are available from the graphical user interface menus.

Pulldown Menu

The following table shows the options available with the pulldown menu.

Menu Selection Description

HDF/NetCDF Summary

DF24 (24-bit Images) 24-bit images and their attributes

DFR8 (8-bit Images) 8-bit images and their attributes

DFP (Palettes) Image palettes

SD (Variables/Attributes) Scientific Datasets and attributes

AN (Annotations) Annotations

GR (Generic Raster) Images

GR Global (File) Attributes Image attributes

VGroups Generic data groups

VData Generic data and attributes

HDF-EOS Summary

Point EOS point data and attributes

Swath EOS swath data and attributes

Table 29: HDF_BROWSER Pulldown Menu Options
IDL Reference Guide HDF_BROWSER

788
Preview Button

If you have selected an image, 2D data set, or 3xnxm data set from the pulldown
menu, click on this button to view the image. If you have selected a data item that can
be plotted in two dimensions, click on this button to view a 2D plot of the data (the
default) or click on the “Surface” radio button to display a surface plot, click on the
“Contour” radio button to display a contour plot, or click on the “Show3” radio
button for an image, surface, and contour display. You can also select the “Fit to
Window” checkbox to fit the image to the window.

Read Checkbox

Select this checkbox to extract the current data or metadata item from the HDF file.

Extract As

Specify a name for the extracted data or metadata item

Note
The Read Checkbox must be selected for the item to be extracted. Default names
are generated for all data items, but may be changed at any time by the user.

Syntax

Template = HDF_BROWSER([Filename] [, CANCEL=variable]
[, GROUP=widget_id] [, PREFIX=string])

Return Value

Returns a template structure containing heap variable references, or 0 if no file was
selected. The user is required to clean up the heap variable references when done with
them.

Grid EOS grid data and attributes

Menu Selection Description

Table 29: HDF_BROWSER Pulldown Menu Options (Continued)
HDF_BROWSER IDL Reference Guide

 789
Arguments

Filename

A string containing the name of an HDF file to browse. If Filename is not specified, a
dialog allows you to choose a file.

Keywords

CANCEL

Set this keyword to a named variable that will contain the byte value 1 (one) if the
user clicked the “Cancel” button or the byte value 0 (zero) otherwise.

GROUP

Set this keyword to the widget ID of a widget that calls HDF_BROWSER. When this
ID is specified, a death of the caller results in the death of the HDF_BROWSER. The
following example demonstrates how to use the GROUP keyword to properly call
HDF_BROWSER from within a widget application. To run this example, save the
following code as browser_example.pro:

PRO BROWSER_EXAMPLE_EVENT,ev

WIDGET_CONTROL,ev.id,GET_VALUE=val
CASE val of

'Browser':BEGIN
a=HDF_BROWSER(GROUP=ev.top)
HELP,a,/st

END
'Exit': WIDGET_CONTROL,ev.top,/DESTROY

ENDCASE

END

PRO BROWSER_EXAMPLE

a=WIDGET_BASE(/ROW)
b=WIDGET_BUTTON(a,VALUE='Browser')
c=WIDGET_BUTTON(a,VALUE='Exit')
WIDGET_CONTROL,a,/REALIZE
XMANAGER,'browser_example',a

END
IDL Reference Guide HDF_BROWSER

790
PREFIX

When HDF_BROWSER reviews the contents of an HDF file, it creates default output
names for the various data elements. By default these default names begin with a
prefix derived from the filename. Set this keyword to a string value to be used in place
of the default prefix.

Examples

template = HDF_BROWSER('test.hdf')
output_structure = HDF_READ(TEMPLATE=template)

or,

output_structure = HDF_READ('test.hdf', TEMPLATE=template)

Version History

Introduced: 5.1

See Also

HDF_READ
HDF_BROWSER IDL Reference Guide

 791
HDF_READ

The HDF_READ function allows extraction of Hierarchical Data Format (HDF),
HDF-EOS, and NetCDF data and metadata into an output structure based upon
information provided through a graphical user interface or through a file template
generated by HDF_BROWSER. The output structure is a single level structure
corresponding to the data elements and names specified by HDF_BROWSER or its
output template. Templates generated by HDF_BROWSER may be re-used for HDF
files of identical format.

Graphical User Interface Menu Options

The following options are available from the graphical user interface menus.

Pulldown Menu

The following table shows the options available with the pulldown menu.

Menu Selection Description

HDF/NetCDF Summary

DF24 (24-bit Images) 24-bit images and their attributes

DFR8 (8-bit Images) 8-bit images and their attributes

DFP (Palettes) Image palettes

SD (Variables/Attributes) Scientific Datasets and attributes

AN (Annotations) Annotations

GR (Generic Raster) Images

GR Global (File) Attributes Image attributes

VGroups Generic data groups

VData Generic data and attributes

HDF-EOS Summary

Point EOS point data and attributes

Swath EOS swath data and attributes

Table 30: HDF_BROWSER Pulldown Menu Options
IDL Reference Guide HDF_READ

792
Preview Button

If you have selected an image, 2D data set, or 3xnxm data set from the pulldown
menu, click on this button to view the image. If you have selected a data item that can
be plotted in two dimensions, click on this button to view a 2D plot of the data (the
default) or click on the “Surface” radio button to display a surface plot, click on the
“Contour” radio button to display a contour plot, or click on the “Show3” radio
button for an image, surface, and contour display. You can also select the “Fit to
Window” checkbox to fit the image to the window.

Read Checkbox

Select this checkbox to extract the current data or metadata item from the HDF file.

Extract As

Specify a name for the extracted data or metadata item

Note
The Read Checkbox must be selected for the item to be extracted. Default names
are generated for all data items, but may be changed at any time by the user.

Syntax

Result = HDF_READ([Filename] [, DFR8=variable] [, DF24=variable]
[, PREFIX=string] [, TEMPLATE =value])

Return Value

Returns an output structure containing the specified Hierarchical Data Format (HDF),
HDF-EOS, and NetCDF data and metadata.

Grid EOS grid data and attributes

Menu Selection Description

Table 30: HDF_BROWSER Pulldown Menu Options (Continued)
HDF_READ IDL Reference Guide

 793
Arguments

Filename

A string containing the name of a HDF file to extract data from. If Filename is not
specified, a dialog allows you to specify a file. Note that if a template is specified, the
template must match the HDF file selected.

Keywords

DFR8

Set this keyword to a named variable that will contain a 2 x n string array of extracted
DFR8 images and their palettes. The first column will contain the extracted DFR8
image names, while the second column will contain the extracted name of the
associated palette. If no palette is associated with a DFR8 image the palette name will
be set to the null string. If no DFR8 images were extracted from the HDF file, this
returned string will be the null string array ['', ''].

DF24

Set this keyword to a named variable that will contain a string array of the names of
all the extracted DF24 24-bit images. This is useful in determining whether a (3,n,m)
extracted data element is a 24-bit image or another type of data. If no DF24 24-bit
images were extracted from the HDF file, the returned string will be the null string
('').

PREFIX

When HDF_READ is called without a template, it calls HDF_BROWSER to review
the contents of an HDF file and create the default output names for the various data
elements. By default, these names begin with a prefix derived from the filename. Set
this keyword to a string value to be used in place of the default prefix.

TEMPLATE

Set this keyword to specify the HDF file template (generated by the function
HDF_BROWSER), that defines which data elements to extract from the selected
HDF file. Templates may be used on any files that have a format identical to the file
the template was created from.
IDL Reference Guide HDF_READ

794
Examples

template = HDF_BROWSER('my.hdf')
output_structure = HDF_READ(TEMPLATE=template)

or,

output_structure = HDF_READ('my.hdf')

or,

;Select'my.hdf' with the file locator
output_structure = HDF_READ()

or,

output_structure = HDF_READ('just_like_my.hdf', TEMPLATE=template)

Version History

Introduced: 5.1

See Also

HDF_BROWSER
HDF_READ IDL Reference Guide

 795
HEAP_FREE

The HEAP_FREE procedure recursively frees all heap variables (pointers or objects)
referenced by its input argument. This routine examines the input variable, including
all array elements and structure fields. When a valid pointer or object reference is
encountered, that heap variable is marked for removal, and then is recursively
examined for additional heap variables to be freed. In this way, all heap variables that
are referenced directly or indirectly by the input argument are located. Once all such
heap variables are identified, HEAP_FREE releases them in a final pass. Pointers are
released as if the PTR_FREE procedure was called. Objects are released as with a
call to OBJ_DESTROY.

As with the related HEAP_GC procedure, there are some disadvantages to using
HEAP_FREE:

• When freeing object heap variables, HEAP_FREE calls OBJ_DESTROY
without supplying any plain or keyword arguments. Depending on the objects
being released, this may not be sufficient. In such cases, call OBJ_DESTROY
explicitly with the proper arguments rather than using HEAP_FREE.

• HEAP_FREE releases the referenced heap variables in an unspecified order
which depends on the current state of the internal data structure used by IDL to
hold them. This can be confusing for object destructor methods that expect all
of their contained data to be present. If your application requires a specific
order for the release of its heap variables, you must explicitly free them in the
correct order. HEAP_FREE cannot be used in such cases.

• The algorithm used by HEAP_FREE to release variables requires examination
of every existing heap variable (that is, it is an O(n) algorithm). This may be
slow if an IDL session has thousands of current heap variables.

For these reasons, RSI recommends that applications keep careful track of their heap
variable usage, and explicitly free them at the proper time (for example, using the
object destructor method) rather than resorting to simple-looking but potentially
expensive expedients such as HEAP_FREE or HEAP_GC.

HEAP_FREE is recommended when:

• The data structures involved are highly complex, nested, or variable, and
writing cleanup code is difficult and error prone.

• The data structures are opaque, and the code cleaning up does not have
knowledge of the structure.
IDL Reference Guide HEAP_FREE

796
Syntax

HEAP_FREE, Var [, /OBJ] [, /PTR] [, /VERBOSE]

Arguments

Var

The variable whose data is used as the starting point for heap variables to be freed.

Keywords

OBJ

Set this keyword to free object heap variables only.

PTR

Set this keyword to free pointer heap variables only.

Note
Setting both the PTR and OBJ keywords is the same as setting neither.

VERBOSE

If this keyword is set, HEAP_FREE writes a one line description of each heap
variable, in the format used by the HELP procedure, as the variable is released. This
is a debugging aid that can be used by program developers to check for heap variable
leaks that need to be located and eliminated.

Examples

; Create a structure variable.
mySubStructure = {pointer:PTR_NEW(INDGEN(100)), $

obj:OBJ_NEW('Idl_Container')}
myStructure ={substruct:mySubStructure, $

ptrs:[PTR_NEW(INDGEN(10)), PTR_NEW(INDGEN(11))]}

;Look at the heap.
HELP, /HEAP_VARIABLES

; Now free the heap variables contained in myStructure.
HEAP_FREE, myStructure, /VERBOSE
HELP, /HEAP_VARIABLES
HEAP_FREE IDL Reference Guide

 797
Version History

Introduced: 5.3

See Also

HEAP_GC
IDL Reference Guide HEAP_FREE

798
HEAP_GC

The HEAP_GC procedure performs garbage collection on heap variables. It searches
all current IDL variables (including common blocks, widget user values, etc.) for
pointers and object references and determines which heap variables have become
inaccessible. Pointer heap variables are freed (via PTR_FREE) and all memory used
by the heap variable is released. Object heap variables are destroyed (via
OBJ_DESTROY), also freeing all used memory.

The default action is to perform garbage collection on all heap variables regardless of
type. Use the POINTER and OBJECT keywords to remove only specific types.

Note
Garbage collection is an expensive operation. When possible, applications should
be written to avoid losing pointer and object references and avoid the need for
garbage collection.

Warning
HEAP_GC uses a recursive algorithm to search for unreferenced heap variables. If
HEAP_GC is used to manage certain data structures, such as large linked lists, a
potentially large number of operations may be pushed onto the system stack. If so
many operations are pushed that the stack runs out of room, IDL will crash.

Syntax

HEAP_GC [, /OBJ | , /PTR] [, /VERBOSE]

Arguments

None.

Keywords

OBJ

Set this keyword to perform garbage collection on object heap variables only.

PTR

Set this keyword to perform garbage collection on pointer heap variables only.
HEAP_GC IDL Reference Guide

 799
Note
Setting both the PTR and OBJ keywords is the same as setting neither.

VERBOSE

If this keyword is set, HEAP_GC writes a one line description of each heap variable,
in the format used by the HELP procedure, as the variable is destroyed. This is a
debugging aid that can be used by program developers to check for heap variable
leaks that need to be located and eliminated.

Version History

Introduced: 5.0

See Also

HEAP_FREE
IDL Reference Guide HEAP_GC

800
HELP

The HELP procedure gives the user information on many aspects of the current IDL
session. The specific area for which help is desired is selected by specifying the
appropriate keyword. If no arguments or keywords are specified, the default is to
show the current nesting of procedures and functions, all current variables at the
current program level, and open files. Only one keyword can be specified at a time.

Syntax

HELP, Expression1, ..., Expressionn [, /ALL_KEYS] [, /BREAKPOINTS] [, /BRIEF]
[, CALLS=variable] [, /DEVICE] [, /DLM] [, /FILES] [, /FULL] [, /FUNCTIONS]
[, /HEAP_VARIABLES] [, /KEYS] [, /LAST_MESSAGE] [, /MEMORY]
[, /MESSAGES] [, NAMES=string_of_variable_names] [, /OBJECTS]
[, OUTPUT=variable] [, /PATH_CACHE] [, /PROCEDURES]
[, /RECALL_COMMANDS] [, /ROUTINES] [, /SHARED_MEMORY]
[, /SOURCE_FILES] [, /STRUCTURES] [, /SYSTEM_VARIABLES]
[, /TRACEBACK]

Arguments

Expression(s)

The arguments are interpreted differently depending on the keyword selected. If no
keyword is selected, HELP displays basic information for its parameters. For
example, to see the type and structure of the variable A, enter:

HELP, A

Keywords

Note that the use of some of the following keywords causes any arguments to HELP
to be ignored and HELP provides other types of information instead. If the
description of the keyword does not explicitly mention the arguments, the arguments
are ignored.

ALL_KEYS

Set this keyword to show current function-key definitions as set by DEFINE_KEY. If
no arguments are supplied, information on all function keys is displayed. If
arguments are provided, they must be scalar strings containing the names of function
keys, and information on the specified keys is given. Under UNIX, this keyword is
HELP IDL Reference Guide

 801
different from KEYS because every key is displayed, no matter what its current
programming. Setting ALL_KEYS is equivalent to setting both KEYS and FULL.
Under Windows, every key is always displayed; setting KEYS produces the same
result as setting ALL_KEYS.

BREAKPOINTS

Set this keyword to display the breakpoint table which shows the program module
and location for each breakpoint.

BRIEF

If set in conjunction with one of the following keywords, BRIEF produces very terse
summary style output instead of the output normally displayed by those keywords:

CALLS

Set this keyword to a named variable in which to store the procedure call stack. Each
string element contains the name of the program module, source file name, and line
number. Array element zero contains the information about the caller of HELP,
element one contains information about its caller, etc. This keyword is useful for
programs that require traceback information.

DEVICE

Set this keyword to show information about the currently selected graphics device.
This information is dependent on the abilities of the current device, but the name of
the device is always given. Arguments to HELP are ignored when DEVICE is
specified.

DLM

Set this keyword to display all known dynamically loadable modules and their state
(loaded or not loaded).

• DLM • HEAP_VARIABLES

• MESSAGES • OBJECTS

• ROUTINES • SOURCE_FILES

• STRUCTURES • SYSTEM_VARIABLES
IDL Reference Guide HELP

802
FILES

Set this keyword to display information about file units. If no arguments are supplied
in the call to HELP, information on all open file units (except the special units 0, -1,
and -2) is displayed. If arguments are provided, they are taken to be integer file unit
numbers, and information on the specified file units is given.

For example, the command:

HELP, /FILES, -2, -1, 0

gives information below about the default file units:

Unit Attributes Name
-2 Write, Truncate, Tty, Reserved <stderr>
-1 Write, Truncate, Tty, Reserved <stdout>
0 Read, Tty, Reserved <stdin>

The attributes column tells about the characteristics of the file. For instance, the file
connected to logical file unit 2 is called “stderr” and is the standard error file. It is
opened for write access (Write), is a new file (Truncate), is a terminal (Tty), and
cannot be closed by the CLOSE command (Reserved).

FULL

By default, HELP filters its output in an attempt to only display information likely to
be of use to the IDL end user. Specify FULL to see all available information on a
given topic without any such filtering. The filtering applied by default depends on the
type of information being requested:

• Function keys: By default, IDL will not display undefined function keys.

• Structure Definitions And Objects: Structures and objects that have had their
definition hidden using the STRUCT_HIDE procedure are not usually listed.

• Functions and Procedures: Functions and procedures compiled with the
COMPILE_OPT HIDDEN directive are not usually included in HELP output.

FUNCTIONS

Normally, the ROUTINES or SOURCE_FILES keywords produce information on
both functions and procedures. If FUNCTIONS is specified, only output on functions
is produced. If FUNCTIONS is used without either ROUTINES or
SOURCE_FILES, ROUTINES is assumed.

HEAP_VARIABLES

Set this keyword to display help information for all the current heap variables.
HELP IDL Reference Guide

 803
KEYS

Set this keyword to show current function key definitions as set by DEFINE_ KEY,
for those function keys that are currently programmed to perform a function. If no
arguments are supplied, information on all function keys is displayed. If arguments
are provided, they must be scalar strings containing the names of function keys, and
information on the specified keys is given. Under UNIX, this keyword is different
from ALL_KEYS because that keyword displays every key, no matter what its
current programming. Under Windows, every key is always displayed; setting KEYS
produces the same result as setting ALL_KEYS.

LAST_MESSAGE

Set this keyword to display the last error message issued by IDL.

MEMORY

Set this keyword to see a report on the amount of dynamic memory (in bytes)
currently in use by the IDL session; the maximum amount of dynamic memory
allocated since the last call to HELP, /MEMORY; and the number of times dynamic
memory has been allocated and deallocated. Arguments to HELP are ignored when
MEMORY is specified.

MESSAGES

Set this keyword to display all known message blocks and the error space range into
which they are loaded.

NAMES

A string used to determine the names of the variables, whose values are to be printed.
A string match (equivalent to the STRMATCH function with the FOLD_CASE
keyword set) is used to decide if a given variable will be displayed. The match string
can contain any wildcard expression supported by STRMATCH, including “*” and
“?”.

For example, to print only the values of variables beginning with “A”, use the
command HELP,/NAME='a*'. Similarly, HELP,NAME='?' prints the values of all
variables with a single-character name.

NAMES also works with the output from the following keywords:

• DLM • HEAP_VARIABLES

• MESSAGES • OBJECTS
IDL Reference Guide HELP

804
OBJECTS

Set this keyword to display information on defined object classes. If no arguments are
provided, all currently-defined object classes are shown. If no arguments are
provided, and the information you are looking for is not displayed, use the FULL
keyword to prevent HELP from filtering the output. If arguments are provided, the
definition of the object class for the heap variables referred to is displayed.

Information is provided on inherited superclasses and all known methods. A method
is known to IDL only if it has been compiled in the current IDL session and called by
its own class or a subclass. Methods that have not been compiled yet will not be
shown. Thus, the list of methods displayed by HELP is not necessarily a complete list
of all possible method for the object class.

If called within a class’ method, the OBJECTS keyword also displays the instance
data of the object on which it was called.

OUTPUT

Set this keyword equal to a named variable that will contain a string array containing
the formatted output of the HELP command. Each line of formatted output becomes
a single element in the string array.

Warning
The OUTPUT keyword is primarily for use in capturing HELP output in order to
display it someplace else, such as in a text widget. This keyword is not intended to
be used in obtaining programmatic information about the IDL session, and is
formatted to be human readable. RSI reserves the right to change the format and
content of this text at any time, without warning. If you find yourself using
OUTPUT for a non-display purpose, consider using the STRUCTURE keyword to
the SIZE function.

PATH_CACHE

Set this keyword to display a list of directories currently included in the IDL path
cache, along with the number of .pro or .sav files found in those directories. See
PATH_CACHE for details.

• ROUTINES • SOURCE_FILES

• STRUCTURES • SYSTEM_VARIABLES
HELP IDL Reference Guide

 805
PROCEDURES

Normally, the ROUTINES or SOURCE_FILES keywords produce information on
both functions and procedures. If PROCEDURES is specified, only output on
procedures is produced. If PROCEDURES is used without either ROUTINES or
SOURCE_FILES, ROUTINES is assumed.

RECALL_COMMANDS

Set this keyword to display the saved commands in the command input buffer. By
default, IDL saves the last 20 lines of input in a buffer from which they can be
recalled for command line editing. Arguments to HELP are ignored when RECALL
is specified.

The number of lines saved can be changed by assigning the desired number of lines to
the environment variable !EDIT_INPUT in the IDL startup file. See “!EDIT_INPUT”
on page 3905 for details.

ROUTINES

Set this keyword to show a list of all compiled procedures and functions with their
parameter names. Keyword parameters accepted by each module are shown to the
right of the routine name. If no arguments are provided, and the information you are
looking for is not displayed, use the FULL keyword to prevent HELP from filtering
the output.

SHARED_MEMORY

Set this keyword to display information about all current shared memory and
memory mapped file segments mapped into the current IDL process via the
SHMMAP procedure.

SOURCE_FILES

Set this keyword to display information on procedures and functions written in the
IDL language that have been compiled during the current IDL session. Full path
names (relative to the current directory) of compiled .pro files are displayed. If no
arguments are provided, and the information you are looking for is not displayed, use
the FULL keyword to prevent HELP from filtering the output.

STRUCTURES

Set this keyword to display information on structure-type variables. If no arguments
are provided, all currently-defined structures are shown. If no arguments are
provided, and the information you are looking for is not displayed, use the FULL
IDL Reference Guide HELP

806
keyword to prevent HELP from filtering the output. If arguments are provided, the
structure definition for those expressions is displayed. It is often more convenient to
use HELP, /STRUCTURES instead of PRINT to look at the contents of a structure
variable because it shows the names of the fields as well as the data.

SYSTEM_VARIABLES

Set this keyword to display information on all system variables. Arguments are
ignored.

TRACEBACK

Set this keyword to display the current nesting of procedures and functions.

Examples

To see general information on the current IDL session, enter:

HELP

To see information on the structure definition of the system variable !D, enter:

HELP, !D, /STRUCTURES

Version History

Introduced: Original

SHARED_MEMORY keyword added: 5.6
HELP IDL Reference Guide

 807
HILBERT

The HILBERT function outputs a series that has all periodic terms phase-shifted by
90 degrees. This transform has the interesting property that the correlation between a
series and its own Hilbert transform is mathematically zero.

This routine is written in the IDL language. Its source code can be found in the file
hilbert.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = HILBERT(X [, D])

Return Value

The return value is a complex-valued vector with the same size as the input vector.
HILBERT generates the fast Fourier transform using the FFT function, and shifts the
first half of the transform products by +90 degrees and the second half by -90
degrees. The constant elements in the transform are not changed. Angle shifting is
accomplished by multiplying or dividing by the complex number, i = (0.0000,
1.0000). The shifted vector is then submitted to FFT for transformation back to the
“time” domain and the output is divided by the number elements in the vector to
correct for multiplication effect peculiar to the FFT algorithm.

Note
Because HILBERT uses FFT, it exhibits the same side effects with respect to input
arguments as that function.

Arguments

X

An n-element floating-point or complex-valued vector.

D

A flag for rotation direction. Set D = +1 for a positive rotation (the default). Set D =
-1 for a negative rotation.
IDL Reference Guide HILBERT

808
Keywords

None.

Version History

Introduced: Original

See Also

FFT
HILBERT IDL Reference Guide

 809
HIST_2D

The HIST_2D function returns the two dimensional density function (histogram) of
two variables.

This routine is written in the IDL language. Its source code can be found in the file
hist_2d.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = HIST_2D(V1, V2 [, BIN1=width] [, BIN2=height] [, MAX1=value]
[, MAX2=value] [, MIN1=value] [, MIN2=value])

Return Value

Returns a longword array of dimensions (MAX(V1)+1, MAX(V2)+1). Result(i,j) is
equal to the number of simultaneous occurrences of V1 = i and V2 = j at the specified
element.

Arguments

V1, V2

The arguments are arrays containing the variables. V1 and V2 may be of any numeric
type except complex. If V1 and V2 do not contain the same number of elements, then
the extra elements in the longer array are ignored.

Keywords

BIN1

Set this keyword equal to the size of each bin in the V1 direction (column width). If
this keyword is not specified, the size is set to 1.

BIN2

Set this keyword equal to the size of each bin in the V2 direction (row height). If this
keyword is not specified, the size is set to 1.
IDL Reference Guide HIST_2D

810
MAX1

Set this keyword equal to the maximum V1 value to consider. If this keyword is not
specified, then V1 is searched for its largest value.

MAX2

Set this keyword equal to the maximum V2 value to consider. If this keyword is not
specified, then V2 is searched for its largest value.

MIN1

Set this keyword to the minimum V1 value to consider. If this keyword is not
specified and if the smallest value of V1 is greater than zero, then MIN1=0 is used,
otherwise the smallest value of V1 is used.

MIN2

Set this keyword to the minimum V2 value to consider. If this keyword is not
specified and if the smallest value of V2 is greater than zero, then MIN2=0 is used;
otherwise, the smallest value of V2 is used.

Examples

To return the 2D histogram of two byte images:

R = HIST_2D(image1, image2)

To display the 2D histogram made from two floating point images, restricting the
range from -1 to +1, and with 101 bins:

F1 = RANDOMN(seed, 256, 256)
F2 = RANDOMN(seed, 256, 256)
Result = HIST_2D(F1, F2, MIN1=-1, MAX1=1, $

MIN2=-1, MAX2=1, BIN1=0.02, BIN2=0.02)
TVSCL, Result

Version History

Introduced: Pre 4.0

See Also

H_EQ_CT, H_EQ_INT, HIST_EQUAL, HISTOGRAM
HIST_2D IDL Reference Guide

 811
HIST_EQUAL

The HIST_EQUAL function returns a histogram-equalized byte array.

The HISTOGRAM function is used to obtain the density distribution of the input
array. The histogram is integrated to obtain the cumulative density-probability
function and finally the lookup function is used to transform to the output image.

Note
The first element of the histogram is always zeroed to remove the background.

This routine is written in the IDL language. Its source code can be found in the file
hist_equal.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = HIST_EQUAL(A [, BINSIZE=value] [, FCN=vector]
[, /HISTOGRAM_ONLY] [, MAXV=value] [, MINV=value] [, OMAX=variable]
[, OMIN=variable] [, PERCENT=value] [, TOP=value])

Return Value

This function returns a histogram-equalized array of type byte, with the same
dimensions as the input array. If the HISTOGRAM_ONLY keyword is set, then the
output will be a vector of type LONG.

Arguments

A

The array to be histogram-equalized.

Keywords

BINSIZE

Set this keyword to the size of the bin to use. The default is BINSIZE=1 if A is a byte
array, or, for other input types, the default is (MAXV – MINV)/5000.
IDL Reference Guide HIST_EQUAL

812
FCN

Set this keyword to the desired cumulative probability distribution function in the
form of a 256-element vector. If a probability distribution function is not supplied,
IDL uses a linear ramp, which yields equal probability bin results. This function is
later normalized, so magnitude is inconsequential; the function should, however,
increase monotonically.

HISTOGRAM_ONLY

Set this keyword to return a vector of type LONG containing the cumulative
distribution histogram, rather than the histogram equalized array.

MAXV

Set this keyword to the maximum value to consider. The default is 255 if A is a byte
array, otherwise the maximum data value is used. Input elements greater than or
equal to MAXV are output as 255.

MINV

Set this keyword to the minimum value to consider. The default is 0 if A is a byte
array, otherwise the minimum data value is used. Input elements less than or equal to
MINV are output as 0.

OMAX

Set this keyword to a named variable that, upon exit, will contain the maximum data
value used in constructing the histogram.

OMIN

Set this keyword to a named variable that, upon exit, will contain the minimum data
value used in constructing the histogram.

PERCENT

Set this keyword to a value between 0 and 100 to stretch the image histogram. The
histogram will be stretched linearly between the limits that exclude the PERCENT
fraction of the lowest values, and the PERCENT fraction of the highest values. This
is an automatic, semi-robust method of contrast enhancement.
HIST_EQUAL IDL Reference Guide

 813
TOP

The maximum value of the scaled result. If TOP is not specified, 255 is used. Note
that the minimum value of the scaled result is always 0.

Example

Create a sample image using the DIST function and display it:

image = DIST(100)
TV, image

Create a histogram-equalized version of the byte array, image, and display the new
version. Use a minimum input value of 10, a maximum input value of 200, and limit
the top value of the output array to 220:

new = HIST_EQUAL(image, MINV = 10, MAXV = 200, TOP = 220)
TV, new

Version History

Introduced: Original

See Also

ADAPT_HIST_EQUAL, H_EQ_CT, H_EQ_INT, HIST_2D, HISTOGRAM
IDL Reference Guide HIST_EQUAL

814
HISTOGRAM

The HISTOGRAM function computes the density function of Array. In the simplest
case, the density function, at subscript i, is the number of Array elements in the
argument with a value of i.

Let Fi= the value of element i, 0 ≤ i < n. Let Hv = result of histogram function, an
integer vector. The definition of the histogram function becomes:

Warning
There may not always be enough virtual memory available to find the density
functions of arrays that contain a large number of bins.

For bivariate probability distributions, use the HIST_2D function.

HISTOGRAM can optionally return an array containing a list of the original array
subscripts that contributed to each histogram bin. This list, commonly called the
reverse (or backwards) index list, efficiently determines which array elements are
accumulated in a set of histogram bins. A typical application of the reverse index list
is reverse histogram or scatter plot interrogation—a histogram bin or 2D scatter plot
location is marked with the cursor and the original data items within that bin are
highlighted.

Hv P Fi v,(),

i 0=

n 1–

∑= v 0 1 2 ... Max Min–
Binsize

---------------------------, , , ,=

P Fi v,()
1, v Fi Min–() Binsize⁄ v 1+<≤

0, Otherwise



=

HISTOGRAM IDL Reference Guide

 815
Syntax

Result = HISTOGRAM(Array [, BINSIZE=value] [, INPUT=variable]
[, LOCATIONS=variable] [, MAX=value] [, MIN=value] [, /NAN]
[, NBINS=value] [, OMAX=variable] [, OMIN=variable]
[, /L64 | REVERSE_INDICES=variable])

Return Value

Returns a 32-bit or a 64-bit integer vector equal to the density function of the input
Array.

Arguments

Array

The vector or array for which the density function is to be computed.

Keywords

BINSIZE

Set this keyword to the size of the bin to use. If this keyword is not specified, and
NBINS is not set, then a bin size of 1 is used. If NBINS is set, the default is
BINSIZE = (MAX – MIN) / (NBINS – 1).

Note
The data type of the value specified for BINSIZE should match the data type of the
Array argument. Since BINSIZE is converted to the data type of Array, specifying
mismatched data types may produce undesired results.

INPUT

Set this keyword to a named variable that contains an array to be added to the output
of HISTOGRAM. The density function of Array is added to the existing contents of
INPUT and returned as the result. The array is converted to longword type if
necessary and must have at least as many elements as are required to form the
histogram. Multiple histograms can be efficiently accumulated by specifying partial
sums via this keyword.
IDL Reference Guide HISTOGRAM

816
L64

By default, the return value of HISTOGRAM is 32-bit integer when possible, and 64-
bit integer if the number of elements being processed requires it. Set L64 to force 64-
bit integers to be returned in all cases. L64 controls the type of Result as well as the
output from the REVERSE_INDICES keyword.

Note
Only 64-bit versions of IDL are capable of creating variables requiring a 64-bit
result. Check the value of !VERSION.MEMORY_BITS to see if your IDL is 64-bit
or not.

LOCATIONS

Set this keyword to a named variable in which to return the starting locations for each
bin. The starting locations are given by MIN + v*BINSIZE, with v = 0,1,...,NBINS-1.
LOCATIONS has the same number of elements as the Result, and has the same type
as the input Array.

MAX

Set this keyword to the maximum value to consider. If this keyword is not specified,
Array is searched for its largest value. If this keyword is not specified, and Array is of
type byte, 255 is used.

Note
The data type of the value specified for MAX should match the data type of the
input array. Since MAX is converted to the data type of the input array, specifying
mismatched data types may produce undesired results.

Note
If NBINS is specified, the value for MAX will be adjusted to NBINS*BINSIZE +
MIN. This ensures that the last bin has the same width as the other bins.

MIN

Set this keyword to the minimum value to consider. If this keyword is not specified,
and Array is of type byte, 0 is used. If this keyword is not specified and Array is not
of byte type, Array is searched for its smallest value.
HISTOGRAM IDL Reference Guide

 817
Note
The data type of the value specified for MIN should match the data type of the input
array. Since MIN is converted to the data type of the input array, specifying
mismatched data types may produce undesired results.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN (not a number) in the input data. Elements with the value NaN are
treated as missing data. (See “Special Floating-Point Values” in Chapter 18 of the
Building IDL Applications manual for more information on IEEE floating-point
values.)

NBINS

Set this keyword to the number of bins to use. If BINSIZE is specified, the number of
bins in Result is NBINS, starting at MIN and ending at MIN+(NBINS–1)*BINSIZE.
If MAX is specified, the bins will be evenly spaced between MIN and MAX. It is an
error to specify NBINS with both BINSIZE and MAX.

OMAX

Set this keyword to a named variable that will contain the maximum data value used
in constructing the histogram.

OMIN

A named variable that, upon exit, contains the minimum data value used in
constructing the histogram.

REVERSE_INDICES

Set this keyword to a named variable in which the list of reverse indices is returned.
When possible, this list is returned as a 32-bit integer vector whose number of
elements is the sum of the number of elements in the histogram, N, and the number of
array elements included in the histogram, plus one. If the number of elements is too
large to be contained in a 32-bit integer, or if the L64 keyword is set,
REVERSE_INDICES is returned as a 64-bit integer.

The subscripts of the original array elements falling in the ith bin, 0 ≤ i < N, are given
by the expression: R(R[i] : R[i+1]-1), where R is the reverse index list. If R[i] is equal
to R[i+1], no elements are present in the ith bin.

For example, make the histogram of array A:
IDL Reference Guide HISTOGRAM

818
H = HISTOGRAM(A, REVERSE_INDICES = R)

;Set all elements of A that are in the ith bin of H to 0.
IF R[i] NE R[i+1] THEN A[R[R[I] : R[i+1]-1]] = 0
HISTOGRAM IDL Reference Guide

 819
The above is usually more efficient than the following:

bini = WHERE(A EQ i, count)
IF count NE 0 THEN A[bini] = 0

Examples

; Create a simple, 2D dataset:
D = DIST(200)
; Plot the histogram of D with a bin size of 1 and the default
; minimum and maximum:
PLOT, HISTOGRAM(D)
; Plot a histogram considering only those values from 10 to 50
; using a bin size of 4:
PLOT, HISTOGRAM(D, MIN = 10, MAX = 50, BINSIZE = 4)

The HISTOGRAM function can also be used to increment the elements of one vector
whose subscripts are contained in another vector. To increment those elements of
vector A indicated by vector B, use the command:

A = HISTOGRAM(B, INPUT=A, MIN=0, MAX=N_ELEMENTS(A)-1)

This method works for duplicate subscripts, whereas the following statement never
adds more than 1 to any element, even if that element is duplicated in vector B:

A[B] = A[B]+1

For example, for the following commands:

A = LONARR(5)
B = [2,2,3]
PRINT, HISTOGRAM(B, INPUT=A, MIN=0, MAX=4)

IDL prints:

0 0 2 1 0

The commands:

A = LONARR(5)
A[B] = A[B]+1
PRINT, A

give the result:

0 0 1 1 0
IDL Reference Guide HISTOGRAM

820
The following example demonstrates how to use HISTOGRAM:

PRO t_histogram
data = [[-5, 4, 2, -8, 1], $

[3, 0, 5, -5, 1], $
[6, -7, 4, -4, -8], $
[-1, -5, -14, 2, 1]]

hist = HISTOGRAM(data)
bins = FINDGEN(N_ELEMENTS(hist)) + MIN(data)
PRINT, MIN(hist)
PRINT, bins
PLOT, bins, hist, YRANGE = [MIN(hist)-1, MAX(hist)+1], PSYM = 10, $

XTITLE = 'Bin Number', YTITLE = 'Density per Bin'
END

IDL prints:

0

-14.0000 -13.0000 -12.0000 -11.0000 -10.0000 -9.00000
-8.00000 -7.00000 -6.00000 -5.00000 -4.00000 -3.00000
-2.00000 -1.00000 0.00000 1.00000 2.00000 3.00000
 4.00000 5.00000 6.00000

Version History

Introduced: Original

LOCATIONS keyword added: 5.6

See Also

H_EQ_CT, H_EQ_INT, HIST_2D, HIST_EQUAL
HISTOGRAM IDL Reference Guide

 821
HLS

The HLS procedure creates a color table based on the HLS (Hue, Lightness,
Saturation) color system.

Using the input parameters, a spiral through the double-ended HLS cone is traced.
Points along the cone are converted from HLS to RGB. The current colortable (and
the COLORS common block) contains the new colortable on exit.

This routine is written in the IDL language. Its source code can be found in the file
hls.pro in the lib subdirectory of the IDL distribution.

Syntax

HLS, Litlo, Lithi, Satlo, Sathi, Hue, Loops [, Colr]

Arguments

Litlo

Starting lightness, from 0 to 100%.

Lithi

Ending lightness, from 0 to 100%.

Satlo

Starting saturation, from 0 to 100%.

Sathi

Ending saturation, from 0 to 100%.

Hue

Starting Hue, from 0 to 360 degrees. Red = 0 degs, green = 120, blue = 240.

Loops

The number of loops through the color spiral. This parameter does not have to be an
integer. A negative value causes the loops to traverse the spiral in the opposite
direction.
IDL Reference Guide HLS

822
Colr

An optional (256,3) integer array in which the new R, G, and B values are returned.
Red = Colr[*,0], green = Colr[*,1], blue = Colr[*,2].

Keywords

None.

Version History

Introduced: Original

See Also

COLOR_CONVERT, HSV, PSEUDO
HLS IDL Reference Guide

 823
HOUGH

The HOUGH function implements the Hough transform, used to detect straight lines
within a two-dimensional image. This function can be used to return either the Hough
transform, which transforms each nonzero point in an image to a sinusoid in the
Hough domain, or the Hough backprojection, where each point in the Hough domain
is transformed to a straight line in the image.

Hough Transform Theory

The Hough transform is defined for a function A(x, y) as:

where δ is the Dirac delta-function. With A(x, y), each point (x, y) in the original
image, A, is transformed into a sinusoid ρ = xcosθ – ysinθ, where ρ is the
perpendicular distance from the origin of a line at an angle θ (The angle θ will be
limited to 0 <= θ < π which could result in negative ρ values.):

Points that lie on the same line in the image will produce sinusoids that all cross at a
single point in the Hough transform. For the inverse transform, or backprojection,
each point in the Hough domain is transformed into a straight line in the image.

Usually, the Hough function is used with binary images, in which case H(θ, ρ) gives
the total number of sinusoids that cross at point (θ, ρ), and hence, the total number of
points making up the line in the original image. By choosing a threshold T for
H(θ, ρ), and using the inverse Hough function, you can filter the original image to
keep only lines that contain at least T points.

Figure 9: Hough Transform

H θ ρ,() A
∞–

∞

∫
∞–

∞

∫= x y(,) δ ρ x θcos– y θsin–() dx dy
IDL Reference Guide HOUGH

824
How IDL Implements the Hough Transform

Consider an image Amn of dimensions M by N, with array indices m = 0,..., M–1 and
n = 0,..., N–1.

 The discrete formula for the HOUGH function for Amn is:

where the brackets [] indicate rounding to the nearest integer, and

The pixels are assumed to have spacing ∆x and ∆y in the x and y directions. The
delta-function is defined as:

How IDL Implements the Hough Backprojection

The backprojection, Bmn, contains all of the straight lines given by the (θ, ρ) points
given in H(θ, ρ). The discrete formula is

H θ ρ(,) A
n
∑

m
∑= mn δ ρ ρ'[],()

ρ' m∆x xmin+() θcos n∆y ymin+() θ sin+=

δ ρ ρ'[](,) 1 ρ ρ'[]=

0 otherwise



=

Bmn

H
ρ
∑

θ
∑ θ ρ(,) δ n am b+[](,)

H

ρ
∑

θ
∑ θ ρ(,) δ m a'n b'+[](,)

θsin
2

2
------->

θsin
2

2
-------≤









=

HOUGH IDL Reference Guide

 825
where the slopes and offsets are given by:

Syntax

Hough Transform:

Result = HOUGH(Array [, /DOUBLE] [, DRHO=scalar] [, DX=scalar]
[, DY=scalar] [, /GRAY] [, NRHO=scalar] [, NTHETA=scalar] [, RHO=variable]
[, RMIN=scalar] [, THETA=variable] [, XMIN=scalar] [, YMIN=scalar])

Hough Backprojection:

Result = HOUGH(Array, /BACKPROJECT, RHO=variable, THETA=variable
[, /DOUBLE] [, DX=scalar] [, DY=scalar] [, NX=scalar] [, NY=scalar]
[, XMIN=scalar] [, YMIN=scalar])

Return Value

The result of this function is a two-dimensional floating-point array, or a complex
array if the input image is complex. If Array is double-precision, or if the DOUBLE
keyword is set, the result is double-precision, otherwise, the result is single-precision.

Arguments

Array

The two-dimensional array of size M by N which will be transformed. If the keyword
GRAY is not set, then, for the forward transform, Array is treated as a binary image
with all nonzero pixels considered as 1.

a
∆x
∆y
------ θcos

θsin
------------– b

ρ xmin– θcos ymin– θsin

∆y θsin
--==

a'
1
a
--- b'

ρ xmin– θcos ymin– θsin

∆x θcos
--==
IDL Reference Guide HOUGH

826
Keywords

BACKPROJECT

If set, the backprojection is computed, otherwise, the forward transform is computed.
When BACKPROJECT is set, Result will be an array of dimension NX by NY.

Note
The Hough transform is not one-to-one: each point (x, y) is not mapped to a single
(θ, ρ). Therefore, instead of the original image, the backprojection, or inverse
transform, returns an image containing the set of all lines given by the (θ, ρ) points.

DOUBLE

Set this keyword to force the computation to be done using double-precision
arithmetic.

DRHO

Set this keyword equal to a scalar specifying the spacing ∆ρ between ρ coordinates,
expressed in the same units as Array. The default is 1/SQRT(2) times the diagonal
distance between pixels, [(DX2 + DY2)/2]1/2. A larger value produces a coarser
resolution by mapping multiple pixels onto a single ρ; this is useful for images that
do not contain perfectly straight lines. A smaller value may produce undersampling
by trying to map fractional pixels onto ρ, and is not recommended. If
BACKPROJECT is specified, this keyword is ignored.

DX

Set this keyword equal to a scalar specifying the spacing between the horizontal (X)
coordinates. The default is 1.0.

DY

Set this keyword equal to a scalar specifying the spacing between the vertical (Y)
coordinates. The default is 1.0.

GRAY

Set this keyword to perform a weighted Hough transform, with the weighting given
by the pixel values. If GRAY is not set, the image is treated as a binary image with all
nonzero pixels considered as 1. If BACKPROJECT is specified, this keyword is
ignored.
HOUGH IDL Reference Guide

 827
NRHO

Set this keyword equal to a scalar specifying the number of ρ coordinates to use. The
default is 2 CEIL([MAX(X2 + Y2)]1/2 / DRHO) + 1. If BACKPROJECT is specified,
this keyword is ignored.

NTHETA

Set this keyword equal to a scalar specifying the number of θ coordinates to use over
the interval [0,π]. The default is CEIL(π [MAX(X2 + Y2)]1/2 / DRHO). A larger
value will produce smoother results, and is useful for filtering before backprojection.
A smaller value will result in broken lines in the transform, and is not recommended.
If BACKPROJECT is specified, this keyword is ignored.

NX

If BACKPROJECT is specified, set this keyword equal to a scalar specifying the
number of horizontal coordinates in the output array. The default is
FLOOR(2 MAX(|RHO|)(DX2 + DY2)–1/2 + 1). For the forward transform this
keyword is ignored.

NY

If BACKPROJECT is specified, set this keyword equal to a scalar specifying the
number of vertical coordinates in the output array. The default is
FLOOR(2 MAX(|RHO|)(DX2 + DY2)–1/2 + 1). For the forward transform, this
keyword is ignored.

RHO

For the forward transform, set this keyword to a named variable that, on exit, will
contain the radial (ρ) coordinates. If BACKPROJECT is specified, this keyword must
contain the ρ coordinates of the input Array.

RMIN

Set this keyword equal to a scalar specifying the minimum ρ coordinate to use for the
forward transform. The default is –0.5(NRHO – 1) DRHO. If BACKPROJECT is
specified, this keyword is ignored.

THETA

For the forward transform, set this keyword to a named variable containing a vector
of angular (θ) coordinates to use for the transform. If NTHETA is specified instead,
and THETA is set to a named variable, then on exit THETA will contain the θ
IDL Reference Guide HOUGH

828
coordinates. If BACKPROJECT is specified, this keyword must contain the θ
coordinates of the input Array. HOUGH returns θ in [0,π)

XMIN

Set this keyword equal to a scalar specifying the X coordinate of the lower-left corner
of the input Array. The default is –(M–1)/2, where Array is an M by N array. If
BACKPROJECT is specified, set this keyword equal to a scalar specifying the X
coordinate of the lower-left corner of the Result. In this case the default is –DX (NX–
1)/2.

YMIN

Set this keyword equal to a scalar specifying the Y coordinate of the lower-left corner
of the input Array. The default is –(N–1)/2, where Array is an M by N array. If
BACKPROJECT is specified, set this keyword equal to a scalar specifying the Y
coordinate of the lower-left corner of the Result. In this case the default is
–DY (NY–1)/2.

Examples

This example computes the Hough transform of a random set of pixels:

PRO hough_example

;Create an image with a random set of pixels
seed = 12345 ; remove this line to get different random images
array = RANDOMU(seed,128,128) GT 0.95

;Draw three lines in the image
x = FINDGEN(32)*4
array[x,0.5*x+20] = 1b
array[x,0.5*x+30] = 1b
array[-0.5*x+100,x] = 1b

;Create display window, set graphics properties
WINDOW, XSIZE=330,YSIZE=630, TITLE='Hough Example'
!P.BACKGROUND = 255 ; white
!P.COLOR = 0 ; black
!P.FONT=2
ERASE

XYOUTS, .1, .94, 'Noise and Lines', /NORMAL
;Display the image. 255b changes black values to white:
TVSCL, 255b - array, .1, .72, /NORMAL

;Calculate and display the Hough transform
HOUGH IDL Reference Guide

 829
result = HOUGH(array, RHO=rho, THETA=theta)
XYOUTS, .1, .66, 'Hough Transform', /NORMAL
TVSCL, 255b - result, .1, .36, /NORMAL

;Keep only lines that contain more than 20 points:
result = (result - 20) > 0

;Find the Hough backprojection and display the output
backproject = HOUGH(result, /BACKPROJECT, RHO=rho, THETA=theta)
XYOUTS, .1, .30, 'Hough Backprojection', /NORMAL
TVSCL, 255b - backproject, .1, .08, /NORMAL

END

The following figure displays the output of this example. The top image shows three
lines drawn within a random array of pixels that represent noise. The center image
shows the Hough transform, displaying sinusoids for points that lie on the same line
in the original image. The bottom image shows the Hough backprojection, after
setting the threshold to retain only those lines that contain more than 20 points. The
IDL Reference Guide HOUGH

830
Hough inverse transform, or backprojection, transforms each point in the Hough
domain into a straight line in the image.

References

1. Gonzalez, R.C., and R.E. Woods. Digital Image Processing. Reading, MA:
Addison Wesley, 1992.

2. Jain, Anil K. Fundamentals of Digital Image Processing. Englewood Cliffs,
NJ: Prentice-Hall, 1989.

3. Toft, Peter. The Radon Transform: Theory and Implementation. Denmark:
Technical University; 1996. Ph.D. Thesis.

4. Weeks, Arthur. R. Fundamentals of Electronic Image Processing. New York:
SPIE Optical Engineering Press, 1996.

Figure 10: HOUGH example showing random pixels (top), Hough transform
(center) and Hough backprojection (bottom)
HOUGH IDL Reference Guide

 831
Version History

Introduced: 5.4

See Also

RADON
IDL Reference Guide HOUGH

832
HQR

The HQR function returns all eigenvalues of an upper Hessenberg array. Using the
output produced by the ELMHES function, this function finds all eigenvalues of the
original real, nonsymmetric array.

HQR is based on the routine hqr described in section 11.6 of Numerical Recipes in
C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Note
If you are working with complex inputs, instead use the LA_HQR function.

Syntax

Result = HQR(A [, /COLUMN] [, /DOUBLE])

Return Value

The result is an n-element complex vector.

Arguments

A

An n by n upper Hessenberg array. Typically, A would be an array resulting from an
application of ELMHES.

Keywords

COLUMN

Set this keyword if the input array A is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
HQR IDL Reference Guide

 833
Examples

To compute the eigenvalues of a real, non-symmetric unbalanced array, first define
the array A:

A = [[1.0, 2.0, 0.0, 0.0, 0.0], $
[-2.0, 3.0, 0.0, 0.0, 0.0], $
[3.0, 4.0, 50.0, 0.0, 0.0], $
[-4.0, 5.0, -60.0, 7.0, 0.0], $
[-5.0, 6.0, -70.0, 8.0, -9.0]]

; Compute the upper Hessenberg form of the array:
hes = ELMHES(A)
; Compute the eigenvalues:
evals = HQR(hes)

; Sort the eigenvalues into ascending order based on their
; real components:
evals = evals(SORT(FLOAT(evals)))

;Print the result.
PRINT, evals

IDL prints:

(-9.00000, 0.00000)(2.00000, -1.73205)
(2.00000, 1.73205)(7.00000, 0.00000)
(50.0000, 0.00000)

This is the exact solution vector to five-decimal accuracy.

Version History

Introduced: 4.0

See Also

EIGENVEC, ELMHES, LA_HQR, TRIQL, TRIRED
IDL Reference Guide HQR

834
HSV

The HSV procedure creates a color table based on the HSV (Hue and Saturation
Value) color system.

Using the input parameters, a spiral through the single-ended HSV cone is traced.
Points along the cone are converted from HLS to RGB. The current colortable (and
the COLORS common block) contains the new colortable on exit.

This routine is written in the IDL language. Its source code can be found in the file
hsv.pro in the lib subdirectory of the IDL distribution.

Syntax

HSV, Vlo, Vhi, Satlo, Sathi, Hue, Loops [, Colr]

Arguments

Vlo

Starting value, from 0 to 100%.

Vhi

Ending value, from 0 to 100%.

Satlo

Starting saturation, from 0 to 100%.

Sathi

Ending saturation, from 0 to 100%.

Hue

Starting Hue, from 0 to 360 degrees. Red = 0 degs, green = 120, blue = 240.

Loops

The number of loops through the color spiral. This parameter does not have to be an
integer. A negative value causes the loops to traverse the spiral in the opposite
direction.
HSV IDL Reference Guide

 835
Colr

An optional (256,3) integer array in which the new R, G, and B values are returned.
Red = Colr[*,0], green = Colr[*,1], blue = Colr[*,2].

Keywords

None.

Version History

Introduced: Original

See Also

COLOR_CONVERT, HLS, PSEUDO
IDL Reference Guide HSV

836
IBETA

The IBETA function computes the incomplete beta function.

This routine is written in the IDL language. Its source code can be found in the file
ibeta.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = IBETA(A, B, Z [, /DOUBLE] [, EPS=value] [, ITER=variable]
[, ITMAX=value])

Return Value

If all arguments are scalar, the function returns a scalar. If all arguments are arrays,
the function matches up the corresponding elements of A, B, and Z, returning an array
with the same dimensions as the smallest array. If one argument is a scalar and the
other arguments are arrays, the function uses the scalar value with each element of
the arrays, and returns an array with the same dimensions as the smallest input array.

If any of the arguments are double-precision or if the DOUBLE keyword is set, the
result is double-precision, otherwise the result is single-precision.

Arguments

A

A scalar or array that specifies the parametric exponent of the integrand. A may be
complex.

Ix a b,()
ta 1– 1 t–()b 1– td

0

x

∫

ta 1– 1 t–()b 1– td
0

1

∫
--≡
IBETA IDL Reference Guide

 837
B

A scalar or array that specifies the parametric exponent of the integrand. B may be
complex.

Z

A scalar or array, in the interval [0, 1], that specifies the upper limit of integration. Z
may be complex. If Z is not complex then the values must be in the range [0, 1].

Keywords

DOUBLE

Set this keyword to force the computation to be done in double precision.

EPS

Set this keyword to the desired relative accuracy, or tolerance. The default tolerance
is 3.0e-7 for single precision, and 3.0d-12 for double precision.

ITER

Set this keyword to a named variable that will contain the actual number of iterations
performed.

ITMAX

Set this keyword to specify the maximum number of iterations. The default value is
100.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
IDL Reference Guide IBETA

838
Examples

Example 1

Compute the incomplete beta function for the corresponding elements of A, B, and Z.

; Define an array of parametric exponents:
A = [0.5, 0.5, 1.0, 5.0, 10.0, 20.0]
B = [0.5, 0.5, 0.5, 5.0, 5.0, 10.0]

; Define the upper limits of integration:
Z = [0.01, 0.1, 0.1, 0.5, 1.0, 0.8]
; Compute the incomplete beta functions:
result = IBETA(A, B, Z)
PRINT, result

IDL prints:

[0.0637686, 0.204833, 0.0513167, 0.500000, 1.00000, 0.950736]

Example 2

This example shows the difference in accuracy between the incomplete beta function
computed with a low tolerance and the incomplete beta function computed with a
high tolerance. The resulting surfaces show the relative errors of each. The relative
error of the low tolerance ranges from 0 to 0.002 percent. The relative error of the
high tolerance ranges from 0 to 0.0000000004 percent.

PRO UsingIBETAwithEPS

; Define an array of parametric exponents.
parameterA = (DINDGEN(101)/100. + 1.D) # REPLICATE(1.D, 101)
parameterB = REPLICATE(1.D, 101) # (DINDGEN(101)/10. + 1.D)

; Define the upper limits of integration.
upperLimits = REPLICATE(0.1D, 101, 101)

; Compute the incomplete beta functions.
betaFunctions = IBETA(parameterA, parameterB, upperLimits)

; Compute the incomplete beta functions with a less
; accurate tolerance set.
laBetaFunctions = IBETA(parameterA, parameterB, $

upperLimits, EPS = 3.0e-4)

; Compute relative error.
relativeError = 100.* $

ABS((betaFunctions - laBetaFunctions)/betaFunctions)
IBETA IDL Reference Guide

 839
; Display resulting relative error.
WINDOW, 0, TITLE = 'Compare IBETA with Less Accurate EPS'
SURFACE, relativeError, parameterA, parameterB, $

/XSTYLE, /YSTYLE, TITLE = 'Relative Error', $
XTITLE = 'Parameter A', YTITLE = 'Parameter B', $
ZTITLE = 'Percent Error (%)', CHARSIZE = 1.5

; Compute the incomplete beta functions with a more
; accurate tolerance set..
maBetaFunctions = IBETA(parameterA, parameterB, $

upperLimits, EPS = 3.0e-10)

; Compute relative error.
relativeError = 100.* $

ABS((maBetaFunctions - betaFunctions)/maBetaFunctions)

; Display resulting relative error.
WINDOW, 1, TITLE = 'Compare IBETA with More Accurate EPS'
SURFACE, relativeError, parameterA, parameterB, $

/XSTYLE, /YSTYLE, TITLE = 'Relative Error', $
XTITLE = 'Parameter A', YTITLE = 'Parameter B', $
ZTITLE = 'Percent Error (%)', CHARSIZE = 1.5

in = ''
READ,"Press enter",in
WDELETE, 0, 1

END

Version History

Introduced: 4.0

A, B, and Z arguments accept complex input: 5.6

See Also

BETA, GAMMA, IGAMMA, LNGAMMA
IDL Reference Guide IBETA

840
ICONTOUR

The ICONTOUR procedure creates an iTool and associated user interface (UI)
configured to display and manipulate contour data.

Note
If no arguments are specified, the ICONTOUR procedure creates an empty Contour
tool.

This routine is written in the IDL language. Its source code can be found in the file
icontour.pro in the lib/itools subdirectory of the IDL distribution.

Using Palettes

Contour colors can be specified in several ways. By default, all contour levels are
black. The COLOR keyword can be used to change the color of all contour levels.
For example, you can change contour levels to red by setting COLOR = [255, 0, 0].
Individual color levels can be specified when the iContour tool is in palette color
mode, which allows a color table to be used. You can activate the palette color mode
from the IDL Command Line by setting either of the RGB_TABLE or
RGB_INDICES keywords, or from the iContour tool’s property sheet by changing
the Use palette color setting to True.

Note
If you are not in the palette color mode, the colors of individual levels may be
modified in the contour level properties dialog. If you are in the palette color mode,
the ability to edit individual colors in the contour level properties dialog is disabled.
However, changing the Use palette color setting to False does not switch you
back to previously set colors. It simply converts the colors referenced by indices to
direct color values that can be individually modified. A common practice is to
switch to palette color mode, select a palette, then change Use palette color to
False. The colors of the palette are now loaded as individual contour colors that
can each be edited in the contour level properties dialog.

If the iContour tool is in palette color mode, a colorbar can be inserted through the
Insert menu. The colorbar displays a sample of the current palette associated with
the contour display. The data values of the axis of the colorbar are based on the data
range of the Z argument and the contour level values.
ICONTOUR IDL Reference Guide

 841
The minimum value of the colorbar axis represents the minimum of the data range.
The maximum value of the axis is the greater of than the maximum of the data range
and the highest contour level value.

Note
When IDL computes default contour levels, the highest contour level may be above
the maximum value of the data.

Syntax

ICONTOUR[, Z[, X, Y]]

iTool Common Keywords: [, DIMENSIONS=[x, y]] [, IDENTIFIER=variable]
[, LOCATION=[x, y]] [, NAME=string] [, OVERPLOT=iToolID] [, TITLE=string]
[, VIEW_GRID=[columns, rows]] [, /VIEW_NEXT] [, VIEW_NUMBER=integer]
[, {X | Y | Z}RANGE=[min, max]]

iTool Contour Keywords: [, RGB_INDICES=vector of indices]
[, RGB_TABLE=byte array of 256 by 3 or 3 by 256 elements] [, ZVALUE=value]

Contour Object Keywords: [, AM_PM=vector of two strings]
[, ANISOTROPY=[x, y, z]] [, C_COLOR=color array]
[, C_FILL_PATTERN=array of IDLgrPattern objects]
[, C_LABEL_INTERVAL=vector] [, C_LABEL_NOGAPS=vector]
[, C_LABEL_OBJECTS=array of object references]
[, C_LABEL_SHOW=vector of integers] [, C_LINESTYLE=array of linestyles]
[, C_THICK=float array{each element 1.0 to 10.0}]
[, C_USE_LABEL_COLOR=vector of values]
[, C_USE_LABEL_ORIENTATION=vector of values]
[, C_VALUE=scalar or vector] [, CLIP_PLANES=array] [, COLOR=RGB vector]
[, DAYS_OF_WEEK=vector of seven strings] [, DEPTH_OFFSET=value]
[, /DOWNHILL] [, /FILL] [, /HIDE] [, LABEL_FONT=objref]
[, LABEL_FORMAT=string] [, LABEL_FRMTDATA=value]
[, LABEL_UNITS=string] [, MAX_VALUE=value] [, MIN_VALUE=value]
[, MONTHS=vector of 12 values] [, N_LEVELS=value] [, /PLANAR]
[, SHADE_RANGE=[min, max]] [, SHADING={0 |1}] [, TICKINTERVAL=value]
[, TICKLEN=value] [, USE_TEXT_ALIGNMENTS=value]
IDL Reference Guide ICONTOUR

842
Axis Object Keywords: [, {X | Y | Z}GRIDSTYLE={0 | 1 | 2 | 3 | 4 | 5 | 6}]
[, {X | Y | Z}MAJOR=integer] [, {X | Y | Z}MINOR=integer]
[, {X | Y | Z}SUBTICKLEN=ratio] [, {X | Y | Z}TEXT_COLOR=RGB vector]
[, {X | Y | Z}TICKFONT_INDEX={0 | 1 | 2 | 3 | 4}]
[, {X | Y | Z}TICKFONT_SIZE=integer]
[, {X | Y | Z}TICKFONT_STYLE={0 | 1 | 2 | 3}]
[, {X | Y | Z}TICKFORMAT=string or string array]
[, {X | Y | Z}TICKINTERVAL=value] [, {X | Y | Z}TICKLAYOUT={0 | 1 | 2}]
[, {X | Y | Z}TICKLEN=value] [, {X | Y | Z}TICKNAME=string array]
[, {X | Y | Z}TICKUNITS=string] [, {X | Y | Z}TICKVALUES=vector]
[, {X | Y | Z}TITLE=string]

Arguments

X

A vector or two-dimensional array specifying the x-coordinates for the contour
surface. If X is a vector, each element of X specifies the x-coordinate for a column of
Z (e.g., X[0] specifies the x-coordinate for Z[0, *]). If X is a two-dimensional array,
each element of X specifies the x-coordinate of the corresponding point in Z (i.e., Xij
specifies the x-coordinate for Zij).

Y

A vector or two-dimensional array specifying the y-coordinates for the contour
surface. If Y is a vector, each element of Y specifies the y-coordinate for a row of Z
(e.g., Y[0] specifies the y-coordinate for Z[*,0]). If Y is a two-dimensional array, each
element of Y specifies the y-coordinate of the corresponding point in Z (Yij specifies
the y-coordinate for Zij).

Z

A vector or two-dimensional array containing the values to be contoured. If the X and
Y arguments are provided, the contour is plotted as a function of the (x, y) locations
specified by their contents. Otherwise, the contour is generated as a function of the
two-dimensional array index of each element of Z.
ICONTOUR IDL Reference Guide

 843
Keywords

Note
Keywords to the ICONTOUR routine that correspond to the names of registered
properties of the iContour tool must be specified in full, without abbreviation.

AM_PM

Set this keyword to a vector of 2 strings indicating the names of the AM and PM
strings when processing explicitly formatted dates (CAPA, CApA, and CapA format
codes) with the LABEL_FORMAT keyword. See “Format Codes” in Chapter 10 of
the Building IDL Applications manual for more information on format codes.

ANISOTROPY

Set this keyword equal to a three-element vector [x, y, z] that represents the
multipliers to be applied to the internally computed correction factors along each axis
that account for anisotropic geometry. Correcting for anisotropy is particularly
important for the appropriate representations of downhill tickmarks.

By default, IDL will automatically compute correction factors for anisotropy based
on the [XYZ] range of the contour geometry. If the geometry (as provided via the
GEOMX, GEOMY, and GEOMZ keywords) falls within the range [xmin, ymin, zmin]
to [xmax, ymax, zmax], then the default correction factors are computed as follows:

dx = xmax - xmin
dy = ymax - ymin
dz = zmax - zmin
; Get the maximum of the ranges:
maxRange = (dx > dy) > dz
IF (dx EQ 0) THEN xcorrection = 1.0 ELSE $

xcorrection = maxRange / dx
IF (dy EQ 0) THEN ycorrection = 1.0 ELSE $

ycorrection = maxRange / dy
IF (dz EQ 0) THEN zcorrection = 1.0 ELSE $

zcorrection = maxRange / dz

This internally computed correction is then multiplied by the corresponding [x, y, z]
values of the ANISOTROPY keyword. The default value for this keyword is [1,1,1].
IDL converts, maintains, and returns this data as double-precision floating-point.
IDL Reference Guide ICONTOUR

844
C_COLOR

Set this keyword to a 3 by N array of RGB colors representing the colors to be
applied at each contour level. If there are more contour levels than elements in this
vector, the colors will be cyclically repeated. If C_COLOR is set to 0, all contour
levels will be drawn in the color specified by the COLOR keyword (this is the
default).

However, the C_COLOR keyword does not activate the palette color mode, which is
recommended when working with contour levels and color. This mode can be
activated with the RGB_INDICES and RGB_TABLE keywords. See “Using
Palettes” on page 840 for more details.

C_FILL_PATTERN

Set this keyword to an array of IDLgrPattern objects representing the patterns to be
applied at each contour level if the FILL keyword is non-zero. If there are more
contour levels than fill patterns, the patterns will be cyclically repeated. If this
keyword is set to 0, all contour levels are filled with a solid color (this is the default).

C_LABEL_INTERVAL

Set this keyword to a vector of values indicating the distance (measured
parametrically relative to the length of each contour path) between labels for each
contour level. If the number of contour levels exceeds the number of provided
intervals, the C_LABEL_INTERVAL values will be repeated cyclically. The default
is 0.4.

C_LABEL_NOGAPS

Set this keyword to a vector of values indicating whether gaps should be computed
for the labels at the corresponding contour value. A zero value indicates that gaps will
be computed for labels at that contour value; a non-zero value indicates that no gaps
will be computed for labels at that contour value. If the number of contour levels
exceeds the number of elements in this vector, the C_LABEL_NOGAPS values will
be repeated cyclically. By default, gaps for the labels are computed for all levels (so
that a contour line does not pass through the label).
ICONTOUR IDL Reference Guide

 845
C_LABEL_OBJECTS

Set this keyword to an array of object references to provide examples of labels to be
drawn for each contour level. The objects specified via this keyword must inherit
from one of the following classes:

• IDLgrSymbol

• IDLgrText

If a single object is provided, and it is an IDLgrText object, each of its strings will
correspond to a contour level. If a vector of objects is used, any IDLgrText objects
should have only a single string; each object will correspond to a contour level.

By default, with C_LABEL_OBJECTS set equal to a null object, IDL computes text
labels that are the string representations of the corresponding contour level values.

Note
The objects specified via this keyword are used as descriptors only. The actual
objects drawn as labels are generated by IDL.

The contour labels will have the same color as their contour level (see C_COLOR)
unless the C_USE_LABEL_COLOR keyword is specified. The orientation of the
label will be automatically computed unless the C_USE_LABEL_ORIENTATION
keyword is specified. The horizontal and vertical alignment of any text labels will
default to 0.5 (i.e., centered) unless the USE_TEXT_ALIGNMENTS keyword is
specified.

Note
The object(s) set via this keyword will not be destroyed automatically when the
contour is destroyed.

C_LABEL_SHOW

Set this keyword to a vector of integers. For each contour value, if the corresponding
value in the C_LABEL_SHOW vector is non-zero, the contour line for that contour
value will be labeled. If the number of contour levels exceeds the number of elements
in this vector, the C_LABEL_SHOW values will be repeated cyclically. The default
is 0 indicating that no contour levels will be labeled.
IDL Reference Guide ICONTOUR

846
C_LINESTYLE

Set this keyword to an array of linestyles representing the linestyles to be applied at
each contour level. The array may be either a vector of integers representing pre-
defined linestyles, or an array of 2-element vectors representing a stippling pattern
specification. If there are more contour levels than linestyles, the linestyles will be
cyclically repeated. If this keyword is set to 0, all levels are drawn as solid lines (this
is the default).

To use a pre-defined line style, set the C_LINESTYLE property equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1’s or 0’s in the
bitmask should be repeated. (That is, if three consecutive 0’s appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 ≤ repeat ≤ 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example, LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off).

C_THICK

Set this keyword to an array of line thicknesses representing the thickness to be
applied at each contour level, where each element is a value between 1.0 and 10.0
points. If there are more contour levels than line thicknesses, the thicknesses will be
cyclically repeated. If this keyword is set to 0, all contour levels are drawn with a line
thickness of 1.0 points (this is the default).
ICONTOUR IDL Reference Guide

 847
C_USE_LABEL_COLOR

Set this keyword to a vector of values (0 or 1) to indicate whether the COLOR
property value for each of the label objects (for the corresponding contour level) is to
be used to draw that label. If the number of contour levels exceeds the number of
elements in this vector, the C_USE_LABEL_COLOR values will be repeated
cyclically. By default, this value is zero, indicating that the COLOR properties of the
label objects will be ignored, and the C_COLOR property for the contour object will
be used instead.

C_USE_LABEL_ORIENTATION

Set this keyword to a vector of values (0 or 1) to indicate whether the orientation for
each of the label objects (for the corresponding contour level) is to be used when
drawing the label. For text, the orientation of the object corresponds to the
BASELINE and UPDIR property values; for a symbol, this refers to the default (un-
rotated) orientation of the symbol. If the number of contour levels exceeds the
number of elements in this vector, the C_USE_LABEL_ORIENTATION values will
be repeated cyclically. By default, this value is zero, indicating that orientation of the
label object(s) will be set to automatically computed values (to correspond to the
direction of the contour paths).

C_VALUE

Set this keyword to a scalar value or a vector of values for which contour values are to
be drawn. If this keyword is set to 0, contour levels will be evenly sampled across the
range of the Z argument, using the value of the N_LEVELS keyword to determine the
number of samples. IDL converts, maintains, and returns this data as double-
precision floating-point.

CLIP_PLANES

Set this keyword to an array of dimensions [4, N] specifying the coefficients of the
clipping planes to be applied to this object. The four coefficients for each clipping
plane are of the form [A, B, C, D], where Ax + By + Cz + D = 0. Portions of this
object that fall in the half space Ax + By + Cz + D > 0 will be clipped. By default, the
value of this keyword is a scalar (-1) indicating that no clipping planes are to be
applied.

Note
A window is only able to support a limited number of clipping planes. Some of
these clipping planes may already be in use by the tool to support specific data
IDL Reference Guide ICONTOUR

848
display features. If the total number of clipping planes exceeds the limit, an
informational message is displayed.

COLOR

Set this keyword to the color to be used to draw the contours. This color is specified
as an RGB vector. The default is [0, 0, 0]. This value will be ignored if the
C_COLOR keyword is set to a vector.

DAYS_OF_WEEK

Set this keyword to a vector of 7 strings to indicate the names to be used for the days
of the week when processing explicitly formatted dates (CDWA, CDwA, and CdwA
format codes) with the LABEL_FORMAT keyword. See “Format Codes” in Chapter
10 of the Building IDL Applications manual for more information on format codes.

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the drawing area of the specific tool in units specified by the UNITS
keyword. If no value is provided, a default value of one half the screen size is used.
The minimum width of the window correlates to the width of the menubar. The
minimum window height is 100 pixels.

DOWNHILL

Set this keyword to indicate that downhill tick marks should be rendered as part of
each contour level to indicate the downhill direction relative to the contour line.

FILL

Set this keyword to indicate that the contours should be filled. The default is to draw
the contour levels as lines without filling. Filling contours may produce less than
satisfactory results if your data contains NaNs, or if the contours are not closed.

HIDE

Set this keyword to a boolean value to indicate whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic
ICONTOUR IDL Reference Guide

 849
IDENTIFIER

Set this keyword to a named variable that will contain the iToolID for the created
tool. This value can then be used to reference this tool during overplotting operations
or command-line-based tool management operations.

LABEL_FONT

Set this keyword to an instance of an IDLgrFont object to describe the default font to
be used for contour labels. This font will be used for all text labels automatically
generated by IDL (i.e., if C_LABEL_SHOW is set but the corresponding
C_LABEL_OBJECTS text object is not provided), or for any text label objects
provided via C_LABEL_OBJECTS that do not already have the font property set.
The default value for this keyword is a NULL object reference, indicating that 12 pt.
Helvetica will be used.

LABEL_FORMAT

Set this keyword to a string that represents a format string or the name of a function
to be used to format the contour labels. If the string begins with an open parenthesis,
it is treated as a standard format string. (Refer to the Format Codes in the IDL
Reference Guide.) If the string does not begin with an open parenthesis, it is
interpreted as the name of a callback function to be used to generate contour level
labels.

The callback function is called with three parameters: Axis, Index, and Value and an
optional DATA keyword, where:

• Axis is simply the value 2 to indicate that values along the Z axis are being
formatted, which allows a single callback routine to be used for both axis
labeling and contour labeling.

• Index is the contour level index (indices start at 0).

• Value is the data value of the current contour level.

• DATA is the optional keyword allowing any user-defined value specified
through the LABEL_FRMTDATA keyword to ICONTOUR.

LABEL_FRMTDATA

Set this keyword to a value of any type. It will be passed via the DATA keyword to
the user-supplied formatting function specified via the LABEL_FORMAT keyword,
if any. By default, this value is 0, indicating that the DATA keyword will not be set
(and furthermore, need not be supported by the user-supplied function).
IDL Reference Guide ICONTOUR

850
LABEL_UNITS

Set this keyword to a string indicating the units to be used for default contour level
labeling.

Valid unit strings include:

• "Numeric"

• "Years"

• "Months"

• "Days"

• "Hours"

• "Minutes"

• "Seconds"

• "Time" - Use this value to indicate that the contour levels correspond to time
values; IDL will determine the appropriate label format based upon the range
of values covered by the contour Z data.

• "" - The empty string is equivalent to the "Numeric" unit. This is the default.

If any of the time units are utilized, then the contour values are interpreted as Julian
date/time values.

Note
The singular form of each of the time unit strings is also acceptable (for example,
LEVEL_UNITS='Day' is equivalent to LEVEL_UNITS='Days').

LOCATION

Set this keyword to a two-element vector of the form [x, y] to specify the location of
the upper left-hand corner of the tool relative to the display screen, in units specified
by the UNITS keyword.

MAX_VALUE

Set this keyword to the maximum value to be plotted. Data values greater than this
value are treated as missing data. The default is the maximum value of the input Z
data. IDL converts, maintains, and returns this data as double-precision floating-
point.
ICONTOUR IDL Reference Guide

 851
MONTHS

Set this keyword to a vector of 12 strings indicating the names to be used for the
months when processing explicitly formatted dates (CMOA, CMoA, and CmoA
format codes) with the C_LABEL_FORMAT keyword. See “Format Codes” in
Chapter 10 of the Building IDL Applications manual for more information on format
codes.

MIN_VALUE

Set this keyword to the minimum value to be plotted. Data values less than this value
are treated as missing data. The default is the minimum value of the input Z data. IDL
converts, maintains, and returns this data as double-precision floating-point.

NAME

Set this keyword to a string that specifies the name of this visualization.

N_LEVELS

Set this keyword to the number of contour levels to generate. This keyword is ignored
if the C_VALUE keyword is set to a vector, in which case, the number of levels is
derived from the number of elements in that vector. Set this keyword to zero to
indicate that IDL should compute a default number of levels based on the range of
data values. This is the default.

OVERPLOT

Set this keyword to an iToolID to direct the graphical output of the particular tool to
the tool specified by the provided iToolID.

Set this keyword to 1 (one) to place the graphical output for the command in the
current tool. If no current tool exists, a new tool is created.

PLANAR

Set this keyword to indicate that the contoured data is to be projected onto a plane.
Unlike the underlying IDLgrContour object, the default for ICONTOUR is planar
(PLANAR = 1), which displays the contoured data in a plane. See the ZVALUE
keyword to specify the Z value at which to display the planar Contour plot if it is
displayed in a three dimensional data space.
IDL Reference Guide ICONTOUR

852
RGB_INDICES

Set this keyword to a vector of indices into the color table to select colors to use for
contour level colors. Setting the RGB_INDICES keyword activates the palette color
mode, which allows colors from a specified color table to be used for the contour
levels. The values set for RGB_INDICES are indices into the RGB_TABLE array of
colors. If the number of colors selected using RGB_INDICES is less than the number
of contour levels, the colors are repeated cyclically. If indices are not specified with
the RGB_INDICES keyword, a default vector is constructed based on the values of
the contour levels within the contour data range scaled to the byte range of
RGB_TABLE.

See “Using Palettes” on page 840 for more details on the palette color mode.

RGB_TABLE

Set this keyword to either a 3 by 256 or 256 by 3 array containing color values to use
for contour level colors. Setting the RGB_TABLE keyword activates the palette color
mode, which allows colors from a specified color table to be used for the contour
levels. The colors for each level are selected from RGB_TABLE using the
RGB_INDICES vector. If indices are not specified with the RGB_INDICES keyword
then a default vector is constructed based on the values of the contour levels within
the contour data range scaled to the byte range of RGB_TABLE.

If the visualization is in palette color mode, but colors have not been specified with
the RGB_TABLE keyword, the contour plot uses a default grayscale ramp.

See “Using Palettes” on page 840 for more details on the palette color mode.

SHADE_RANGE

Set this keyword to a two-element array that specifies the range of pixel values (color
indices) to use for shading. The first element is the color index for the darkest pixel.
The second element is the color index for the brightest pixel. This value is ignored
when the contour is drawn to a graphics destination that uses the RGB color model.

SHADING

Set this keyword to an integer representing the type of shading to use:

• 0 = Flat (default): The color has a constant intensity for each face of the
contour, based on the normal vector.

• 1 = Gouraud: The colors are interpolated between vertices, and then along
scanlines from each of the edge intensities.
ICONTOUR IDL Reference Guide

 853
Gouraud shading may be slower than flat shading, but results in a smoother
appearance.

TICKINTERVAL

Set this keyword equal to a number indicating the distance between downhill
tickmarks, in data units. If TICKINTERVAL is not set, or if you explicitly set it to
zero, IDL will compute the distance based on the geometry of the contour. IDL
converts, maintains, and returns this data as double-precision floating-point.

TICKLEN

Set this keyword equal to a number indicating the length of the downhill tickmarks,
in data units. If TICKLEN is not set, or if you explicitly set it to zero, IDL will
compute the length based on the geometry of the contour. IDL converts, maintains,
and returns this data as double-precision floating-point

TITLE

Set this keyword to a string to specify a title for the tool. The title is displayed in the
title bar of the tool and is used for tool-related display purposes only – as the root of
the hierarchy shown in the Tool Browser, for example.

USE_TEXT_ALIGNMENTS

Set this keyword to indicate that, for any IDLgrText labels (as specified via the
C_LABEL_OBJECTS keyword), the ALIGNMENT and
VERTICAL_ALIGNMENT property values for the given IDLgrText object(s) are to
be used to draw the corresponding labels. By default, this value is zero, indicating
that the ALIGNMENT and VERTICAL_ALIGNMENT properties of the label
IDLgrText object(s) will be set to default values (0.5 for each, indicating centered
labels).

VIEW_GRID

Set this keyword to a two-element vector of the form [columns, rows] to specify the
view layout within the new tool. This keyword is only used if a new tool is being
created (for example, if OVERPLOT, VIEW_NEXT, or VIEW_NUMBER are
specified then VIEW_GRID is ignored).
IDL Reference Guide ICONTOUR

854
VIEW_NEXT

Set this keyword to change the view selection to the next view following the
currently-selected view before issuing any graphical commands. If the currently-
selected view is the last one in the layout, then /VIEW_NEXT will cause the first
view in the layout to become selected. This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

VIEW_NUMBER

Set this keyword to change the currently-selected view to the view specified by the
VIEW_NUMBER before issuing any graphical commands. The view number starts
at 1, and corresponds to the position of the view within the graphics container (not
necessarily the position on the screen). This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

[XYZ]MAJOR

Set this keyword to an integer representing the number of major tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MAJOR equal to zero suppresses major tickmarks entirely. ZMAJOR is ignored
unless PLANAR is set to 0.

[XYZ]MINOR

Set this keyword to an integer representing the number of minor tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MINOR equal to zero suppresses minor tickmarks entirely. ZMINOR is ignored
unless PLANAR is set to 0.

[XYZ]RANGE

Set this keyword to the desired data range of the axis, a 2-element vector. The first
element is the axis minimum, and the second is the maximum. ZRANGE is ignored
unless PLANAR is set to 0.
ICONTOUR IDL Reference Guide

 855
[XYZ]SUBTICKLEN

Set this keyword to a floating-point scale ratio specifying the length of minor tick
marks relative to the length of major tick marks. The default is 0.5, specifying that the
minor tick mark is one-half the length of the major tick mark. ZSUBTICKLEN is
ignored unless PLANAR is set to 0.

[XYZ]TEXT_COLOR

Set this keyword to an RGB value specifying the color for the axis text. The default
value is [0, 0, 0] (black). ZTEXT_COLOR is ignored unless PLANAR is set to 0.

[XYZ]TICKFONT_INDEX

Set this keyword equal to one of the following integers, which represent the type of
font to be used for the axis text:

• 0 = Helvetica

• 1 = Courier

• 2 = Times

• 3 = Symbol

• 4 = Hershey

ZTICKFONT_INDEX is ignored unless PLANAR is set to 0.

[XYZ]TICKFONT_SIZE

Set this keyword to an integer representing the point size of the font used for the axis
text. The default is 12.0 points. ZTICKFONT_SIZE is ignored unless PLANAR is set
to 0.

[XYZ]TICKFONT_STYLE

Set this keyword equal to one of the following integers, which represent the style of
font to be used for the axis text:

• 0 = Normal

• 1 = Bold

• 2 = Italic

• 3 = Bold Italic

ZTICKFONT_STYLE is ignored unless PLANAR is set to 0.
IDL Reference Guide ICONTOUR

856
[XYZ]TICKFORMAT

Set this keyword to a string, or an array of strings, in which each string represents a
format string or the name of a function to be used to format the tick mark labels. If an
array is provided, each string corresponds to a level of the axis. The TICKUNITS
keyword determines the number of levels for an axis.

If the string begins with an open parenthesis, it is treated as a standard format string.
See “Format Codes” in Chapter 10 of the Building IDL Applications manual.

If the string does not begin with an open parenthesis, it is interpreted as the name of a
callback function to be used to generate tick mark labels.

If TICKUNITS are not specified:

• The callback function is called with three parameters: Axis, Index, and Value,
where:

• Axis is the axis number: 0 for X axis, 1 for Y axis, 2 for Z axis

• Index is the tick mark index (indices start at 0)

• Value is the data value at the tick mark (a double-precision floating point
value)

If TICKUNITS are specified:

The callback function is called with four parameters: Axis, Index, Value, and Level,
where:

• Axis, Index, and Value are the same as described above.

• Level is the index of the axis level for the current tick value to be labeled.
(Level indices start at 0.)

Used with the LABEL_DATE function, this property can easily create axes with
date/time labels.

ZTICKFORMAT is ignored unless PLANAR is set to 0.

[XYZ]TICKINTERVAL

Set this keyword to a floating-point scalar indicating the interval between major tick
marks for the first axis level. The default value is computed according to the axis
[XYZ]RANGE and the number of major tick marks ([XYZ]MAJOR). The value of
this keyword takes precedence over the value set for the [XYZ]MAJOR keyword.
ICONTOUR IDL Reference Guide

 857
For example, if TICKUNITS = ['S', 'H', 'D'], and TICKINTERVAL = 30, then the
interval between major ticks for the first axis level will be 30 seconds.

ZTICKINTERVAL is ignored unless PLANAR is set to 0.

[XYZ]TICKLAYOUT

Set this keyword to integer scalar that indicates the tick layout style to be used to
draw each level of the axis.

Valid values include:

• 0 = The axis line, major tick marks and tick labels are all included. Minor tick
marks only appear on the first level of the axis. This is the default tick layout
style.

• 1 = Only the labels for the major tick marks are drawn. The axis line, major
tick marks, and minor tick marks are omitted.

• 2 = Each major tick interval is outlined by a box. The tick labels are positioned
within that box (left-aligned). For the first axis level only, the major and minor
tick marks will also be drawn.

ZTICKLAYOUT is ignored unless PLANAR is set to 0.

Note
For all tick layout styles, at least one tick label will appear on each level of the axis
(even if no major tick marks fall along the axis line). If there are no major tick
marks, the single tick label will be centered along the axis.

[XYZ]TICKLEN

Set this keyword to a floating-point value that specifies the length of each major tick
mark, measured in data units. The recommended, and default, tick mark length is 0.2.
IDL converts, maintains, and returns this data as double-precision floating-point.
ZTICKLEN is ignored unless PLANAR is set to 0.

[XYZ]TICKNAME

Set this keyword to a string array of up to 30 elements that controls the annotation of
each tick mark. ZTICKNAME is ignored unless PLANAR is set to 0.
IDL Reference Guide ICONTOUR

858
[XYZ]TICKUNITS

Set this keyword to a string (or a vector of strings) indicating the units to be used for
axis tick labeling. If more than one unit is provided, the axis will be drawn in multiple
levels, one level per unit.

The order in which the strings appear in the vector determines the order in which the
corresponding unit levels will be drawn. The first string corresponds to the first level
(the level nearest to the primary axis line).

Valid unit strings include:

• "Numeric"

• "Years"

• "Months"

• "Days"

• "Hours"

• "Minutes"

• "Seconds"

• "Time" - Use this value to indicate that the tick values are time values; IDL
will determine the appropriate time intervals and tick label formats based upon
the range of values covered by the axis.

• ""- Use the empty string to indicate that no tick units are being explicitly set.
This implies that a single axis level will be drawn using the "Numeric" unit.
This is the default setting.

If any of the time units are utilized, then the tick values are interpreted as Julian
date/time values. Note that the singular form of each of the time value strings is also
acceptable (e.g, TICKUNITS = 'Day' is equivalent to TICKUNITS = 'Days').

ZTICKUNITS is ignored unless PLANAR is set to 0.

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000hidd, respectively.
ICONTOUR IDL Reference Guide

 859
[XYZ]TICKVALUES

Set this keyword to a floating-point vector of data values representing the values at
each tick mark. If TICKVALUES is set to 0, the default, IDL computes the tick
values based on the axis range and the number of major ticks. IDL converts,
maintains, and returns this data as double-precision floating-point. ZTICKVALUES
is ignored unless PLANAR is set to 0.

[XYZ]TITLE

Set this keyword to a string representing the title of the specified axis. ZTITLE is
ignored unless PLANAR is set to 0.

ZVALUE

For a planar contour plot, the height of the Z plane onto which the contour plot is
projected.

Note
This keyword will not have any visual effect unless PLANAR is true and the plot is
in a 3D dataspace, for example by selecting the Surface operation to add a surface
plot to the dataspace along with the contour plot.

Examples

In the IDL Intelligent Tools system, data can be imported from the IDL Command
Line (as described in Example 1), or data can be imported via the File menu in the
iTool window (as described in Examples 2 and 3). For detailed information on
importing data via the iTool file menu, refer to “Data Import Methods” in Chapter 2
of the iTool User’s Guide manual.

Example 1

This example shows how to use the IDL Command Line to bring contour data into
the iContour tool.

At the IDL Command Line, enter:

file = FILEPATH('convec.dat', SUBDIRECTORY = ['examples', 'data'])
data = READ_BINARY(file, DATA_DIMS = [248, 248])
ICONTOUR, data
IDL Reference Guide ICONTOUR

860
Double-click on a contour to display the contour properties. Change the Number of
levels setting to 20, change Use palette color to True, and use the Levels Color
Table setting to load the EOS B predefined color table through the Load Predefined
button in the Palette Editor. Then, change the Fill contours setting to True.

The following figure displays the output of this example:

Example 2

This example shows how to use the iTool File → Open command to load DICOM
data into the iContour tool.

At the IDL Command Line, enter:

ICONTOUR

Select File → Open to display the Open dialog, then browse to find mr_brain.dcm
in the examples/data directory in the IDL distribution, and click Open.

Double-click on a contour to display the contour properties. Then, change Use
palette color to True and the Fill contours setting to True.

Smooth the data by selecting Operations → Filter → Smooth.

Figure 3-7: Earth Mantle Convection iContour Example
ICONTOUR IDL Reference Guide

 861
The following figure displays the output of this example:

Example 3

This example shows how to use the File → Import command to load binary data into
the iContour tool.

At the IDL Command Line, enter:

ICONTOUR

Select File → Import to display the IDL Import Data wizard.

1. At Step 1, select From a File and click Next>>.

2. At Step 2, under File Name:, browse to find idemosurf.dat in the
examples/data directory in the IDL distribution, and click Next>>.

3. At Step 3, select Contour and click Finish.

The Binary Template wizard is displayed. In the Binary Template, change File’s byte
ordering to Little Endian. Then, click New Field, and enter the following
information in the New Field dialog:

• Field Name: data (or a name of your choosing)

• Type: Float (32 bit)

• Number of Dimensions: 2

Figure 3-8: Smoothed Brain MRI iContour Example
IDL Reference Guide ICONTOUR

862
• 1st Dimension Size: 200

• 2nd Dimension Size: 200

Click OK to close the New Field dialog and the Binary Template dialog, and the
contours are displayed.

Double-click on a contour to display the contour properties. Change the Number of
levels setting to 10, change Use palette color to True, and use the Levels Color
Table setting to load the Rainbow18 predefined color table through the Load
Predefined button in the Palette Editor. Then, change the Fill contours setting to
True.

Change the Projection setting from Planar to Three-D.

The following figure displays the output of this example:

Version History

Introduced: 6.0

Figure 3-9: Filled Three-DImensional iContour Example
ICONTOUR IDL Reference Guide

 863
IDENTITY

The IDENTITY function returns an identity array (an array with ones along the main
diagonal and zeros elsewhere) of the specified dimensions.

This routine is written in the IDL language. Its source code can be found in the file
identity.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = IDENTITY(N [, /DOUBLE])

Return Value

Returns an n by n identity array.

Arguments

N

The desired column and row dimensions.

Keywords

DOUBLE

Set this keyword to return a double-precision identity array.

Examples

; Define an array, A:
A = [[2.0, 1.0, 1.0, 1.5], $

[4.0, -6.0, 0.0, 0.0], $
[-2.0, 7.0, 2.0, 2.5], $
[1.0, 0.5, 0.0, 5.0]]

; Compute the inverse of A using the INVERT function:
inverse = INVERT(A)
IDL Reference Guide IDENTITY

864
; Verify the accuracy of the computed inverse using the
; mathematical identity, A x A^-1 - I(4) = 0, where A^-1 is the
; inverse of A, I(4) is the 4 by 4 identity array and 0 is a 4 by 4
; array of zeros:
PRINT, A ## inverse - IDENTITY(4)

Version History

Introduced: 5.0

See Also

FINDGEN, FLTARR
IDENTITY IDL Reference Guide

 865
IDL_Container Object Class

See Appendix , “TrackBall”.
IDL Reference Guide IDL_Container Object Class

866
IDL_VALIDNAME

The IDL_VALIDNAME function determines whether a string may be used as a valid
IDL variable name or structure tag name. Optionally, the routine can convert non-
valid characters into underscores, returning a valid name string.

Syntax

Result = IDL_VALIDNAME(String [, /CONVERT_ALL] [, /CONVERT_SPACES])

Return Value

Returns the input string, optionally converting all spaces or non-alphanumeric
characters to underscores. If the input string cannot be used as a valid variable or
structure tag name, a null string is returned.

Arguments

String

A string representing the IDL variable or structure tag name to be checked.

Keywords

CONVERT_ALL

If this keyword is set, then String is converted into a valid IDL variable name using
the following rules:

• All non-alphanumeric characters (except ‘_’, ‘!’ and ‘$’) are converted to
underscores

• If the first character of String is a number or a ‘$’, then an underscore is
prepended to the string

• If the first character of String is not a valid character (‘_’, ‘!’, ‘A’…’Z’) then
that character is converted to an underscore

• If String is an empty string or a reserved word (such as “AND”) then an
underscore is prepended to the string
IDL_VALIDNAME IDL Reference Guide

 867
Tip
The CONVERT_ALL keyword guarantees that a valid variable name is returned. It
is useful in converting user-supplied strings into valid IDL variable names.

CONVERT_SPACES

If this keyword is set, then all spaces within String are converted to underscores. If
String contains any other non-alphanumeric characters, then a null string is returned,
indicating that the string cannot be used as a valid variable name.

Note
CONVERT_SPACES behaves the same as CREATE_STRUCT when checking
structure tag names.

Examples

The following table provides IDL_VALIDNAME examples and their results.

Version History

Introduced: 6.0

See Also

CREATE_STRUCT

Example Result

result = IDL_VALIDNAME('abc') 'abc'

result = IDL_VALIDNAME(' a b c ') ''

result = IDL_VALIDNAME(' a b c ', /CONVERT_SPACES) '_a_b_c_'

result = IDL_VALIDNAME('$var') ''

result = IDL_VALIDNAME('$var', /CONVERT_ALL) '_$VAR'

result = IDL_VALIDNAME('and') ''

result = IDL_VALIDNAME('and', /CONVERT_ALL) '_AND'

Table 3-1: IDL_VALIDNAME Examples
IDL Reference Guide IDL_VALIDNAME

868
IDLan* Object Class

The following IDLan* object classes are documented in Appendix , “Analysis Object
Classes”:

• IDLanROI

• IDLanROIGroup
IDLan* Object Class IDL Reference Guide

 869
IDLcom* Object Class

The following IDLcom* object classes are documented in Appendix ,
“Miscellaneous Object Classes”:

• IDLcomActiveX

• IDLcomIDispatch
IDL Reference Guide IDLcom* Object Class

870
IDLff* Object Class

The following IDLff* object classes are documented in Appendix , “File Format
Object Classes”:

• IDLffDICOM • IDLffShape

• IDLffDXF • IDLffXMLSAX

• IDLffLanguageCat
IDLff* Object Class IDL Reference Guide

 871
IDLgr* Object Classes

The following IDLgr* object classes are documented in Appendix , “Graphics Object
Classes”:

• IDLgrAxis • IDLgrModel • IDLgrROIGroup • IDLgrVRML

• IDLgrBuffer • IDLgrMPEG • IDLgrScene • IDLgrWindow

• IDLgrClipboard • IDLgrPalette • IDLgrSurface

• IDLgrColorbar • IDLgrPattern • IDLgrSymbol

• IDLgrColorbar • IDLgrPlot • IDLgrTessellator

• IDLgrFont • IDLgrPolygon • IDLgrText

• IDLgrImage • IDLgrPolyline • IDLgrView

• IDLgrLegend • IDLgrPrinter • IDLgrViewgroup

• IDLgrLight • IDLgrROI • IDLgrVolume
IDL Reference Guide IDLgr* Object Classes

872
IDLit* Object Classes

The following IDLit* object classes are documented in “iTools Object Classes” in
Chapter 7:

IDLitCommand IDLitIMessaging IDLitParameterSet

IDLitCommandSet IDLitManipulator IDLitReader

IDLitComponent IDLitManipulatorContainer IDLitTool

IDLitContainer IDLitManipulatorManager IDLitUI

IDLitData IDLitManipulatorVisual IDLitVisualization

IDLitDataContainer IDLitOperation IDLitWindow

IDLitDataOperation IDLitParameter IDLitWriter
IDLit* Object Classes IDL Reference Guide

 873
IDLITSYS_CREATETOOL

The IDLITSYS_CREATETOOL function creates an instance of the specified tool
registered within the IDL Intelligent Tools system.

This routine is written in the IDL language. Its source code can be found in the file
idlitsys_createtool.pro in the lib/itools subdirectory of the IDL
distribution.

Syntax

Result = IDLITSYS_CREATETOOL(StrTool[, INITIAL_DATA=data]
[, OVERPLOT=iToolID] [, PANEL_LOCATION={0 | 1 | 2 | 3}]
[, VIEW_GRID=vector] [, /VIEW_NEXT] [, VIEW_NUMBER=number]
[, VISUALIZATION_TYPE=vistype])

Return Value

Returns an iToolID that can be used to reference the created tool at a later time.

Arguments

StrTool

The name of a tool that has been registered with the iTools system via the
ITREGISTER routine.

Keywords

Note
Additional keywords/properties associated with the target visualization at the
command line are passed to the underlying system to be applied to the created tool
and visualizations.

INITIAL_DATA

Set this keyword to the data objects that are used to create the initial visualizations in
the created tool.
IDL Reference Guide IDLITSYS_CREATETOOL

874
OVERPLOT

Set this keyword to the iToolID of the tool in which the visualization is to be created.
This iToolID can be obtained during the creation of a previous tool or from the
ITGETCURRENT routine.

PANEL_LOCATION

Set this keyword to an integer value to control where a user interface panel should be
displayed. Possible values are:

VIEW_GRID

Set this keyword to a two-element vector of the form [columns, rows] to specify the
view layout within the new tool. This keyword is only used if a new tool is being
created; it is ignored if OVERPLOT, VIEW_NEXT, or VIEW_NUMBER are
specified.

VIEW_NEXT

Set this keyword to change the view selection to the next view following the
currently-selected view before issuing any graphical commands. If the currently-
selected view is the last one in the layout, then /VIEW_NEXT will cause the first
view in the layout to become selected. This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

0 position the panel above the iTool window

1 position the panel below the iTool window

2 position the panel to the left of the iTool window.

3 position the panel to the right of the iTool window (this is the default).
IDLITSYS_CREATETOOL IDL Reference Guide

 875
VIEW_NUMBER

Set this keyword to change the currently-selected view to the view specified by the
VIEW_NUMBER before issuing any graphical commands. The view number starts
at 1, and corresponds to the position of the view within the graphics container (not
necessarily the position on the screen). This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

VISUALIZATION_TYPE

Set this keyword to a string containing the name of a registered visualization type that
should be used to visualize any data specified by the INITIAL_DATA keyword. If
this keyword is not specified, the iTool will select a visualization type based on the
data type of the input data.

Examples

See Chapter 5, “Example: Simple iTool” in the iTool Developer’s Guide manual.

Version History

Introduced: 6.0

See Also

ITREGISTER, Chapter 5, “Creating an iTool Launch Routine” in the iTool
Developer’s Guide manual
IDL Reference Guide IDLITSYS_CREATETOOL

876
IF...THEN...ELSE

The IF...THEN...ELSE statement conditionally executes a statement or block of
statements.

Note
For information on using IF...THEN...ELSE and other IDL program control
statements, see Chapter 12, “Program Control” in the Building IDL Applications
manual.

Syntax

IF expression THEN statement [ELSE statement]

or

IF expression THEN BEGIN

statements

ENDIF [ELSE BEGIN

statements

ENDELSE]

Examples

The following example illustrates the use of the IF statement using the ELSE clause.
Notice that the IF statement is ended with ENDIF, and the ELSE statement is ended
with ENDELSE. Also notice that the IF statement can be used with or without the
BEGIN...END block:

A = 2
B = 4

IF (A EQ 2) AND (B EQ 3) THEN BEGIN
 PRINT, 'A = ', A
 PRINT, 'B = ', B
ENDIF ELSE BEGIN
 IF A NE 2 THEN PRINT, 'A <> 2' ELSE PRINT, 'B <> 3'
ENDELSE

IDL Prints:

B <> 3
IF...THEN...ELSE IDL Reference Guide

 877
Version History

Introduced: Original
IDL Reference Guide IF...THEN...ELSE

878
IGAMMA

The IGAMMA function computes the incomplete gamma function.

IGAMMA uses either a power series representation or a continued fractions method.
If Z is less than or equal to A+1, a power series representation is used. If Z is greater
than A+1, a continued fractions method is used.

This routine is written in the IDL language. Its source code can be found in the file
igamma.pro in the lib subdirectory of the IDL distribution.

This routine can also be used with the GAMMA function to calculate the following
other variations of the incomplete gamma function.

• , which can be calculated with
IGAMMA and GAMMA:

igmaVariant1 = IGAMMA(A, Z)*GAMMA(A)

• , which can be calculated with
IGAMMA and GAMMA:

igmaVariant2 = GAMMA(A)*(1 - IGAMMA(A, Z))

• , which can be
calculated with IGAMMA:

igmaVariant3 = x^(-A)*IGAMMA(A, Z)

Syntax

Result = IGAMMA(A, Z [, /DOUBLE] [, EPS=value] [, ITER=variable]
[, ITMAX=value] [, METHOD=variable])

Px a()
e t– ta 1– td

0

x

∫

e t– ta 1– td
0

∞

∫
-----------------------------≡

γx a() Px a()Γ a() e t– ta 1– td
0

x

∫= =

Γx a() Γ a() γ a()– e t– ta 1– td
x

∞

∫= =

γx
∗ a() x

a–
Px a() x

a– Γ a()()⁄() e t– ta 1– td
0

x

∫= =
IGAMMA IDL Reference Guide

 879
Return Value

If both arguments are scalar, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of A and Z, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the input array.

If any of the arguments are double-precision or if the DOUBLE keyword is set, the
result is double-precision, otherwise the result is single-precision.

Arguments

A

A scalar or array that specifies the parametric exponent of the integrand. A may be
complex.

Z

A scalar or array that specifies the upper limit of integration. Z may be complex. If Z
is not complex then the values must be greater than or equal to zero.

Keywords

DOUBLE

Set this keyword to return a double-precision result.

EPS

Set this keyword to the desired relative accuracy, or tolerance. The default tolerance
is 3.0e-7 for single precision, and 3.0d-12 for double precision.

ITER

Set this keyword to a named variable that will contain the actual number of iterations
performed.

ITMAX

Set this keyword to specify the maximum number of iterations. The default value is
100,000.
IDL Reference Guide IGAMMA

880
METHOD

This keyword is obsolete. METHOD will still be accepted, but will always return 0.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

Example 1

Compute the incomplete gamma function for the corresponding elements of A and Z.

; Define an array of parametric exponents:
A = [0.10, 0.50, 1.00, 1.10, 6.00, 26.00]

; Define the upper limits of integration:
Z = [0.0316228, 0.0707107, 5.00000, 1.04881, 2.44949, 25.4951]

; Compute the incomplete gamma functions:
result = IGAMMA(A, Z)

PRINT, result

IDL prints:

[0.742026, 0.293128, 0.993262, 0.607646, 0.0387318, 0.486387]

Version History

Introduced: 4.0

A and Z arguments accepts complex input: 5.6

See Also

BETA, GAMMA, IBETA, LNGAMMA
IGAMMA IDL Reference Guide

 881
IIMAGE

The IIMAGE procedure creates an iTool and associated user interface (UI)
configured to display and manipulate image data.

Note
If no arguments are specified, the IIMAGE procedure creates an empty Image tool.

This routine is written in the IDL language. Its source code can be found in the file
iimage.pro in the lib/itools subdirectory of the IDL distribution.

Syntax

IIMAGE[, Image[, X, Y]]

iTool Common Keywords: [, DIMENSIONS=[x, y]] [, IDENTIFIER=variable]
[, LOCATION=[x, y]] [, NAME=string] [, OVERPLOT=iToolID] [, TITLE=string]
[, VIEW_GRID=[columns, rows]] [, /VIEW_NEXT] [, VIEW_NUMBER=integer]
[, {X | Y}RANGE=[min, max]]

iTool Image Keywords: [, ALPHA_CHANNEL=2-D array]
[, BLUE_CHANNEL=2-D array] [, GREEN_CHANNEL=2-D array]
[, IMAGE_DIMENSIONS=[width, height]] [, IMAGE_LOCATION=[x, y]]
[, RED_CHANNEL=2-D array] [, RGB_TABLE=array of 256 by 3 or 3 by 256
elements]

Image Object Keywords: [, CHANNEL=hexadecimal bitmask]
[, CLIP_PLANES=array] [, /HIDE] [, /INTERPOLATE] [, /ORDER]

Axis Object Keywords: [, {X | Y}GRIDSTYLE={0 | 1 | 2 | 3 | 4 | 5 | 6}]
[, {X | Y}MAJOR=integer] [, {X | Y}MINOR=integer]
[, {X | Y}SUBTICKLEN=ratio] [, {X | Y}TEXT_COLOR=RGB vector]
[, {X | Y}TICKFONT_INDEX={0 | 1 | 2 | 3 | 4}]
[, {X | Y}TICKFONT_SIZE=integer] [, {X | Y}TICKFONT_STYLE={0 | 1 | 2 | 3}]
[, {X | Y}TICKFORMAT=string or string array] [, {X | Y}TICKINTERVAL=value]
[, {X | Y}TICKLAYOUT={0 | 1 | 2}] [, {X | Y}TICKLEN=value]
[, {X | Y}TICKNAME=string array] [, {X | Y}TICKUNITS=string]
[, {X | Y}TICKVALUES=vector] [, {X | Y}TITLE=string]
IDL Reference Guide IIMAGE

882
Arguments

Image

Either a vector, a two-dimensional, or a three-dimensional array representing the
sample values to be displayed as an image.

If Image is a vector:

• The X and Y arguments must also be present and contain the same number of
elements. In this case, a dialog will be presented that offers the option of
gridding the data to a regular grid (the results of which will be displayed as a
color-indexed image).

If Image is a two-dimensional array:

• If either dimension is 3:

Image represents an array of x, y, and z values (either [[x0, y0, z0], [x1, y1, z1],
..., [xn, yn, zn]] or [[x0, x1, ..., xn], [y0, y1, ..., yn], [z0, z1, ..., zn]] where n is the
length of the other dimension). In this case, the X and Y arguments, if present,
will be ignored. A dialog will be presented that allows the option of gridding
the data to a regular grid (the results of which will be displayed as a color-
indexed image, using the z values as the image data values).

• If neither dimension is 3:

Image represents an array of sample values to be displayed as a color-indexed
image. If X and Y are provided, the sample values are defined as a function of
the corresponding (x, y) locations; otherwise, the sample values are implicitly
treated as a function of the array indices of each element of Image.

If Image is a three-dimensional array:

• If one of the dimensions is 3:

Image is a 3 x n x m, n x 3 x m, or n x m x 3 array representing the red, green,
and blue channels of the image to be displayed.

• If one of the dimensions is 4:

Image is a 4 x n x m, n x 4 x m, or n x m x 4 array representing the red, green,
blue, and alpha channels of the image to be displayed.
IIMAGE IDL Reference Guide

 883
X

Either a vector or a two-dimensional array representing the x-coordinates of the
image grid.

If the Image argument is a vector:

• X must be a vector with the same number of elements as Image.

If the Image argument is a two-dimensional array (for which neither dimension is 3):

• If X is a vector:

Each element of X specifies the x-coordinates for a column of Image (e.g., X[0]
specifies the x-coordinate for Image[0, *]).

• If X is a two-dimensional array:

Each element of X specifies the x-coordinate of the corresponding point in
Image (Xij specifies the x-coordinate of Imageij).

Y

Either a vector or a two-dimensional array representing the y-coordinates of the
image grid.

If the Image argument is a vector:

• Y must be a vector with the same number of elements.

If the Image argument is a two-dimensional array:

• If Y is a vector:

Each element of Y specifies the y-coordinates for a column of Image (e.g., Y[0]
specifies the y-coordinate for Image[*, 0]).

• If Y is a two-dimensional array:

Each element of Y specifies the y-coordinate of the corresponding point in
Image (Yij specifies the y-coordinate of Imageij).
IDL Reference Guide IIMAGE

884
Keywords

Note
Keywords to the IIMAGE routine that correspond to the names of registered
properties of the iImage tool must be specified in full, without abbreviation.

ALPHA_CHANNEL

Set this keyword to a two-dimensional array representing the alpha channel pixel
values for the image to be displayed. This keyword is ignored if the Image argument
is present, and is intended to be used in conjunction with some combination of the
RED_CHANNEL, GREEN_CHANNEL, and BLUE_CHANNEL keywords.

BLUE_CHANNEL

Set this keyword to a two-dimensional array representing the blue channel pixel
values for the image to be displayed. This keyword is ignored if the Image argument
is present, and is intended to be used in conjunction with some combination of the
RED_CHANNEL, GREEN_CHANNEL, and ALPHA_CHANNEL keywords.

CHANNEL

Set this keyword to a hexadecimal bitmask that defines which color channel(s) to
draw. Each bit that is a 1 is drawn; each bit that is a 0 is not drawn. For example,
'ff0000'X represents a Blue channel write. The default is to draw all channels, and is
represented by the hexadecimal value 'ffffff'X.

CLIP_PLANES

Set this keyword to an array of dimensions [4, N] specifying the coefficients of the
clipping planes to be applied to this object. The four coefficients for each clipping
plane are of the form [A, B, C, D], where Ax + By + Cz + D = 0. Portions of this
object that fall in the half space Ax + By + Cz + D > 0 will be clipped. By default, the
value of this keyword is a scalar (-1) indicating that no clipping planes are to be
applied.

Note
A window is only able to support a limited number of clipping planes. Some of
these clipping planes may already be in use by the tool to support specific data
display features. If the total number of clipping planes exceeds the limit, an
informational message is displayed.
IIMAGE IDL Reference Guide

 885
DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the drawing area of the specific tool in device units. The minimum
width of the window correlates to the width of the menubar. The minimum window
height is 100 pixels.

GREEN_CHANNEL

Set this keyword to a two-dimensional array representing the green channel pixel
values for the image to be displayed. This keyword is ignored if the Image argument
is present, and is intended to be used in conjunction with some combination of the
RED_CHANNEL, BLUE_CHANNEL, and ALPHA_CHANNEL keywords.

HIDE

Set this keyword to a boolean value indicating whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

IDENTIFIER

Set this keyword to a named IDL variable that will contain the iToolID for the created
tool. This value can then be used to reference this tool during overplotting operations
or command-line-based tool management operations.

IMAGE_DIMENSIONS

Set this keyword to a 2-element vector, [width, height], to specify the image
dimensions (in data units). By default, the dimensions match the pixel width of the
image.

IMAGE_LOCATION

Set this keyword to a 2-element vector, [x, y], to specify the image location (in data
units). By default, the location is [0, 0].

INTERPOLATE

Set this keyword to one (1) to display the iImage tool using bilinear interpolation.
The default is to use nearest neighbor interpolation.
IDL Reference Guide IIMAGE

886
LOCATION

Set this keyword to a two-element vector of the form [x, y] to specify the location of
the upper left-hand corner of the tool relative to the display screen, in device units.

NAME

Set this keyword to a string to specify the name for this particular tool. The name is
used for tool-related display purposes only–as the root of the hierarchy shown in the
Tool Browser, for example.

ORDER

Set this keyword to force the rows of the image data to be drawn from top to bottom.
By default, image data is drawn from the bottom row up to the top row.

OVERPLOT

Set this keyword to an iToolID to direct the graphical output of the particular tool to
the tool specified by the provided iToolID.

Set this keyword to 1 (one) to place the graphical output for the command in the
current tool. If no current tool exists, a new tool is created.

RED_CHANNEL

Set this keyword to a two-dimensional array representing the red channel pixel values
for the image to be displayed. This keyword is ignored if the Image argument is
present, and is intended to be used in conjunction with some combination of the
GREEN_CHANNEL, BLUE_CHANNEL, and ALPHA_CHANNEL keywords.

RGB_TABLE

Set this keyword to a 3 by 256 or 256 by 3 byte array of RGB color values. If no color
tables are supplied, the tool will provide a default 256-entry linear grayscale ramp.

TITLE

Set this keyword to a string to specify a title for the tool. The title is displayed in the
title bar of the tool.
IIMAGE IDL Reference Guide

 887
VIEW_GRID

Set this keyword to a two-element vector of the form [columns, rows] to specify the
view layout within the new tool. This keyword is only used if a new tool is being
created (for example, if OVERPLOT, VIEW_NEXT, or VIEW_NUMBER are
specified then VIEW_GRID is ignored).

VIEW_NEXT

Set this keyword to change the view selection to the next view following the
currently-selected view before issuing any graphical commands. If the currently-
selected view is the last one in the layout, then /VIEW_NEXT will cause the first
view in the layout to become selected. This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

VIEW_NUMBER

Set this keyword to change the currently-selected view to the view specified by the
VIEW_NUMBER before issuing any graphical commands. The view number starts
at 1, and corresponds to the position of the view within the graphics container (not
necessarily the position on the screen). This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

[XY]MAJOR

Set this keyword to an integer representing the number of major tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MAJOR equal to zero suppresses major tickmarks entirely.

[XY]MINOR

Set this keyword to an integer representing the number of minor tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MINOR equal to zero suppresses minor tickmarks entirely.
IDL Reference Guide IIMAGE

888
[XY]RANGE

Set this keyword to the desired data range of the axis, a 2-element vector. The first
element is the axis minimum, and the second is the maximum.

[XY]SUBTICKLEN

Set this keyword to a floating-point scale ratio specifying the length of minor tick
marks relative to the length of major tick marks. The default is 0.5, specifying that the
minor tick mark is one-half the length of the major tick mark.

[XY]TEXT_COLOR

Set this keyword to an RGB value specifying the color for the axis text. The default
value is [0, 0, 0] (black).

[XY]TICKFONT_INDEX

Set this keyword equal to one of the following integers, which represent the type of
font to be used for the axis text:

• 0 = Helvetica

• 1 = Courier

• 2 = Times

• 3 = Symbol

• 4 = Hershey

[XY]TICKFONT_SIZE

Set this keyword to an integer representing the point size of the font used for the axis
text. The default is 12.0 points.

[XY]TICKFONT_STYLE

Set this keyword equal to one of the following integers, which represent the style of
font to be used for the axis text:

• 0 = Normal

• 1 = Bold

• 2 = Italic

• 3 = Bold Italic
IIMAGE IDL Reference Guide

 889
[XY]TICKFORMAT

Set this keyword to a string, or an array of strings, in which each string represents a
format string or the name of a function to be used to format the tick mark labels. If an
array is provided, each string corresponds to a level of the axis. The TICKUNITS
keyword determines the number of levels for an axis.

If the string begins with an open parenthesis, it is treated as a standard format string.
See “Format Codes” in Chapter 10 of the Building IDL Applications manual.

If the string does not begin with an open parenthesis, it is interpreted as the name of a
callback function to be used to generate tick mark labels.

If TICKUNITS are not specified:

• The callback function is called with three parameters: Axis, Index, and Value,
where:

• Axis is the axis number: 0 for X axis, 1 for Y axis, 2 for Z axis

• Index is the tick mark index (indices start at 0)

• Value is the data value at the tick mark (a double-precision floating point
value)

If TICKUNITS are specified:

The callback function is called with four parameters: Axis, Index, Value, and Level,
where:

• Axis, Index, and Value are the same as described above.

• Level is the index of the axis level for the current tick value to be labeled.
(Level indices start at 0.)

Used with the LABEL_DATE function, this property can easily create axes with
date/time labels.

[XY]TICKINTERVAL

Set this keyword to a floating-point scalar indicating the interval between major tick
marks for the first axis level. The default value is computed according to the axis
[XYZ]RANGE and the number of major tick marks ([XYZ]MAJOR). The value of
this keyword takes precedence over the value set for the [XYZ]MAJOR keyword.

For example, if TICKUNITS = ['S', 'H', 'D'], and TICKINTERVAL = 30, then the
interval between major ticks for the first axis level will be 30 seconds.
IDL Reference Guide IIMAGE

890
[XY]TICKLAYOUT

Set this keyword to integer scalar that indicates the tick layout style to be used to
draw each level of the axis.

Valid values include:

• 0 = The axis line, major tick marks and tick labels are all included. Minor tick
marks only appear on the first level of the axis. This is the default tick layout
style.

• 1 = Only the labels for the major tick marks are drawn. The axis line, major
tick marks, and minor tick marks are omitted.

• 2 = Each major tick interval is outlined by a box. The tick labels are positioned
within that box (left-aligned). For the first axis level only, the major and minor
tick marks will also be drawn.

Note
For all tick layout styles, at least one tick label will appear on each level of the axis
(even if no major tick marks fall along the axis line). If there are no major tick
marks, the single tick label will be centered along the axis.

[XY]TICKLEN

Set this keyword to a floating-point value that specifies the length of each major tick
mark, measured in data units. The recommended, and default, tick mark length is 0.2.
IDL converts, maintains, and returns this data as double-precision floating-point.

[XY]TICKNAME

Set this keyword to a string array of up to 30 elements that controls the annotation of
each tick mark.

[XY]TICKUNITS

Set this keyword to a string (or a vector of strings) indicating the units to be used for
axis tick labeling. If more than one unit is provided, the axis will be drawn in multiple
levels, one level per unit.

The order in which the strings appear in the vector determines the order in which the
corresponding unit levels will be drawn. The first string corresponds to the first level
(the level nearest to the primary axis line).
IIMAGE IDL Reference Guide

 891
Valid unit strings include:

• "Numeric"

• "Years"

• "Months"

• "Days"

• "Hours"

• "Minutes"

• "Seconds"

• "Time" - Use this value to indicate that the tick values are time values; IDL
will determine the appropriate time intervals and tick label formats based upon
the range of values covered by the axis.

• ""- Use the empty string to indicate that no tick units are being explicitly set.
This implies that a single axis level will be drawn using the "Numeric" unit.
This is the default setting.

If any of the time units are utilized, then the tick values are interpreted as Julian
date/time values. Note that the singular form of each of the time value strings is also
acceptable (e.g, TICKUNITS = 'Day' is equivalent to TICKUNITS = 'Days').

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000hidd, respectively.

[XY]TICKVALUES

Set this keyword to a floating-point vector of data values representing the values at
each tick mark. If TICKVALUES is set to 0, the default, IDL computes the tick
values based on the axis range and the number of major ticks. IDL converts,
maintains, and returns this data as double-precision floating-point.

[XY]TITLE

Set this keyword to a string representing the title of the specified axis.
IDL Reference Guide IIMAGE

892
Examples

In the IDL Intelligent Tools system, data can be imported from the IDL Command
Line (as described in Example 1), or data can be imported via the File menu in the
iTool window (as described in Examples 2 and 3). For detailed information on
importing data via the iTool file menu, refer to “Data Import Methods” in Chapter 2
of the iTool User’s Guide manual.

Example 1

This example shows how use the IDL Command Line to load data into the iImage
tool.

At the IDL Command Line, enter:

file = FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data'])

data = READ_PNG(file)
IIMAGE, data, TITLE = 'Electron Image of Mineral Deposits'

Double-click the image to display image properties, and use the Image Palette
setting to load the Stern Special predefined color table through the Load
Predefined button in the Palette Editor.

Use the Text Annotation tool to insert a title at the top of the image. Select Insert →
Colorbars to insert a color bar at the bottom of the image. Double-click on the
colorbar to display its properties, and change the Title setting to Stern Special.

The following figure displays the output of this example:

Figure 3-10: Mineral iImage Example with Sterns Color Table
IIMAGE IDL Reference Guide

 893
Example 2

This example shows how to use the iTool File → Open command to load binary data
into the iImage tool.

At the IDL Command Line, enter:

IIMAGE

Select File → Open to display the Open dialog, then browse to find worldelv.dat
in the examples/data directory in the IDL distribution, and click Open.

In the Binary Template dialog, click New Field, and enter the following information
in the New Field dialog:

• Field Name: data (or a name of your choosing)

• Type: Byte (unsigned 8-bits)

• Number of Dimensions: 2

• 1st Dimension Size: 360

• 2nd Dimension Size: 360

Click OK to close the New Field dialog and the Binary Template dialog, and the
image is displayed.

Note
For more information on using the Binary Template to import data, see “Using the
BINARY_TEMPLATE Function” in Chapter 15 of the Using IDL manual.

Double-click the image to display image properties, and use the Image Palette
setting to load the STD GAMMA-II predefined color table through the Load
Predefined button in the Palette Editor.
IDL Reference Guide IIMAGE

894
The following figure displays the output of this example:

Example 3

This example shows how to use the IDL Import Data Wizard to load image data into
the iImage tool.

At the IDL Command Line, enter:

IIMAGE

Select File → Import to display the IDL Import Data wizard.

1. At Step 1, select From a File and click Next>>.

2. At Step 2, under File Name:, browse to find n_vasinfecta.jpg in the
examples/data directory in the IDL distribution, and click Next>>.

3. At Step 3, select Image and click Finish.

Define the edges within the image by selecting Operations → Filter → Sobel Filter.

Figure 3-11: World Elevation iImage Example
IIMAGE IDL Reference Guide

 895
The following figure displays the output of this example:

Version History

Introduced: 6.0

Figure 3-12: Sobel FIltered Neocosmospora Vasinfecta iImage Example
IDL Reference Guide IIMAGE

896
IMAGE_CONT

The IMAGE_CONT procedure overlays an image with a contour plot.

This routine is written in the IDL language. Its source code can be found in the file
image_cont.pro in the lib subdirectory of the IDL distribution.

Syntax

IMAGE_CONT, A [, /ASPECT] [, /INTERP] [, /WINDOW_SCALE]

Arguments

A

The two-dimensional array to display and overlay.

Keywords

ASPECT

Set this keyword to retain the image’s aspect ratio. Square pixels are assumed. If
WINDOW_SCALE is set, the aspect ratio is automatically retained.

INTERP

If this keyword is set, bilinear interpolation is used if the image is resized.

WINDOW_SCALE

Set this keyword to scale the window size to the image size. Otherwise, the image
size is scaled to the window size. This keyword is ignored when outputting to devices
with scalable pixels (e.g., PostScript).

Examples

; Create an image to display:
A = BYTSCL(DIST(356))

; Display image and overplot contour lines:
IMAGE_CONT, A, /WINDOW
IMAGE_CONT IDL Reference Guide

 897
Version History

Introduced: Original

See Also

CONTOUR, ICONTOUR, IIMAGE, TV
IDL Reference Guide IMAGE_CONT

898
IMAGE_STATISTICS

The IMAGE_STATISTICS procedure computes sample statistics for a given array of
values. An optional mask may be specified to restrict computations to a spatial subset
of the input data.

Syntax

IMAGE_STATISTICS, Data
[, /LABELED | [, /WEIGHTED] [, WEIGHT_SUM=variable]] [, /VECTOR]
[, LUT=array] [, MASK=array] [, COUNT=variable] [, MEAN=variable]
[, STDDEV=variable] [, DATA_SUM=variable] [, SUM_OF_SQUARES=variable]
[, MINIMUM=variable] [, MAXIMUM=variable] [, VARIANCE=variable]

Arguments

Data

An N-dimensional input data array.

Keywords

COUNT

Set this keyword to a named variable to contain the number of samples that
correspond to nonzero values within the mask.

DATA_SUM

Set this keyword to a named variable to contain the sum of the samples that lie within
the mask.

LABELED

When set, this keyword indicates values in the mask representing region labels,
where each pixel of the mask is set to the index of the region in which that pixel
belongs (see the LABEL_REGION function in the IDL Reference Guide). If the
LABELED keyword is set, each statistic’s value is computed for each region index.
Thus, a vector containing the results is provided for each statistic with one element
per region. By default, this keyword is set to zero, indicating that all samples with a
corresponding nonzero mask value are used to form a scalar result for each statistic.
IMAGE_STATISTICS IDL Reference Guide

 899
Note
The LABELED keyword cannot be used with either the WEIGHT_SUM or the
WEIGHTED keywords.

LUT

Set this keyword to a one-dimensional array. For non-floating point input Data, the
pixel values are looked up through this table before being used in any of the statistical
computations. This allows an integer image array to be calibrated to any user
specified intensity range for the sake of calculations. The length of this array must
include the range of the input array. This keyword may not be set with floating point
input data. When signed input data types are used, they are first cast to the
corresponding IDL unsigned type before being used to access this array. For
example, the integer value –1 looks up the value 65535 in the LUT array.

MASK

An array of N, or N–1 (when the VECTOR keyword is used) dimensions representing
the mask array. If the LABELED keyword is set, MASK contains the region indices
of each pixel; otherwise statistics are only computed for data values where the
MASK array is non-zero.

MAXIMUM

Set this keyword to a named variable to contain the maximum value of the samples
that lie within the mask.

MEAN

Set this keyword to a named variable to contain the mean of the samples that lie
within the mask.

MINIMUM

Set this keyword to a named variable to contain the minimum value of the samples
that lie within the mask.

STDDEV

Set this keyword to a named variable to contain the standard deviation of the samples
that lie within the mask.
IDL Reference Guide IMAGE_STATISTICS

900
SUM_OF_SQUARES

Set this keyword to a named variable to contain the sum of the squares of the samples
that lie within the mask.

VARIANCE

Set this keyword to a named variable to contain the variance of the samples that lie
within the mask.

VECTOR

Set this keyword to specify that the leading dimension of the input array is not to be
considered spatial but consists of multiple data values at each pixel location. In this
case, the leading dimension is treated as a vector of samples at the spatial location
determined by the remainder of the array dimensions.

WEIGHT_SUM

Set the WEIGHT_SUM keyword to a named variable to contain the sum of the
weights in the mask.

Note
The WEIGHT_SUM keyword cannot be used if the LABELED keyword is
specified.

WEIGHTED

If the WEIGHTED keyword is set, the values in the MASK array are used to weight
individual pixels with respect to their count value. If a MASK array is not provided,
all pixels are assigned a weight of 1.0.

Note
The WEIGHTED keyword cannot be used if the LABELED keyword is specified.

Version History

Introduced: 5.3
IMAGE_STATISTICS IDL Reference Guide

 901
IMAGINARY

The IMAGINARY function returns the imaginary part of its complex-valued
argument.

Syntax

Result = IMAGINARY(Complex_Expression)

Return Value

If the complex-valued argument is double-precision, the result will be double-
precision, otherwise the result will be single-precision floating-point.

Arguments

Complex_Expression

The complex-valued expression for which the imaginary part is desired.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

; Create an array of complex values:
C = COMPLEX([1,2,3],[4,5,6])

; Print just the imaginary parts of each element in C:
PRINT, IMAGINARY(C)

IDL prints:

 4.00000 5.00000 6.00000
IDL Reference Guide IMAGINARY

902
Version History

Introduced: Original

See Also

COMPLEX, DCOMPLEX, REAL_PART
IMAGINARY IDL Reference Guide

 903
INDGEN

The INDGEN function returns an integer array with the specified dimensions.

Syntax

Result = INDGEN(D1 [, ..., D8] [, /BYTE | , /COMPLEX | , /DCOMPLEX | ,
/DOUBLE | , /FLOAT | , /L64 | , /LONG | , /STRING | , /UINT | , /UL64 | , /ULONG]
[, TYPE=value])

Return Value

Each element of the returned integer array is set to the value of its one-dimensional
subscript.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Keywords

BYTE

Set this keyword to create a byte array.

COMPLEX

Set this keyword to create a complex, single-precision, floating-point array.

DCOMPLEX

Set this keyword to create a complex, double-precision, floating-point array.
IDL Reference Guide INDGEN

904
DOUBLE

Set this keyword to create a double-precision, floating-point array.

FLOAT

Set this keyword to create a single-precision, floating-point array.

L64

Set this keyword to create a 64-bit integer array.

LONG

Set this keyword to create a longword integer array.

STRING

Set this keyword to create a string array.

TYPE

The type code to set the type of the result. See the description of the SIZE function
for a list of IDL type codes.

UINT

Set this keyword to create an unsigned integer array.

UL64

Set this keyword to create an unsigned 64-bit integer array.

ULONG

Set this keyword to create an unsigned longword integer array.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
INDGEN IDL Reference Guide

 905
Examples

Create I, a 5-element vector of integer values with each element set to the value of its
subscript by entering:

I = INDGEN(5)

Version History

Introduced: Original

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, LINDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
IDL Reference Guide INDGEN

906
INT_2D

The INT_2D function computes the double integral of a bivariate function using
iterated Gaussian quadrature. The algorithm’s transformation data is provided in
tabulated form with 15 decimal accuracy.

This routine is written in the IDL language. Its source code can be found in the file
int_2d.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = INT_2D(Fxy, AB_Limits, PQ_Limits, Pts [, /DOUBLE] [, /ORDER])

Return Value

Returns a double value containing the integral.

Arguments

Fxy

A scalar string specifying the name of a user-supplied IDL function that defines the
bivariate function to be integrated. For dy/dx integration (the default, or if the
ORDER keyword is explicitly set to zero), the Fxy function must be able to accept a
scalar value for X and a vector for Y, and must return a vector of the same length as Y.
For dx/dy integration (if the ORDER keyword is set), the Fxy function must be able
to accept a vector for X and a scalar value for Y, and must return a vector of the same
length as X.

For example, if we wish to integrate the following function:

We define a function FXY to express this relationship in the IDL language:

FUNCTION fxy, X, Y
RETURN, EXP(-X^2. -Y^2.)

END

AB_Limits

A two-element vector containing the lower (A) and upper (B) limits of integration
with respect to the variable x.

f x y,() e x2– y2–=
INT_2D IDL Reference Guide

 907
PQ_Limits

A scalar string specifying the name of a user-supplied IDL function that defines the
lower (P(x)) and upper (Q(x)) limits of integration with respect to the variable y. The
function must accept x and return a two-element vector result.

For example, we might write the following IDL function to represent the limits of
integration with respect to y:

FUNCTION PQ_limits, X
RETURN, [-SQRT(16.0 - X^2), SQRT(16.0 - X^2)]

END

Pts

The number of transformation points used in the computation. Possible values are: 6,
10, 20, 48, or 96.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

ORDER

A scalar value of either 0 or 1. If set to 0, the integral is computed using a dy-dx order
of integration. If set to 1, the integral is computed using a dx-dy order of integration.

Examples

Example 1

Compute the double integral of the bivariate function.

; Define the Fxy function.
FUNCTION Fxy, x, y

I y x
5()cos⋅ yd xd

y 0.0=

y x2=

∫
x 0.0=

x 2.0=

∫=
IDL Reference Guide INT_2D

908
RETURN, y*COS(x^5)
END

; Define the limits of integration for y as a function of x:
FUNCTION PQ_Limits, x

RETURN, [0.0, x^2]
END

; Define limits of integration for x:
AB_Limits = [0.0, 2.0]

; Using the function and limits defined above, integrate with 48
; and 96 point formulas using a dy-dx order of integration and
; double-precision arithmetic:
PRINT, INT_2D('Fxy', AB_Limits, 'PQ_Limits', 48, /DOUBLE)
PRINT, INT_2D('Fxy', AB_Limits, 'PQ_Limits', 96, /DOUBLE)

INT_2D with 48 transformation points yields: 0.055142668

INT_2D with 96 transformation points yields: 0.055142668

Example 2

Compute the double integral of the bivariate function:

; Define the Fxy function.
FUNCTION Fxy, x, y

RETURN, y*COS(x^5)
END

; Define the limits of integration for y as a function of x:
FUNCTION PQ_Limits, y

RETURN, [sqrt(y), 2.0]
END

; Define limits of integration for x:
AB_Limits = [0.0, 4.0]

; Using the function and limits defined above, integrate with 48
; and 96 point formulas using a dy-dx order of integration and

I y x
5()cos⋅ xd yd

y 0.0=

y x2=

∫
x 0.0=

x 2.0=

∫=
INT_2D IDL Reference Guide

 909
; double-precision arithmetic:
PRINT, INT_2D('Fxy', AB_Limits, 'PQ_Limits', 48, /DOUBLE, /ORDER)
PRINT, INT_2D('Fxy', AB_Limits, 'PQ_Limits', 96, /DOUBLE, /ORDER)

INT_2D with 48 transformation points yields: 0.055142678

INT_2D with 96 transformation points yields: 0.055142668

The exact solution (7 decimal accuracy) is: 0.055142668

Version History

Introduced: Pre 4.0

See Also

INT_3D, INT_TABULATED, QROMB, QROMO, QSIMP
IDL Reference Guide INT_2D

910
INT_3D

The INT_3D function computes the integral of a trivariate function using iterated
Gaussian quadrature. The algorithm’s transformation data is provided in tabulated
form with 15 decimal accuracy.

This routine is written in the IDL language. Its source code can be found in the file
int_3d.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = INT_3D(Fxyz, AB_Limits, PQ_Limits, UV_Limits, Pts [, /DOUBLE])

Return Value

Returns the triple integral.

Arguments

Fxyz

A scalar string specifying the name of a user-supplied IDL function that defines the
trivariate function to be integrated. The function must accept X, Y, and Z, and return a
scalar result.

For example, if we wish to integrate the following function:

We define a function FXY to express this relationship in the IDL language:

FUNCTION fxyz, X, Y, Z
RETURN, z*(x^2+y^2+z^2)^1.5

END

AB_Limits

A two-element vector containing the lower (A) and upper (B) limits of integration
with respect to the variable x.

f x y z, ,() z x2 y2 z2+ +()3 2/⋅=
INT_3D IDL Reference Guide

 911
PQ_Limits

A scalar string specifying the name of a user-supplied IDL function that defines the
lower (P(x)) and upper (Q(x)) limits of integration with respect to the variable y. The
function must accept x and return a two-element vector result.

For example, we might write the following IDL function to represent the limits of
integration with respect to y:

FUNCTION PQ_limits, X
RETURN, [-SQRT(4.0 - X^2), SQRT(4.0 - X^2)]

END

UV_Limits

A scalar string specifying the name of a user-supplied IDL function that defines the
lower (U(x,y)) and upper (V(x,y)) limits of integration with respect to the variable z.
The function must accept x and y and return a two-element vector result.

For example, we might write the following IDL function to represent the limits of
integration with respect to z:

FUNCTION UV_limits, X, Y
RETURN, [0, SQRT(4.0 - X^2 - Y^2)]

END

Pts

The number of transformation points used in the computation. Possible values are: 6,
10, 20, 48, or 96.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

Compute the triple integral of the trivariate function

Using the functions and limits defined above, integrate with 10, 20, 48, and 96 point
formulas (using double-precision arithmetic):

PRINT, INT_3D('Fxyz', [-2.0, 2.0], 'PQ_Limits', 'UV_Limits', 10,$
/D)

PRINT, INT_3D('Fxyz', [-2.0, 2.0], 'PQ_Limits', 'UV_Limits', 20,$
IDL Reference Guide INT_3D

912
/D)
PRINT, INT_3D('Fxyz', [-2.0, 2.0], 'PQ_Limits', 'UV_Limits', 48,$

/D)
PRINT, INT_3D('Fxyz', [-2.0, 2.0], 'PQ_Limits', 'UV_Limits', 96,$

/D)

INT_3D with 10 transformation points yields: 57.444248

INT_3D with 20 transformation points yields: 57.446201

INT_3D with 48 transformation points yields: 57.446265

INT_3D with 96 transformation points yields: 57.446266

The exact solution (6 decimal accuracy) is: 57.446267

Version History

Introduced: Pre 4.0

See Also

INT_2D, INT_TABULATED, QROMB, QROMO, QSIMP

I z x2 y2 z2+ +()3 2/⋅ zd yd xd
z 0=

z 4 x2– y2–=

∫
y 4 x2––=

y 4 x2–=

∫
x 2–=

x 2=

∫=
INT_3D IDL Reference Guide

 913
INT_TABULATED

The INT_TABULATED function integrates a tabulated set of data { xi , fi } on the
closed interval [MIN(x) , MAX(x)], using a five-point Newton-Cotes integration
formula.

Warning
Data that is highly oscillatory requires a sufficient number of samples for an
accurate integral approximation.

This routine is written in the IDL language. Its source code can be found in the file
int_tabulated.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = INT_TABULATED(X, F [, /DOUBLE] [, /SORT])

Return Value

Returns the area under the curve represented by the function.

Arguments

X

The tabulated single- or double-precision floating-point x-value data. Data may be
irregularly gridded and in random order. (If the data is randomly ordered, set the
SORT keyword.)

Warning
Each X value must be unique; if duplicate X values are detected, the routine will exit
and display a warning message.

F

The tabulated single- or double-precision floating-point f-value data. Upon input to
the function, xi and fi must have corresponding indices for all values of i. If x is
reordered, f is also reordered.
IDL Reference Guide INT_TABULATED

914
Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

SORT

Set this keyword to sort the tabulated x-value data into ascending order. If SORT is
set, both x and f values are sorted.

Examples

Define 11 x-values on the closed interval [0.0 , 0.8]:

X = [0.0, .12, .22, .32, .36, .40, .44, .54, .64, .70, .80]

Define 11 f-values corresponding to xi:

F = [0.200000, 1.30973, 1.30524, 1.74339, 2.07490, 2.45600, $
2.84299, 3.50730, 3.18194, 2.36302, 0.231964]

result = INT_TABULATED(X, F)

In this example, the f-values are generated from a known function

f = 0.2 + 25x- 200x2 + 675x3 - 900x4 + 400x5

which allows the determination of an exact solution. A comparison of methods yields
the following results:

• The Multiple Application Trapezoid Method yields: 1.5648

• The Multiple Application Simpson’s Method yields: 1.6036

• INT_TABULATED yields: 1.6271

The exact solution (4 decimal accuracy) is: 1.6405

Version History

Introduced: Pre 4.0

See Also

INT_2D, INT_3D, QROMB, QROMO, QSIMP
INT_TABULATED IDL Reference Guide

 915
INTARR

The INTARR function returns an integer vector or array.

Syntax

Result = INTARR(D1 [, ..., D8] [, /NOZERO])

Return Value

Returns the integer array of the specified dimensions.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, INTARR sets every element of the result to zero. If NOZERO is nonzero,
this zeroing is not performed and INTARR executes faster.

Examples

Create I, a 3-element by 3-element integer array with each element set to 0 by
entering:

I = INTARR(3, 3)

Version History

Introduced: Original
IDL Reference Guide INTARR

916
See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, LON64ARR,
LONARR, MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
INTARR IDL Reference Guide

 917
INTERPOL

The INTERPOL function performs linear, quadratic, or spline, interpolation on
vectors with a regular or irregular grid.

This routine is written in the IDL language. Its source code can be found in the file
interpol.pro in the lib subdirectory of the IDL distribution.

Syntax

For regular grids: Result = INTERPOL(V, N [, /LSQUADRATIC] [, /QUADRATIC]
[, /SPLINE])

For irregular grids: Result = INTERPOL(V, X, U [, /LSQUADRATIC]
[, /QUADRATIC] [, /SPLINE])

Return Value

The result is a single- or double-precision floating-point vector, or a complex vector if
the input vector is complex.

Arguments

V

An input vector of any type except string.

N

The number of points in the result when both input and output grids are regular. The
abscissa values for the output grid will contain the same endpoints as the input.

X

The abscissa values for V, in the irregularly-gridded case. X must have the same
number of elements as V, and the values must be monotonically ascending or
descending.

U

The abscissa values for the result. The result will have the same number of elements
as U. U does not need to be monotonic.
IDL Reference Guide INTERPOL

918
Keywords

LSQUADRATIC

If set, interpolate using a least squares quadratic fit to the equation y = a + bx + cx2,
for each 4 point neighborhood (x[i-1], x[i], x[i+1], x[i+2]) surrounding the interval of
the interpolate, x[i] ≤ u < x[i+1].

QUADRATIC

If set, interpolate by fitting a quadratic y = a + bx + cx2, to the three point
neighborhood (x[i-1], x[i], x[i+1]) surrounding the interval x[i] ≤ u < x[i+1].

SPLINE

If set, interpolate by fitting a cubic spline to the 4 point neighborhood (x[i-1], x[i],
x[i+1], x[i+2]) surrounding the interval, x[i] ≤ u < x[i+1].

Note
If LSQUADRATIC or QUADRATIC or SPLINE is not set, the default is to use
linear interpolation.

Examples

Create a floating-point vector of 61 elements in the range [-3, 3].

X = FINDGEN(61)/10 - 3

; Evaluate V[x] at each point:
V = SIN(X)

; Define X-values where interpolates are desired:
U = [-2.50, -2.25, -1.85, -1.55, -1.20, -0.85, -0.50, -0.10, $

0.30, 0.40, 0.75, 0.85, 1.05, 1.45, 1.85, 2.00, 2.25, 2.75]

; Interpolate:
result = INTERPOL(V, X, U)

; Plot the function:
PLOT, X, V

; Plot the interpolated values:
OPLOT, U, result
INTERPOL IDL Reference Guide

 919
Version History

Introduced: Original

See Also

BILINEAR, INTERPOLATE, KRIG2D
IDL Reference Guide INTERPOL

920
INTERPOLATE

The INTERPOLATE function returns an array of linear, bilinear or trilinear
interpolates, depending on the dimensions of the input array P.

Interpolates outside the bounds of P can be set to a user-specified value by using the
MISSING keyword.

Syntax

Result = INTERPOLATE(P, X [, Y [, Z]] [, CUBIC=value{-1 to 0}] [, /GRID]
[, MISSING=value])

Return Value

Linear interpolates are returned in the one-dimensional case, bilinear in the two-
dimensional case and trilinear interpolates in the three-dimensional case. The
returned array has the same type as P and its dimensions depend on those of the
location parameters X, Y, and Z, as explained below.

Arguments

P

The array of data values. P can be an array of any dimensions. Interpolation occurs in
the M rightmost indices of P, where M is the number of interpolation arrays.

X, Y, Z

Arrays of numeric type containing the locations for which interpolates are desired.
For linear interpolation (P is a vector), the result has the same dimensions as X. The i-
th element of the result is P interpolated at location Xi. The Y and Z parameters
should be omitted.

For bilinear interpolation Z should not be present.

Note
INTERPOLATE considers location points with values between zero and n, where n
is the number of values in the input array P, to be valid. Location points outside this
range are considered missing data. Location points x in the range n-1 ≤ x < n return
the last data value in the array P.
INTERPOLATE IDL Reference Guide

 921
If the keyword GRID is not set, all location arrays must have the same number of
elements. See the description of the GRID keyword below for more details on how
interpolates are computed from P and these arrays.

Keywords

CUBIC

Set this keyword to a value between -1 and 0 to use the cubic convolution
interpolation method with the specified value as the interpolation parameter. Setting
this keyword equal to a value greater than zero specifies a value of -1 for the
interpolation parameter. Park and Schowengerdt (see reference below) suggest that a
value of -0.5 significantly improves the reconstruction properties of this algorithm.

Cubic convolution is an interpolation method that closely approximates the
theoretically optimum sinc interpolation function using cubic polynomials.
According to sampling theory, details of which are beyond the scope of this
document, if the original signal, f, is a band-limited signal, with no frequency
component larger than ω0, and f is sampled with spacing less than or equal to 1/(2ω0),
then f can be reconstructed by convolving with a sinc function: sinc(x) = sin(πx) /
(πx).

The number of neighboring points used varies according to the dimension:

• 1-dimensional: 4 points

• 2-dimensional: 16 points

• 3-dimensional: not supported

Note
Cubic convolution interpolation is significantly slower than bilinear interpolation.
Also note that cubic interpolation is not supported for three-dimensional data.

For further details see:

Rifman, S.S. and McKinnon, D.M., “Evaluation of Digital Correction Techniques for
ERTS Images; Final Report”, Report 20634-6003-TU-00, TRW Systems, Redondo
Beach, CA, July 1974.

S. Park and R. Schowengerdt, 1983 “Image Reconstruction by Parametric Cubic
Convolution”, Computer Vision, Graphics & Image Processing 23, 256.
IDL Reference Guide INTERPOLATE

922
GRID

The GRID keyword controls how the location arrays specify where interpolates are
desired. This keyword has no effect in the case of linear interpolation.

If GRID is not set: The location arrays, X, Y, and, if present, Z must have the same
number of elements. The result has the same structure and number of elements as X.

In the case of bilinear interpolation, the result is obtained as follows: Let l =  Xi 
and k =  Yi  . Element i of the result is computed by interpolating between P(l, k),
P(l+1, k), P(l, k+1), and P(l+1, k+1). to obtain the estimated value at (Xi, Yi).
Trilinear interpolation is a direct extension of the above.

If GRID is set: Let Nx be the number of elements in X, let Ny be the number of
elements in Y, and Nz be the number of elements in Z. The result has dimensions (Nx,
Ny) for bilinear interpolation, and (Nx, Ny, Nz) for trilinear interpolation. For bilinear
interpolation, element (i,j) of the result contains the value of P interpolated at
position (Xi, Yi). For trilinear interpolation, element (i, j, k) of the result is P
interpolated at (Xi, Yi, Zi).

MISSING

The value to return for elements outside the bounds of P. If this keyword is not
specified, interpolated positions that fall outside the bounds of the array P—that is,
elements of the X, Y, or Z arguments that are either less than zero or greater than the
largest subscript in the corresponding dimension of P—are set equal to the value of
the nearest element of P.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

The example below computes bilinear interpolates with the keyword GRID set:

p = FINDGEN(4,4)
PRINT, INTERPOLATE(p, [.5, 1.5, 2.5], [.5, 1.5, 2.5], /GRID)
INTERPOLATE IDL Reference Guide

 923
and prints the 3 by 3 array:

2.50000 3.50000 4.50000
6.50000 7.50000 8.50000
10.5000 11.5000 12.5000

corresponding to the locations:

(.5,.5), (1.5, .5), (2.5, .5),
(.5,1.5), (1.5, 1.5), (2.5, 1.5),
(.5,2.5), (1.5, 2.5), (2.5, 2.5)

Another example computes interpolates, with GRID not set and a parameter outside
the bounds of P:

PRINT, INTERPOLATE(p, [.5, 1.5, 2.5, 3.1], [.5, 1.5, 2.5, 2])

and prints the result:

 2.50000 7.50000 12.5000 11.0000

corresponding to the locations (.5,.5), (1.5, 1.5), (2.5, 2.5) and (3.1, 2.0). Note that the
last location is outside the bounds of P and is set from the value of the last column.
The following command uses the MISSING keyword to set such values to -1:

PRINT, INTERPOLATE(p, [.5, 1.5, 2.5, 3.1], [.5, 1.5, 2.5, 2], $
MISSING = -1)

and gives the result:

 2.50000 7.50000 12.5000 -1.00000

Version History

Introduced: Pre 4.0

See Also

BILINEAR, INTERPOL, KRIG2D
IDL Reference Guide INTERPOLATE

924
INTERVAL_VOLUME

The INTERVAL_VOLUME procedure is used to generate a tetrahedral mesh from
volumetric data. The generated mesh spans the portion of the volume where the
volume data samples fall between two constant data values. This can also be thought
of as a mesh constructed to fill the volume between two isosurfaces which are drawn
according to the two supplied constant data values. The algorithm is very similar to
the ISOSURFACE algorithm and expands upon the SHADE_VOLUME algorithm. A
topologically-consistent tetrahedral mesh is returned by decomposing the volume
into oriented tetrahedra. This also allows the algorithm to find the interval volume of
any tetrahedral mesh.

If an auxiliary array is provided, its data is interpolated onto the output vertices and is
returned. This auxiliary data array may have multiple values at each vertex. Any size-
leading dimension is allowed as long as the number of values in the subsequent
dimensions matches the number of elements in the input data array.

For more information on the INTERVAL_VOLUME algorithm, see the paper,
“Interval Volume Tetrahedrization”, Nielson and Sung, Proceedings: IEEE
Visualization, 1997.

Syntax

INTERVAL_VOLUME, Data, Value0, Value1, Outverts, Outconn
[, AUXDATA_IN=array, AUXDATA_OUT=variable]
[, GEOM_XYZ=array, TETRAHEDRA=array]
[, PROGRESS_CALLBACK=string] [, PROGRESS_METHOD=string]
[, PROGRESS_OBJECT=objref] [, PROGRESS_PERCENT=percent{0 to 100}]
[, PROGRESS_USERDATA=value]

Arguments

Data

Input three-dimensional array of scalars that define the volume data.

Value0

Input scalar iso-value. This value specifies one of the limits for the interval volume.
The generated interval volume encloses all volume samples between and including
Value0 and Value1. Value0 may be greater than or less than Value1, but the two values
may not be exactly equal. This value also cannot be a NaN, but can be +/- INF.
INTERVAL_VOLUME IDL Reference Guide

 925
Value1

Input scalar iso-value. This value specifies the other limit for the interval volume. The
generated interval volume encloses all volume samples between and including Value0
and Value1. Value1 may be greater than or less than Value0, but the two values may
not be exactly equal. This value also cannot be a NaN, but can be +/- INF.

Outverts

A named variable to contain an output [3, n] array of floating point vertices making
up the tetrahedral mesh.

Outconn

A named variable to contain an output array of tetrahedral mesh connectivity values.
This array is one-dimensional and consists of a series of four vertex indices, where
each group of four indices describes a tetrahedron. The connectivity values are
indices into the vertex array returned in Outverts. If no tetrahedra are extracted, this
argument returns the array [-1].

Keywords

AUXDATA_IN

This keyword defines the input array of auxiliary data with trailing dimensions being
the number of values in Data.

Note
If you specify the AUXDATA_IN then you must specify AUXDATA_OUT.

AUXDATA_OUT

Set this keyword to a named variable that will contain an output array of auxiliary
data sampled at the locations in Outverts.

Note
If you specify AUXDATA_OUT then you must specify AUXDATA_IN.

GEOM_XYZ

This keyword defines a [3, n] input array of vertex coordinates (one for each value in
the Data array). This array is used to define the spatial location of each scalar. If this
IDL Reference Guide INTERVAL_VOLUME

926
keyword is omitted, Data must be a three-dimensional array and the scalar locations
are assumed to be on a uniform grid.

Note
If you specify GEOM_XYZ then you must specify TETRAHEDRA.

PROGRESS_CALLBACK

Set this keyword to a scalar string containing the name of the IDL function that the
INTERVAL_VOLUME procedure calls at PROGRESS_PERCENT intervals as it
generates the interval volume.

The PROGRESS_CALLBACK function returns a zero to signal
INTERVAL_VOLUME to stop generating the interval volume. This causes
INTERVAL_VOLUME to return a single vertex and a connectivity array of [-1],
which specifies an empty mesh. If the callback function returns any non-zero value,
INTERVAL_VOLUME continues to generate the interval volume.

The PROGRESS_CALLBACK function must specify a single argument, Percent,
which INTERVAL_VOLUME sets to an integer between 0 and 100, inclusive.

The PROGRESS_CALLBACK function may specify an optional USERDATA
keyword parameter, which INTERVAL_VOLUME sets to the variable provided in
the PROGRESS_USERDATA keyword.

The following code shows an example of a progress callback function:

FUNCTION myProgressCallback, $
percent, USERDATA = myStruct

oProgressBar = myStruct.oProgressBar

; This method updates the progress bar
; graphic and returns TRUE if the user
; has NOT pressed the cancel button.
keepGoing = oProgressBar -> $

UpdateProgressValue(percent)

RETURN, keepGoing

END

PROGRESS_METHOD

Set this keyword to a scalar string containing the name of a function method that the
INTERVAL_VOLUME procedure calls at PROGRESS_PERCENT intervals as it
generates the interval. If this keyword is set, then the PROGRESS_OBJECT keyword
INTERVAL_VOLUME IDL Reference Guide

 927
must be set to an object reference that is an instance of a class that defines the
specified method.

The PROGRESS_METHOD function method callback has the same specification as
the callback described in the PROGRESS_CALLBACK keyword, except that it is
defined as an object class method:

FUNCTION myClass::myProgressCallback, $
percent, USERDATA = myStruct

PROGRESS_OBJECT

Set this keyword to an object reference that is an instance of a class that defines the
method specified with the PROGRESS_METHOD keyword. If this keyword is set,
then the PROGRESS_METHOD keyword must also be set.

PROGRESS_PERCENT

Set this keyword to a scalar in the range [1, 100] to specify the interval between
invocations of the callback function. The default value is 5 and IDL silently clamps
other values to the range [1, 100].

For example, a value of 5 (the default) specifies INTERVAL_VOLUME will call the
callback function when the interval volume process is 0% complete, 5% complete,
10% complete, ..., 95% complete, and 100% complete.

PROGRESS_USERDATA

Set this property to any IDL variable that INTERVAL_VOLUME passes to the
callback function in the callback function’s USERDATA keyword parameter. If this
keyword is specified, then the callback function must be able to accept keyword
parameters.

TETRAHEDRA

This keyword defines an input array of tetrahedral connectivity values. If this array is
not specified, the connectivity is assumed to be a rectilinear grid over the input three-
dimensional array. If this keyword is specified, the input data array need not be a
three-dimensional array. Each tetrahedron is represented by four values in the
connectivity array. Every four values in the array correspond to the vertices of a
single tetrahedron.

Note
If you specify TETRAHEDRA then you must specify GEOM_XYZ.
IDL Reference Guide INTERVAL_VOLUME

928
Examples

The following example generates an interval volume and displays the surface of the
volume:

RESTORE, FILEPATH('clouds3d.dat', $
SUBDIRECTORY=['examples','data'])

INTERVAL_VOLUME, rain, 0.1, 0.6, verts, conn
conn = TETRA_SURFACE(verts, conn)
oRain = OBJ_NEW('IDLgrPolygon', verts, POLYGONS=conn, $

COLOR=[255,255,255], SHADING=1)
XOBJVIEW, oRain, BACKGROUND=[150,200,255]

Version History

Introduced: 5.5

See Also

ISOSURFACE, SHADE_VOLUME, XVOLUME
INTERVAL_VOLUME IDL Reference Guide

 929
INVERT

The INVERT function uses the Gaussian elimination method to compute the inverse
of a square array. Errors from singular or near-singular arrays are accumulated in the
optional Status argument.

Note
If you are working with complex inputs, instead use the LA_INVERT function.

Syntax

Result = INVERT(Array [, Status] [, /DOUBLE])

Return Value

The result is a single- or double-precision array of floating or complex values.

Arguments

Array

The array to be inverted. Array must have two dimensions of equal size (i.e., a square
array) and can be of any type except string. Note that the resulting array will be
composed of single- or double-precision floating-point or complex values, depending
on whether the DOUBLE keyword is set.

Status

A named variable to receive the status of the operation. Possible status values are:

• 0 = Successful completion.

• 1 = Singular array (which indicates that the inversion is invalid).

• 2 = Warning that a small pivot element was used and that significant accuracy
was probably lost.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
IDL Reference Guide INVERT

930
Examples

; Create an array A:
A = [[5.0, -1.0, 3.0], $

[2.0, 0.0, 1.0], $
[3.0, 2.0, 1.0]]

result = INVERT(A)

; We can check the accuracy of the inversion by multiplying the
; inverted array by the original array. The result should be a 3 x
; 3 identity array.
PRINT, result # A

IDL prints:

 1.00000 0.00000 0.00000
 0.00000 1.00000 0.00000
 0.00000 9.53674e-07 1.00000

Version History

Introduced: Original

See Also

COND, DETERM, LA_INVERT, REVERSE, ROTATE, TRANSPOSE
INVERT IDL Reference Guide

 931
IOCTL

The IOCTL function provides a thin wrapper over the UNIX ioctl(2) system call.
IOTCL performs special functions on the specified file. The set of functions actually
available depends on your version of UNIX and the type of file (tty, tape, disk file,
etc.) referred to.

To use IOCTL, read the C programmer’s documentation describing the ioctl(2)
function for the desired device and convert all constants and data to their IDL
equivalents.

Syntax

Result = IOCTL(File_Unit [, Request, Arg] [, /BY_VALUE] [, /MT_OFFLINE]
[, /MT_REWIND] [, MT_SKIP_FILE=[-]number_of_files]
[, MT_SKIP_RECORD=[-]number_of_records] [, /MT_WEOF]
[, /SUPPRESS_ERROR])

Return Value

The value returned by the system ioctl function is returned as the value of the IDL
IOCTL function.

Arguments

File_Unit

The IDL logical unit number (LUN) for the open file on which the ioctl request is
made.

Request

A longword integer that specifies the ioctl request code. These codes are usually
contained in C language header files provided by the operating system, and are not
generally portable between UNIX versions. If one of the “MT” keywords is used, this
argument can be omitted.

Arg

A named variable through which data if passed to and from ioctl. IOCTL requests
usually request data from the system or supply the system with information. The user
must make Arg the correct type and size. Errors in typing or sizing Arg can corrupt
IDL Reference Guide IOCTL

932
the IDL address space and/or make IDL crash. If one of the MT keywords is used,
this argument can be omitted.

Keywords

Note that the keywords below that start with “MT” can be used to issue commonly
used magnetic tape ioctl() calls. When these keywords are used, the Request and Arg
arguments are ignored and an be omitted. Magnetic tape operations not available via
these keywords can still be executed by supplying the appropriate Request and Arg
values. When issuing magnetic tape IOCTL calls, be aware that different devices
have different rules for which ioctl calls are allowed, and when. The documentation
for your computer system explains those rules.

BY_VALUE

If this keyword is set, Arg is converted to a scalar longword and this longword is
passed by value. Normally, Arg is passed to ioctl by reference (i.e., by address).

MT_OFFLINE

Set this keyword to rewind and unload a tape.

MT_REWIND

Set this keyword to rewind a tape.

MT_SKIP_FILE

Use this keyword to skip files on a tape. A positive value skips forward that number
of files. A negative value skips backward.

MT_SKIP_RECORD

Use this keyword to skip records on tape. A positive value skips forward that number
of files. A negative value skips backward.

MT_WEOF

Set this keyword to write an end of file (“tape mark”) on the tape at the current
location.
IOCTL IDL Reference Guide

 933
SUPPRESS_ERROR

Set this keyword to log errors quietly and cause a value of -1 to be returned. The
default is for IDL to notice any failures associated with the use of ioctl and issue
the appropriate IDL error and halt execution.

Examples

The following example prints the size of the terminal being used by the current IDL
session. It is known to work under SunOS 4.1.2. Changes may be necessary for other
operating systems or even other versions of SunOS.

; Variable to receive result. This structure is described in
; Section 4 of the SunOS manual pages under termios(4):
winsize = { row:0, col:0, xpixel:0, ypixel:0 }

; The request code for obtaining the tty size, as determined by
; reading the termios(4) documentation, and reading the system
; include files in the /usr/include/sys directory:
TIOCGWINSZ = 1074295912L

; Make the information request. -1 is the IDL logical file unit for
; the standard output:
ret = IOCTL(-1, TIOCGWINSZ, winsize)

; Output the results:
PRINT,winsize.row, winsize.col, $

format='("TTY has ", I0," rows and ", I0," columns.")'

The following points should be noted in this example:

• Even though we only want the number of rows and columns, we must include
all the fields required by the TIOCGWINSIZ ioctl in the winsize variable (as
documented in the termio(4) manual page). Not providing a large enough
result buffer would cause IDL’s memory to be corrupted.

• The value of TIOCGWINSZ was determined by examining the system header
files provided in the /usr/include/sys directory. Such values are not
always portable between major operating system releases.

Version History

Introduced: Pre 4.0
IDL Reference Guide IOCTL

934
See Also

OPEN
IOCTL IDL Reference Guide

 935
IPLOT

The IPLOT procedure creates an iTool and the associated user interface (UI)
configured to display and manipulate plot data.

Note
If no arguments are specified, the IPLOT procedure creates an empty Plot tool.

This routine is written in the IDL language. Its source code can be found in the file
iplot.pro in the lib/itools subdirectory of the IDL distribution.

Syntax

Cartesian

IPLOT, [X,] Y

or

IPLOT, X, Y, Z

Polar

IPLOT[, R], Theta, /POLAR

iTool Common Keywords: [, DIMENSIONS=[x, y]] [, IDENTIFIER=variable]
[, LOCATION=[x, y]] [, NAME=string] [, OVERPLOT=iToolID] [, TITLE=string]
[, VIEW_GRID=[columns, rows]] [, /VIEW_NEXT] [, VIEW_NUMBER=integer]
[, {X | Y | Z}RANGE=[min, max]]

iTool Plot Keywords: [, ERRORBAR_COLOR=RGB vector]
[, ERROR_CAPSIZE=points{0.0 to 1.0}] [, /FILL_BACKGROUND]
[, FILL_COLOR=RGB vector] [, FILL_LEVEL=value] [, RGB_TABLE=byte array
of 256 by 3 or 3 by 256 elements] [, /SCATTER] [, SYM_COLOR=RGB vector]
[, SYM_INCREMENT=integer] [, SYM_INDEX=integer]
[, SYM_SIZE=points{0.0 to 1.0}] [, SYM_THICK=points{1.0 to 10.0}]
[, TRANSPARENCY=percent{0.0 to 100.0}] [, /USE_DEFAULT_COLOR]
[, /XY_SHADOW] [, /{X | Y | Z}_ERRORBARS] [, /{X | Y | Z}_LOG]
[, {X | Y | Z}ERROR=vector or array] [, /XZ_SHADOW] [, /YZ_SHADOW]

Plot Object Keywords: [, CLIP_PLANES=array] [, COLOR = RGB vector]
[, /HIDE] [, /HISTOGRAM] [, LINESTYLE=integer] [, MAX_VALUE=value]
[, MIN_VALUE=value] [, NSUM=value] [, /POLAR] [, THICK=points{1.0 to
10.0}] [, VERT_COLORS=byte vector]
IDL Reference Guide IPLOT

936
Axis Object Keywords: [, {X | Y | Z}GRIDSTYLE={0 | 1 | 2 | 3 | 4 | 5 | 6}]
[, {X | Y | Z}MAJOR=integer] [, {X | Y | Z}MINOR=integer]
[, {X | Y | Z}SUBTICKLEN=ratio] [, {X | Y | Z}TEXT_COLOR=RGB vector]
[, {X | Y | Z}TICKFONT_INDEX={0 | 1 | 2 | 3 | 4}]
[, {X | Y | Z}TICKFONT_SIZE=integer]
[, {X | Y | Z}TICKFONT_STYLE={0 | 1 | 2 | 3}]
[, {X | Y | Z}TICKFORMAT=string or string array]
[, {X | Y | Z}TICKINTERVAL=value] [, {X | Y | Z}TICKLAYOUT={0 | 1 | 2}]
[, {X | Y | Z}TICKLEN=value] [, {X | Y | Z}TICKNAME=string array]
[, {X | Y | Z}TICKUNITS=string] [, {X | Y | Z}TICKVALUES=vector]
[, {X | Y | Z}TITLE=string]

Arguments

R

If the POLAR keyword is set, R is a vector representing the radius of the polar plot. If
R is specified, Theta is plotted as a function of R. If R is not specified, Theta is plotted
as a function of the vector index of Theta.

Theta

If the POLAR keyword is set, Theta is a vector representing the angle (in radians) of
the polar plot.

X

A vector representing the x-coordinates of the plot.

Y

A vector or a two-dimensional array. If Y is:

• a vector, it represents the y-coordinates of the plot. If X is not specified, Y is
plotted as a function of the vector index of Y. If X is specified, Y is plotted as a
function of X.

• a 2-by-n array, Y[0, *] represents the x-coordinates and Y[1, *] represents the y-
coordinates of the plot.

• a 3-by-n array, Y[0, *] represents the x-coordinates, Y[1, *] represents the y-
coordinates, and Y[2, *] represents the z-coordinates of the plot.
IPLOT IDL Reference Guide

 937
Z

A vector representing the z-coordinates of the plot.

Keywords

Note
Keywords to the IPLOT routine that correspond to the names of registered
properties of the iPlot tool must be specified in full, without abbreviation.

CLIP_PLANES

Set this keyword to an array of dimensions [4, N] specifying the coefficients of the
clipping planes to be applied to this object. The four coefficients for each clipping
plane are of the form [A, B, C, D], where Ax + By + Cz + D = 0. Portions of this
object that fall in the half space Ax + By + Cz + D > 0 will be clipped. By default, the
value of this keyword is a scalar (-1) indicating that no clipping planes are to be
applied.

Note
A window is only able to support a limited number of clipping planes. Some of
these clipping planes may already be in use by the tool to support specific data
display features. If the total number of clipping planes exceeds the limit, an
informational message is displayed.

COLOR

Set this keyword to an RGB value specifying the color to be used as the foreground
color for this plot. The default is [0, 0, 0] (black).

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the drawing area of the specific tool in device units. The minimum
width of the window correlates to the width of the menubar. The minimum window
height is 100 pixels.

ERRORBAR_COLOR

Set this keyword to an RGB value specifying the color for the error bar. The default
value is [0, 0, 0] (black).
IDL Reference Guide IPLOT

938
ERRORBAR_CAPSIZE

Set this keyword to a floating-point value specifying the size of the error bar endcaps.
This value ranges from 0 to 1.0, where a value of 1.0 results in an endcap that is 10%
of the data range.

FILL_BACKGROUND (for 2D plots only)

Set this keyword to fill the area under the plot. This keyword is only available for
two-dimensional plots. This keyword is ignored for three-dimensional plots.

FILL_COLOR (for 2D plots only)

Set this keyword to an RGB value specifying the color for the filled area. The default
value is [255, 255, 255] (white). This keyword is only available for two-dimensional
plots. This keyword is ignored for three-dimensional plots.

FILL_LEVEL (for 2D plots only)

Set this keyword to a floating-point value specifying the y-value for the lower
boundary of the fill region. This keyword is only available for two-dimensional plots.
This keyword is ignored for three-dimensional plots.

HIDE

Set this keyword to a boolean value indicating whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

HISTOGRAM (for 2D plots only)

Set this keyword to force only horizontal and vertical lines to be used to connect the
plotted points. By default, the points are connected using a single straight line. This
keyword is only available for two-dimensional plots. This keyword is ignored for
three-dimensional plots.

IDENTIFIER

Set this keyword to a named IDL variable that will contain the iToolID for the created
tool. This value can then be used to reference this tool during overplotting operations
or command-line-based tool management operations.
IPLOT IDL Reference Guide

 939
LINESTYLE

Set this keyword to indicate the line style that should be used to draw the plot lines.
The value can be either an integer value specifying a pre-defined line style, or a two-
element vector specifying a stippling pattern.

To use a pre-defined line style, set the LINESTYLE keyword equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1’s or 0’s in the
bitmask should be repeated. (That is, if three consecutive 0’s appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 ≤ repeat ≤ 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example, LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off).

LOCATION

Set this keyword to a two-element vector of the form [x, y] to specify the location of
the upper left-hand corner of the tool relative to the display screen, in device units.

MAX_VALUE

The maximum value to be plotted. If this keyword is present, data values greater than
the value of MAX_VALUE are treated as missing data and are not plotted.

Note
The IEEE floating-point value NaN is also treated as missing data. IDL converts,
maintains, and returns this data as double-precision floating-point.
IDL Reference Guide IPLOT

940
MIN_VALUE

The minimum value to be plotted. If this keyword is present, data values less than the
value of MIN_VALUE are treated as missing data and are not plotted.

Note
The IEEE floating-point value NaN is also treated as missing data. IDL converts,
maintains, and returns this data as double-precision floating-point.

NAME

Set this keyword to a string to specify the name for this visualization.

NSUM

Set this keyword to the number of data points to average when plotting. If NSUM is
larger than 1, every group of NSUM points is averaged to produce one plotted point.
If there are M data points, then M/NSUM points are plotted.

OVERPLOT

Set this keyword to an iToolID to direct the graphical output of the particular tool to
the tool specified by the provided iToolID.

Set this keyword to 1 (one) to place the graphical output for the command in the
current tool. If no current tool exists, a new tool is created.

POLAR

Set this keyword to display the plot as a polar plot. If this keyword is set, the
arguments will be interpreted as R and Theta or simply Theta for a single argument. If
R is not supplied the plot will use a vector of indices for the R argument.

RGB_TABLE

Set this keyword to either a 3 by 256 or 256 by 3 byte array containing color values to
use for vertex colors. If the values supplied are not of type byte, they are scaled to the
byte range using BYTSCL. Use the VERT_COLORS keyword to specify indices that
select colors from the values specified with RGB_TABLE.

SCATTER

Set this keyword to generate a scatter plot. This action is equivalent to setting
LINESTYLE = 6 (no line) and SYM_INDEX = 3 (Period symbol).
IPLOT IDL Reference Guide

 941
SYM_COLOR

Set this keyword to an RGB value specifying the color for the plot symbol.

Note
This color is applied to the symbol only if the USE_DEFAULT_COLOR property is
set.

SYM_INCREMENT

Set this keyword to an integer value specifying the number of vertices to increment
between symbol instances. The default value is 1, which places a symbol on every
vertex.

SYM_INDEX

Set this keyword to one of the following scalar-represented internal default symbols:

• 0 = No symbol

• 1 = Plus sign, ‘+’ (default)

• 2 = Asterisk

• 3 = Period (Dot)

• 4 = Diamond

• 5 = Triangle

• 6 = Square

• 7 = X

• 8 = Arrow Head

SYM_SIZE

Set this keyword to a floating-point value from 0.0 to 1.0 specifying the size of the
plot symbol. A value of 1.0 results in an symbol that is 10% of the width/height of the
plot.

SYM_THICK

Set this keyword to floating-point value from 1 to 10 points specifying the thickness
of the plot symbol.
IDL Reference Guide IPLOT

942
THICK

Set this keyword to a value between 1.0 and 10.0, specifying the line thickness to be
used to draw the plotted lines, in points. The default is 1.0 points.

TITLE

Set this keyword to a string to specify a title for the tool. The title is displayed in the
title bar of the tool and is used for tool-related display purposes only–as the root of
the hierarchy shown in the Tool Browser, for example.

TRANSPARENCY

Set this keyword to floating-point value specifying the transparency of the filled area.
Valid values range from 0.0 to 100.0. The default value is 0.0 (opaque).

USE_DEFAULT_COLOR

Set this keyword to have the color of the symbols match the plot color. If this
keyword is set to 0 (USE_DEFAULT_COLOR = 0), the color specified by the
SYM_COLOR keyword is used for symbols instead of matching the color of the plot.

VERT_COLORS

Set this keyword to a vector of indices into the color table to select colors to use for
each vertex (plot data point). Alternately, set this keyword to a 3 by N byte array
containing color values to use for each vertex. If the values supplied are not of type
byte, they are scaled to the byte range using BYTSCL. If indices are supplied but no
colors are provided with the RGB_TABLE keyword, then a default grayscale ramp is
used. If a 3 by N array of colors is provided, the colors are used directly and the color
values provided with RGB_TABLE are ignored. If the number of indices or colors
specified is less than the number of vertices, the colors are repeated cyclically.

VIEW_GRID

Set this keyword to a two-element vector of the form [columns, rows] to specify the
view layout within the new tool. This keyword is only used if a new tool is being
created (for example, if OVERPLOT, VIEW_NEXT, or VIEW_NUMBER are
specified then VIEW_GRID is ignored).
IPLOT IDL Reference Guide

 943
VIEW_NEXT

Set this keyword to change the view selection to the next view following the
currently-selected view before issuing any graphical commands. If the currently-
selected view is the last one in the layout, then /VIEW_NEXT will cause the first
view in the layout to become selected. This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

VIEW_NUMBER

Set this keyword to change the currently-selected view to the view specified by the
VIEW_NUMBER before issuing any graphical commands. The view number starts
at 1, and corresponds to the position of the view within the graphics container (not
necessarily the position on the screen). This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

XY_SHADOW (for 3D plots only)

Set this keyword to display a shadow of the plot in a three-dimensional plot. The
shadow lies in the XY plane at the minimum value of the data space range of the z-
axis. This keyword has no effect for two-dimensional plots.

[XYZ]_ERRORBARS

Set this keyword to show error bars. The Z_ERRORBARS keyword is for three-
dimensional plots only.

[XYZ]_LOG

Set this keyword to specify a logarithmic axis. The minimum value of the axis range
must be greater than zero. The Z_LOG keyword is for three-dimensional plots only.
IDL Reference Guide IPLOT

944
[XYZ]ERROR

Set this keyword to either a vector or a 2 by N array of error values to be displayed as
error bars for the [XYZ] dimension of the plot. The length of this array must be equal
in length to the number of vertices of the plot or it will be ignored. If this keyword is
set to a vector, the value will be applied as both a negative and positive error and the
error bar will be symmetric about the plot vertex. If this keyword is set to a 2 by N
array the [0, *] values define the negative error and the [1, *] values define the
positive error, allowing asymmetric error bars. The ZERROR keyword is for three-
dimensional plots only.

[XYZ]MAJOR

Set this keyword to an integer representing the number of major tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MAJOR equal to zero suppresses major tickmarks entirely. ZMAJOR is for three-
dimensional plots only.

[XYZ]MINOR

Set this keyword to an integer representing the number of minor tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MINOR equal to zero suppresses minor tickmarks entirely. ZMINOR is for three-
dimensional plots only.

[XYZ]RANGE

Set this keyword to the desired data range of the axis, a 2-element vector. The first
element is the axis minimum, and the second is the maximum. ZRANGE is for three-
dimensional plots only.

[XYZ]SUBTICKLEN

Set this keyword to a floating-point scale ratio specifying the length of minor tick
marks relative to the length of major tick marks. The default is 0.5, specifying that the
minor tick mark is one-half the length of the major tick mark. ZSUBTICKLEN is for
three-dimensional plots only.

[XYZ]TEXT_COLOR

Set this keyword to an RGB value specifying the color for the axis text. The default
value is [0, 0, 0] (black). ZTEXT_COLOR is for three-dimensional plots only.
IPLOT IDL Reference Guide

 945
[XYZ]TICKFONT_INDEX

Set this keyword equal to one of the following integers, which represent the type of
font to be used for the axis text:

• 0 = Helvetica

• 1 = Courier

• 2 = Times

• 3 = Symbol

• 4 = Hershey

ZTICKFONT_INDEX is for three-dimensional plots only.

[XYZ]TICKFONT_SIZE

Set this keyword to an integer representing the point size of the font used for the axis
text. The default is 12.0 points. ZTICKFONT_SIZE is for three-dimensional plots
only.

[XYZ]TICKFONT_STYLE

Set this keyword equal to one of the following integers, which represent the style of
font to be used for the axis text:

• 0 = Normal

• 1 = Bold

• 2 = Italic

• 3 = Bold Italic

ZTICKFONT_STYLE is for three-dimensional plots only.

[XYZ]TICKFORMAT

Set this keyword to a string, or an array of strings, in which each string represents a
format string or the name of a function to be used to format the tick mark labels. If an
array is provided, each string corresponds to a level of the axis. The TICKUNITS
keyword determines the number of levels for an axis.

If the string begins with an open parenthesis, it is treated as a standard format string.
See “Format Codes” in Chapter 10 of the Building IDL Applications manual.

If the string does not begin with an open parenthesis, it is interpreted as the name of a
callback function to be used to generate tick mark labels.
IDL Reference Guide IPLOT

946
If TICKUNITS are not specified:

• The callback function is called with three parameters: Axis, Index, and Value,
where:

• Axis is the axis number: 0 for X axis, 1 for Y axis, 2 for Z axis

• Index is the tick mark index (indices start at 0)

• Value is the data value at the tick mark (a double-precision floating point
value)

If TICKUNITS are specified:

The callback function is called with four parameters: Axis, Index, Value, and Level,
where:

• Axis, Index, and Value are the same as described above.

• Level is the index of the axis level for the current tick value to be labeled.
(Level indices start at 0.)

Used with the LABEL_DATE function, this property can easily create axes with
date/time labels.

ZTICKFORMAT is for three-dimensional plots only.

[XYZ]TICKINTERVAL

Set this keyword to a floating-point scalar indicating the interval between major tick
marks for the first axis level. The default value is computed according to the axis
[XYZ]RANGE and the number of major tick marks ([XYZ]MAJOR). The value of
this keyword takes precedence over the value set for the [XYZ]MAJOR keyword.

For example, if TICKUNITS = ['S', 'H', 'D'], and TICKINTERVAL = 30, then the
interval between major ticks for the first axis level will be 30 seconds.

ZTICKINTERVAL is for three-dimensional plots only.
IPLOT IDL Reference Guide

 947
[XYZ]TICKLAYOUT

Set this keyword to integer scalar that indicates the tick layout style to be used to
draw each level of the axis.

Valid values include:

• 0 = The axis line, major tick marks and tick labels are all included. Minor tick
marks only appear on the first level of the axis. This is the default tick layout
style.

• 1 = Only the labels for the major tick marks are drawn. The axis line, major
tick marks, and minor tick marks are omitted.

• 2 = Each major tick interval is outlined by a box. The tick labels are positioned
within that box (left-aligned). For the first axis level only, the major and minor
tick marks will also be drawn.

ZTICKLAYOUT is for three-dimensional plots only.

Note
For all tick layout styles, at least one tick label will appear on each level of the axis
(even if no major tick marks fall along the axis line). If there are no major tick
marks, the single tick label will be centered along the axis.

[XYZ]TICKLEN

Set this keyword to a floating-point value that specifies the length of each major tick
mark, measured in data units. The recommended, and default, tick mark length is 0.2.
IDL converts, maintains, and returns this data as double-precision floating-point.
ZTICKLEN is for three-dimensional plots only.

[XYZ]TICKNAME

Set this keyword to a string array of up to 30 elements that controls the annotation of
each tick mark. ZTICKNAME is for three-dimensional plots only.

[XYZ]TICKUNITS

Set this keyword to a string (or a vector of strings) indicating the units to be used for
axis tick labeling. If more than one unit is provided, the axis will be drawn in multiple
levels, one level per unit.

The order in which the strings appear in the vector determines the order in which the
corresponding unit levels will be drawn. The first string corresponds to the first level
(the level nearest to the primary axis line).
IDL Reference Guide IPLOT

948
Valid unit strings include:

• "Numeric"

• "Years"

• "Months"

• "Days"

• "Hours"

• "Minutes"

• "Seconds"

• "Time" - Use this value to indicate that the tick values are time values; IDL
will determine the appropriate time intervals and tick label formats based upon
the range of values covered by the axis.

• ""- Use the empty string to indicate that no tick units are being explicitly set.
This implies that a single axis level will be drawn using the "Numeric" unit.
This is the default setting.

If any of the time units are utilized, then the tick values are interpreted as Julian
date/time values. Note that the singular form of each of the time value strings is also
acceptable (e.g, TICKUNITS = 'Day' is equivalent to TICKUNITS = 'Days').

ZTICKUNITS is for three-dimensional plots only.

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000hidd, respectively.

[XYZ]TICKVALUES

Set this keyword to a floating-point vector of data values representing the values at
each tick mark. If TICKVALUES is set to 0, the default, IDL computes the tick
values based on the axis range and the number of major ticks. IDL converts,
maintains, and returns this data as double-precision floating-point. ZTICKVALUES
is for three-dimensional plots only.

[XYZ]TITLE

Set this keyword to a string representing the title of the specified axis. ZTITLE is for
three-dimensional plots only.
IPLOT IDL Reference Guide

 949
XZ_SHADOW (for 3D plots only)

Set this keyword to display a shadow of the plot in a three-dimensional plot. The
shadow lies in the XZ plane at the minimum value of the data space range of the y-
axis. This keyword has no effect for two-dimensional plots.

YZ_SHADOW (for 3D plots only)

Set this keyword to display a shadow of the plot in a three-dimensional plot. The
shadow lies in the YZ plane at the minimum value of the data space range of the x-
axis. This keyword has no effect for two-dimensional plots.

Examples

In the IDL Intelligent Tools system, data can be imported from the IDL Command
Line (as described in Example 1), or data can be imported via the File menu in the
iTool window (as described in Examples 2 and 3). For detailed information on
importing data via the iTool file menu, refer to “Data Import Methods” in Chapter 2
of the iTool User’s Guide manual.

Example 1

This example shows how to use the IDL Command Line to load data and variables
into the iPlot tool.

At the IDL Command Line, enter:

file = FILEPATH('elnino.dat', SUBDIRECTORY = ['examples','data'])
data = READ_BINARY(file, DATA_TYPE = 4, DATA_DIMS = [500, 1], $

ENDIAN = 'little')
time = DINDGEN(500)*0.25d + 1871
IPLOT, time, data, TITLE = 'El Nino', COLOR = [255, 128, 0]

Place a title on the time axis of your plot by selecting the axis, right-clicking to
display the context menu, selecting Properties to display the property sheet, and
typing Year in the Title field.

Place a title on the temperature axis of your plot by selecting the axis, displaying the
property sheet, and entering the following in the Title field:

Temperature Anomaly (!Uo!NC)

Annotate your plot by selecting the Text Annotation tool, clicking near the top of the
plot, and typing El Nino.
IDL Reference Guide IPLOT

950
Add the special character to the annotation by selecting the annotation text,
displaying the property sheet, selecting the lower-case n in Nino in the Title field,
and replacing it with the following:

!Z(U+0F1)

Note
U+0F1 is unicode for the ñ character.

The following figure displays the output of this example:

Example 2

This example shows how to use the File → Open command to load binary data into
the iPlot tool.

At the IDL Command Line, enter:

IPLOT

Select File → Open command to display the Open dialog, then browse to find
dirty_sine.dat in the examples/data directory in the IDL distribution, and
click Open.

Figure 3-13: El Niño iPlot Example
IPLOT IDL Reference Guide

 951
In the Binary Template dialog, click New Field, and enter the following information
in the New Field dialog:

• Field Name: data (or a name of your choosing)

• Type: Byte (unsigned 8-bits)

• Number of Dimensions: 1

• 1st Dimension Size: 256

Click OK to close the New Field dialog and the Binary Template dialog, and the
surface is displayed.

Note
For more information on using the Binary Template to import data, see “Using the
BINARY_TEMPLATE Function” in Chapter 15 of the Using IDL manual.

Annotate your plot by selecting the Text Annotation tool, clicking near the curve, and
typing Noisy Sine Wave.

The following figure displays the output of this example:

Example 3

This example shows how to use the File → Import command to load ASCII data into
the iPlot tool.

At the IDL Command Line, enter:

IPLOT

Figure 3-14: Noisy Sine Data iPlot Example
IDL Reference Guide IPLOT

952
Select File → Import to display the IDL Import Data wizard.

1. At Step 1, select From a File and click Next>>.

2. At Step 2, under File Name:, browse to find sine_waves.txt in the
examples/data directory in the IDL distribution, and click Next>>.

3. At Step 3, select Plot and click Finish.

Then, the ASCII Template wizard is displayed.

1. At Step 1, click Next>> to accept the displayed data type/range definition.

2. At Step 2, click Next>> to accept the displayed delimiter/fields definition.

3. At Step 3, click Finish to accept the displayed field specification. The
sine_waves.txt plot is displayed in the iPlot window.

The plot consists of two overlapping sine waves. To make it easier to distinguish
between the two, change the appearance of the noisy sine wave to a dotted line
pattern by selecting the noisy sine wave, right-clicking to display the context menu,
selecting Properties, and changing the Linestyle property to a dotted line.

The following figure displays the output of this example:

Version History

Introduced: 6.0

Figure 3-15: Overlapping Sine Waves iPlot Example
IPLOT IDL Reference Guide

 953
ISHFT

The ISHFT function performs the bit shift operation on bytes, integers and
longwords.

Syntax

Result = ISHFT(P1, P2)

Return Value

If P2 is positive, P1 is left shifted P2 bit positions with 0 bits filling vacated positions.
If P2 is negative, P1 is right shifted with 0 bits filling vacated positions.

Arguments

P1

The scalar or array to be shifted.

P2

The scalar or array containing the number of bit positions and direction of the shift.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

Bit shift each element of the integer array [1, 2, 3, 4, 5] three bits to the left and store
the result in B by entering:

B = ISHFT([1,2,3,4,5], 3)
IDL Reference Guide ISHFT

954
The resulting array B is [8, 16, 24, 32, 40].

Version History

Introduced: Original

See Also

SHIFT
ISHFT IDL Reference Guide

 955
ISOCONTOUR

The ISOCONTOUR procedure interprets the contouring algorithm found in the
IDLgrContour object. The algorithm allows for contouring on arbitrary meshes and
returns line or orientated tessellated polygonal output. The interface will also allow
secondary data values to be interpolated and returned at the output vertices as well.

Syntax

ISOCONTOUR, Values, Outverts, Outconn
[, AUXDATA_IN=array, AUXDATA_OUT=variable]
[, C_LABEL_INTERVAL=vector of values] [, C_LABEL_SHOW=vector of
integers] [, C_VALUE=scalar or vector] [, /DOUBLE] [, /FILL] [, GEOMX=vector]
[, GEOMY=vector] [, GEOMZ=vector] [, LEVEL_VALUES=variable]
[, N_LEVELS=levels] [, OUT_LABEL_OFFSETS=variable]
[, OUT_LABEL_POLYLINES=variable] [, OUT_LABEL_STRINGS=variable]
[, OUTCONN_INDICES=variable] [, POLYGONS=array of polygon descriptions]

Arguments

Values

A vector or two-dimensional array specifying the values to be contoured. If the data
is of double-precision floating-point type, or if the DOUBLE keyword is set,
computations are done in double precision and the result is a double-precision value.
If the data is of any other type, it is converted (if necessary) to single-precision
floating-point; all computations are then done in single precision and the result is a
single-precision value.

Outconn

Output variable to contain the connectivity information of the contour geometry in
the form: [n0, i(0, 0), i(0, 1)..., i(0, n0–1), n1, i(1, 0), ...].

Outverts

Output variable to contain the contour vertices. The vertices are returned in double-
precision floating point if the DOUBLE keyword is specified with a non-zero value.
Otherwise, the vertices are returned in single-precision floating point.
IDL Reference Guide ISOCONTOUR

956
Keywords

AUXDATA_IN

The auxiliary values to be interpolated at contour vertices. If p is the dimensionality
of the auxiliary values, set this argument to a p-by-n array (if the Values argument is a
vector of length n), or to a p-by-m-by-n array (if the Values argument is an m-by-n
two-dimensional array).

AUXDATA_OUT

If the AUXDATA_IN keyword was specified, set this keyword to a named output
variable to contain the interpolated auxiliary values at the contour vertices. If p is the
dimensionality of the auxiliary values, the output is a p-by-n array of values, where n
is the number of vertices in Outverts.

C_LABEL_INTERVAL

Set this keyword to a vector of values indicating the distance (measured
parametrically relative to the length of each contour path) between labels for each
contour level. If the number of contour levels exceeds the number of provided
intervals, the C_LABEL_INTERVAL values will be repeated cyclically. The default
is 0.4.

C_LABEL_SHOW

Set this keyword to a vector of integers. For each contour value, if the corresponding
value in the C_LABEL_SHOW vector is non-zero, the contour line for that contour
value will be labeled (with the corresponding label information returned via the
OUT_LABEL_POLYS, OUT_LABEL_OFFSETS, and OUT_LABEL_STRINGS
keywords). If the number of contour levels exceeds the number of elements in this
vector, the C_LABEL_SHOW values will be repeated cyclically. The default is 0
indicating that no contour levels will be labeled.

C_VALUE

Set this keyword to a scalar value or a vector of values for which contour levels are to
be generated. If this keyword is set to 0, contour levels will be evenly sampled across
the range of the Values argument, using the value of the N_LEVELS keyword to
determine the number of samples.
ISOCONTOUR IDL Reference Guide

 957
DOUBLE

Set this keyword to use double-precision to compute the contours. IDL converts any
data supplied by the Values argument or GEOMX, GEOMY, and GEOMZ keywords
to double precision and returns the Outverts argument in double precision. The
default behavior is to convert the input to single precision and return the Outverts in
single precision.

FILL

Set this keyword to generate an output connectivity as a set of polygons (Outconn is
in the form used by the IDLgrPolygon POLYGONS keyword). The resulting
representation is as a set of filled contours. The default is to generate line contours
(Outconn is in the form used by the IDLgrPolyline POLYLINES keyword).

GEOMX

Set this keyword to a vector or two-dimensional array specifying the X coordinates of
the geometry with which the contour values correspond. If X is a vector, it must
match the number of elements in the Values argument, or it must match the first of the
two dimensions of the Values argument (in which case the X coordinates will be
repeated for each row of data values).

If necessary, data in the supplied vector or array will be converted to match the data
type of the Values argument.

GEOMY

Set this keyword to a vector or two-dimensional array specifying the Y coordinates of
the geometry with which the contour values correspond. If Y is a vector, it must
match the number of elements in the Values argument, or it must match the second of
the two dimensions of the Values argument (in which case the Y coordinates will be
repeated for each column of data values).

If necessary, data in the supplied vector or array will be converted to match the data
type of the Values argument.

GEOMZ

Set this keyword to a vector or two-dimensional array specifying the Z coordinates of
the geometry with which the contour values correspond.

If GEOMZ is a vector or an array, it must match the number of elements in the Values
argument.
IDL Reference Guide ISOCONTOUR

958
If GEOMZ is not set, the geometry will be derived from the Values argument (if it is
set to a two-dimensional array). In this case connectivity is implied. The X and Y
coordinates match the row and column indices of the array, and the Z coordinates
match the data values.

If necessary, data in the supplied vector or array will be converted to match the data
type of the Values argument.

LEVEL_VALUES

Set this keyword to a named output variable to receive a vector of values
corresponding to the values used to generate the contours. The length of this vector is
equal to the number of contour levels generated. This vector is returned in double
precision floating point.

N_LEVELS

Set this keyword to the number of contour levels to generate. This keyword is ignored
if the C_VALUE keyword is set to a vector, in which case the number of levels is
derived from the number of elements in that vector. Set this keyword to 0 to indicate
that IDL should compute a default number of levels based on the range of data
values. This is the default.

OUT_LABEL_OFFSETS

Set this keyword to a named variable that upon return will contain a vector of offsets
(parameterized to the corresponding contour line) indicating the positions of the
contour labels.

Note
The C_LABEL_SHOW keyword should be specified if this keyword is used.

OUT_LABEL_POLYLINES

Set this keyword to a named variable that upon return will contain a vector of
polyline indices, [P0, P1, …], that indicate which contour lines are labeled. Pi
corresponds to the ith polyline specified via the Outconn argument. Note that if a
given contour line has more than one label along its perimeter, then the corresponding
polyline index may appear more than once in the LABEL_POLYS vector.

Note
The C_LABEL_SHOW keyword should be specified if this keyword is used.
ISOCONTOUR IDL Reference Guide

 959
OUT_LABEL_STRINGS

Set this keyword to a named variable that upon return will contain a vector of strings,
[str0, str1, …], that indicate the label strings.

Note
The C_LABEL_SHOW keyword should be specified if this keyword is used.

OUTCONN_INDICES

Set this keyword to a named output variable to receive an array of beginning and
ending indices of connectivity for each contour level.

The output array is of the form: [start0, end0, start1, end1, ..., startnc–1, endnc–1], where
nc is the number of contour levels. If a level has no contour lines, the start and stop
pair is set to 0 and 0 for that level.

POLYGONS

Set this keyword to an array of polygonal descriptions that represents the connectivity
information for the data to be contoured (as specified in the Values argument). A
polygonal description is an integer or long array of the form: [n, i0, i1, ..., in–1], where
n is the number of vertices that define the polygon, and i0...in–1 are indices into the
GEOMX, GEOMY, and GEOMZ keywords that represent the polygonal vertices. To
ignore an entry in the POLYGONS array, set the vertex count, n to 0. To end the
drawing list, even if additional array space is available, set n to –1.

Version History

Introduced: 5.5

C_LABEL_INTERVAL, C_LABEL_SHOW, OUT_LABEL_OFFSETS,
OUT_LABEL_POLYLINES, and OUT_LABEL_STRINGS keywords added: 5.6
IDL Reference Guide ISOCONTOUR

960
ISOSURFACE

The ISOSURFACE procedure algorithm expands on the SHADE_VOLUME
algorithm. It returns topologically consistent triangles by using oriented tetrahedral
decomposition internally. This also allows the algorithm to isosurface any arbitrary
tetrahedral mesh. If the user provides an optional auxiliary array, the data in this array
is interpolated onto the output vertices and is returned as well. This auxiliary data
array is allowed to have more than one value at each vertex. Any size leading
dimension is allowed as long as the number of values in the subsequent dimensions
matches the number of elements in the input Data array.

Syntax

ISOSURFACE, Data, Value, Outverts, Outconn
[, GEOM_XYZ=array, TETRAHEDRA=array]
[, AUXDATA_IN=array, AUXDATA_OUT=variable]
[, PROGRESS_CALLBACK=string] [, PROGRESS_METHOD=string]
[, PROGRESS_OBJECT=objref] [, PROGRESS_PERCENT=percent{0 to 100}]
[, PROGRESS_USERDATA=value]

Arguments

Data

Input three-dimensional array of scalars which are to be contoured.

Value

Input scalar contour value. This value specifies the constant-density surface (also
called an iso-surface) to be extracted.

Outverts

A named variable to contain an output [3, n] array of floating point vertices making
up the triangle surfaces.

Outconn

A named variable to contain an output array of polygonal connectivity values (see
IDLgrPolygon, POLYGONS keyword). If no polygons were extracted, this argument
returns the array [–1].
ISOSURFACE IDL Reference Guide

 961
Keywords

AUXDATA_IN

Input array of auxiliary data with trailing dimensions being the number of values in
Data.

Note
If AUXDATA_IN is specified then AUXDATA_OUT must also be specified.

AUXDATA_OUT

Set this keyword to a named variable that will contain an output array of auxiliary
data sampled at the locations in Outverts.

Note
If AUXDATA_OUT is specified then AUXDATA_IN must also be specified.

GEOM_XYZ

A [3,n] input array of vertex coordinates (one for each value in the Data array). This
array is used to define the spatial location of each scalar. If this keyword is omitted,
Data must be a three-dimensional array and the scalar locations are assumed to be on
a uniform grid.

Note
If GEOM_XYZ is specified then TETRAHEDRA must also be specified if either is
to be specified.

PROGRESS_CALLBACK

Set this keyword to a scalar string containing the name of the IDL function that
ISOSURFACE calls at PROGRESS_PERCENT intervals as it generates the
isosurface.

The PROGRESS_CALLBACK function returns a zero to signal ISOSURFACE to
stop generating the isosurface. This causes ISOSURFACE to return a single vertex
and a connectivity array of [-1], which specifies an empty polygon. If the callback
function returns any non-zero value, ISOSURFACE continues to generate the
isosurface.
IDL Reference Guide ISOSURFACE

962
The PROGRESS_CALLBACK function must specify a single argument, Percent,
which ISOSURFACE sets to an integer between 0 and 100, inclusive.

The PROGRESS_CALLBACK function may specify an optional USERDATA
keyword parameter, which ISOSURFACE sets to the variable provided in the
PROGRESS_USERDATA keyword.

The following code shows an example of a progress callback function:

FUNCTION myProgressCallback, percent,$ USERDATA = myStruct

oProgressBar = myStruct.oProgressBar

; This method updates the progress bar
; graphic and returns TRUE if the user has
; NOT pressed the cancel button.
keepGoing = oProgressBar -> $

UpdateProgressValue(percent)

RETURN, keepGoing

END

PROGRESS_METHOD

Set this keyword to a scalar string containing the name of a function method that
ISOSURFACE calls at PROGRESS_PERCENT intervals as it generates the
isosurface. If this keyword is set, then the PROGRESS_OBJECT keyword must be
set to an object reference that is an instance of a class that defines the specified
method.

The PROGRESS_METHOD function method callback has the same specification as
the callback described in the PROGRESS_CALLBACK keyword, except that it is
defined as an object class method:

FUNCTION myClass::myProgressCallback, $
percent, USERDATA = myStruct

PROGRESS_OBJECT

Set this keyword to an object reference that is an instance of a class that defines the
method specified with the PROGRESS_METHOD keyword. If this keyword is set,
then the PROGRESS_METHOD keyword must also be set.
ISOSURFACE IDL Reference Guide

 963
PROGRESS_PERCENT

Set this keyword to a scalar in the range [1, 100] to specify the interval between
invocations of the callback function. The default value is 5 and IDL silently clamps
other values to the range [1, 100].

For example, a value of 5 (the default) specifies ISOSURFACE will call the callback
function when the isosurface process is 0% complete, 5% complete, 10% complete,
..., 95% complete, and 100% complete.

PROGRESS_USERDATA

Set this property to any IDL variable that ISOSURFACE passes to the callback
function in the callback function’s USERDATA keyword parameter. If this keyword
is specified, then the callback function must be able to accept keyword parameters.

TETRAHEDRA

An input array of tetrahedral connectivity values. If this array is not specified, the
connectivity is assumed to be a rectilinear grid over the input three-dimensional
array. If this keyword is specified, the input data array need not be a three-
dimensional array. Each tetrahedron is represented by four values in the connectivity
array. Every four values in the array correspond to the vertices of a single tetrahedron.

Version History

Introduced: 5.5

See Also

INTERVAL_VOLUME, SHADE_VOLUME, XVOLUME
IDL Reference Guide ISOSURFACE

964
ISURFACE

The ISURFACE procedure creates an iTool and the associated user interface (UI)
configured to display and manipulate surface data.

Note
If no arguments are specified, the ISURFACE procedure creates an empty Surface
tool.

This routine is written in the IDL language. Its source code can be found in the file
isurface.pro in the lib/itools subdirectory of the IDL distribution.

Syntax

ISURFACE[, Z [, X, Y]]

iTool Common Keywords: [, DIMENSIONS=[x, y]] [, IDENTIFIER=variable]
[, LOCATION=[x, y]] [, NAME=string] [, OVERPLOT=iToolID] [, TITLE=string]
[, VIEW_GRID=[columns, rows]] [, /VIEW_NEXT] [, VIEW_NUMBER=integer]
[, {X | Y | Z}RANGE=[min, max]]

iTool Surface Keywords: [, RGB_TABLE=array of 256 by 3 or 3 by 256 elements]
[, TEXTURE_ALPHA=2-D array] [, TEXTURE_BLUE=2-D array]
[, TEXTURE_GREEN=2-D array] [, TEXTURE_IMAGE=array]
[, TEXTURE_RED=2-D array]

Surface Object Keywords: [, BOTTOM=index or RGB vector]
[, CLIP_PLANES=array] [, COLOR=RGB vector] [, DEPTH_OFFSET=value]
[, /EXTENDED_LEGO] [, /HIDDEN_LINES] [, /HIDE] [, LINESTYLE=value]
[, SHADING={0 | 1}] [, /SHOW_SKIRT] [, SKIRT=Z value]
[, STYLE={0 | 1 | 2 | 3 | 4 | 5 | 6}] [, /TEXTURE_HIGHRES]
[, /TEXTURE_INTERP] [, THICK=points{1.0 to 10.0}] [, /USE_TRIANGLES]
[, VERT_COLORS=vector or 2-D array] [, ZERO_OPACITY_SKIP={0 | 1}]

Axis Object Keywords: [, {X | Y | Z}GRIDSTYLE={0 | 1 | 2 | 3 | 4 | 5 | 6}]
[, {X | Y | Z}MAJOR=integer] [, {X | Y | Z}MINOR=integer]
[, {X | Y | Z}SUBTICKLEN=ratio] [, {X | Y | Z}TEXT_COLOR=RGB vector]
[, {X | Y | Z}TICKFONT_INDEX={0 | 1 | 2 | 3 | 4}]
[, {X | Y | Z}TICKFONT_SIZE=integer]
[, {X | Y | Z}TICKFONT_STYLE={0 | 1 | 2 | 3}]
[, {X | Y | Z}TICKFORMAT=string or string array]
[, {X | Y | Z}TICKINTERVAL=value] [, {X | Y | Z}TICKLAYOUT={0 | 1 | 2}]
[, {X | Y | Z}TICKLEN=value] [, {X | Y | Z}TICKNAME=string array]
ISURFACE IDL Reference Guide

 965
[, {X | Y | Z}TICKUNITS=string] [, {X | Y | Z}TICKVALUES=vector]
[, {X | Y | Z}TITLE=string]

Arguments

X

A vector or two-dimensional array specifying the x-coordinates of the grid.

If X is a vector:

• If Y and Z are vectors and have the same length as X:

Each element of X specifies the x-coordinates of a point in space (e.g., X[0]
specifies the x-coordinate for Y[0] and Z[0]). The gridding wizard will
automatically launch in this case.

• If Z is a two-dimensional array:

Each element of X specifies the x-coordinates for a column of Z (e.g., X[0]
specifies the x-coordinate for Z[0, *]).

If X is a two-dimensional array, each element of X specifies the x-coordinate of the
corresponding point in Z (Xij specifies the x-coordinate of Zij).

Y

A vector or two-dimensional array specifying the y-coordinates of the grid.

If Y is a vector:

• If X and Z are vectors and have the same length as Y:

Each element of Y specifies the y-coordinates of a point in space (e.g., Y[0]
specifies the y-coordinate for X[0] and Z[0]). The gridding wizard will
automatically launch in this case.

• If Z is a two-dimensional array:

Each element of Y specifies the y-coordinates for a column of Z (e.g., Y[0]
specifies the y-coordinate for Z[*, 0]).

If Y is a two-dimensional array, each element of Y specifies the y-coordinate of the
corresponding point in Z (Yij specifies the y-coordinate of Zij).
IDL Reference Guide ISURFACE

966
Z

A vector or two-dimensional array specifying the data to be displayed.

If Z is a vector,

• If X and Y are vectors and have the same length as Z:

Each element of Z specifies the z-coordinates of a point in space (e.g., Z[0]
specifies the z-coordinate for X[0] and Y[0]). The gridding wizard will
automatically launch in this case.

If Z is a two-dimensional array,

• If X and Y are provided:

The surface is defined as a function of the (x, y) locations specified by their
contents.

• If X and Y are not provided:

The surface is generated as a function of the array indices of each element of Z.

Keywords

Note
Keywords to the ISURFACE routine that correspond to the names of registered
properties of the iSurface tool must be specified in full, without abbreviation.

BOTTOM

Set this keyword to an RGB color for drawing the bottom of the surface. Set this
keyword to a scalar to draw the bottom with the same color as the top.

CLIP_PLANES

Set this keyword to an array of dimensions [4, N] specifying the coefficients of the
clipping planes to be applied to this object. The four coefficients for each clipping
plane are of the form [A, B, C, D], where Ax + By + Cz + D = 0. Portions of this
object that fall in the half space Ax + By + Cz + D > 0 will be clipped. By default, the
value of this keyword is a scalar (-1) indicating that no clipping planes are to be
applied.

Note
A window is only able to support a limited number of clipping planes. Some of
these clipping planes may already be in use by the tool to support specific data
ISURFACE IDL Reference Guide

 967
display features. If the total number of clipping planes exceeds the limit, an
informational message is displayed.

COLOR

Set this keyword to the color to be used as the foreground color for this model. The
color is specified as an RGB vector. The default is [225, 184, 0].

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the drawing area of the specific tool in device units. The minimum
width of the window correlates to the width of the menubar. The minimum window
height is 100 pixels.

DEPTH_OFFSET

Set this keyword to an integer value that specifies an offset in depth to be used when
rendering filled primitives. This offset is applied along the viewing axis, with positive
values moving the primitive away from the viewer.

The units are “Z-Buffer units,” where a value of 1 is used to specify a distance that
corresponds to a single step in the device’s Z-Buffer.

Use DEPTH_OFFSET to always cause a filled primitive to be rendered slightly
deeper than other primitives, independent of model transforms. This is useful for
avoiding stitching artifacts caused by rendering lines or polygons on top of other
polygons at the same depth.

Note
RSI suggests using this feature to remove stitching artifacts and not as a means for
“layering” complex scenes with multiple DEPTH_OFFSET values. It is safest to
use only a DEPTH_OFFSET value of 0, the default, and one other non-zero value,
such as 1. Many system-level graphics drivers are not consistent in their handling of
DEPTH_OFFSET values, particularly when multiple non-zero values are used.
This can lead to portability problems because a set of DEPTH_OFFSET values may
produce better results on one machine than on another. Using IDL’s software
renderer will help improve the cross-platform consistency of scenes that use
DEPTH_OFFSET.

Note
DEPTH_OFFSET has no effect unless the value of the STYLE keyword is 2 or 6
(Filled or LegoFilled).
IDL Reference Guide ISURFACE

968
EXTENDED_LEGO

Set this keyword to force the iSurface tool to display the last row and column of data
when lego display styles are selected.

HIDDEN_LINES

Set this keyword to draw point and wireframe surfaces using hidden line (point)
removal. By default, hidden line removal is disabled.

HIDE

Set this keyword to a boolean value indicating whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

IDENTIFIER

Set this keyword to a named IDL variable that will contain the iToolID for the created
tool. This value can then be used to reference this tool during overplotting operations
or command-line-based tool management operations.

LINESTYLE

Set this keyword to indicate the line style that should be used to draw the surface
lines. The value can be either an integer value specifying a pre-defined line style, or a
two-element vector specifying a stippling pattern.

To use a pre-defined line style, set the LINESTYLE keyword equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot
ISURFACE IDL Reference Guide

 969
• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1’s or 0’s in the
bitmask should be repeated. (That is, if three consecutive 0’s appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 ≤ repeat ≤ 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example, LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off).

LOCATION

Set this keyword to a two-element vector of the form [x, y] to specify the location of
the upper left-hand corner of the tool relative to the display screen, in device units.

NAME

Set this keyword to a string to specify the name for this particular tool. The name is
used for tool-related display purposes only–as the root of the hierarchy shown in the
Tool Browser, for example.

OVERPLOT

Set this keyword to an iToolID to direct the graphical output of the particular tool to
the tool specified by the provided iToolID.

Set this keyword equal to one to place the graphical output for the command in the
current tool. If no current tool exists, a new tool is created.

RGB_TABLE

Set this keyword to a two-dimensional array containing RGB triplets defining the
colors to be used in a color indexed texture image or by vertex colors. The values
should be within the range of 0 ≤ value ≤ 255. The array must be a 3 by N array
where m must not exceed 256.
IDL Reference Guide ISURFACE

970
SHADING

Set this keyword to an integer representing the type of shading to use if STYLE is set
to 2 (Filled).

• 0 = Flat (default): The color has a constant intensity for each face of the
surface, based on the normal vector.

• 1 = Gouraud: The colors are interpolated between vertices, and then along
scanlines from each of the edge intensities.

Gouraud shading may be slower than flat shading, but results in a smoother
appearance.

SHOW_SKIRT

Set this keyword to enable skirt drawing. The default is to disable skirt drawing.

SKIRT

Set this keyword to the Z value at which a skirt is to be defined around the array. The
Z value is expressed in data units; the default is 0.0. If a skirt is defined, each point on
the four edges of the surface is connected to a point on the skirt which has the given Z
value, and the same X and Y values as the edge point. In addition, each point on the
skirt is connected to its neighbor. The skirt value is ignored if skirt drawing is
disabled (see SHOW_SKIRT above). IDL converts, maintains, and returns this data
as double-precision floating-point.

STYLE

Set this keyword to and integer value that indicates the style to be used to draw the
surface. Valid values are:

• 0 = Points

• 1 = Wire mesh

• 2 = Filled (the default)

• 3 = RuledXZ

• 4 = RuledYZ

• 5 = Lego

• 6 = LegoFilled: for outline or shaded and stacked histogram-style plots.
ISURFACE IDL Reference Guide

 971
TEXTURE_ALPHA

Set the keyword to a two-dimensional array containing the alpha channel of an image
to be used as a texture image. Use of this keyword requires that TEXTURE_RED,
TEXTURE_GREEN, and TEXTURE_BLUE be set to arrays of identical size and
type.

TEXTURE_BLUE

Set the keyword to a two-dimensional array containing the blue channel of an image
to be used as a texture image. Use of this keyword requires that TEXTURE_RED and
TEXTURE_GREEN be set to arrays of identical size and type.

TEXTURE_GREEN

Set the keyword to a two-dimensional array containing the green channel of an image
to be used as a texture image. Use of this keyword requires that TEXTURE_RED and
TEXTURE_BLUE be set to arrays of identical size and type.

TEXTURE_HIGHRES

Set this keyword to cause texture tiling to be used as necessary to maintain the full
pixel resolution of the original texture image.

Setting this keyword is recommended if IDL is running on modern 3-D hardware and
resolution loss due to downscaling becomes problematic. If not set, and the texture
map is larger than the maximum resolution supported by the 3-D hardware, the
texture is scaled down to the maximum resolution supported by the 3-D hardware on
your system. The default value is 0.

TEXTURE_IMAGE

Set this keyword to an array containing an image to be texture mapped onto the
surface. If this keyword is omitted or set to a null object reference, no texture map is
applied and the surface is filled with the color specified by the COLOR or
VERTEX_COLORS property. The image array can be a two-dimensional array of
color indexes or a three-dimensional array specifying RGB values at each pixel (3 x n
x m, n x 3 x m, or n x m x 3). Setting TEXTURE_IMAGE to a three-dimensional
array contains an alpha channel (4 x n x m, n x 4 x m, or n x m x 4) allows you to
create a transparent iSurface object. The TEXTURE_IMAGE keyword will override
any values passed to TEXTURE_RED, TEXTURE_GREEN, TEXTURE_BLUE, or
TEXTURE_ALPHA.
IDL Reference Guide ISURFACE

972
TEXTURE_INTERP

 Set this keyword to a nonzero value to indicate that bilinear sampling is to be used
with texture mapping. The default method is nearest-neighbor sampling.

TEXTURE_RED

Set the keyword to a two-dimensional array containing the red channel of an image to
be used as a texture image. Use of this keyword requires that TEXTURE_GREEN
and TEXTURE_BLUE be set to arrays of identical size and type.

THICK

Set this keyword to a value between 1.0 and 10.0, specifying the line thickness to use
to draw surface lines, in points. The default is 1.0 points.

TITLE

Set this keyword to a string to specify a title for the tool. The title is displayed in the
title bar of the tool.

USE_TRIANGLES

Set this keyword to force the iSurface tool to use triangles instead of quads to draw
the surface and skirt.

VERT_COLORS

Set this keyword to a vector, two-dimensional array of equal size to Z, or a two-
dimensional array containing RGB triplets representing colors to be used at each
vertex. If this keyword is set to a vector or a two-dimensional array of equal size to Z,
these values are indices into a color table that can be specified by the RGB_TABLE
keyword. If the RGB_TABLE keyword is not set, a grayscale color is used. If more
vertices exist than elements in VERT_COLORS, the elements of VERT_COLORS
are cyclically repeated. If this keyword is omitted, the surface is drawn in the color
specified by the COLOR keyword or the default color.

VIEW_GRID

Set this keyword to a two-element vector of the form [columns, rows] to specify the
view layout within the new tool. This keyword is only used if a new tool is being
created (for example, if OVERPLOT, VIEW_NEXT, or VIEW_NUMBER are
specified then VIEW_GRID is ignored).
ISURFACE IDL Reference Guide

 973
VIEW_NEXT

Set this keyword to change the view selection to the next view following the
currently-selected view before issuing any graphical commands. If the currently-
selected view is the last one in the layout, then /VIEW_NEXT will cause the first
view in the layout to become selected. This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

VIEW_NUMBER

Set this keyword to change the currently-selected view to the view specified by the
VIEW_NUMBER before issuing any graphical commands. The view number starts
at 1, and corresponds to the position of the view within the graphics container (not
necessarily the position on the screen). This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

[XYZ]MAJOR

Set this keyword to an integer representing the number of major tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MAJOR equal to zero suppresses major tickmarks entirely.

[XYZ]MINOR

Set this keyword to an integer representing the number of minor tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MINOR equal to zero suppresses minor tickmarks entirely.

[XYZ]RANGE

Set this keyword to the desired data range of the axis, a 2-element vector. The first
element is the axis minimum, and the second is the maximum.
IDL Reference Guide ISURFACE

974
[XYZ]SUBTICKLEN

Set this keyword to a floating-point scale ratio specifying the length of minor tick
marks relative to the length of major tick marks. The default is 0.5, specifying that the
minor tick mark is one-half the length of the major tick mark.

[XYZ]TEXT_COLOR

Set this keyword to an RGB value specifying the color for the axis text. The default
value is [0, 0, 0] (black).

[XYZ]TICKFONT_INDEX

Set this keyword equal to one of the following integers, which represent the type of
font to be used for the axis text:

• 0 = Helvetica

• 1 = Courier

• 2 = Times

• 3 = Symbol

• 4 = Hershey

[XYZ]TICKFONT_SIZE

Set this keyword to an integer representing the point size of the font used for the axis
text. The default is 12.0 points.

[XYZ]TICKFONT_STYLE

Set this keyword equal to one of the following integers, which represent the style of
font to be used for the axis text:

• 0 = Normal

• 1 = Bold

• 2 = Italic

• 3 = Bold Italic
ISURFACE IDL Reference Guide

 975
[XYZ]TICKFORMAT

Set this keyword to a string, or an array of strings, in which each string represents a
format string or the name of a function to be used to format the tick mark labels. If an
array is provided, each string corresponds to a level of the axis. The TICKUNITS
keyword determines the number of levels for an axis.

If the string begins with an open parenthesis, it is treated as a standard format string.
See “Format Codes” in Chapter 10 of the Building IDL Applications manual.

If the string does not begin with an open parenthesis, it is interpreted as the name of a
callback function to be used to generate tick mark labels.

If TICKUNITS are not specified:

• The callback function is called with three parameters: Axis, Index, and Value,
where:

• Axis is the axis number: 0 for X axis, 1 for Y axis, 2 for Z axis

• Index is the tick mark index (indices start at 0)

• Value is the data value at the tick mark (a double-precision floating point
value)

If TICKUNITS are specified:

The callback function is called with four parameters: Axis, Index, Value, and Level,
where:

• Axis, Index, and Value are the same as described above.

• Level is the index of the axis level for the current tick value to be labeled.
(Level indices start at 0.)

Used with the LABEL_DATE function, this property can easily create axes with
date/time labels.

[XYZ]TICKINTERVAL

Set this keyword to a floating-point scalar indicating the interval between major tick
marks for the first axis level. The default value is computed according to the axis
[XYZ]RANGE and the number of major tick marks ([XYZ]MAJOR). The value of
this keyword takes precedence over the value set for the [XYZ]MAJOR keyword.

For example, if TICKUNITS = ['S', 'H', 'D'], and TICKINTERVAL = 30, then the
interval between major ticks for the first axis level will be 30 seconds.
IDL Reference Guide ISURFACE

976
[XYZ]TICKLAYOUT

Set this keyword to integer scalar that indicates the tick layout style to be used to
draw each level of the axis.

Valid values include:

• 0 = The axis line, major tick marks and tick labels are all included. Minor tick
marks only appear on the first level of the axis. This is the default tick layout
style.

• 1 = Only the labels for the major tick marks are drawn. The axis line, major
tick marks, and minor tick marks are omitted.

• 2 = Each major tick interval is outlined by a box. The tick labels are positioned
within that box (left-aligned). For the first axis level only, the major and minor
tick marks will also be drawn.

Note
For all tick layout styles, at least one tick label will appear on each level of the axis
(even if no major tick marks fall along the axis line). If there are no major tick
marks, the single tick label will be centered along the axis.

[XYZ]TICKLEN

Set this keyword to a floating-point value that specifies the length of each major tick
mark, measured in data units. The recommended, and default, tick mark length is 0.2.
IDL converts, maintains, and returns this data as double-precision floating-point.

[XYZ]TICKNAME

Set this keyword to a string array of up to 30 elements that controls the annotation of
each tick mark.

[XYZ]TICKUNITS

Set this keyword to a string (or a vector of strings) indicating the units to be used for
axis tick labeling. If more than one unit is provided, the axis will be drawn in multiple
levels, one level per unit.

The order in which the strings appear in the vector determines the order in which the
corresponding unit levels will be drawn. The first string corresponds to the first level
(the level nearest to the primary axis line).
ISURFACE IDL Reference Guide

 977
Valid unit strings include:

• "Numeric"

• "Years"

• "Months"

• "Days"

• "Hours"

• "Minutes"

• "Seconds"

• "Time" - Use this value to indicate that the tick values are time values; IDL
will determine the appropriate time intervals and tick label formats based upon
the range of values covered by the axis.

• ""- Use the empty string to indicate that no tick units are being explicitly set.
This implies that a single axis level will be drawn using the "Numeric" unit.
This is the default setting.

If any of the time units are utilized, then the tick values are interpreted as Julian
date/time values. Note that the singular form of each of the time value strings is also
acceptable (e.g, TICKUNITS = 'Day' is equivalent to TICKUNITS = 'Days').

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000hidd, respectively.

[XYZ]TICKVALUES

Set this keyword to a floating-point vector of data values representing the values at
each tick mark. If TICKVALUES is set to 0, the default, IDL computes the tick
values based on the axis range and the number of major ticks. IDL converts,
maintains, and returns this data as double-precision floating-point.

[XYZ]TITLE

Set this keyword to a string representing the title of the specified axis.
IDL Reference Guide ISURFACE

978
ZERO_OPACITY_SKIP

Set this keyword to gain finer control over the rendering of textured surface pixels
(texels) with an opacity of 0 in the texture map. Texels with zero opacity do not affect
the color of a screen pixel since they have no opacity. If this keyword is set to 1, any
texels are “skipped” and not rendered at all. If this keyword is set to zero, the Z-buffer
is updated for these pixels and the display image is not affected as noted above. By
updating the Z-buffer without updating the display image, the surface can be used as
a clipping surface for other graphics primitives drawn after the current graphics
object. The default value for this keyword is 1.

Note
This keyword has no effect if no texture map is used or if the texture map in use
does not contain an opacity channel.

Examples

In the IDL Intelligent Tools system, data can be imported from the IDL Command
Line (as described in Example 1), or data can be imported via the File menu in the
iTool window (as described in Examples 2 and 3). For detailed information on
importing data via the iTool file menu, refer to “Data Import Methods” in Chapter 2
of the iTool User’s Guide manual.

Example 1

This example shows how to use the IDL Command Line to load data into the iSurface
tool.

At the IDL Command Line, enter:

file = FILEPATH('surface.dat', $
SUBDIRECTORY = ['examples', 'data'])

data = READ_BINARY(file, DATA_DIMS = [350, 450], DATA_TYPE = 2, $
ENDIAN = 'little')

ISURFACE, data, TITLE = 'Maroon Bells Elevation', $
COLOR = [255, 128, 0]

Place a title on the elevation axis of your plot by selecting the axis, right-clicking to
display the context menu, selecting Properties to display the property sheet, and
typing Elevation (m) in the Title field.
ISURFACE IDL Reference Guide

 979
Use the Operations → Statistics... option to display the iTools Statistics dialog.
Within this dialog, observe the Z value’s Maximum, which is 4241 at [29, 253].
Close the iTools Statistics dialog by selecting File → Close.

Annotate your plot by selecting the Text Annotation tool, clicking near the top of the
highest peak in the display, and typing Highest Point (4241 m). Draw a line
annotation between the text annotation and the highest peak on the surface.

The following figure displays the output of this example:

Example 2

This example shows how to use the File → Open command to load binary data into
the iSurface tool.

At the IDL Command Line, enter:

ISURFACE

Select File → Open to display the Open dialog, then browse to find
idemosurf.dat in the examples/data directory in the IDL distribution, and click
Open.

Figure 3-16: Maroon Bells iSurface Example
IDL Reference Guide ISURFACE

980
The Binary Template wizard is displayed. In the Binary Template, change File’s byte
ordering to Little Endian. Then, click New Field, and enter the following
information in the New Field dialog:

• Field Name: data (or a name of your choosing)

• Type: Float (32 bit)

• Number of Dimensions: 2

• 1st Dimension Size: 200

• 2nd Dimension Size: 200

Click OK to close the New Field dialog and the Binary Template dialog, and the
surface is displayed.

Note
For more information on using the Binary Template to import data, see “Using the
BINARY_TEMPLATE Function” in Chapter 15 of the Using IDL manual.

Insert a contour onto the surface by clicking the Surface Contour button on the
toolbar, then clicking and dragging on the surface to position the contour at the
desired height.

The following figure displays the output of this example:

Figure 3-17: Binary Surface Data iSurface Example
ISURFACE IDL Reference Guide

 981
Example 3

This example shows how to use the File → Import command to load ASCII data into
the iSurface tool.

At the IDL Command Line, enter:

ISURFACE

Select File → Import to display the IDL Import Data wizard.

1. At Step 1, select From a File and click Next>>.

2. At Step 2, under File Name:, browse to find irreg_grid1.txt in the
examples/data directory in the IDL distribution, and click Next>>.

3. At Step 3, select Surface and click Finish.

Then, the ASCII Template wizard is displayed.

1. At Step 1, click Next>> to accept the displayed Data Type/Range definitions.

2. At Step 2, click Next>> to accept the displayed Delimiter/Fields definitions.

3. At Step 3, click Finish to accept the displayed Field Specifications.

Note
For more information on using the ASCII Template to import data, see “Using the
ASCII_TEMPLATE Function” in Chapter 14 of the Using IDL manual.

At the iTool’s Create Visualization window, you have the option of launching the
Gridding wizard or not creating a visualization. Choose Launch the gridding
wizard and click Ok.

4. At Step 1, click Next>> to accept the interpolation of data values and
locations.

5. At Step 2, click Next>> to accept the dimensions, start and spacing.

6. At Step 3, select Inverse Distance as the gridding method, click Preview to
preview the possible results, and click Finish to display the surface.

Double-click the surface to display the Properties sheet, and change the Fill shading
setting from Flat to Gouraud.

Use the Rotate tool on the Toolbar to rotate the surface slightly forward to better
display the surface convolutions.
IDL Reference Guide ISURFACE

982
The following figure displays the output of this example.

Version History

Introduced: 6.0

Figure 3-18: ASCII Surface Data iSurface Example
ISURFACE IDL Reference Guide

 983
ITCURRENT

The ITCURRENT procedure is used to set the current tool in the IDL Intelligent
Tools system. This routine is used with the identifier of the tool to make it current in
the system. If the identifier is valid, the specified tool becomes current.

When a tool is set as current, the visible display or the focus state of the tool does not
change. Only the internal setting of the current tool changes.

Besides using this procedure to set the current tool, a tool is made current when it is
created or when it is placed in focus in the current windowing system.

This routine is written in the IDL language. Its source code can be found in the file
itcurrent.pro in the lib/itools subdirectory of the IDL distribution.

Syntax

ITCURRENT, iToolID

Arguments

iToolID

The identifier of the existing iTool to be set as current.

Keywords

None.

Example

Enter the following at the IDL Command Line:

IPLOT, IDENTIFIER = PlotID1
current1 = ITGETCURRENT()
PRINT, 'The current tool is ', current1

An iPlot tool is created, and the newly created iPlot tool becomes the current tool.
Output similar to the following appears in the IDL Output Log:

The current tool is /TOOLS/IPLOT_8
IDL Reference Guide ITCURRENT

984
Enter the following at the IDL Command Line:

IPLOT, IDENTIFIER = PlotID2
current2 = ITGETCURRENT()
PRINT, 'The current tool is ', current2

A second iPlot tool is created, and this newly created iPlot tool becomes the current
tool. Output similar to the following appears in the IDL Output Log:

The current tool is /TOOLS/IPLOT_9

Enter the following at the IDL Command Line:

ISURFACE, IDENTIFIER = SurfaceID1
current3 = ITGETCURRENT()
PRINT, 'The current tool is ', current3

An iSurface tool is created, and the newly created iSurface tool becomes the current
tool. Output similar to the following appears in the IDL Output Log:

The current tool is /TOOLS/ISURFACE_5

Enter the following at the IDL Command Line:

ITCURRENT, PlotID1
current = ITGETCURRENT()
PRINT, 'The current tool is ', current
END

The iPlot tool created at the beginning of the example (PlotID1) becomes the current
tool. Output similar to the following appears in the IDL Output Log:

The current tool is /TOOLS/IPLOT_8

Note that the system ID of the current tool (IPLOT_8) is the same as that of the
current tool at the beginning of the exercise.

Version History

Introduced: 6.0

See Also

ITDELETE, ITGETCURRENT, ITRESET
ITCURRENT IDL Reference Guide

 985
ITDELETE

The ITDELETE procedure is used to delete a tool in the IDL Intelligent Tools
system. If a valid identifier is provided, the tool represented by the identifier is
destroyed. If no identifier is provided, the current tool is destroyed.

When a tool is destroyed, all resources specific to that tool are released and the tool
ceases to exist.

This routine is written in the IDL language. Its source code can be found in the file
itdelete.pro in the lib/itools subdirectory of the IDL distribution.

Syntax

ITDELETE[, iToolID]

Arguments

iToolID

This optional argument contains the identifier for the specific iTool to delete. If not
provided, the current tool is destroyed.

Keywords

None.

Example

Enter the following at the IDL Command Line:

IPLOT, IDENTIFIER = PlotID1
ISURFACE, IDENTIFIER = SurfaceID1

Two tools are created: an iPlot tool and an iSurface tool.

Next, enter the following at the IDL Command Line:

ITDELETE, plotID1

The iPlot tool is deleted, leaving only the iSurface tool.
IDL Reference Guide ITDELETE

986
Version History

Introduced: 6.0

See Also

ITCURRENT, ITGETCURRENT, ITRESET
ITDELETE IDL Reference Guide

 987
ITGETCURRENT

The ITGETCURRENT function is used to get the identifier of the current tool in the
IDL Intelligent Tools system.

This routine is written in the IDL language. Its source code can be found in the file
itgetcurrent.pro in the lib/itools subdirectory of the IDL distribution.

Syntax

Result = ITGETCURRENT()

Return Value

Returns the identifier of the current tool in the iTool system. If no tool exists, an
empty string ('') is returned.

Arguments

None.

Keywords

None.

Example

The following example line of code creates a plot tool:

IPLOT, SIN(FINDGEN(361)*!DTOR), COLOR = [0, 0, 255], THICK = 2

The resulting plot tool contains a blue sine function, with a line thickness of 2. To
overplot a cosine function on this display, the following lines of code are used:

idSin = ITGETCURRENT()
IPLOT, COS(FINDGEN(361)*!DTOR), COLOR = [0, 255, 0], THICK = 2, $

OVERPLOT = idSin
IDL Reference Guide ITGETCURRENT

988
However, it is not necessary to use ITGETCURRENT to retrieve the current tool for
overplotting. The following method is also possible because the creation of a new
tool causes it to be set as current in the system. In this scenario, the commands to
generate the same display are:

IPLOT, SIN(FINDGEN(361)*!DTOR), COLOR = [0, 0, 255], THICK = 2
IPLOT, COS(FINDGEN(361)*!DTOR), COLOR = [0, 255, 0], THICK = 2, $

/OVERPLOT

Version History

Introduced: 6.0

See Also

ITCURRENT, ITDELETE, ITRESET
ITGETCURRENT IDL Reference Guide

 989
ITREGISTER

The ITREGISTER procedure is used to register tool object classes or other iTool
functionality with the IDL Intelligent Tools system.

This routine is written in the IDL language. Its source code can be found in the file
itregister.pro in the lib/itools subdirectory of the IDL distribution.

Syntax

ITREGISTER, Name, ItemName [, TYPES=string] [, /UI_PANEL]
[, /UI_SERVICE] [, /VISUALIZATION]

Arguments

Name

A string containing the name used to refer to the associated class once registration is
completed. Subsequent calls to create items of this type will use this name to identify
the associated class.

ItemName

A string containing the class name of the object class or user interface routine that is
to be associated with Name. When an item of name Name is requested from the
system, an object of this class is created or the specified routine is called.

Keywords

Note
Keywords supplied in the call to ITREGISTER but not listed here are passed
directly to the underlying objects’ registration routines.

TYPES

This keyword is only used in conjunction with the UI_PANEL keyword.

Set this keyword equal to a string or string array containing iTool types with which
the UI panel should be associated. When the registered type of a UI panel matches
the registered type of an iTool, the panel will be displayed as part of the iTool’s
interface.
IDL Reference Guide ITREGISTER

990
UI_PANEL

Set this keyword to indicate that a UI panel is being registered with the system. When
this keyword is set, the value of Name is the string used to refer to the panel and
ItemName is the routine that should be called when the panel is created.

To specify that the UI panel is associated with a particular iTool or iTools, set the
TYPES keyword to the iTool types that should expose this panel.

UI_SERVICE

Set this keyword to indicate that a UI service is being registered with the system.
When this keyword is set, the value of Name is the string used to refer to the UI
service and ItemName is the routine that should be called to execute the service.

VISUALIZATION

Set this keyword to indicate that a visualization is being registered with the system.
When this keyword is set, the value of Name is the string used to refer to the
visualization type, and ItemName is the name of the visualization type’s class
definition routine.

Examples

Suppose you have an iTool class definition file named myTool__define.pro,
located in a directory included in IDL’s !PATH system variable. Register this class
with the iTool system with the following command:

ITREGISTER, 'My First Tool', 'myTool'

Tools defined by the myTool class definition file can now be created by the iTool
system by specifying the tool name My First Tool.

Similarly, suppose you have a user interface service defined in a file named
myUIFileOpen.pro. Register this UI service with the iTool system with the
following command:

ITREGISTER, 'My File Open', 'myUIFileOpen', /UI_SERVICE

Finally, suppose you have a user interface panel defined in a file named
myPanel.pro, and that you want this panel to be added to the user interface of
iTools registered with the TYPES property set to MYTOOL. Register this UI panel with
the iTool system with the following command:

ITREGISTER, 'My Panel', 'myPanel', /UI_PANEL, TYPES = 'MYTOOL'
ITREGISTER IDL Reference Guide

 991
Version History

Introduced: 6.0

See Also

Chapter 5, “Creating an iTool” in the iTool Developer’s Guide manual
IDL Reference Guide ITREGISTER

992
ITRESET

The ITRESET procedure resets the IDL iTools session. When called, all active tools
and overall system management is destroyed and associated resources released.

This class is written in the IDL language. Its source code can be found in the file
itreset.pro in the lib/itools subdirectory of the IDL distribution.

Syntax

ITRESET[, /NO_PROMPT]

Arguments

None

Keywords

NO_PROMPT

Set this keyword to disable prompting the user before resetting the system. If this
keyword is set, the user is not presented with a prompt and the reset is performed
immediately.

Examples

The iTool Data Manager system maintains your data during the entire IDL session,
unless ITRESET is used. This example shows how the data is maintained and how
ITRESET is used to clear the iTool Data Manager.

Read in plot data and load it into an iPlot tool at the IDL Command Line:

file = FILEPATH('dirty_sine.dat', $
SUBDIRECTORY = ['examples', 'data'])

data = READ_BINARY(file, DATA_DIMS = [256, 1])
IPLOT, data

Delete this tool with the ITDELETE procedure at the IDL Command Line:

ITDELETE
ITRESET IDL Reference Guide

 993
Read in surface data and load it into an iSurface tool at the IDL Command Line:

file = FILEPATH('elevbin.dat', $
SUBDIRECTORY = ['examples', 'data'])

data = READ_BINARY(file, DATA_DIMS = [64, 64])
ISURFACE, data

Use Window → Data Manager... to access the Data Manager Browser. The browser
contains both plot and surface parameters. Although the iPlot tool was deleted, its
data remains in the Data Manager. Click Dismiss.

Use File → New → iPlot to create an empty iPlot tool. If you want to load the plot
data in the Data Manager into this tool, use Insert → Visualization to access the
Insert Visualization dialog, which allows you to specify the plot data to be displayed.

At the IDL Command Line, enter:

ITRESET, /NO_PROMPT

The two iTools are deleted and the data in the Data Manager is released. To verify the
data in released, create an empty iSurface tool at the IDL Command Line:

ISURFACE

Use Window → Data Manager... to access the Data Manager Browser. No data
appears in the browser. The iTool Data Manger in empty. Click Dismiss.

At the IDL Command Line, enter:

ITRESET, /NO_PROMPT

Version History

Introduced: 6.0

See Also

ITCURRENT, ITDELETE, ITGETCURRENT
IDL Reference Guide ITRESET

994
IVOLUME

The IVOLUME procedure creates an iTool and associated user interface (UI)
configured to display and manipulate volume data.

Note
If no arguments are specified, the IVOLUME procedure creates an empty Volume
tool.

This routine is written in the IDL language. Its source code can be found in the file
ivolume.pro in the lib/itools subdirectory of the IDL distribution.

Syntax

IVOLUME[, Vol0[, Vol1][, Vol2, Vol3]]

iTool Common Keywords: [, DIMENSIONS=[x, y]] [, IDENTIFIER=variable]
[, LOCATION=[x, y]] [, NAME=string] [, OVERPLOT=iToolID] [, TITLE=string]
[, VIEW_GRID=[columns, rows]] [, /VIEW_NEXT] [. VIEW_NUMBER=integer]
[, {X | Y | Z}RANGE=[min, max]]

iTool Volume Keywords: [, /AUTO_RENDER] [, RENDER_EXTENTS={0 | 1 | 2}]
[, RENDER_QUALITY={1 | 2}] [, SUBVOLUME=[xmin, ymin, zmin, xmax, ymax,
zmax]] [, VOLUME_DIMENSIONS=[width, height, depth]]
[, VOLUME_LOCATION=[x, y, z]]

Volume Object Keywords: [, AMBIENT=RGB vector]
[, BOUNDS=[xmin, ymin, zmin, xmax, ymax, zmax]] [, CLIP_PLANES=array]
[, COMPOSITE_FUNCTION={0 | 1 | 2 | 3}] [, CUTTING_PLANES=array]
[, DEPTH_CUE=[zbright, zdim]] [, /HIDE] [, HINTS={0 | 1 | 2 | 3}]
[, /INTERPOLATE] [, /LIGHTING_MODEL] [, OPACITY_TABLE0=byte array of
256 elements] [, OPACITY_TABLE1=byte array of 256 elements]
[, RENDER_STEP=[x, y, z]] [, RGB_TABLE0=byte array of 256 by 3 or 3 by 256
elements] [, RGB_TABLE1=byte array of 256 by 3 or 3 by 256 elements]
[, /TWO_SIDED] [, /ZBUFFER] [, ZERO_OPACITY_SKIP={0 | 1}]
IVOLUME IDL Reference Guide

 995
Axis Object Keywords: [, {X | Y | Z}GRIDSTYLE={0 | 1 | 2 | 3 | 4 | 5 | 6}]
[, {X | Y | Z}MAJOR=integer] [, {X | Y | Z}MINOR=integer]
[, {X | Y | Z}SUBTICKLEN=ratio] [, {X | Y | Z}TEXT_COLOR=RGB vector]
[, {X | Y | Z}TICKFONT_INDEX={0 | 1 | 2 | 3 | 4}]
[, {X | Y | Z}TICKFONT_SIZE=integer]
[, {X | Y | Z}TICKFONT_STYLE={0 | 1 | 2 | 3}]
[, {X | Y | Z}TICKFORMAT=string or string array]
[, {X | Y | Z}TICKINTERVAL=value] [, {X | Y | Z}TICKLAYOUT={0 | 1 | 2}]
[, {X | Y | Z}TICKLEN=value] [, {X | Y | Z}TICKNAME=string array]
[, {X | Y | Z}TICKUNITS=string] [, {X | Y | Z}TICKVALUES=vector]
[, {X | Y | Z}TITLE=string]

Arguments

Note
The volume data provided in the Vol0, Vol1, Vol2, and Vol3 arguments are scaled into
byte values (ranging from 0 to 255) with the BYTSCL function to facilitate using
the volume data as indices into the RGB and OPACITY tables. This scaling is done
for display purposes only; the iVolume tool maintains the original data as supplied
with the arguments for use in other operations. The minimum and maximum values
used by the BYTSCL function may be adjusted in the volume’s property sheet. By
default, the tool uses the minimum and maximum values of all volume parameters
to uniformly byte-scale the data.

Vol0, Vol1, Vol2, Vol3

A three-dimensional array of any numeric type containing volume data. Arrays of
strings, structures, object references, and pointers are not allowed. If more than one
volume is specified, they must all have the same dimensions.

The number of volumes present and the value of the COMPOSITE_FUNCTION
keyword determine how the volume data is rendered by the iVolume tool. The
number of volume arguments determine how the src and srcalpha values for the
COMPOSITE_FUNCTION are computed:

• If Vol0 is the only argument present, the values of src and srcalpha are
taken directly from the RGB and OPACITY tables, as indexed by each volume
data sample:

src = RGB_TABLE0[VOL0]
srcalpha = OPACITY_TABLE0[VOL0]
IDL Reference Guide IVOLUME

996
• If Vol0 and Vol1 are the only arguments present, the two volumes are blended
together using independent tables:

src = (RGB_TABLE0[VOL0]*RGB_TABLE1[VOL1])/256
srcalpha = (OPACITY_TABLE0[VOL0]*OPACITY_TABLE1[VOL1])/256

• If all the arguments are present, Vol0 indexes the red channel of
RGB_TABLE0, Vol1 indexes the green channel of RGB_TABLE0, and Vol2
indexes the blue channel of RGB_TABLE0. The Vol3 argument indexes
OPACITY_TABLE0:

src = (RGB_TABLE[VOL0, 0], RGB_TABLE[VOL1, 1], $
RGB_TABLE[VOL2, 2])/256

srcalpha = (OPACITY_TABLE0[VOL3])/256.

Note
If all the arguments are present, the composite function cannot be set to the
average-intensity projection (COMPOSITE_FUNCTION = 3).

Keywords

Note
Keywords to the IVOLUME routine that correspond to the names of registered
properties of the iVolume tool must be specified in full, without abbreviation.

AMBIENT

Use this keyword to set the color and intensity of the volume’s base ambient lighting.
Color is specified as an RGB vector. The default is [255, 255, 255]. AMBIENT is
applicable only when LIGHTING_MODEL is set.

AUTO_RENDER

Set this keyword to 1 to always render the volume. The default is to not render the
volume each time the tool window is drawn.

BOUNDS

Set this keyword to a six-element vector of the form [xmin, ymin, zmin, xmax, ymax,
zmax], which represents the sub-volume to be rendered. This keyword is the same as
the SUBVOLUME keyword.
IVOLUME IDL Reference Guide

 997
CLIP_PLANES

Set this keyword to an array of dimensions [4, N] specifying the coefficients of the
clipping planes to be applied to this object. The four coefficients for each clipping
plane are of the form [A, B, C, D], where Ax + By + Cz + D = 0. Portions of this
object that fall in the half space Ax + By + Cz + D > 0 will be clipped. By default, the
value of this keyword is a scalar (-1) indicating that no clipping planes are to be
applied.

Note
Clipping planes are equivalent to cutting planes (refer to the CUTTING_PLANES
keyword). The CUTTING_PLANES will be applied first, then the CLIP_PLANES
(until a maximum number of planes is reached).

Note
A window is only able to support a limited number of clipping planes. Some of
these clipping planes may already be in use by the tool to support specific data
display features. If the total number of clipping planes exceeds the limit, an
informational message is displayed.

COMPOSITE_FUNCTION

The composite function determines the value of a pixel on the viewing plane by
analyzing the voxels falling along the corresponding ray, according to one of the
following compositing functions:

• 0 = Alpha (default): Alpha-blending. The recursive equation

dest' = src * srcalpha + dest * (1 - srcalpha)

is used to compute the final pixel color.

• 1 = MIP: Maximum intensity projection. The value of each pixel on the
viewing plane is set to the brightest voxel, as determined by its opacity. The
most opaque voxel’s color appropriation is then reflected by the pixel on the
viewing plane.
IDL Reference Guide IVOLUME

998
• 2 = Alpha sum: Alpha-blending. The recursive equation

dest' = src + dest * (1 - srcalpha)

is used to compute the final pixel color. This equation assumes that the color
tables have been pre-multiplied by the opacity tables. The accumulated values
can be no greater than 255.

• 3 = Average: Average-intensity projection. The resulting image is the average
of all voxels along the corresponding ray.

Note
This option (COMPOSITE_FUNCTION = 3) is not supported for 4-channel
volumes.

CUTTING_PLANES

Set this keyword to a floating-point array with dimensions (4, n) specifying the
coefficients of n cutting planes. The cutting plane coefficients are in the form {{nx, ny,
nz, D}, ...} where (nx)X+(ny)Y+(nz)Z+ D > 0, and (X, Y, Z) are the voxel coordinates.
To clear the cutting planes, set this property to any scalar value (e.g.
CUTTING_PLANES = 0). By default, no cutting planes are defined.

DEPTH_CUE

Set this keyword to a two-element floating-point array [zbright, zdim] specifying the
near and far Z planes between which depth cueing is in effect.

Depth cueing causes an object to appear to fade into the background color of the view
object with changes in depth. If the depth of an object is further than zdim (that is, if
the object’s location in the Z direction is farther from the origin than the value
specified by zdim), the object will be painted in the background color.

Similarly, if the object is closer than the value of zbright, the object will appear in its
“normal” color. Anywhere in-between, the object will be a blend of the background
color and the object color. For example, if the DEPTH_CUE property is set to [-1, 1],
an object at the depth of 0.0 will appear as a 50% blend of the object color and the
view color.

The relationship between Zbright and Zdim determines the result of the rendering:

• Zbright < Zdim: Rendering darkens with depth.

• Zbright > Zdim: Rendering brightens with depth.

• Zbright = Zdim: Disables depth cueing.
IVOLUME IDL Reference Guide

 999
You can disable depth cueing by setting zbright = zdim. The default is [0.0, 0.0].

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the drawing area of the specific tool in device units. The minimum
width of the window correlates to the width of the menubar. The minimum window
height is 100 pixels.

HIDE

Set this keyword to a boolean value indicating whether the volume should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

HINTS

Set this keyword to specify one of the following acceleration hints:

• 0 = Disables all acceleration hints (default).

• 1 = Enables Euclidean distance map (EDM) acceleration. This option
generates a volume map containing the distance from any voxel to the nearest
non-zero opacity voxel. The map is used to speed ray casting by allowing the
ray to jump over open spaces. It is most useful with sparse volumes. After
setting the EDM hint, the draw operation generates the volume map; this
process can take some time. Subsequent draw operations will reuse the
generated map and may be much faster, depending on the volume’s sparseness.
A new map is not automatically generated to match changes in opacity tables
or volume data (for performance reasons). The user may force recomputation
of the EDM map by setting the HINTS property to 1 again.

• 2 = Enables the use of multiple CPUs for volume rendering if the platforms
used support such use. If HINTS is set to 2, IDL will use all the available (up
to 8) CPUs to render portions of the volume in parallel.

• 3 = Selects the two acceleration options described above.

IDENTIFIER

Set this keyword to a named IDL variable that will contain the iToolID for the created
tool. This value can then be used to reference this tool during overplotting operations
or command-line-based tool management operations.
IDL Reference Guide IVOLUME

1000
INTERPOLATE

Set this keyword to indicate that trilinear interpolation is to be used to determine the
data value for each step on a ray. Setting this keyword improves the quality of images
produced, at the cost of more computing time. especially when the volume has low
resolution with respect to the size of the viewing plane. Nearest neighbor sampling is
used by default.

LIGHTING_MODEL

Set this keyword to use the current lighting model during rendering in conjunction
with a local gradient evaluation.

Note
Only DIRECTIONAL light sources are honored by the volume object. Because
normals must be computed for all voxels in a lighted view, enabling light sources
increases the rendering time.

LOCATION

Set this keyword to a two-element vector of the form [x, y] to specify the location of
the upper left-hand corner of the tool relative to the display screen, in device units.

NAME

Set this keyword to a string to specify the name for this particular tool. The name is
used for tool-related display purposes only–as the root of the hierarchy shown in the
Tool Browser, for example.

OPACITY_TABLE0

Set this keyword to a 256-element byte array to specify an opacity table for Vol0 if
Vol0 or Vol0 and Vol1 are present. If all the volume arguments are present, this
keyword represents the opacity of the resulting RGBA volume. A value of 0 indicates
complete transparency and a value of 255 indicates complete opacity. The default
table is a linear ramp.

OPACITY_TABLE1

Set this keyword to a 256-element byte array to specify an opacity table for Vol1
when Vol0 and Vol1 are present. A value of 0 indicates complete transparency and a
value of 255 indicates complete opacity. The default table is a linear ramp.
IVOLUME IDL Reference Guide

 1001
OVERPLOT

Set this keyword to an iToolID to direct the graphical output of the particular tool to
the tool specified by the provided iToolID.

Set this keyword to 1 (one) to place the graphical output for the command in the
current tool. If no current tool exists, a new tool is created.

RENDER_EXTENTS

Set this keyword to draw a boundary around the rendered volume. The default
(RENDER_EXTENTS = 2) is to draw a translucent boundary box. Possible values
for this keyword are:

• 0 = Do not draw anything around the volume.

• 1 = Draw a wireframe around the volume.

• 2 = Draw a translucent box around the volume

RENDER_STEP

Set this keyword to a three element vector of the form [x, y, z] to specify the stepping
factor through the voxel matrix. This keyword is only valid if render quality is set to
high (RENDER_QUALITY = 2). The default render step is [1, 1, 1].

RENDER_QUALITY

Set this keyword to determine the quality of the rendered volume. The default
(RENDER_QUALITY = 1) is low quality. Possible values for this keyword are:

• 1 = Low - Renders volume with a stack of two-dimensional texture maps.

• 2 = High - Use ray-casting rendering, see the COMPOSITE_FUNCTION for
more details.

RGB_TABLE0

Set this keyword to a 3 by 256 or 256 by 3 byte array of RGB color values to specify
a color table for Vol0 if Vol0 or Vol0 and Vol1 are present. If all the arguments are
present, this keyword represents the RGB color values of all of these volumes. The
default is a linear ramp

RGB_TABLE1

Set this keyword to a 3 by 256 or 256 by 3 byte array of RGB color values to specify
a color table for Vol1 when Vol0 and Vol1 are present. The default is a linear ramp.
IDL Reference Guide IVOLUME

1002
SUBVOLUME

Set this keyword to a six-element vector of the form [xmin, ymin, zmin, xmax, ymax,
zmax], which represents the sub-volume to be rendered. This keyword is the same as
the BOUNDS keyword.

TITLE

Set this keyword to a string to specify the title for this particular tool. The title is
displayed in the title bar of the tool.

TWO_SIDED

Set this keyword to force the lighting model to use a two-sided voxel gradient. The
two-sided gradient is different from the one-sided gradient (default) in that the
absolute value of the inner product of the light direction and the surface gradient is
used instead of clamping to 0.0 for negative values.

VIEW_GRID

Set this keyword to a two-element vector of the form [columns, rows] to specify the
view layout within the new tool. This keyword is only used if a new tool is being
created (for example, if OVERPLOT, VIEW_NEXT, or VIEW_NUMBER are
specified then VIEW_GRID is ignored).

VIEW_NEXT

Set this keyword to change the view selection to the next view following the
currently-selected view before issuing any graphical commands. If the currently-
selected view is the last one in the layout, then /VIEW_NEXT will cause the first
view in the layout to become selected. This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.
IVOLUME IDL Reference Guide

 1003
VIEW_NUMBER

Set this keyword to change the currently-selected view to the view specified by the
VIEW_NUMBER before issuing any graphical commands. The view number starts
at 1, and corresponds to the position of the view within the graphics container (not
necessarily the position on the screen). This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

VOLUME_DIMENSIONS

A 3-element vector specifying the volume dimensions in terms of user data units. For
example, specifying [0.1, 0.1, 0.1] would cause the volume to be rendered into a
region that is 0.1 data units long on each side of the volume cube. If this parameter is
not specified, the volume is rendered into a region the same size as the number of
samples, with an origin of [0, 0, 0]. In this case, a volume with sample size of [20, 25,
20] would render into the region [0:19, 0:24, 0:19] in user data units. Use the
VOLUME_LOCATION keyword to specify a different origin.

VOLUME_LOCATION

A 3-element vector specifying the volume location in user data units. Use this
keyword to render the volume so that the first sample voxel appears at the specified
location, instead of at [0, 0, 0], the default. Specify the location in terms of
coordinates after the application of the VOLUME_DIMENSIONS values. For
example, if the value of the VOLUME_DIMENSIONS keyword is [0.1, 0.1, 0.1] and
you want the volume to be centered at the origin, set the VOLUME_LOCATION
keyword to [-0.05, -0.05, -0.05].

[XYZ]MAJOR

Set this keyword to an integer representing the number of major tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MAJOR equal to zero suppresses major tickmarks entirely.

[XYZ]MINOR

Set this keyword to an integer representing the number of minor tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MINOR equal to zero suppresses minor tickmarks entirely.
IDL Reference Guide IVOLUME

1004
[XYZ]RANGE

Set this keyword to the desired data range of the axis, a 2-element vector. The first
element is the axis minimum, and the second is the maximum.

[XYZ]SUBTICKLEN

Set this keyword to a floating-point scale ratio specifying the length of minor tick
marks relative to the length of major tick marks. The default is 0.5, specifying that the
minor tick mark is one-half the length of the major tick mark.

[XYZ]TEXT_COLOR

Set this keyword to an RGB value specifying the color for the axis text. The default
value is [0, 0, 0] (black).

[XYZ]TICKFONT_INDEX

Set this keyword equal to one of the following integers, which represent the type of
font to be used for the axis text:

• 0 = Helvetica

• 1 = Courier

• 2 = Times

• 3 = Symbol

• 4 = Hershey

[XYZ]TICKFONT_SIZE

Set this keyword to an integer representing the point size of the font used for the axis
text. The default is 12.0 points.

[XYZ]TICKFONT_STYLE

Set this keyword equal to one of the following integers, which represent the style of
font to be used for the axis text:

• 0 = Normal

• 1 = Bold

• 2 = Italic

• 3 = Bold Italic
IVOLUME IDL Reference Guide

 1005
[XYZ]TICKFORMAT

Set this keyword to a string, or an array of strings, in which each string represents a
format string or the name of a function to be used to format the tick mark labels. If an
array is provided, each string corresponds to a level of the axis. The TICKUNITS
keyword determines the number of levels for an axis.

If the string begins with an open parenthesis, it is treated as a standard format string.
See “Format Codes” in Chapter 10 of the Building IDL Applications manual.

If the string does not begin with an open parenthesis, it is interpreted as the name of a
callback function to be used to generate tick mark labels.

If TICKUNITS are not specified:

• The callback function is called with three parameters: Axis, Index, and Value,
where:

• Axis is the axis number: 0 for X axis, 1 for Y axis, 2 for Z axis

• Index is the tick mark index (indices start at 0)

• Value is the data value at the tick mark (a double-precision floating point
value)

If TICKUNITS are specified:

The callback function is called with four parameters: Axis, Index, Value, and Level,
where:

• Axis, Index, and Value are the same as described above.

• Level is the index of the axis level for the current tick value to be labeled.
(Level indices start at 0.)

Used with the LABEL_DATE function, this property can easily create axes with
date/time labels.

[XYZ]TICKINTERVAL

Set this keyword to a floating-point scalar indicating the interval between major tick
marks for the first axis level. The default value is computed according to the axis
[XYZ]RANGE and the number of major tick marks ([XYZ]MAJOR). The value of
this keyword takes precedence over the value set for the [XYZ]MAJOR keyword.

For example, if TICKUNITS = ['S', 'H', 'D'], and TICKINTERVAL = 30, then the
interval between major ticks for the first axis level will be 30 seconds.
IDL Reference Guide IVOLUME

1006
[XYZ]TICKLAYOUT

Set this keyword to integer scalar that indicates the tick layout style to be used to
draw each level of the axis.

Valid values include:

• 0 = The axis line, major tick marks and tick labels are all included. Minor tick
marks only appear on the first level of the axis. This is the default tick layout
style.

• 1 = Only the labels for the major tick marks are drawn. The axis line, major
tick marks, and minor tick marks are omitted.

• 2 = Each major tick interval is outlined by a box. The tick labels are positioned
within that box (left-aligned). For the first axis level only, the major and minor
tick marks will also be drawn.

Note
For all tick layout styles, at least one tick label will appear on each level of the axis
(even if no major tick marks fall along the axis line). If there are no major tick
marks, the single tick label will be centered along the axis.

[XYZ]TICKLEN

Set this keyword to a floating-point value that specifies the length of each major tick
mark, measured in data units. The recommended, and default, tick mark length is 0.2.
IDL converts, maintains, and returns this data as double-precision floating-point.

[XYZ]TICKNAME

Set this keyword to a string array of up to 30 elements that controls the annotation of
each tick mark.

[XYZ]TICKUNITS

Set this keyword to a string (or a vector of strings) indicating the units to be used for
axis tick labeling. If more than one unit is provided, the axis will be drawn in multiple
levels, one level per unit.

The order in which the strings appear in the vector determines the order in which the
corresponding unit levels will be drawn. The first string corresponds to the first level
(the level nearest to the primary axis line).
IVOLUME IDL Reference Guide

 1007
Valid unit strings include:

• "Numeric"

• "Years"

• "Months"

• "Days"

• "Hours"

• "Minutes"

• "Seconds"

• "Time" - Use this value to indicate that the tick values are time values; IDL
will determine the appropriate time intervals and tick label formats based upon
the range of values covered by the axis.

• ""- Use the empty string to indicate that no tick units are being explicitly set.
This implies that a single axis level will be drawn using the "Numeric" unit.
This is the default setting.

If any of the time units are utilized, then the tick values are interpreted as Julian
date/time values. Note that the singular form of each of the time value strings is also
acceptable (e.g, TICKUNITS = 'Day' is equivalent to TICKUNITS = 'Days').

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000hidd, respectively.

[XYZ]TICKVALUES

Set this keyword to a floating-point vector of data values representing the values at
each tick mark. If TICKVALUES is set to 0, the default, IDL computes the tick
values based on the axis range and the number of major ticks. IDL converts,
maintains, and returns this data as double-precision floating-point.

[XYZ]TITLE

Set this keyword to a string representing the title of the specified axis.
IDL Reference Guide IVOLUME

1008
ZBUFFER

Set this keyword to clip the rendering to the current Z-buffer and then update the
buffer.

ZERO_OPACITY_SKIP

Set this keyword to skip voxels with an opacity of 0. This keyword can increase the
output contrast of MIP (MAXIMUM_INTENSITY) projections by allowing the
background to show through. If this keyword is set, voxels with an opacity of zero
will not modify the Z-buffer. The default (not setting the keyword) continues to
render voxels with an opacity of zero.

Examples

In the IDL Intelligent Tools system, data can be imported from the IDL Command
Line (as described in Example 1), or data can be imported via the File menu in the
iTool window (as described in Examples 2 and 3). For detailed information on
importing data via the iTool file menu, refer to “Data Import Methods” in Chapter 2
of the iTool User’s Guide manual.

Example 1

This example shows how to use the IDL Command Line to bring data into the
iVolume tool.

At the IDL Command Line, enter:

file = FILEPATH('clouds3d.dat', $
SUBDIRECTORY = ['examples', 'data'])

RESTORE, file
IVOLUME, clouds

Derive an interval volume by selecting Operations → Volume → Interval Volume.
In the Interval Volume Value Selector dialog, change the minimum value to 0.2 and
the Decimate: % of original surface slider to 20, then click OK.
IVOLUME IDL Reference Guide

 1009
The following figure displays the output of this example:

Example 2

This example shows how to use the iTool File → Open command to load binary data
into the iVolume tool.

At the IDL Command Line, enter:

IVOLUME

Select File → Open to display the Open dialog, then browse to find head.dat in the
examples/data directory in the IDL distribution, and click Open.

In the Binary Template dialog, click New Field, and enter the following information
in the New Field dialog:

• Field Name: data (or a name of your choosing)

• Type: Byte (unsigned 8-bits)

• Number of Dimensions: 3

• 1st Dimension Size: 80

Figure 3-19: Cloud Interval Volume iVolume Example
IDL Reference Guide IVOLUME

1010
• 2nd Dimension Size: 100

• 3rd Dimension Size: 57

Click OK to close the New Field dialog and the Binary Template dialog, and the
image is displayed.

Note
For more information on using the Binary Template to import data, see “Using the
BINARY_TEMPLATE Function” in Chapter 15 of the Using IDL manual.

Select Operations → Volume → Isosurface, and insert an isosurface with a value of
60, decimated to 20% of the original surface.

The following figure displays the output of this example:

Figure 3-20: Human Head MRI Isosurface iVolume Example
IVOLUME IDL Reference Guide

 1011
Example 3

This example shows how to use the File → Import command to load binary data into
the iVolume tool.

At the IDL Command Line, enter:

IVOLUME

Select File → Import to display the IDL Import Data wizard.

1. At Step 1, select From a File and click Next>>.

2. At Step 2, under File Name:, browse to find jet.dat in the examples/data
directory in the IDL distribution, and click Next>>.

3. At Step 3, select Volume and click Finish.

The Binary Template wizard is displayed. In the Binary Template, change File’s byte
ordering to Little Endian. Then, click New Field, and enter the following
information in the New Field dialog:

• Field Name: data (or a name of your choosing)

• Type: Byte (unsigned 8-bits)

• Number of Dimensions: 3

• 1st Dimension Size: 81

• 2nd Dimension Size: 40

• 3rd Dimension Size: 101

Click OK to close the New Field dialog and the Binary Template dialog, and the
volume is displayed.

Select Operations → Volume → Image Plane to display a plane in the x-direction.
Double-click on the plane to access its properties through the property sheet. Change
the Orientation setting to Z. You can drag the image to see it at different z values by
clicking on the edge of the image plane.
IDL Reference Guide IVOLUME

1012
The following figure displays the output of this example:

Example 4

This example shows how to use a second volume argument to cut away a section of
the first volume argument.

First, load the MRI head data into IDL. At the IDL Command Line, enter:

file = FILEPATH('head.dat', SUBDIRECTORY = ['examples', 'data'])
data0 = READ_BINARY(file, DATA_DIMS = [80, 100, 57])

Then, create the second volume that will cut away the upper left corner of the head.
At the IDL Command Line, enter:

data1 = BYTARR(80, 100, 57) + 1B
data1[0:39, *, 28:56] = 0B

Derive the color and opacity tables for the second volume. At the IDL Command
Line, enter:

rgbTable1 = [[BYTARR(256)], [BYTARR(256)], [BYTARR(256)]]
rgbTable1[1, *] = [255, 255, 255]
opacityTable1 = BYTARR(256)
opacityTable1[1] = 255

Figure 3-21: Plasma Jet Image Plane iVolume Example
IVOLUME IDL Reference Guide

 1013
Now, display the two volumes. At the IDL Command Line, enter:

IVOLUME, data0, data1, RGB_TABLE1 = rgbTable1, $
OPACITY_TABLE1 = opacityTable1, /AUTO_RENDER

The following figure displays the output of this example:

Example 5

This example shows how to use all the volume arguments to display an RGB (Red,
Green, Blue) volume.

First, create the volumes to contain primary colors (black, red, green, blue, yellow,
cyan, magenta, and white) in each corner. At the IDL Command Line, enter:

vol0 = BYTARR(32, 32, 32)
vol1 = BYTARR(32, 32, 32)
vol2 = BYTARR(32, 32, 32)
vol3 = BYTARR(32, 32, 32)
vol0[0:15, *, *] = 255
vol1[*, 0:15, *] = 255
vol2[*, *, 0:15] = 255
vol3[*, *, *] = 128

Figure 3-22: Cut Away iVolume Example
IDL Reference Guide IVOLUME

1014
Then, derive the color and opacity tables. At the IDL Command Line, enter:

rgbTable = [[BYTARR(256)], [BYTARR(256)], [BYTARR(256)]]
opacityTable = BINDGEN(256)

Now, display the two volumes. At the IDL Command Line, enter:

IVOLUME, vol0, vol1, vol2, vol3, RGB_TABLE0 = rgbTable, $
OPACITY_TABLE0 = opacityTable, /AUTO_RENDER

The following figure displays the output of this example:

Note
The white corner of this example volume is actually gray to distinguish it from the
white background.

Version History

Introduced: 6.0

Figure 3-23: RGB iVolume Example
IVOLUME IDL Reference Guide

 1015
JOURNAL

The JOURNAL procedure provides a record of an interactive session by saving, in a
file, all text entered from the terminal in response to the IDL prompt. The first call to
JOURNAL starts the logging process. The read-only system variable !JOURNAL is
set to the file unit used. To stop saving commands and close the file, call JOURNAL
with no parameters. If logging is in effect and JOURNAL is called with a parameter,
the parameter is simply written to the journal file.

Syntax

JOURNAL [, Arg]

Arguments

Arg

A string containing the name of the journal file to be opened or text to be written to an
open journal file. If Arg is not supplied, and a journal file is not already open, the file
idlsave.pro is used. Once journaling is enabled, a call to JOURNAL with Arg
supplied causes Arg to be written into the journal file. Calling JOURNAL without Arg
while journaling is in progress closes the journal file and ends the logging process.

Keywords

None.

Examples

To begin journaling to the file myjournal.pro, enter:

JOURNAL, 'myjournal.pro'

Any commands entered at the IDL prompt are recorded in the file until IDL is exited
or the JOURNAL command is entered without an argument.

Version History

Introduced: Original
IDL Reference Guide JOURNAL

1016
See Also

RESTORE, SAVE
JOURNAL IDL Reference Guide

 1017
JULDAY

The JULDAY function calculates the Julian Day Number (which begins at noon) for
the specified date. This is the inverse of the CALDAT procedure.

Note
The Julian calendar, established by Julius Caesar in the year 45 BCE, was corrected
by Pope Gregory XIII in 1582, excising ten days from the calendar. The CALDAT
procedure reflects the adjustment for dates after October 4, 1582. See the example
below for an illustration.

Note
A small offset is added to the returned Julian date to eliminate roundoff errors when
calculating the day fraction from hours, minutes, seconds. This offset is given by
the larger of EPS and EPS*Julian, where Julian is the integer portion of the Julian
date, and EPS is the EPS field from MACHAR. For typical Julian dates, this offset
is approximately 6x10–1 (which corresponds to 5x10–5 seconds). This offset ensures
that if the Julian date is converted back to hour, minute, and second, then the hour,
minute, and second will have the same integer values as were originally input.

Note
Calendar dates must be in the range 1 Jan 4716 B.C.E. to 31 Dec 5000000, which
corresponds to Julian values -1095 and 1827933925, respectively.

This routine is written in the IDL language. Its source code can be found in the file
julday.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = JULDAY(Month, Day, Year, Hour, Minute, Second)

Return Value

Result is of type double-precision if Hour, Minute, or Second is specified, otherwise
Result is of type long integer. If all arguments are scalar, the function returns a scalar.
If all arguments are arrays, the function matches up the corresponding elements of the
arrays, returning an array with the same dimensions as the smallest array. If the inputs
contain both scalars and arrays, the function uses the scalar value with each element
of the arrays, and returns an array with the same dimensions as the smallest input
array.
IDL Reference Guide JULDAY

1018
Arguments

Month

Number of the desired month (1 = January, ..., 12 = December). Month can be either a
scalar or an array.

Day

Number of the day of the month (1-31). Day can be either a scalar or an array.

Year

Number of the desired year (e.g., 1994). Year can be either a scalar or an array.

Hour

Number of the hour of the day (0-23). Hour can be either a scalar or an array.

Minute

Number of the minute of the hour (0-59). Minute can be either a scalar or an array.

Second

Number of the second of the minute (0-59). Second can be either a scalar or an array.

Examples

In 1582, Pope Gregory XIII adjusted the Julian calendar to correct for its inaccuracy
of slightly more than 11 minutes per year. As a result, the day following October 4,
1582 was October 15, 1582. JULDAY follows this convention, as illustrated by the
following commands:

PRINT, JULDAY(10,4,1582), JULDAY(10,5,1582), JULDAY(10,15,1582)

IDL prints:

2299160 2299161 2299161

Using arrays, this can also be calculated as follows:

PRINT, JULDAY(10, [4, 5, 15], 1582)

If you are using JULDAY to calculate an absolute number of days elapsed, be sure to
account for the Gregorian adjustment.
JULDAY IDL Reference Guide

 1019
Version History

Introduced: Original

See Also

BIN_DATE, CALDAT, SYSTIME
IDL Reference Guide JULDAY

1020
KEYWORD_SET

The KEYWORD_SET function returns a Boolean value based on the value of the
specified expression. It returns a True (1) if its argument is defined and nonzero, and
False (0) otherwise. The exact rules used to determine this are given in below.

Syntax

Result = KEYWORD_SET(Expression)

Return Value

This function returns True (1) if:

• Expression is a scalar or 1-element array with a non-zero value.

• Expression is a structure.

• Expression is an ASSOC file variable.

KEYWORD_SET returns False (0) if:

• Expression is undefined.

• Expression is a scalar or 1-element array with a zero value.

Arguments

Expression

The expression to be tested. Expression is usually a named variable.

Keywords

None.

Examples

Suppose that you are writing an IDL procedure that has the following procedure
definition line:

PRO myproc, KEYW1 = keyw1, KEYW2 = keyw2

The following command could be used to execute a set of commands only if the
keyword KEYW1 is set (i.e., it is present and nonzero):
KEYWORD_SET IDL Reference Guide

 1021
IF KEYWORD_SET(keyw1) THEN BEGIN

The commands to be executed only if KEYW1 is set would follow.

Version History

Introduced: Original

See Also

ARG_PRESENT, LOGICAL_TRUE, N_ELEMENTS, N_PARAMS
IDL Reference Guide KEYWORD_SET

1022
KRIG2D

The KRIG2D function interpolates a regularly- or irregularly-gridded set of points
z = f (x, y) using kriging.

The parameters of the data model – the range, nugget, and sill – are highly dependent
upon the degree and type of spatial variation of your data, and should be determined
statistically. Experimentation, or preferably rigorous analysis, is required.

For n data points, a system of n+1 simultaneous equations are solved for the
coefficients of the surface. For any interpolation point, the interpolated value is:

The following formulas are used to model the variogram functions:

d(i,j) = the distance from point i to point j.

V = the variance of the samples.

C(i,j) = the covariance of sample i with sample j.

C(x0,y0,x1,y1) = the covariance of point (x0,y0) with point (x1,y1).

Exponential covariance:

Spherical covariance:

Note
The accuracy of this function is limited by the single-precision floating-point
accuracy of the machine.

This routine is written in the IDL language. Its source code can be found in the file
krig2d.pro in the lib subdirectory of the IDL distribution.

f x y,() wi C xi yi x y, , ,()⋅∑=

C d()
C1 e 3 d A⁄⋅–() if d 0≠⋅

C1 C0 if d = 0+
=

KRIG2D IDL Reference Guide

 1023
Syntax

Result = KRIG2D(Z [, X, Y] [, EXPONENTIAL=vector] [, SPHERICAL=vector]
[, /REGULAR] [, XGRID=[xstart, xspacing]] [, XVALUES=array]
[, YGRID=[ystart, yspacing]] [, YVALUES=array] [, GS=[xspacing, yspacing]]
[, BOUNDS=[xmin, ymin, xmax, ymax]] [, NX=value] [, NY=value])

Return Value

Returns a two dimensional floating-point array containing the interpolated surface,
sampled at the grid points.

Arguments

Z, X, Y

Arrays containing the Z, X, and Y coordinates of the data points on the surface. Points
need not be regularly gridded. For regularly gridded input data, X and Y are not used:
the grid spacing is specified via the XGRID and YGRID (or XVALUES and
YVALUES) keywords, and Z must be a two dimensional array. For irregular grids, all
three parameters must be present and have the same number of elements.

Keywords

Model Parameter Keywords:

EXPONENTIAL

Set this keyword to a two- or three-element vector of model parameters [A,C0, C1] to
use an exponential semivariogram model. The model parameters are as follows:

C d()
1.0 1.5 d A⁄⋅()– 0.5 d A⁄()3⋅() if d < a+

C1 C0 if d = 0+

0 if d > a

=

IDL Reference Guide KRIG2D

1024
• A — The range. At distances beyond A, the semivariogram or covariance
remains essentially constant.

• C0 — The nugget, which provides a discontinuity at the origin.

• C1 — If specified, C1 is the covariance value for a zero distance, and the
variance of the random sample z variable. If only a two element vector is
supplied, C1 is set to the sample variance. (C0 + C1) = the sill, which is the
variogram value for very large distances.

SPHERICAL

Set this keyword to a two- or three-element vector of model parameters [A, C0, C1]
to use a spherical semivariogram model. The model parameters are as follows:

• A — The range. At distances beyond A, the semivariogram or covariance
remains essentially constant.

• C0 — The nugget, which provides a discontinuity at the origin.

• C1 — If specified, C1 is the covariance value for a zero distance, and the
variance of the random sample z variable. If only a two element vector is
supplied, C1 is set to the sample variance. (C0 + C1) = the sill, which is the
variogram value for very large distances.

Input Grid Keywords:

REGULAR

If set, the Z parameter is a two dimensional array of dimensions (n,m), containing
measurements over a regular grid. If any of XGRID, YGRID, XVALUES, or
YVALUES are specified, REGULAR is implied. REGULAR is also implied if there
is only one parameter, Z. If REGULAR is set, and no grid specifications are present,
the grid is set to (0, 1, 2, ...).

XGRID

A two-element array, [xstart, xspacing], defining the input grid in the x direction. Do
not specify both XGRID and XVALUES.

XVALUES

An n-element array defining the x locations of Z[i,j]. Do not specify both XGRID and
XVALUES.
KRIG2D IDL Reference Guide

 1025
YGRID

A two-element array, [ystart, yspacing], defining the input grid in the y direction. Do
not specify both YGRID and YVALUES.

YVALUES

An n-element array defining the y locations of Z[i,j]. Do not specify both YGRID and
YVALUES.

Output Grid Keywords:

BOUNDS

If present, BOUNDS must be a four-element array containing the grid limits in x and
y of the output grid: [xmin, ymin, xmax, ymax]. If not specified, the grid limits are set
to the extent of x and y.

GS

The output grid spacing. If present, GS must be a two-element vector [xs, ys], where
xs is the horizontal spacing between grid points and ys is the vertical spacing. The
default is based on the extents of x and y. If the grid starts at x value xmin and ends at
xmax, then the default horizontal spacing is (xmax - xmin)/(NX-1). ys is computed in
the same way. The default grid size, if neither NX or NY are specified, is 26 by 26.

NX

The output grid size in the x direction. NX need not be specified if the size can be
inferred from GS and BOUNDS. The default value is 26.

NY

The output grid size in the y direction. NY need not be specified if the size can be
inferred from GS and BOUNDS. The default value is 26.

Examples

; Make a random set of points that lie on a Gaussian:
N = 15
X = RANDOMU(seed, N)
Y = RANDOMU(seed, N)

; The Gaussian:
Z = EXP(-2 * ((X-.5)^2 + (Y-.5)^2))
IDL Reference Guide KRIG2D

1026
; Get a 26 by 26 grid over the rectangle bounding x and y:
; Range is 0.25 and nugget is 0. These numbers are dependent on
; your data model:
E = [0.25, 0.0]

; Get the surface:
R = KRIG2D(Z, X, Y, EXPON = E)

Alternatively, get a surface over the unit square, with spacing of 0.05:

R = KRIG2D(Z, X, Y, EXPON=E, GS=[0.05, 0.05], BOUNDS=[0,0,1,1])

Version History

Introduced: Pre 4.0

See Also

BILINEAR, INTERPOLATE
KRIG2D IDL Reference Guide

 1027
KURTOSIS

The KURTOSIS function computes the statistical kurtosis of an n-element vector.
Kurtosis is defined as the degree to which a statistical frequency curve is peaked.
KURTOSIS calls the IDL function MOMENT.

Note
KURTOSIS subtracts 3 from the raw kurtosis value since 3 is the kurtosis for a
Gaussian (normal) distribution. For resulting values, positive values of the kurtosis
(leptokurtic) indicate pointed or peaked distributions. Negative values (platykurtic)
indicate flattened or non-peaked distributions.

Syntax

Result = KURTOSIS(X [, /DOUBLE] [, /NAN])

Return Value

Returns the floating point or double precision statistical kurtosis. If the variance of
the vector is zero, the kurtosis is not defined, and KURTOSIS returns
!VALUES.F_NAN as the result.

Arguments

X

An n-element, floating-point or double-precision vector.

Keywords

DOUBLE

If this keyword is set, computations are performed in double precision arithmetic.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as missing
data. (See “Special Floating-Point Values” in Chapter 18 of the Building IDL
Applications manual for more information on IEEE floating-point values.)
IDL Reference Guide KURTOSIS

1028
Examples

; Define the n-element vector of sample data:
x = [65, 63, 67, 64, 68, 62, 70, 66, 68, 67, 69, 71, 66, 65, 70]
; Compute the kurtosis:
result = KURTOSIS(x)
; Print the result:
PRINT, result

IDL prints

-1.18258

Version History

Introduced: 5.1

See Also

MEAN, MEANABSDEV, MOMENT, STDDEV, SKEWNESS, VARIANCE
KURTOSIS IDL Reference Guide

 1029
KW_TEST

The KW_TEST function tests the hypothesis that three or more sample populations
have the same mean of distribution against the hypothesis that they differ. The
populations may be of equal or unequal lengths. The output is a vector containing the
test statistic, H, and value indicating the probability of obtaining a value equal to or
greater than H from a Chi-square distribution.

This test is an extension of the Rank Sum Test implemented in the RS_TEST
function. When each sample population contains at least five observations, the H test
statistic is approximated very well by a Chi-square distribution with DF degrees of
freedom. The hypothesis that three of more sample populations have the same mean
of distribution is rejected if two or more populations differ with statistical
significance. This type of test is often referred to as the Kruskal-Wallis H-Test.

The test statistic H is defined as follows:

where Ni is the number of observations in the ith sample population, NT is the total
number of observations in all sample populations, and Ri is the overall rank sum of
the ith sample population.

This routine is written in the IDL language. Its source code can be found in the file
kw_test.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = KW_TEST(X [, DF=variable] [, MISSING=nonzero_value])

Return Value

The result is a two-element vector containing the test statistic H and the one-tailed
probability of obtaining a value of H or greater from a Chi-square distribution.

H
12

NT NT 1+()

Ri
2

Ni

i 0=

M 1–

∑= 3 NT 1+()–
IDL Reference Guide KW_TEST

1030
Arguments

X

An integer, single-, or double-precision floating-point array of m-columns (with m ≥
3) and n-rows. The columns of this two-dimensional array correspond to the sample
populations.

If the sample populations are of unequal length, any columns of X that are shorter
than the longest column must be “filled in” by appending a user-specified missing
data value. This method requires the use of the MISSING keyword. See the Example
section below for an example of this case.

Keywords

DF

Use this keyword to specify a named variable that will contain the number of degrees
of freedom used to compute the probability of obtaining a value of H or greater from
the corresponding Chi-square distribution

MISSING

Set this keyword equal to a non-zero numeric value that has been appended to some
columns of X to make them all a common length of n.

Examples

Test the hypothesis that three sample populations have the same mean of distribution
against the hypothesis that they differ at the 0.05 significance level. Assume we have
the following sample populations:

sp0 = [24.0, 16.7, 22.8, 19.8, 18.9]

sp1 = [23.2, 19.8, 18.1, 17.6, 20.2, 17.8]

sp2 = [18.2, 19.1, 17.3, 17.3, 19.7, 18.9, 18.8, 19.3]

Since the sample populations are of unequal lengths, a missing value must be
appended to sp0 and sp1. In this example the missing value is -1.0 and the 3-column,
8-row input array X is defined as:

X = [[24.0, 23.2, 18.2], $
[16.7, 19.8, 19.1], $
[22.8, 18.1, 17.3], $
[19.8, 17.6, 17.3], $
KW_TEST IDL Reference Guide

 1031
[18.9, 20.2, 19.7], $
[-1.0, 17.8, 18.9], $
[-1.0, -1.0, 18.8], $
[-1.0, -1.0, 19.3]]

PRINT, KW_TEST(X, MISSING = -1)

IDL prints:

[1.65862, 0.436351]

The computed probability (0.436351) is greater than the 0.05 significance level and
therefore we do not reject the hypothesis that the three sample populations sp0, sp1,
and sp2 have the same mean of distribution.

Version History

Introduced: 4.0

See Also

FV_TEST, RS_TEST, S_TEST, TM_TEST
IDL Reference Guide KW_TEST

1032
L64INDGEN

The L64INDGEN function creates a 64-bit integer array with the specified
dimensions. Each element of the array is set to the value of its one-dimensional
subscript.

Syntax

Result = L64INDGEN(D1 [, ..., D8])

Return Value

The return value is the specified 64-bit integer array.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
L64INDGEN IDL Reference Guide

 1033
Examples

To create L, a 10-element by 10-element 64-bit array where each element is set to the
value of its one-dimensional subscript, enter:

L = L64INDGEN(10, 10)

Version History

Introduced: 5.2

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, INDGEN,
LINDGEN, SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
IDL Reference Guide L64INDGEN

1034
LA_CHOLDC

The LA_CHOLDC procedure computes the Cholesky factorization of an n-by-n
symmetric (or Hermitian) positive-definite array as:

If A is real: A = UT U or A = L LT

If A is complex: A = UH U or A = L LH

where U and L are upper and lower triangular arrays. The T represents the transpose
while H represents the Hermitian, or transpose complex conjugate.

LA_CHOLDC is based on the following LAPACK routines:

For more details, see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

LA_CHOLDC, Array [, /DOUBLE] [, STATUS=variable] [, /UPPER]

Arguments

Array

A named variable containing the real or complex array to be factorized. Only the
lower triangular portion of Array is used (or upper if the UPPER keyword is set). This
procedure returns Array as a lower triangular array from the Cholesky decomposition
(upper triangular if the UPPER keyword is set).

Output Type LAPACK Routine

Float spotrf

Double dpotrf

Complex cpotrf

Double complex zpotrf

Table 31: LAPACK Routine Basis for LA_CHOLDC
LA_CHOLDC IDL Reference Guide

 1035
Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the default is DOUBLE = 0.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: The array is not positive definite and the factorization could not
be completed. The STATUS value specifies the order of the leading minor
which is not positive definite.

Note
If STATUS is not specified, any error messages will output to the screen.

UPPER

If this keyword is set, then only the upper triangular portion of Array is used, and the
upper triangular array is returned. The default is to use the lower triangular portion
and to return the lower triangular array.

Examples

The following example program computes the Cholesky decomposition of a given
symmetric positive-definite array:

PRO ExLA_CHOLDC
; Create a symmetric positive-definite array.
n = 10
seed = 12321
array = RANDOMU(seed, n, n)
array = array ## TRANSPOSE(Array)

; Compute the Cholesky decomposition.
lower = array ; make a copy
LA_CHOLDC, lower
IDL Reference Guide LA_CHOLDC

1036
; Zero out the upper triangular portion.
for i = 0,n - 2 Do lower[i+1:*,i] = 0

; Reconstruct the array and check the difference
arecon = lower ## TRANSPOSE(lower)
PRINT, 'LA_CHOLDC Error:', MAX(ABS(arecon - array))
END

When this program is compiled and run, IDL prints:

LA_CHOLDC Error:
4.76837e-007

Version History

Introduced 5.6

See Also

CHOLDC, LA_CHOLMPROVE, LA_CHOLSOL
LA_CHOLDC IDL Reference Guide

 1037
LA_CHOLMPROVE

The LA_CHOLMPROVE function uses Cholesky factorization to improve the
solution to a system of linear equations, AX = B (where A is symmetric or Hermitian),
and provides optional error bounds and backward error estimates.

The LA_CHOLMPROVE function may also be used to improve the solutions for
multiple systems of linear equations, with each column of B representing a different
set of equations. In this case, the result is a k-by-n array where each of the k columns
represents the improved solution vector for that set of equations.

LA_CHOLMPROVE is based on the following LAPACK routines:

For more details, see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_CHOLMPROVE(Array, Achol, B, X
[, BACKWARD_ERROR=variable] [, /DOUBLE]
[, FORWARD_ERROR=variable] [, /UPPER])

Return Value

The result is an n-element vector or k-by-n array.

Arguments

Array

The original n-by-n array of the linear system AX = B.

Output Type LAPACK Routine

Float sporfs

Double dporfs

Complex cporfs

Double complex zporfs

Table 32: LAPACK Routine Basis for LA_CHOLMPROVE
IDL Reference Guide LA_CHOLMPROVE

1038
Achol

The n-by-n Cholesky factorization of Array, created by the LA_CHOLDC procedure.

B

An n-element input vector containing the right-hand side of the linear system, or a k-
by-n array, where each of the k columns represents a different linear system.

X

An n-element input vector, or a k-by-n array, containing the approximate solutions to
the linear system, created by the LA_CHOLSOL function.

Keywords

BACKWARD_ERROR

Set this keyword to a named variable that will contain the relative backward error
estimate for each linear system. If B is a vector containing a single linear system, then
BACKWARD_ERROR will be a scalar. If B is an array containing k linear systems,
then BACKWARD_ERROR will be a k-element vector. The backward error is the
smallest relative change in any element of A or B that makes X an exact solution.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the default is DOUBLE = 0.

FORWARD_ERROR

Set this keyword to a named variable that will contain the estimated forward error
bound for each linear system. If B is a vector containing a single linear system, then
FORWARD_ERROR will be a scalar. If B is an array containing k linear systems,
then FORWARD_ERROR will be a k-element vector. For each linear system, if Xtrue
is the true solution corresponding to X, then the forward error is an estimated upper
bound for the magnitude of the largest element in (X - Xtrue) divided by the
magnitude of the largest element in X.
LA_CHOLMPROVE IDL Reference Guide

 1039
UPPER

Set this keyword if A contains the upper triangular array, rather than the lower
triangular array.

Note
If the UPPER keyword is set in LA_CHOLDC and LA_CHOLSOL then the
UPPER keyword must also be set in LA_CHOLMPROVE.

Examples

The following example program computes an improved solution to a set of 10
equations:

PRO ExLA_CHOLMPROVE
; Create a symmetric positive-definite array.
n = 10
seed = 12321
a = RANDOMU(seed, n, n, /DOUBLE)
a = a ## TRANSPOSE(a)

; Create the right-hand side vector b:
b = RANDOMU(seed, n, /DOUBLE)

; Compute the Cholesky decomposition.
achol = a ; make a copy
LA_CHOLDC, achol

; Compute the first approximation to the solution:
x = LA_CHOLSOL(achol, b)

; Improve the solution and print the error estimate:
xmprove = LA_CHOLMPROVE(a, achol, b, x, $

FORWARD_ERROR = fError)
PRINT, 'LA_CHOLMPROVE error:', $

MAX(ABS(a ## xmprove - b))
PRINT, 'LA_CHOLMPROVE Error Estimate:', fError
END

When this program is compiled and run, IDL prints:

LA_CHOLMPROVE error: 3.9412917e-15
LA_CHOLMPROVE error estimate: 5.1265892e-12

Version History

Introduced 5.6
IDL Reference Guide LA_CHOLMPROVE

1040
See Also

LA_CHOLDC, LA_CHOLSOL
LA_CHOLMPROVE IDL Reference Guide

 1041
LA_CHOLSOL

The LA_CHOLSOL function is used in conjunction with the LA_CHOLDC to solve
a set of n linear equations in n unknowns, AX = B, where A must be a symmetric (or
Hermitian) positive-definite array. The parameter A is input not as the original array,
but as its Cholesky decomposition, created by the routine LA_CHOLDC.

The LA_CHOLSOL function may also be used to solve for multiple systems of linear
equations, with each column of B representing a different set of equations. In this
case, the result is a k-by-n array where each of the k columns represents the solution
vector for that set of equations.

LA_CHOLSOL is based on the following LAPACK routines:

For more details, see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_CHOLSOL(A, B [, /DOUBLE] [, /UPPER])

Return Value

The result is an n-element vector or k-by-n array.

Arguments

A

The n-by-n Cholesky factorization of an array, created by the LA_CHOLDC
procedure.

Output Type LAPACK Routine

Float spotrs

Double dpotrs

Complex cpotrs

Double complex zpotrs

Table 33: LAPACK Routine Basis for LA_CHOLSOL
IDL Reference Guide LA_CHOLSOL

1042
B

An n-element input vector containing the right-hand side of the linear system, or a k-
by-n array, where each of the k columns represents a different linear system.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if A is double precision, otherwise the default is DOUBLE = 0.

UPPER

Set this keyword if A contains the upper triangular array, rather than the lower
triangular array.

Note
If the UPPER keyword is set in the LA_CHOLDC then the UPPER keyword must
also be set in LA_CHOLSOL.

Examples

Given the following system of equations:

 6u + 15v + 55w = 9.5

15u + 55v + 225w = 50

55u + 225v + 979w = 237

The solution can be derived by using the following program:

PRO ExLA_CHOLSOL
; Define the coefficient array:
a = [[6.0, 15.0, 55.0], $

[15.0, 55.0, 225.0], $
[55.0, 225.0, 979.0]]

; Define the right-hand side vector b:
b = [9.5, 50.0, 237.0]

; Compute the Cholesky decomposition of a:
achol = a ; make a copy
LA_CHOLSOL IDL Reference Guide

 1043
LA_CHOLDC, achol

; Compute and print the solution:
x = LA_CHOLSOL(achol, b)
PRINT, 'LA_CHOLSOL solution:', x
END

When this program is compiled and run, IDL prints:

LA_CHOLSOL Solution:
-0.499999 -1.00000 0.500000

The exact solution vector is [-0.5, -1.0, 0.5].

Version History

Introduced 5.6

See Also

CHOLSOL, LA_CHOLDC, LA_CHOLMPROVE
IDL Reference Guide LA_CHOLSOL

1044
LA_DETERM

The LA_DETERM function uses LU decomposition to compute the determinant of a
square array.

This routine is written in the IDL language. Its source code can be found in the file
la_determ.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = LA_DETERM(A [, /CHECK] [, /DOUBLE] [, ZERO=value])

Return Value

The result is a scalar of the same type as the input array.

Arguments

A

An n-by-n real or complex array.

Keywords

CHECK

Set this keyword to check A for any singularities. The determinant of a singular array
is returned as zero if this keyword is set. Run-time errors may result if A is singular
and this keyword is not set.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if A is double precision, otherwise the default is DOUBLE = 0.

ZERO

Use this keyword to set the absolute value of the floating-point zero. A floating-point
zero on the main diagonal of a triangular array results in a zero determinant. For
single-precision inputs, the default value is 1.0 x 10-6. For double-precision inputs,
LA_DETERM IDL Reference Guide

 1045
the default value is 1.0 x 10-12. Setting this keyword to a value less than the default
may improve the precision of the result.

Examples

The following program computes the determinant of a square array:

PRO ExLA_DETERM
; Create a square array.
array =[[1d, 2, 1], $

[4, 10, 15], $
[3, 7, 1]]

; Compute the determinant.
adeterm = LA_DETERM(array)
PRINT, 'LA_DETERM:', adeterm
END

When this program is compiled and run, IDL prints:

A_DETERM:
-15.000000

Version History

Introduced 5.6

See Also

DETERM, LA_LUDC
IDL Reference Guide LA_DETERM

1046
LA_EIGENPROBLEM

The LA_EIGENPROBLEM function uses the QR algorithm to compute all
eigenvalues λ and eigenvectors v ≠ 0 of an n-by-n real nonsymmetric or complex non-
Hermitian array A, for the eigenproblem Av = λv. The routine can also compute the
left eigenvectors u ≠ 0, which satisfy uHA = λuH.

LA_EIGENPROBLEM may also be used for the generalized eigenproblem:

Av = λBv and uHA = λuHB

where A and B are square arrays, v are the right eigenvectors, and u are the left
eigenvectors.

LA_EIGENPROBLEM is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_EIGENPROBLEM(A [, B] [, ALPHA=variable] [, BALANCE=value]
[, BETA=variable] [, /DOUBLE] [, EIGENVECTORS=variable]
[, LEFT_EIGENVECTORS=variable] [, NORM_BALANCE = variable]
[, PERMUTE_RESULT=variable] [, SCALE_RESULT=variable]
[, RCOND_VALUE=variable] [, RCOND_VECTOR=variable]
[, STATUS=variable])

Return Value

The result is a complex n-element vector containing the eigenvalues.

Output Type
Standard LAPACK

Routine
Generalized

LAPACK Routine

Float sgeevx sggevx

Double dgeevx dggevx

Complex cgeevx cggevx

Double complex zgeevx zggevx

Table 34: LAPACK Routine Basis for LA_EIGENPROBLEM
LA_EIGENPROBLEM IDL Reference Guide

 1047
Arguments

A

The real or complex array for which to compute eigenvalues and eigenvectors.

B

An optional real or complex n-by-n array used for the generalized eigenproblem. The
elements of B are converted to the same type as A before computation.

Keywords

ALPHA

For the generalized eigenproblem with the B argument, set this keyword to a named
variable in which the numerator of the eigenvalues will be returned as a complex n -
element vector. For the standard eigenproblem this keyword is ignored.

Tip
The ALPHA and BETA values are useful for eigenvalues which underflow or
overflow. In this case the eigenvalue problem may be rewritten as αAv = βBv.

BALANCE

Set this keyword to one of the following values:

• BALANCE = 0: No balancing is applied to A.

• BALANCE = 1: Both permutation and scale balancing are performed.

• BALANCE = 2: Permutations are performed to make the array more nearly
upper triangular.

• BALANCE = 3: Diagonally scale the array to make the columns and rows
more equal in norm.

The default is BALANCE = 1, which performs both permutation and scaling
balances. Balancing a nonsymmetric (or non-Hermitian) array is recommended to
reduce the sensitivity of eigenvalues to rounding errors.
IDL Reference Guide LA_EIGENPROBLEM

1048
BETA

For the generalized eigenproblem with the B argument, set this keyword to a named
variable in which the denominator of the eigenvalues will be returned as a real or
complex n-element vector. For the standard eigenproblem this keyword is ignored.

Tip
The ALPHA and BETA values are useful for eigenvalues which underflow or
overflow. In this case, the eigenvalue problem may be rewritten as αAv = βBv.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if A is double precision, otherwise the default is DOUBLE = 0.

EIGENVECTORS

Set this keyword to a named variable in which the eigenvectors will be returned as a
set of row vectors. If this variable is omitted then eigenvectors will not be computed
unless the RCOND_VALUE or RCOND_VECTOR keywords are present.

Note
For the standard eigenproblem the eigenvectors are normalized and rotated to have
norm 1 and largest component real. For the generalized eigenproblem the
eigenvectors are normalized so that the largest component has abs(real) +
abs(imaginary) = 1.

LEFT_EIGENVECTORS

Set this keyword to a named variable in which the left eigenvectors will be returned
as a set of row vectors. If this variable is omitted then left eigenvectors will not be
computed unless the RCOND_VALUE or RCOND_VECTOR keywords are present.

Note
Note - For the standard eigenproblem the eigenvectors are normalized and rotated to
have norm 1 and largest component real. For the generalized eigenproblem the
eigenvectors are normalized so that the largest component has abs(real) +
abs(imaginary) = 1.
LA_EIGENPROBLEM IDL Reference Guide

 1049
NORM_BALANCE

Set this keyword to a named variable in which the one-norm of the balanced matrix
will be returned. The one-norm is defined as the maximum value of the sum of
absolute values of the columns. For the standard eigenproblem, this will be returned
as a scalar value; for the generalized eigenproblem this will be returned as a two-
element vector containing the A and B norms.

PERMUTE_RESULT

Set this keyword to a named variable in which the result for permutation balancing
will be returned as a two-element vector [ilo, ihi]. If permute balancing is not done
then the values will be ilo = 1 and ihi = n.

RCOND_VALUE

Set this keyword to a named variable in which the reciprocal condition numbers for
the eigenvalues will be returned as an n-element vector. If RCOND_VALUE is
present then left and right eigenvectors must be computed.

RCOND_VECTOR

Set this keyword to a named variable in which the reciprocal condition numbers for
the eigenvectors will be returned as an n-element vector. If RCOND_VECTOR is
present then left and right eigenvectors must be computed.

SCALE_RESULT

Set this keyword to a named variable in which the results for permute and scale
balancing will be returned. For the standard eigenproblem, this will be returned as an
n-element vector. For the generalized eigenproblem, this will be returned as a n-by-2
array with the first row containing the permute and scale factors for the left side of A
and B and the second row containing the factors for the right side of A and B.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: The QR algorithm failed to compute all eigenvalues; no
eigenvectors or condition numbers were computed. The STATUS value
indicates that eigenvalues ilo:STATUS (starting at index 1) did not converge; all
other eigenvalues converged.
IDL Reference Guide LA_EIGENPROBLEM

1050
Note
If STATUS is not specified, any error messages will be output to the screen.

Examples

Find the eigenvalues and eigenvectors for an array using the following program:

PRO ExLA_EIGENPROBLEM
; Create a random array:
n = 4
seed = 12321
array = RANDOMN(seed, n, n)

; Compute all eigenvalues and eigenvectors:
eigenvalues = LA_EIGENPROBLEM(array, $

EIGENVECTORS = eigenvectors)
PRINT, 'LA_EIGENPROBLEM Eigenvalues:'
PRINT, eigenvalues

; Check the results using the eigenvalue equation:
maxErr = 0d
FOR i = 0, n - 1 DO BEGIN

; A*z = lambda*z
alhs = array ## eigenvectors[*,i]
arhs = eigenvalues[i]*eigenvectors[*,i]
maxErr = maxErr > MAX(ABS(alhs - arhs))

ENDFOR
PRINT, 'LA_EIGENPROBLEM Error:', maxErr

; Now try the generalized eigenproblem:
b = IDENTITY(n) + 0.01*RANDOMN(seed, n, n)
eigenvalues = LA_EIGENPROBLEM(Array, B)
PRINT, 'LA_EIGENPROBLEM Generalized Eigenvalues:'
PRINT, EIGENVALUES
END

When this program is compiled and run, IDL prints:

LA_EIGENPROBLEM eigenvalues:
(-0.593459, 0.566318)(-0.593459, -0.566318)
(1.06216, 0.00000)(1.61286, 0.00000)
LA_EIGENPROBLEM error: 4.0978193e-07
LA_EIGENPROBLEM generalized eigenvalues:
(-0.574766, 0.567452)(-0.574766, -0.567452)
(1.57980, 0.00000)(1.08711, 0.00000)
LA_EIGENPROBLEM IDL Reference Guide

 1051
Version History

Introduced 5.6

See Also

LA_EIGENVEC, LA_ELMHES, LA_HQR
IDL Reference Guide LA_EIGENPROBLEM

1052
LA_EIGENQL

The LA_EIGENQL function computes selected eigenvalues λ and eigenvectors z ≠ 0
of an n-by-n real symmetric or complex Hermitian array A, for the eigenproblem
Az = λz.

LA_EIGENQL may also be used for the generalized symmetric eigenproblems:

Az = λBz or ABz = λz or BAz = λz

where A and B are symmetric (or Hermitian) and B is positive definite.

LA_EIGENQL is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_EIGENQL(A [, B] [, /DOUBLE] [, EIGENVECTORS=variable]
[, FAILED=variable] [, GENERALIZED=value] [, METHOD=value]
[, RANGE=vector] [, SEARCH_RANGE=vector] [, STATUS=variable]
[, TOLERANCE=value])

Return Value

The result is a real vector containing the eigenvalues in ascending order.

Output Type Standard
Eigenproblem Generalized

Float ssyevx, ssyevr, ssyevd ssygvx, ssygvd

Double dsyevx, dsyevr, dsyevd dsygvx, dsygvd

Complex cheevx, cheevr, cheevd chegvx, chegvd

Double complex zheevx, zheevr, zheevd zhegvx, zhegvd

Table 35: LAPACK Routine Basis for LA_EIGENQL
LA_EIGENQL IDL Reference Guide

 1053
Arguments

A

The real or complex n-by-n array for which to compute eigenvalues and eigenvectors.
A must be symmetric (or Hermitian).

B

An optional real or complex n-by-n array used for the generalized eigenproblem. B
must be symmetric (or Hermitian) and positive definite. The elements of B are
converted to the same type as A before computation.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if A is double precision, otherwise the default is DOUBLE = 0.

EIGENVECTORS

Set this keyword to a named variable in which the eigenvectors will be returned as a
set of row vectors. If this variable is omitted then eigenvectors will not be computed.
All eigenvectors will be returned unless the RANGE or SEARCH_RANGE
keywords are used to restrict the eigenvalue range.

FAILED

Set this keyword to a named variable in which to return the indices of eigenvectors
that did not converge. This keyword is only available for METHOD = 0, and will be
ignored for other methods.

Note
Index numbers within FAILED start at 1.

GENERALIZED

For the generalized eigenproblem with the optional B argument, set this keyword to
indicate which problem to solve. Possible values are:

• GENERALIZED = 0 (the default): Solve Az = λBz.
IDL Reference Guide LA_EIGENQL

1054
• GENERALIZED = 1: Solve ABz = λz.

• GENERALIZED = 2: Solve BAz = λz.

This keyword is ignored if argument B is not present.

METHOD

Set this keyword to indicate which computation method to use. Possible values are:

• METHOD = 0 (the default): Use tridiagonal decomposition to compute some
or all of the eigenvalues and (optionally) eigenvectors.

• METHOD = 1: Use the Relatively Robust Representation (RRR) algorithm to
compute some or all of the eigenvalues and (optionally) eigenvectors. This
method is unavailable for the generalized eigenproblem with the optional B
argument, and will default to METHOD = 0.

Note
The RRR method may produce NaN and Infinity floating-point exception messages
during normal execution.

• METHOD = 2: Use a divide-and-conquer algorithm to compute all of the
eigenvalues and (optionally) all eigenvectors. This method is available for
either the standard or generalized eigenproblems. For METHOD = 2 the
RANGE, SEARCH_RANGE, and TOLERANCE keywords are ignored, and
all eigenvalues are returned.

RANGE

Set this keyword to a two-element vector containing the indices of the smallest and
largest eigenvalues to be returned. The default is [0, n-1], which returns all
eigenvalues and eigenvectors. This keyword is ignored for METHOD = 2.

SEARCH_RANGE

Set this keyword to a two-element floating-point vector containing the lower and
upper bounds of the interval to be searched for eigenvalues. The default is to return all
eigenvalues and eigenvectors. This keyword is ignored for METHOD = 2. If both
RANGE and SEARCH_RANGE are specified, only the SEARCH_RANGE values
are used.

Note
If the search range does not contain any eigenvalues, then Result,
EIGENVECTORS, and FAILED will each be set to a scalar zero.
LA_EIGENQL IDL Reference Guide

 1055
STATUS

Set this keyword to a named variable that will contain the status of the computation.
In all cases STATUS = 0 indicates successful computation. For the standard
eigenproblem, possible nonzero values are:

• METHOD = 0, STATUS > 0: STATUS eigenvectors failed to converge. The
FAILED keyword contains the indices of the eigenvectors that did not
converge.

• METHOD = 1, STATUS < 0 or STATUS > 0: An internal error occurred during
the computation.

• METHOD = 2, STATUS > 0: STATUS off-diagonal elements of an
intermediate tridiagonal matrix did not converge to zero.

For the generalized eigenproblem, possible nonzero values are:

• METHOD = 0, 0 < STATUS ≤ n: STATUS eigenvectors failed to converge.
The FAILED keyword contains the indices of the eigenvectors that did not
converge.

• METHOD = 0, STATUS > n: The factorization of B could not be completed
and the computation failed. The value of (STATUS - n) specifies the order of
the leading minor of B which is not positive definite.

• METHOD = 2, 0 < STATUS ≤ n: STATUS off-diagonal elements of an
intermediate tridiagonal matrix did not converge to zero.

• METHOD = 2, STATUS > n: The factorization of B could not be completed
and the computation failed. The value of (STATUS - n) specifies the order of
the leading minor of B which is not positive definite.

Note
If STATUS is not specified, any error messages will be output to the screen.

TOLERANCE

Set this keyword to a scalar giving the absolute error tolerance for the eigenvalues and
eigenvectors. For the most accurate eigenvalues, TOLERANCE should be set to
2*XMIN, where XMIN is the magnitude of the smallest usable floating-point value.
For METHOD = 0, if TOLERANCE is less than or equal to zero, or is unspecified,
then a tolerance value of EPS*||T||1 will be used, where T is the tridiagonal matrix
obtained from A. For METHOD = 1, if TOLERANCE is less than or equal to
N*EPS*||T||1, or is unspecified, then a tolerance value of N*EPS*||T||1 will be used.
IDL Reference Guide LA_EIGENQL

1056
For values of EPS and XMIN, see the MACHAR. This keyword is ignored for
METHOD = 2.

Tip
If the LA_EIGENQL routine fails to converge, try setting the TOLERANCE to a
larger value.

Examples

Find the eigenvalues and eigenvectors for a symmetric array using the following
program:

PRO ExLA_EIGENQL
; Create a random symmetric array:
n = 10
seed = 12321
array = RANDOMN(seed, n, n)
array = array + TRANSPOSE(array)

; Compute all eigenvalues and eigenvectors:
eigenvalues = LA_EIGENQL(array, $

EIGENVECTORS=eigenvectors)

; Check the results using the eigenvalue equation:
maxErr = 0d
FOR i=0,n-1 DO BEGIN

; a*z = lambda*z
alhs = array ## eigenvectors[*,i]
arhs = eigenvalues[i]*eigenvectors[*,i]
maxErr = maxErr > MAX(ABS(alhs - arhs))

ENDFOR
PRINT, 'LA_EIGENQL error:', maxErr

; Compute the three largest eigenvalues:
eigenvalues = LA_EIGENQL(array, $

EIGENVECTORS = eigenvectors, $
RANGE = [n-3,n-1])

PRINT, 'LA_EIGENQL eigenvalues:', eigenvalues

; Now try the generalized eigenproblem:
b = IDENTITY(n) + 0.01*RANDOMN(seed,n,n)
; Make B symmetric and positive definite:
b = b ## TRANSPOSE(b)

; Compute the three largest generalized eigenvalues:
eigenvalues = LA_EIGENQL(array, b, RANGE=[n-3,n-1])
PRINT, 'LA_EIGENQL Generalized Eigenvalues:'
LA_EIGENQL IDL Reference Guide

 1057
PRINT, Eigenvalues
END

When this program is compiled and run, IDL prints:

LA_EIGENQL error: 1.3560057e-06
LA_EIGENQL eigenvalues: 3.82993 4.69785 5.61567
LA_EIGENQL generalized eigenvalues:
3.83750 4.74803 5.57692

Version History

Introduced 5.6

See Also

EIGENQL, LA_TRIQL, LA_TRIRED
IDL Reference Guide LA_EIGENQL

1058
LA_EIGENVEC

The LA_EIGENVEC function uses the QR algorithm to compute all or some of the
eigenvectors v ≠ 0 of an n-by-n real nonsymmetric or complex non-Hermitian array
A, for the eigenproblem Av = λv. The routine can also compute the left eigenvectors
u ≠ 0, which satisfy uHA = λuH.

Note
The left and right eigenvectors returned by LA_EIGENVEC are normalized to
norm 1. Unlike the LA_EIGENPROBLEM, they are not rotated to have largest
component real. Therefore, you may notice slight differences in results between
LA_EIGENVEC and LA_EIGENPROBLEM.

LA_EIGENVEC is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_EIGENVEC(T, QZ [, BALANCE=value] [, /DOUBLE]
[, EIGENINDEX=variable] [, LEFT_EIGENVECTORS=variable]
[, PERMUTE_RESULT=[ilo, ihi]] [, SCALE_RESULT=vector]
[, RCOND_VALUE=variable] [, RCOND_VECTOR=variable] [, SELECT=vector])

Return Value

The result is a complex array containing the eigenvectors as a set of row vectors.

Output Type Eigenvectors
Condition
Numbers

Undo
Balancing

Float strevc strsna sgebak

Double dtrevc dtrsna dgebak

Complex ctrevc ctrsna cgebak

Double complex ztrevc ztrsna zgebak

Table 36: LAPACK Routine Basis for LA_EIGENVEC
LA_EIGENVEC IDL Reference Guide

 1059
Arguments

T

The upper quasi-triangular array containing the Schur form, created by LA_HQR.

QZ

The array of Schur vectors, created by LA_HQR.

Keywords

BALANCE

If balancing was applied in the call to LA_ELMHES, then set this keyword to the
same value that was used, in order to apply the backward balancing transform to the
eigenvectors. If BALANCE is not specified, then the default is BALANCE = 1.

Note
If BALANCE is not zero, then both PERMUTE_RESULT and SCALE_RESULT
must be supplied.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if T is double precision, otherwise the default is DOUBLE = 0.

EIGENINDEX

If keyword SELECT is used, then set this keyword to a named variable in which the
indices of the eigenvalues that correspond to the selected eigenvectors will be
returned. If the SELECT keyword is not used then EIGENINDEX will be set to
LINDGEN(n).

Tip
This keyword is most useful for real input arrays when the SELECT keyword is
present. In this case, a value of SELECT[j] equal to 1 may produce two
eigenvectors if the eigenvalue is part of a complex-conjugate pair.
IDL Reference Guide LA_EIGENVEC

1060
LEFT_EIGENVECTORS

Set this keyword to a named variable in which the left eigenvectors will be returned
as a set of row vectors. If this variable is omitted then left eigenvectors will not be
computed unless the RCOND_VALUE keyword is present.

PERMUTE_RESULT

Set this keyword to a two-element vector containing the [ilo, ihi] permutation results
from the LA_ELMHES procedure. This keyword must be present if BALANCE = 1
or BALANCE = 2.

RCOND_VALUE

Set this keyword to a named variable in which the reciprocal condition numbers for
the eigenvalues will be returned as an n-element vector. If RCOND_VALUE is
present then left and right eigenvectors must be computed.

RCOND_VECTOR

Set this keyword to a named variable in which the reciprocal condition numbers for
the eigenvectors will be returned as an n-element vector.

SCALE_RESULT

Set this keyword to an n-element vector containing the permute and scale balancing
results from the LA_ELMHES procedure. This keyword must be present if
BALANCE is not zero.

SELECT

Set this keyword to an n-element vector of zeroes or ones that indicates which
eigenvectors to compute. There are two cases:

• The original array was real: If the j-th eigenvalue (as created by LA_HQR) is
real, then if SELECT[j] is set to 1, then the j-th eigenvector will be computed.
If the j-th and (j+1) eigenvalues form a complex-conjugate pair, then if either
SELECT[j] or SELECT[j+1] is set to 1, then the complex-conjugate pair of j-
th and (j+1) eigenvectors will be computed.

• The original array was complex: If SELECT[j] is set to 1, then the j-th
eigenvector will be computed.

If SELECT is omitted then all eigenvectors are returned.
LA_EIGENVEC IDL Reference Guide

 1061
Examples

Compute the eigenvalues and selected eigenvectors of a random array using the
following program:

PRO ExLA_EIGENVEC
; Create a random array:
n = 10
seed = 12321
array = RANDOMN(seed, n, n)

; Reduce to upper Hessenberg and compute Q:
H = LA_ELMHES(array, q, $
PERMUTE_RESULT = permute, SCALE_RESULT = scale)

; Compute eigenvalues, T, and QZ arrays:
eigenvalues = LA_HQR(h, q, PERMUTE_RESULT = permute)

; Compute eigenvectors corresponding to
; the first 3 eigenvalues.
select = [1, 1, 1, REPLICATE(0, n - 3)]
eigenvectors = LA_EIGENVEC(H, Q, $

EIGENINDEX = eigenindex, $
PERMUTE_RESULT = permute, SCALE_RESULT = scale, $
SELECT = select)

PRINT, 'LA_EIGENVEC eigenvalues:'
PRINT, eigenvalues[eigenindex]
END

When this program is compiled and run, IDL prints:

LA_EIGENVEC eigenvalues:
(-0.278633, 2.55055) (-0.278633, -2.55055)
(2.31208, 0.000000)

Version History

Introduced 5.6

See Also

EIGENVEC, LA_ELMHES, LA_HQR
IDL Reference Guide LA_EIGENVEC

1062
LA_ELMHES

The LA_ELMHES function reduces a real nonsymmetric or complex non-Hermitian
array to upper Hessenberg form H. If the array is real then the decomposition is
A = Q H QT, where Q is orthogonal. If the array is complex Hermitian then the
decomposition is A = Q H QH, where Q is unitary. The superscript T represents the
transpose while superscript H represents the Hermitian, or transpose complex
conjugate.

LA_ELMHES is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_ELMHES(Array [, Q] [, BALANCE=value] [, /DOUBLE]
[, NORM_BALANCE=variable] [, PERMUTE_RESULT=variable]
[, SCALE_RESULT=variable])

Return Value

The result is an array of the same type as A containing the upper Hessenberg form.
The Hessenberg array is stored in the upper triangle and the first subdiagonal.
Elements below the subdiagonal should be ignored but are not automatically set to
zero.

Output Type Balance &
Reduce Norm Optional Q

Float sgebal, sgehrd slange sorghr

Double dgebal, dgehrd dlange dorghr

Complex cgebal, cgehrd clange cunghr

Double complex zgebal, zgehrd zlange zunghr

Table 37: LAPACK Routine Basis for LA_ELMHES
LA_ELMHES IDL Reference Guide

 1063
Arguments

Array

The n-by-n real or complex array to reduce to upper Hessenberg form.

Q

Set this optional argument to a named variable in which the array Q will be returned.
The Q argument may then be input into LA_HQR to compute the Schur vectors.

Keywords

BALANCE

Set this keyword to one of the following values:

• BALANCE = 0: No balancing is applied to Array.

• BALANCE = 1: Both permutation and scale balancing are performed.

• BALANCE = 2: Permutations are performed to make the array more nearly
upper triangular.

• BALANCE = 3: Diagonally scale the array to make the columns and rows
more equal in norm.

The default is BALANCE = 1, which performs both permutation and scaling
balances. Balancing a nonsymmetric array is recommended to reduce the sensitivity
of eigenvalues to rounding errors.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the default is DOUBLE = 0.

NORM_BALANCE

Set this keyword to a named variable in which the one-norm of the balanced matrix
will be returned. The one-norm is defined as the maximum value of the sum of
absolute values of the columns.
IDL Reference Guide LA_ELMHES

1064
PERMUTE_RESULT

Set this keyword to a named variable in which the result for permutation balancing
will be returned as a two-element vector [ilo, ihi]. If permute balancing is not done
then the values will be ilo = 1 and ihi = n.

SCALE_RESULT

Set this keyword to a named variable in which the result for permute and scale
balancing will be returned as an n-element vector.

Examples

See LA_EIGENVEC for an example of using this procedure.

Version History

Introduced 5.6

See Also

ELMHES, LA_HQR
LA_ELMHES IDL Reference Guide

 1065
LA_GM_LINEAR_MODEL

The LA_GM_LINEAR_MODEL function is used to solve a general Gauss-Markov
linear model problem:

minimizex ||y||2 with constraint d = Ax + By

where A is an m-column by n-row array, B is a p-column by n-row array, and d is an
n-element input vector with m ≤ n ≤ m+p.

The following items should be noted:

• If A has full column rank m and the array (A B) has full row rank n, then there
is a unique solution x and a minimal 2-norm solution y.

• If B is square and nonsingular then the problem is equivalent to a weighted
linear least-squares problem, minimizex ||B -1(Ax - d)||2.

• If B is the identity matrix then the problem reduces to the ordinary linear least-
squares problem, minimizex ||Ax - d||2.

LA_ GM_LINEAR_MODEL is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_GM_LINEAR_MODEL(A, B, D, Y [, /DOUBLE])

Return Value

The result (x) is an m-element vector whose type is identical to A.

Output Type LAPACK Routine

Float sggglm

Double dggglm

Complex cggglm

Double complex zggglm

Table 38: LAPACK Routine Basis for LA_GM_LINEAR_MODEL
IDL Reference Guide LA_GM_LINEAR_MODEL

1066
Arguments

A

The m-by-n array used in the constraint equation.

B

The p-by-n array used in the constraint equation.

D

An n-element input vector used in the constraint equation.

Y

Set this argument to a named variable, which will contain the p-element output
vector.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if A is double precision, otherwise the default is DOUBLE = 0.

Examples

Given the constraint equation d = Ax + By, (where A, B, and d are defined in the
program below) the following example program solves the general Gauss-Markov
problem:

PRO ExLA_GM_LINEAR_MODEL
; Define some example coefficient arrays:
a = [[2, 7, 4], $

[5, 1, 3], $
[3, 3, 6], $
[4, 5, 2]]

b = [[-3, 2], $
[1, 5], $
[2, 9], $
[4, 1]]
LA_GM_LINEAR_MODEL IDL Reference Guide

 1067
; Define a sample left-hand side vector D:
d = [-1, 2, -3, 4]

; Find and print the solution x:
x = LA_GM_LINEAR_MODEL(a, b, d, y)
PRINT, 'LA_GM_LINEAR_MODEL solution:'
PRINT, X
PRINT, 'LA_GM_LINEAR_MODEL 2-norm solution:'
PRINT, Y
END

When this program is compiled and run, IDL prints:

LA_GM_LINEAR_MODEL solution:
 1.04668 0.350346 -1.28445
LA_GM_LINEAR_MODEL 2-norm solution:
 0.151716 0.0235733

Version History

Introduced 5.6

See Also

LA_LEAST_SQUARE_EQUALITY, LA_LEAST_SQUARES
IDL Reference Guide LA_GM_LINEAR_MODEL

1068
LA_HQR

The LA_HQR function uses the multishift QR algorithm to compute all eigenvalues
of an n-by-n upper Hessenberg array. The LA_ELMHES routine can be used to
reduce a real or complex array to upper Hessenberg form suitable for input to this
procedure. LA_HQR may also be used to compute the matrices T and QZ from the
Schur decomposition A = (QZ) T (QZ)H.

LA_HQR is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_HQR(H [, Q] [, /DOUBLE] [, PERMUTE_RESULT=[ilo, ihi]]
[, STATUS=variable])

Return Value

The result is an n-element complex vector.

Arguments

H

An n-by-n upper Hessenberg array, created by the LA_ELMHES procedure. If
argument Q is present, then on return H is replaced by the Schur form T. If argument
Q is not present then H is unchanged.

Output Type LAPACK Routine

Float shseqr

Double dhseqr

Complex chseqr

Double complex zhseqr

Table 39: LAPACK Routine Basis for LA_HQR
LA_HQR IDL Reference Guide

 1069
Q

Set this optional argument to the array Q created by the LA_ELMHES procedure. If
argument Q is present, then on return Q is replaced by the Schur vectors QZ.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if H is double precision, otherwise the default is DOUBLE = 0.

PERMUTE_RESULT

Set this keyword to a two-element vector containing the [ilo, ihi] permutation results
from the LA_ELMHES procedure. The default is [1, n], indicating that permute
balancing was not done on H.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: The algorithm failed to find all eigenvalues in 30*(ihi - ilo + 1)
iterations. The STATUS value indicates that eigenvalues ilo:STATUS (starting
at index 1) did not converge; all other eigenvalues converged.

Note
If STATUS is not specified, any error messages will output to the screen.

Examples

See LA_EIGENVEC for an example of using this procedure.

Version History

Introduced 5.6
IDL Reference Guide LA_HQR

1070
See Also

HQR, LA_EIGENVEC, LA_ELMHES
LA_HQR IDL Reference Guide

 1071
LA_INVERT

The LA_INVERT function uses LU decomposition to compute the inverse of a
square array.

LA_INVERT is based on the following LAPACK routines:

For more details, see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_INVERT(A [, /DOUBLE] [, STATUS=variable])

Return Value

The result is an array of the same dimensions as the input array.

Arguments

A

The n-by-n array to be inverted.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if A is double precision, otherwise the default is DOUBLE = 0.

Output Type LAPACK Routine

Float sgetrf, sgetri

Double dgetrf, dgetri

Complex cgetrf, cgetri

Double complex zgetrf, zgetri

Table 40: LAPACK Routine Basis for LA_INVERT
IDL Reference Guide LA_INVERT

1072
STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: The array is singular and the inverse could not be computed. The
STATUS value specifies which value along the diagonal (starting at one) is
zero.

Note
If STATUS is not specified, any error messages will be output to the screen.

Examples

The following program computes the inverse of a square array:

PRO ExLA_INVERT
; Create a square array.
array =[[1d, 2, 1], $

[4, 10, 15], $
[3, 7, 1]]

; Compute the inverse and check the error.
ainv = LA_INVERT(array)
PRINT, 'LA_INVERT Identity Matrix:'
PRINT, ainv ## array
END

When this program is compiled and run, IDL prints:

A_INVERT Identity Matrix:
1.0000000 1.7763568e-015 6.6613381e-016
0.00000000 1.0000000 1.2212453e-015
0.00000000 0.00000000 1.0000000

Version History

Introduced 5.6

See Also

INVERT, LA_LUDC
LA_INVERT IDL Reference Guide

 1073
LA_LEAST_SQUARE_EQUALITY

The LA_LEAST_SQUARE_EQUALITY function is used to solve the linear least-
squares problem:

Minimizex ||Ax - c||2 with constraint Bx = d

where A is an n-column by m-row array, B is an n-column by p-row array, c is an m-
element input vector, and d is an p-element input vector with p ≤ n ≤ m+p. If B has

full row rank p and the array has full column rank n, then a unique solution
exists.

LA_ LEAST_SQUARE_EQUALITY is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_LEAST_SQUARE_EQUALITY(A, B, C, D [, /DOUBLE]
[, RESIDUAL=variable])

Return Value

The result (x) is an n-element vector.

Arguments

A

The n-by-m array used in the least-squares minimization.

Output Type LAPACK Routine

Float sgglse

Double dgglse

Complex cgglse

Double complex zgglse

Table 41: LAPACK Routine Basis for LA_LEAST_SQUARE_EQUALITY

A

B 
 
IDL Reference Guide LA_LEAST_SQUARE_EQUALITY

1074
B

The n-by-p array used in the equality constraint.

C

An m-element input vector containing the right-hand side of the least-squares system.

D

A p-element input vector containing the right-hand side of the equality constraint.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if A is double precision, otherwise the default is DOUBLE = 0.

RESIDUAL

Set this keyword to a named variable in which to return a scalar giving the residual
sum-of-squares for Result. If n = m + p then RESIDUAL will be zero.

Examples

Given the following system of equations:

2t + 5u + 3v + 4w = 9
7t + u + 3v + 5w = 1
4t + 3u + 6v + 2w = 2

with constraints,

-3t + u + 2v + 4w = -4
 2t + 5u + 9v + 1w = 4

find the solution using the following program:

PRO ExLA_LEAST_SQUARE_EQUALITY
; Define the coefficient array:
a = [[2, 5, 3, 4], $

[7, 1, 3, 5], $
[4, 3, 6, 2]]
LA_LEAST_SQUARE_EQUALITY IDL Reference Guide

 1075
; Define the constraint array:
b = [[-3, 1, 2, 4], $

[2, 5, 9, 1]]

; Define the right-hand side vector c:
c = [9, 1, 2]

; Define the constraint right-hand side d:
d = [-4, 4]

; Find and print the minimum norm solution of a:
x = LA_LEAST_SQUARE_EQUALITY(a, b, c, d)
PRINT, 'LA_LEAST_SQUARE_EQUALITY solution:'
PRINT, x
END

When this program is compiled and run, IDL prints:

LA_LEAST_SQUARE_EQUALITY solution:
 0.651349 2.72695 -1.14638 -0.620036

Version History

Introduced 5.6

See Also

LA_GM_LINEAR_MODEL, LA_LEAST_SQUARES
IDL Reference Guide LA_LEAST_SQUARE_EQUALITY

1076
LA_LEAST_SQUARES

The LA_LEAST_SQUARES function is used to solve the linear least-squares
problem:

Minimizex ||Ax - b||2

where A is a (possibly rank-deficient) n-column by m-row array, b is an m-element
input vector, and x is the n-element solution vector. There are three possible cases:

• If m ≥ n and the rank of A is n, then the system is overdetermined and a unique
solution may be found, known as the least-squares solution.

• If m < n and the rank of A is m, then the system is under determined and an
infinite number of solutions satisfy Ax - b = 0. In this case, the solution is
found which minimizes ||x||2, known as the minimum norm solution.

• If A is rank deficient, such that the rank of A is less than MIN(m, n), then the
solution is found which minimizes both ||Ax - b||2 and ||x||2, known as the
minimum-norm least-squares solution.

The LA_LEAST_SQUARES function may also be used to solve for multiple systems
of least squares, with each column of b representing a different set of equations. In
this case, the result is a k-by-n array where each of the k columns represents the
solution vector for that set of equations.

LA_ LEAST_SQUARES is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Output Type LAPACK Routines

Float sgels, sgelsy, sgelss, sgelsd

Double dgels, dgelsy, dgelss, dgelsd

Complex cgels, cgelsy, cgelss, cgelsd

Double complex zgels, zgelsy, zgelss, zgelsd

Table 42: LAPACK Routine Basis for LA_LEAST_SQUARES
LA_LEAST_SQUARES IDL Reference Guide

 1077
Syntax

Result = LA_LEAST_SQUARES(A, B [, /DOUBLE] [, METHOD=value]
[, RANK=variable] [, RCONDITION=value] [, RESIDUAL=variable]
[, STATUS=variable])

Return Value

The result is an n-element vector or k-by-n array.

Arguments

A

The n-by-m array used in the least-squares system.

B

An m-element input vector containing the right-hand side of the linear least-squares
system, or a k-by-m array, where each of the k columns represents a different least-
squares system.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if A is double precision, otherwise the default is DOUBLE = 0.

METHOD

Set this keyword to indicate which computation method to use. Possible values are:

• METHOD = 0 (the default): Assume that array A has full rank equal to
min(m, n). If m ≥ n, find the least-squares solution to the overdetermined
system. If m < n, find the minimum norm solution to the under determined
system. Both cases use QR or LQ factorization of A.

• METHOD = 1: Assume that array A may be rank deficient; use a complete
orthogonal factorization of A to find the minimum norm least-squares solution.
IDL Reference Guide LA_LEAST_SQUARES

1078
• METHOD = 2: Assume that array A may be rank deficient; use singular value
decomposition (SVD) to find the minimum norm least-squares solution.

• METHOD = 3: Assume that array A may be rank deficient; use SVD with a
divide-and-conquer algorithm to find the minimum norm least-squares
solution. The divide-and-conquer method is faster than regular SVD, but may
require more memory.

RANK

Set this keyword to a named variable in which to return the effective rank of A. If
METHOD = 0 or the array is full rank, then RANK will have the value MIN(m, n).

RCONDITION

Set this keyword to the reciprocal condition number used as a cutoff value in
determining the effective rank of A. Arrays with condition numbers larger than
1/RCONDITION are assumed to be rank deficient. If RCONDITION is set to zero or
omitted, then array A is assumed to be of full rank. This keyword is ignored for
METHOD = 0.

RESIDUAL

If m > n and the rank of A is n (the system is overdetermined), then set this keyword
to a named variable in which to return the residual sum-of-squares for Result. If B is
an m-element vector then RESIDUAL will be a scalar; if B is a k-by-m array then
RESIDUAL will be a k-element vector containing the residual sum-of-squares for
each system of equations. If m ≤ n or A is rank deficient (rank < n) then the values in
RESIDUAL will be zero.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: For METHOD=2 or METHOD=3, this indicates that the SVD
algorithm failed to converge, and STATUS off-diagonal elements of an
intermediate bidiagonal form did not converge to zero. For METHOD=0 or
METHOD=1 the STATUS will always be zero.
LA_LEAST_SQUARES IDL Reference Guide

 1079
Examples

Given the following under determined system of equations:

2t + 5u + 3v + 4w = 3
7t + u + 3v + 5w = 1
4t + 3u + 6v + 2w = 6

The following program can be used to find the solution:

PRO ExLA_LEAST_SQUARES
; Define the coefficient array:
a = [[2, 5, 3, 4], $

[7, 1, 3, 5], $
[4, 3, 6, 2]]

; Define the right-hand side vector b:
b = [3, 1, 6]

; Find and print the minimum norm solution of a:
x = LA_LEAST_SQUARES(a, b)
PRINT, 'LA_LEAST_SQUARES solution:', x
END

When this program is compiled and run, IDL prints:

LA_LEAST_SQUARES solution:
-0.0376844 0.350628 0.986164 -0.409066

Version History

Introduced 5.6

See Also

LA_GM_LINEAR_MODEL, LA_LEAST_SQUARE_EQUALITY
IDL Reference Guide LA_LEAST_SQUARES

1080
LA_LINEAR_EQUATION

The LA_LINEAR_EQUATION function uses LU decomposition to solve a system of
linear equations, AX = B, and provides optional error bounds and backward error
estimates.

The LA_LINEAR_EQUATION function may also be used to solve for multiple
systems of linear equations, with each column of B representing a different set of
equations. In this case, the result is a k-by-n array where each of the k columns
represents the solution vector for that set of equations.

This routine is written in the IDL language. Its source code can be found in the file
la_linear_equation.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = LA_LINEAR_EQUATION(Array, B [, BACKWARD_ERROR=variable]
[, /DOUBLE] [, FORWARD_ERROR=variable] [, STATUS=variable])

Return Value

The result is an n-element vector or k-by-n array.

Arguments

Array

The n-by-n array of the linear system AX = B.

B

An n-element input vector containing the right-hand side of the linear system, or a k-
by-n array, where each of the k columns represents a different linear system.

Keywords

BACKWARD_ERROR

Set this keyword to a named variable that will contain the relative backward error
estimate for each linear system. If B is a vector containing a single linear system, then
BACKWARD_ERROR will be a scalar. If B is an array containing k linear systems,
LA_LINEAR_EQUATION IDL Reference Guide

 1081
then BACKWARD_ERROR will be a k-element vector. The backward error is the
smallest relative change in any element of A or B that makes X an exact solution.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the default is DOUBLE = 0.

FORWARD_ERROR

Set this keyword to a named variable that will contain the estimated forward error
bound for each linear system. If B is a vector containing a single linear system, then
FORWARD_ERROR will be a scalar. If B is an array containing k linear systems,
then FORWARD_ERROR will be a k-element vector. For each linear system, if Xtrue
is the true solution corresponding to X, then the forward error is an estimated upper
bound for the magnitude of the largest element in (X - Xtrue) divided by the
magnitude of the largest element in X.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: The computation failed because one of the diagonal elements of
the LU decomposition is zero. The STATUS value specifies which value along
the diagonal (starting at one) is zero.

Note
If STATUS is not specified, any error messages will be output to the screen.

Examples

Given the system of equations:

4u + 16000v + 17000w = 100.1
2u + 5v + 8w = 0.1
3u + 6v + 10w = 0.01
IDL Reference Guide LA_LINEAR_EQUATION

1082
The following program can be used to find the solution:

PRO ExLA_LINEAR_EQUATION
; Define the coefficient array:
a = [[4, 16000, 17000], $

[2, 5, 8], $
[3, 6, 10]]

; Define the right-hand side vector b:
b = [100.1, 0.1, 0.01]

; Compute and print the solution to ax=b:
x = LA_LINEAR_EQUATION(a, b)
PRINT, 'LA_LINEAR_EQUATION solution:', X
end

When this program is compiled and run, IDL prints:

LA_LINEAR_EQUATION solution:
-0.397432 -0.334865 0.321148

The exact solution to 6 decimal places is [-0.397432, -0.334865, 0.321149].

Version History

Introduced 5.6

See Also

LA_LUDC, LA_LUMPROVE, LA_LUSOL
LA_LINEAR_EQUATION IDL Reference Guide

 1083
LA_LUDC

The LA_LUDC procedure computes the LU decomposition of an n-column by m-row
array as:

A = P L U

where P is a permutation matrix, L is lower trapezoidal with unit diagonal elements
(lower triangular if n = m), and U is upper trapezoidal (upper triangular if n = m).

LA_LUDC is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

LA_LUDC, Array, Index [, /DOUBLE] [, STATUS=variable]

Arguments

Array

A named variable containing the real or complex array to decompose. This procedure
returns Array as its LU decomposition.

Index

An output vector with MIN(m, n) elements that records the row permutations which
occurred as a result of partial pivoting. For 1 < j < MIN(m,n), row j of the matrix was
interchanged with row Index[j].

Output Type LAPACK Routine

Float sgetrf

Double dgetrf

Complex cgetrf

Double complex zgetrf

Table 43: LAPACK Routine Basis for LA_LUDC
IDL Reference Guide LA_LUDC

1084
Note
Row numbers within Index start at one rather than zero.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the default is DOUBLE = 0.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: One of the diagonal elements of U is zero. The STATUS value
specifies which value along the diagonal (starting at one) is zero.

Note
If STATUS is not specified, any error messages will output to the screen.

Examples

The following example uses the LU decomposition on a given array, then determines
the residual error of using the resulting lower and upper arrays to recompute the
original array:

PRO ExLA_LUDC
; Create a random array:
n = 20
seed = 12321
array = RANDOMN(seed, n, n)

; Compute LU decomposition.
aludc = array ; make a copy
LA_LUDC, aludc, index

; Extract the lower and upper triangular arrays.
l = IDENTITY(n)
u = FLTARR(n, n)
LA_LUDC IDL Reference Guide

 1085
FOR j = 1,n - 1 DO l[0:j-1,j] = aludc[0:j-1,j]
FOR j=0,n - 1 DO u[j:*,j] = aludc[j:*,j]

; Reconstruct array, but with rows permuted.
arecon = l ## u
; Adjust from LAPACK back to IDL indexing.
Index = Index - 1
; Permute the array rows back into correct order.
; Note that we need to loop in reverse order.
FOR i = n - 1,0,-1 DO BEGIN & $

temp = arecon[*,i]
arecon[*, i] = arecon[*,index[i]]
arecon[*, index[i]] = temp

ENDFOR
PRINT, 'LA_LUDC Error:', MAX(ABS(arecon - array))
END

When this program is compiled and run, IDL prints:

LA_LUDC error: 4.76837e-007

Version History

Introduced 5.6

See Also

LA_LUMPROVE, LA_LUSOL, LUDC
IDL Reference Guide LA_LUDC

1086
LA_LUMPROVE

The LA_LUMPROVE function uses LU decomposition to improve the solution to a
system of linear equations, AX = B, and provides optional error bounds and backward
error estimates.

The LA_LUMPROVE function may also be used to improve the solutions for
multiple systems of linear equations, with each column of B representing a different
set of equations. In this case, the result is a k-by-n array where each of the k columns
represents the improved solution vector for that set of equations.

LA_LUMPROVE is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_LUMPROVE(Array, Aludc, Index, B, X
[, BACKWARD_ERROR=variable] [, /DOUBLE]
[, FORWARD_ERROR=variable])

Return Value

The result is an n-element vector or k-by-n array.

Arguments

Array

The original n-by-n array of the linear system.

Output Type LAPACK Routine

Float sgerfs

Double dgetrfs

Complex cgetrfs

Double complex zgetrfs

Table 44: LAPACK Routine Basis for LA_LUMPROVE
LA_LUMPROVE IDL Reference Guide

 1087
Aludc

The n-by-n LU decomposition of Array, created by the LA_LUDC procedure.

Index

An n-element input vector, created by the LA_LUDC procedure, containing the row
permutations which occurred as a result of partial pivoting.

B

An n-element input vector containing the right-hand side of the linear system, or a k-
by-n array, where each of the k columns represents a different linear system.

X

An n-element input vector, or a k-by-n array, containing the approximate solutions to
the linear system, created by the LA_LUSOL function.

Keywords

BACKWARD_ERROR

Set this keyword to a named variable that will contain the relative backward error
estimate for each linear system. If B is a vector containing a single linear system, then
BACKWARD_ERROR will be a scalar. If B is an array containing k linear systems,
then BACKWARD_ERROR will be a k-element vector. The backward error is the
smallest relative change in any element of A or B that makes X an exact solution.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the default is DOUBLE = 0.

FORWARD_ERROR

Set this keyword to a named variable that will contain the estimated forward error
bound for each linear system. If B is a vector containing a single linear system, then
FORWARD_ERROR will be a scalar. If B is an array containing k linear systems,
then FORWARD_ERROR will be a k-element vector. For each linear system, if Xtrue
is the true solution corresponding to X, then the forward error is an estimated upper
IDL Reference Guide LA_LUMPROVE

1088
bound for the magnitude of the largest element in (X - Xtrue) divided by the
magnitude of the largest element in X.

Examples

The solution to a given system of equations can be derived and improved by using the
following program:

PRO ExLA_LUMPROVE
; Define the coefficient array:

a= [[4, 16000, 17000], $
[2, 5, 8], $
[3, 6, 10]]

; Compute the LU decomposition:
aludc = a
; make a copy
LA_LUDC, aludc, index

; Define the right-hand side vector B:
b = [100.1, 0.1, 0.01]
; Find the solution to Ax=b:
x = LA_LUSOL(aludc, index, b)
PRINT, 'LA_LUSOL Solution:', x

; Improve the solution:
xnew = LA_LUMPROVE(a, aludc, index, b, x)
PRINT, 'LA_LUMPROVE Solution:', xnew
END

When this program is compiled and run, IDL prints:

LA_LUSOL Solution:
-0.397355 -0.334742 0.321033
LA_LUMPROVE Solution:
-0.397432 -0.334865 0.321148

The exact solution to 6 decimal places is [-0.397432, -0.334865, 0.321149].

Version History

Introduced 5.6

See Also

LA_LUDC, LA_LUSOL, LUMPROVE
LA_LUMPROVE IDL Reference Guide

 1089
LA_LUSOL

The LA_LUSOL function is used in conjunction with the LA_LUDC procedure to
solve a set of n linear equations in n unknowns, AX = B. The parameter A is not the
original array, but its LU decomposition, created by the routine LA_LUDC.

The LA_LUSOL function may also be used to solve for multiple systems of linear
equations, with each column of B representing a different set of equations. In this
case, the result is a k-by-n array where each of the k columns represents the solution
vector for that set of equations.

LA_LUSOL is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_LUSOL(A, Index, B [, /DOUBLE])

Return Value

The result is an n-element vector or k-by-n array.

Arguments

A

The n-by-n LU decomposition of an array, created by the LA_LUDC procedure.

Note
LA_LUSOL cannot accept any non-square output generated by LA_LUDC.

Output Type LAPACK Routine

Float sgetrs

Double dgetrs

Complex cgetrs

Double complex zgetrs

Table 45: LAPACK Routine Basis for LA_LUSOL
IDL Reference Guide LA_LUSOL

1090
Index

An n-element input vector, created by the LA_LUDC procedure, containing the row
permutations which occurred as a result of partial pivoting.

B

An n-element input vector containing the right-hand side of the linear system, or a k-
by-n array, where each of the k columns represents a different linear system.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if A is double precision, otherwise the default is DOUBLE = 0.

Examples

Given the system of equations:

4u + 16000v + 17000w = 100.1
2u + 5v + 8w = 0.1
3u + 6v + 10w = 0.01

find the solution can be derived by using the following program:

PRO ExLA_LUSOL
; Define the coefficient array:
a = [[4, 16000, 17000], $

[2, 5, 8], $
[3, 6, 10]]

; Compute the LU decomposition:
aludc = a
; make a copy
LA_LUDC, aludc, index

; Define the right-hand side vector B:
b = [100.1, 0.1, 0.01]

; Compute and print the solution to Ax=b:
x = LA_LUSOL(aludc, index, b)
PRINT, 'LA_LUSOL Solution:', x
END
LA_LUSOL IDL Reference Guide

 1091
When this program is compiled and run, IDL prints:

LA_LUSOL solution: -0.397355 -0.334742 0.321033

The exact solution to 6 decimal places is [-0.397432, -0.334865, 0.321149].

Note
UNIX users may see slightly different output results.

Version History

Introduced 5.6

See Also

LA_LINEAR_EQUATION, LA_LUDC, LA_LUMPROVE, LUSOL
IDL Reference Guide LA_LUSOL

1092
LA_SVD

The LA_SVD procedure computes the singular value decomposition (SVD) of an n-
columns by m-row array as the product of orthogonal and diagonal arrays:

A is real: A = U S VT

A is complex: A = U S VH

where U is an orthogonal array containing the left singular vectors, S is a diagonal
array containing the singular values, and V is an orthogonal array containing the right
singular vectors. The superscript T represents the transpose while the superscript H

represents the Hermitian, or transpose complex conjugate.

If n < m then U has dimensions (n x m), S has dimensions (n x n), and VH has
dimensions (n x n). If n ≥ m then U has dimensions (m x m), S has dimensions
(m x m), and VH has dimensions (n x m). The following diagram shows the array
dimensions:

LA_SVD is based on the following LAPACK routines:

Output Type
LAPACK Routine

QR Iteration Divide-and-conquer

Float sgesvd sgesdd

Double dgesvd dgesdd

Complex cgesvd cgesdd

Double complex zgesvd zgesdd

Table 46: LAPACK Routine Basis for LA_SVD

A U S V
T •• n m<=

A U S V
T •• n m≥=
LA_SVD IDL Reference Guide

 1093
For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

LA_SVD, Array, W, U, V [, /DOUBLE] [, /DIVIDE_CONQUER]
[, STATUS=variable]

Arguments

Array

The real or complex array to decompose.

W

On output, W is a vector with MIN(m, n) elements containing the singular values.

U

On output, U is an orthogonal array with MIN(m, n) columns and m rows used in the
decomposition of Array. If Array is complex then U will be complex, otherwise U
will be real.

V

On output, V is an orthogonal array with MIN(m, n) columns and n rows used in the
decomposition of Array. If Array is complex then V will be complex, otherwise V will
be real.

Note
To reconstruct Array, you will need to take the transpose or Hermitian of V.

Keywords

DIVIDE_CONQUER

If this keyword is set, then the divide-and-conquer method is used to compute the
singular vectors, otherwise, QR iteration is used. The divide-and-conquer method is
faster at computing singular vectors of large matrices, but uses more memory and
may produce less accurate singular values.
IDL Reference Guide LA_SVD

1094
DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the default is DOUBLE = 0.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: The computation did not converge. The STATUS value specifies
how many superdiagonals did not converge to zero.

Note
If STATUS is not specified, any error messages will output to the screen.

Examples

Construct a sample input array A, consisting of smoothed random values:

PRO ExLA_SVD
; Create a smoothed random array:
n = 100
m = 200
seed = 12321
a = SMOOTH(RANDOMN(seed, n, m, /DOUBLE), 5)

; Compute the SVD and check reconstruction error:
LA_SVD, a, w, u, v
arecon = u ## DIAG_MATRIX(w) ## TRANSPOSE(v)
PRINT, 'LA_SVD error:', MAX(ABS(arecon - a))

; Keep only the 15 largest singular values
wfiltered = w
wfiltered[15:*] = 0.0
; Reconstruct the array:
afiltered = u ## DIAG_MATRIX(wfiltered) ## TRANSPOSE(v)
percentVar = 100*(w^2)/TOTAL(w^2)
PRINT, 'LA_SVD Variance:', TOTAL(percentVar[0:14])
END

When this program is compiled and run, IDL prints:
LA_SVD IDL Reference Guide

 1095
LA_SVD error: 1.0103030e-014
LA_SVD variance: 82.802816

Note
More than 80% of the variance is contained in the 15 largest singular values.

Version History

Introduced 5.6

See Also

LA_CHOLDC, LA_LUDC, SVDC
IDL Reference Guide LA_SVD

1096
LA_TRIDC

The LA_TRIDC procedure computes the LU decomposition of a tridiagonal (n x n)
array as Array = L U, where L is a product of permutation and unit lower bidiagonal
arrays, and U is upper triangular with nonzero elements only in the main diagonal and
the first two superdiagonals.

LA_TRIDC is based on the following LAPACK routines:

For more details, see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

LA_TRIDC, AL, A, AU, U2, Index [, /DOUBLE] [, STATUS=variable]

Arguments

AL

A named vector of length (n - 1) containing the subdiagonal elements of an array.
This procedure returns AL as the (n - 1) elements of the lower bidiagonal array from
the LU decomposition.

A

A named vector of length n containing the main diagonal elements of an array. This
procedure returns A as the n diagonal elements of the upper array from the LU
decomposition.

Output Type LAPACK Routine

Float sgttrf

Double dgttrf

Complex cgttrf

Double complex zgttrf

Table 47: LAPACK Routine Basis for LA_TRIDC
LA_TRIDC IDL Reference Guide

 1097
AU

A named vector of length (n - 1) containing the superdiagonal elements of an array.
This procedure returns AU as the (n - 1) superdiagonal elements of the upper array.

U2

An output vector that contains the (n - 2) elements of the second superdiagonal of the
upper array.

Index

An output vector that records the row permutations which occurred as a result of
partial pivoting. For 1 < j < n, row j of the matrix was interchanged with row Index[j].

Note
Row numbers within Index start at one rather than zero.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if AL is double precision, otherwise the default is DOUBLE = 0.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: One of the diagonal elements of U is zero. The STATUS value
specifies which value along the diagonal (starting at one) is zero.

Note
If STATUS is not specified, any error messages will output to the screen.
IDL Reference Guide LA_TRIDC

1098
Examples

Create a test program to compute the LU decomposition of a tridiagonal array:

pro EX_LA_TRIDC
 ; Create a random tridiagonal array.
 n = 9
 seed = 12321
 AL = RANDOMN(seed, n-1)
 A = RANDOMN(seed, n)
 AU = RANDOMN(seed, n-1)

 ; Construct tridiagonal array.
 Array = DIAG_MATRIX(AL, -1) + DIAG_MATRIX(A) + $
 DIAG_MATRIX(AU, 1)

 ; Compute the LU decomposition.
 LA_TRIDC, AL, A, AU, U2, Index

 ; Adjust from LAPACK back to IDL indexing.
 Index = Index - 1

 ; Create upper and lower arrays.
 Upper = DIAG_MATRIX(A) + $
 DIAG_MATRIX(AU, 1) + DIAG_MATRIX(U2, 2)
 Lower = DIAG_MATRIX(AL, -1) + IDENTITY(n)

 ; To conserve storage, LA_TRIDC keeps all lower diagonal
 ; elements in AL, regardless of row. The Index array
 ; tells which subdiagonals need to be shifted down.
 ; Loop starts at 1 since there aren't any subdiagonals
 ; to the left of the first diagonal element.
 for i = 1,n-2 do begin
 if (Index[i] ne i) then $
 Lower[0:i-1,[i,i+1]] = Lower[0:i-1,[i+1,i]]
 endfor

 ; Permute the row order.
 for i = n-2, 0, -1 do begin
 if (Index[i] ne i) then $
 Lower[*,[i,i+1]] = Lower[*,[i+1,i]]
 endfor

 ; Reconstruct the array and check the difference:
 Arecon = Lower ## Upper
 print, 'LA_TRIDC error:', MAX(ABS(Arecon - Array))
end
LA_TRIDC IDL Reference Guide

 1099
When this program is compiled and run, IDL prints:

LA_TRIDC error: 1.50427e-008

Version History

Introduced 5.6

See Also

LA_TRIMPROVE, LA_TRISOL
IDL Reference Guide LA_TRIDC

1100
LA_TRIMPROVE

The LA_TRIMPROVE function improves the solution to a system of linear equations
with a tridiagonal array, AX = B, and provides optional error bounds and backward
error estimates.

The LA_TRIMPROVE function may also be used to improve the solutions for
multiple systems of linear equations, with each column of B representing a different
set of equations. In this case, the result is a k-by-n array where each of the k columns
represents the improved solution vector for that set of equations.

LA_TRIMPROVE is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_TRIMPROVE(AL, A, AU, DAL, DA, DAU, DU2, Index, B, X
[, BACKWARD_ERROR=variable] [, /DOUBLE]
[, FORWARD_ERROR=variable])

Return Value

The result is an n-element vector or k-by-n array.

Arguments

AL

A vector of length (n - 1) containing the subdiagonal elements of the original array.

Output Type LAPACK Routine

Float sgtrfs

Double dgtrfs

Complex cgtrfs

Double complex zgtrfs

Table 48: LAPACK Routine Basis for LA_TRIMPROVE
LA_TRIMPROVE IDL Reference Guide

 1101
A

A vector of length n containing the main diagonal elements of the original array.

AU

A vector of length (n - 1) containing the superdiagonal elements of the original array.

DAL

The (n - 1) elements of the lower bidiagonal array, created by the LA_TRIDC
procedure.

DA

The n diagonal elements of the upper triangular array, created by the LA_TRIDC
procedure.

DAU

The (n - 1) superdiagonal elements of the upper triangular array, created by the
LA_TRIDC procedure.

DU2

The (n - 2) elements of the second superdiagonal of the upper triangular array, created
by the LA_TRIDC procedure.

Index

An input vector, created by the LA_TRIDC procedure, containing the row
permutations which occurred as a result of partial pivoting.

B

An n-element input vector containing the right-hand side of the linear system, or a k-
by-n array, where each of the k columns represents a different linear system.

X

An n-element input vector, or a k-by-n array, containing the approximate solutions to
the linear system, created by the LA_TRISOL function.
IDL Reference Guide LA_TRIMPROVE

1102
Keywords

BACKWARD_ERROR

Set this keyword to a named variable that will contain the relative backward error
estimate for each linear system. If B is a vector containing a single linear system, then
BACKWARD_ERROR will be a scalar. If B is an array containing k linear systems,
then BACKWARD_ERROR will be a k-element vector. The backward error is the
smallest relative change in any element of A or B that makes X an exact solution.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if AL is double precision, otherwise the default is DOUBLE = 0.

FORWARD_ERROR

Set this keyword to a named variable that will contain the estimated forward error
bound for each linear system. If B is a vector containing a single linear system, then
FORWARD_ERROR will be a scalar. If B is an array containing k linear systems,
then FORWARD_ERROR will be a k-element vector. For each linear system, if Xtrue
is the true solution corresponding to X, then the forward error is an estimated upper
bound for the magnitude of the largest element in (X - Xtrue) divided by the
magnitude of the largest element in X.

Examples

Given the tridiagonal system of equations:

-4t + u = 6
2t - 4u + v = -8

2u - 4v + w = -5
2v -4w = 8

the solution can be found and improved by using the following program:

PRO ExLA_TRIMPROVE
; Define array a:
aupper = [1, 1, 1]
adiag = [-4, -4, -4, -4]
alower = [2, 2, 2]
; Define right-hand side vector b:
b = [6, -8, -5, 8]
LA_TRIMPROVE IDL Reference Guide

 1103
; Decompose a:
dlower = alower
darray = adiag
dupper = aupper
LA_TRIDC, dlower, darray, dupper, u2, index

; Compute and improve the solution:
x = LA_TRISOL(dlower, darray, dupper, u2, index, b)
xnew = LA_TRIMPROVE(Alower, Adiag, Aupper, $

dlower, darray, dupper, u2, index, b, x)
PRINT, 'LA_TRISOL improved solution:'
PRINT, xnew
END

When this program is compiled and run, IDL prints:

LA_TRISOL improved solution:
-1.00000 2.00000 2.00000 -1.00000

Version History

Introduced 5.6

See Also

LA_TRIDC, LA_TRISOL
IDL Reference Guide LA_TRIMPROVE

1104
LA_TRIQL

The LA_TRIQL procedure uses the QL and QR variants of the implicitly-shifted QR
algorithm to compute the eigenvalues and eigenvectors of a symmetric tridiagonal
array. The LA_TRIRED routine can be used to reduce a real symmetric (or complex
Hermitian) array to tridiagonal form suitable for input to this procedure.

LA_TRIQL is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

LA_TRIQL, D, E [, A] [, /DOUBLE] [, STATUS=variable]

Arguments

D

A named vector of length n containing the real diagonal elements, optionally created
by the LA_TRIRED procedure. Upon output, D is replaced by a real vector of length
n containing the eigenvalues.

E

The (n - 1) real subdiagonal elements, optionally created by the LA_TRIRED
procedure. On output, the values within E are destroyed.

A

An optional named variable that returns the eigenvectors as a set of n row vectors. If
the eigenvectors of a tridiagonal array are desired, A should be input as an identity

Output Type LAPACK Routine

Float ssteqr

Double dsteqr

Complex csteqr

Double complex zsteqr

Table 49: LAPACK Routine Basis for LA_TRIQL
LA_TRIQL IDL Reference Guide

 1105
array. If the eigenvectors of an array that has been reduced by LA_TRIRED are
desired, A should be input as the Array output from LA_TRIRED. If A is not input,
then eigenvectors are not computed. A may be either real or complex.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
DOUBLE = 0 if none of the inputs are double precision. If A is not input, then the
default is /DOUBLE if D is double precision. If A is input, then the default is
/DOUBLE if A is double precision (real or complex).

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: The algorithm failed to find all eigenvalues in 30n iterations. The
STATUS value specifies how many elements of E have not converged to zero.

Note
If STATUS is not specified, any error messages will be output to the screen.

Examples

The following example program computes the eigenvalues and eigenvectors of a
given symmetric array:

PRO ExLA_TRIQL
; Create a symmetric random array:
n = 4
seed = 12321
Array = RANDOMN(seed, n, n)
array = array + TRANSPOSE(array)

; Reduce to tridiagonal form
q = array ; make a copy
LA_TRIRED, q, d, e

; Compute eigenvalues and eigenvectors
IDL Reference Guide LA_TRIQL

1106
eigenvalues = d
eigenvectors = q
LA_TRIQL, eigenvalues, e, eigenvectors
PRINT, 'LA_TRIQL eigenvalues:'
PRINT, eigenvalues
END

When this program is compiled and run, IDL prints:

LA_TRIQL eigenvalues:
-2.87710 -0.663354 2.92018 3.59648

Version History

Introduced 5.6

See Also

LA_TRIRED, TRIQL
LA_TRIQL IDL Reference Guide

 1107
LA_TRIRED

The LA_TRIRED procedure reduces a real symmetric or complex Hermitian array to
real tridiagonal form T. If the array is real symmetric then the decomposition is
A = Q T QT, where Q is orthogonal. If the array is complex Hermitian then the
decomposition is A = Q T QH, where Q is unitary. The superscript T represents the
transpose while superscript H represents the Hermitian, or transpose complex
conjugate.

LA_TRIRED is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

LA_TRIRED, Array, D, E [, /DOUBLE] [, /UPPER]

Arguments

Array

A named variable containing the real or complex array to decompose. Only the lower
triangular portion of Array is used (or upper if the /UPPER keyword is set). This
procedure returns Array as the real orthogonal (or complex unitary) Q array used to
reduce the original array to tridiagonal form.

D

An n-element output vector containing the real diagonal elements of the tridiagonal
array. Note that D is always real.

Output Type LAPACK Routine

Float ssytrd, sorgtr

Double dsytrd, dorgtr

Complex chetrd, cungtr

Double complex zhetrd, zungtr

Table 50: LAPACK Routine Basis for LA_TRIRED
IDL Reference Guide LA_TRIRED

1108
E

An (n - 1) element output vector containing the real subdiagonal elements of the
tridiagonal array. Note that E is always real.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real) result. Set DOUBLE = 0 to use single-precision for computations and
to return a single-precision (real) result. The default is /DOUBLE if Array is double
precision, otherwise the default is DOUBLE = 0.

UPPER

If this keyword is set, then only the upper triangular portion of Array is used, and the
upper triangular array is returned. The default is to use the lower triangular portion
and return the lower triangular array.

Examples

See LA_TRIQL for an example of using this procedure.

Version History

Introduced 5.6

See Also

LA_TRIQL, TRIRED
LA_TRIRED IDL Reference Guide

 1109
LA_TRISOL

The LA_TRISOL function is used in conjunction with the LA_TRIDC procedure to
solve a set of n linear equations in n unknowns, AX = B, where A is a tridiagonal
array. The parameter A is input not as the original array, but as its LU decomposition,
created by the routine LA_TRIDC.

The LA_TRISOL function may also be used to solve for multiple systems of linear
equations, with each column of B representing a different set of equations. In this
case, the result is a k-by-n array where each of the k columns represents the solution
vector for that set of equations.

LA_TRISOL is based on the following LAPACK routines:

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_TRISOL(AL, A, AU, U2, Index, B [, /DOUBLE])

Return Value

The result is an n-element vector or k-by-n array.

Arguments

AL

The (n - 1) elements of the lower bidiagonal array, created by the LA_TRIDC
procedure.

Output Type LAPACK Routine

Float sgttrs

Double dgttrs

Complex cgttrs

Double complex zgttrs

Table 51: LAPACK Routine Basis for LA_TRISOL
IDL Reference Guide LA_TRISOL

1110
A

The n diagonal elements of the upper triangular array, created by the LA_TRIDC
procedure.

AU

The (n - 1) superdiagonal elements of the upper triangular array, created by the
LA_TRIDC procedure.

U2

The (n - 2) elements of the second superdiagonal of the upper triangular array, created
by the LA_TRIDC procedure.

Index

An input vector, created by the LA_TRIDC procedure, containing the row
permutations which occurred as a result of partial pivoting.

B

An n-element input vector containing the right-hand side of the linear system, or a k-
by-n array, where each of the k columns represents a different linear system.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if AL is double precision, otherwise the default is DOUBLE = 0.

Examples

For an example of using this routine see LA_TRIMPROVE.

Version History

Introduced 5.6
LA_TRISOL IDL Reference Guide

 1111
See Also

LA_TRIDC, LA_TRIMPROVE, TRISOL
IDL Reference Guide LA_TRISOL

1112
LABEL_DATE

The LABEL_DATE function can be used, in conjunction with the
[XYZ]TICKFORMAT keyword to IDL plotting routines, to easily label axes with
dates and times.

This routine is written in the IDL language. Its source code can be found in the file
label_date.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = LABEL_DATE([DATE_FORMAT=string/string array]
[, AM_PM=2-element vector of strings]
[, DAYS_OF_WEEK=7-element vector of strings]
[, MONTHS=12-element vector of strings] [, OFFSET=value] [, /ROUND_UP])

and then,

PLOT, x, y, XTICKFORMAT = 'LABEL_DATE'

Return Value

Returns a date formatting definition.

Arguments

If LABEL_DATE is being called to initialize string formats, it should be called with
no arguments and the DATE_FORMAT keyword should be set.

Keywords

Note
The settings for LABEL_DATE remain in effect for all subsequent calls to
LABEL_DATE. To restore any default settings, call LABEL_DATE again with the
appropriate keyword set to either a null string ('') or to 0, depending upon the data
type of that keyword.

AM_PM

Set this keyword to a two-element string array that contains the names to be used with
'%A'. The default is ['am','pm'].
LABEL_DATE IDL Reference Guide

 1113
DATE_FORMAT

Set this keyword to a format string or array of format strings. Each string corresponds
to an axis level as provided by the [XYZ]TICKUNITS keyword to the plotting
routine. If there are fewer strings than axis levels, then the strings are cyclically
repeated. A string can contain any of the following codes:

Other items you can include can consist of:

• Any other text characters in the format string.

• Any vector font positioning and font change commands. For more information,
see “Embedded Formatting Commands” in Appendix H.

If DATE_FORMAT is not specified then the default is the standard 24-character
system format, '%W %M %D %H:%I:%S %Y'.

Code Description

%M Month name.

%N Month number (2 digits).

%D Day of month (2 digits).

%Y Year (4 digits, or 5 digits for negative years).

%Z Last 2 digits of the year.

%W Day of the week.

%A AM or PM (%H is then 12-hour instead of 24-hour).

%H Hours (2 digits).

%I Minutes (2 digits).

%S Seconds (2 digits), followed optionally by %n where n
is an integer 0-9 representing the number of digits
after the decimal point for seconds; the default is no
decimal places.

%% Represents the % character.

Table 52: DATE_FORMAT Codes
IDL Reference Guide LABEL_DATE

1114
The following table contains some examples of DATE_FORMAT strings and the
resulting output:

DAYS_OF_WEEK

Set this keyword to a seven-element string array that contains the names to be used
with '%W'. The default is the three-letter English abbreviations, ['Sun, 'Mon', 'Tue',
'Wed', 'Thu', 'Fri', 'Sat'].

MONTHS

Set this keyword to a twelve-element string array that contains the names to be used
with '%M'. The default is the three-letter English abbreviations, ['Jan', 'Feb',…,
'Dec'].

OFFSET

Set this keyword to a value representing the offset to be added to each tick value
before conversion to a label. This keyword is usually used when your axis values are
measured relative to a certain starting time. In this case, OFFSET should be set to the
Julian date of the starting time.

ROUND_UP

Set this keyword to force times to be rounded up to the smallest time unit that is
present in the DATE_FORMAT string. The default is for times to be truncated to the
smallest time unit.

DATE_FORMAT String Example Result

'%D/%N/%Y' 11/12/1993

'%M!C%Y'

Note - !C is the code for a newline
character.

Dec

1993

'%H:%I:%S' 21:33:58

'%H:%I:%S%3' 21:33:58.125

'%W, %M %D, %H %A' Sat, Jan 01, 9 pm

'%S seconds' 60 seconds

Table 53: DATE_FORMAT Examples
LABEL_DATE IDL Reference Guide

 1115
Examples

This example creates a sample plot that has a date axis from Jan 1 to June 30, 2000:

; Create format strings for a two-level axis:
dummy = LABEL_DATE(DATE_FORMAT=['%D-%M','%Y'])

;Generate the Date/Time data
time = TIMEGEN(START=JULDAY(1,1,2000), FINAL=JULDAY(6,30,2000))

;Generate the Y-axis data
data = RANDOMN(seed, N_ELEMENTS(time))

;Plot the data
PLOT, time, data, XTICKUNITS = ['Time', 'Time'], $
 XTICKFORMAT='LABEL_DATE', XSTYLE=1, XTICKS=6, YMARGIN=[6,2]

For more examples, see “[XYZ]TICKFORMAT” on page 3883.

Version History

Introduced: Pre 4.0

See Also

“[XYZ]TICKFORMAT” on page 3883, CALDAT, JULDAY, SYSTIME,
TIMEGEN, “Format Codes” in Chapter 10 of the Building IDL Applications manual.
IDL Reference Guide LABEL_DATE

1116
LABEL_REGION

The LABEL_REGION function consecutively labels all of the regions, or blobs, of a
bi-level image with a unique region index. This process is sometimes called “blob
coloring”. A region is a set of non-zero pixels within a neighborhood around the pixel
under examination.

The argument for LABEL_REGION is an n-dimensional bi-level integer type
array—only zero and non-zero values are considered.

Statistics on each of the regions may be easily calculated using the HISTOGRAM
function as shown in the examples below.

Syntax

Result = LABEL_REGION(Data [, /ALL_NEIGHBORS] [, /ULONG])

Return Value

The result of the function is an integer array of the same dimensions with each pixel
containing its region index. A region index of zero indicates that the original pixel
was zero and belongs to no region. Output values range from 0 to the number of
regions.

Arguments

Data

A n-dimensional image to be labeled. Data is converted to integer type if necessary.
Pixels at the edges of Data are considered to be zero.

Keywords

ALL_NEIGHBORS

Set this keyword to indicate that all adjacent neighbors to a given pixel should be
searched. (This is sometimes called 8-neighbor searching when the image is 2-
dimensional). The default is to search only the neighbors that are exactly one unit in
distance from the current pixel (sometimes called 4-neighbor searching when the
image is 2-dimensional).
LABEL_REGION IDL Reference Guide

 1117
EIGHT

This keyword is now obsolete. It has been replaced by the ALL_NEIGHBORS
keyword (because this routine now handles N-dimensional data).

ULONG

Set this keyword to specify that the output array should be an unsigned long integer.

Examples

Example 1

This example counts the number of distinct regions within an image, and their
population. Note that region 0 is the set of zero pixels that are not within a region:

image = DIST(40)

; Get blob indices:
b = LABEL_REGION(image)

; Get population of each blob:
h = HISTOGRAM(b)
FOR i=0, N_ELEMENTS(h)-1 DO PRINT, 'Region ',i, $

', Population = ', h[i]

Example 2

This example also prints the average value and standard deviation of each region:

image = DIST(40)

; Get blob indices:
b = LABEL_REGION(image)

; Get population and members of each blob:
h = HISTOGRAM(b, REVERSE_INDICES=r)

; Each region
FOR i=0, N_ELEMENTS(h)-1 DO BEGIN

;Find subscripts of members of region i.
p = r[r[i]:r[i+1]-1]
IDL Reference Guide LABEL_REGION

1118
; Pixels of region i
q = image[p]
PRINT, 'Region ', i, $

', Population = ', h[i], $
', Standard Deviation = ', STDEV(q, mean), $
', Mean = ', mean

ENDFOR

Version History

Introduced: Pre 4.0

See Also

ANNOTATE, DEFROI, HISTOGRAM, SEARCH2D
LABEL_REGION IDL Reference Guide

 1119
LADFIT

The LADFIT function fits the paired data {xi, yi} to the linear model, y = A + Bx,
using a “robust” least absolute deviation method.

The figure below displays a two-dimensional distribution that is fitted to the model
y = A + Bx, using a minimized Chi-square error criterion (left) and a “robust” least
absolute deviation technique (right). The use of the Chi-square error statistic can
result in a poor fit due to an undesired sensitivity to outlying data.

This routine is written in the IDL language. Its source code can be found in the file
ladfit.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = LADFIT(X, Y [, ABSDEV=variable] [, /DOUBLE])

Return Value

The result is a two-element vector containing the model parameters, A and B.
IDL Reference Guide LADFIT

1120
Arguments

X

An n-element integer, single-, or double-precision floating-point vector. Note that the
X vector must be sorted into ascending order.

Y

An n-element integer, single-, or double-precision floating-point vector. Note that the
elements of the Y vector must be paired with the appropriate elements of X.

Keywords

ABSDEV

Set this keyword to a named variable that will contain the mean of the absolute
deviation of the Result and Y.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

; Define two n-element vectors of paired data:
X = [-3.20, 4.49, -1.66, 0.64, -2.43, -0.89, -0.12, 1.41, $

2.95, 2.18, 3.72, 5.26]
Y = [-7.14, -1.30, -4.26, -1.90, -6.19, -3.98, -2.87, -1.66, $

-0.78, -2.61, 0.31, 1.74]

; Sort the X values into ascending order, and sort the Y values to
; match the new order of the elements in X:
XX = X[SORT(X)]
YY = Y[SORT(X)]

; Compute the model parameters, A and B:
PRINT, LADFIT(XX, YY)

IDL prints:

-3.15301 0.930440

Version History

Introduced: 4.0
LADFIT IDL Reference Guide

 1121
See Also

COMFIT, CURVEFIT, LINFIT, SORT
IDL Reference Guide LADFIT

1122
LAGUERRE

The LAGUERRE function returns the value of the associated Laguerre polynomial
. The associated Laguerre polynomials are solutions to the differential

equation:

with orthogonality constraint:

Laguerre polynomials are used in quantum mechanics, for example, where the wave
function for the hydrogen atom is given by the Laguerre differential equation.

This routine is written in the IDL language. Its source code can be found in the file
laguerre.pro in the lib subdirectory of the IDL distribution.

This routine is written in the IDL language. Its source code can be found in the file
laguerre.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = LAGUERRE(X, N [, K] [, COEFFICIENTS=variable] [, /DOUBLE])

Return Value

This function returns a scalar or array with the same dimensions as X. If X is double-
precision or if the DOUBLE keyword is set, the result is double-precision complex,
otherwise the result is single-precision complex.

Arguments

X

The value(s) at which is evaluated. X can be either a scalar or an array.

Lk
n x()

xy″ k 1 x–+()y′ ny+ + 0=

e x– xk 1+ L k
m x()Lk

n x() xd
0

∞

∫
n k+()!

n!
------------------δmn=

Lk
n x()
LAGUERRE IDL Reference Guide

 1123
N

A scalar integer, N ≥ 0, specifying the order n of . If N is of type float, it will be
truncated.

K

A scalar, K ≥ 0, specifying the order k of . If K is not specified, the default
K = 0 is used and the Laguerre polynomial, Ln(x), is returned.

Keywords

COEFFICIENTS

Set this keyword to a named variable that will contain the polynomial coefficients in
the expansion C[0] + C[1]x + C[2]x2 +

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

To compute the value of the Laguerre polynomial at the following X values:

;Define the parametric X values:
X = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]

;Compute the Laguerre polynomial of order N=2, K=1:
result = LAGUERRE(X, 2, 1)

;Print the result:
PRINT, result

IDL prints:

3.00000 2.42000 1.88000 1.38000 0.920000 0.500000

This is the exact solution vector to six-decimal accuracy.

Version History

Introduced: 5.4

Lk
n x()

Lk
n x()
IDL Reference Guide LAGUERRE

1124
See Also

LEGENDRE, SPHER_HARM
LAGUERRE IDL Reference Guide

 1125
LEEFILT

The LEEFILT function performs the Lee filter algorithm on an image array using a
box of size 2N+1. This function can also be used on vectors. The Lee technique
smooths additive image noise by generating statistics in a local neighborhood and
comparing them to the expected values.

This routine is written in the IDL language. It is based upon the algorithm published
by Lee (Optical Engineering 25(5), 636-646, May 1986). Its source code can be
found in the file leefilt.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = LEEFILT(A [, N [, Sig]] [, /DOUBLE] [, /EXACT])

Return Value

This function returns an array with the same dimensions as A. If any of the inputs are
double-precision or if the DOUBLE keyword is set, the result is double-precision,
otherwise the result is single-precision.

Arguments

A

The input image array or one-dimensional vector.

N

The size of the filter box is 2N+1. The default value is 5.

Sig

Estimate of the standard deviation. The default is 5. If Sig is negative, IDL
interactively prompts for a value of sigma, and displays the resulting image using
TVSCL (for arrays) or PLOT (for vectors). To end this cycle, enter a value of 0 (zero)
for sigma.
IDL Reference Guide LEEFILT

1126
Keywords

DOUBLE

Set this keyword to force the computations to be done in double-precision arithmetic.

EXACT

Set this keyword to apply a more accurate (but slower) implementation of the Lee
filter.

Version History

Introduced: Original

See Also

DIGITAL_FILTER, MEDIAN, SMOOTH, VOIGT
LEEFILT IDL Reference Guide

 1127
LEGENDRE

The LEGENDRE function returns the value of the associated Legendre polynomial
. The associated Legendre functions are solutions to the differential equation:

with orthogonality constraints:

The Legendre polynomials are the solutions to the Legendre equation with m = 0. For
positive m, the associated Legendre functions can be written in terms of the Legendre
polynomials as:

Associated polynomials for negative m are related to positive m by:

LEGENDRE is based on the routine plgndr described in section 6.8 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = LEGENDRE(X, L [, M] [, /DOUBLE])

Return Value

If all arguments are scalar, the function returns a scalar. If all arguments are arrays,
the function matches up the corresponding elements of X, L, and M, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other arguments are arrays, the function uses the scalar value with each element of
the arrays, and returns an array with the same dimensions as the smallest input array.

P
m

l
x()

1 x
2

–()y″ 2xy′– l l 1+() m
2

1 x
2

–()
-------------------– y 0=+

Pm

l
x()Pn

k
x() xd

1–

 +1

∫
2

2l 1+
-------------- l m+()!

l m–()!
-------------------δlkδmn=

Pm

l
x() 1–()m

1 x
2

–()
m 2⁄ d

m

dx
m

--------- Pl x()=

P m–

l
x() 1–()m l m–()!

l m+()!
-------------------Pm

l
x()=
IDL Reference Guide LEGENDRE

1128
If any of the arguments are double-precision or if the DOUBLE keyword is set, the
result is double-precision, otherwise the result is single-precision.

Arguments

X

The expression for which is evaluated. Values for X must be in the range –1 ≤
X ≤ 1.

L

An integer scalar or array, L ≥ 0, specifying the order l of . If L is of type float,
it will be truncated.

M

An integer scalar or array, –L ≤ M ≤ L, specifying the order m of . If M is not
specified, then the default M = 0 is used and the Legendre polynomial, Pl(x), is
returned. If M is of type float, it will be truncated.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

Example 1

Compute the value of the Legendre polynomial at the following X values:

; Define the parametric X values:
X = [-0.75, -0.5, -0.25, 0.25, 0.5, 0.75]

; Compute the Legendre polynomial of order L=2:
result = LEGENDRE(X, 2)

; Print the result:
PRINT, result

P m
l x()

P m
l x()

P m
l x()
LEGENDRE IDL Reference Guide

 1129
The result of this is:

 0.343750 -0.125000 -0.406250 -0.406250 -0.125000 0.343750

Example 2

Compute the value of the associated Legendre polynomial at the same X values:

; Compute the associated Legendre polynomial of order L=2, M=1:
result = LEGENDRE(X, 2, 1)
; Print the result:
PRINT, result

IDL prints:

 1.48824 1.29904 0.726184 -0.726184 -1.29904 -1.48824

This is the exact solution vector to six-decimal accuracy.

Version History

Introduced: 5.4

See Also

SPHER_HARM, LAGUERRE
IDL Reference Guide LEGENDRE

1130
LINBCG

The LINBCG function is used in conjunction with SPRSIN to solve a set of n sparse
linear equations with n unknowns using the iterative biconjugate gradient method.

LINBCG is based on the routine linbcg described in section 2.7 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Note
Numerical Recipes recommends using double-precision arithmetic to perform this
computation.

Syntax

Result = LINBCG(A, B, X [, /DOUBLE] [, ITOL={4 | 5 | 6 | 7}] [, TOL=value]
[, ITER=variable] [, ITMAX=value])

Return Value

The result is an n-element vector.

Arguments

A

A row-indexed sparse array created by the SPRSIN function.

B

An n-element vector containing the right-hand side of the linear system Ax=b.

X

An n-element vector containing the initial solution of the linear system.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
LINBCG IDL Reference Guide

 1131
ITOL

Use this keyword to specify which convergence test should be used. Set ITOL to one
of the following:

1. Iteration stops when  A ⋅ x - b/ b is less than the value specified by TOL.

2. Iteration stops when Ã-1⋅ (A ⋅ x - b)/Ã-1 ⋅ b (where Ã is a
“preconditioning” matrix close to A) is less than the value specified by TOL.

3. The routine uses its own estimate of error in x. Iteration stops when the
magnitude of the error divided by the magnitude of x is less than the value
specified by TOL. This is the default setting.

4. The same as 3, except that the routine uses the largest (in absolute value)
component of the error and the largest component of x rather than the vector
magnitudes.

TOL

Use this keyword to specify the desired convergence tolerance. For single-precision
calculations, the default value is 1.0 × 10-7. For double-precision values, the default is
1.0 × 10-14.

ITER

Use this keyword to specify an output variable that will be set to the number of
iterations performed.

ITMAX

The maximum allowed number of iterations. The default is n2.

Examples

; Begin with an array A:
A = [[5.0, 0.0, 0.0, 1.0, -2.0], $

[3.0, -2.0, 0.0, 1.0, 0.0], $
[4.0, -1.0, 0.0, 2.0, 0.0], $
[0.0, 3.0, 3.0, 1.0, 0.0], $
[-2.0, 0.0, 0.0, -1.0, 2.0]]

; Define a right-hand side vector B:
B = [7.0, 1.0, 3.0, 3.0, -4.0]

; Start with an initial guess at the solution:
X = REPLICATE(1.0, N_ELEMENTS(B))
IDL Reference Guide LINBCG

1132
; Solve the linear system Ax=b:
result = LINBCG(SPRSIN(A), B, X)

; Print the result:
PRINT, result

IDL prints:

1.00000 1.00000 8.94134e-008 -2.37107e-007 -1.00000

The exact solution is [1, 1, 0, 0, -1].

Version History

Introduced: 4.0

See Also

FULSTR, READ_SPR, SPRSAB, SPRSAX, SPRSIN, SPRSTP, WRITE_SPR
LINBCG IDL Reference Guide

 1133
LINDGEN

The LINDGEN function creates a longword integer array with the specified
dimensions. Each element of the array is set to the value of its one-dimensional
subscript.

Syntax

Result = LINDGEN(D1 [, ..., D8])

Return Value

Returns a longword integer array of the specified dimensions.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
IDL Reference Guide LINDGEN

1134
Examples

To create L, a 10-element by 10-element longword array where each element is set to
the value of its one-dimensional subscript, enter:

L = LINDGEN(10, 10)

Version History

Introduced: Original

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, L64INDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
LINDGEN IDL Reference Guide

 1135
LINFIT

The LINFIT function fits the paired data {xi, yi} to the linear model, y = A + Bx, by
minimizing the chi-square error statistic.

This routine is written in the IDL language. Its source code can be found in the file
linfit.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = LINFIT(X, Y [, CHISQ=variable] [, COVAR=variable] [, /DOUBLE]
[, MEASURE_ERRORS=vector] [, PROB=variable] [, SIGMA=variable]
[, YFIT=variable])

Return Value

The result is a two-element vector containing the linear model parameters [A, B].

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Y

An n-element integer, single-, or double-precision floating-point vector.

Keywords

CHISQ

Set this keyword to a named variable that will contain the value of the chi-square
goodness-of-fit.

COVAR

Set this keyword to a named variable that will contain the covariance matrix of the
coefficients.
IDL Reference Guide LINFIT

1136
Note
The COVAR matrix depends only upon the independent variable X and (optionally)
the MEASURE_ERRORS. The values do not depend upon Y. See section 15.4 of
Numerical Recipes in C (Second Edition) for details.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

MEASURE_ERRORS

Set this keyword to a vector containing standard measurement errors for each point
Y[i]. This vector must be the same length as X and Y.

Note
For Gaussian errors (e.g., instrumental uncertainties), MEASURE_ERRORS
should be set to the standard deviations of each point in Y. For Poisson or statistical
weighting, MEASURE_ERRORS should be set to SQRT(ABS(Y)).

PROB

Set this keyword to a named variable that will contain the probability that the
computed fit would have a value of CHISQ or greater. If PROB is greater than 0.1,
the model parameters are “believable”. If PROB is less than 0.1, the accuracy of the
model parameters is questionable.

SDEV

The SDEV keyword is obsolete and has been replaced by the MEASURE_ERRORS
keyword. Code that uses the SDEV keyword will continue to work as before, but new
code should use the MEASURE_ERRORS keyword. The definition of the
MEASURE_ERRORS keyword is identical to that of the SDEV keyword.

SIGMA

Set this keyword to a named variable that will contain the 1-sigma uncertainty
estimates for the returned parameters

Note
If MEASURE_ERRORS is omitted, then you are assuming that a straight line is the
correct model for your data, and therefore, no independent goodness-of-fit test is
possible. In this case, the values returned in SIGMA are multiplied by
SQRT(CHISQ/(N–M)), where N is the number of points in X, and M is the number
LINFIT IDL Reference Guide

 1137
of coefficients. See section 15.2 of Numerical Recipes in C (Second Edition) for
details.

YFIT

Set this keyword equal to a named variable that will contain the vector of calculated Y
values.

Examples

; Define two n-element vectors of paired data:
X = [-3.20, 4.49, -1.66, 0.64, -2.43, -0.89, -0.12, 1.41, $
 2.95, 2.18, 3.72, 5.26]
Y = [-7.14, -1.30, -4.26, -1.90, -6.19, -3.98, -2.87, -1.66, $
 -0.78, -2.61, 0.31, 1.74]

; Define an n-element vector of Poisson measurement errors:
measure_errors = SQRT(ABS(Y))

; Compute the model parameters, A and B, and print the result:
result = LINFIT(X, Y, MEASURE_ERRORS=measure_errors)
PRINT, result

IDL prints:

-3.16574 0.829856

Version History

Introduced: 4.0

See Also

COMFIT, CURVEFIT, GAUSSFIT, LADFIT, LMFIT, POLY_FIT, REGRESS,
SFIT, SVDFIT
IDL Reference Guide LINFIT

1138
LINKIMAGE

The LINKIMAGE procedure merges routines written in other languages with IDL at
run-time. Each call to LINKIMAGE defines a new system procedure or function by
specifying the routine’s name, the name of the file containing the code, and the entry
point name. The name of your routine is added to IDL’s internal system routine table,
making it available in the same manner as any other IDL built-in routine.
LINKIMAGE can also be used to add graphics device drivers.

Warning
Using LINKIMAGE requires intimate knowledge of the internals of IDL, and is not
for use by the novice user. We recommend use of CALL_EXTERNAL, which has a
simpler interface, instead of LINKIMAGE unless your application specifically
requires it. To use LINKIMAGE, you should be familiar with the material in the
IDL External Development Guide.

LINKIMAGE uses the dynamic linking interface supported by the operating system
to do its work. Programmers should be familiar with the services supported by their
system in order to better understand LINKIMAGE:

• Under UNIX, LINKIMAGE uses the dlopen() interface to the dynamic
linker in all cases except for HP-UX (which uses shl_load()) and AIX
(which uses load()).

• Under Windows, LINKIMAGE uses LoadLibrary() to load a 32-bit, Win32
DLL.

Note
Modules must be merged via LINKIMAGE before other procedures and functions
that call them are compiled, or the compilation of those routines will fail. Note that
because routines merged via LINKIMAGE are considered built-in routines by IDL,
declaring the routine with the FORWARD_FUNCTION statement will not
eliminate this restriction.

Syntax

LINKIMAGE, Name, Image [, Type [, Entry]] [, /DEVICE] [, /FUNCT]
[, /KEYWORDS] [, MAX_ARGS=value] [, MIN_ARGS=value]
LINKIMAGE IDL Reference Guide

 1139
Arguments

Name

A string containing the IDL name of the function, procedure or device routine which
is to be merged. When loading a device driver, Name contains the name of the global
DEVICE_DEF structure in the driver. Upon successful loading of the routine, a new
procedure or function with the given name will exist, or the new device driver will be
loaded.

Image

A string containing the full path specification of the dynamically loaded object file.
See your system documentation on sharable libraries or DLLs for details.

Type

An optional scalar integer parameter that contains 0 (zero) for a procedure, 1 (one)
for a function, and 2 for a device driver. The keyword parameters DEVICE and
FUNCT can also be used to indicate the type of routine being merged. The default
value is 0, for procedure.

Entry

An optional string that contains the name of the symbol which is the entry point of
the procedure or function. With some compilers or operating systems, this name may
require the addition of leading or trailing characters. For example, some UNIX C
compilers add a leading underscore to the beginning of a function name, and some
UNIX FORTRAN compilers add a trailing underscore.

If Entry is not supplied, LINKIMAGE will provide a default name by converting the
value suppled for Name to lower case and adding any special characters (leading or
trailing underscores) typical of the system.

Warning
Under Microsoft Windows operating systems, only cdecl functions can by used
with LINKIMAGE. Attempting to use routines with other calling conventions will
yield undefined results, including memory corruption or even IDL crashing.

The Windows operating system has two distinct system defined standards that
govern how routines pass arguments: stdcall, which is used by much of the
operating system as well as languages such as Visual Basic, and cdecl, which is
used widely for programming in the C language. These standards differ in how and
when arguments are pushed onto the system stack. The standard used by a given
IDL Reference Guide LINKIMAGE

1140
function is determined when the function is compiled, and can be controlled by the
programmer. LINKIMAGE can only be used with cdecl functions. Unfortunately,
there is no way for IDL to know which convention a given function uses, meaning
that LINKIMAGE will quietly accept an entry point of the wrong type. The
LINKIMAGE user is responsible for ensuring that Entry is a cdecl function.

Keywords

DEVICE

Set this keyword to indicate that the module being loaded contains a device driver.

FUNCT

Set this keyword to indicate that the module being loaded contains a function.

KEYWORDS

Set this keyword to indicate that the procedure or function being loaded accepts
keyword parameters.

MAX_ARGS

Set this keyword equal to the maximum number of non-keyword arguments the
procedure or function accepts. If this keyword is not present, the maximum number
of parameters is not checked when the routine is called.

Note
It is a very good idea to specify a value for MAX_ARGS. Passing the wrong
number of arguments to an external routine may cause unexpected results, including
causing IDL to crash. By forcing IDL to check the number of arguments before
passing them to the linked routine, you will avoid parameter mismatch problems.

MIN_ARGS

Set this keyword equal to the minimum number of non-keyword arguments accepted
by the procedure or function.

Obsolete Keywords

The following keywords are obsolete:

• DEFAULT
LINKIMAGE IDL Reference Guide

 1141
For information on obsolete keywords, See Appendix I, “Obsolete Features”.

Examples

To add a procedure called MY_PROC, whose entry symbol is named my_proc, that
is contained in the file /home/smith/my_proc.so:

LINKIMAGE, 'MY_PROC', '/home/smith/my_proc.so'

Version History

Introduced: Pre 4.0

See Also

CALL_EXTERNAL, SPAWN, and the IDL External Development Guide.
IDL Reference Guide LINKIMAGE

1142
LL_ARC_DISTANCE

The LL_ARC_DISTANCE function returns a two-element vector containing the
longitude and latitude [lon, lat] of a point given arc distance (-π ≤ Arc_Dist ≤ π), and
azimuth (Az), from a specified location Lon_lat0. Values are in radians unless the
keyword DEGREES is set.

This routine is written in the IDL language. Its source code can be found in the file
ll_arc_distance.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = LL_ARC_DISTANCE(Lon_lat0, Arc_Dist, Az [, /DEGREES])

Return Value

Returns a two-element vector containing the point longitude and latitude.

Arguments

Lon_lat0

A 2-element vector containing the longitude and latitude of the starting point. Values
are assumed to be in radians unless the keyword DEGREES is set.

Arc_Dist

The arc distance from Lon_lat0. The value must be between -π and +π. To express
distances in arc units, divide by the radius of the globe expressed in the original units.
For example, if the radius of the earth is 6371 km, divide the distance in km by 6371
to obtain the arc distance.

Az

The azimuth from Lon_lat0. The value is assumed to be in radians unless the
keyword DEGREES is set.

Keywords

DEGREES

Set this keyword to express all measurements and results in degrees.
LL_ARC_DISTANCE IDL Reference Guide

 1143
Examples

; Initial point specified in radians:
Lon_lat0 = [1.0, 2.0]

; Arc distance in radians:
Arc_Dist = 2.0

; Azimuth in radians:
Az = 1.0

Result = LL_ARC_DISTANCE(Lon_lat0, Arc_Dist, Az)
PRINT, Result

IDL prints:

2.91415 -0.622234

Version History

Introduced: Pre 4.0

See Also

MAP_SET
IDL Reference Guide LL_ARC_DISTANCE

1144
LMFIT

The LMFIT function does a non-linear least squares fit to a function with an arbitrary
number of parameters. LMFIT uses the Levenberg-Marquardt algorithm, which
combines the steepest descent and inverse-Hessian function fitting methods. The
function may be any non-linear function.

Iterations are performed until three consecutive iterations fail to change the chi
square value by more than the specified tolerance amount, or until a maximum
number of iterations have been performed. The LMFIT function returns a vector of
values for the dependent variables, as fitted by the function fit.

The initial guess of the parameter values should be as close to the actual values as
possible or the solution may not converge. Test the value of the variable specified by
the CONVERGENCE keyword to determine whether the algorithm converged, failed
to converge, or encountered a singular matrix.

This routine is written in the IDL language. Its source code can be found in the file
lmfit.pro in the lib subdirectory of the IDL distribution. LMFIT is based on the
routine mrqmin described in section 15.5 of Numerical Recipes in C: The Art of
Scientific Computing (Second Edition), published by Cambridge University Press,
and is used by permission.

Syntax

Result = LMFIT(X, Y, A [, ALPHA=variable] [, CHISQ=variable]
[, CONVERGENCE=variable] [, COVAR=variable] [, /DOUBLE] [, FITA=vector]
[, FUNCTION_NAME=string] [, ITER=variable] [, ITMAX=value]
[, ITMIN=value] [, MEASURE_ERRORS=vector] [, SIGMA=variable]
[, TOL=value])

Return Value

Returns a vector of values for the dependent variable, resulting from the function fit.

Arguments

X

A row vector of independent variables. LMFIT does not manipulate or use values in
X, it simply passes X to the user-written function.
LMFIT IDL Reference Guide

 1145
Y

A row vector containing the dependent variables.

A

A vector that contains the initial estimate for each coefficient. Upon return, A will
contain the final estimates for the coefficients.

Keywords

ALPHA

Set this keyword equal to a named variable that will contain the value of the curvature
matrix.

CHISQ

Set this keyword equal to a named variable that will contain the final value of the
chi-square goodness-of-fit.

CONVERGENCE

Set this keyword equal to a named variable that will indicate whether the LMFIT
algorithm converged. The possible returned values are:

• 1 = the algorithm converged.

• 0 = the algorithm did not converge.

• -1 = the algorithm encountered a singular matrix and did not converge.

Tip
If LMFIT fails to converge, try setting the DOUBLE keyword.

COVAR

Set this keyword equal to a named variable that will contain the value of the
covariance matrix.

Note
The COVAR matrix depends only upon the independent variable X and (optionally)
the MEASURE_ERRORS. The values do not depend upon Y. See section 15.4 of
Numerical Recipes in C (Second Edition) for details.
IDL Reference Guide LMFIT

1146
DOUBLE

Set this keyword to force the computations to be performed in double precision.

FITA

Set this keyword equal to a vector, with as many elements as A, which contains a zero
for each fixed parameter, and a non-zero value for elements of A to fit. If FITA is not
specified, all parameters are taken to be non-fixed.

FUNCTION_NAME

Use this keyword to specify the name of the function to fit. If this keyword is omitted,
LMFIT assumes that the IDL routine LMFUNCT is to be used. If LMFUNCT is not
already compiled, IDL compiles the function from the file lmfunct.pro, located in
the lib subdirectory of the IDL distribution. LMFUNCT is designed to fit a
quadratic equation.

The function to be fit must be written as an IDL function and compiled prior to
calling LMFIT. The function must accept a vector X (the independent variables) and a
vector A containing the fitted function’s parameter values. It must return an
N_ELEMENTS(A)+1-element vector in which the first (zeroth) element is the
evaluated function value and the remaining elements are the partial derivatives with
respect to each parameter in A.

Note
The returned value must be of the same data type as the input X value.

ITER

Set this keyword equal to a named variable that will contain the actual number of
iterations which were performed

ITMAX

Set this keyword equal to the maximum number of iterations. The default is 50.

ITMIN

Set this keyword equal to the minimum number of iterations. The default is 5.

MEASURE_ERRORS

Set this keyword to a vector containing standard measurement errors for each point
Y[i]. This vector must be the same length as X and Y.
LMFIT IDL Reference Guide

 1147
Note
For Gaussian errors (e.g., instrumental uncertainties), MEASURE_ERRORS
should be set to the standard deviations of each point in Y. For Poisson or statistical
weighting, MEASURE_ERRORS should be set to SQRT(ABS(Y)).

SIGMA

Set this keyword to a named variable that will contain the 1-sigma uncertainty
estimates for the returned parameters

Note
If MEASURE_ERRORS is omitted, then you are assuming that your user-supplied
model (or the default quadratic) is the correct model for your data, and therefore, no
independent goodness-of-fit test is possible. In this case, the values returned in
SIGMA are multiplied by SQRT(CHISQ/(N–M)), where N is the number of points
in X, and M is the number of coefficients. See section 15.2 of Numerical Recipes in
C (Second Edition) for details.

TOL

Set this keyword to the convergence tolerance. The routine returns when the relative
decrease in chi-squared is less than TOL in an iteration. The default is 1.0 x 10-6 for
single-precision, and 1.0 x 10-12 for double-precision.

WEIGHTS

The WEIGHTS keyword is obsolete and has been replaced by the
MEASURE_ERRORS keyword. Code that uses the WEIGHTS keyword will continue
to work as before, but new code should use the MEASURE_ERRORS keyword. Note
that the definition of the MEASURE_ERRORS keyword is not the same as the
WEIGHTS keyword. Using the WEIGHTS keyword, SQRT(1/WEIGHTS[i])
represents the measurement error for each point Y[i]. Using the
MEASURE_ERRORS keyword, the measurement error for each point is represented
as simply MEASURE_ERRORS[i].

Examples

In this example, we fit a function of the form:

f(x)=a[0] * exp(a[1]*x) + a[2] + a[3] * sin(x)

; First, define a return function for LMFIT:
FUNCTION myfunct, X, A
IDL Reference Guide LMFIT

1148
 bx = A[0]*EXP(A[1]*X)
 RETURN,[[bx+A[2]+A[3]*SIN(X)], [EXP(A[1]*X)], [bx*X], $
 [1.0] ,[SIN(X)]]
END

PRO lmfit_example

; Compute the fit to the function we have just defined. First,
; define the independent and dependent variables:
X = FINDGEN(40)/20.0
Y = 8.8 * EXP(-9.9 * X) + 11.11 + 4.9 * SIN(X)
measure_errors = 0.05 * Y

; Provide an initial guess for the function’s parameters:
A = [10.0, -0.1, 2.0, 4.0]
fita = [1,1,1,1]

; Plot the initial data, with error bars:
PLOTERR, X, Y, measure_errors
coefs = LMFIT(X, Y, A, MEASURE_ERRORS=measure_errors, /DOUBLE, $
 FITA = fita, FUNCTION_NAME = 'myfunct')

; Overplot the fitted data:
OPLOT, X, coefs

END

Version History

Introduced: 5.0

See Also

CURVEFIT, GAUSSFIT, LINFIT, POLY_FIT, REGRESS, SFIT, SVDFIT
LMFIT IDL Reference Guide

 1149
LMGR

The LMGR function tests whether a particular licensing mode is in effect. Different
licensing modes are specified by keyword; see the “Keywords” section below for a
description of each licensing mode.

The LMGR function can also force IDL into time demo mode or report the LMHostid
number for the machine in use.

For more information on IDL’s licensing methods, consult the IDL License
Management Guide, which is included in Adobe Acrobat Portable Document Format
on your IDL CD-ROM.

Syntax

Result = LMGR([, /CLIENTSERVER | , /DEMO | , /EMBEDDED | , /RUNTIME | ,
/STUDENT | , /TRIAL | , /VM] [, EXPIRE_DATE=variable] [, /FORCE_DEMO]
[, INSTALL_NUM=variable] [, LMHOSTID=variable]
[, SITE_NOTICE=variable])

Return Value

The function returns True (1) if the mode specified is in effect, or False (0) otherwise.

Arguments

None

Keywords

CLIENTSERVER

Set this keyword to test whether the current IDL session is using Client/Server
licensing (as opposed to Desktop licensing).

DEMO

Set this keyword to test whether the current IDL session is running in timed demo
mode. Unlicensed copies of IDL and copies running directly from a CD-ROM run in
timed demo mode.
IDL Reference Guide LMGR

1150
EMBEDDED

Set this keyword to test whether the current IDL session is running in embedded
mode. Embedded-mode applications contain a built-in version of the IDL license.
Examples of applications running in embedded mode are the IDL demo and the IDL
registration program.

EXPIRE_DATE

Set this keyword to a named variable that will receive a string containing the
expiration date of the current IDL session if the session is a trial session. This named
variable will be undefined if the IDL session has a permanent license.

FORCE_DEMO

Set this keyword to force the current session into timed demo mode. Forcing an IDL
session into demo mode can be useful if you are testing an application that will be run
with an unlicensed copy of IDL. Note that you must exit IDL and restart to return to
normal licensed mode after forcing IDL into demo mode.

INSTALL_NUM

Set this keyword to a named variable that will receive a string containing the
installation number of the current IDL session. This named variable will be undefined
if the IDL session is unlicensed.

LMHOSTID

Set this keyword equal to a named variable that will contain a string value
representing the LMHostid for the machine in use. The LMHostid is used when
creating client/server IDL licenses. This keyword returns the string “0” on machines
which do not have a unique LMHostid (some Windows machines that use Desktop
licensing.)

RUNTIME

Set this keyword to test whether the current IDL session is running in runtime mode.
Runtime-mode applications do not provide access to the IDL Command Line. See
Chapter 21, “Distributing IDL Applications” in the Building IDL Applications
manual for additional details on runtime applications.
LMGR IDL Reference Guide

 1151
SITE_NOTICE

Set this keyword to a named variable that will receive a string containing the site
notice of the current IDL session. This named variable will be undefined if the IDL
session is unlicensed.

STUDENT

Set this keyword to test whether the current IDL session is running in student mode.
The IDL Student version, which provides a subset of IDL’s full functionality, is
currently the only product that runs in student mode.

TRIAL

Set this keyword to test whether the current IDL session is running in trial mode.
Trial mode licenses allow IDL to operate for a limited time period (generally 30 days)
but do not otherwise restrict functionality.

VM

Set this keyword to test whether the current IDL session is running in IDL Virtual
Machine mode. IDL Virtual Machine applications do not provide access to the IDL
Command Line. See “The IDL Virtual Machine” in Chapter 21 of the Building IDL
Applications manual for additional details on IDL Virtual Machine applications.

Examples

Use the following commands to test whether the current IDL session is running in
timed demo mode:

Result = LMGR(/DEMO)

IF (Result GT 0) THEN PRINT, "IDL is in Demo Mode"

Use the following commands to generate the LMHostid number for the machine in
use:

Result = LMGR(LMHOSTID = myId)
PRINT, "LMHostid for this machine is: ", myId

Version History

Introduced: Pre 4.0
IDL Reference Guide LMGR

1152
LNGAMMA

The LNGAMMA function returns the logarithm of the gamma function of Z.

Syntax

Result = LNGAMMA(Z)

Return Value

For negative integers, LNGAMMA returns the correct value of Infinity. If Z is
double-precision, the result is double-precision (either double or double complex),
otherwise the result is single-precision (either float or complex).

Note
For negative nonintegers, LNGAMMA will also return Infinity. To compute the
actual LNGAMMA of a negative noninteger, you should convert your input to
complex first.

Arguments

Z

The expression for which the logarithm of the gamma function will be evaluated. Z
may be complex.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
LNGAMMA IDL Reference Guide

 1153
Examples

To find the logarithm of the gamma function of 0.5 and store the result in variable A,
enter:

A = LNGAMMA(0.5)

Version History

Introduced: Pre 4.0

Z argument accepts complex input: 5.6

See Also

BETA, GAMMA, IBETA, IGAMMA
IDL Reference Guide LNGAMMA

1154
LNP_TEST

The LNP_TEST function computes the Lomb Normalized Periodogram of two
sample populations X and Y and tests the hypothesis that the populations represent a
significant periodic signal against the hypothesis that they represent random noise.

LNP_TEST is based on the routine fasper described in section 13.8 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = LNP_TEST(X, Y [, /DOUBLE] [, HIFAC=scale_factor] [, JMAX=variable]
[, OFAC=value] [, WK1=variable] [, WK2=variable])

Return Value

The result is a two-element vector containing the maximum peak in the Lomb
Normalized Periodogram and its significance. The significance is a value in the
interval [0.0, 1.0]; a small value indicates that a significant periodic signal is present.

Arguments

X

An n-element integer, single-, or double-precision floating-point vector containing
equally or unequally spaced time samples.

Y

An n-element integer, single-, or double-precision floating-point vector containing
amplitudes corresponding to Xi.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
LNP_TEST IDL Reference Guide

 1155
HIFAC

Use this keyword to specify the scale factor of the average Nyquist frequency. The
default value is 1.

JMAX

Use this keyword to specify a named variable that will contain the index of the
maximum peak in the Lomb Normalized Periodogram.

OFAC

Use this keyword to specify the oversampling factor. The default value is 4.

WK1

Use this keyword to specify a named variable that will contain a vector of increasing
linear frequencies.

WK2

Use this keyword to specify a named variable that will contain a vector of values from
the Lomb Normalized Periodogram corresponding to the frequencies in WK1.

Examples

This example tests the hypothesis that two sample, n-element populations X and Y
represent a significant periodic signal against the hypothesis that they represent
random noise:

; Define two n-element sample populations:
X = [1.0, 2.0, 5.0, 7.0, 8.0, 9.0, $

10.0, 11.0, 12.0, 13.0, 14.0, 15.0, $
16.0, 17.0, 18.0, 19.0, 20.0, 22.0, $
23.0, 24.0, 25.0, 26.0, 27.0, 28.0]

Y = [0.69502, -0.70425, 0.20632, 0.77206, -2.08339, 0.97806, $
1.77324, 2.34086, 0.91354, 2.04189, 0.53560, -2.05348, $
-0.76308, -0.84501, -0.06507, -0.12260, 1.83075, 1.41403, $
-0.26438, -0.48142, -0.50929, 0.01942, -1.29268, 0.29697]

; Test the hypothesis that X and Y represent a significant periodic
; signal against the hypothesis that they represent random noise:
result = LNP_TEST(X, Y, WK1 = wk1, WK2 = wk2, JMAX = jmax)
PRINT, result
IDL Reference Guide LNP_TEST

1156
IDL prints:

4.69296 0.198157

The small value of the significance represents the possibility of a significant periodic
signal. A larger number of samples for X and Y would produce a more conclusive
result. WK1 and WK2 are both 48-element vectors containing linear frequencies and
corresponding Lomb values, respectively. JMAX is the indexed location of the
maximum Lomb value in WK2.

Version History

Introduced: 4.0

See Also

CTI_TEST, FV_TEST, KW_TEST, MD_TEST, R_TEST, RS_TEST, S_TEST,
TM_TEST, XSQ_TEST
LNP_TEST IDL Reference Guide

 1157
LOADCT

The LOADCT procedure loads one of 41 predefined IDL color tables. These color
tables are defined in the file colors1.tbl, located in the \resource\colors
subdirectory of the main IDL directory, unless the FILE keyword is specified. The
selected colortable is loaded into the COLORS common block as both the “current”
and “original” colortable. If the current device has fewer than 256 colors, the color
table data is interpolated to cover the number of colors in the device.

This routine is written in the IDL language. Its source code can be found in the file
loadct.pro in the lib subdirectory of the IDL distribution.

Syntax

LOADCT [, Table] [, BOTTOM=value] [, FILE=string] [, GET_NAMES=variable]
[, NCOLORS=value] [, /SILENT]

Arguments

Table

The number of the pre-defined color table to load, from 0 to 40. If this value is
omitted, a menu of the available tables is printed and the user is prompted to enter a
table number.

Keywords

BOTTOM

The first color index to use. LOADCT will use color indices from BOTTOM to
BOTTOM+NCOLORS-1. The default is BOTTOM=0.

FILE

Set this keyword to the name of a colortable file to be used instead of the file
colors1.tbl. See MODIFYCT to create and modify colortable files.

GET_NAMES

Set this keyword to a named variable in which the names of the color tables are
returned as a string array. No changes are made to the color table.
IDL Reference Guide LOADCT

1158
NCOLORS

The number of colors to use. The default is all available colors (this number is stored
in the system variable !D.TABLE_SIZE).

SILENT

If this keyword is set, the Color Table message is suppressed.

Version History

Introduced: Original

See Also

MODIFYCT, XLOADCT, TVLCT
LOADCT IDL Reference Guide

 1159
LOCALE_GET

The LOCALE_GET function returns the current locale (string) of the operating
platform.

Syntax

Result = LOCALE_GET()

Return Value

Returns a string containing the current operating platform locale.

Arguments

None

Keywords

None

Version History

Introduced: 5.2.1
IDL Reference Guide LOCALE_GET

1160
LOGICAL_AND

The LOGICAL_AND function performs a logical AND operation on its arguments.
It returns True (1) if both of its arguments are non-zero (non-NULL for strings and
heap variables), or False (0) otherwise.

The LOGICAL_AND function is similar to the AND operator, except that it performs
a logical “and” rather than a bitwise “and” on its arguments.

Note
LOGICAL_AND always returns either 0 or 1, unlike the AND operator, which
performs a bitwise AND operation on integers, and returns one of the two
arguments for other types.

Unlike the && operator, LOGICAL_AND accepts multi-element arrays as its
arguments. In addition, where the && operator short-circuits if it can determine the
result by evaluating only the first argument, all arguments to a function are always
evaluated.

Syntax

Result = LOGICAL_AND(Arg1, Arg2)

Return Value

Integer zero (false) or one (true) if both arguments are scalars, or an array of zeroes
and ones if either argument is an array.

Arguments

Arg1, Arg2

The expressions on which the logical AND operation is to be carried out. The
arguments can be scalars or arrays of any type other than structure.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
LOGICAL_AND IDL Reference Guide

 1161
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix D, “Thread Pool
Keywords” for details.

Example

At the IDL Command line, enter:

PRINT, LOGICAL_AND(2,4), LOGICAL_AND(2,0), LOGICAL_AND(0,4), $
LOGICAL_AND(0,0)

IDL Prints:

1 0 0 0

Version History

Introduced: 6.0

See Also

“Logical Operators” in the Building IDL Applications manual, “Bitwise Operators”
in the Building IDL Applications manual, LOGICAL_OR, LOGICAL_TRUE
IDL Reference Guide LOGICAL_AND

1162
LOGICAL_OR

The LOGICAL_OR function performs a logical OR operation on its arguments. It
returns True (1) if either of its arguments are non-zero (non-NULL for strings and
heap variables), and False (0) otherwise.

The LOGICAL_OR function is similar to the OR operator, except that it performs a
logical “or” rather than a bitwise “or” on its arguments.

Note
LOGICAL_OR always returns either 0 or 1, unlike the OR operator, which
performs a bitwise OR operation on integers, and returns one of the two arguments
for other types.

Unlike the || operator, LOGICAL_OR accepts multi-element arrays as its
arguments. In addition, where the || operator short-circuits if it can determine the
result by evaluating only the first argument, all arguments to a function are always
evaluated.

Syntax

Result = LOGICAL_OR(Arg1, Arg2)

Return Value

Integer zero (false) or one (true) if both operands are scalars, or an array of zeroes and
ones if either operand is an array.

Arguments

Arg1, Arg2

The expressions on which the logical OR operation is to be carried out. The
arguments can be scalars or arrays of any type other than structure.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
LOGICAL_OR IDL Reference Guide

 1163
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix D, “Thread Pool
Keywords” for details.

Example

At the IDL Command Line, enter:

PRINT, LOGICAL_OR(2,4), LOGICAL_OR(2,0), LOGICAL_OR(0,4), $
LOGICAL_OR(0,0)

IDL Prints:

1 1 1 0

Version History

Introduced: 6.0

See Also

“Logical Operators” in the Building IDL Applications manual, “Bitwise Operators”
in the Building IDL Applications manual, LOGICAL_AND, LOGICAL_TRUE
IDL Reference Guide LOGICAL_OR

1164
LOGICAL_TRUE

The LOGICAL_TRUE function returns True (1) if its arguments are non-zero (non-
NULL for strings and heap variables), and False (0) otherwise.

Note
For a given argument, the value returned by LOGICAL_TRUE is the opposite of the
value returned by the ~ operator.

Syntax

Result = LOGICAL_TRUE(Arg)

Return Value

Integer zero (false) or one (true) if the argument is a scalar, or an array of zeroes and
ones if the argument is an array.

Arguments

Arg

The expression on which the logical truth evaluation is to be carried out. The
argument can be a scalar or an array of any type other than structure.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix D, “Thread Pool
Keywords” for details.
LOGICAL_TRUE IDL Reference Guide

 1165
Example

At the IDL Command Line, enter:

PRINT, LOGICAL_TRUE(2), LOGICAL_TRUE(0)

IDL Prints:

1 0

Version History

Introduced: 6.0

See Also

“Logical Operators” in the Building IDL Applications manual, “Bitwise Operators”
in the Building IDL Applications manual, KEYWORD_SET, LOGICAL_AND,
LOGICAL_OR
IDL Reference Guide LOGICAL_TRUE

1166
LON64ARR

The LON64ARR function returns a 64-bit integer vector or array.

Syntax

Result = LON64ARR(D1 [, ..., D8] [, /NOZERO])

Return Value

Returns a 64-bit array of the specified dimensions.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Keywords

NOZERO

Normally, LON64ARR sets every element of the result to zero. If NOZERO is set,
this zeroing is not performed and LON64ARR executes faster.

Examples

To create L, a 100-element, 64-bit vector with each element set to 0, enter:

L = LON64ARR(100)

Version History

Introduced: 5.2
LON64ARR IDL Reference Guide

 1167
See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LONARR, MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
IDL Reference Guide LON64ARR

1168
LONARR

The LONARR function returns a longword integer vector or array.

Syntax

Result = LONARR(D1 [, ..., D8] [, /NOZERO])

Return Value

Returns a long array of the specified dimensions.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Keywords

NOZERO

Normally, LONARR sets every element of the result to zero. If NOZERO is set, this
zeroing is not performed and LONARR executes faster.

Examples

To create L, a 100-element, longword vector with each element set to 0, enter:

L = LONARR(100)

Version History

Introduced: Original
LONARR IDL Reference Guide

 1169
See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LON64ARR, MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR
IDL Reference Guide LONARR

1170
LONG

The LONG function returns a result equal to Expression converted to longword
integer type.

Syntax

Result = LONG(Expression[, Offset [, D1 [, ..., D8]]])

Return Value

Returns the conversion of the given scalar or array to a longword integer type.

Arguments

Expression

The expression to be converted to longword integer.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as longword integer data.

Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
If no dimension arguments are given, the result is taken to be scalar.

The Di arguments can be either an array or a series of scalar expressions specifying
the dimensions of the result. If a single argument is specified, it can be either a scalar
expression or an array of up to eight elements. If multiple arguments are specified,
they must all be scalar expressions. Up to eight dimensions can be specified.

When converting from a string argument, it is possible that the string does not contain
a valid floating-point value and no conversion is possible. The default action in such
cases is to print a warning message and return 0. The ON_IOERROR procedure can
be used to establish a statement to be jumped to in case of such errors.
LONG IDL Reference Guide

 1171
Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

If A contains the floating-point value 32000.0, it can converted to a longword integer
and stored in the variable B by entering:

B = LONG(A)

Version History

Introduced: Original

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, STRING, UINT,
ULONG, ULONG64
IDL Reference Guide LONG

1172
LONG64

The LONG64 function returns a result equal to Expression converted to 64-bit integer
type.

Syntax

Result = LONG64(Expression[, Offset [, D1 [, ..., D8]]])

Return Value

Returns the conversion of the given scalar or array to a 64-bit integer type.

Arguments

Expression

The expression to be converted to 64-bit integer.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as 64-bit integer data.

Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
If no dimension arguments are given, the result is taken to be scalar.

The Di arguments can be either an array or a series of scalar expressions specifying
the dimensions of the result. If a single argument is specified, it can be either a scalar
expression or an array of up to eight elements. If multiple arguments are specified,
they must all be scalar expressions. Up to eight dimensions can be specified.

When converting from a string argument, it is possible that the string does not contain
a valid floating-point value and no conversion is possible. The default action in such
cases is to print a warning message and return 0. The ON_IOERROR procedure can
be used to establish a statement to be jumped to in case of such errors.
LONG64 IDL Reference Guide

 1173
Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

If A contains the floating-point value 32000.0, it can converted to a 64-bit integer and
stored in the variable B by entering:

B = LONG64(A)

Version History

Introduced: 5.2

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, STRING,
UINT, ULONG, ULONG64
IDL Reference Guide LONG64

1174
LSODE

The LSODE function uses adaptive numerical methods to advance a solution to a
system of ordinary differential equations one time-step H, given values for the
variables Y and X.

Syntax

Result = LSODE(Y, X, H, Derivs[, Status] [, ATOL=value] [, RTOL=value])

Return Value

Returns the solution in a vector with the same number of elements as Y.

Arguments

Y

A vector of values for Y at X

X

A scalar value for the initial condition.

H

A scalar value giving interval length or step size.

Derivs

A scalar string specifying the name of a user-supplied IDL function that calculates
the values of the derivatives Dydx at X. This function must accept two arguments: A
scalar floating value X, and one n-element vector Y. It must return an n-element vector
result.

For example, suppose the values of the derivatives are defined by the following
relations:

dy0 / dx = –0.5y0, dy1 / dx = 4.0 – 0.3y1 – 0.1y0

We can write a function called differential to express these relationships in the
IDL language:

FUNCTION differential, X, Y
RETURN, [-0.5 * Y[0], 4.0 - 0.3 * Y[1] - 0.1 * Y[0]]
LSODE IDL Reference Guide

 1175
END

Status

An index used for input and output to specify the state of the calculation. This
argument contains a positive value if the function was successfully completed.
Negative values indicate different errors.

A preliminary call with tout = t is not counted as a first call here, as no
initialization or checking of input is done. (Such a call is sometimes useful for the
purpose of outputting the initial condition s.) Thus, the first call for which tout ≠ t
requires STATUS = 1 on input.

Input Value Description

1 This is the first call for the problem; initializations will occur. This
is the default value.

2 This is not the first call. The calculation is to continue normally.

3 This is not the first call. The calculation is to continue normally,
but with a change in input parameters.

Table 54: Input Values for Status

Output
Value Description

1 Nothing occurred. (However, an internal counter was set to detect
and prevent repeated calls of this type.)

2 The integration was performed successfully, and no roots were
found.

3 The integration was successful, and one or more roots were found.

-1 An excessive amount of work was done on this call, but the
integration was otherwise successful. To continue, reset STATUS to
a value greater than1 and begin again (the excess work step counter
will be reset to 0).

Table 55: Output Values for Status
IDL Reference Guide LSODE

1176
Note
Since the normal output value of STATUS is 2, it does not need to be reset for
normal continuation. Also, since a negative input value of STATUS will be regarded
as illegal, a negative output value requires the user to change it, and possibly other
inputs, before calling the solver again.

Keywords

ATOL

A scalar or array value that specifies the absolute tolerance. The default value is 1.0e-
7. Use ATOL = 0.0 (or ATOL[i] = 0.0) for pure relative error control, and use

-2 The precision of the machine being used is insufficient for the
requested amount of accuracy. Integration was successful. To
continue, the tolerance parameters must be reset, and STATUS must
be set to 3. (If this condition is detected before taking any steps,
then an illegal input return (STATUS = -3) occurs instead.)

-3 Illegal input was detected, before processing any integration steps.
If the solver detects an infinite loop of calls to the solver with illegal
input, it will cause the run to stop.

-4 There were repeated error test failures on one attempted step,
before completing the requested task, but the integration was
successful. The problem may have a singularity, or the input may be
inappropriate.

-5 There were repeated convergence test failures on one attempted
step, before completing the requested task, but the integration was
successful. This may be caused by an inaccurate jacobian matrix, if
one is being used.

-6 ewt(i) became zero for some i during the integration. Pure relative
error control was requested on a variable which has now vanished.
Integration was successful.

Output
Value Description

Table 55: Output Values for Status (Continued)
LSODE IDL Reference Guide

 1177
RTOL = 0.0 for pure absolute error control. For an explanation of how to use ATOL
and RTOL together, see RTOL below.

RTOL

A scalar value that specifies the relative tolerance. The default value is 1.0e-7. Use
RTOL = 0.0 for pure absolute error control, and use ATOL = 0.0 (or ATOL[i] = 0.0)
for pure relative error control.

The estimated local error in the Y[i] argument will be controlled to be less than

ewt[i] = RTOL*abs(Y[i]) + ATOL ; If ATOL is a scalar.
ewt[i] = RTOL*abs(Y[i]) + ATOL[i] ; If ATOL is an array.

Thus, the local error test passes if, in each component, either the absolute error is less
than ATOL (or ATOL[i]), or if the relative error is less than RTOL.

Warning
Actual, or global, errors might exceed these local tolerances, so choose values for
ATOL and RTOL conservatively.

Examples

To integrate the example system of differential equations for one time step, H:

PRO LSODETEST

; Define the step size:
H = 0.5

; Define an initial X value:
X = 0.0

; Define initial Y values:
Y = [4.0, 6.0]

; Integrate over the interval (0, 0.5):
result = LSODE(Y, X, H, 'differential')

; Print the result:
PRINT, result

END

FUNCTION differential, X, Y
RETURN, [-0.5 * Y[0], 4.0 - 0.3 * Y[1] - 0.1 * Y[0]]

END
IDL Reference Guide LSODE

1178
IDL prints:

3.11523 6.85767

This is the exact solution vector to 5-decimal precision.

See Also

DERIV, DERIVSIG, RK4

References

1. Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE Solvers,
in Scientific Computing, R. S. Stepleman et al. (eds.), North-Holland,
Amsterdam, 1983, pp. 55-64.

2. Linda R. Petzold, Automatic Selection of Methods for Solving Stiff and
Nonstiff Systems of Ordinary Differential Equations, SIAM J. SCI. STAT.
COMPUT. 4 (1983), pp. 136-148.

3. Kathie L. Hiebert and Lawrence F. Shampine, Implicitly Defined Output
Points for Solutions of ODE’s, Sandia Report SAND80-0180, February, 1980.

Version History

Introduced: 5.1
LSODE IDL Reference Guide

 1179
LU_COMPLEX

The LU_COMPLEX function solves an n by n complex linear system Az = b using
LU decomposition. The result is an n-element complex vector z. Alternatively,
LU_COMPLEX computes the generalized inverse of an n by n complex array.

This routine is written in the IDL language. Its source code can be found in the file
lu_complex.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = LU_COMPLEX(A, B [, /DOUBLE] [, /INVERSE] [, /SPARSE])

Return Value

The result is an n by n complex array.

Arguments

A

An n by n complex array.

B

An n-element right-hand side vector (real or complex).

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

INVERSE

Set this keyword to compute the generalized inverse of A. If INVERSE is specified,
the input argument B is ignored.

SPARSE

Set this keyword to convert the input array to row-indexed sparse storage format.
Computations are done using the iterative biconjugate gradient method. This
IDL Reference Guide LU_COMPLEX

1180
keyword is effective only when solving complex linear systems. This keyword has no
effect when calculating the generalized inverse.

Examples

; Define a complex array A and right-side vector B:
A = [[COMPLEX(1, 0), COMPLEX(2,-2), COMPLEX(-3,1)], $

[COMPLEX(1,-2), COMPLEX(2, 2), COMPLEX(1, 0)], $
[COMPLEX(1, 1), COMPLEX(0, 1), COMPLEX(1, 5)]]

B = [COMPLEX(1, 1), COMPLEX(3,-2), COMPLEX(1,-2)]

; Solve the complex linear system Az = b:
Z = LU_COMPLEX(A, B)
PRINT, 'Z:'
PRINT, Z

; Compute the inverse of the complex array A by supplying a scalar
; for B (in this example -1):
inv = LU_COMPLEX(A, B, /INVERSE)
PRINT, 'Inverse:'
PRINT, inv

IDL prints:

Z:
(0.552267, 1.22818)(-0.290371, -0.600974)
(-0.629824, -0.340952)

Inverse:
(0.261521, -0.0303485)(0.0138629, 0.329337)
(-0.102660, -0.168602)
(0.102660, 0.168602)(0.0340952, -0.162982)
(0.125890, -0.0633196)
(-0.0689397, 0.0108655)(-0.0666916, -0.0438366)
(0.0614462, -0.161858)

Version History

Introduced: Pre 4.0

See Also

CRAMER, CHOLSOL, GS_ITER, LUSOL, SVSOL, TRISOL, and “Sparse Arrays”
in Chapter 22 of the Using IDL manual.
LU_COMPLEX IDL Reference Guide

 1181
LUDC

The LUDC procedure replaces an n by n array, A, with the LU decomposition of a
row-wise permutation of itself.

LUDC is based on the routine ludcmp described in section 2.3 of Numerical Recipes
in C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Note
If you are working with complex inputs, use the LA_LUDC procedure instead.

Syntax

LUDC, A, Index [, /COLUMN] [, /DOUBLE] [, INTERCHANGES=variable]

Arguments

A

An n by n array of any type except string. Upon output, A is replaced with its LU
decomposition.

Index

An output vector that records the row permutations which occurred as a result of
partial pivoting.

Keywords

COLUMN

Set this keyword if the input array A is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
IDL Reference Guide LUDC

1182
INTERCHANGES

An output variable that is set to positive 1 if the number of row interchanges was
even, or to negative 1 if the number of interchanges was odd.

Examples

See the description of LUSOL for an example using this procedure.

Version History

Introduced: 4.0

See Also

LA_LUDC, LUSOL
LUDC IDL Reference Guide

 1183
LUMPROVE

The LUMPROVE function uses LU decomposition to iteratively improve an
approximate solution X of a set of n linear equations in n unknowns Ax = b.

LUMPROVE is based on the routine mprove described in section 2.5 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Note
If you are working with complex inputs, use the LA_LUMPROVE function instead.

Syntax

Result = LUMPROVE(A, Alud, Index, B, X [, /COLUMN] [, /DOUBLE])

Return Value

The result is a vector, whose type and length are identical to X, containing the
improved solution.

Arguments

A

The n by n coefficient array of the linear system Ax = b.

Alud

The n by n LU decomposition of A created by the LUDC procedure.

Index

An input vector, created by the LUDC procedure, containing a record of the row
permutations which occurred as a result of partial pivoting.

B

An n-element vector containing the right-hand side of the linear system
Ax = b.
IDL Reference Guide LUMPROVE

1184
X

An n-element vector containing the approximate solution of the linear system
Ax = b.

Keywords

COLUMN

Set this keyword if the input array A is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

This example uses LUMPROVE to improve an approximate solution X to the linear
system Ax = B:

; Create coefficient array A:
A = [[2.0, 1.0, 1.0], $

[4.0, -6.0, 0.0], $
[-2.0, 7.0, 2.0]]

; Create a duplicate of A:
alud = A
; Define the right-hand side vector B:
B = [3.0, -8.0, 10.0]

; Begin with an estimated solution X:
X = [.89, 1.78, -0.88]

; Decompose the duplicate of A:
LUDC, alud, INDEX

; Compute an improved solution:
result = LUMPROVE(A, alud, INDEX, B, X)

; Print the result:
PRINT, result

IDL prints:

 1.00000 2.00000 -1.00000

This is the exact solution vector.
LUMPROVE IDL Reference Guide

 1185
Version History

Introduced: 4.0

See Also

GS_ITER, LA_LUMPROVE, LUDC
IDL Reference Guide LUMPROVE

1186
LUSOL

The LUSOL function is used in conjunction with the LUDC procedure to solve a set
of n linear equations in n unknowns Ax = b. The parameter A is input not as the
original array, but as its LU decomposition, created by the routine LUDC.

LUSOL is based on the routine lubksb described in section 2.3 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Note
If you are working with complex inputs, use the LA_LUSOL function instead.

Syntax

Result = LUSOL(A, Index, B [, /COLUMN] [, /DOUBLE])

Return Value

The result is an n-element vector whose type is identical to A.

Arguments

A

The n by n LU decomposition of an array created by the LUDC procedure.

Index

An input vector, created by the LUDC procedure, containing a record of the row
permutations which occurred as a result of partial pivoting.

B

An n-element vector containing the right-hand side of the linear system
Ax = b.
LUSOL IDL Reference Guide

 1187
Keywords

COLUMN

Set this keyword if the input array A is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

This example solves the linear system Ax = b using LU decomposition and back
substitution:

; Define array A:
A = [[2.0, 1.0, 1.0], $

[4.0, -6.0, 0.0], $
[-2.0, 7.0, 2.0]]

; Define right-hand side vector B:
B = [3.0, -8.0, 10.0]

; Decompose A:
LUDC, A, INDEX

; Compute the solution using back substitution:
result = LUSOL(A, INDEX, B)

; Print the result:
PRINT, result

IDL prints:

1.00000 2.00000 -1.00000

This is the exact solution vector.

Version History

Introduced: Pre 4.0
IDL Reference Guide LUSOL

1188
See Also

CHOLSOL, CRAMER, GS_ITER, LA_LUSOL, LU_COMPLEX, LUDC, SVSOL,
TRISOL
LUSOL IDL Reference Guide

 1189
M_CORRELATE

The M_CORRELATE function computes the multiple correlation coefficient of a
dependent variable and two or more independent variables.

This routine is written in the IDL language. Its source code can be found in the file
m_correlate.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = M_CORRELATE(X, Y [, /DOUBLE])

Return Value

Returns the single or double-precision multiple correlation coefficient.

Arguments

X

An integer, single-, or double-precision floating-point array of m-columns and n-rows
that specifies the independent variable data. The columns of this two dimensional
array correspond to the n-element vectors of independent variable data.

Y

An n-element integer, single-, or double-precision floating-point vector that specifies
the dependent variable data.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

PRO MCORRELATE_TEST

; Define the independent (X) and dependent (Y) data:
X = [[0.477121, 2.0, 13.0], $

[0.477121, 5.0, 6.0], $
[0.301030, 5.0, 9.0], $
IDL Reference Guide M_CORRELATE

1190
[0.000000, 7.0, 5.5], $
[0.602060, 3.0, 7.0], $
[0.698970, 2.0, 9.5], $
[0.301030, 2.0, 17.0], $
[0.477121, 5.0, 12.5], $
[0.698970, 2.0, 13.5], $
[0.000000, 3.0, 12.5], $
[0.602060, 4.0, 13.0], $
[0.301030, 6.0, 7.5], $
[0.301030, 2.0, 7.5], $
[0.698970, 3.0, 12.0], $
[0.000000, 4.0, 14.0], $
[0.698970, 6.0, 11.5], $
[0.301030, 2.0, 15.0], $
[0.602060, 6.0, 8.5], $
[0.477121, 7.0, 14.5], $
[0.000000, 5.0, 9.5]]

Y = [97.682, 98.424, 101.435, 102.266, 97.067, 97.397, $
99.481, 99.613, 96.901, 100.152, 98.797, 100.796, $
98.750, 97.991, 100.007, 98.615, 100.225, 98.388, $
98.937, 100.617]

; Compute the multiple correlation of Y on the first column of
; X. The result should be 0.798816.
PRINT, 'Multiple correlation of Y on 1st column of X:'
PRINT, M_CORRELATE(X[0,*], Y)

; Compute the multiple correlation of Y on the first two columns
; of X. The result should be 0.875872.
PRINT, 'Multiple correlation of Y on 1st two columns of X:'
PRINT, M_CORRELATE(X[0:1,*], Y)

; Compute the multiple correlation of Y on all columns of X. The
; result should be 0.877197.
PRINT, 'Multiple correlation of Y on all columns of X:'
PRINT, M_CORRELATE(X, Y)

END

IDL prints:

Multiple correlation of Y on 1st column of X:
 0.798816
Multiple correlation of Y on 1st two columns of X:
 0.875872
Multiple correlation of Y on all columns of X:
 0.877196
M_CORRELATE IDL Reference Guide

 1191
Version History

Introduced: 4.0

See Also

A_CORRELATE, CORRELATE, C_CORRELATE, P_CORRELATE,
R_CORRELATE
IDL Reference Guide M_CORRELATE

1192
MACHAR

The MACHAR function determines and returns machine-specific parameters
affecting floating-point arithmetic. Information is returned in the form of a structure
with the fields listed in the “Return Value” section.

MACHAR is based on the routine machar described in section 20.1 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission. See that section for more
details on and sample values of the various parameters returned.

Syntax

Result = MACHAR([, /DOUBLE])

Return Value

The following table lists the fields in the structure returned from the MACHAR
function:

Field Name Description

IBETA The radix in which numbers are represented. A longword
integer.

IT The number of base-IBETA digits in the floating-point mantissa
M. A longword integer.

IRND A code in the range 0 – 5 giving information on what type of
rounding is done and how underflow is handled. A longword
integer.

NGRD The number of “guard digits” used when truncating the product
of two mantissas. A longword integer.

MACHEP The exponent of the smallest power of IBETA that, added to 1.0,
gives something different from 1.0. A longword integer.

NEGEP The exponent of the smallest power of IBETA that, subtracted
from 1.0, gives something different from 1.0. A longword
integer.

Table 56: MACHAR Fields
MACHAR IDL Reference Guide

 1193
Arguments

None

Keywords

DOUBLE

The information returned is normally for single-precision floating-point arithmetic.
Specify DOUBLE to see double-precision information.

Version History

Introduced: 4.0

See Also

CHECK_MATH, “!VALUES” on page 3895, and “Special Floating-Point Values” in
Chapter 18 of the Building IDL Applications manual.

IEXP The number of bits in the exponent. A longword integer.

MINEXP The smallest value of IBETA consistent with there being no
leading zeros in the mantissa. A longword integer.

MAXEXP The smallest positive value of IBETA that causes overflow. A
longword integer.

EPS The floating-point number IBETAMACHEP, loosely referred to as
the “floating-point precision.”

EPSNEG The floating-point number IBETANEGEP, which is another way
of determining floating-point precision.

XMIN The floating-point number IBETAMINEXP, generally the
magnitude of the smallest usable floating-point value.

XMAX The largest usable floating-point value, defined as the number
(1-EPSNEG)xIBETAMAXEXP.

Field Name Description

Table 56: MACHAR Fields
IDL Reference Guide MACHAR

1194
MAKE_ARRAY

The MAKE_ARRAY function enables you to dynamically create an array whose
characteristics are not known until run time.

Syntax

Result = MAKE_ARRAY ([D1 [, ..., D8]] [, /BYTE | , /COMPLEX | , /DCOMPLEX
| , /DOUBLE | , /FLOAT | , /INTEGER | , /L64 | , /LONG | , /OBJ, | , /PTR | ,
/STRING | , /UINT | , /UL64 | , /ULONG] [, DIMENSION=vector] [, /INDEX]
[, /NOZERO] [, SIZE=vector] [, TYPE=type_code] [, VALUE=value])

Return Value

Returns an array of the specified type, dimensions, and initialization.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

The Di arguments are optional if the dimensions of the result are specified using the
DIMENSION keyword. Note that you should supply either the Di arguments or a
value for the DIMENSION keyword, but not both.

Keywords

BYTE

Set this keyword to create a byte array.

COMPLEX

Set this keyword to create a complex, single-precision, floating-point array.
MAKE_ARRAY IDL Reference Guide

 1195
DCOMPLEX

Set this keyword to create a complex, double-precision, floating-point array.

DIMENSION

An array of up to eight scalar elements, specifying the dimensions of the result. Note
that you should supply either the Di arguments or a value for the DIMENSION
keyword, but not both.

DOUBLE

Set this keyword to create a double-precision, floating-point array.

FLOAT

Set this keyword to create a single-precision, floating-point array.

L64

Set this keyword to create a 64-bit integer array.

INDEX

Set this keyword to initialize the array with each element set to the value of its one-
dimensional subscript.

INTEGER

Set this keyword to create an integer array.

LONG

Set this keyword to create a longword integer array.

NOZERO

Set this keyword to prevent the initialization of the array. Normally, each element of
the resulting array is set to zero.

OBJ

Set this keyword to create an object reference array.

PTR

Set this keyword to create a pointer array.
IDL Reference Guide MAKE_ARRAY

1196
SIZE

A size vector specifying the type and dimensions of the result. The format of a size
vector is given in the description of the SIZE function.

STRING

Set this keyword to create a string array.

TYPE

The type code to set the type of the result. See the description of the SIZE function
for a list of IDL type codes.

UINT

Set this keyword to create an unsigned integer array.

UL64

Set this keyword to create an unsigned 64-bit integer array.

ULONG

Set this keyword to create an unsigned longword integer array.

VALUE

The value to initialize each element of the resulting array. VALUE can be a scalar of
any type including structure types. The result type is taken from VALUE unless one
of the other keywords that specify a type is also set. In that case, VALUE is converted
to the type specified by the other keyword prior to initializing the resulting array.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
MAKE_ARRAY IDL Reference Guide

 1197
Examples

To create a 3-element by 4-element integer array with each element set to the value 5,
enter:

M = MAKE_ARRAY(3, 4, /INTEGER, VALUE = 5)

Version History

Introduced: 4.0

See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LON64ARR, LONARR, STRARR, UINTARR, ULON64ARR, ULONARR
IDL Reference Guide MAKE_ARRAY

1198
MAKE_DLL

The MAKE_DLL procedure builds a sharable library from C language code which is
suitable for use by IDL’s dynamic linking features such as CALL_EXTERNAL,
LINKIMAGE, and dynamically loadable modules (DLMs). MAKE_DLL reduces the
complexity of building sharable libraries by providing a stable cross-platform method
for the user to describe the desired library, and issuing the necessary operating system
commands to build the library.

Although MAKE_DLL is very convenient, it is not intended for use as a general
purpose compiler. Instead, MAKE_DLL is specifically targeted to solving the most
common IDL dynamic linking problem: building a sharable library from C language
source files that are usable by IDL. Because of this, the following requirements
apply:

• You must have a C compiler installed on your system. It is easiest to use the
compiler used to build IDL, because MAKE_DLL already knows how to use
that compiler without any additional configuring. To determine which
compiler was used, query the !MAKE_DLL system variable with a print
statement such as the following:

PRINT, !MAKE_DLL.COMPILER_NAME

• MAKE_DLL only compiles programs written in the C language; it does not
understand Fortran, C++, or any other languages.

• MAKE_DLL provides only the functionality necessary to build C code
intended to be linked with IDL. Not every possible option supported by the C
compiler or system linker is addressed, only those commonly needed by IDL-
related C code.

MAKE_DLL solves the most common IDL-centric problem of linking C code with
IDL. To do more than this or to use a different language requires a system-specific
building process (e.g. make files, projects, etc...).

Syntax

MAKE_DLL, InputFiles [, OutputFile], ExportedRoutineNames [, CC=string]
[, COMPILE_DIRECTORY=path] [, DLL_PATH=variable]
[, EXPORTED_DATA=string] [, EXTRA_CFLAGS=string]
[, EXTRA_LFLAGS=string] [, INPUT_DIRECTORY=path] [, LD=string]
[, /NOCLEANUP] [, OUTPUT_DIRECTORY=path] [, /REUSE_EXISTING]
[, /SHOW_ALL_OUTPUT] [, /VERBOSE]
MAKE_DLL IDL Reference Guide

 1199
Arguments

InputFiles

A string (scalar or array) giving the names of the input C program files to be
compiled by MAKE_DLL. These names should not include any directory path
information or the .c suffix, they are simply the base file names.

The input directory is specified using the INPUT_DIRECTORY keyword, and the .c
file suffix is assumed.

OutputFile

The base name of the resulting sharable library. This name should not include any
directory path information or the sharable library suffix, which differs between
platforms (for example: .so, .a, .sl, .exe, .dll).

The output directory can be specified using the OUTPUT_DIRECTORY keyword.

If the OutputFile argument is omitted, the first name given by InputFile is used as the
base name of output file.

ExportedRoutineNames

A string (scalar or array) specifying the names of the routines to be exported (i.e., that
are visible for linking) from the resulting sharable library.

Keywords

CC

If present, a template string to use in generating the C compiler commands to compile
InputFiles. If CC is not specified, the value given by the !MAKE_DLL.CC system
variable is used by default. See the discussion of !MAKE_DLL for a description of
how to write the format string for CC.

COMPILE_DIRECTORY

To build a sharable library, MAKE_DLL requires a place to create the necessary
intermediate files and possibly the final library itself. If COMPILE_DIRECTORY is
specified, the directory specified is used. If COMPILE_DIRECTORY is not
specified, the directory given by the !MAKE_DLL.COMPILE_DIRECTORY system
variable is used.
IDL Reference Guide MAKE_DLL

1200
DLL_PATH

If present, the name of a variable to receive the complete file path for the newly
created sharable library. The location of the resulting sharable library depends on the
setting of the OUTPUT_DIRECTORY or COMPILE_DIRECTORY keywords as
well as the !MAKE_DLL.COMPILE_DIRECTORY system variable, and different
platforms use different file suffixes to indicate sharable libraries. Use of the
DLL_PATH keyword makes it possible to determine the resulting file path in a simple
and portable manner.

EXPORTED_DATA

A string (scalar or array) containing the names of variables to be exported (i.e., are
visible for linking) from the resulting sharable library.

EXTRA_CFLAGS

If present, a string supplying extra options for the command used to execute the C
compiler to compile the files given by InputFiles. This keyword is frequently used to
specify header file include directories. This text is inserted in place of the %X format
code in the compile string. See the discussion of the CC keyword and
!MAKE_DLL.CC system variable for more information.

EXTRA_LFLAGS

If present, a string supplying extra options for the command used to execute the linker
when combining the object files to produce the sharable library. This keyword is
frequently used to specify libraries to be included in the link, and is inserted in place
of the %X format code in the linker string. See the discussion of the LD keyword and
!MAKE_DLL.LD system variable for more information.

INPUT_DIRECTORY

If present, the path to the directory containing the source C files listed in InputFiles.
If INPUT_DIRECTORY is not specified, the directory given by
COMPILE_DIRECTORY is assumed to contain the files.

LD

If present, a template string to use when generating the linker command to generate
the resulting sharable library. If LD is not specified, the value given by the
!MAKE_DLL.LD system variable is used by default. See the discussion of
!MAKE_DLL for a description of how to write the format string for LD.
MAKE_DLL IDL Reference Guide

 1201
NOCLEANUP

To produce a sharable library, MAKE_DLL produces several intermediate files:

1. A shell script (UNIX) or batch file (Windows) that is then executed via
SPAWN to build the library.

2. A linker options file. This file is used to control the linker. MAKE_DLL uses it
to cause the routines given by the ExportedRoutineNames argument (and
EXPORTED_DATA keyword) to be exported from the resulting sharable
library. The general platform terminology is shown below.

3. Object files, resulting from compiling the source C files given by the
InputFiles argument.

4. A log file that captures the output from executing the script, and which can be
used for debugging in case of error.

By default, MAKE_DLL deletes all of these intermediate files once the sharable
library has been successfully built. Setting the NOCLEANUP keyword prevents
MAKE_DLL from removing them.

Note
Set the NOCLEANUP keyword (possibly in conjunction with VERBOSE) for
troubleshooting, or to read the files for additional information on how MAKE_DLL
works.

OUTPUT_DIRECTORY

By default, MAKE_DLL creates the resulting sharable library in the compile
directory specified by the COMPILE_DIRECTORY keyword or the
!MAKE_DLL.COMPILE_DIRECTORY system variable. The
OUTPUT_DIRECTORY keyword can be used to override this and explicitly specify
where the library file should go.

Platform Linker Options File Terminology

UNIX export file, or linker map file

Windows a .DEF file

Table 57: Platform Terminology for Linker Options File
IDL Reference Guide MAKE_DLL

1202
REUSE_EXISTING

If this keyword is set, and the sharable library file specified by OutputFile already
exists, MAKE_DLL returns without building the sharable library again. Use this
keyword in situations where you wish to ensure that a library exists, but only want to
build it if it does not. Combining the REUSE_EXISTING and DLL_PATH keywords
allows you to get a path to the library in a platform independent manner, building the
library only if necessary.

SHOW_ALL_OUTPUT

MAKE_DLL normally produces no output unless an error prevents successful
building of the sharable library. Set SHOW_ALL_OUTPUT to see all output
produced by the spawned process building the library.

VERBOSE

If set, VERBOSE causes MAKE_DLL to issue informational messages as it carries
out the task of building the sharable library. These messages include information on
the intermediate files created to build the library and how they are used.

Obsolete Keywords

The following keywords are obsolete:

• VAX_FLOAT

For information on obsolete keywords, See Appendix I, “Obsolete Features”.

Examples

Example 1: Testmodule DLM

The IDL distribution contains an example of a simple DLM (dynamically loadable
module) in the external/dlm subdirectory. This example consists of a single C
source file, and the desired sharable library exports a single function called
IDL_Load. The following MAKE_DLL statement builds this sharable library,
leaving the resulting file in the directory given by
!MAKE_DLL.COMPILE_DIRECTORY:

; Locate the source file:
INDIR = FILEPATH('', SUBDIRECTORY=['external', 'dlm'])
; Build the sharable library:
MAKE_DLL, 'testmodule', 'IDL_Load', INPUT_DIRECTORY=INDIR
MAKE_DLL IDL Reference Guide

 1203
Example 2: Using GCC

IDL is built with the standard vendor-supported C compiler in order to get maximum
integration with the target system. MAKE_DLL assumes that you have the same
compiler installed on your system and its defaults are targeted to use it. To use other
compilers, you tell MAKE_DLL how to use them.

For example, many IDL users have the gcc compiler installed on their systems. This
example (tested under 32-bit Solaris 7 using gcc 2.95.2) shows how to use gcc to
build the testmodule sharable library from the previous example:

; We need the include directory for the IDL export.h header
; file. One way to get this is to extract it from the
; !MAKE_DLL system variable using the STREGEX function
INCLUDE=STREGEX(!MAKE_DLL.CC, '-I[^]+', /EXTRACT)
; Locate the source file
INDIR = FILEPATH('', SUBDIRECTORY=['external', 'dlm'])
; Build the sharable library, using the CC keyword to specify gcc:
MAKE_DLL, 'testmodule', 'IDL_Load', INPUT_DIRECTORY=INDIR, $

CC='gcc -c -fPIC '+ INCLUDE + '%C -o %O'

Version History

Introduced: 5.4

REUSE_EXISTING keyword added: 5.6

See Also

!MAKE_DLL
IDL Reference Guide MAKE_DLL

1204
MAP_2POINTS

The MAP_2POINTS function returns parameters such as distance, azimuth, and path
relating to the great circle or rhumb line connecting two points on a sphere.

This routine is written in the IDL language. Its source code can be found in the file
map_2points.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = MAP_2POINTS(lon0, lat0, lon1, lat1 [, DPATH=value | , /METERS |
, /MILES | , NPATH=integer{2 or greater} | , /PARAMETERS | , RADIUS=value]
[, /RADIANS] [, /RHUMB])

Return Value

This function returns a two-element vector containing the distance and azimuth of the
great circle or rhumb line connecting the two points, P0 to P1, in the specified angular
units, unless one or more of the keywords NPATH, DPATH, METERS, MILES,
PARAMETERS, or RADIUS is specified. See the keyword descriptions for the return
value associated with each of these keywords.

If MILES, METERS, or RADIUS is not set, distances are angular distance, from 0 to
180 degrees (or 0 to !DPI if the RADIANS keyword is set). Azimuth is measured in
degrees or radians, east of north.

Arguments

Lon0, Lat0

Longitude and latitude of the first point, P0.

Lon1, Lat1

Longitude and latitude of the second point, P1.

Keywords

DPATH

Set this keyword to a value specifying the maximum angular distance between the
points on the path in the prevalent units, degrees or radians.
MAP_2POINTS IDL Reference Guide

 1205
METERS

Set this keyword to return the distance between the two points in meters, calculated
using the Clarke 1866 equatorial radius of the earth.

MILES

Set this keyword to return the distance between the two points in miles, calculated
using the Clarke 1866 equatorial radius of the earth.

NPATH

Set this keyword to a value specifying the number of points to return. If this keyword
is set, the function returns a (2, NPATH) array containing the longitude/latitude of the
points on the great circle or rhumb line connecting P0 and P1. For a great circle, the
points will be evenly spaced in distance, while for a rhumb line, the points will be
evenly spaced in longitude.

Note
This keyword must be set to an integer of 2 or greater.

PARAMETERS

Set this keyword to return the parameters determining the great circle connecting the
two points, [sin(c), cos(c), sin(az), cos(az)], where c is the great circle angular
distance, and az is the azimuth of the great circle at P0, in degrees east of north.

RADIANS

Set this keyword if inputs and angular outputs are to be specified in radians. The
default is degrees.

RADIUS

Set this keyword to a value specifying the radius of the sphere to be used to calculate
the distance between the two points. If this keyword is specified, the function returns
the distance between the two points calculated using the given radius.

RHUMB

Set this keyword to return the distance and azimuth of the rhumb line connecting the
two points, P0 to P1. The default is to return the distance and azimuth of the great
circle connecting the two points. A rhumb line is the line of constant direction
connecting two points.
IDL Reference Guide MAP_2POINTS

1206
Examples

The following examples use the geocoordinates of two points, Boulder and London:

B = [-105.19, 40.02] ;Longitude, latitude in degrees.
L = [-0.07, 51.30]

Example 1

Print the angular distance and azimuth, from B, of the great circle connecting the two
points:

PRINT, MAP_2POINTS(B[0], B[1], L[0], L[1])

IDL prints 67.854333 40.667833

Example 2

Print the angular distance and course (azimuth), connecting the two points:

PRINT, MAP_2POINTS(B[0], B[1], L[0], L[1],/RHUMB)

IDL prints 73.966283 81.228057

Example 3

Print the distance in miles between the two points:

PRINT, MAP_2POINTS(B[0], B[1], L[0], L[1],/MILES)

IDL prints 4693.5845

Example 4

Print the distance in miles along the rhumb line connecting the two points:

PRINT, MAP_2POINTS(B[0], B[1], L[0], L[1], /MILES, /RHUMB)

IDL prints 5116.3571

Example 5

Display a map containing the two points, and annotate the map with both the great
circle and the rhumb line path between the points, drawn at one degree increments:

MAP_SET, /MOLLWEIDE, 40,-50, /GRID, SCALE=75e6,/CONTINENTS
PLOTS, MAP_2POINTS(B[0], B[1], L[0], L[1],/RHUMB, DPATH=1)
PLOTS, MAP_2POINTS(B[0], B[1], L[0], L[1],DPATH=1)
MAP_2POINTS IDL Reference Guide

 1207
This displays the following map:

Version History

Introduced: 5.4

See Also

MAP_SET

Figure 11: Map annotated with great circle and rhumb line path between Boulder
and London, drawn at one degree increments.
IDL Reference Guide MAP_2POINTS

1208
MAP_CONTINENTS

The MAP_CONTINENTS procedure draws continental boundaries, filled continents,
political boundaries, coastlines, and/or rivers, over an existing map projection
established by MAP_SET. Outlines can be drawn in low or high-resolution (if the
optional high-resolution CIA World Map database is installed). If
MAP_CONTINENTS is called without any keywords, it draws low-resolution,
unfilled continent outlines.

MAP_SET must be called before MAP_CONTINENTS to establish the projection
type, the center of the projection, polar rotation and geographic limits.

Syntax

MAP_CONTINENTS [, /COASTS] [, COLOR=index] [, /CONTINENTS]
[, /COUNTRIES] [,FILL_CONTINENTS={1 | 2}[, ORIENTATION=value]]
[, /HIRES] [, LIMIT=vector] [, MLINESTYLE={0 | 1 | 2 | 3 | 4 | 5}]
[, MLINETHICK=value] [, /RIVERS] [, SPACING=centimeters] [, /USA]

Graphics Keywords: [, /T3D] [, ZVALUE=value{0 to 1}]

Keywords

COASTS

Set this keyword to draw coastlines, islands, and lakes instead of the default continent
outlines. Note that if you are using the low-resolution map database (if the HIRES
keyword is not set), many islands are drawn even when COASTS is not set. If you are
using the high-resolution map database (if the HIRES keyword is set), no islands are
drawn unless COASTS is set.

COLOR

Set this keyword to the color index of the lines being drawn.

CONTINENTS

Set this keyword to plot the continental boundaries. This is the default, unless
COASTS, COUNTRIES, RIVERS and/or USA is set.

Note
If you are using the low-resolution map database (if the HIRES keyword is not set),
outlines for continents, islands, and lakes are drawn when the CONTINENTS
MAP_CONTINENTS IDL Reference Guide

 1209
keyword is set. If you are using the high-resolution map database (if the HIRES
keyword is set), only continental outlines are drawn when the CONTINENTS
keyword is set. To draw islands and lakes when using the high-resolution map
database, use the COASTS keyword.

Note
If you are using the USA and CONTINENTS keywords in conjunction to map the
outline of each state in the United States onto an existing outline of the continent,
you may see discrepancies in the coastline. This is due to the fact that the two
outlines are derived from different databases (the USA keyword uses a geographical
database, and the CONTINENTS keyword uses a geological database).

COUNTRIES

Set this keyword to draw political boundaries as of 1993.

FILL_CONTINENTS

Set this keyword to 1 to fill continent boundaries with a solid color. The color is set
by the COLOR keyword. Set this keyword to 2 to fill continent boundaries with a line
fill. For line filling, the COLOR, MLINESTYLE, MLINETHICK, ORIENTATION,
and SPACING keywords can be used to control the type of line fill.

Note
When using this keyword in conjunction with the HIRES keyword, lakes on
continents will be filled and islands will not be filled.

HIRES

Set this keyword to use high-resolution map data instead of the default low-resolution
data. This option is only available if you have installed the optional high-resolution
map datasets. If the high-resolution data is not available, a warning is printed and the
low-resolution data is used instead.

This keyword can be used in conjunction with the COASTS, COUNTRIES,
FILL_CONTINENTS, and RIVERS keywords.

LIMIT

Set this keyword to a four-element vector [Latmin, Lonmin, Latmax, Lonmax] to only
plot continents that pass through the LIMIT rectangle. The points (Latmin, Lonmin)
and (Latmax, Lonmax) are the latitudes and longitudes of two points diagonal from
IDL Reference Guide MAP_CONTINENTS

1210
each other on the region’s boundary. The default is to use the limits from the current
map projection.

Note
Line segments for continents which extend outside of the LIMIT rectangle will still
be plotted.

MLINESTYLE

The line style of the boundaries being drawn. The default is solid lines. Valid
linestyles are shown in the table below:

MLINETHICK

The thickness of the boundary or fill lines. The default thickness is 1.

ORIENTATION

Set this keyword to the counterclockwise angle in degrees from horizontal that the
line fill should be drawn. The default is 0. This keyword only has effect if the
FILL_CONTINENTS keyword is set to 2.

RIVERS

Set this keyword to draw rivers.

SPACING

Set this keyword to the spacing, in centimeters, for a line fill. This keyword only has
effect if the FILL_CONTINENTS keyword is set to 2. The default is 0.5 centimeters.

Index Linestyle

0 Solid

1 Dotted

2 Dashed

3 Dash Dot

4 Dash Dot Dot

5 Long Dashes

Table 58: IDL Linestyles
MAP_CONTINENTS IDL Reference Guide

 1211
USA

Set this keyword to draw borders for each state in the United States in addition to
continental boundaries.

Note
If you are using the USA and CONTINENTS keywords in conjunction to map the
outline of each state in the United States onto an existing outline of the continent,
you may see discrepancies in the coastline. This is due to the fact that the two
outlines are derived from different databases (the USA keyword uses a geographical
database, and the CONTINENTS keyword uses a geological database).

Graphics Keywords Accepted

See Appendix B, “Graphics Keywords”, for descriptions of graphics and plotting
keywords not listed above. T3D, ZVALUE.

Examples

The following example demonstrates the use of map outlines to embellish a map
projection:

; Handle TrueColor displays:
DEVICE, DECOMPOSED=0

; Load discrete color table:
tek_color

; Match color indices to colors we want to use:
black=0 & white=1 & red=2
green=3 & dk_blue=4 & lt_blue=5

; Set up an orthographic projection centered over the north
; Atlantic.Fill the hemisphere with dark blue. Specify black
; gridlines:
MAP_SET, /ORTHO, 40, -30, 23, /ISOTROPIC, $

/HORIZON, E_HORIZON={FILL:1, COLOR:dk_blue}, $
/GRID, COLOR=black

; Fill the continent boundaries with solid white:
MAP_CONTINENTS, /FILL_CONTINENTS, COLOR=white

; Overplot coastline data:
MAP_CONTINENTS, /COASTS, COLOR=black

; Add rivers, in light blue:
IDL Reference Guide MAP_CONTINENTS

1212
MAP_CONTINENTS, /RIVERS, COLOR=lt_blue

; Show national borders:
MAP_CONTINENTS, /COUNTRIES, COLOR=red, MLINETHICK=2

Version History

Introduced: Pre 4.0

See Also

MAP_GRID, MAP_IMAGE, MAP_PATCH, MAP_SET
MAP_CONTINENTS IDL Reference Guide

 1213
MAP_GRID

The MAP_GRID procedure draws the graticule of parallels and meridians, according
to the specifications established by MAP_SET. MAP_SET must be called before
MAP_GRID to establish the projection type, the center of the projection, polar
rotation and geographical limits.

Syntax

MAP_GRID [, /BOX_AXES | [, CLIP_TEXT=0] [, LATALIGN=value{0.0 to 1.0}]
[, LONALIGN=value{0.0 to 1.0}] [, LATLAB=longitude] [, LONLAB=latitude]
[, ORIENTATION=clockwise_degrees_from_horiz]] [, CHARSIZE=value]
[, COLOR=index] [, /FILL_HORIZON] [, GLINESTYLE={0 | 1 | 2 | 3 | 4 | 5}]
[, GLINETHICK=value] [, /HORIZON] [, INCREMENT=value]
[, LABEL=n{label_every_nth_gridline}] [, LATDEL=degrees]
[, LATNAMES=array, LATS=vector] [, LONDEL=degrees] [, LONNAMES=array,
LONS=vector] [, /NO_GRID]

Graphics Keywords: [, /T3D] [, ZVALUE=value{0 to 1}]

Keywords

BOX_AXES

Set this keyword to create box-style axes for map plots where the parallels intersect
the sides, and the meridians intersect the bottom and top edges of the box.

CHARSIZE

Set this keyword to the size of the characters used for the labels. The default is 1.

CLIP_TEXT

Set this keyword to a zero value to turn off clipping of text labels. By default, text
labels are clipped. This keyword is ignored if the BOX_AXES keyword is set.

COLOR

Set this keyword to the color index for the grid lines.

FILL_HORIZON

Set this keyword to fill the current map_horizon.
IDL Reference Guide MAP_GRID

1214
GLINESTYLE

If set, the line style used to draw the grid of parallels and meridians. See
“LINESTYLE” on page 3875 for a list of available linestyles. The default index is 1,
drawing a dotted line.

GLINETHICK

Set this keyword to the thickness of the grid lines. Default is 1.

HORIZON

Set this keyword to draw the current map horizon.

INCREMENT

Set this keyword to the spacing between graticle points.

LABEL

Set this keyword to label the parallels and meridians with their corresponding
latitudes and longitudes. Setting this keyword to an integer will cause every LABEL
gridline to be labeled (that is, if LABEL=3 then every third gridline will be labeled).
The starting point for determining which gridlines are labeled is the minimum
latitude or longitude (-180 to 180), unless the LATS or LONS keyword is set to a
single value. In this case, the starting point is the value of LATS or LONS.

LATALIGN

This keyword controls the alignment of the text baseline for latitude labels. A value
of 0.0 left justifies the label, 1.0 right justifies it, and 0.5 centers it. This keyword is
ignored if the BOX_AXES keyword is set.

LATDEL

Set this keyword equal to the spacing (in degrees) between parallels of latitude in the
grid. If this keyword is not set, a suitable value is determined from the current map
projection.

LATLAB

The longitude at which to place latitude labels. The default is the center longitude on
the map. This keyword is ignored if the BOX_AXES keyword is set.
MAP_GRID IDL Reference Guide

 1215
LATNAMES

Set this keyword equal to an array specifying the names to be used for the latitude
labels. By default, this array is automatically generated in units of degrees. The
LATNAMES array can be either type string or any single numeric type, but should
not be of mixed type.

When LATNAMES is specified, the LATS keyword must also be specified. The
number of elements in the two arrays need not be equal. If there are more elements in
the LATNAMES array than in the LATS array, the extra LATNAMES are ignored. If
there are more elements in the LATS array than in the LATNAMES array, labels in
degrees will be automatically provided for the missing latitude labels.

The LATNAMES keyword can be also used when the LATS keyword is set to a
single value. It this case, the first label supplied will be used at the specified latitude;
subsequent names will be placed at the next latitude line to the north, wrapping
around the globe if appropriate. Caution should be used when using LATNAMES in
conjunction with a single LATS value, since the number of visible latitude gridlines is
dependent on many factors.

LATS

Set this keyword equal to a one or more element vector of latitudes for which lines
will be drawn (and optionally labeled). If LATS is omitted, appropriate latitudes will
be generated based on the value of the (optional) LATDEL keyword. If LATS is set to
a single value, that latitude and a series of automatically generated latitudes will be
drawn (and optionally labeled). Automatically generated latitudes have the values:

[...,LATS-LATDEL,LATS,LATS+LATDEL,...]

over the extent of the map. If LATS is a single value, that value is taken to be the
starting point for labelling (See the LABEL keyword).

LONALIGN

This keyword controls the alignment of the text baseline for longitude labels. A value
of 0.0 left justifies the label, 1.0 right justifies it, and 0.5 centers it. This keyword is
ignored if the BOX_AXES keyword is set.

LONDEL

Set this keyword equal to the spacing (in degrees) between meridians of longitude in
the grid. If this keyword is not set, a suitable value is determined from the current
map projection.
IDL Reference Guide MAP_GRID

1216
LONLAB

The latitude at which to place longitude labels. The default is the center latitude on
the map. This keyword is ignored if the BOX_AXES keyword is set.

LONNAMES

Set this keyword equal to an array specifying the names to be used for the longitude
labels. By default, this array is automatically generated in units of degrees. The
LONNAMES array can be either type string or any single numeric type, but should
not be of mixed type.

When LONNAMES is specified, the LONS keyword must also be specified. The
number of elements in the two arrays need not be equal. If there are more elements in
the LONNAMES array than in the LONS array, the extra LONNAMES are ignored.
If there are more elements in the LONS array than in the LONNAMES array, labels
in degrees will be automatically provided for the missing longitude labels.

The LONNAMES keyword can be also used when the LONS keyword is set to a
single value. It this case, the first label supplied will be used at the specified
longitude; subsequent names will be placed at the next longitude line to the east,
wrapping around the globe if appropriate. Caution should be used when using
LONNAMES in conjunction with a single LONS value, since the number of visible
longitude gridlines is dependent on many factors.

LONS

Set this keyword equal to a one or more element vector of longitudes for which lines
will be drawn (and optionally labeled). If LONS is omitted, appropriate longitudes
will be generated based on the value of the (optional) LONDEL keyword. If LONS is
set to a single value, that longitudes and a series of automatically generated
longitudes will be drawn (and optionally labeled). Automatically generated
longitudes have the values:

[...,LONS-LONDEL,LONS,LONS+LONDEL,...]

over the extent of the map. If LONS is a single value, that value is taken to be the
starting point for labelling (See the LABEL keyword).

NO_GRID

Set this keyword if you only want labels but not gridlines.
MAP_GRID IDL Reference Guide

 1217
ORIENTATION

Set this keyword equal to an angle in degrees from horizontal (in the clockwise
direction) to rotate the labels. This keyword is ignored if the BOX_AXES keyword is
set.

Graphics Keywords Accepted

See Appendix B, “Graphics Keywords”, for descriptions of graphics and plotting
keywords not listed above. T3D, ZVALUE.

Examples

The following example creates an orthographic projection, defines which latitudes to
label, and provides text labels. Note that the text labels are rotated to match the
orientation of the map projection.

; Set up an orthographic projection:
MAP_SET, /ORTHO, 10, 20, 30, /ISOTROPIC, /CONTINENTS, /HORIZON
; Define latitudes of interest:
lats = [-80, -45, -30, -20, 0, 15, 27, 35, 45, 55, 75]
; Create string equivalents of latitudes:
latnames = strtrim(lats, 2)
; Label the equator:
latnames(where(lats eq 0)) = 'Equator'
; Draw the grid:
MAP_GRID, LABEL=2, LATS=lats, LATNAMES=latnames, LATLAB=7, $

LONLAB=-2.5, LONDEL=20, LONS=-15, ORIENTATION=-30

Version History

Introduced: Pre 4.0

See Also

MAP_CONTINENTS, MAP_IMAGE, MAP_PATCH, MAP_SET
IDL Reference Guide MAP_GRID

1218
MAP_IMAGE

The MAP_IMAGE function warps an image (or other dataset) to the current map
projection. This function provides an easy method for displaying geographical data as
an image on a map. The MAP_SET procedure should be called prior to calling
MAP_IMAGE.

MAP_IMAGE works in image (graphic) space. For each destination pixel (when
COMPRESS is set to one) MAP_IMAGE calculates the latitude and longitude by
applying the inverse map projection. This latitude and longitude are then used to
index and interpolate the Image argument, obtaining an interpolated value for the
destination pixel. The time required by MAP_IMAGE depends mainly on the number
of pixels in the destination and the setting of the COMPRESS parameter.

Note
MAP_IMAGE is more efficient than MAP_PATCH when the input data set is large
compared to the destination area. If the converse is true, MAP_PATCH is more
efficient.

Syntax

Result = MAP_IMAGE(Image [, Startx, Starty [, Xsize, Ysize]]
[, LATMIN=degrees{-90 to 90}] [, LATMAX=degrees{-90 to 90}]
[, LONMIN=degrees{-180 to 180}] [, LONMAX=degrees{-180 to 180}]
[, /BILINEAR] [, COMPRESS=value] [, SCALE=value] [, MAX_VALUE=value]
[, MIN_VALUE=value] [, MISSING=value])

Return Value

Returns the image or dataset warped to the current map projection.

Arguments

Image

A two-dimensional array containing the image to be overlaid on the map.

Startx

A named variable that, upon return, contains the X coordinate position where the left
edge of the image should be placed on the screen.
MAP_IMAGE IDL Reference Guide

 1219
Starty

A named variable that, upon return, contains the Y coordinate position where the left
edge of the image should be placed on the screen.

Xsize

A named variable that, upon return, contains the width of the image expressed in
graphic coordinate units. If the current graphics device uses scalable pixels, the
values of Xsize and Ysize should be passed to the TV procedure.

Ysize

A named variable that, upon return, contains the height of the image expressed in
graphic coordinate units. If the current graphics device uses scalable pixels, the
values of Xsize and Ysize should be passed to the TV procedure.

Keywords

LATMIN

The latitude corresponding to the first row of Image. The default is -90 degrees. Note
also that -90° ≤ LATMIN < LATMAX ≤ 90°.

LATMAX

The latitude corresponding to the last row of Image. The default value is 90 degrees.
Note also that -90° ≤ LATMIN < LATMAX ≤ 90°.

LONMIN

The longitude corresponding to the first (leftmost) column of the Image argument.
Select LONMIN so that -180° ≤ LONMIN ≤ 180°. The default value is -180.

LONMAX

The longitude corresponding to the last (rightmost) column of the Image argument.
Select LONMAX so that it is larger than LONMIN. If the longitude of the last
column is equal to (LONMIN - (360. /Nx)) MODULO 360, it is assumed that the
image covers all longitudes (Nx being the total number of columns in the Image
argument).
IDL Reference Guide MAP_IMAGE

1220
BILINEAR

Set this flag to use bilinear interpolation to soften edges in the returned image,
otherwise, nearest neighbor sampling is used.

COMPRESS

This keyword, the interpolation compression flag, controls the accuracy of the results
from MAP_IMAGE. The default is 4 for output devices with fixed pixel sizes. The
inverse projection transformation is applied to each ith row and column. Setting this
keyword to a higher number saves time while lower numbers produce more accurate
results. Setting this keyword to 1 solves the inverse map transformation for every
pixel of the output image.

SCALE

Set this keyword to the pixel/graphics scale factor for devices with scalable pixels
(e.g., PostScript). The default is 0.02 pixels/graphic coordinate. This setting yields an
approximate output image size of 350 x 250. Make this number larger for more
resolution (and larger PostScript files and images), or smaller for faster, smaller, and
less accurate images.

MAX_VALUE

Data points with values equal to or greater than this value will be treated as missing
data, and will be set to the value specified by the MISSING keyword.

MIN_VALUE

Data points with values equal to or less than this value will be treated as missing data,
and will be set to the value specified by the MISSING keyword.

MISSING

The pixel value to set areas outside the valid map coordinates. If this keyword is
omitted, areas outside the map are set to 255 (white) if the current graphics device is
PostScript, otherwise they are set to 0.

Examples

The following lines of code set up an orthographic map projection and warp a simple
image to it.

; Create a simple image to be warped:
image = BYTSCL(SIN(DIST(400)/10))
MAP_IMAGE IDL Reference Guide

 1221
; Display the image so we can see what it looks like before
; warping:
TV, image
latmin = -65
latmax = 65

; Left edge is 160 East:
lonmin = 160

; Right edge is 70 West = +360:
lonmax = -70 + 360
MAP_SET, 0, -140, /ORTHOGRAPHIC, /ISOTROPIC, $

LIMIT=[latmin, lonmin, latmax, lonmax]
result = MAP_IMAGE(image,Startx,Starty, COMPRESS=1, $

LATMIN=latmin, LONMIN=lonmin, $
LATMAX=latmax, LONMAX=lonmax)

; Display the warped image on the map at the proper position:
TV, result, Startx, Starty

; Draw gridlines over the map and image:
MAP_GRID, latdel=10, londel=10, /LABEL, /HORIZON

; Draw continent outlines:
MAP_CONTINENTS, /coasts

Version History

Introduced: Pre 4.0

See Also

MAP_CONTINENTS, MAP_GRID, MAP_PATCH, MAP_SET
IDL Reference Guide MAP_IMAGE

1222
MAP_PATCH

The MAP_PATCH function warps an image (or other dataset) to the current map
projection. Mapping coordinates should be setup via a call to MAP_SET before using
MAP_PATCH.

MAP_PATCH works in object (data) space. It divides the input data set, Image_Orig,
into triangular patches, either directly from the implicit rectangular grid, or by
triangulating the data points on the surface of the sphere using the TRIANGULATE
procedure. These triangular patches are then projected to the map plane in the image
space of the destination array and then interpolated. The time required by
MAP_PATCH depends mainly on the number of elements in the input array.

Note
MAP_PATCH is more efficient than MAP_IMAGE when the destination area is
large compared to the input data set. If the converse is true, MAP_IMAGE is more
efficient.

This routine is written in the IDL language. Its source code can be found in the file
map_patch.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = MAP_PATCH(Image_Orig [, Lons, Lats] [, LAT0=value] [, LAT1=value]
[, LON0=value] [, LON1=value] [, MAX_VALUE=value] [, MISSING=value]
[, /TRIANGULATE] [, XSIZE=variable] [, XSTART=variable] [, YSIZE=variable]
[, YSTART=variable])

Return Value

Returns the image or dataset warped to the current map projection.

Arguments

Image_Orig

A one- or two-dimensional array that contains the data to be overlaid on the map. If
the TRIANGULATE keyword is not set, Image_Orig must be a two-dimensional
array. Rows and columns must be arranged in increasing longitude and latitude order.
Also, the corner points of each cell must be contiguous. This means that the seam of a
map must lie on a cell boundary, not in its interior, splitting the cell.
MAP_PATCH IDL Reference Guide

 1223
Lons

An optional vector that contains the longitude value for each column in Image_Orig.
If Lons is a one-dimensional vector, longitude (Image_Orig[i,j]) = Lons[i]; if Lons is
a two-dimensional vector, longitude (Image_Orig[i,j]) = Lons[i,j].

This argument can be omitted if the longitudes are equally-spaced and the beginning
and ending longitudes are specified with the LON0 and LON1 keywords.

Lats

An optional vector that contains the latitude value for each row in Image_Orig. If
Lats is a one-dimensional vector, latitude (Image_Orig[i,j]) = Lats[i]; if Lats is a two-
dimensional vector, latitude (Image_Orig[i,j]) = Lats[i,j].

This argument can be omitted if the latitudes are equally-spaced and the beginning
and ending latitudes are specified with the LAT0 and LAT1 keywords.

Keywords

LAT0

The latitude of the first row of data. The default is -90.

LAT1

The latitude of the last row of data. The default is +90.

LON0

The longitude of the first column of data. The default is -180.

LON1

The longitude of the last column of data. The default is 180 - (360/Number-of-Rows)

MAX_VALUE

The largest data value to be warped. Values in Image_Orig greater than this value are
considered missing. Pixels in the output image that correspond to these missing
values are set to the value specified by the MISSING keyword.
IDL Reference Guide MAP_PATCH

1224
MISSING

Set this keyword to a value to be used for areas outside the valid map coordinates
(i.e., the “background color”). If the current plotting device is PostScript, the default
is 255 (white). Otherwise, the default is 0 (usually black).

TRIANGULATE

Set this keyword to convert the input data to device space and triangulate them. This
keyword must be specified if the connectivity of the data points is not rectangular and
monotonic in device space.

XSIZE

Set this keyword to a named variable in which the width of the output image is
returned, in graphic coordinate units. If the current graphics device has scalable
pixels (e.g., PostScript), the values returned by XSIZE and YSIZE should be passed
to the TV procedure.

XSTART

Set this keyword to a named variable in which the X coordinate where the left edge of
the image should be placed on the screen is returned.

YSIZE

Set this keyword to a named variable in which the height of the output image is
returned, in graphic coordinate units. If the current graphics device has scalable
pixels (e.g., PostScript), the values returned by XSIZE and YSIZE should be passed
to the TV procedure.

YSTART

Set this keyword to a named variable in which the Y coordinate where the bottom
edge of the image should be placed on the screen is returned.

Examples

; Form a 24 x 24 dataset on a sphere:
n = 24

; Specify equally gridded latitudes:
lat = replicate(180./(n-1),n) # findgen(n) - 90
MAP_PATCH IDL Reference Guide

 1225
; Specify equally gridded longitudes:
lon = findgen(n) # replicate(360./(n-1), n)

; Convert to Cartesian coordinates:
x = cos(lon * !dtor) * cos(lat * !dtor)
y = sin(lon * !dtor) * cos(lat * !dtor)
z = sin(lat * !dtor)

; Set interpolation function to scaled distance squared
; from (1,1,0):
f = BYTSCL((x-1)^2 + (y-1)^2 + z^2)

; Set up projection:
MAP_SET, 90, 0, /STEREO, /ISOTROPIC, /HORIZ

; Grid and display the data:
TV, MAP_PATCH(f, XSTART=x0, YSTART=y0), x0, y0

; Draw gridlines over the map and image:
MAP_GRID

; Draw continent outlines:
MAP_CONTINENTS

; Draw a horizon line:
MAP_HORIZON

Version History

Introduced: 4.0

See Also

MAP_CONTINENTS, MAP_GRID, MAP_IMAGE, MAP_SET
IDL Reference Guide MAP_PATCH

1226
MAP_PROJ_FORWARD

The MAP_PROJ_FORWARD function transforms map coordinates from longitude
and latitude to Cartesian (x, y) coordinates, using either the !MAP system variable or
a supplied map projection structure.

Syntax

Result = MAP_PROJ_FORWARD(Longitude [, Latitude]
[, CONNECTIVITY=vector] [, MAP_STRUCTURE=value]
[, POLYGONS=variable] [, POLYLINES=variable] [, /RADIANS])

Return Value

The result is a (2, n) array containing the Cartesian (x, y) coordinates.

Note
If the POLYGONS or POLYLINES keyword is present, the number of points in the
result may be different than the number of input points, depending upon whether
clipping and splitting occurs.

Arguments

Longitude

An n-element vector containing the longitude values. If the Latitude argument is
omitted, Longitude must be a (2, n) array of longitude and latitude pairs.

Latitude

An n-element vector containing latitude values. If this argument is omitted,
Longitude must be a (2, n) array of longitude and latitude pairs.

Keywords

CONNECTIVITY

Set this keyword to a vector containing an input connectivity list for polygons or
polylines. The CONNECTIVITY keyword allows you to specify multiple polygons
or polylines using a single array. The CONNECTIVITY list is a one-dimensional
integer array of the form:
MAP_PROJ_FORWARD IDL Reference Guide

 1227
where each mj is an integer specifying the number of vertices that define the polyline
or polygon (the vertex count), and each associated set of i0...im-1 are indices into the
arrays of vertices specified by the Longitude and Latitude arguments.

For example, to draw polylines between the first, third, and sixth longitude and
latitude values and the fourth, sixth, ninth, and tenth longitude and latitude values, set
the CONNECTIVITY array equal to [3,0,2,5,4,3,5,8,9].

To ignore a set of entries in the CONNECTIVITY array, set the vertex count, mj,
equal to zero. (Note that if you set an m equal to zero, you must remove the associated
set of i0...im-1 values as well.) To ignore the remaining entries in the
CONNECTIVITY array, set the vertex count, mj, equal to -1.

This keyword is ignored if neither POLYGONS nor POLYLINES are present.

MAP_STRUCTURE

Set this keyword to a !MAP structure variable containing the projection parameters,
as constructed by the MAP_PROJ_INIT. If this keyword is omitted, the !MAP
system variable is used.

POLYGONS

Set this keyword to a named variable that will contain a connectivity array of the form
described above in the CONNECTIVITY keyword.

If this keyword is present, the arrays specified by the Longitude and Latitude
arguments are assumed to be the vertices of a closed polygon. In this case, polygon
clipping and splitting is performed in addition to the map transform, and the
connectivity array is returned in the specified variable.

If this keyword is not present, the arrays specified by the Longitude and Latitude
arguments are assumed to be independent points and no clipping or splitting is
performed.

POLYLINES

Set this keyword to a named variable that will contain a connectivity array of the form
described above in the CONNECTIVITY keyword.

m1 i0 i1 … im1 1– m2 i0 i1 … im2 1– … mn i0 i1 … imn 1–, , , , , , , , , , , , , , ,
IDL Reference Guide MAP_PROJ_FORWARD

1228
If this keyword is present, the arrays specified by the Longitude and Latitude
arguments are assumed to be the vertices of a polyline. In this case, polyline clipping
and splitting is performed in addition to the map transform, and the connectivity array
is returned in the specified variable.

If this keyword is not present, the arrays specified by the Longitude and Latitude
arguments are assumed to be independent points and no clipping or splitting is
performed.

RADIANS

Set this keyword to indicate that the input longitude and latitude coordinates are in
radians. By default, coordinates are assumed to be in degrees.

Example

The following example creates a latitude and longitude grid with labels for the
Goodes Homolosine map projection.

; Helper function. Constructs the polyline objects.
PRO Ex_Map_AddPolyline, label, $

gridLon, gridLat, sMap, oModel, oContainer, oFont, $
LONGITUDE = longitude

longitude = KEYWORD_SET(longitude)

; Transform from lat/lon to X/Y cartesian.
gridUV = MAP_PROJ_FORWARD(gridLon, gridLat, $

MAP=sMap, POLYLINES = gridPoly)
IF (N_ELEMENTS(gridUV) LT 2) THEN $

RETURN

; Construct label object if desired.
IF (label NE '') THEN BEGIN

oLabel = OBJ_NEW('IDLgrText', label, $
ALIGN = longitude ? 0.5 : 1, $
FONT = oFont, VERTICAL_ALIGN=0.5)

oContainer->Add, oLabel
ENDIF

; Create the polyline object.
oModel->Add, OBJ_NEW('IDlgrPolyline', gridUV, $

LABEL_OBJ = oLabel, $
LABEL_OFFSET = longitude ? 0.35 : 0, $
/USE_LABEL_ORIENTATION, /USE_TEXT_ALIGN, $
POLYLINE = gridPoly)
MAP_PROJ_FORWARD IDL Reference Guide

 1229
END

; Main function. Creates a grid over a map projection.
PRO Ex_Map_Proj_Forward

; Construct !MAP structure containing the projection.
sMap = MAP_PROJ_INIT('Goodes Homolosine')

; Create a graphics model to hold the visualizations.
oModel = OBJ_NEW('IDLgrModel')
oContainer = OBJ_NEW('IDL_Container')
oFont = OBJ_NEW('IDLgrFont', SIZE = 4)
oContainer -> Add, oFont
deg = STRING(176b) ; degrees symbol in Truetype

; Latitude lines.
gridLon = DINDGEN(361) - 180
latitude = 15*(INDGEN(11) - 5)

FOR i = 0,(N_ELEMENTS(latitude) - 1) DO BEGIN
lat = latitude[i]
gridLat = REPLICATE(lat, 361)

; Create the latitude label.
label = (lat EQ 0) ? 'Equ' : $
STRTRIM(ABS(lat),2) + deg + (['N','S'])[lat LT 0]

Ex_Map_Addpolyline, label, gridLon, gridLat, $
sMap, oModel, oContainer, oFont

ENDFOR

; Longitude lines.
gridLat = DINDGEN(181) - 90

; Add in some extra lines for the Goode projections.
longitude = [20*(DINDGEN(18) - 9), $

-179.999d, -20.001d, -100.001d, -40.001d, 80.001d]

FOR i = 0,N_ELEMENTS(longitude) - 1 DO BEGIN
lon = longitude[i]
gridLon = REPLICATE(lon, 181)

; Create the longitude label.
label = STRTRIM(ROUND(ABS(lon)),2) + deg
IF ((lon mod 180) NE 0) THEN $
label = label + (['E','W'])[lon LT 0]

IF (lon NE FIX(lon)) THEN label = ''

Ex_Map_Addpolyline, label, gridLon, gridLat, $
sMap, oModel, oContainer, oFont, /LONGITUDE
IDL Reference Guide MAP_PROJ_FORWARD

1230
ENDFOR

; Visualize our map projection.
XOBJVIEW, oModel, SCALE = 0.9, /BLOCK

; Clean up our objects.
OBJ_DESTROY, [oModel, oContainer]

END

Version History

Introduced: 5.6

See Also

MAP_PROJ_INIT, MAP_PROJ_INVERSE
MAP_PROJ_FORWARD IDL Reference Guide

 1231
MAP_PROJ_INFO

The MAP_PROJ_INFO procedure returns information about the current map and/or
the available projections. To establish a current projection, mapping parameters
should be setup via a call to MAP_SET.

Syntax

MAP_PROJ_INFO [, iproj] [, AZIMUTHAL=variable] [, CIRCLE=variable]
[, CYLINDRICAL=variable] [, /CURRENT] [, LL_LIMITS=variable]
[, NAME=variable] [, PROJ_NAMES=variable] [, UV_LIMITS=variable]
[, UV_RANGE=variable]

Arguments

Iproj

The projection index. If the CURRENT keyword is set, then the index of the current
map projection is returned in Iproj.

Keywords

AZIMUTHAL

Set this keyword to a named variable that, upon return, will be set to 1 if the
projection is azimuthal and 0 otherwise.

CIRCLE

Set this keyword to a named variable that, upon return, will be set to 1 if the
projection is circular or elliptical and 0 otherwise.

CURRENT

Set this keyword to use the current projection index and return that index in Iproj.

CYLINDRICAL

Set this keyword to a named variable that, upon return, will be set to 1 if the
projection is cylindrical and 0 otherwise.
IDL Reference Guide MAP_PROJ_INFO

1232
LL_LIMITS

Set this keyword to a named variable that will contain the geocoordinate rectangle of
the current map in degrees, [Latmin, Lonmin, Latmax, Lonmax]. This range may not
always be available, especially if the LIMIT keyword was not specified in the call to
MAP_SET. If either or both the longitude and latitude range are not available, the
minimum and maximum values will be set to zero.

NAME

Set this keyword to a named variable that will contain the name of the projection.

PROJ_NAMES

Set this keyword to a named variable that will contain a string array containing the
names of the available projections, ordered by their indices. The first projection name
is stored in element one.

UV_LIMITS

Set this keyword to a named variable that will contain the UV bounding box of the
current map, [Umin, Vmin, Umax, Vmax].

UV_RANGE

Set this keyword to a named variable that will contain the UV coordinate limits of the
selected map projection, [Umin, Vmin, Umax, Vmax]. UV coordinates are mapped to
normalized coordinates using the system variables !X.S and !Y.S. These limits are
dependent upon the selected projection, but independent of the current map.

Examples

; Establish a projection
MAP_SET, /MERCATOR

;Obtain projection characteristics
MAP_PROJ_INFO, /CURRENT, NAME=name, AZIMUTHAL=az, $
CYLINDRICAL=cyl, CIRCLE=cir

On return, the variables will be set as follows:

AZIM INT = 0
CIRC INT = 0
CYL INT = 1
NAME STRING 'Mercator'
MAP_PROJ_INFO IDL Reference Guide

 1233
Version History

Introduced: 5.0

See Also

MAP_SET
IDL Reference Guide MAP_PROJ_INFO

1234
MAP_PROJ_INIT

The MAP_PROJ_INIT function initializes a mapping projection, using either IDL’s
own map projections or map projections from the U.S. Geological Survey's General
Cartographic Transformation Package (GCTP). GCTP version 2.0 is included with
IDL.

Note
The !MAP system variable is unaffected by MAP_PROJ_INIT. To use the map
projection returned by MAP_PROJ_INIT for direct or object graphics, use the
MAP_PROJ_FORWARD and MAP_PROJ_INVERSE functions to convert
longitude/latitude values into Cartesian (x, y) coordinates before visualization.

This routine is written in the IDL language. Its source code can be found in
map_proj_init.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = MAP_PROJ_INIT(Projection [, DATUM=value] [, /GCTP]
[, LIMIT=vector] [, /RADIANS] [, /RELAXED])

Keywords—Projection Parameters:

[, CENTER_AZIMUTH=value] [, CENTER_LATITUDE=value]
[, CENTER_LONGITUDE=value] [, FALSE_EASTING=value]
[, FALSE_NORTHING=value] [, HEIGHT=value]
[, HOM_AZIM_LONGITUDE=value] [, HOM_AZIM_ANGLE=value]
[, HOM_LATITUDE1=value] [, HOM_LATITUDE2=value]
[, HOM_LONGITUDE1=value] [, HOM_LONGITUDE2=value]
[, IS_ZONES=value] [, IS_JUSTIFY=value] [, MERCATOR_SCALE=value]
[, OEA_ANGLE=value] [, OEA_SHAPEM=value] [, OEA_SHAPEN=value]
[, ROTATION=value] [, SEMIMAJOR_AXIS=value] [, SEMIMINORAXIS=value]
[, SOM_INCLINATION=value] [, SOM_LONGITUDE=value]
[, SOM_PERIOD=value] [, SOM_RATIO=value] [, SOM_FLAG=value]
[, SOM_LANDSAT_NUMBER=value] [, SOM_LANDSAT_PATH=value]
[, SPHERE_RADIUS=value] [, STANDARD_PARALLEL=value]
[, STANDARD_PAR1=value] [, STANDARD_PAR2=value] [, SAT_TILT=value]
[, TRUE_SCALE_LATITUDE=value] [, ZONE=value]
MAP_PROJ_INIT IDL Reference Guide

 1235
Return Value

The result is a !MAP structure containing the map parameters, which can be used as
input to the map transformation functions MAP_PROJ_FORWARD and
MAP_PROJ_INVERSE.

Arguments

Projection

Set this argument to either a projection index or a scalar string containing the name of
the map projection, as described in following tables:

Projection Name Allowed Keyword Parameters

1 Stereographic SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

2 Orthographic SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

3 Lambert Conic SPHERE_RADIUS, STANDARD_PAR1,
STANDARD_PAR2,
CENTER_LONGITUDE,
CENTER_LATITUDE

4 Lambert Azimuthal SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

5 Gnomonic SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

6 Azimuthal Equidistant SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

Table 59: IDL Projections
IDL Reference Guide MAP_PROJ_INIT

1236
7 Satellite SPHERE_RADIUS, HEIGHT, SAT_TILT,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

8 Cylindrical SPHERE_RADIUS, CENTER_AZIMUTH,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

9 Mercator SPHERE_RADIUS, CENTER_AZIMUTH,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

10 Mollweide SPHERE_RADIUS, CENTER_AZIMUTH,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

11 Sinusoidal SPHERE_RADIUS, CENTER_AZIMUTH,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

12 Aitoff SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

13 Hammer Aitoff SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

14 Albers Equal Area Conic SPHERE_RADIUS, STANDARD_PAR1,
STANDARD_PAR2,
CENTER_LONGITUDE,
CENTER_LATITUDE

15 Transverse Mercator SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
MERCATOR_SCALE,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

16 Miller Cylindrical SPHERE_RADIUS, CENTER_AZIMUTH,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

Projection Name Allowed Keyword Parameters

Table 59: IDL Projections (Continued)
MAP_PROJ_INIT IDL Reference Guide

 1237
The following are GCTP projections:

17 Robinson SPHERE_RADIUS, CENTER_AZIMUTH,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

18 Lambert Ellipsoid Conic SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
STANDARD_PAR1, STANDARD_PAR2,
CENTER_LONGITUDE,
CENTER_LATITUDE

19 Goodes Homolosine SPHERE_RADIUS, CENTER_LONGITUDE

Projection Name Allowed Keyword Parameters

101 UTM CENTER_LONGITUDE,
CENTER_LATITUDE, ZONE

102 State Plane ZONE

103 Albers Equal Area SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
STANDARD_PAR1, STANDARD_PAR2,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

104 Lambert Conformal Conic SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
STANDARD_PAR1, STANDARD_PAR2,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

105 Mercator SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
CENTER_LONGITUDE,
TRUE_SCALE_LATITUDE,
FALSE_EASTING, FALSE_NORTHING

Table 60: GCTP Projections

Projection Name Allowed Keyword Parameters

Table 59: IDL Projections (Continued)
IDL Reference Guide MAP_PROJ_INIT

1238
106 Polar Stereographic SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

107 Polyconic SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

108 Equidistant Conic A SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
STANDARD_PARALLEL,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

208 Equidistant Conic B SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
STANDARD_PAR1, STANDARD_PAR2,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

109 Transverse Mercator SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
MERCATOR_SCALE,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

110 Stereographic SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

111 Lambert Azimuthal SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

Projection Name Allowed Keyword Parameters

Table 60: GCTP Projections (Continued)
MAP_PROJ_INIT IDL Reference Guide

 1239
112 Azimuthal SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

113 Gnomonic SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

114 Orthographic SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

115 Near Side Perspective SPHERE_RADIUS, HEIGHT,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

116 Sinusoidal SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

117 Equirectangular SPHERE_RADIUS,
CENTER_LONGITUDE,
TRUE_SCALE_LATITUDE,
FALSE_EASTING, FALSE_NORTHING

118 Miller Cylindrical SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

119 Van der Grinten SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

Projection Name Allowed Keyword Parameters

Table 60: GCTP Projections (Continued)
IDL Reference Guide MAP_PROJ_INIT

1240
120 Hotine Oblique Mercator A SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
MERCATOR_SCALE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING, HOM_LONGITUDE1,
HOM_LATITUDE1, HOM_LONGITUDE2,
HOM_LATITUDE2

220 Hotine Oblique Mercator B SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
MERCATOR_SCALE,
HOM_AZIM_ANGLE,
HOM_AZIM_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

121 Robinson SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

122 Space Oblique Mercator A SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
SOM_INCLINATION, SOM_LONGITUDE,
FALSE_EASTING, FALSE_NORTHING,
SOM_PERIOD, SOM_RATIO, SOM_FLAG

222 Space Oblique Mercator B SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
SOM_LANDSAT_NUMBER,
SOM_LANDSAT_PATH, FALSE_EASTING,
FALSE_NORTHING

123 Alaska Conformal SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
FALSE_EASTING, FALSE_NORTHING

124 Interrupted Goode SPHERE_RADIUS

125 Mollweide SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

126 Interrupted Mollweide SPHERE_RADIUS

Projection Name Allowed Keyword Parameters

Table 60: GCTP Projections (Continued)
MAP_PROJ_INIT IDL Reference Guide

 1241
Keywords

Note
The following keywords apply to all projections.

DATUM

Set this keyword to either an integer code or a scalar string containing the name of the
datum to use for the ellipsoid. The default value depends upon the projection
selected, but is either the Clarke 1866 ellipsoid (datum 0), or a sphere of radius
6370.997 km (datum 19).

127 Hammer SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

128 Wagner IV SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

129 Wagner VII SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

130 Oblated Equal Area SPHERE_RADIUS, OEA_SHAPEM,
OEA_SHAPEN, CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING, OEA_ANGLE

131 Integerized Sinusoidal SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING, IS_ZONES,
IS_JUSTIFY

Projection Name Allowed Keyword Parameters

Table 60: GCTP Projections (Continued)
IDL Reference Guide MAP_PROJ_INIT

1242
The following datums (or spheroids) are available for use with the DATUM keyword:

Index Name Semimajor
axis (m)

Semiminor
axis (m)

0 Clarke 1866 6378206.4 6356583.8

1 Clarke 1880 6378249.145 6356514.86955

2 Bessel 6377397.155 6356078.96284

3 International 1967 6378157.5 6356772.2

4 International 1909 6378388.0 6356911.94613

5 WGS 72 6378135.0 6356750.519915

6 Everest 6377276.3452 6356075.4133

7 WGS 66 6378145.0 6356759.769356

8 GRS 1980/WGS 84 6378137.0 6356752.31414

9 Airy 6377563.396 6356256.91

10 Modified Everest 6377304.063 6356103.039

11 Modified Airy 6377340.189 6356034.448

12 Walbeck 6378137.0 6356752.314245

13 Southeast Asia 6378155.0 6356773.3205

14 Australian National 6378160.0 6356774.719

15 Krassovsky 6378245.0 6356863.0188

16 Hough 6378270.0 6356794.343479

17 Mercury 1960 6378166.0 6356784.283666

18 Modified Mercury 1968 6378150.0 6356768.337303

19 Sphere 6370997.0 6370997.0

Table 61: Datums available for use by MAP_PROJ_INIT.
MAP_PROJ_INIT IDL Reference Guide

 1243
Note
For many projections, you can specify your own datum by using either the
SEMIMAJOR_AXIS and SEMIMINOR_AXIS or the SPHERE_RADIUS
keywords.

GCTP

Set this keyword to indicate that the GCTP library should be used for the projection.
By default, MAP_PROJ_INIT uses the IDL projection library. This keyword is
ignored if the projection exists only in one system (GCTP or IDL), or if the
Projection argument is specified as an index.

LIMIT

Set this keyword to a four-element vector of the form

[Latmin, Lonmin, Latmax, Lonmax]

that specifies the boundaries of the region to be mapped. (Lonmin, Latmin) and
(Lonmax, Latmax) are the longitudes and latitudes of two points diagonal from each
other on the region's boundary.

Note
When using MAP_PROJ_FORWARD, if the longitude range in LIMIT is less than
or equal to 180 degrees, map clipping is performed in lat/lon coordinates before the
transform. If the longitude range is greater than 180 degrees, map clipping is done
in Cartesian coordinates after the transform. For non-cylindrical projections,
clipping after the transformation to Cartesian coordinates means that some lat/lon
points that fall outside the bounds specified by LIMIT may not be clipped. This
occurs when the transformed lat/lon points fall inside the cartesian clipping
rectangle.

RADIANS

Set this keyword to indicate that all parameters that represent angles are specified in
radians rather than degrees.

RELAXED

If this keyword is set, any projection parameters which do not apply to the specified
projection will be quietly ignored. By default, MAP_PROJ_INIT will issue errors for
parameters that do not apply to the specified projection.
IDL Reference Guide MAP_PROJ_INIT

1244
Projection Keywords

The following keywords apply only to some projections. Consult the list under
“Projection” on page 1235 to determine which keywords apply to the projection you
have selected.

Note
Unless the RADIANS keyword is set, all angles are measured in degrees, specified
as a floating-point value.

CENTER_AZIMUTH

Set this keyword to the angle of the central azimuth, in degrees east of North. The
default is 0 degrees. The pole is placed at an azimuth of CENTRAL_AZIMUTH
degrees counterclockwise of North, as specified by the ROTATION keyword.

CENTER_LATITUDE

Set this keyword to the latitude of the point on the earth’s surface to be mapped to the
center of the projection plane. Latitude is measured in degrees North of the equator
and must be in the range: -90 to +90. The default value is zero.

CENTER_LONGITUDE

Set this keyword to the longitude of the point on the earth’s surface to be mapped to
the center of the map projection. Longitude is measured in degrees east of the
Greenwich meridian and must be in the range: -360 to +360. The default value is
zero.

FALSE_EASTING

Set this keyword to the false easting value (in meters) to be added to each x
coordinate for the forward transform, or subtracted from each x coordinate for the
inverse transform.

FALSE_NORTHING

Set this keyword to the false northing value (in meters) to be added to each y
coordinate for the forward transform, or subtracted from each y coordinate for the
inverse transform.
MAP_PROJ_INIT IDL Reference Guide

 1245
HEIGHT

Set this keyword to the height (in meters) above the earth’s surface for satellite
projections.

HOM_AZIM_LONGITUDE

Set this keyword to the longitude in degrees of the central meridian point where the
azimuth occurs.

HOM_AZIM_ANGLE

Set this keyword to the azimuth angle, measured in degrees, east of a north-south line
that intersects the center line. The center line is defined as the great circle path along
which the Mercator cylinder touches the sphere.

HOM_LATITUDE1

Set this keyword to the latitude in degrees of the first point on the center line. The
center line is defined as the great circle path along which the Mercator cylinder
touches the sphere.

HOM_LATITUDE2

Set this keyword to the latitude in degrees of the second point on the center line. The
center line is defined as the great circle path along which the Mercator cylinder
touches the sphere.

HOM_LONGITUDE1

Set this keyword to the longitude in degrees of the first point on the center line. The
center line is defined as the great circle path along which the Mercator cylinder
touches the sphere.

HOM_LONGITUDE2

Set this keyword to the longitude in degrees of the second point on the center line.
The center line is defined as the great circle path along which the Mercator cylinder
touches the sphere.

IS_ZONES

Set this keyword to the number of longitudinal zones to include in the projection.
IDL Reference Guide MAP_PROJ_INIT

1246
IS_JUSTIFY

Set this keyword to a flag indicating what to do with rows with an odd number of
columns. The possible values are:

MERCATOR_SCALE

Set this keyword to the scale factor at the central meridian (Transverse Mercator
projection) or the center of the projection (Hotine Oblique Mercator projection). For
the Transverse Mercator projection, the default scale is 0.9996.

OEA_ANGLE

Set this keyword to the Oblated Equal Area oval rotation angle in degrees.

OEA_SHAPEM

Set this keyword to the Oblated Equal Area shape parameter m. The value of
OEA_SHAPEM determines the horizontal flatness of the oblong region, and is
usually set to a value between one and three.

OEA_SHAPEN

Set this keyword to the Oblated Equal Area oval shape parameter n. The value of
OEA_SHAPEN determines the vertical flatness of the oblong region, and is usually
set to a value between one and three.

Note
Setting both OEA_SHAPEM and OEA_SHAPEN equal to two is equivalent to
using the Lambert Azimuthal projection.

Value Description

0 Indicates the extra column is on the right of the projection Y axis.

1 Indicates the extra column is on the left of the projection Y axis.

2 Calculate an even number of columns.

Table 62: IS_JUSTIFY Keyword Values
MAP_PROJ_INIT IDL Reference Guide

 1247
ROTATION

Set this keyword to the angle through which the North direction should be rotated
around the line between the earth’s center and the point (CENTER_LONGITUDE,
CENTER_LATITUDE). ROTATION is measured in degrees with the positive
direction being clockwise rotation around the line. Values should be in the range
-180 to +180. The default value is zero.

Note
If the center of the map is at the North pole, North is in the direction
CENTER_LONGITUDE + 180. If the origin is at the South pole, North is in the
direction CENTER_LONGITUDE.

SEMIMAJOR_AXIS

Set this keyword to the length (in meters) of the semimajor axis of the reference
ellipsoid. The default is either the Clarke 1866 datum (6378206.4 m) or the Sphere
radius (6370997 m), depending upon the projection.

SEMIMINOR_AXIS

Set this keyword to the length (in meters) of the semiminor axis of the reference
ellipsoid. The default is either the Clarke 1866 datum (6356583.8 m) or the Sphere
radius (6370997 m), depending upon the projection.

SOM_INCLINATION

Set this keyword to the orbit inclination angle in degrees of the ascending node,
counter-clockwise from equator.

SOM_LONGITUDE

Set this keyword to the longitude in degrees of the ascending orbit at the equator.

SOM_PERIOD

Set this keyword to the period in minutes of the satellite revolution.

SOM_RATIO

Set this keyword to the Landsat ratio to compensate for confusion at the northern end
of orbit. A typical value is 0.5201613.
IDL Reference Guide MAP_PROJ_INIT

1248
SOM_FLAG

Set this keyword to the end of path flag for Landsat, where 0 is the start and 1 is the
end.

SOM_LANDSAT_NUMBER

Set this keyword to the Landsat satellite number.

SOM_LANDSAT_PATH

Set this keyword to the Landsat path number (use 1 for Landsat 1, 2 and 3; use 2 for
Landsat 4, 5 and 6).

SPHERE_RADIUS

Set this keyword to the radius (in meters) of the reference sphere. The default is
6370997 m.

STANDARD_PARALLEL

Set this keyword to the latitude in degrees of the standard parallel along which the
scale is true.

STANDARD_PAR1

Set this keyword to the latitude in degrees of the first standard parallel along which
the scale is true.

STANDARD_PAR2

Set this keyword to the latitude in degrees of the second standard parallel along which
the scale is true.

SAT_TILT

Set this keyword to the downward tilt in degrees of the camera, in degrees from the
projection horizontal.

TRUE_SCALE_LATITUDE

Set this keyword to the latitude in degrees of true scale.
MAP_PROJ_INIT IDL Reference Guide

 1249
ZONE

Set this keyword to an integer giving the zone for the GCTP UTM projection or
GCTP State Plane projection.

Note
For the UTM projection, you may also use the CENTER_LONGITUDE and
CENTER_LATITUDE keywords to set the zone. Internally, the ZONE value will be
computed from the longitude and latitude.

Example

See MAP_PROJ_FORWARD for an example of using this function.

Version History

Introduced: 5.6

See Also

MAP_PROJ_FORWARD, MAP_PROJ_INVERSE, MAP_SET
IDL Reference Guide MAP_PROJ_INIT

1250
MAP_PROJ_INVERSE

The MAP_PROJ_INVERSE function transforms map coordinates from Cartesian
(x, y) coordinates to longitude and latitude, using either the !MAP system variable or
a supplied map projection variable.

Syntax

Result = MAP_PROJ_INVERSE (X [, Y] [, MAP_STRUCTURE=value]
[, /RADIANS])

Return Value

The result is a (2, n) array containing the longitude/latitude coordinates.

Arguments

X

An n-element vector containing the x values. If the Y argument is omitted, X must be
a (2, n) array of X and Y pairs.

Y

An n-element vector containing y values. If this argument is omitted, X must be a
(2, n) array of X and Y pairs.

Keywords

MAP_STRUCTURE

Set this keyword to a !MAP structure variable containing the projection parameters,
as constructed by the MAP_PROJ_INIT. If this keyword is omitted, the !MAP
system variable is used.

RADIANS

Set this keyword to indicate that the returned longitude and latitude coordinates
should be expressed in radians. By default, returned coordinates are expressed in
degrees.
MAP_PROJ_INVERSE IDL Reference Guide

 1251
Version History

Introduced: 5.6

See Also

MAP_PROJ_FORWARD, MAP_PROJ_INIT
IDL Reference Guide MAP_PROJ_INVERSE

1252
MAP_SET

The MAP_SET procedure establishes the axis type and coordinate conversion
mechanism for mapping points on the earth’s surface, expressed in latitude and
longitude, to points on a plane, according to one of several possible map projections.

The type of map projection, the map center, polar rotation and geographical limits
can all be customized. The system variable !MAP retains the information needed to
effect coordinate conversions to the plane and, inversely, from the projection plane to
points on the earth in latitude and longitude. Users should not change the values of
the fields in !MAP directly.

MAP_SET can also be made to plot the grid of latitude and longitude lines and
continental boundaries by setting the keywords GRID and CONTINENTS. Many
other types of boundaries can be overplotted on maps using the
MAP_CONTINENTS procedure.

Note
Using MAP_SET changes the !X.TYPE system variable.

Note
If the graphics device is changed, MAP_SET (and all other mapping calls) must be
re-called for the projection to be set up properly for the new device.

Syntax

MAP_SET [, P0lat, P0lon, Rot]

Keywords—Projection Types: [[, /AITOFF | , /ALBERS | , /AZIMUTHAL | ,
/CONIC | , /CYLINDRICAL | , /GNOMIC | , /GOODESHOMOLOSINE | ,
/HAMMER | , /LAMBERT | , /MERCATOR | , /MILLER_CYLINDRICAL | ,
/MOLLWEIDE | , /ORTHOGRAPHIC | , /ROBINSON | , /SATELLITE | ,
/SINUSOIDAL | , /STEREOGRAPHIC | , /TRANSVERSE_MERCATOR] |
[, NAME=string]]

Keywords—Map Characteristics: [, /ADVANCE] [, CHARSIZE=value] [, /CLIP]
[, COLOR=index] [, /CONTINENTS [, CON_COLOR=index] [, /HIRES]]
[, E_CONTINENTS=structure] [, E_GRID=structure] [, E_HORIZON=structure]
[, GLINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, GLINETHICK=value] [, /GRID]
[, /HORIZON] [, LABEL=n{label every nth gridline}]
[, LATALIGN=value{0.0 to 1.0}] [, LATDEL=degrees] [, LATLAB=longitude]
[, LONALIGN=value{0.0 to 1.0}] [, LONDEL=degrees] [, LONLAB=latitude]
MAP_SET IDL Reference Guide

 1253
[, MLINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, MLINETHICK=value] [, /NOBORDER]
[, /NOERASE] [, REVERSE={0 | 1 | 2 | 3}] [, TITLE=string] [, /USA]
[, XMARGIN=value] [, YMARGIN=value]

Keywords—Projection Parameters:
[, CENTRAL_AZIMUTH=degrees_east_of_north] [, ELLIPSOID=array]
[, /ISOTROPIC] [, LIMIT=vector] [, SAT_P=vector] [, SCALE=value]
[, STANDARD_PARALLELS=array]

Graphics Keywords: [, POSITION=[X0, Y0, X1, Y1]] [, /T3D] [, ZVALUE=value{0
to 1}]

Arguments

P0lat

The latitude of the point on the earth’s surface to be mapped to the center of the
projection plane. Latitude is measured in degrees North of the equator and P0lat must
be in the range: -90° ≤ P0lat ≤ 90°.

If P0lat is not set, the default value is 0.

P0lon

The longitude of the point on the earth’s surface to be mapped to the center of the
map projection. Longitude is measured in degrees east of the Greenwich meridian
and P0lon must be in the range: -180° ≤ P0lon ≤ 180°.

If P0lon is not set, the default value is zero.

Rot

Rot is the angle through which the North direction should be rotated around the line L
between the earth’s center and the point (P0lat, P0lon). Rot is measured in degrees with
the positive direction being clockwise rotation around line L. Rot can have values
from -180° to 180°.

If the center of the map is at the North pole, North is in the direction P0lon + 180°. If
the origin is at the South pole, North is in the direction P0lon.

The default value of Rot is 0 degrees.
IDL Reference Guide MAP_SET

1254
Keywords

Projection Type Keywords:

AITOFF

Set this keyword to select the Aitoff projection.

ALBERS

Set this keyword to select the Albers equal-area conic projection. To specify the
latitude of the standard parallels, see “STANDARD_PARALLELS” on page 1262.

AZIMUTHAL

Set this keyword to select the azimuthal equidistant projection.

CONIC

Set this keyword to select Lambert’s conformal conic projection with one or two
standard parallels. To specify the latitude of the standard parallels, see
“STANDARD_PARALLELS” on page 1262. This keyword can be used with the
ELLIPSOID keyword.

CYLINDRICAL

Set this keyword to select the cylindrical equidistant projection. Cylindrical is the
default map projection.

GOODESHOMOLOSINE

Set this keyword to select the Goode’s Homolosine Projection. The central latitude
for this projection is fixed on the equator, 0 degrees latitude. This projection is
interrupted, as the inventor originally intended, and is best viewed with the central
longitude set to 0.

GNOMIC

Set this keyword to select the gnomonic projection. If default clipping is enabled, this
projection will display a maximum of ± 60° from the center of the projection area
when the center is at either the equator or one of the poles.

HAMMER

Set this keyword to select the Hammer-Aitoff equal area projection.
MAP_SET IDL Reference Guide

 1255
LAMBERT

Set this keyword to select Lambert’s azimuthal equal area projection.

MERCATOR

Set this keyword to select the Mercator projection. Note that this projection will not
display regions within ± 10° of the poles of projection.

MILLER_CYLINDRICAL

Set this keyword to select the Miller Cylindrical projection.

MOLLWEIDE

Set this keyword to select the Mollweide projection.

NAME

Set this keyword to a string indicating the projection that you wish to use. A list of
available projections can be found using MAP_PROJ_INFO, PROJ_NAMES=names.
This keyword will override any of the individual projection keywords.

ORTHOGRAPHIC

Set this keyword to select the orthographic projection. Note that this projection will
display a maximum of ± 90° from the center of the projection area.

ROBINSON

Set this keyword to select the Robinson pseudo-cylindrical projection.

SATELLITE

Set this keyword to select the satellite projection.

For the satellite projection, P0LAT and P0LON represent the latitude and longitude
of the sub-satellite point. Three additional parameters, P, Omega, and Gamma
(supplied as a three-element vector argument to the SAT_P keyword), are also
required.

Note
Since all meridians and parallels are oblique lines or arcs, the LIMIT keyword must
be supplied as an eight-element vector representing four points that delineate the
IDL Reference Guide MAP_SET

1256
limits of the map. The extent of the map limits, when expressed in
latitude/longitude is a complicated polygon, rather than a simple quadrilateral.

SINUSOIDAL

Set this keyword to select the sinusoidal projection.

STEREOGRAPHIC

Set this keyword to select the stereographic projection. Note that if default clipping is
enabled, this projection will display a maximum of ± 90° from the center of the
projection area.

TRANSVERSE_MERCATOR

Set this keyword to select the Transverse Mercator projection, also called the UTM or
Gauss-Krueger projection. This projection works well with the ellipsoid form. The
default ellipsoid is the Clarke 1866 ellipsoid. To change the default ellipsoid
characteristics, see “ELLIPSOID” on page 1261.

Map Characteristic Keywords:

ADVANCE

Set this keyword to advance to the next frame when the screen is set to display
multiple plots. Otherwise the entire screen is erased.

CHARSIZE

The size of the characters used for the labels. The default is 1.

CLIP

Set this keyword to clip the map using the map-specific graphics technique. The
default is to perform map-specific clipping. Set CLIP=0 to disable clipping.

Note
Clipping controlled by the CLIP keyword applies only to the map itself. In order to
disable general clipping within the plot window, you must set the system variable
!P.NOCLIP=1. For more information, see “NOCLIP” on page 3876.

COLOR

The color index of the map border in the plotting window.
MAP_SET IDL Reference Guide

 1257
CONTINENTS

Set this keyword to plot the continental boundaries. Note that if you are using the
low-resolution map database (if the HIRES keyword is not set), outlines for
continents, islands, and lakes are drawn when the CONTINENTS keyword is set. If
you are using the high-resolution map database (if the HIRES keyword is set), only
continental outlines are drawn when the CONTINENTS keyword is set. To draw
islands and lakes when using the high-resolution map database, use the COASTS
keyword to the MAP_CONTINENTS procedure.

CON_COLOR

The color index for continent outlines if CONTINENTS is set.

E_CONTINENTS

Set this keyword to a structure containing extra keywords to be passed to
MAP_CONTINENTS. For example, to fill continents, the FILL keyword of
MAP_CONTINENTS is set to 1. To fill the continents with MAP_SET, specify
E_CONTINENTS={FILL:1}.

E_GRID

Set this keyword to a structure containing extra keywords to be passed to
MAP_GRID. For example, to label every other gridline on a grid of parallels and
meridians, the LABEL keyword of MAP_GRID is set to 2. To do the same with
MAP_SET, specify E_GRID={LABEL:2}.

E_HORIZON

Set this keyword to a structure containing extra keywords to be set as modifiers to the
HORIZON keyword.

Example

To draw a Stereographic map, with the sphere filled in color index 3, enter:

MAP_SET, 0, 0, /STEREO, /HORIZON, /ISOTROPIC, $
E_HORIZON={FILL:1, COLOR:3}

GLINESTYLE

Set this keyword to a line style index used to draw the grid of parallels and meridians.
See MLINESTYLE for a list of available linestyles. The default is 1, drawing a grid
of dotted lines.
IDL Reference Guide MAP_SET

1258
GLINETHICK

Set this keyword to the thickness of the gridlines drawn if the GRID keyword is set.
The default is 1.

GRID

Set this keyword to draw the grid of parallels and meridians.

HIRES

Set this keyword to use the high-resolution continent outlines when drawing
continents. This keyword only has effect if the CONTINENTS keyword is also set.

HORIZON

Set this keyword to draw a horizon line, when the projection in use permits. The
horizon delineates the boundary of the sphere. See E_HORIZON for more options.

LABEL

Set this keyword to label the parallels and meridians with their corresponding
latitudes and longitudes. Setting this keyword to an integer will cause every LABEL
gridline to be labeled (that is, if LABEL=3 then every third gridline will be labeled).
The starting point for determining which gridlines are labeled is the minimum
latitude or longitude (-180 to 180).

LATALIGN

The alignment of the text baseline for latitude labels. A value of 0.0 left justifies the
label, 1.0 right justifies it, and 0.5 centers it.

LATLAB

The longitude at which to place latitude labels. The default is the center longitude of
the map.

LATDEL

Set this keyword equal to the spacing (in degrees) between parallels of latitude drawn
by the MAP_GRID procedure. If this keyword is not set, a suitable value is
determined from the current map projection.
MAP_SET IDL Reference Guide

 1259
LONALIGN

The alignment of the text baseline for longitude labels. A value of 0.0 left justifies the
label, 1.0 right justifies it, and 0.5 centers it.

LONDEL

Set this keyword equal to the spacing (in degrees) between meridians of longitude
drawn by the MAP_GRID procedure. If this keyword is not set, a suitable value is
determined from the current map projection.

LONLAB

The latitude at which to place longitude labels. The default is the center latitude of the
map.

MLINESTYLE

The line style index used for continental boundaries. Linestyles are described in the
table below. The default is 0 for solid.

MLINETHICK

The line thickness used for continental boundaries. The default is 2.

NOBORDER

Set this keyword to not draw a border around the map. The map will fill the extent of
the plotting region. If NOBORDER is not specified, a margin equalling 1% of the
plotting region will be placed between the map and the border.

Index Linestyle

0 Solid

1 Dotted

2 Dashed

3 Dash Dot

4 Dash Dot Dot

5 Long Dashes

Table 63: IDL Linestyles
IDL Reference Guide MAP_SET

1260
NOERASE

Set this keyword to have MAP_SET not erase the current plot window. The default is
to erase before drawing the map.

REVERSE

Set this keyword to one of the following values to reverse the X and/or Y axes:

• 0 = no reversal (the default)

• 1 = reverse X

• 2 = reverse Y

• 3 = reverse both.

TITLE

A string containing the main title for the map. The title appears centered above the
map window.

USA

Set this keyword to draw borders for each state in the United States.

XMARGIN

A scalar or two-element vector that specifies the vertical margin between the map and
screen border in character units. If a scalar is specified, the same margin will be used
on both sides of the map.

YMARGIN

A scalar or two-element vector that specifies in the horizontal margin between the
map and screen border in character units. If a scalar is specified, the same margin will
be used on the top and bottom of the map.

Projection Parameter Keywords:

CENTRAL_AZIMUTH

Set this keyword to the angle of the central azimuth, in degrees east of North. This
keyword can be used with the following projections: Cylindrical, Mercator, Miller,
Mollweide, and Sinusoidal. The default is 0 degrees. The pole is placed at an azimuth
of CENTRAL_AZIMUTH degrees CCW of North, as specified by the Rot argument.
MAP_SET IDL Reference Guide

 1261
ELLIPSOID

Set this keyword to a 3-element array, [a, e2, k0], defining the ellipsoid for the
Transverse Mercator or Lambert Conic projections.

• a: equatorial radius, in meters.

• e2: eccentricity squared. e2 = 2 * f - f2, where f = 1 - b/a (a: equatorial radius, b:
polar radius; in meters).

• k0: scale on the central meridian.

The default is the Clarke 1866 ellipsoid, [6378206.4, 0.00676866, 0.9996].

This keyword can be used with either the CONIC or TRANSVERSE_MERCATOR
keywords.

ISOTROPIC

Set this keyword to produce a map that has the same scale in the X and Y directions.

Note
The X and Y axes will be scaled isotropically and then fit within the rectangle
defined by the POSITION keyword; one of the axes may be shortened. See
“POSITION” on page 3877 for more information.

LIMIT

A four- or eight-element vector that specifies the limits of the map.

As a four-element vector, LIMIT has the form [Latmin, Lonmin, Latmax, Lonmax] that
specifies the boundaries of the region to be mapped. (Latmin, Lonmin) and (Latmax,
Lonmax) are the latitudes and longitudes of two points diagonal from each other on
the region’s boundary.

As an eight-element vector, LIMIT has the form: [Lat0, Lon0, Lat1, Lon1, Lat2, Lon2,
Lat3, Lon3]. These four latitude/longitude pairs describe, respectively, four points on
the left, top, right, and bottom edges of the map extent.

SAT_P

A three-element vector containing three parameters, P, Omega, and Gamma, that
must be supplied when using the SATELLITE projection where:

• P is the distance of the point of perspective (camera) from the center of the
globe, expressed in units of the radius of the globe.
IDL Reference Guide MAP_SET

1262
• Omega is the downward tilt of the camera, in degrees from the new horizontal.
If both Gamma and Omega are 0, a Vertical Perspective projection results.

• Gamma is the angle, expressed in degrees clockwise from north, of the Earth’s
rotation. This parameter is equivalent to the Rot argument.

SCALE

Set this keyword to construct an isotropic map with the given scale, set to the ratio of
1:scale. If SCALE is not specified, the map is fit to the window. The typical scale for
global maps is in the ratio of between 1:100 million and 1:200 million. For
continents, the typical scale is in the ratio of approximately 1:50 million. For
example, SCALE=100E6 sets the scale at the center of the map to 1:100 million,
which is in the same ratio as 1 inch to 1578 miles (1 cm to 1000 km).

STANDARD_PARALLELS

Set this keyword to a one- or two-element array defining, respectively, one or two
standard parallels for conic projections.

Graphics Keywords Accepted

See Appendix B, “Graphics Keywords”, for descriptions of graphics and plotting
keywords not listed above. POSITION, T3D, ZVALUE.

Examples

To draw a Stereographic map, with the sphere filled in color index 3:

MAP_SET, 0, 0, /STEREO, /HORIZON, /ISOTROPIC, E_HORIZON={FILL:1,
COLOR:3}

Version History

Introduced: Pre 4.0

See Also

MAP_CONTINENTS, MAP_GRID, MAP_IMAGE, MAP_PROJ_INIT
MAP_SET IDL Reference Guide

 1263
MATRIX_MULTIPLY

The MATRIX_MULTIPLY function calculates the IDL # operator of two (possibly
transposed) arrays. The transpose operation (if desired) is done simultaneously with
the multiplication, thus conserving memory and increasing the speed of the
operation. If the arrays are not transposed, then MATRIX_MULTIPLY is equivalent
to using the # operator.

The # Operator vs. MATRIX_MULTIPLY

The following table illustrates how various operations are performed using the #
operator versus the MATRIX_MULTIPLY function:

Note
MATRIX_MULTIPLY can also be used in place of the ## operator. For example,
A ## B is equivalent to MATRIX_MULTIPLY(B, A), and A ## TRANSPOSE(B) is
equivalent to MATRIX_MULTIPLY(B, A, /ATRANSPOSE).

Syntax

Result = MATRIX_MULTIPLY(A, B [, /ATRANSPOSE] [, /BTRANSPOSE])

Return Value

The type for the result depends upon the input type. For byte or integer arrays, the
result has the type of the next-larger integer type that could contain the result (for
example, byte, integer, or long input returns type long integer). For floating-point, the
result has the same type as the input.

Operator Function

A # B MATRIX_MULTIPLY(A, B)

transpose(A) # B MATRIX_MULTIPLY(A, B, /ATRANSPOSE)

A # transpose(B) MATRIX_MULTIPLY(A, B, /BTRANSPOSE)

transpose(A) # transpose(B) MATRIX_MULTIPLY(A, B, /ATRANSPOSE,
/BTRANSPOSE)

Table 64: The # Operator vs. MATRIX_MULTIPLY
IDL Reference Guide MATRIX_MULTIPLY

1264
For the case of no transpose, the resulting array has the same number of columns as
the first array and the same number of rows as the second array. The second array
must have the same number of columns as the first array has rows.

Note
If A and B arguments are vectors, then C = MATRIX_MULTIPLY(A, B) is a matrix
with Cij = AiBj. Mathematically, this is equivalent to the outer product, usually
denoted by A⊗Β.

Arguments

A

The left operand for the matrix multiplication. Dimensions higher than two are
ignored.

B

The right operand for the matrix multiplication. Dimensions higher than two are
ignored.

Keywords

ATRANSPOSE

Set this keyword to multiply using the transpose of A.

BTRANSPOSE

Set this keyword to multiply using the transpose of B.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
MATRIX_MULTIPLY IDL Reference Guide

 1265
Version History

Introduced: 5.4

See Also

MATRIX_POWER, “Multiplying Arrays” in Chapter 22 of the Using IDL manual .
IDL Reference Guide MATRIX_MULTIPLY

1266
MATRIX_POWER

The MATRIX_POWER function computes the product of a matrix with itself. For
example, the fifth power of array A is A # A # A # A # A. Negative powers are
computed using the matrix inverse of the positive power.

Syntax

Result = MATRIX_POWER(Array, N [, /DOUBLE] [, STATUS=value])

Return Value

The result is a square array containing the value of the matrix raised to the specified
power. A power of zero returns the identity matrix.

Arguments

Array

A square, two-dimensional array of any numeric type.

N

An integer representing the power. N may be positive or negative.

Keywords

DOUBLE

Set this keyword to return a double-precision result. Explicitly set this keyword equal
to zero to return a single-precision result. The default return type depends upon the
precision of Array.

Note
Computations are always performed using double-precision arithmetic.
MATRIX_POWER IDL Reference Guide

 1267
STATUS

Set this keyword equal to a named variable that will contain the status of the matrix
inverse for negative powers. Possible values are:

For non-negative powers, STATUS is always set to 0.

Example

Print an array to the one millionth power:

array = [[0.401d, 0.600d], $
 [0.525d, 0.475d]]
PRINT, MATRIX_POWER(array, 1e6)

IDL prints:

 2.4487434e+202 2.7960773e+202
 2.4465677e+202 2.7935929e+202

Version History

Introduced: 5.6

See Also

MATRIX_MULTIPLY, “Multiplying Arrays” in Chapter 22 of the Using IDL manual

Value Description

0 Successful completion.

1 Singular array (which indicates that the inversion is invalid).

2 Warning that a small pivot element was used and that
significant accuracy was probably lost.

Table 65: STATUS Keyword Values
IDL Reference Guide MATRIX_POWER

1268
MAX

The MAX function returns the value of the largest element of Array.

Syntax

Result = MAX(Array [, Max_Subscript] [, DIMENSION=value] [, MIN=variable]
[, /NAN] [, SUBSCRIPT_MIN=variable])

Return Value

Return the largest array element value. The type of the result is the same as the type
of Array.

Arguments

Array

The array to be searched.

Max_Subscript

A named variable that, if supplied, is converted to a long integer containing the one-
dimensional subscript of the maximum element. Otherwise, the system variable !C is
set to the one-dimensional subscript of the maximum element.

Keywords

DIMENSION

Set this keyword to the dimension over which to find the maximum values of an
array. If this keyword is not present or is zero, the maximum is found over the entire
array and is returned as a scalar value. If this keyword is present and nonzero, the
result is the “slice” of the input array that contains the maximum value element, and
the return values for Result, Max_Subscript, MIN, and SUBSCRIPT_MIN will all be
arrays of one dimension less than the input array. That is, if the dimensions of Array
are N1, N2, N3, and DIMENSION=2, the dimensions of the result are (N1, N3), and
element (i,j) of the result contains the maximum value of Array[i, *, j].

For example:

arr = FINDGEN(2,3,2)
PRINT, arr
MAX IDL Reference Guide

 1269
IDL prints:

0.00000 1.00000
2.00000 3.00000
4.00000 5.00000

6.00000 7.00000
8.00000 9.00000
10.0000 11.0000

PRINT, MAX(arr, DIMENSION=2)

IDL prints:

4.00000 5.00000
10.0000 11.0000

PRINT, MAX(arr, DIMENSION=1)

IDL prints:

1.00000 3.00000 5.00000
7.00000 9.00000 11.0000

MIN

A named variable to receive the value of the minimum array element. If you need to
find both the minimum and maximum array values, use this keyword to avoid
scanning the array twice with separate calls to MAX and MIN.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as missing
data. (See “Special Floating-Point Values” in Chapter 18 of the Building IDL
Applications manual for more information on IEEE floating-point values.)

Note
If the MAX function is run on an array containing NaN values and the NAN
keyword is not set, an invalid result will occur.

SUBSCRIPT_MIN

Set this keyword equal to a named variable that will contain the one-dimensional
subscript of the minimum element, the value of which is available via the MIN
keyword.
IDL Reference Guide MAX

1270
Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

Example 1

This example prints the maximum value in an array, and the subscript of that value:

; Create a simple two-dimensional array:
D = DIST(100)

; Print the maximum value in array D and its linear subscript:
PRINT, 'Maximum value in array D is:', MAX(D, I)
PRINT, 'The subscript of the maximum value is', I

IDL Output

Maximum value in array D is: 70.7107
The subscript of the maximum value is 5050

Example 2

To convert I to a two-dimensional subscript, use the commands:

IX = I MOD 100
IY = I/100
PRINT, 'The maximum value of D is at location ('+ STRTRIM(IX, 1) $

+ ', ' + STRTRIM(IY, 1) + ')'

IDL Output

The maximum value of D is at location (50, 50)

Version History

Introduced: Original
MAX IDL Reference Guide

 1271
See Also

ARRAY_INDICES, MIN, WHERE
IDL Reference Guide MAX

1272
MD_TEST

The MD_TEST function tests the hypothesis that a sample population is random
against the hypothesis that it is not random. This two-tailed function is an extension
of the “Runs Test for Randomness” and is often referred to as the Median Delta Test.

This routine is written in the IDL language. Its source code can be found in the file
md_test.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = MD_TEST(X [, ABOVE=variable] [, BELOW=variable]
[, MDC=variable])

Return Value

The result is a two-element vector containing the nearly-normal test statistic Z and its
associated probability.

Arguments

X

An n-element integer, single- or double-precision floating-point vector.

Keywords

ABOVE

Use this keyword to specify a named variable that will contain the number of sample
population values greater than the median of X.

BELOW

Use this keyword to specify a named variable that will contain the number of sample
population values less than the median of X.

MDC

Use this keyword to specify a named variable that will contain the number of Median
Delta Clusters (sequential values of X above and below the median).
MD_TEST IDL Reference Guide

 1273
Examples

This example tests the hypothesis that X represents a random population against the
hypothesis that it does not represent a random population at the 0.05 significance
level:

; Define a sample population:
X = [2.00, 0.90, -1.44, -0.88, -0.24, 0.83, -0.84, -0.74, $

0.99, -0.82, -0.59, -1.88, -1.96, 0.77, -1.89, -0.56, $
-0.62, -0.36, -1.01, -1.36]

; Test the hypothesis that X represents a random population against
; the hypothesis that it does not represent a random population at
; the 0.05 significance level:
result = MD_TEST(X, MDC = mdc)
PRINT, result

IDL prints:

0.459468 0.322949

The computed probability (0.322949) is greater than the 0.05 significance level and
therefore we do not reject the hypothesis that X represents a random population.

Version History

Introduced: 4.0

See Also

CTI_TEST, FV_TEST, KW_TEST, R_TEST, RS_TEST, S_TEST, TM_TEST,
XSQ_TEST
IDL Reference Guide MD_TEST

1274
MEAN

The MEAN function computes the mean of a numeric vector. MEAN calls the IDL
function MOMENT.

Syntax

Result = MEAN(X [, /DOUBLE] [, /NAN])

Return Value

Returns the average value of a set of numbers.

Arguments

X

An n-element, integer, double-precision or floating-point vector.

Keywords

DOUBLE

If this keyword is set, computations are done in double precision arithmetic.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as missing
data. (See “Special Floating-Point Values” in Chapter 18 of the Building IDL
Applications manual for more information on IEEE floating-point values.)

Examples

; Define the n-element vector of sample data:
x = [65, 63, 67, 64, 68, 62, 70, 66, 68, 67, 69, 71, 66, 65, 70]

; Compute the average:
result = MEAN(x)

; Print the result:
PRINT, result
MEAN IDL Reference Guide

 1275
IDL prints:

66.7333

Version History

Introduced: 5.1

See Also

KURTOSIS, MEANABSDEV, MOMENT, STDDEV, SKEWNESS, VARIANCE
IDL Reference Guide MEAN

1276
MEANABSDEV

The MEANABSDEV function computes the mean absolute deviation of an n-element
vector.

Syntax

Result = MEANABSDEV(X [, /DOUBLE] [, /MEDIAN] [, /NAN])

Return Value

Returns the average deviation.

Arguments

X

An n-element, floating-point or double-precision vector.

Keywords

DOUBLE

Set this keyword to force computations to be done in double precision arithmetic and
to return a double precision result. If this keyword is not set, the computations and
result depend upon the type of the input data (integer and float data return float
results, while double data returns double results). This has no effect if the MEDIAN
keyword is set.

MEDIAN

Set this keyword to return the average deviation from the median. By default, if
MEDIAN is not set, MEANABSDEV will return the average deviation from the
mean.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as missing
data. (See “Special Floating-Point Values” in Chapter 18 of the Building IDL
Applications manual for more information on IEEE floating-point values.)
MEANABSDEV IDL Reference Guide

 1277
Examples

; Define an n-element vector:
x = [1, 1, 1, 2, 5]

; Compute average deviation from the mean:
result = MEANABSDEV(x)

; Print the result:
PRINT, result

IDL prints:

1.20000

Version History

Introduced: 5.1

See Also

KURTOSIS, MEAN, MOMENT, STDDEV, SKEWNESS, VARIANCE
IDL Reference Guide MEANABSDEV

1278
MEDIAN

The MEDIAN function computes the median value. In an ordered set of values, the
median is a value with an equal number of values above and below it. Median
smoothing replaces each point with the median of the one- or two-dimensional
neighborhood of a given width. It is similar to smoothing with a boxcar or average
filter but does not blur edges larger than the neighborhood.

In addition, median filtering is effective in removing salt and pepper noise, (isolated
high or low values). The scalar median is simply the middle value, which should not
be confused with the average value (e.g., the median of the array [1,10,4] is 4, while
the average is 5.)

Note
The MEDIAN function treats NaN values as missing data.

Syntax

Result = MEDIAN(Array [, Width] [, DIMENSION=value] [, /EVEN])

Return Value

Returns the median value (element n/2) of Array if one parameter is present, or
applies a one- or two-dimensional median filter of the specified width to Array and
returns the result.

Arguments

Array

The array to be processed. If Width is also supplied, and Array is of byte type, the
result is of byte type. All other types are converted to single-precision floating-point,
and the result is floating-point. Array can have only one or two dimensions.

If Width is not given, Array can have any valid number of dimensions. The array is
converted to single-precision floating-point, and the median value is returned as a
floating-point value.

Width

The size of the one or two-dimensional neighborhood to be used for the median filter.
The neighborhood has the same number of dimensions as Array.
MEDIAN IDL Reference Guide

 1279
Keywords

DIMENSION

Set this keyword to the dimension over which to find the median values of an array. If
this keyword is not present or is zero, the median is found over the entire array and is
returned as a scalar value. If this keyword is present and nonzero, the result is a
“slice” of the input array that contains the median value elements, and the return
value will be an array of one dimension less than the input array.

For example, if the dimensions of Array are N1, N2, N3, and DIMENSION = 2, the
dimensions of the result are (N1, N3), and element (i,j) of the result contains the
median value of Array[i, *, j]. This keyword is ignored if the Width argument is
present.

EVEN

If the EVEN keyword is set when Array contains an even number of points (i.e. there
is no middle number), MEDIAN returns the average of the two middle numbers. The
returned value may not be an element of Array. If Array contains an odd number of
points, MEDIAN returns the median value. The returned value will always be an
element of Array—even if the EVEN keyword is set—since an odd number of points
will always have a single middle value.

Examples

; Create a simple image and display it:
D = SIN(DIST(200)^0.8) & TVSCL, D

; Display D median-filtered with a width of 9:
TVSCL, MEDIAN(D, 9)

; Print the median of a four-element array, with and without
; the EVEN keyword:
PRINT, MEDIAN([1, 2, 3, 4], /EVEN)
PRINT, MEDIAN([1, 2, 3, 4])

IDL prints:

2.50000
3.00000
IDL Reference Guide MEDIAN

1280
Version History

Introduced: Original

DIMENSION keyword added: 5.6

See Also

DIGITAL_FILTER, LEEFILT, MOMENT, SMOOTH
MEDIAN IDL Reference Guide

 1281
MEMORY

The MEMORY function returns information on the amount of dynamic memory
currently in use by the IDL session if no keywords are set. If a keyword is set,
MEMORY returns the specified quantity.

Syntax

Result = MEMORY([, /CURRENT | , /HIGHWATER | , /NUM_ALLOC |
, /NUM_FREE | , /STRUCTURE] [, /L64])

Return Value

The return value is a vector that is always of integer type. The following table
describes the information returned if no keywords are set:

Arguments

None.

Element Contents

Result[0] Amount of dynamic memory (in bytes) currently in use by the
IDL session.

Result[1] The number of times IDL has made a memory allocation request
from the underlying system.

Result[2] The number of times IDL has made a request to free memory
from the underlying system.

Result[3] High water mark: The maximum amount of dynamic memory
used since the last time the MEMORY function or
HELP, /MEMORY procedure was called.

Table 66: MEMORY Function Return Values
IDL Reference Guide MEMORY

1282
Keywords

Note
The following keywords determine the return value of the MEMORY function.
Except for L64, all of the keywords are mutually exclusive — specify at most one of
the following.

CURRENT

Set this keyword to return the amount of dynamic memory (in bytes) currently in use
by the IDL session.

HIGHWATER

Set this keyword to return the maximum amount of dynamic memory used since the
last time the MEMORY function or HELP,/MEMORY procedure was called. This
can be used to determine maximum memory use of a code sequence as shown in the
example below.

L64

By default, the result of MEMORY is 32-bit integer when possible, and 64-bit integer
if the size of the returned values requires it. Set L64 to force 64-bit integers to be
returned in all cases.

Note
Only 64-bit versions of IDL are capable of using enough memory to require 64-bit
MEMORY output. Check the value of !VERSION.MEMORY_BITS to see if your
IDL is 64-bit or not.

NUM_ALLOC

Returns the number of times IDL has requested dynamic memory from the
underlying system.

NUM_FREE

Returns the number of times IDL has returned dynamic memory to the underlying
system.
MEMORY IDL Reference Guide

 1283
STRUCTURE

Set this keyword to return all available information about Expression in a structure.
The result will be an IDL_MEMORY (32-bit) structure when possible, and an
IDL_MEMORY64 structure otherwise. Set L64 to force an IDL_MEMORY64
structure to be returned in all cases.

The following are descriptions of the fields in the returned structure:

Examples

To determine how much dynamic memory is required to execute a sequence of IDL
code:

; Get current allocation and reset the high water mark:
start_mem = MEMORY(/CURRENT)

; Arbitrary code goes here.

PRINT, 'Memory required: ', MEMORY(/HIGHWATER) - start_mem

The MEMORY function can also be used in conjunction with DIALOG_MESSAGE
as follows:

; Get current dymanic memory in use:
mem = MEMORY(/CURRENT)
; Prepare dialog message:
message = 'Current amount of dynamic memory used is '
sentence = message + STRTRIM(mem,2)+' bytes.'
; Display the dialog message containing memory usage statement:
status = DIALOG_MESSAGE (sentence, /INFORMATION)

Field Description

CURRENT Current dynamic memory in use.

NUM_ALLOC Number of calls to allocate memory.

NUM_FREE Number of calls to free memory.

HIGHWATER Maximum dynamic memory used since last call for this
information.

Table 67: STRUCTURE Field Descriptions
IDL Reference Guide MEMORY

1284
Version History

Introduced: Original

See Also

HELP
MEMORY IDL Reference Guide

 1285
MESH_CLIP

The MESH_CLIP function clips a polygonal mesh to an arbitrary plane in space and
returns a polygonal mesh of the remaining portion. An auxiliary array of data may
also be passed and clipped. This array can have multiple values for each vertex. The
portion of the mesh below the plane, satisfying ax+by+cz+d<0, remains after the
clipping operation.

Syntax

Result = MESH_CLIP (Plane, Vertsin, Connin, Vertsout, Connout
[, AUXDATA_IN=array, AUXDATA_OUT=variable] [, CUT_VERTS=variable])

Return Value

The return value is the number of triangles in the returned mesh.

Arguments

Plane

Input four element array describing the equation of the plane to be clipped to. The
elements are the coefficients (a,b,c,d) of the equation ax+by+cz+d=0.

Vertsin

Input array of polygonal vertices [3, n].

Connin

Input polygonal mesh connectivity array.

Vertsout

Output array of polygonal vertices.

Connout

Output polygonal mesh connectivity array.
IDL Reference Guide MESH_CLIP

1286
Keywords

AUXDATA_IN

Input array of auxiliary data. If present, these values are interpolated and returned
through AUXDATA_OUT. The trailing array dimension must match the number of
vertices in the Vertsin array.

AUXDATA_OUT

Set this keyword to a named variable that will contain an output array of interpolated
auxiliary data.

CUT_VERTS

Set this keyword to a named variable that will contain an output array of vertex
indices (into Vertsout) of the vertices which are considered to be “on” the clipped
surface.

Example

This example clips an octahedral mesh (an eight-sided, three-dimensional shape
similar to a cut diamond). The original mesh contains one rectangle and eight
triangles. The connectivity list is formed with the rectangle listed first followed by the
triangles. The mesh is placed in a polygon object, which is added to a model. The
model is displayed in the XOBJVIEW utility, which allows you to click-and-drag the
polygon object to rotate and translate it. See XOBJVIEW in the IDL Reference Guide
for more information on this utility.

When you quit out of the first XOBJVIEW display, the second XOBJVIEW display
will appear. This display shows the mesh clipped with an oblique plane. The final
XOBJVIEW display shows the results of using the TRIANGULATE routine to cover
the clipped area. See TRIANGULATE in the IDL Reference Guide for more
information in this routine.

PRO ClippingAMesh

; Create a mesh of an octahedron.
vertices = [[0, -1, 0], [1, 0, 0], [0, 1, 0], $
 [-1, 0, 0], [0, 0, 1], [0, 0, -1]]
connectivity = [4, 0, 1, 2, 3, 3, 0, 1, 4, 3, 1, 2, 4, $
 3, 2, 3, 4, 3, 3, 0, 4, 3, 1, 0, 5, 3, 2, 1, 5, $
 3, 3, 2, 5, 3, 0, 3, 5]
MESH_CLIP IDL Reference Guide

 1287
; Initialize model for display.
oModel = OBJ_NEW('IDLgrModel')

; Initialize polygon and polyline outline to contain
; the mesh of the octahedron.
oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $
 POLYGONS = connectivity, SHADING = 1, $
 COLOR = [0, 255, 0])
oPolyline = OBJ_NEW('IDLgrPolyline', vertices, $
 POLYLINES = connectivity, COLOR = [0, 0, 0])

; Add the polygon and the polyline to the model.
oModel -> Add, oPolygon
oModel -> Add, oPolyline

; Rotate model for better initial perspective.
oModel -> Rotate, [-1, 0, 1], 22.5

; Display model.
XOBJVIEW, oModel, /BLOCK, SCALE = 1, $
 TITLE = 'Original Octahedron Mesh'

; Clip mesh.
clip = MESH_CLIP([1., 1., 1., 0.], vertices, connectivity, $
 clippedVertices, clippedConnectivity, $
 CUT_VERTS = cutVerticesIndex)

; Update polygon with the resulting clipped mesh.
oPolygon -> SetProperty, DATA = clippedVertices, $
 POLYGONS = clippedConnectivity

; Display the updated model.
XOBJVIEW, oModel, /BLOCK, SCALE = 1, $
 TITLE = 'Clipped Octahedron Mesh'

; Determine the vertices of the clipped plane.
cutVertices = clippedVertices[*, cutVerticesIndex]

; Derive the x and y components of the clipped plane's
; vertices.
x = cutVertices[0, *]
y = cutVertices[1, *]

; Triangulate the connectivity of the clipped plane.
TRIANGULATE, x, y, triangles

; Derive the connectivity of the clipped plane from the
; results of the triangulation.
arraySize = SIZE(triangles, /DIMENSIONS)
IDL Reference Guide MESH_CLIP

1288
array = FLTARR(4, arraySize[1])
array[0, *] = 3
array[1, 0] = triangles
cutConnectivity = REFORM(array, N_ELEMENTS(array))

; Initialize the clipped plane's polygon and polyline.
oCutPolygon = OBJ_NEW('IDLgrPolygon', cutVertices, $
 POLYGONS = cutConnectivity, SHADING = 1, $
 COLOR = [0, 0, 255])
oCutPolyline = OBJ_NEW('IDLgrPolyline', cutVertices, $
 POLYLINES = cutConnectivity, COLOR = [255, 0, 0], $
 THICK = 3.)

; Add polyline and polygon to model.
oModel -> Add, oCutPolyline
oModel -> Add, oCutPolygon

; Display updated model.
XOBJVIEW, oModel, /BLOCK, SCALE = 1, $
 TITLE = 'Clipped Octahedron Mesh with Clipping Plane'

; Clean-up object references.
OBJ_DESTROY, [oModel]

END

The results for this example are shown in the following figure. The original
octahedron is on the left and the two clipped results are shown to the right.
MESH_CLIP IDL Reference Guide

 1289
Version History

Introduced: 5.5

See Also

MESH_DECIMATE, MESH_ISSOLID, MESH_MERGE,
MESH_NUMTRIANGLES, MESH_OBJ, MESH_SMOOTH,
MESH_SURFACEAREA, MESH_VALIDATE, MESH_VOLUME

Figure 12: The Original Octahedron (left) and the Two Clipped Results (right)
IDL Reference Guide MESH_CLIP

1290
MESH_DECIMATE

The MESH_DECIMATE function reduces the density of geometry while preserving
as much of the original data as possible. The classic case is to thin out a polygonal
mesh to use fewer polygons while preserving the mesh form. The decimation
algorithm removes triangles from the mesh. This is done in such a way as to preserve
the mesh edges and to remove roughly planar polygons.

Decimation is a memory and CPU intensive process. Expect the decimation of large
models to require large amounts of memory and dozens of seconds to complete. As a
reference, a model with approximately 36,000 vertices and 70,000 faces requires 20-
30 seconds to decimate to 10% of its original size on a typical NT PC with 64Mb
RAM and 333MHz Pentium processor.

If the input polygons are not all triangles, IDL converts the polygons to triangles
before decimating. For best results, the polygons should all be convex. Note that if
the input polygons are not all triangles, then IDL may return more polygons (as
triangles) than were submitted as input, even after decimating a percentage of the
polygons. IDL applies the PERCENT_POLYGONS keyword value to the polygon
list after converting the list to triangles to approximate the same visual effect of
decimating the requested percentage of polygons.

IDL takes steps to deal with input data with a wide variation in magnitude. For
example, a troublesome input polygon list may have X and Y values in the 10^1 to
10^2 range, while the Z values may have magnitudes of about 10^20. If the results of
the decimation are unacceptable, consider scaling the input data so that the
magnitudes of the data are closer together.

Syntax

Result = MESH_DECIMATE (Verts, Conn, Connout [, VERTICES=variable]
[, PERCENT_VERTICES=percent | , PERCENT_POLYGONS=percent]
[, PROGRESS_CALLBACK=string] [, PROGRESS_METHOD=string]
[, PROGRESS_OBJECT=objref] [, PROGRESS_PERCENT=percent{0 to 100}]
[, PROGRESS_USERDATA=value])

Return Value

The return value is the number of triangles in the output connectivity array.
MESH_DECIMATE IDL Reference Guide

 1291
Arguments

Verts

Input array of polygonal vertices [3, n].

Conn

Input polygonal mesh connectivity array.

Connout

Output polygonal mesh connectivity array.

Note
Some of the vertices in the Verts array may not be referenced by the Connout array.

Keywords

PERCENT_VERTICES

Set this keyword to the percent of the original vertices to be returned in the Connout
array. It specifies the amount of decimation to perform.

PERCENT_POLYGONS

Set this keyword to the percent of the original polygons to be returned in the Connout
array. It specifies the amount of decimation to perform.

Note
PERCENT_VERTICES and PERCENT_POLYGONS are mutually exclusive
keywords.

PROGRESS_CALLBACK

Set this keyword to a scalar string containing the name of the IDL function that
MESH_DECIMATE calls at PROGRESS_PERCENT intervals as it decimates the
polygonal mesh.

The PROGRESS_CALLBACK function returns a zero to signal MESH_DECIMATE
to stop decimating, which causes MESH_DECIMATE to return the partially
decimated mesh. If the callback function returns a non-zero, MESH_DECIMATE
continues to decimate the mesh.
IDL Reference Guide MESH_DECIMATE

1292
The PROGRESS_CALLBACK function must specify a single argument, Percent,
which MESH_DECIMATE sets to an integer between 0 and 100, inclusive.

The PROGRESS_CALLBACK function may specify an optional USERDATA
keyword, which MESH_DECIMATE sets to the variable provided in the
PROGRESS_USERDATA keyword.

The following code show an example of a progress callback function:

FUNCTION myProgressCallback, percent,$ USERDATA = myStruct

oProgressBar = myStruct.oProgressBar

; This method updates the progress bar
; graphic and returns TRUE if the user has
; NOT pressed the cancel button.
keepGoing = oProgressBar -> $

UpdateProgressValue(percent)

RETURN, keepGoing

END

PROGRESS_METHOD

Set this keyword to a scalar string containing the name of a function method that
MESH_DECIMATE calls at PROGRESS_PERCENT intervals as it decimates the
mesh. If this keyword is set, then the PROGRESS_OBJECT keyword must be set to
an object reference that is an instance of a class that defines the specified method.

The PROGRESS_METHOD function method callback has the same specification as
the callback described in the PROGRESS_CALLBACK keyword, except that it is
defined as an object class method:

FUNCTION myClass::myProgressCallback, $
percent, USERDATA = myStruct

PROGRESS_OBJECT

Set this keyword to an object reference that is an instance of a class that defines the
method specified with the PROGRESS_METHOD keyword. If this keyword is set,
then the PROGRESS_METHOD keyword must also be set.

PROGRESS_PERCENT

Set this keyword to a scalar in the range [1, 100] to specify the interval between
invocations of the callback function. The default value is 5 and IDL silently clamps
other values to the range [1, 100].
MESH_DECIMATE IDL Reference Guide

 1293
For example, a value of 5 (the default) specifies MESH_DECIMATE will call the
callback function when the decimation is 0% complete, 5% complete, 10% complete,
..., 95% complete, and 100% complete.

PROGRESS_USERDATA

Set this property to any IDL variable that MESH_DECIMATE passes to the callback
function in the callback function’s USERDATA keyword parameter. If this keyword
is specified, then the callback function must be able to accept keyword parameters.

VERTICES

Set this keyword to a named variable that will contain an output array of the vertices
generated by the MESH_DECIMATE function. If this keyword is specified, the
function is not restricted to using the original set of vertices specified in the Verts
parameter when generating the decimated mesh, allowing it to generate a more
optimal mesh by determining its own placement of vertices. If this keyword is
specified, the Connout argument will consist of a polygon connectivity list whose
indices refer to the vertex list stored in the named variable specified with this
keyword. Otherwise, the Connout argument will consist of a polygon connectivity list
that refers to the original vertex list Verts.

Examples

This example decimates a DEM (digital elevation model) mesh. The DEM in this
example comes from the elevbin.dat file found in the examples/data directory.
The DEM is converted into a mesh with the MESH_OBJ procedure. The results of
this routine are placed in a polygon object, which is added to a model. The models are
displayed in the XOBJVIEW utility. The XOBJVEW utility allows you to click-and-
drag the polygon object to rotate and translate it. See XOBJVIEW in the IDL
Reference Guide for more information on this utility.

The first display contains a wire outline of the DEM as a mesh. When you quit out of
the first XOBJVIEW display, the second XOBJVIEW display will appear showing a
filled mesh. The colors correspond to the change in elevation. The third display is the
result of decimating the mesh down to 20 percent of the original number of vertices.
The final display is the resulting mesh filled with the elevation colors.

PRO DecimatingAMesh

; Determine path to data file.
elevbinFile = FILEPATH('elevbin.dat', $
 SUBDIRECTORY = ['examples', 'data'])
IDL Reference Guide MESH_DECIMATE

1294
; Initialize data parameters.
elevbinSize = [64, 64]
elevbinData = BYTARR(elevbinSize[0], elevbinSize[1])

; Open file, read in data, and close file.
OPENR, unit, elevbinFile, /GET_LUN
READU, unit, elevbinData
FREE_LUN, unit

; Convert data into a mesh, which is defined by
; vertice locations and their connectivity.
MESH_OBJ, 1, vertices, connectivity, elevbinData

; Initialize a model for display.
oModel = OBJ_NEW('IDLgrModel')

; Form a polygon from the mesh.
oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $
 POLYGONS = connectivity, SHADING = 1.5, $
 COLOR = [0, 255, 0], STYLE = 1)

; Add polygon to model.
oModel -> Add, oPolygon

; Rotate model for better initial perspective.
oModel -> Scale, 1, 1, 0.25
oModel -> Rotate, [-1, 0, 1], 45.

; Display model in the XOBJVIEW utility.
XOBJVIEW, oModel, /BLOCK, SCALE = 1., $
 TITLE = 'Original Mesh from Elevation Data'

; Derive a color table for the filled polygon.
oPalette = OBJ_NEW('IDLgrPalette')
oPalette -> LOADCT, 29

; Fill in the polygon mesh with the colors of the table
; (the colors correspond to the z-values of the polygon).
oPolygon -> SetProperty, STYLE = 2, $
 VERT_COLORS = BYTSCL(vertices[2, *]), $
 PALETTE = oPalette

; Display model in the XOBJVIEW utility.
XOBJVIEW, oModel, /BLOCK, SCALE = 1., $
 TITLE = 'Filled Original Mesh'

; Decimate the mesh down to 20 percent of the original
; number of vertices.
numberVertices = MESH_DECIMATE(vertices, connectivity, $
MESH_DECIMATE IDL Reference Guide

 1295
 decimatedConnectivity, VERTICES = decimatedVertices, $
 PERCENT_VERTICES = 20)

; Update the polygon with the resulting decimated mesh.
oPolygon -> SetProperty, DATA = decimatedVertices, $
 POLYGONS = decimatedConnectivity, STYLE = 1, $
 VERT_COLORS = 0, COLOR = [0, 255, 0]

; Display updated model in the XOBJVIEW utility.
XOBJVIEW, oModel, /BLOCK, SCALE = 1., $
 TITLE = 'Decimation Results (by 80%)'

; Fill in the updated polygon mesh with the colors of
; the table (the colors correspond to the z-values of
; the updated polygon).
oPolygon -> SetProperty, STYLE = 2, $
 VERT_COLORS = BYTSCL(decimatedVertices[2, *]), $
 PALETTE = oPalette

; Display model in the XOBJVIEW utility.
XOBJVIEW, oModel, /BLOCK, SCALE = 1., $
 TITLE = 'Filled Decimation Results'

; Cleanup all the objects by destroying the model.
OBJ_DESTROY, [oModel, oPalette]

END
IDL Reference Guide MESH_DECIMATE

1296
The results of the decimation are shown in the bottom row of the following figure.

Version History

Introduced: 5.5

See Also

MESH_CLIP, MESH_ISSOLID, MESH_MERGE, MESH_NUMTRIANGLES,
MESH_OBJ, MESH_SMOOTH, MESH_SURFACEAREA, MESH_VALIDATE,
MESH_VOLUME

Figure 13: Before Decimating (top row) and After Decimating (bottom row)
MESH_DECIMATE IDL Reference Guide

 1297
MESH_ISSOLID

The MESH_ISSOLID function computes various mesh properties and enables IDL to
determine if a mesh encloses space (is a solid). If the mesh can be considered a solid,
routines can compute the volume of the mesh.

Syntax

Result = MESH_ISSOLID (Conn)

Return Value

Returns 1 if the input mesh fully encloses space (assuming no polygonal
interpenetration) or 0 otherwise. A mesh is defined to fully enclose space if each edge
in the input mesh appears an even number of times in the mesh.

Note
The input polygonal mesh is assumed to contain only planar, convex polygons.

Arguments

Conn

This is an integer or longword array that represents a series of polygon descriptions.
Each polygon description takes the form [n, i0, i1, ..., in-1], where n is the number of
vertices that define the polygon, and i0...in-1 are indices into the vertex array.

Keywords

None.

Version History

Introduced: 5.5

See Also

MESH_CLIP, MESH_DECIMATE, MESH_MERGE, MESH_NUMTRIANGLES,
MESH_OBJ, MESH_SMOOTH, MESH_SURFACEAREA, MESH_VALIDATE,
MESH_VOLUME
IDL Reference Guide MESH_ISSOLID

1298
MESH_MERGE

The MESH_MERGE function merges two polygonal meshes.

Syntax

Result = MESH_MERGE (Verts, Conn, Verts1, Conn1 [, /COMBINE_VERTICES]
[, TOLERANCE=value])

Return Value

The function return value is the number of triangles in the modified polygonal mesh
connectivity array.

Arguments

Verts

Input/Output array of polygonal vertices [3, n]. These are potentially modified and
returned to the user.

Conn

Input/Output polygonal mesh connectivity array. This array is modified and returned
to the user.

Verts1

Additional input polygonal vertex array [3, n].

Conn1

Additional input polygonal mesh connectivity array.
MESH_MERGE IDL Reference Guide

 1299
Keywords

COMBINE_VERTICES

If this keyword is set, the routine will attempt to collapse vertices which are at the
same location in space into single vertices. If the expression

is true, the points (i) and (i+1) can be collapsed into a single vertex. The result is
returned as a modification of the Verts argument.

TOLERANCE

This keyword is used to specify the tolerance value used with the
COMBINE_VERTICES keyword. The default value is 0.0.

Examples

This example merges two simple meshes: a single square and a single right triangle.
The right side of the square is in the same location as the left side of the triangle. Each
mesh is originally its own polygon object. These objects are then added to a model
object. The model is displayed in the XOBJVIEW utility. The XOBJVEW utility
allows you to click-and-drag the polygon object to rotate and translate it. See
XOBJVIEW in the IDL Reference Guide for more information on this utility.

When you quit out of the first XOBJVIEW display, the second XOBJVIEW display
will appear. The meshes are merged into a single polygon object. After you quit out
of the second display, the final display shows the results of decimating the merged
mesh to obtain the least number connections for these vertices. Decimation can often
be used to refine the results of merging.

PRO MergingMeshes

; Create a mesh of a single square (4 vertices
; connected counter-clockwise from the lower left
; corner of the mesh.
vertices = [[-2., -1., 0.], [0., -1., 0.], $
 [0., 1., 0.], [-2., 1., 0.]]
connectivity = [4, 0, 1, 2, 3]

max xi xi 1+– yi yi 1+– zi zi 1+–,,() tolerance<
IDL Reference Guide MESH_MERGE

1300
; Create a separate mesh of a single triangle (3
; vertices connected counter-clockwise from the lower
; left corner of the mesh.
triangleVertices = [[0., -1., 0.], [2., -1., 0.], $
 [0., 1., 0.]]
triangleConnectivity = [3, 0, 1, 2]

; Initialize model for display.
oModel = OBJ_NEW('IDLgrModel')

; Initialize polygon for the square mesh.
oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $
 POLYGONS = connectivity, COLOR = [0, 128, 0], $
 STYLE = 1)

; Initialize polygon for the triangle mesh.
oTrianglePolygon = OBJ_NEW('IDLgrPolygon', $
 triangleVertices, POLYGONS = triangleConnectivity, $
 COLOR = [0, 0, 255], STYLE = 1)

; Add both polygons to the model.
oModel -> Add, oPolygon
oModel -> Add, oTrianglePolygon

; Display the model in the XOBJVIEW utility.
XOBJVIEW, oModel, /BLOCK, $
 TITLE = 'Two Separate Meshes'

; Merge the square and triangle into a single mesh.
numberTriangles = MESH_MERGE(vertices, $
 connectivity, triangleVertices, $
 triangleConnectivity, /COMBINE_VERTICES)

; Output number of resulting vertices and triangles.
numberVertices = SIZE(vertices, /DIMENSIONS)
PRINT, 'numberVertices = ', numberVertices[1]
PRINT, 'numberTriangles = ', numberTriangles

; Cleanup triangle polygon object, which is no longer
; needed.
OBJ_DESTROY, [oTrianglePolygon]

; Update remaining polygon object with the results from
; merging the two meshes together.
oPolygon -> SetProperty, DATA = vertices, $
 POLYGONS = connectivity, COLOR = [0, 128, 128]
MESH_MERGE IDL Reference Guide

 1301
; Display results.
XOBJVIEW, oModel, /BLOCK, $
 TITLE = 'Result of Merging the Meshes into One'

; Decimate polygon to 75 percent of the original
; number of vertices.
numberTriangles = MESH_DECIMATE(vertices, connectivity, $
 decimatedConnectivity, PERCENT_POLYGONS = 75)

; Output number of resulting triangles.
PRINT, 'After Decimation: numberTriangles = ', numberTriangles

; Update polygon with results from decimating.
oPolygon -> SetProperty, DATA = vertices, $
 POLYGONS = decimatedConnectivity, COLOR = [0, 0, 0]

; Display decimation results.
XOBJVIEW, oModel, /BLOCK, $
 TITLE = 'Decimation of Mesh'

; Cleanup object references.
OBJ_DESTROY, [oModel]

END

The results for this example are shown in the following figure: original, separate
meshes (left), merged mesh (center) and decimated mesh (right).

Version History

Introduced: 5.5

Figure 14: Original (left), Merged (center), and Decimated Meshes (right)
IDL Reference Guide MESH_MERGE

1302
See Also

MESH_CLIP, MESH_DECIMATE, MESH_ISSOLID, MESH_NUMTRIANGLES,
MESH_OBJ, MESH_SMOOTH, MESH_SURFACEAREA, MESH_VALIDATE,
MESH_VOLUME
MESH_MERGE IDL Reference Guide

 1303
MESH_NUMTRIANGLES

The MESH_NUMTRIANGLES function computes the number of triangles in a
polygonal mesh.

Syntax

Result = MESH_NUMTRIANGLES (Conn)

Return Value

Returns the number of triangles in the mesh (a quad is considered two triangles).

Arguments

Conn

Polygonal mesh connectivity array.

Keywords

None.

Version History

Introduced: 5.5

See Also

MESH_CLIP, MESH_DECIMATE, MESH_ISSOLID, MESH_MERGE,
MESH_OBJ, MESH_SMOOTH, MESH_SURFACEAREA, MESH_VALIDATE,
MESH_VOLUME
IDL Reference Guide MESH_NUMTRIANGLES

1304
MESH_OBJ

The MESH_OBJ procedure generates a polygon mesh (vertex list and polygon list)
that represent the desired primitive object. The available primitive objects are:
triangulated surface, rectangular surface, polar surface, cylindrical surface, spherical
surface, surface of extrusion, surface of revolution, and ruled surface.

This routine is written in the IDL language. Its source code can be found in the file
mesh_obj.pro in the lib subdirectory of the IDL distribution.

Syntax

MESH_OBJ, Type, Vertex_List, Polygon_List, Array1 [, Array2] [, /CLOSED]
[, /DEGREES] [, P1=value] [, P2=value] [, P3=value] [, P4=value] [, P5=value]

Arguments

Type

An integer that specifies what type of object to create. The various surface types are
described in the table below.

Type Surface Type

0 Triangulated

1 Rectangular

2 Polar

3 Cylindrical

4 Spherical

5 Extrusion

6 Revolution

7 Ruled

Other values None

Table 68: Surface Types
MESH_OBJ IDL Reference Guide

 1305
Vertex_List

A named variable that will contain the mesh vertices. Vertex_List has the same format
as the lists returned by the SHADE_VOLUME procedure.

Polygon_List

A named variable that will contain the mesh indexes. Polygon_List has the same
format as the lists returned by the SHADE_VOLUME procedure.

Array1

An array whose use depends on the type of object being created. The following table
describes the differences.

Surface Type Array1 Type

Triangulated A (3, n) array containing random [x, y, z] points to build a
triangulated surface from. The resulting polygon mesh will have n
vertices. When shading a triangulated mesh, the shading array
should have (n) elements.

Rectangular A two dimensional (n, m) array containing z values. The resulting
polygon mesh will have n x m vertices. When shading a rectangular
mesh, the shading array should have (n, m) elements.

Polar A two dimensional (n, m) array containing z values. The resulting
polygon mesh will have n x m vertices. The n dimension of the
array is mapped to the polar angle, and the m dimension is mapped
to the polar radius. When shading a polar mesh, the shading array
should have (n, m) elements.

Cylindrical A two dimensional (n, m) array containing radius values. The
resulting polygon mesh will have n x m vertices. The n dimension
of the array is mapped to the polar angle, and the m dimension is
mapped to the Z axis. When shading a cylindrical mesh, the
shading array should have (n, m) elements.

Table 69: Array 1 Type
IDL Reference Guide MESH_OBJ

1306
Array2

If the object type is 7 (Ruled Surface) then Array2 is a (3, m) array containing the 3D
points which define the second ruled vector. If Array2 has fewer elements than
Array1 then Array2 is processed with CONGRID to give it the same number of
elements as Array1. If Array1 has fewer elements than Array2 then Array1 is
processed with CONGRID to give it the same number of elements as Array2. Array2
must be supplied if the object type is 7. Otherwise, Array2 is ignored.

Spherical A two dimensional (n, m) array containing radius values. The
resulting polygon mesh will have n x m vertices. The n dimension
of the array is mapped to the longitude (0.0 to 360.0 degrees), and
the m dimension is mapped to the latitude (-90.0 to +90.0 degrees).
When shading a spherical mesh, the shading array should have (n,
m) elements.

Extrusion A (3, n) array of connected 3D points which define the shape to
extrude. The resulting polygon mesh will have n x (steps+1)
vertices (where steps is the number of “segments” in the extrusion).
(See the P1 keyword). If the order of the elements in Array1 is
reversed, then the polygon facing is reversed. When shading an
extrusion mesh, the shading array should have (n, steps+1)
elements.

Revolution A (3, n) array of connected 3D points which define the shape to
revolve. The resulting polygon mesh will have n x ((steps>3)+1)
vertices (where steps is the number of “steps” in the revolution).
(See the P1 keyword). If the order of the elements in Array1 is
reversed, then the polygon facing is reversed. When shading a
revolution mesh, the shading array should have (n, (steps>3)+1)
elements.

Ruled A (3, n) array of connected 3D points which define the shape of the
first ruled vector. The optional (3, m) Array2 parameter defines the
shape of the second ruled vector. The resulting polygon mesh will
have (n > m)*(steps+1) vertices (where steps is the number of
intermediate “steps”). (See the P1 keyword). When shading a ruled
mesh, the shading array should have (n > m, steps+1) elements.

Surface Type Array1 Type

Table 69: Array 1 Type (Continued)
MESH_OBJ IDL Reference Guide

 1307
Keywords

CLOSED

Set this keyword to “close” the polygonal mesh topologically by using the first vertex
in a given row for both the first and last polygons in that row. This keyword is only
applicable to the CYLINDRICAL, SPHERICAL, REVOLUTION, and
EXTRUSION surface types. Setting the CLOSED keyword removes the
discontinuity when the mesh wraps back around on itself, which can improve the
mesh’s appearance when viewing it as a shaded object. For the EXTRUSION surface
type, this procedure handles input polygons that form a closed loop with the last
vertex being a copy of the first vertex, as well as those that do not.

DEGREES

If set, then the input parameters are in degrees (where applicable). Otherwise, the
angles are in radians.

P1 - P5

The meaning of the keywords P1 through P5 vary depending upon the object type.
The table below describes the differences.

Surface
Type Keywords

Triangulated P1 through P5 are ignored.

Rectangular If Array1 is an (n, m) array, and if P1 has n elements, then the
values contained in P1 are the X coordinates for each column of
vertices. Otherwise, FINDGEN(n) is used for the X coordinates. If
P2 has m elements, then the values contained in P2 are the Y
coordinates for each row of vertices. Otherwise, FINDGEN(m) is
used for the Y coordinates. The polygon facing is reversed if the
order of either P1 or P2 (but not both) is reversed. P3, P4, and P5
are ignored.

Table 70: P1-P5 Keywords
IDL Reference Guide MESH_OBJ

1308
Polar P1 specifies the polar angle of the first column of Array1 (the
default is 0). P2 specifies the polar angle of the last column of
Array1 (the default is 2*PI). If P2 is less than P1 then the polygon
facing is reversed. P3 specifies the radius of the first row of Array1
(the default is 0). P4 specifies the radius of the last row of Array1
(the default is m-1). If P4 is less than P3 then the polygon facing is
reversed. P5 is ignored.

Cylindrical P1 specifies the polar angle of the first column of Array1 (the
default is 0). P2 specifies the polar angle of the last column of
Array1 (the default is 2*PI). If P2 is less than P1 then the polygon
facing is reversed. P3 specifies the Z coordinate of the first row of
Array1 (the default is 0). P4 specifies the Z coordinate of the last
row of Array1 (the default is m-1). If P4 is less than P3 then the
polygon facing is reversed. P5 is ignored.

Spherical P1 specifies the longitude of the first column of Array1 (the default
is 0). P2 specifies the longitude of the last column of Array1 (the
default is 2*PI). IF P2 is less than P1 then the polygon facing is
reversed. P3 specifies the latitude of the first row of Array1 (the
default is -PI/2). P4 specifies the latitude of the last row of Array1
(the default is +PI/2). If P4 is less than P3 then the polygon facing
is reversed. P5 is ignored.

Extrusion P1 specifies the number of steps in the extrusion (the default is 1).
P2 is a three element vector specifying the direction (and length) of
the extrusion (the default is [0, 0, 1]). P3, P4, and P5 are ignored.

Revolution P1 specifies the number of “facets” in the revolution (the default is
3). If P1 is less than 3 then 3 is used. P2 is a three element vector
specifying a point that the rotation vector passes through (the
default is [0, 0, 0]). P3 is a three element vector specifying the
direction of the rotation vector (the default is [0, 0, 1]). P4 specifies
the starting angle for the revolution (the default is 0). P5 specifies
the ending angle for the revolution (the default is 2*PI). If P5 is less
than P4 then the polygon facing is reversed.

Surface
Type Keywords

Table 70: P1-P5 Keywords (Continued)
MESH_OBJ IDL Reference Guide

 1309
Examples

; Create a 48x64 cylinder with a constant radius of 0.25:
MESH_OBJ, 3, Vertex_List, Polygon_List, $

Replicate(0.25, 48, 64), P4=0.5

; Transform the vertices:
T3D, /RESET
T3D, ROTATE=[0.0, 30.0, 0.0]
T3D, ROTATE=[0.0, 0.0, 40.0]
T3D, TRANSLATE=[0.25, 0.25, 0.25]
VERTEX_LIST = VERT_T3D(Vertex_List)

; Create the window and view:
WINDOW, 0, XSIZE=512, YSIZE=512
CREATE_VIEW, WINX=512, WINY=512

; Render the mesh:
SET_SHADING, LIGHT=[-0.5, 0.5, 2.0], REJECT=0
TVSCL, POLYSHADE(Vertex_List, Polygon_List, /NORMAL)

; Create a cone (surface of revolution):
MESH_OBJ, 6, Vertex_List, Polygon_List, $

[[0.75, 0.0, 0.25], [0.5, 0.0, 0.75]], $
P1=16, P2=[0.5, 0.0, 0.0]

; Create the window and view:
WINDOW, 0, XSIZE=512, YSIZE=512
CREATE_VIEW, WINX=512, WINY=512, AX=30.0, AY=(140.0), ZOOM=0.5

; Render the mesh:
SET_SHADING, LIGHT=[-0.5, 0.5, 2.0], REJECT=0
TVSCL, POLYSHADE(Vertex_List, Polygon_List, /DATA, /T3D)

Version History

Introduced: Pre 4.0

Ruled P1 specifies the number of “steps” in the ruling (the default is 1).
P2, P3, P4, and P5 are ignored.

Surface
Type Keywords

Table 70: P1-P5 Keywords (Continued)
IDL Reference Guide MESH_OBJ

1310
See Also

CREATE_VIEW, MESH_CLIP, MESH_DECIMATE, MESH_ISSOLID,
MESH_MERGE, MESH_NUMTRIANGLES, MESH_SMOOTH,
MESH_SURFACEAREA, MESH_VALIDATE, MESH_VOLUME,
SET_SHADING, VERT_T3D
MESH_OBJ IDL Reference Guide

 1311
MESH_SMOOTH

The MESH_SMOOTH function performs spatial smoothing on a polygon mesh. This
function smooths a mesh by applying Laplacian smoothing to each vertex, as
described by the following formula:

where:

Syntax

Result = MESH_SMOOTH (Verts, Conn [, ITERATIONS=value]
[, FIXED_VERTICES=array] [, /FIXED_EDGE_VERTICES] [, LAMBDA=value])

Return Value

The output of this function is resulting [3, n] array of modified vertices.

Arguments

Verts

Input array of polygonal vertices [3, n].

Conn

Input polygonal mesh connectivity array.

Keywords

ITERATIONS

Number of iterations to smooth. The default value is 50.

is vertex i for iteration n

λ is the smoothing factor

M is the number of vertices that share a common edge with xin.

xi n 1+()
xin

λ
M
----- xjn

xin
–()

j 0=

M

∑+=

xin
IDL Reference Guide MESH_SMOOTH

1312
FIXED_VERTICES

Set this keyword to an array of vertex indices which are not to be modified by the
smoothing.

FIXED_EDGE_VERTICES

Set this keyword to specify that mesh outer edge vertices are not to be modified by
the smoothing.

LAMBDA

Smoothing factor. The default value is 0.05.

Examples

This example smooths a rectangular mesh containing a spike. First, we create a
rectangular mesh made up 10 columns and 5 rows of vertices. The vertices are
connected with right triangles. The mesh is placed in a polygon object, which is
added to a model object. The model is displayed in the XOBJVIEW utility. The
XOBJVEW utility allows you to click-and-drag the polygon object to rotate and
translate it. See XOBJVIEW in the IDL Reference Guide for more information on this
utility.

When you quit out of the first XOBJVIEW display, the second XOBJVIEW display
will appear. The center vertex of the top row is displaced in the y-direction. This
displacement causes the center of the top to spike out away from the mesh. After you
quit out of the second display, the third display shows the result of smoothing the
entire mesh. The final display shows the results of smoothing the spike with all the
other vertices fixed.

PRO SmoothingMeshes

; Initialize mesh size parameters.
nX = 10
nY = 5

; Initialize the x coordinates of the mesh's vertices.
xVertices = FINDGEN(nX) # REPLICATE(1., nY)
PRINT, 'xVertices: '
PRINT, xVertices, FORMAT = '(10F6.1)'

; Initialize the y coordinates of the mesh's vertices.
yVertices = REPLICATE(1., nX) # FINDGEN(nY)
PRINT, 'yVertices: '
PRINT, yVertices, FORMAT = '(10F6.1)'
MESH_SMOOTH IDL Reference Guide

 1313
; Derive the overall vertices of the mesh.
vertices = FLTARR(3, (nX*nY))
vertices[0, *] = xVertices
vertices[1, *] = yVertices
PRINT, 'vertices: '
PRINT, vertices, FORMAT = '(3F6.1)'

; Triangulate the mesh to establish connectivity.
TRIANGULATE, xVertices, yVertices, triangles
trianglesSize = SIZE(triangles, /DIMENSIONS)
polygons = LONARR(4, trianglesSize[1])
polygons[0, *] = 3
polygons[1, 0] = triangles
PRINT, 'polygons: '
PRINT, polygons, FORMAT = '(4I6)'

; Derive connectivity from the resulting triangulation.
connectivity = REFORM(polygons, N_ELEMENTS(polygons))

; Initialize a model for the display.
oModel = OBJ_NEW('IDLgrModel')

; Initialize a polygon object to contain the mesh.
oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $
 POLYGONS = connectivity, COLOR = [0, 128, 0], $
 STYLE = 1)

; Add the polygon to the model.
oModel -> Add, oPolygon

; Display the model.
XOBJVIEW, oModel, /BLOCK, $
 TITLE = 'Original Mesh'

; Introduce an irregular vertex by drastically changing
; a single y coordinate.
vertices[1, 45] = 10.

; Update polygon with new vertices.
oPolygon -> SetProperty, DATA = vertices

; Display change.
XOBJVIEW, oModel, /BLOCK, $
 TITLE = 'Mesh with New Irregular Vertex'

; Smooth entire mesh to reduce the effect of the
; irregular vertex.
smoothedVertices = MESH_SMOOTH(vertices, connectivity)
IDL Reference Guide MESH_SMOOTH

1314
; Update polygon and display results.
oPolygon -> SetProperty, DATA = smoothedVertices
XOBJVIEW, oModel, /BLOCK, $
 TITLE = 'Smoothing with No Fixed Vertices'

; Determine which vertices should be fixed. Basically,
; all of the vertices should be fixed except for the
; irregular vertex.
fixed = LINDGEN((nX*nY) - 1)
fixed[45] = fixed[45:*] + 1

; Smooth mesh with resulting fixed vertices.
smoothedVertices = MESH_SMOOTH(vertices, connectivity, $
 FIXED_VERTICES = fixed)

; Update polygon and display results.
oPolygon -> SetProperty, DATA = smoothedVertices
XOBJVIEW, oModel, /BLOCK, $
 TITLE = 'Smoothing with Almost All Vertices Fixed'

; Cleanup object references.
OBJ_DESTROY, [oModel]

END
MESH_SMOOTH IDL Reference Guide

 1315
The results for this example are shown in the following figure: the spiked mesh (left),
and the two smoothed meshes (right).

Version History

Introduced: 5.5

Figure 15: The Spiked Mesh (left) and the Two Smoothed Meshes (right)
IDL Reference Guide MESH_SMOOTH

1316
See Also

MESH_CLIP, MESH_DECIMATE, MESH_ISSOLID, MESH_MERGE,
MESH_NUMTRIANGLES, MESH_OBJ, MESH_SURFACEAREA,
MESH_VALIDATE, MESH_VOLUME
MESH_SMOOTH IDL Reference Guide

 1317
MESH_SURFACEAREA

The MESH_SURFACEAREA function computes various mesh properties to
determine the mesh surface area, including integration of other properties
interpolated on the surface of the mesh.

Syntax

Result = MESH_SURFACEAREA (Verts, Conn [, AUXDATA=array]
[, MOMENT=variable])

Return Value

Returns the cumulative (weighted) surface area of the polygons in the mesh.

Note
The input polygonal mesh is assumed to contain only planar, convex polygons.

Arguments

Verts

Array of polygonal vertices [3, n].

Conn

Polygonal mesh connectivity array.

Keywords

AUXDATA

Array of input auxiliary data (one value per vertex). If present, these values are used
to weight a vertex for the purpose of the area computation. The surface area integral
will linearly interpolate these values over the surface of each triangle. The default
weight is 1.0 which results in the basic polygon area.
IDL Reference Guide MESH_SURFACEAREA

1318
MOMENT

If this keyword is present, it will return a three element float vector which
corresponds to the first order moments computed with respect to the X, Y and Z axis.
The computation is:

where a is the (weighted) area of the triangle and c is the centroid of the triangle, thus

yields the (weighted) centroid of the polygon mesh.

Version History

Introduced: 5.5

See Also

MESH_CLIP, MESH_DECIMATE, MESH_ISSOLID, MESH_MERGE,
MESH_NUMTRIANGLES, MESH_OBJ, MESH_SMOOTH, MESH_VALIDATE,
MESH_VOLUME

m aici

ntris
∑=

m sarea⁄
MESH_SURFACEAREA IDL Reference Guide

 1319
MESH_VALIDATE

The MESH_VALIDATE function checks for NaN values in vertices, removes unused
vertices, and combines close vertices.

Syntax

Result = MESH_VALIDATE (Verts, Conn [, /REMOVE_NAN]
[, /PACK_VERTICES] [, /COMBINE_VERTICES] [, TOLERANCE=value])

Return Value

The function return value is the number of triangles in the modified polygonal mesh
connectivity array.

Arguments

Verts

Input/Output array of polygonal vertices [3, n]. These are potentially modified and
returned to the user.

Conn

Input/Output polygonal mesh connectivity array. This array is modified and returned
to the user.

Keywords

COMBINE_VERTICES

If this keyword is set, the routine will attempt to collapse vertices which are at the
same location in space into single vertices. If the expression

is true, the points (i) and (i+1) can be collapsed into a single vertex. The result is
returned as a modification of the Verts argument.

max xi xi 1+– yi yi 1+– zi zi 1+–,,() tolerance<
IDL Reference Guide MESH_VALIDATE

1320
PACK_VERTICES

If this keyword is set, the Verts input array will be packed to exclude any non-
referenced vertices. The result is returned in the Verts argument.

REMOVE_NAN

If this keyword is set, the function will remove any polygons from CONN which
reference vertices containing NaN values.

TOLERANCE

This keyword is used to specify the tolerance value used with the
COMBINE_VERTS keyword. The default value is 0.0.

Version History

Introduced: 5.5

See Also

MESH_CLIP, MESH_DECIMATE, MESH_ISSOLID, MESH_MERGE,
MESH_NUMTRIANGLES, MESH_OBJ, MESH_SMOOTH,
MESH_SURFACEAREA, MESH_VOLUME
MESH_VALIDATE IDL Reference Guide

 1321
MESH_VOLUME

The MESH_VOLUME function computes the volume that the mesh encloses. A
region that a mesh encloses has a positive value for its volume when it is enclosed by
mesh polygons that face outward from the enclosed region. Outward-facing
polygons follow the convention of their vertices being ordered in a counter-clockwise
direction while observing the polygon from the outside of the enclosed region.
Likewise, a region has a negative value for its volume when it is enclosed by
polygons that face inward to the enclosed region.

A single mesh may contain regions that have positive and negative volume values.
This function adds these signed values together to produce a single volume value that
takes into account the total of all positive regions minus any "holes" or subtractions
specified by the negative regions.

If the SIGNED keyword is not specified, IDL returns the absolute value of the
volume, which may be useful in situations where the polygon vertex ordering
convention is unknown or opposite of the convention described above.

Syntax

Result = MESH_VOLUME (Verts, Conn [, /SIGNED])

Return Value

Returns the volume that the mesh encloses. If the mesh does not enclose space (i.e.
MESH_ISSOLID() would return 0), this function returns 0.0.

Note
The input polygonal mesh is assumed to contain only planar, convex polygons.

Arguments

Verts

Array of polygonal vertices [3, n].

Conn

Polygonal mesh connectivity array.
IDL Reference Guide MESH_VOLUME

1322
Keywords

SIGNED

Set this keyword to compute the signed volume. The sign will be negative for a mesh
consisting of inward facing polygons.

Version History

Introduced: 5.5

See Also

MESH_CLIP, MESH_DECIMATE, MESH_ISSOLID, MESH_MERGE,
MESH_NUMTRIANGLES, MESH_OBJ, MESH_SMOOTH,
MESH_SURFACEAREA, MESH_VALIDATE
MESH_VOLUME IDL Reference Guide

 1323
MESSAGE

The MESSAGE procedure issues error and informational messages using the same
mechanism employed by built-in IDL routines. By default, the message is issued as
an error, the message is output, and IDL performs the required error-handling actions
(which can be controlled via the CATCH, ON_ERROR, and ON_IOERROR
procedures). As a side-effect of issuing the error, the system variable
!ERROR_STATE is set and the text of the error message is placed in
!ERROR_STATE.MSG. (If there is an operating system component to the error
message, !ERROR_STATE.SYS_MSG is updated as well).

The MESSAGE procedure supports the following uses:

1. To issue a simple error message containing user-specified text.

2. To issue a specific error from a message block by name, with optional
arguments. The NAME keyword is required in this case; if the error is not
defined in the default IDL message block, the BLOCK keyword is also
required. See DEFINE_MSGBLK and DEFINE_MSGBLK_FROM_FILE for
examples of this usage.

3. To reissue the most recent error encountered by IDL. If the CATCH procedure
is used to trap errors, the REISSUE_LAST keyword to MESSAGE can be used
within the CATCH block to pass the error up to its caller.

If the call to the MESSAGE procedure causes execution to halt, traceback
information is displayed automatically.

Syntax

To issue a simple error message:

MESSAGE, [Text] [, /CONTINUE] [, LEVEL=CallLevel] [, /INFORMATIONAL]
[, /IOERROR] [, /NONAME] [, /NOPREFIX] [, /NOPRINT] [, /RESET]

To issue a named message from a message block:

MESSAGE, [Arg1, ... ArgN,] NAME=ErrorName [, BLOCK=BlockName]
[, /CONTINUE] [, LEVEL=CallLevel] [, /INFORMATIONAL] [, /IOERROR]
[, /NONAME] [, /NOPREFIX] [, /NOPRINT] [, /RESET]

To reissue the most recent error:

MESSAGE, /REISSUE_LAST
IDL Reference Guide MESSAGE

1324
Arguments

Text

A string value specifying the text to be displayed in a simple error message.

Note
The Text argument is only used when MESSAGE is issuing a simple error message;
that is, if neither the NAME keyword nor the REISSUE_LAST keyword is present.
If none of the Text argument, the NAME keyword, or the REISSUE_LAST keyword
are present, MESSAGE returns quietly.

Argi

When issuing a named error using the NAME (and possibly BLOCK) keyword, the
Argi arguments are substituted into the error format string, as described in the
documentation for DEFINE_MSGBLK and DEFINE_MSGBLK_FROM_FILE.

Keywords

BLOCK

Set this keyword to a string containing the name of the IDL message block to use.
This keyword is ignored unless the NAME keyword is also present to specify a
message name.

By default, MESSAGE throws the IDL_M_USER_ERR message from the
IDL_MBLK_CORE message block. If you wish to provide something other than the
default error message, you can define your own message blocks and error messages.
See the DEFINE_MSGBLK and DEFINE_MSGBLK_FROM_FILE procedures for
details. You can use the HELP, /MESSAGES command to see the currently defined
message blocks.

CONTINUE

Set this keyword to return after issuing the error instead of taking the action specified
by ON_ERROR. Use this option when it is desirable to report an error and then
continue processing.
MESSAGE IDL Reference Guide

 1325
INFORMATIONAL

Set this keyword to issue informational text instead of an error. In this case,
!ERROR_STATE is not set. The !QUIET system variable controls the printing of
informational messages.

IOERROR

Set this keyword to indicate that the error occurred while performing I/O. The action
specified by the ON_IOERROR procedure is executed instead of ON_ERROR.

LEVEL

Many messages include the name of the routine that called MESSAGE at the
beginning of the message text. Use the LEVEL keyword to an integer value to specify
that the name of a routine further up in the current call chain should be used instead.
Specify the value of LEVEL as described in the following table:

The LEVEL keyword can be used to hide error handling helper routines from user
view. The following procedure will issue an error on behalf of its caller. The calling
routine’s name will appear in the resulting message, and not that of the error routine:

pro THROW_ERROR, text
on_error, 2 ; Stop in caller
MESSAGE, LEVEL=-1, text

end

NAME

Set this keyword to a string containing the name of the message throw. By default,
MESSAGE throws the IDL_M_USER_ERR message from the IDL_MBLK_CORE

LEVEL value Meaning

0 The currently active routine.

> 0 The absolute index of the routine to indicate. A value of 1
specifies the main level ($MAIN$), 2 indicates the routine
called by $MAIN$, and so forth.

< 0 Negative values indicate the relative index of the desired
routine moving backwards from the current one. Hence, -1
indicates the caller of the current routine.

Table 71: LEVEL Keyword Values
IDL Reference Guide MESSAGE

1326
message block. NAME is often used in conjunction with the BLOCK keyword to
throw a non-default message from a non-default message block.

NONAME

Set this keyword to suppress printing of the issuing routine’s name at the beginning of
the error message.

NOPREFIX

Usually, the message includes the message prefix string (as specified by the
MSG_PREFIX field of the !ERROR_STATE system variable) at the beginning. Set
this keyword to omit the prefix.

NOPRINT

Set this keyword to prevent the message from printing to the screen and cause the
other actions to proceed quietly. The error system variables are updated as usual.

REISSUE_LAST

Set this keyword to reissue the last error issued by IDL. By using this keyword in
conjunction with the CATCH procedure, your code can catch an error caused by
called code, perform recovery actions, and issue the error normally. See the Examples
below for a demonstration of this approach.

Note
If this keyword is specified, no plain arguments or other keywords may be specified.

RESET

Set this keyword to set the !ERROR_STATE system variable back to the “success”
state and clear any internal traceback information being saved for use by the
LAST_ERROR keyword to the HELP procedure.

TRACEBACK

This keyword is obsolete and is included for compatibility with existing code only.
Traceback information is provided by default.
MESSAGE IDL Reference Guide

 1327
Examples

Example 1

As an example, assume the statement:

message, 'Unexpected value encountered.'

is executed in a procedure named CALC. If an error occurs, the following message
would be printed:

% CALC: Unexpected value encountered.

and execution would halt.

Example 2

This example demonstrates the use of the CATCH procedure and the
REISSUE_LAST keyword to the MESSAGE procedure to control errors. In this
example, we write a procedure named GET_TWO_POINTERS, which creates and
returns two image variables of identical size via pointer heap variables. One possible
problem with such an operation is that the system may not have enough memory to
allocate both images. We want this operation to be all or nothing, so if we fail to get
both variables we need to free the variable we did get before allowing our caller to see
the error:

PRO GET_TWO_POINTERS, D1, D2, P1, P2
; [D1, D2] - Input dimensions
; P1, P2 - Variables to receive pointers to images

ON_ERROR, 2 ; When we reissue error, have
; control returned to caller.

nullPtr = PTR_NEW() ; Create a NULL pointer.
P1 = (P2 = nullPtr) ; Set both pointers to NULL.

CATCH, error ; Establish catch block.
IF (error NE 0) THEN BEGIN ; An error occurs.

CATCH, /CANCEL ; Cancel catch block so an error
; here will not cause looping.

PTR_FREE, P1, P2 ; If P1 or P2 are non-NULL, free
P1 = (P2 = nullPtr) ; them so caller sees NULL pointers.
MESSAGE, /REISSUE_LAST ; Reissue the error. The caller

; will get control.
; This line is never reached, because MESSAGE causes an
; implicit return to the calling routine.

ENDIF
IDL Reference Guide MESSAGE

1328
P1 = PTR_NEW(BYTARR(D1, D2)) ; Get first image.
P2 = PTR_NEW(BYTARR(D1, D2)) ; Get second image.

; We now have both images and can safely return.
END

Version History

Introduced: Pre 4.0

REISSUE_LAST keyword: 6.0

See Also

CATCH, DEFINE_MSGBLK, DEFINE_MSGBLK_FROM_FILE, ON_ERROR,
ON_IOERROR, STRMESSAGE
MESSAGE IDL Reference Guide

 1329
MIN

The MIN function returns the value of the smallest element of Array. The type of the
result is the same as that of Array.

Syntax

Result = MIN(Array [, Min_Subscript] [, DIMENSION=value] [, MAX=variable]
[, /NAN] [, SUBSCRIPT_MAX=variable])

Return Value

Returns the smallest array element value.

Arguments

Array

The array to be searched.

Min_Subscript

A named variable that, if supplied, is converted to a long integer containing the one-
dimensional subscript of the minimum element. Otherwise, the system variable !C is
set to the one-dimensional subscript of the minimum element.

Keywords

DIMENSION

Set this keyword to the dimension over which to find the minimum values of an array.
If this keyword is not present or is zero, the minimum is found over the entire array
and is returned as a scalar value. If this keyword is present and nonzero, the result is
the “slice” of the input array that contains the minimum value element, and the return
values for Result, Min_Subscript, MAX, and SUBSCRIPT_MAX will all be arrays of
one dimension less than the input array. That is, if the dimensions of Array are N1,
N2, N3, and DIMENSION=2, the dimensions of the result are (N1, N3), and element
(i,j) of the result contains the minimum value of Array[i, *, j].

For example:

arr = FINDGEN(2,3,2)
PRINT, arr
IDL Reference Guide MIN

1330
IDL prints:

0.00000 1.00000
2.00000 3.00000
4.00000 5.00000

6.00000 7.00000
8.00000 9.00000
10.0000 11.0000

PRINT, MIN(arr, DIMENSION=2)

IDL prints:

0.00000 1.00000
6.00000 7.00000

PRINT, MIN(arr, DIMENSION=1)

IDL prints:

0.00000 2.00000 4.00000
6.00000 8.00000 10.0000

MAX

The name of a variable to receive the value of the maximum array element. If you
need to find both the minimum and maximum array values, use this keyword to avoid
scanning the array twice with separate calls to MAX and MIN.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as missing
data. (See “Special Floating-Point Values” in Chapter 18 of the Building IDL
Applications manual for more information on IEEE floating-point values.)

Note
If the MIN function is run on an array containing NaN values and the NAN
keyword is not set, an invalid result will occur.

SUBSCRIPT_MAX

Set this keyword equal to a named variable that will contain the one-dimensional
subscript of the maximum element, the value of which is available via the MAX
keyword.
MIN IDL Reference Guide

 1331
Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

; Create a simple two-dimensional array:
D = DIST(100)
; Find the minimum value in array D and print the result:
PRINT, MIN(D)

Version History

Introduced: Original

See Also

ARRAY_INDICES, MAX, WHERE
IDL Reference Guide MIN

1332
MIN_CURVE_SURF

The MIN_CURVE_SURF function interpolates a regularly- or irregularly-gridded set
of points, over either a plane or a sphere, with either a minimum curvature surface or
a thin-plate-spline surface.

Note
The accuracy of this function is limited by the single-precision floating-point
accuracy of the machine.

Theory

A minimum curvature spline surface is fitted to the data points described by x, y, and
z. The basis function is:

C (x0, x1, y0, y1) = d2 log(dk)

where d is the distance between (x0, y0), (x1, y1) and k = 1 for minimum curvature
surface or k = 2 for Thin Plate Splines. For n data points, a system of n+3
simultaneous equations are solved for the coefficients of the surface. For any
interpolation point, the interpolated value is:

For a sphere the value is:

On the sphere, l and t are longitude and latitude. C(Li,l, Ti,t) is the basis function
above, with distance between the two points, (Li,Ti), and (l , t), measured in radians
of arc length. x, y, and z are the 3D cartesian coordinates of the point (l,t) on the unit
sphere.

For a sphere with the CONST keyword set, the value is:

f x y,() b0 b1 x b2 y ai C xi x yi y, , ,()⋅∑+⋅+⋅+=

f l t,() b0 b1 x b2 y b3 z⋅ ai C Li l Ti t, , ,()⋅∑+ +⋅+⋅+=

f l t,() b0 ai CLi l Ti t, , ,⋅∑+=
MIN_CURVE_SURF IDL Reference Guide

 1333
The results obtained with the thin plate spline (TPS) and the minimum curvature
surface (MCS) methods are very similar. The only difference is in the basis functions:
TPS uses d2*alog(d2), and MCS uses d2*alog(d), where d is the distance from point
(xi,yi).

This routine is written in the IDL language. Its source code can be found in the file
min_curve_surf.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = MIN_CURVE_SURF(Z [, X, Y] [, /DOUBLE] [, /TPS] [, /REGULAR]
[, /SPHERE [, /CONST]] [, XGRID=[xstart, xspacing] | , XVALUES=array]
[, YGRID=[ystart, yspacing] | , YVALUES=array] [, GS=[xspace,yspace]]
[, BOUNDS=[xmin, ymin, xmax, ymax]] [, NX=value] [, NY=value]
[, XOUT=vector] [, YOUT=vector] [, XPOUT=array, YPOUT=array])

Return Value

This function returns a two-dimensional floating-point array containing the
interpolated surface, sampled at the grid points.

Arguments

Z, X, Y

Arrays containing the Z, X, and Y coordinates of the data points on the surface. Points
need not be regularly gridded. For regularly gridded input data, X and Y are not used:
the grid spacing is specified via the XGRID and YGRID (or XVALUES and
YVALUES) keywords, and Z must be a two-dimensional array. For irregular grids, all
three parameters must be present and have the same number of elements. If Z is
specified as a double-precision value, the computation will be performed in double-
precision arithmetic. If the SPHERE keyword is set, X and Y are given in degrees of
longitude and latitude, respectively.

Keywords

CONST

Set this keyword to fit data on the sphere with a constant baseline, otherwise, data on
the sphere is fit with a baseline that contains a constant term plus linear X, Y, and Z
terms. This keyword has an effect only if SPHERE is set. See Theory above for the
formulae.
IDL Reference Guide MIN_CURVE_SURF

1334
DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
If Z is double precision, the computations will also be done in double precision.

SPHERE

Set this keyword to perform interpolation on the surface of a sphere. The inputs X and
Y should be given in degrees of longitude and latitude, respectively.

TPS

Set this keyword to use the thin-plate-spline method. The default is to use the
minimum curvature surface method.

Input Grid Description Keywords:

REGULAR

If set, the Z parameter is a two-dimensional array of dimensions (n,m), containing
measurements over a regular grid. If any of XGRID, YGRID, XVALUES, or
YVALUES are specified, REGULAR is implied. REGULAR is also implied if there
is only one parameter, Z. If REGULAR is set, and no grid specifications are present,
the grid is set to (0, 1, 2, ...).

XGRID

A two-element array, [xstart, xspacing], defining the input grid in the x direction. Do
not specify both XGRID and XVALUES.

XVALUES

An n-element array defining the x locations of Z[i,j]. Do not specify both XGRID and
XVALUES.

YGRID

A two-element array, [ystart, yspacing], defining the input grid in the y direction. Do
not specify both YGRID and YVALUES.

YVALUES

An n-element array defining the y locations of Z[i,j]. Do not specify both YGRID and
YVALUES.
MIN_CURVE_SURF IDL Reference Guide

 1335
Output Grid Description Keywords:

GS

The output grid spacing. If present, GS must be a two-element vector [xs, ys], where
xs is the horizontal spacing between grid points and ys is the vertical spacing. The
default is based on the extents of x and y. If the grid starts at x value xmin and ends at
xmax, then the default horizontal spacing is (xmax - xmin)/(NX-1). ys is computed in
the same way. The default grid size, if neither NX or NY are specified, is 26 by 26.

BOUNDS

If present, BOUNDS must be a four-element array containing the grid limits in x and
y of the output grid: [xmin, ymin, xmax, ymax]. If not specified, the grid limits are set
to the extent of x and y.

NX

The output grid size in the x direction. NX need not be specified if the size can be
inferred from GS and BOUNDS. The default value is 26.

NY

The output grid size in the y direction. NY need not be specified if the size can be
inferred from GS and BOUNDS. The default value is 26.

XOUT

Use the XOUT keyword to specify a vector containing the output grid x values. If this
parameter is supplied, GS, BOUNDS, and NX are ignored for the x output grid.
XOUT allows you to specify irregularly-spaced output grids.

YOUT

Use the YOUT keyword to specify a vector containing the output grid y values. If this
parameter is supplied, GS, BOUNDS, and NY are ignored for the y output grid.
YOUT allows you to specify irregularly-spaced output grids.

XPOUT, YPOUT

Use the XPOUT and YPOUT keywords to specify arrays that contain the x and y
values for the output points. If these keywords are used, the output grid need not be
regular, and all other output grid parameters are ignored. XPOUT and YPOUT must
have the same number of points, which is also the number of points returned in the
result.
IDL Reference Guide MIN_CURVE_SURF

1336
Examples

Example 1: Irregularly gridded cases

; Make a random set of points that lie on a Gaussian:
N = 15
X = RANDOMU(seed, N)
Y = RANDOMU(seed, N)

; The Gaussian:
Z = EXP(-2 * ((X-.5)^2 + (Y-.5)^2))

Use a 26 by 26 grid over the rectangle bounding x and y:

;Get the surface.
R = MIN_CURVE_SURF(Z, X, Y)

Alternatively, get a surface over the unit square, with spacing of 0.05:

R = MIN_CURVE_SURF(Z, X, Y, GS=[0.05, 0.05], BOUNDS=[0,0,1,1])

Alternatively, get a 10 by 10 surface over the rectangle bounding x and y:

R = MIN_CURVE_SURF(Z, X, Y, NX=10, NY=10)

Example 2: Regularly gridded cases

; Make some random data:
z = RANDOMU(seed, 5, 6)

; Interpolate to a 26 x 26 grid:
CONTOUR, MIN_CURVE_SURF(z, /REGULAR)

Version History

Introduced: Pre 4.0

See Also

CONTOUR, GRID_TPS, TRI_SURF
MIN_CURVE_SURF IDL Reference Guide

 1337
MK_HTML_HELP

The MK_HTML_HELP procedure, given a list of IDL procedure filenames (.pro
files) or the names of directories containing such files, generates a file in HTML
(HyperText Markup Language) format that contains documentation for those routines
that contain standard IDL documentation headers. The resulting file can then be
viewed with a web browser such as Microsoft Internet Explorer or Netscape
Navigator.

MK_HTML_HELP procedure makes a single HTML file that starts with a list of the
routines documented in the file. The names of routines in that list are hypertext links
to the documentation for those routines. The documentation for each routine is
simply the text of the documentation header copied from the corresponding .pro
file—no reformatting is performed.

The documentation headers of the .pro files in question must have the following
format:

• The first line of the documentation block contains only the characters ;+,
starting in column 1.

• The last line of the documentation block contains only the characters ;-,
starting in column 1.

• All other lines in the documentation block contain a ; in column 1.

• If a line containing the string “NAME:” exists in the documentation block, the
contents of the following line are used as the name of the routine being
described. If the NAME: field is not present, the name of the source file is used
as the routine name.

The file template.pro in the examples subdirectory of the IDL distribution
contains a template for creating your own documentation headers.

This routine is supplied to allow users to make online documentation from their own
IDL programs. Although it could be used to create an HTML documentation file
from the lib subdirectory of the IDL distribution, we do not recommend doing so.
The documentation headers on the files in the lib directory are used for historical
purposes—most do not contain the most current or accurate documentation for those
routines. The most current documentation for IDL’s built-in and library routines is
found in IDL’s online help system (enter ? at the IDL prompt).

This routine is written in the IDL language. Its source code can be found in the file
mk_html_help.pro in the lib subdirectory of the IDL distribution.
IDL Reference Guide MK_HTML_HELP

1338
Syntax

MK_HTML_HELP, Sources, Filename [, /STRICT] [, TITLE=string] [, /VERBOSE]

Arguments

Sources

A string array containing the names of IDL procedure files (.pro files) or directories
containing such files. The Sources array may contain both individual file and
directory names. Each IDL procedure file must have the file extension .pro.
Elements of the Sources array that do not have either of these extensions are assumed
to be directories.

All .pro files found in Sources are searched for documentation headers. The
documentation headers are extracted and saved in HTML format in the file specified
by Filename.

Note
More than one documentation block may exist in a single input file.

Filename

A string containing the name of the output file to be generated. HTML files are
usually saved in files named with a .html or .htm extension.

Keywords

STRICT

Set this keyword to force MK_HTML_HELP to adhere strictly to the HTML format
by scanning the documentation blocks for HTML reserved characters and replacing
them in the output file with the appropriate HTML syntax. HTML reserved characters
include < , > , & , and ". By default, this keyword is set to zero to allow for faster
processing of the input files.

TITLE

A string that supples the name to be used as the title of the HTML document. The
default is “Extended IDL Help”.
MK_HTML_HELP IDL Reference Guide

 1339
VERBOSE

Set this keyword to display informational messages as MK_HTML_HELP generates
the HTML file. Normally, MK_HTML_HELP works silently.

Examples

To generate an HTML help file named myhelp.html from the .pro files in the
directory /usr/home/dave/myroutines, use the command:

MK_HTML_HELP, '/usr/home/dave/myroutines', 'myhelp.html'

To generate an HTML help file for all routines in a given directory whose file names
contain the word “plot”, use the following commands:

plotfiles=FILE_SEARCH('/usr/home/dave/myroutines/*plot*.pro')
MK_HTML_HELP, plotfiles, 'myplot.html'

Version History

Introduced: 4.0.1

See Also

DOC_LIBRARY
IDL Reference Guide MK_HTML_HELP

1340
MODIFYCT

The MODIFYCT procedure updates the distribution color table file colors1.tbl,
located in the \resource\colors subdirectory of the main IDL directory, or a
user-designated file with a new, or modified, colortable.

This routine is written in the IDL language. Its source code can be found in the file
modifyct.pro in the lib subdirectory of the IDL distribution.

Syntax

MODIFYCT, Itab, Name, R, G, B [, FILE=filename]

Arguments

Itab

The index of the table to be updated, numbered from 0 to 255. If the specified entry is
greater than the next available location in the table, the entry will be added to the
table in the available location rather than the index specified by Itab. On return, Itab
contains the index for the location that was modified or extended. The modified table
can be then be loaded with the IDL command: LOADCT, Itab.

Name

A string, up to 32 characters long, that contains the name for the new color table.

R

A 256-element vector that contains the values for the red colortable.

G

A 256-element vector that contains the values for the green colortable.

B

A 256-element vector that contains the values for the blue colortable.
MODIFYCT IDL Reference Guide

 1341
Keywords

FILE

Set this keyword to the name of a colortable file to be modified instead of the file
colors1.tbl.

Version History

Introduced: Original

See Also

LOADCT, XLOADCT
IDL Reference Guide MODIFYCT

1342
MOMENT

The MOMENT function computes the mean, variance, skewness, and kurtosis of a
sample population contained in an n-element vector X. When x = (x0, x1, x2, ..., xn-1),
the various moments are defined as follows:

This routine is written in the IDL language. Its source code can be found in the file
moment.pro in the lib subdirectory of the IDL distribution.

Return Value

If the vector contains n identical elements, MOMENT computes the mean and
variance, and returns the IEEE value NaN for the skewness and kurtosis, which are

Mean x
1
N
---- xj

j 0=

N 1–

∑= =

Variance
1

N 1–
------------- xj x–()

2

j 0=

N 1–

∑=

Skewness
1
N

xj x–

Variance

 
 
 

3

j 0=

N 1–

∑=

Kurtosis
1
N

xj x–

Variance

 
 
 

4

3–

j 0=

N 1–

∑=

Mean Absolute Deviation
1
N
---- xj x–

j 0=

N 1–

∑=

Standard Deviation Variance=
MOMENT IDL Reference Guide

 1343
not defined. (See “Special Floating-Point Values” in Chapter 18 of the Building IDL
Applications manual.)

Syntax

Result = MOMENT(X [, /DOUBLE] [, MDEV=variable] [, /NAN]
[, SDEV=variable])

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

MDEV

Set this keyword to a named variable that will contain the mean absolute deviation of
X.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as missing
data. (See “Special Floating-Point Values” in Chapter 18 of the Building IDL
Applications manual for more information on IEEE floating-point values.)

SDEV

Set this keyword to a named variable that will contain the standard deviation of X.

Examples

; Define an n-element sample population:
X = [65, 63, 67, 64, 68, 62, 70, 66, 68, 67, 69, 71, 66, 65, 70]
; Compute the mean, variance, skewness and kurtosis:
result = MOMENT(X)
PRINT, 'Mean: ', result[0] & PRINT, 'Variance: ', result[1] & $

PRINT, 'Skewness: ', result[2] & PRINT, 'Kurtosis: ', result[3]
IDL Reference Guide MOMENT

1344
IDL prints:

Mean: 66.7333
Variance: 7.06667
Skewness: -0.0942851
Kurtosis: -1.18258

Version History

Introduced: 4.0

See Also

KURTOSIS, HISTOGRAM, MAX, MEAN, MEANABSDEV, MEDIAN, MIN,
MOMENT, STDDEV, SKEWNESS, VARIANCE
MOMENT IDL Reference Guide

 1345
MORPH_CLOSE

The MORPH_CLOSE function applies the closing operator to a binary or grayscale
image. MORPH_CLOSE is simply a dilation operation followed by an erosion
operation.The closing operation is an idempotent operator—applying it more than
once produces no further effect.

Both the opening and the closing operators have the effect of smoothing the image,
with the opening operation removing pixels, and the closing operation adding pixels.

Syntax

Result = MORPH_CLOSE (Image, Structure [, /GRAY]
[, PRESERVE_TYPE=bytearray | /UINT | /ULONG] [, VALUES=array])

Return Value

The result of a closing operation is that small holes and gaps within the image
(smaller than the size of Structure) are filled, yet the original sizes of the primary
foreground features are maintained.

Arguments

Image

A one-, two-, or three-dimensional array upon which the closing operation is to be
performed. If neither of the keywords GRAY or VALUES is present, the image is
treated as a binary image with all nonzero pixels considered as 1.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element. The
elements are interpreted as binary values - either zero or nonzero. The structuring
element must have the same number of dimensions as the Image argument.

Keywords

GRAY

Set this keyword to perform a grayscale, rather than binary, operation. Nonzero
elements of the Structure parameter determine the shape of the structuring element. If
the VALUES keyword is not present, all elements of the structuring element are 0.
IDL Reference Guide MORPH_CLOSE

1346
PRESERVE_TYPE

Set this keyword to return the same type as the input array. The input array must be of
type BYTE, UINT, or ULONG. This keyword only applies for grayscale
erosion/dilation, and is mutually exclusive of UINT and ULONG.

UINT

Set this keyword to return an unsigned integer array. This keyword only applies for
grayscale operations, and is mutually exclusive of the ULONG and
PRESERVE_TYPE keywords.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword only
applies for grayscale operations, and is mutually exclusive of the UINT and
PRESERVE_TYPE keywords.

VALUES

An array of the same dimensions as Structure providing the values of the structuring
element. The presence of this keyword implies a grayscale operation.

Examples

The following code reads a data file in the IDL Demo data directory containing a
magnified image of grains of pollen. It then applies a threshold and a morphological
closing operator with a 3 by 3 square kernel to the original image. Notice that most of
the holes in the pollen grains have been filled by the closing operator.

;Handle TrueColor displays:
DEVICE, DECOMPOSED=0

;Read the image
path=FILEPATH('pollens.jpg',SUBDIR=['examples','demo','demodata'])
READ_JPEG, path, img

;Create window:
WINDOW, 0, XSIZE=700, YSIZE=540

;Show original image
XYOUTS, 180, 525, 'Original Image', ALIGNMENT=.5, /DEVICE
TVSCL, img, 20, 280

;Apply the threshold creating a binary image
thresh = img GE 140B
MORPH_CLOSE IDL Reference Guide

 1347
;Load a simple color table
TEK_COLOR

;Display Edges
XYOUTS, 520, 525, 'Edges', ALIGNMENT=.5, /DEVICE
TV, thresh, 360, 280

;Apply closing operator
closing = MORPH_CLOSE(thresh, REPLICATE(1,3,3))

;Show the result
XYOUTS, 180, 265, 'Closing Operator', ALIGNMENT=.5, /DEVICE
TV, closing, 20, 20

;Show added pixels in white
XYOUTS, 520, 265, 'Added Pixels in White', ALIGNMENT=.5, /DEVICE
TV, closing + thresh, 360, 20

Version History

Introduced: 5.3

See Also

DILATE, ERODE, MORPH_DISTANCE, MORPH_GRADIENT,
MORPH_HITORMISS, MORPH_OPEN, MORPH_THIN, MORPH_TOPHAT
IDL Reference Guide MORPH_CLOSE

1348
MORPH_DISTANCE

The MORPH_DISTANCE function estimates N-dimensional distance maps, which
contain for each foreground pixel the distance to the nearest background pixel, using
a given norm. Available norms include: Euclidean, which is exact and is also known
as the Euclidean Distance Map (EDM), and two more efficient approximations,
chessboard and city block.

The distance map is useful for a variety of morphological operations: thinning,
erosion and dilation by discs of radius “r”, and granulometry.

Syntax

Result = MORPH_DISTANCE (Data [, /BACKGROUND]
[, NEIGHBOR_SAMPLING={1 | 2 | 3 }] [, /NO_COPY])

Return Value

The returned variable is an array of the same dimension as the input array.

Arguments

Data

An input binary array. Zero-valued pixels are considered to be part of the
background.

Keywords

BACKGROUND

By default, the EDM is computed for the foreground (non-zero) features in the Data
argument. Set this keyword to compute the EDM of the background features instead
of the foreground features. If the keyword is set, elements of Result that are on an
edge are set to 0.

NEIGHBOR_SAMPLING

Set this keyword to indicate how the distance of each neighbor from a given pixel is
determined. Valid values include:

• 0 = default. No diagonal neighbors. Each neighbor is assigned a distance of 1.
MORPH_DISTANCE IDL Reference Guide

 1349
• 1 = chessboard. Each neighbor is assigned a distance of 1.

• 2 = city block. Each neighbor is assigned a distance corresponding to the
number of pixels to be visited when travelling from the current pixel to the
neighbor. (The path can only take 90 degree turns; no diagonal paths are
allowed.)

• 3 = actual distance. Each neighbor is assigned its actual distance from the
current pixel (within the limitations of floating point representations).

Default Two Dimensional Example

1
1 X 1

1

Chessboard Two-Dimensional Example

1 1 1
1 X 1
1 1 1

City Block Two-Dimensional Example:

2 1 2
1 X 1
2 1 2

Actual Distance Two-Dimensional Example

sqrt(2) 1 sqrt(2)
1 X 1

sqrt(2) 1 sqrt(2)

NO_COPY

Set this keyword to request that the input array be reused, if possible. If this keyword
is set, the input argument is undefined upon return.

Examples

The following code reads a data file in the IDL Demo data directory containing a
magnified image of grains of pollen. It then applies a threshold and the
morphological distance operator. Thresholding the result distance operator with a
value of “n” produces the equivalent of eroding the thresholded image with a disc of
radius “n”.

;Handle TrueColor displays:
DEVICE, DECOMPOSED=0
IDL Reference Guide MORPH_DISTANCE

1350
;Read the image
path=FILEPATH('pollens.jpg',SUBDIR=['examples','demo','demodata'])
READ_JPEG, path, img

; Create window:
WINDOW, 0, XSIZE=700, YSIZE=540

; Display the original image
XYOUTS, 180, 525, 'Original Image', ALIGNMENT=.5, /DEVICE
TV, img, 20, 280

; Apply the threshold:
thresh = img GE 140B

; Display the thresholded image
XYOUTS, 520, 525, 'Thresholded Image', ALIGNMENT=.5, /DEVICE
TVSCL, thresh, 360, 280

;Create Euclidean distance function
edist = MORPH_DISTANCE(thresh, NEIGHBOR_SAMPLING = 3)

; Display the distance function
XYOUTS, 180, 265, 'Distance Function', ALIGNMENT=.5, /DEVICE
TVSCL, edist, 20, 20

; Display image after erosion with a disc of radius 5:
XYOUTS, 520, 265, 'After erosion with disc of radius 5',
ALIGNMENT=.5, /DEVICE
TVSCL, edist GT 5, 360, 20

Version History

Introduced: 5.3

See Also

DILATE, ERODE, MORPH_CLOSE, MORPH_GRADIENT,
MORPH_HITORMISS, MORPH_OPEN, MORPH_THIN, MORPH_TOPHAT
MORPH_DISTANCE IDL Reference Guide

 1351
MORPH_GRADIENT

The MORPH_GRADIENT function applies the morphological gradient operator to a
grayscale image. MORPH_GRADIENT is the subtraction of an eroded version of the
original image from a dilated version of the original image.

Syntax

Result = MORPH_GRADIENT (Image, Structure [, PRESERVE_TYPE=bytearray |
/UINT | /ULONG] [, VALUES=array])

Return Value

The practical result of a morphological gradient operation is that the boundaries of
features are highlighted.

Arguments

Image

A one-, two-, or three-dimensional array upon which the morphological gradient
operation is to be performed.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element. The
elements are interpreted as binary values - either zero or nonzero. The structuring
element must have the same number of dimensions as the Image argument.

Keywords

PRESERVE_TYPE

Set this keyword to return the same type as the input array. The input array must be of
type BYTE, UINT, or ULONG. This keyword only applies for grayscale
erosion/dilation, and is mutually exclusive of the UINT and ULONG keywords.

UINT

Set this keyword to return an unsigned integer array. This keyword is mutually
exclusive of the ULONG and PRESERVE_TYPE keywords.
IDL Reference Guide MORPH_GRADIENT

1352
ULONG

Set this keyword to return an unsigned longword integer array. This keyword is
mutually exclusive of the UINT and PRESERVE_TYPE keywords.

VALUES

An array of the same dimensions as the Structure argument providing the values of
the structuring element. If the VALUES keyword is not present, all elements of the
structuring element are 0.

Examples

The following code reads a data file in the IDL Demo data directory containing a
magnified image of grains of pollen. It then creates disc of radius 2, in a 5 by 5 array,
with all elements within a radius of 2 from the center set to 1. This disc is used as the
structuring element for the morphological gradient which is then displayed as both a
gray scale image, and as a thresholded image.

;Handle TrueColor displays:
DEVICE, DECOMPOSED=0

;Read the image
path=FILEPATH('pollens.jpg',SUBDIR=['examples','demo','demodata'])
READ_JPEG, path, img

; Create window:
WINDOW, 0, XSIZE=700, YSIZE=540

;Show original image
XYOUTS, 180, 525, 'Original Image', ALIGNMENT=.5, /DEVICE
TVSCL, img, 20, 280

;Define disc radius
r = 2

;Create a binary disc of given radius.
disc = SHIFT(DIST(2*r+1), r, r) LE r

bdisc = MORPH_GRADIENT(img, disc)

;Show edges
XYOUTS, 520, 525, 'Edges', ALIGNMENT=.5, /DEVICE
TVSCL, bdisc, 360, 280

;Show thresholded edges
XYOUTS, 180, 265, 'Threshold Edges', ALIGNMENT=.5, /DEVICE
MORPH_GRADIENT IDL Reference Guide

 1353
TVSCL, bdisc ge 100, 20, 20

Version History

Introduced: 5.3

See Also

DILATE, ERODE, MORPH_CLOSE, MORPH_DISTANCE,
MORPH_HITORMISS, MORPH_OPEN, MORPH_THIN, MORPH_TOPHAT
IDL Reference Guide MORPH_GRADIENT

1354
MORPH_HITORMISS

The MORPH_HITORMISS function applies the hit-or-miss operator to a binary
image. The hit-or-miss operator is implemented by first applying an erosion operator
with a hit structuring element to the original image. Then an erosion operator is
applied to the complement of the original image with a secondary miss structuring
element. The result is the intersection of the two results.

Syntax

Result = MORPH_HITORMISS (Image, HitStructure, MissStructure)

Return Value

The resulting image corresponds to the positions where the hit structuring element
lies within the image, and the miss structure lies completely outside the image. The
two structures must not overlap.

Arguments

Image

A one-, two-, or three-dimensional array upon which the morphological operation is
to be performed. The image is treated as a binary image with all nonzero pixels
considered as 1.

HitStructure

A one-, two-, or three-dimensional array to be used as the hit structuring element. The
elements are interpreted as binary values — either zero or nonzero. This structuring
element must have the same number of dimensions as the Image argument.

MissStructure

A one-, two-, or three-dimensional array to be used as the miss structuring element.
The elements are interpreted as binary values — either zero or nonzero. This
structuring element must have the same number of dimensions as the Image
argument.

Note
It is assumed that the HitStructure and the MissStructure arguments are disjoint.
MORPH_HITORMISS IDL Reference Guide

 1355
Keywords

None.

Example

The following code snippet identifies blobs with a radius of at least 2, but less than 4
in the pollen image. These regions totally enclose a disc of radius 2, contained in the
5 x 5 kernel named “hit”, and in turn, fit within a hole of radius 4, contained in the 9 x
9 array named “miss”. Executing this specific example identifies four blobs in the
image with these attributes.

;Handle TrueColor displays:
DEVICE, DECOMPOSED=0

;Read the image
path=FILEPATH('pollens.jpg',SUBDIR=['examples','demo','demodata'])
READ_JPEG, path, img

WINDOW, 0, XSIZE=700, YSIZE=540

; Display the original image
XYOUTS, 180, 525, 'Original Image', ALIGNMENT=.5, /DEVICE
TV, img, 20, 280

rh = 2 ;Radius of hit disc
rm = 4 ;Radius of miss disc

;Create a binary disc of given radius.
hit = SHIFT(DIST(2*rh+1), rh, rh) LE rh

;Complement of disc for miss
miss = SHIFT(DIST(2*rm+1), rm, rm) GT rm

;Load discrete color table
TEK_COLOR

;Apply the threshold
thresh = img GE 140B

; Display the thresholded image
XYOUTS, 520, 525, 'Thresholded Image', ALIGNMENT=.5, /DEVICE
TV, thresh, 360, 280

;Compute matches
matches = MORPH_HITORMISS(thresh, hit, miss)
IDL Reference Guide MORPH_HITORMISS

1356
;Expand matches to size of hit disc
matches = DILATE(matches, hit)

;Show matches.
XYOUTS, 180, 265, 'Matches', ALIGNMENT=.5, /DEVICE
TV, matches, 20, 20

;Superimpose, showing hit regions in blue.
;(Blue = color index 4 for tek_color.)
XYOUTS, 520, 265, 'Superimposed, hit regions in blue',$

ALIGNMENT=.5, /DEVICE
TV, thresh + 3*matches, 360, 20

Version History

Introduced: 5.3

See Also

DILATE, ERODE, MORPH_CLOSE, MORPH_DISTANCE,
MORPH_GRADIENT, MORPH_OPEN, MORPH_THIN, MORPH_TOPHAT
MORPH_HITORMISS IDL Reference Guide

 1357
MORPH_OPEN

The MORPH_OPEN function applies the opening operator to a binary or grayscale
image. MORPH_OPEN is simply an erosion operation followed by a dilation
operation. The opening operation is an idempotent operator, applying it more than
once produces no further effect.

An alternative definition of the opening, is that it is the union of all sets containing the
structuring element in the original image. Both the opening and the closing operators
have the effect of smoothing the image, with the opening operation removing pixels,
and the closing operation adding pixels.

Syntax

Result = MORPH_OPEN (Image, Structure [, /GRAY]
[, PRESERVE_TYPE=bytearray | /UINT | /ULONG] [, VALUES=array])

Return Value

The result of an opening operation is that small features (e.g., noise) within the image
are removed, yet the original sizes of the primary foreground features are maintained.

Arguments

Image

A one-, two-, or three-dimensional array upon which the opening operation is to be
performed. If neither of the keywords GRAY or VALUES is present, the image is
treated as a binary image with all nonzero pixels considered as 1.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element. The
elements are interpreted as binary values — either zero or nonzero. The structuring
element must have the same number of dimensions as the Image argument.
IDL Reference Guide MORPH_OPEN

1358
Keywords

GRAY

Set this keyword to perform a grayscale, rather than binary, operation. Nonzero
elements of the Structure parameter determine the shape of the structuring element. If
the VALUES keyword is not present, all elements of the structuring element are 0.

PRESERVE_TYPE

Set this keyword to return the same type as the input array. The input array must be of
type BYTE, UINT, or ULONG. This keyword only applies for grayscale
erosion/dilation, and is mutually exclusive of the UINT and ULONG keywords.

UINT

Set this keyword to return an unsigned integer array. This keyword only applies for
grayscale operations, and is mutually exclusive of the ULONG and
PRESERVE_TYPE keywords.

ULONG

Set this keyword to return an unsigned longword integer array. This keyword only
applies for grayscale operations and is mutually exclusive of the UINT and
PRESERVE_TYPE keywords.

VALUES

An array of the same dimensions as Structure providing the values of the structuring
element. The presence of this keyword implies a grayscale operation.

Examples

The following code reads a data file in the IDL Demo data directory containing an
magnified image of grains of pollen. It then applies a threshold and a morphological
opening operator with a 3 by 3 square kernel to the original image. Notice that much
of the irregular borders of the grains have been smoothed by the opening operator.

; Handle TrueColor displays:
DEVICE, DECOMPOSED=0

;Read the image
path=FILEPATH('pollens.jpg',SUBDIR=['examples','demo','demodata'])
READ_JPEG, path, img
MORPH_OPEN IDL Reference Guide

 1359
; Create window:
WINDOW, 0, XSIZE=700, YSIZE=540

;Show original image
XYOUTS, 180, 525, 'Original Image', ALIGNMENT=.5, /DEVICE
TV, img, 20, 280

;Apply the threshold
thresh = img GE 140B

;Load a simple color table
TEK_COLOR

;Display edges
XYOUTS, 520, 525, 'Edges', ALIGNMENT=.5, /DEVICE
TV, thresh, 360, 280

;Apply opening operator
open = MORPH_OPEN(thresh, REPLICATE(1,3,3))

;Show the result
XYOUTS, 180, 265, 'Opening Operator', ALIGNMENT=.5, /DEVICE
TV, open, 20, 20

;Show pixels that have been removed in white
XYOUTS, 520, 265, 'Removed Pixels in White', ALIGNMENT=.5, /DEVICE
TV, open + thresh, 360, 20

Version History

Introduced: 5.3

See Also

DILATE, ERODE, MORPH_CLOSE, MORPH_DISTANCE,
MORPH_GRADIENT, MORPH_HITORMISS, MORPH_THIN,
MORPH_TOPHAT
IDL Reference Guide MORPH_OPEN

1360
MORPH_THIN

The MORPH_THIN function performs a thinning operation on binary images. The
thinning operator is implemented by first applying a hit or miss operator to the
original image with a pair of structuring elements, and then subtracting the result
from the original image.

Syntax

Result = MORPH_THIN (Image, HitStructure, MissStructure)

Return Value

In typical applications, this operator is repeatedly applied with the two structuring
elements, rotating them after each application, until the result remains unchanged.

Arguments

Image

A one-, two-, or three-dimensional array upon which the thinning operation is to be
performed. The image is treated as a binary image with all nonzero pixels considered
as 1.

HitStructure

A one-, two-, or three-dimensional array to be used as the hit structuring element. The
elements are interpreted as binary values — either zero or nonzero. This structuring
element must have the same number of dimensions as the Image argument.

MissStructure

A one-, two-, or three-dimensional array to be used as the miss structuring element.
The elements are interpreted as binary values — either zero or nonzero. This
structuring element must have the same number of dimensions as the Image
argument.

Note
It is assumed that the HitStructure and the MissStructure arguments are disjoint.
MORPH_THIN IDL Reference Guide

 1361
Keywords

None.

Version History

Introduced: 5.3

See Also

DILATE, ERODE, MORPH_CLOSE, MORPH_DISTANCE,
MORPH_GRADIENT, MORPH_HITORMISS, MORPH_OPEN,
MORPH_TOPHAT
IDL Reference Guide MORPH_THIN

1362
MORPH_TOPHAT

The MORPH_TOPHAT function applies the top-hat operator to a grayscale image.
The top-hat operator is implemented by first applying the opening operator to the
original image, then subtracting the result from the original image. Applying the top-
hat operator provides a result that shows the bright peaks within the image.

Syntax

Result = MORPH_TOPHAT (Image, Structure [, PRESERVE_TYPE=bytearray |
/UINT | /ULONG] [, VALUES=array])

Return Value

Returns the resulting one-, two-, or three-dimensional array.

Arguments

Image

A one-, two-, or three-dimensional array upon which the top-hat operation is to be
performed.

Structure

A one-, two-, or three-dimensional array to be used as the structuring element. The
elements are interpreted as binary values — either zero or nonzero. The structuring
element must have the same number of dimensions as the Image argument.

Keywords

PRESERVE_TYPE

Set this keyword to return the same type as the input array. The input array must be of
type BYTE, UINT, or ULONG. This keyword only applies for grayscale
erosion/dilation, and is mutually exclusive of the UINT and ULONG keywords.

UINT

Set this keyword to return an unsigned integer array. This keyword is mutually
exclusive of the ULONG and PRESERVE_TYPE keywords.
MORPH_TOPHAT IDL Reference Guide

 1363
ULONG

Set this keyword to return an unsigned longword integer array. This keyword is
mutually exclusive of the UINT and PRESERVE_TYPE keywords.

VALUES

An array of the same dimensions as the Structure argument providing the values of
the structuring element. If the VALUES keyword is not present, all elements of the
structuring element are 0.

Examples

The following example illustrates an application of the top-hat operator to an image
in the examples/demo/demodata directory:

; Handle TrueColor displays:
DEVICE, DECOMPOSED=0

;Read the image
path=FILEPATH('pollens.jpg',SUBDIR=['examples','demo','demodata'])
READ_JPEG, path, img

; Create window:
WINDOW, 0, XSIZE=700, YSIZE=280

;Show original
XYOUTS, 180, 265, 'Original Image', ALIGNMENT=.5, /DEVICE
TVSCL, img, 20, 20

;Radius of disc
r = 2

;Create a binary disc of given radius.
disc = SHIFT(DIST(2*r+1), r, r) LE r

;Apply top-hat operator
tophat = MORPH_TOPHAT(img, disc)

;Display stretched result.
XYOUTS, 520, 265, 'Stretched Result', ALIGNMENT=.5, /DEVICE
TVSCL, tophat < 50, 360, 20

Version History

Introduced: 5.3
IDL Reference Guide MORPH_TOPHAT

1364
See Also

DILATE, ERODE, MORPH_CLOSE, MORPH_DISTANCE,
MORPH_GRADIENT, MORPH_HITORMISS, MORPH_OPEN, MORPH_THIN
MORPH_TOPHAT IDL Reference Guide

 1365
MPEG_CLOSE

The MPEG_CLOSE procedure closes an MPEG sequence opened with the
MPEG_OPEN routine. Note that MPEG_CLOSE does not save the MPEG file
associated with the MPEG sequence; use MPEG_SAVE to save the file. The specified
MPEG sequence identifier will no longer be valid after calling MPEG_CLOSE.

This routine is written in the IDL language. Its source code can be found in the file
mpeg_close.pro in the lib subdirectory of the IDL distribution.

Syntax

MPEG_CLOSE, mpegID

Arguments

mpegID

The unique identifier of the MPEG sequence to be freed. (MPEG sequence identifiers
are returned by the MPEG_OPEN routine.)

Keywords

None.

Examples

See MPEG_OPEN for an example using this routine.

Version History

Introduced: 5.1

See Also

MPEG_OPEN, MPEG_PUT, MPEG_SAVE, XINTERANIMATE
IDL Reference Guide MPEG_CLOSE

1366
MPEG_OPEN

The MPEG_OPEN function initializes an IDLgrMPEG object for MPEG encoding
and returns the object reference. The MPEG routines provide a wrapper around the
IDL Object Graphics IDLgrMPEG object, eliminating the need to use the Object
Graphics interface to create MPEG files.

Note
The MPEG standard does not allow movies with odd numbers of pixels to be
created.

This routine is written in the IDL language. Its source code can be found in the file
mpeg_open.pro in the lib subdirectory of the IDL distribution.

Note
MPEG support in IDL requires a special license. For more information, contact
your RSI sales representative or technical support.

Syntax

mpegID = MPEG_OPEN(Dimensions [, BITRATE=value] [, FILENAME=string]
[, IFRAME_GAP=integer value] [, MOTION_VEC_LENGTH={1 | 2 | 3}]
[QUALITY=value{0 to 100}])

Return Value

Returns the reference to the IDLgrMPEG object.

Arguments

Dimensions

A two-element vector of the form [xsize, ysize] indicating the dimensions of the
images to be used as frames in the MPEG movie file. All images in the MPEG file
must have the same dimensions.

Note
When creating MPEG files, you must be aware of the capabilities of the MPEG
decoder you will be using to view it. Some decoders only support a limited set of
sampling and bitrate parameters to normalize computational complexity, buffer
size, and memory bandwidth. For example, the Windows Media Player supports a
MPEG_OPEN IDL Reference Guide

 1367
limited set of sampling and bitrate parameters. In this case, it is best to use 352 x
240 x 30 fps or 352 x 288 x 25 fps when determining the dimensions and frame rate
for your MPEG file. When opening a file in Windows Media Player that does not
use these dimensions, you will receive a “Bad Movie File” error message. The file
is not “bad”, this decoder just doesn’t support the dimensions of the MPEG.

Keywords

BITRATE

Set this keyword to a double-precision value to specify the MPEG movie bit rate.
Higher bit rates will create higher quality MPEGs but will increase file size. The
following table describes the valid values:

If you do not set this keyword, IDL computes the BITRATE value based upon the
value you have specified for the QUALITY keyword.

Note
Only use the BITRATE keyword if changing the QUALITY keyword value does
not produce the desired results. It is highly recommended to set the BITRATE to at
least several times the frame rate to avoid unusable MPEG files or file generation
errors.

FILENAME

Set this keyword equal to a string representing the name of the file in which the
encoded MPEG sequence is to be saved. The default file name is idl.mpg.

IFRAME_GAP

Set this keyword to a positive integer value that specifies the number of frames
between I frames to be created in the MPEG file. I frames are full-quality image
frames that may have a number of predicted or interpolated frames between them.

MPEG Version Range

MPEG 1 0.1 to 104857200.0

MPEG 2 0.1 to 429496729200.0

Table 72: BITRATE Value Range
IDL Reference Guide MPEG_OPEN

1368
If you do not specify this keyword, IDL computes the IFRAME_GAP value based
upon the value you have specified for the QUALITY keyword.

Note
Only use the IFRAME_GAP keyword if changing the QUALITY keyword value
does not produce the desired results.

MOTION_VEC_LENGTH

Set this keyword to an integer value specifying the length of the motion vectors to be
used to generate predictive frames. Valid values include:

• 1 = Small motion vectors.

• 2 = Medium motion vectors.

• 3 = Large motion vectors.

If you do not set this keyword, IDL computes the MOTION_VEC_LENGTH value
based upon the value you have specified for the QUALITY keyword.

Note
Only use the MOTION_VEC_LENGTH keyword if changing the QUALITY value
does not produce the desired results.

QUALITY

Set this keyword to an integer value between 0 (low quality) and 100 (high quality)
inclusive to specify the quality at which the MPEG stream is to be stored. Higher
quality values result in lower rates of time compression and less motion prediction
which provide higher quality MPEGs but with substantially larger file size. Lower
quality factors may result in longer MPEG generation times. The default is 50.

Note
Since MPEG uses JPEG (lossy) compression, the original picture quality can’t be
reproduced even when setting QUALITY to its highest setting.

Examples

The following sequence of IDL commands illustrates the steps needed to create an
MPEG movie file from a series of image arrays named image0, image1, .., imageN,
where n is the zero-based index of the last image in the movie:

; Open an MPEG sequence:
MPEG_OPEN IDL Reference Guide

 1369
mpegID = MPEG_OPEN()

; Add the first frame:
MPEG_PUT, mpegID, IMAGE=image0, FRAME=0
MPEG_PUT, mpegID, IMAGE=image1, FRAME=1

; Subsequent frames:
...

; Last frame:
MPEG_PUT, mpegID, IMAGE=imagen, FRAME=n

; Save the MPEG sequence in the file myMovie.mpg:
MPEG_SAVE, mpegID, FILENAME='myMovie.mpg'

; Close the MPEG sequence:
MPEG_CLOSE, mpegID

Version History

Introduced: 5.1

See Also

MPEG_CLOSE, MPEG_PUT, MPEG_SAVE, XINTERANIMATE
IDL Reference Guide MPEG_OPEN

1370
MPEG_PUT

The MPEG_PUT procedure stores the specified image array at the specified frame
index in an MPEG sequence.

This routine is written in the IDL language. Its source code can be found in the file
mpeg_put.pro in the lib subdirectory of the IDL distribution.

Syntax

MPEG_PUT, mpegID [, /COLOR] [, FRAME=frame_number] [, IMAGE=array | ,
WINDOW=index] [, /ORDER]

Arguments

mpegID

The unique identifier of the MPEG sequence into which the image will be inserted.
(MPEG sequence identifiers are returned by the MPEG_OPEN routine.)

Keywords

COLOR

Set this keyword to read off an 8-bit display and pass the information through the
current color table to create a 24-bit image.

FRAME

Set this keyword equal to an integer specifying the frame at which the image is to be
loaded. If the frame number matches a previously loaded frame, the previous frame is
overwritten. The default is 0.

IMAGE

Set this keyword equal to an m x n image array or a 3 x m x n True Color image array
representing the image to be loaded at the specified frame. This keyword is ignored if
the WINDOW keyword is specified.

ORDER

Set this keyword to indicate that the rows of the image should be drawn from top to
bottom. By default, the rows are drawn from bottom to top.
MPEG_PUT IDL Reference Guide

 1371
WINDOW

Set this keyword to the index of a Direct Graphics Window (or to an object reference
to an IDLgrWindow or IDLgrBuffer object) to indicate that the image to be loaded is
to be read from the given window or buffer. If this keyword is specified, it overrides
the value of the IMAGE keyword.

Examples

See MPEG_OPEN for an example using this routine.

Version History

Introduced: 5.1

See Also

MPEG_CLOSE, MPEG_OPEN, MPEG_SAVE, XINTERANIMATE
IDL Reference Guide MPEG_PUT

1372
MPEG_SAVE

The MPEG_SAVE procedure encodes and saves an open MPEG sequence.

This routine is written in the IDL language. Its source code can be found in the file
mpeg_save.pro in the lib subdirectory of the IDL distribution.

Note
MPEG support in IDL requires a special license. For more information, contact
your RSI sales representative or technical support.

Syntax

MPEG_SAVE, mpegID [, FILENAME=string]

Arguments

mpegID

The unique identifier of the MPEG sequence to be saved to a file. (MPEG sequence
identifiers are returned by the MPEG_OPEN routine.)

Keywords

FILENAME

Set this keyword to a string representing the name of the file to which the encoded
MPEG sequence is to be saved. The default is idl.mpg.

Examples

See MPEG_OPEN for an example using this routine.

Version History

Introduced: 5.1

See Also

MPEG_CLOSE, MPEG_OPEN, MPEG_PUT, XINTERANIMATE
MPEG_SAVE IDL Reference Guide

 1373
MSG_CAT_CLOSE

The MSG_CAT_CLOSE procedure closes a catalog file from the stored cache.

Syntax

MSG_CAT_CLOSE, object

Arguments

object

The object reference returned from MSG_CAT_OPEN.

Keywords

None

Version History

Introduced: 5.2.1

See Also

MSG_CAT_COMPILE, MSG_CAT_OPEN, IDLffLanguageCat
IDL Reference Guide MSG_CAT_CLOSE

1374
MSG_CAT_COMPILE

The MSG_CAT_COMPILE procedure creates an IDL language catalog file.

Note
The locale is determined from the system locale in effect when compilation takes
place.

Syntax

MSG_CAT_COMPILE, input[, output] [, LOCALE_ALIAS=string] [, /MBCS]

Arguments

input

The input file with which to create the catalog. The file is a text representation of the
key/MBCS association. Each line in the file must have a key. The language string
must then be surrounded by double quotes, then an optional comment.

For example:

VERSION "Version 1.0" My revision number of the file

There are 2 special tags, one of which must be included when creating the file:

APPLICATION (required)

SUB_QUERY (optional)

output

The optional output file name (including path if necessary) of the IDL language
catalog file.

The naming convention for IDL language catalog files is as follows:

idl_ + "Application name" + _ + "Locale" + .cat

For example:

idl_envi_usa_eng.cat

If not set, a default filename is used based on the locale:

idl_[locale].cat
MSG_CAT_COMPILE IDL Reference Guide

 1375
Keywords

LOCALE_ALIAS

Set this keyword to a scalar string containing any locale aliases for the locale on
which the catalog is being compiled. A semi-colon is used to separate locales.

For example:

MSG_CAT_COMPILE,'input.txt', 'idl_envi_usa_eng.cat',$
LOCALE_ALIAS='C'

MBCS

If set, this procedure assumes language strings to be in MBCS format. The default is
8-bit ASCII.

Version History

Introduced: 5.2.1

See Also

MSG_CAT_CLOSE, MSG_CAT_OPEN, IDLffLanguageCat
IDL Reference Guide MSG_CAT_COMPILE

1376
MSG_CAT_OPEN

The MSG_CAT_OPEN function opens a specified catalog object file.

Syntax

Result = MSG_CAT_OPEN(application [, DEFAULT_FILENAME=filename]
[, FILENAME=string] [, FOUND=variable] [, LOCALE=string] [, PATH=string]
[, SUB_QUERY=value])

Return Value

Returns a catalog object for the given parameters if found. If a match is not found, an
unset catalog object is returned. If unset, the IDLffLanguageCat::Query method will
always return the empty string unless a default catalog is provided.

Arguments

application

A scalar string representing the name of the desired application's catalog file.

Keywords

DEFAULT_FILENAME

Set this keyword to a scalar string containing the full path and filename of the catalog
file to open if the initial request was not found.

FILENAME

Set this keyword to a scalar string containing the full path and filename of the catalog
file to open. If this keyword is set, application, PATH and LOCALE are ignored.

FOUND

Set this keyword to a named variable that will contain 1 if a catalog file was found, 0
otherwise.
MSG_CAT_OPEN IDL Reference Guide

 1377
LOCALE

Set this keyword to the desired locale for the catalog file. If not set, the current locale
is used.

PATH

Set this keyword to a scalar string containing the path to search for language catalog
files. The default is the current directory.

SUB_QUERY

Set this keyword equal to the value of the SUB_QUERY key to search against. If a
match is found, it is used to further sub-set the possible return catalog choices.

Version History

Introduced: 5.2.1

See Also

MSG_CAT_CLOSE, MSG_CAT_COMPILE, IDLffLanguageCat
IDL Reference Guide MSG_CAT_OPEN

1378
MULTI

The MULTI procedure expands the current color table to “wrap around” some
number of times.

This routine is written in the IDL language. Its source code can be found in the file
multi.pro in the lib subdirectory of the IDL distribution.

Syntax

MULTI, N

Arguments

N

The number of times the color table will wrap. This parameter does not have to be an
integer.

Keywords

None.

Examples

Display an image, load color table 1, and make that color table “wrap around” 3
times. Enter:

;Display a simple image.
TVSCL, DIST(256)

;Load color table 1.
LOADCT, 1

;See how the new color table affects the image.
MULTI, 3

Version History

Introduced: Original
MULTI IDL Reference Guide

 1379
See Also

STRETCH, XLOADCT
IDL Reference Guide MULTI

1380
N_ELEMENTS

The N_ELEMENTS function returns the number of elements contained in an
expression or variable.

Syntax

Result = N_ELEMENTS(Expression)

Return Value

Returns the number of elements.

Arguments

Expression

The expression for which the number of elements is to be returned. Scalar
expressions always have one element. The number of elements in an array is equal to
the product of its dimensions. If Expression is an undefined variable, N_ELEMENTS
returns zero.

Keywords

None.

Examples

Example 1

This example finds the number of elements in an array:

; Create an integer array:
I = INTARR(4, 5, 3, 6)
; Find the number of elements in I and print the result:
PRINT, N_ELEMENTS(I)

Example 2

A typical use of N_ELEMENTS is to check if an optional input is defined, and if not,
set it to a default value:

IF (N_ELEMENTS(roo) EQ 0) THEN roo=rooDefault
N_ELEMENTS IDL Reference Guide

 1381
The original value of roo may be altered by a called routine, passing a different value
back to the caller. Unless you intend for the routine to behave in this manner, you
should prevent it by differentiating N_ELEMENTS’ parameter from your routine’s
variable:

IF (N_ELEMENTS(roo) EQ 0) THEN rooUse=rooDefault $
ELSE rooUse=roo

Version History

Introduced: Original

See Also

N_TAGS
IDL Reference Guide N_ELEMENTS

1382
N_PARAMS

The N_PARAMS function returns the number of parameters used in calling an IDL
procedure or function. This function is only useful within IDL procedures or
functions. User-written procedures and functions can use N_PARAMS to determine
if they were called with optional parameters.

Note
In the case of object method procedures and functions, the SELF argument is not
counted by N_PARAMS.

Syntax

Result = N_PARAMS()

Return Value

Returns the number of non-keyword parameters.

Arguments

None. This function always returns the number of parameters that were used in
calling the procedure or function from which N_PARAMS is called.

Keywords

None.

Version History

Introduced: Original

See Also

KEYWORD_SET
N_PARAMS IDL Reference Guide

 1383
N_TAGS

The N_TAGS function returns the number of structure tags contained in a structure
expression.

Syntax

Result = N_TAGS(Expression [, /DATA_LENGTH] [, /LENGTH])

Return Value

Returns the number of structure tags and optionally returns the size, in bytes, of the
structure.

Arguments

Expression

The expression for which the number of structure tags is to be returned. Expressions
that are not of structure type are considered to have no tags. N_TAGS does not search
for tags recursively, so if Expression is a structure containing nested structures, only
the number of tags in the outermost structure are counted.

Keywords

DATA_LENGTH

Set this keyword to return the length of the data fields contained within the structure,
in bytes. This differs from LENGTH in that it does not include any alignment
padding required by the structure. The length of the data for a given structure will be
the same on any system.

LENGTH

Set this keyword to return the length of the structure, in bytes.

Note
The length of a structure is machine dependent. The length of a given structure will
vary depending upon the host machine. IDL pads and aligns structures in a manner
consistent with the host machine’s C compiler.
IDL Reference Guide N_TAGS

1384
Examples

Find the number of tags in the system variable !P and print the result by entering:

PRINT, N_TAGS(!P)

Find the length of !P, in bytes:

PRINT, N_TAGS(!P, /LENGTH)

Version History

Introduced: Original

See Also

CREATE_STRUCT, N_ELEMENTS, TAG_NAMES, Chapter 7, “Structures” in the
Building IDL Applications manual
N_TAGS IDL Reference Guide

 1385
NCDF_* Routines

For information, see Chapter 6, “Network Common Data Format” in the IDL
Scientific Data Formats manual.
IDL Reference Guide NCDF_* Routines

1386
NEWTON

The NEWTON function solves a system of n non-linear equations in n dimensions
using a globally-convergent Newton’s method.

NEWTON is based on the routine newt described in section 9.7 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = NEWTON(X, Vecfunc [, CHECK=variable] [, /DOUBLE]
[, ITMAX=value] [, STEPMAX=value] [, TOLF=value] [, TOLMIN=value]
[, TOLX=value])

Return Value

The result is an n-element vector containing the solution.

Arguments

X

An n-element vector containing an initial guess at the solution of the system.

Vecfunc

A scalar string specifying the name of a user-supplied IDL function that defines the
system of non-linear equations. This function must accept an n-element vector
argument X and return an n-element vector result.

For example, suppose the non-linear system is defined by the following equations:

y0 = x0 + x1 - 3, y1 = x0
2 + x1

2 - 9

We write a function NEWTFUNC to express these relationships in the IDL language:

FUNCTION newtfunc, X
RETURN, [X[0] + X[1] -3.0, X[0]^2 + X[1]^2 - 9.0]

END
NEWTON IDL Reference Guide

 1387
Keywords

CHECK

NEWTON calls an internal function named fmin() to determine whether the routine
has converged to a local minimum rather than to a global minimum (see Numerical
Recipes, section 9.7). Use the CHECK keyword to specify a named variable which
will be set to 1 if the routine has converged to a local minimum or to 0 if it has not. If
the routine does converge to a local minimum, try restarting from a different initial
guess to obtain the global minimum.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

ITMAX

The maximum allowed number of iterations. The default value is 200.

STEPMAX

The scaled maximum step length allowed in line search. The default value is 100.0.

TOLF

Set the convergence criterion on the function values. The default value is 1.0 x 10-4.

TOLMIN

Set the criterion for deciding whether spurious convergence to a minimum of the
function fmin() has occurred. The default value is 1.0 x 10-6.

TOLX

Set the convergence criterion on X. The default value is 1.0 x 10-7.

Examples

Use NEWTON to solve an n-dimensional system of n non-linear equations. Systems
of non-linear equations may have multiple solutions; starting the algorithms with
different initial guesses enables detection of different solutions.

FUNCTION newtfunc, X
RETURN, [X[0] + X[1] - 3, X[0]^2 + X[1]^2 - 9]

END
IDL Reference Guide NEWTON

1388
PRO TEST_NEWTON

; Provide an initial guess as the algorithm's starting point:
X = [1d, 5d]

; Compute the solution:
result = NEWTON(X, 'newtfunc')

; Print the result:
PRINT, 'For X=[1.0, 5.0], result = ', result

;Try a different starting point.
X = [1d, -1d]

; Compute the solution:
result = NEWTON(X,'newtfunc')

;Print the result.
PRINT, 'For X=[1.0, -1.0], result = ', result

END

IDL prints:

For X=[1.0, 5.0], result = -2.4871776e-006 3.0000025
For X=[1.0, -1.0], result = 3.0000000 -2.9985351e-008

Version History

Introduced: 4.0

See Also

BROYDEN, FX_ROOT, FZ_ROOTS
NEWTON IDL Reference Guide

 1389
NORM

The NORM function computes the norm of a vector or a two-dimensional array.

By default, NORM computes the L2 (Euclidean) norm for vectors, and the norm
for arrays. You may use the LNORM keyword to specify different norms.

This routine is written in the IDL language. Its source code can be found in the file
norm.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = NORM(A [, /DOUBLE] [, LNORM={0 | 1 | 2 | n}])

Return Value

Returns the Euclidean or infinity norm of a vector or an array.

Arguments

A

A can be either a real or complex vector, or a real or complex two-dimensional array.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

LNORM

Set this keyword to indicate which norm to compute. If A is a vector, then the possible
values of this keyword are:

Value Description

0 Compute the norm, defined as MAX(ABS(A)).

1 Compute the L1 norm, defined as TOTAL(ABS(A)).

Table 73: LNORM Keyword Values (Vector)

L∞

L∞
IDL Reference Guide NORM

1390
If A is a two-dimensional array, then the possible values of this keyword are:

Examples

; Define an n-element complex vector A:
A = [COMPLEX(1, 0), COMPLEX(2,-2), COMPLEX(-3,1)]

; Compute the Euclidean norm of A and print:
PRINT, 'Euclidian Norm of A =', NORM(A)

; Define an m by n complex array B:
B = [[COMPLEX(1, 0), COMPLEX(2,-2), COMPLEX(-3,1)], $

[COMPLEX(1,-2), COMPLEX(2, 2), COMPLEX(1, 0)]]

;Compute the Infinity norm of B and print.
PRINT, 'Infinity Norm of B =', NORM(B, /DOUBLE)

IDL prints:

Euclidian Norm of A = 4.35890
Infinity Norm of B = 6.9907048

2 Compute the L2 norm, defined as SQRT(TOTAL(ABS(A)^2)). This
is the default.

n Compute the Ln norm, defined as (TOTAL(ABS(A)^n))^(1/n)
where n is any number, float-point or integer.

Value Description

0 Compute the norm (the maximum absolute row sum norm),
defined as MAX(TOTAL(ABS(A), 1)). This is the default.

1 Compute the L1 norm (the maximum absolute column sum norm),
defined as MAX(TOTAL(ABS(A), 2)).

2 Compute the L2 norm (the spectral norm) defined as the largest
singular value, computed from SVDC. For LNORM = 2, A cannot
be complex.

Table 74: LNORM Keyword Values (Two-Dimensional Array)

Value Description

Table 73: LNORM Keyword Values (Vector)

L∞
NORM IDL Reference Guide

 1391
Version History

Introduced: Pre 4.0

See Also

COND, SVDC
IDL Reference Guide NORM

1392
OBJ_CLASS

The OBJ_CLASS function identifies the name of the object class or superclass of the
given argument.

Syntax

Result = OBJ_CLASS([Arg] [, COUNT=variable] [, /SUPERCLASS{must specify
Arg}])

Return Value

Returns a string containing the name of the class or superclass. If the supplied
argument is not an object, a null string is returned. If no argument is supplied,
OBJ_CLASS returns an array containing the names of all known object classes in the
current IDL session.

Arguments

Arg

A scalar object reference or string variable for which the object class name is desired.
If Arg is an object reference, it’s object class definition is used. If Arg is a string, it is
taken to be the name of the class for which information is desired. Passing a string
argument is primarily useful in conjunction with the SUPERCLASS keyword.

Keywords

COUNT

Set this keyword equal to a named variable that will contain the number of names
returned by OBJ_CLASS. It can be used to determine how many superclasses a class
has when the SUPERCLASS keyword is specified.

SUPERCLASS

Set this keyword to cause OBJ_CLASS to return the names of the object’s direct
superclasses as a string array, one element per superclass. The superclasses are
ordered in the order they appear in the class structure declaration. In the case where
the class has no superclasses, a scalar null string is returned, and the COUNT
OBJ_CLASS IDL Reference Guide

 1393
keyword (if specified) returns the value 0. If SUPERCLASS is specified, the Arg
argument must also be supplied.

Version History

Introduced: 5.0
IDL Reference Guide OBJ_CLASS

1394
OBJ_DESTROY

The OBJ_DESTROY procedure is used to destroy an object. If the class (or one of its
superclasses) supplies a procedure method named CLEANUP, the method is called
and all arguments and keywords passed by the user are passed to it. This method
should perform any required cleanup on the object and return. Whether a CLEANUP
method actually exists or not, IDL will destroy the heap variable representing the
object and return.

Note
OBJ_DESTROY does not recurse. That is, if object1 contains a reference to
object2, destroying object1 will not destroy object2. Take care not to lose the
only reference to an object by destroying an object that contains that reference.
Recursive cleanup of object hierarchies is a good job for a CLEANUP method.

Syntax

OBJ_DESTROY, ObjRef [, Arg1, …, Argn]

Arguments

ObjRef

The object reference for the object to be destroyed. ObjRef can be an array, in which
case all of the specified objects are destroyed in turn. If the NULL object reference is
passed, OBJ_DESTROY ignores it quietly.

Arg1…Argn

Any arguments accepted by the CLEANUP method for the object being destroyed
can be specified as additional arguments to OBJ_DESTROY.

Keywords

Any keywords accepted by the CLEANUP method for the object being destroyed can
be specified as keywords to OBJ_DESTROY.

Version History

Introduced: 5.0
OBJ_DESTROY IDL Reference Guide

 1395
OBJ_ISA

When one object class is subclassed (inherits) from another class, there is an “Is A”
relationship between them. The OBJ_ISA function is used to determine if an object
instance is subclassed from the specified class.

Syntax

Result = OBJ_ISA(ObjectInstance, ClassName)

Return Value

OBJ_ISA returns True (1) if the specified variable is an object and has the specified
class in its inheritance graph, or False (0) otherwise.

Arguments

ObjectInstance

A scalar or array variable for which the OBJ_ISA test should be performed. The
result is of type byte, and has the same size and organization as ObjectInstance.

ClassName

A string giving the name of the class for which ObjectInstance is being tested.

Keywords

None.

Version History

Introduced: 5.0
IDL Reference Guide OBJ_ISA

1396
OBJ_NEW

Given the name of a structure that defines an object class, the OBJ_NEW function
returns an object reference to a new instance of the specified object type by carrying
out the following operations in order:

1. If the class structure has not been defined, IDL will attempt to find and call a
procedure to define it automatically. (See Chapter 22, “Object Basics” in the
Building IDL Applications manual for details.) If the structure is still not
defined, OBJ_NEW fails and issues an error.

2. If the class structure has been defined, OBJ_NEW creates an object heap
variable containing a zeroed instance of the class structure.

3. Once the new object heap variable has been created, OBJ_NEW looks for a
method function named Class::INIT (where Class is the actual name of the
class). If an INIT method exists, it is called with the new object as its implicit
SELF argument, as well as any arguments and keywords specified in the call to
OBJ_NEW. If the class has no INIT method, the usual method-searching rules
are applied to find one from a superclass. For more information on methods
and method-searching rules, see “Method Routines” in Chapter 22 of the
Building IDL Applications manual.

The INIT method is expected to initialize the object instance data as necessary
to meet the needs of the class implementation. INIT should return a scalar
TRUE value (such as 1) if the initialization is successful, and FALSE (such as
0) if the initialization fails.

Note
OBJ_NEW does not call all the INIT methods in an object’s class hierarchy.
Instead, it simply calls the first one it finds. Therefore, the INIT method for a
class should call the INIT methods of its direct superclasses as necessary.

4. If the INIT method returns true, or if no INIT method exists, OBJ_NEW
returns an object reference to the heap variable. If INIT returns false,
OBJ_NEW destroys the new object and returns the NULL object reference,
indicating that the operation failed. Note that in this case the CLEANUP
method is not called. See “Destruction” in Chapter 22 of the Building IDL
Applications manual for more on CLEANUP methods.

If called without arguments, OBJ_NEW returns a NULL object reference. The NULL
object reference is a special value that never refers to a value object. It is primarily
used as a placeholder in structure definitions, and as the initial value for elements of
OBJ_NEW IDL Reference Guide

 1397
object arrays created via OBJARR. The null object reference is useful as an indicator
that an object reference is currently not usable.

Syntax

Result = OBJ_NEW([ObjectClassName [, Arg1…...Argn]])

Return Value

Returns a reference to a new instance of the specified object type. If called without
arguments, OBJ_NEW returns a NULL object reference. The NULL object reference
is a special value that never refers to a value object. It is primarily used as a
placeholder in structure definitions, and as the initial value for elements of object
arrays created via OBJARR. The null object reference is useful as an indicator that an
object reference is currently not usable.

Arguments

ObjectClassName

String giving the name of the structure type that defines the object class for which a
new object should be created.

If ObjectClassName is not provided, OBJ_NEW does not create a new heap variable,
and returns the Null Object, which is a special object reference that is guaranteed to
never point at a valid object heap variable. The null object is a convenient value to use
when defining structure definitions for fields that are object references, since it avoids
the need to have a pre-existing valid object reference.

Arg1…Argn

Any arguments accepted by the INIT method for the class of object being created can
be specified when the object is created.

Keywords

Any keywords accepted by the INIT method for the class of object being created can
be specified when the object is created.

Version History

Introduced: 5.0
IDL Reference Guide OBJ_NEW

1398
OBJ_VALID

The OBJ_VALID function verifies the validity of its argument object references, or
alternatively returns a vector of references to all the existing valid objects.

Syntax

Result = OBJ_VALID([Arg] [, CAST=integer] [, COUNT=variable])

Return Value

If called with an argument, OBJ_VALID returns a byte array of the same size as the
argument. Each element of the result is set to True (1) if the corresponding object
reference in the argument refers to an existing object, and False (0) otherwise.

If called with an integer or array of integers as its argument and the CAST keyword is
set, OBJ_VALID returns an array of object references. Each element of the result is a
reference to the heap variable indexed by the integer value. Integers used to index
heap variables are shown in the output of the HELP and PRINT commands. This is
useful primarily in programming/debugging when the you have lost a reference but
see it with HELP and need to get a reference to it interactively in order to determine
what it is and take steps to fix the code. See the “Examples” section below for an
example.

If no argument is specified, OBJ_VALID returns a vector of references to all existing
valid objects. If no valid objects exist, a scalar null object reference is returned.

Arguments

Arg

Scalar or array argument of object reference type.

Keywords

CAST

Set this keyword equal to an integer that indexes a heap variable to create a new
pointer to that heap variable. Integers used to index heap variables are shown in the
output of the HELP and PRINT commands. This is useful primarily in
programming/debugging when the you have lost a reference but see it with HELP and
OBJ_VALID IDL Reference Guide

 1399
need to get a reference to it interactively in order to determine what it is and take
steps to fix the code. See the “Examples” section below for an example.

COUNT

Set this keyword equal to a named variable that will contain the number of currently
valid objects. This value is returned as a longword integer.

Examples

To determine if a given object reference refers to a valid heap variable, use:

IF (OBJ_VALID(obj)) THEN …

To destroy all existing pointer heap variables:

OBJ_DESTROY, OBJ_VALID()

You can use the CAST keyword to “reclaim” lost object references. For example:

; Create a class structure:
junk = {junk, data1:0, data2:0.0}

; Create an object:
A = OBJ_NEW('junk')

; Find the integer index:
PRINT, A

; In this case, the integer index to the heap variable is 3. If we
; reassign the variable A, we will "lose" the object reference, but
; the heap variable will still exist.
; Lose the object reference:
A = 0
PRINT, A, OBJ_VALID()

; We can reclaim the lost heap variable using the CAST keyword:
A = OBJ_VALID(3, /CAST)
PRINT, A

IDL prints:

<ObjHeapVar3(JUNK)>
0 <ObjHeapVar3(JUNK)>
<ObjHeapVar3(JUNK)>

Version History

Introduced: 5.0
IDL Reference Guide OBJ_VALID

1400
OBJARR

The OBJARR function returns an object reference vector or array. The individual
elements of the array are set to the NULL object reference.

Syntax

Result = OBJARR(D1 [, ..., D8] [, /NOZERO])

Return Value

Returns an object reference to an array of the specified dimensions.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified.

Keywords

NOZERO

OBJARR sets every element of the result to the null object reference. If NOZERO is
nonzero, this initialization is not performed and OBJARR executes faster.

Warning
If you specify NOZERO, the resulting array will have whatever value happens to
exist at the system memory location that the array is allocated from. You should be
careful to initialize such an array to valid object reference values.

Examples

Create a 3 element by 3 element object reference array with each element containing
the null object reference:

A = OBJARR(3, 3)
OBJARR IDL Reference Guide

 1401
Version History

Introduced: 5.0
IDL Reference Guide OBJARR

1402
ON_ERROR

The ON_ERROR procedure determines the action taken when an error is detected
inside an IDL user procedure or function by setting state information applying to the
current routine and all nested routines. If an override exists within the nested routine,
it takes precedence over the ON_ERROR call.

Syntax

ON_ERROR, N

Arguments

N

An integer that specifies the action to take. Valid values for N are:

• 0: Stop at the statement in the procedure that caused the error, the default
action.

• 1: Return all the way back to the main program level.

• 2: Return to the caller of the program unit that established the ON_ERROR
condition.

• 3: Return to the program unit that established the ON_ERROR condition.

Keywords

None.

Version History

Introduced: Original

See Also

CATCH, MESSAGE, ON_IOERROR, and Chapter 18, “Controlling Errors” in the
Building IDL Applications manual.
ON_ERROR IDL Reference Guide

 1403
ON_IOERROR

The ON_IOERROR procedure specifies a statement to be jumped to if an I/O error
occurs in the current procedure. Normally, when an I/O error occurs, an error
message is printed and program execution is stopped. If ON_IOERROR is called and
an I/O related error later occurs in the same procedure activation, control is
transferred to the designated statement with the error code stored in the system
variable !ERROR_STATE. The text of the error message is contained in
!ERROR_STATE.MSG.

The effect of ON_IOERROR can be canceled by using the label “NULL” in the call.

Syntax

ON_IOERROR, Label

Arguments

Label

Statement to jump to when I/O error is encountered.

Keywords

None.

Examples

The following code segment reads an integer from the keyboard. If an invalid number
is entered, the program re-prompts.

i = 0 ; Number to read:

valid = 0 ; Valid flag

WHILE valid EQ 0 DO BEGIN
ON_IOERROR, bad_num
READ, 'Enter Number: ', i
;If we get here, i is good.
VALID = 1

bad_num: IF ~ valid THEN $
PRINT, 'You entered an invalid number.'

ENDWHILE
END
IDL Reference Guide ON_IOERROR

1404
Version History

Introduced: Original

See Also

CATCH, MESSAGE, ON_ERROR, and Chapter 18, “Controlling Errors” in the
Building IDL Applications manual.
ON_IOERROR IDL Reference Guide

 1405
ONLINE_HELP

The ONLINE_HELP procedure invokes IDL’s online help system. If called with no
arguments, it starts the help viewer with the default IDL help file displayed.

Note
This procedure is intended for use in user-written routines. The ? command, which
is a shorthand for the ONLINE_HELP procedure, is intended for use at the IDL
command line.

The online help viewer used by ONLINE_HELP depends on the operating system in
use and the type of help document specified:

UNIX: IDL online help documents are provided in Adobe Acrobat PDF format. To
use ONLINE_HELP (or the ? command), you must have version 4.0.5 or later of
either the Acrobat Reader or the full Acrobat application installed on your system,
and the corresponding acroread command must be available in a directory included
in your UNIX PATH environment variable. See the Installing and Licensing IDL
manual for details.

Note
The Acrobat Reader application is available free of charge from Adobe at
http://www.adobe.com. In addition, the most current version of Acrobat Reader
available for each platform supported by IDL at the time of IDL’s release is
included on the IDL CD-ROM.

In addition, if a web browser is installed on the system and available for use by IDL,
HTML files can be displayed. See “Displaying HTML Files under UNIX” on
page 1408 for details.

Windows: IDL online help is built around the standard Windows help facilities.
Windows HTML Help files (.chm) as well as traditional Windows help files (.hlp)
can be displayed. In addition, if Adobe Acrobat is available on the system, PDF files
can be displayed. If a web browser is available on the system, HTML files can be
displayed. ONLINE_HELP will automatically determine which help format to use
based on the file name.

For a more complete description of the Unix and Windows help systems, see
“Providing Online Help For Your Application” in Chapter 19 of the Building IDL
Applications manual.
IDL Reference Guide ONLINE_HELP

1406
Syntax

ONLINE_HELP [, Value] [, BOOK=‘filename’] [, /FULL_PATH] [, /QUIT]

UNIX-Only Keywords: [, /FOLD_CASE] [, PAGE=pageno]

Windows-Only Keywords: [, /CONTEXT] [, /TOPICS]

Arguments

Value

An optional string that contains the name of a topic to be displayed.

Under UNIX, Value is the name of a topic to be displayed. If Value is omitted, if the
specified topic does not exist in the specified or default file, or if the IDL Acrobat
plug-in is not present, IDL displays a default topic. (For more information on the IDL
Acrobat plug-in, see “About IDL’s Online Help System” in Chapter 19 of the
Building IDL Applications manual.)

Under Windows, Value is loaded into the help viewer’s Index dialog. If Value is
omitted, the specified or default file is displayed at its beginning. If the CONTEXT
keyword is set, Value should be an integer value (not a string) that represents the
context number of the help topic to be displayed; the specified topic will be displayed
immediately, bypassing the Index dialog. If the BOOK keyword specifies a PDF file,
Value is ignored and the specified file is opened to the first page of the file.

Keywords

BOOK

Set this keyword to a string containing the name of the help file to be displayed. If the
BOOK keyword is omitted, the default IDL help file is displayed.

• Under UNIX, if the Value parameter is specified, the default IDL help file is
reference.pdf. If the Value parameter is not specified, the default IDL help
file is onlguide.pdf. Both files are located in the Help subdirectory of the
IDL distribution.

• Under Windows, the default IDL help file is idl.chm, located in the Help
subdirectory of the IDL distribution.

If the FULL_PATH keyword is specified, BOOK must specify a complete file path,
including the directory specification and file extension for the file. If FULL_PATH is
not specified:
ONLINE_HELP IDL Reference Guide

 1407
• The file extension is optional and may be omitted.

• ONLINE_HELP will search the directories given by the !HELP_PATH
environment variable to locate the file.

Any file specified by this keyword must be in the appropriate format for the viewer
being invoked:

• Under UNIX, the file must be either a PDF file (.pdf) or an HTML file
(.html or .htm).

• Under Microsoft Windows, the file must be either an HTML Help file (.chm),
a WinHelp file (.hlp), a PDF file (.pdf), or an HTML file (.html or .htm).
If you specify the file extension, IDL will use the appropriate viewer for that
type of file.

Note
If no file extension is included in the value of the BOOK keyword, IDL will search
each directory in !HELP_PATH until it finds a matching file with one of the
following file extensions, in this order: .chm (Windows only), .hlp (Windows
only), .pdf, .html, .htm. You can override this behavior by explicitly specifying
the desired file extension.

CONTEXT (Windows Only)

Set this keyword to indicate that the Value argument is an integer value that represents
the context number of the help topic to be displayed. This keyword is intended for use
with user-compiled help files that contain topics that have been mapped to specific
context numbers when they were compiled using the [MAP] section of the help
project file. Specifying a non-existent context number causes an error dialog to be
displayed. For more information on how to create Help files with context numbers,
see the documentation for the Help system compiler that you are using.

FOLD_CASE (UNIX Only)

Normally, the string given by the Value argument is folded to upper case before being
handed to Acrobat for display. Explicitly set FOLD_CASE=0 to indicate that the
string should be handed to Acrobat without modification.

FULL_PATH

Set this keyword to indicate that value of the BOOK keyword is a full and complete
path to the help file, including any necessary directory information, and a file
extension. If FULL_PATH is not specified, ONLINE_HELP searches the
!HELP_PATH system variable to locate the file, and the file extension is optional.
IDL Reference Guide ONLINE_HELP

1408
PAGE (UNIX Only)

Set this keyword equal to a page number. Acrobat will open the specified page in the
specified PDF file.

QUIT

Set this keyword to close the Help viewer.

Note
The QUIT keyword will close the Windows help viewers. It will close the Adobe
Acrobat Reader if the IDL-Acrobat plug-in is installed. For other applications
launched by ONLINE_HELP, this keyword has no effect.

TOPICS (Windows Only)

Set this keyword to display the Index dialog for the specified help file.

Obsolete Keywords

The following keywords are obsolete:

• HTML_HELP

For information on obsolete keywords, See Appendix I, “Obsolete Features”.

Displaying HTML Files under UNIX

To display an HTML file on a Windows system, IDL simply instructs Windows to
open the specified file and leaves it to the operating system to choose the correct
application based on the file type. UNIX systems have no cross-platform standard
facility for associating different types of files with specific applications, so the
situation is slightly more complicated.

When the BOOK keyword specifies an HTML file (that is, when the file name ends
with any of .html, .HTML, .htm, or .HTM), IDL calls a shell script located in the
IDL distribution. The shell script then launches a web browser with the specified file
as its argument. By default, IDL assumes that it should launch the Netscape web
browser, and that the netscape command is found in one of the directories specified
by the PATH environment variable. Individual users can override the default behavior
by setting environment variables to specify either a different browser or an entirely
different shell script.

See the comments in the online_help_html script located in the bin subdirectory
of the IDL distribution for details on setting the relevant environment variables.
ONLINE_HELP IDL Reference Guide

 1409
Examples

The following example uses the ONLINE_HELP procedure to launch the help viewer
to display information on the FFT function:

ONLINE_HELP, 'fft'

This example displays the External Development Guide in PDF format:

ONLINE_HELP, BOOK='edg'

This Windows-only example displays the topic corresponding to context number 100
in a traditional Windows help file.

ONLINE_HELP, 100, /CONTEXT, /FULL_PATH, $
BOOK='C:\keith\myfile.hlp'

This cross-platform example displays an HTML file in the system’s default web
browser.

ONLINE_HELP, BOOK='myfile.html'

Version History

Introduced: 4.0.1

See Also

MK_HTML_HELP, Chapter 19, “Providing Online Help For Your Application” in
the Building IDL Applications manual
IDL Reference Guide ONLINE_HELP

1410
OPEN

The three OPEN procedures open a specified file for input and/or output.

• OPENR (OPEN Read) opens an existing file for input only.

• OPENW (OPEN Write) opens a new file for input and output. If the file exists,
it is truncated and its old contents are destroyed.

• OPENU (OPEN Update) opens an existing file for input and output.

Syntax

There are three forms of the OPEN procedure:

OPENR, Unit, File
OPENW, Unit, File
OPENU, Unit, File

Keywords (all platforms): [, /APPEND | , /COMPRESS] [, BUFSIZE={0 | 1 |
value>512}] [, /DELETE] [, ERROR=variable] [, /F77_UNFORMATTED]
[, /GET_LUN] [, /MORE] [, /NOEXPAND_PATH] [, /STDIO] [, /SWAP_ENDIAN]
[, /SWAP_IF_BIG_ENDIAN] [, /SWAP_IF_LITTLE_ENDIAN] [, /VAX_FLOAT]
[, WIDTH=value] [, /XDR]

UNIX-Only Keywords: [, /RAWIO]

Arguments

Unit

The unit number to be associated with the opened file.

File

A string containing the name of the file to be opened. Under UNIX, the filename can
contain any wildcard characters recognized by the shell specified by the SHELL
environment variable. However, it is faster not to use wildcards because IDL doesn’t
use the shell to expand file names unless it has to.

Note
The optional Record_Length argument is obsolete, and should not be used in new
code. See Appendix I, “Obsolete Features” for details.
OPEN IDL Reference Guide

 1411
Keywords

Note
Platform-specific keywords are listed at the end of this section.

APPEND

Set this keyword to open the file with the file pointer at the end of the file, ready for
data to be appended. Normally, the file is opened with the file pointer at the beginning
of the file. Under UNIX, use of APPEND prevents OPENW from truncating existing
file contents. The APPEND and COMPRESS keywords are mutually exclusive and
cannot be specified together.

BUFSIZE

Set this keyword to a value greater than 512 to specify the size of the I/O buffer (in
bytes) used when reading and writing files. Setting BUFSIZE=1 (or any other value
less than 512) sets the buffer to the default size, which is platform-specific. Set
BUFSIZE=0 to disable I/O buffering.

Note that the buffer size is only changeable when reading and writing stream files.
Under UNIX, the RAWIO keyword must not be set. Also note that the system stdio
may choose to ignore the buffer size setting.

COMPRESS

If COMPRESS is set, IDL reads and writes all data to the file in the standard GZIP
format. IDL's GZIP support is based on the freely available ZLIB library by Mark
Adler and Jean-loup Gailly (see www.zlib.org for details). This means that IDL's
compressed files are 100% compatible with the widely available gzip and gunzip
programs. COMPRESS cannot be used with the APPEND keyword.

DELETE

Set this keyword to delete the file when it is closed.

Warning
Setting the DELETE keyword causes the file to be deleted even if it was opened for
read-only access. In addition, once a file is opened with this keyword, there is no
way to cancel its operation.
IDL Reference Guide OPEN

1412
ERROR

A named variable to place the error status in. If an error occurs in the attempt to open
File, IDL normally takes the error handling action defined by the ON_ERROR and/or
ON_IOERROR procedures. OPEN always returns to the caller without generating an
error message when ERROR is present. A nonzero error status indicates that an error
occurred. The error message can then be found in !ERROR_STATE.MSG.

For example, statements similar to the following can be used to detect errors:

; Try to open the file demo.dat:
OPENR, 1, 'demo.dat', ERROR = err

; If err is nonzero, something happened. Print the error message to
; the standard error file (logical unit -2):
IF (err NE 0) then PRINTF, -2, !ERROR_STATE.MSG

F77_UNFORMATTED

Unformatted variable-length record files produced by UNIX FORTRAN programs
contain extra information along with the data in order to allow the data to be properly
recovered. This method is necessary because FORTRAN input/output is based on
record-oriented files, while UNIX files are simple byte streams that do not impose
any record structure. Set the F77_UNFORMATTED keyword to read and write this
extra information in the same manner as f77(1), so that data to be processed by both
IDL and FORTRAN. See “UNIX-Specific Information” in Chapter 10 of the
Building IDL Applications manual for further details.

GET_LUN

Set this keyword to use the GET_LUN procedure to set the value of Unit before the
file is opened. Instead of using the two statements:

GET_LUN, Unit
OPENR, Unit, 'data.dat'

you can use the single statement:

OPENR, Unit, 'data.dat', /GET_LUN

MORE

If MORE is set, and the specified File is a terminal, then all output to this unit is
formatted in a manner similar to the UNIX more(1) command and sent to the
standard output stream. Output pauses at the bottom of each screen, at which point
the user can press one of the following keys:

• Space: Display the next page of text.
OPEN IDL Reference Guide

 1413
• Return: Display the next line of text.

• ‘q’ or ‘Q’: Suppress all remaining output.

• ‘h’ or ‘H’: Display this list of options.

For example, the following statements show how to output a file named text.dat to the
terminal:

; Open the text file:
OPENR, inunit, 'text.dat', /GET_LUN

; Open the terminal as a file:
OPENW, outunit, '/dev/tty', /GET_LUN, /MORE

; Read the first line:
line = '' & READF, inunit, line

; While there is text left, output it:
WHILE ~ EOF(inunit) DO BEGIN

PRINTF, outunit, line
READF, inunit, line

ENDWHILE

; Close the files and deallocate the units:
FREE_LUN, inunit & FREE_LUN, outunit

NOEXPAND_PATH

Set this keyword to specify that the File argument be used exactly as supplied,
without applying the usual file path expansion.

RAWIO (UNIX Only)

Set this keyword to disable all use of the standard UNIX I/O for the file, in favor of
direct calls to the operating system. This allows direct access to devices, such as tape
drives, that are difficult or impossible to use effectively through the standard I/O.
Using this keyword has the following implications:

• No formatted or associated (ASSOC) I/O is allowed on the file. Only READU
and WRITEU are allowed.

• Normally, attempting to read more data than is available from a file causes the
unfilled space to be set to zero and an error to be issued. This does not happen
with files opened with RAWIO. When using RAWIO, the programmer must
check the transfer count, either via the TRANSFER_COUNT keywords to
READU and WRITEU, or the FSTAT function.
IDL Reference Guide OPEN

1414
• The EOF and POINT_LUN functions cannot be used with a file opened with
RAWIO.

• Each call to READU or WRITEU maps directly to UNIX read(2) and write(2)
system calls. The programmer must read the UNIX system documentation for
these calls and documentation on the target device to determine if there are any
special rules for I/O to that device. For example, the size of data that can be
transferred to many cartridge tape drives is often forced to be a multiple of 512
bytes.

STDIO

Forces the file to be opened via the standard C I/O library (stdio) rather than any other
more native OS API that might usually be used. This is primarily of interest to those
who intend to access the file from external code, and is not necessary for most files.

Note
If you intend to use the opened file with the READ_JPEG or WRITE_JPEG
procedures using their UNIT keyword, you must specify the STDIO keyword to
OPEN to ensure that the file is compatible.

The only exception to this rule is if the filename ends in .jpg or .jpeg and the
STDIO keyword is not present in the call to OPEN. In this case OPEN uses stdio by
default, covering most uses of jpeg files without requiring you to take special steps.

SWAP_ENDIAN

Set this keyword to swap byte ordering for multi-byte data when performing binary
I/O on the specified file. This is useful when accessing files also used by another
system with byte ordering different than that of the current host.

SWAP_IF_BIG_ENDIAN

Setting this keyword is equivalent to setting SWAP_ENDIAN; it only takes effect if
the current system has big endian byte ordering. This keyword does not refer to the
byte ordering of the input data, but to the computer hardware.

SWAP_IF_LITTLE_ENDIAN

Setting this keyword is equivalent to setting SWAP_ENDIAN; it only takes effect if
the current system has little endian byte ordering. This keyword does not refer to the
byte ordering of the input data, but to the computer hardware.
OPEN IDL Reference Guide

 1415
VAX_FLOAT

The opened file contains VAX format floating point values. This keyword implies
little endian byte ordering for all data contained in the file, and supersedes any setting
of the SWAP_ENDIAN, SWAP_IF_BIG_ENDIAN, or SWAP_IF_LITTLE_ENDIAN
keywords.

The default setting for this keyword is FALSE.

Warning
Please read “Note on Accessing Data in VAX Floating Point Format” on page 1416
before using this feature.

WIDTH

The desired output width. If no output width is specified, IDL uses the following
rules to determine where to break lines:

• If the output file is a terminal, the terminal width is used.

• Otherwise, a default of 80 columns is used.

XDR

Set this keyword to open the file for unformatted XDR (eXternal Data
Representation) I/O via the READU and WRITEU procedures. Use XDR to make
binary data portable between different machine architectures by reading and writing
all data in a standard format. When a file is open for XDR access, the only I/O data
transfer procedures that can be used with it are READU and WRITEU. XDR is
described in “Portable Unformatted Input/Output” in Chapter 10 of the Building IDL
Applications manual.

Obsolete Keywords

The following keywords are obsolete:

• BINARY • BLOCK • DEFAULT

• EXTENDSIZE • FIXED • FORTRAN

• INITIALSIZE • KEYED • LIST

• MACCREATOR • MACTYPE • NONE

• NOAUTOMODE • NOSTDIO • PRINT
IDL Reference Guide OPEN

1416
For information on obsolete keywords, See Appendix I, “Obsolete Features”.

Note on Accessing Data in VAX Floating Point
Format

The floating-point number format used by a program such as IDL is determined
entirely by the computer hardware upon which it runs. In the early years of
computing it was common for different machines to have incompatible floating-point
formats. In the 1970s and 1980s, PDP-11 and VAX minicomputers were widely used
for scientific computation, and their floating-point format (known as VAX F and D
floating) became the de facto standard for science. Early versions of IDL used these
formats.

In ensuing years, the computing industry has converged upon a floating-point
standard known as IEEE 754, commonly referred to as “IEEE floating” or “IEEE
arithmetic.” Other formats (including the VAX formats) have diminished in
importance. Now, all common computing hardware uses the IEEE format, which has
significant advantages over earlier formats:

• Binary data is portable to almost all current and foreseeable computing
hardware and operating systems, requiring at most simple byte-swapping.

• Special Infinity and Not A Number (NaN) values for undefined computations
allow exceptional computations to be carried out in a well-defined manner
(and at full speed) by modern pipelined computer architectures.

This convergence gained momentum in the 1980s as workstations and personal
computers came into prominence. As a result, almost all versions of IDL since 1987
have used IEEE floating point arithmetic, and all current versions of IDL use this
format.

Despite the almost universal current use of the IEEE format, valuable older data
stored in the VAX floating-point formats exists at various scientific institutions
around the world. In order to allow access to this data, IDL is able to read and write
data in these formats. The VAX_FLOAT keyword to the OPEN procedure is used to
enable this feature.

When converting between VAX and IEEE formats, you should be aware of the
following basic numerical issues in order to get the best results. Translation of

• SEGMENTED • SHARED • STREAM

• SUBMIT • SUPERSEDE • TRUNCATE_ON_CLOSE

• UDF_BLOCK • VARIABLE
OPEN IDL Reference Guide

 1417
floating-point values from IDL’s native IEEE format to the VAX format and back
(that is, VAX to IEEE to VAX) is not a completely reversible operation, and should be
avoided when possible. There are many cases where the recovered values will differ
from the original values, including:

• The VAX floating-point format lacks support for the IEEE special values (NaN
and Infinity). Hence, their special meaning is lost when they are converted to
VAX format and cannot be recovered.

• The IEEE and VAX floating formats have intrinsic differences in precision and
range, which can cause information to be lost in both directions. When
converting from one format to another, IDL rounds the value to the nearest
representable value in the target format.

As a practical matter, an initial conversion of existing VAX format data to IEEE
cannot be avoided if the data is to be used on modern machines. However, each
format conversion can add a small amount of error to the resulting values, so it is
important to minimize the number of such conversions. RSI recommends using
IEEE/VAX conversions only to read existing VAX format data, and strongly
recommends that all new files be created using the native IEEE format. This
introduces only a single unavoidable conversion, and minimizes the resulting
conversion error.

Examples

The following example opens the IDL distribution file people.dat and reads an
image from that file:

; Open 'people.dat' on file unit number 1. The FILEPATH
; function is used to return the full path name to this
; distribution file.
OPENR, 1, FILEPATH('people.dat', SUBDIR = ['examples','data'])

; Define a variable into which the image will be read:
image=BYTARR(192, 192, /NOZERO)

; Read the data:
READU, 1, image

; Display the image:
TV, image

Version History

Introduced: Original
IDL Reference Guide OPEN

1418
See Also

CLOSE, GET_LUN, POINT_LUN, PRINT/PRINTF, READ/READF, READU,
WRITEU
OPEN IDL Reference Guide

 1419
OPLOT

The OPLOT procedure plots vector data over a previously-drawn plot. It differs from
PLOT only in that it does not generate a new axis. Instead, it uses the scaling
established by the most recent call to PLOT and simply overlays a plot of the data on
the existing axis.

Syntax

OPLOT, [X,] Y [, MAX_VALUE=value] [, MIN_VALUE=value] [, NSUM=value]
[, /POLAR] [, THICK=value]

Graphics Keywords: [, CLIP=[X0, Y0, X1, Y1]] [, COLOR=value]
[, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, /NOCLIP] [, PSYM=integer{0 to 10}]
[, SYMSIZE=value] [, /T3D] [, ZVALUE=value{0 to 1}]

Arguments

X

A vector argument. If X is not specified, Y is plotted as a function of point number
(starting at zero). If both arguments are provided, Y is plotted as a function of X.

This argument is converted to double-precision floating-point before plotting. Plots
created with OPLOT are limited to the range and precision of double precision
floating-point values.

Y

The ordinate data to be plotted. This argument is converted to double-precision
floating-point before plotting.

Keywords

MAX_VALUE

The maximum value to be plotted. If this keyword is present, data values greater than
the value of MAX_VALUE are treated as missing and are not plotted. Note that the
IEEE floating-point value NaN is also treated as missing data. (See “Special
Floating-Point Values” in Chapter 18 of the Building IDL Applications manual for
more information on IEEE floating-point values.)
IDL Reference Guide OPLOT

1420
MIN_VALUE

The minimum value to be plotted. If this keyword is present, data values less than the
value of MIN_VALUE are treated as missing and are not plotted. Note that the IEEE
floating-point value NaN is also treated as missing data. (See “Special Floating-Point
Values” in Chapter 18 of the Building IDL Applications manual for more information
on IEEE floating-point values.)

NSUM

The presence of this keyword indicates the number of data points to average when
plotting. If NSUM is larger than 1, every group of NSUM points is averaged to
produce one plotted point. If there are m data points, then m/NSUM points are
displayed. On logarithmic axes a geometric average is performed.

It is convenient to use NSUM when there is an extremely large number of data points
to plot because it plots fewer points, the graph is less cluttered, and it is quicker.

POLAR

Set this keyword to produce polar plots. The X and Y vector parameters, both of
which must be present, are first converted from polar to Cartesian coordinates. The
first parameter is the radius, and the second is expressed in radians.

For example, to make a polar plot, use the command:

OPLOT, /POLAR, R, THETA

THICK

Controls the thickness of the lines connecting the points. A thickness of 1.0 is normal,
2.0 is double wide, etc.

Graphics Keywords Accepted

See Appendix B, “Graphics Keywords” for the description of graphics and plotting
keywords not listed above. CLIP, COLOR, LINESTYLE, NOCLIP, PSYM,
SYMSIZE, T3D, ZVALUE.

Examples

; Create a simple dataset:
D = SIN(FINDGEN(100)/EXP(FINDGEN(100)/50))

; Create an X-Y plot of vector D:
PLOT, D
OPLOT IDL Reference Guide

 1421
; Overplot the sine of D as a thick, dashed line:
OPLOT, SIN(D), LINESTYLE = 5, THICK = 2

Version History

Introduced: Original

See Also

IPLOT, OPLOTERR, PLOT
IDL Reference Guide OPLOT

1422
OPLOTERR

The OPLOTERR procedure plots error bars over a previously drawn plot. A plot of X
versus Y with error bars drawn from Y - Err to Y + Err is written to the output device
over any plot already there.

This routine is written in the IDL language. Its source code can be found in the file
oploterr.pro in the lib subdirectory of the IDL distribution.

Syntax

OPLOTERR, [X ,] Y , Err [, Psym]

Arguments

X

An optional array of X values. The procedure checks whether or not the third
parameter passed is a vector to decide if X was passed. If X is not passed, then
INDGEN(Y) is assumed for the X values.

Y

The array of Y values. Y cannot be of type string.

Err

The array of error bar values.

Psym

The plotting symbol to use (default = +7).

Keywords

None

Version History

Introduced: Original
OPLOTERR IDL Reference Guide

 1423
See Also

ERRPLOT, IPLOT, OPLOT, PLOTERR
IDL Reference Guide OPLOTERR

1424
P_CORRELATE

The P_CORRELATE function computes the partial correlation coefficient of a
dependent variable and one particular independent variable when the effects of all
other variables involved are removed.

To compute the partial correlation, the following method is used:

• Let Y and X be the variables of primary interest and let C1...Cp be the variables
held fixed.

• First, calculate the residuals after regressing Y on C1...Cp. (These are the parts
of Y that cannot be predicted by C1...Cp.)

• Then, calculate the residuals after regressing X on C1...Cp. (These are the parts
of X that cannot be predicted by C1...Cp.)

• The partial correlation coefficient between Y and X adjusted for C1...Cp is the
correlation between these two sets of residuals.

This routine is written in the IDL language. Its source code can be found in the file
p_correlate.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = P_CORRELATE(X, Y, C [, /DOUBLE])

Return Value

Returns the correlation coefficient.

Arguments

X

An n-element integer, single-, or double-precision floating-point vector that specifies
the independent variable data.

Y

An n-element integer, single-, or double-precision floating-point vector that specifies
the dependent variable data.
P_CORRELATE IDL Reference Guide

 1425
C

An integer, single-, or double-precision floating-point array that specifies the
independent variable data whose effects are to be removed. C may either be an
n-element vector containing the independent variable, or a p-by-n two-dimensional
array in which each column corresponds to a separate independent variable.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

; Define three sample populations:
X0 = [64, 71, 53, 67, 55, 58, 77, 57, 56, 51, 76, 68]
X1 = [57, 59, 49, 62, 51, 50, 55, 48, 52, 42, 61, 57]
X2 = [8, 10, 6, 11, 8, 7, 10, 9, 10, 6, 12, 9]

; Compute the partial correlation of X0 and X1 with the effects
; of X2 removed.
result = P_CORRELATE(X0, X1, X2)

PRINT, result

IDL prints:

0.533469

Version History

Introduced: 4.0

See Also

A_CORRELATE, C_CORRELATE, CORRELATE, M_CORRELATE,
R_CORRELATE
IDL Reference Guide P_CORRELATE

1426
PARTICLE_TRACE

The PARTICLE_TRACE procedure traces the path of a massless particle through a
vector field. The function allows the user to specify a set of starting points and a
vector field. The input seed points can come from any vertex-producing process. The
points are tracked by treating the vector field as a velocity field and integrating. Each
path is tracked until the path leaves the input volume or a maximum number of steps
is reached. The vertices generated along the paths are returned packed into a single
array along with a polyline connectivity array. The polyline connectivity array
organizes the vertices into separate paths (one per seed). Each path has an orientation.
The initial orientation may be set using the SEED_NORMAL keyword. As a path is
tracked, the change in the normal is also computed and may be returned to the user as
an optional argument. Path output can be passed directly to an IDLgrPolyline object
or passed to the STREAMLINE procedure for generation of orientated ribbons.
Control over aspects of the integration (e.g. method or stepsize) is also provided.

Syntax

PARTICLE_TRACE, Data, Seeds, Verts, Conn [, Normals]
[, MAX_ITERATIONS=value] [, ANISOTROPY=array]
[, INTEGRATION={0 | 1}] [, SEED_NORMAL=vector] [, TOLERANCE=value]
[, MAX_STEPSIZE=value] [, /UNIFORM]

Arguments

Data

Input data array. This array can be of dimensions [2, dx, dy] for two-dimensional
vector fields or [3, dx, dy, dz] for three-dimensional vector fields.

Seeds

Input array of seed points ([3, n] or [2, n]).

Verts

Array of output path vertices ([3, n] or [2, n] array of floats).

Conn

Output path connectivity array in IDLgrPolyline POLYLINES keyword format.
There is one set of line segments in this array for each input seed point.
PARTICLE_TRACE IDL Reference Guide

 1427
Normals

Output normal estimate at each output vertex ([3, n] array of floats).

Keywords

ANISOTROPY

Set this input keyword to a two- or three- element array describing the distance
between grid points in each dimension. The default value is [1.0, 1.0, 1.0] for three-
dimensional data and [1.0, 1.0] for two-dimensional data.

INTEGRATION

Set this keyword to one of the following values to select the integration method:

• 0 = 2nd order Runge-Kutta (the default)

• 1 = 4th order Runge-Kutta

SEED_NORMAL

Set this keyword to a three-element vector which selects the initial normal for the
paths. The default value is [0.0, 0.0, 1.0]. This keyword is ignored for 2-D data.

TOLERANCE

This keyword is used with adaptive step-size control in the 4th order Runge-Kutta
integration scheme. It is ignored if the UNIFORM keyword is set or the 2nd order
Runge-Kutta scheme is selected.

MAX_ITERATIONS

This keyword specifies the maximum number of line segments to return for each
path. The default value is 200.

MAX_STEPSIZE

This keyword specifies the maximum path step size. The default value is 1.0.

UNIFORM

If this keyword is set, the step size will be set to a fixed value, set via the
MAX_STEPSIZE keyword. If this keyword is not specified, and TOLERANCE is
either unspecified or inapplicable, then the step size is computed based on the
velocity at the current point on the path according to the formula:
IDL Reference Guide PARTICLE_TRACE

1428
stepsize = MIN(MaxStepSize, MaxStepSize/MAX(ABS(U), ABS(V), ABS(W)))

where (U,V,W) is the local velocity vector.

Version History

Introduced: 5.5
PARTICLE_TRACE IDL Reference Guide

 1429
PATH_CACHE

The PATH_CACHE procedure is used to control IDL’s use of the path cache. By
default, as IDL searches directories included in the !PATH system variable for .pro
or .sav files to compile, it creates an in-memory list of all .pro and .sav files
contained in each directory. When IDL later searches for a .pro or .sav file, before
attempting to open the file in a given directory, IDL checks the path cache to
determine whether the directory has already been cached. If the directory is included
in the cache, IDL uses the cached information to determine whether the file will be
found in that directory, and will only attempt to open the file there if the cache tells it
that the file exists. By eliminating unnecessary attempts to open files, the path cache
speeds the path searching process.

The path cache is enabled by default, and in almost all cases its operation is
transparent to the IDL user, save for the boost in path searching speed it provides.
Because the cache automatically adjusts to changes made to IDL’s path, use of
PATH_CACHE should not be necessary in typical IDL operation. It is provided to
allow complete control over the details of how and when the caching operation is
performed.

• For information on when the path cache is not used, see “Situations in which
IDL will not use the Path Cache” on page 1431.

• For information on disabling the path cache, see “Disabling the Path Cache”
on page 1432.

Note
Prior to IDL 6.0, IDL did not use a path cache. Aside from the improvement in
performance, the behavior of IDL with the path cache is identical to that without in
almost all cases. The rare cases in which it differs, and options for disabling its use,
are discussed in “Options for Avoiding Use of the Path Cache” on page 1433.

About the Path Cache

The first time an IDL session attempts to call a function or procedure written in the
IDL language, it must locate and compile the file containing the code for that routine.
The file containing the routine must have the same name as the routine, with either a
.pro or a .sav extension. After trying to open the file in the user’s current working
directory, IDL will attempt to open the file in each of the directories listed in the
!PATH system variable, in the order specified by !PATH. The search stops when a file
with the desired name is found or no directories remain in !PATH.
IDL Reference Guide PATH_CACHE

1430
By default, IDL maintains an in-memory cache of the locations of .pro and .sav
files stored in directories included in the !PATH system variable. The path cache is
built automatically during normal operation, as IDL searches the directories specified
by !PATH. Once a directory is cached, IDL knows whether or not it contains a given
file, without the need to actually attempt to open that file. This information allows
IDL to bypass directories that do not contain the desired file, providing a significant
boost in the speed of path searching. The path cache can significantly improve the
startup speed of large, object-oriented applications, because method resolution
requires extensive path searching.

The path cache operates on a per-directory basis; if IDL searches a directory for a
.pro or .sav file, the locations of all .pro and .sav files in that directory are
added to the cache, and the directory is not searched again until the cache is cleared
and rebuilt.

Note
The current contents of the path cache can be viewed using the PATH_CACHE
keyword to the HELP procedure.

Syntax

PATH_CACHE[, /CLEAR] [, /ENABLE] [, /REBUILD]

Arguments

None.

Keywords

CLEAR

Set this keyword to clear the entire contents of the path cache, leaving it completely
empty. If path caching is enabled, IDL will begin rebuilding the cache the next time it
needs to locate a .pro or .sav file. If you wish to prevent the rebuilding of the
cache, set the ENABLE keyword equal to zero as well.

Note
The .RESET_SESSION executive command clears the entire path cache as part of
resetting the IDL session.
PATH_CACHE IDL Reference Guide

 1431
ENABLE

Set this keyword to a non-zero value to specify that IDL should use the path cache
when searching for files and also add new directories to the cache as they are opened.
Set this keyword to zero to disable use of the cache when searching for files, and to
discontinue adding new directories.

Note
Disabling the cache does not cause the current contents of the cache to be discarded.
To discard the cache information, specify the CLEAR keyword.

REBUILD

Set this keyword to discard the current contents of the path cache (as if the CLEAR
keyword had been specified), and then immediately rebuild the cache by searching
the directories specified by the current value of the !PATH system variable for .pro
and .sav files.

Note
If !PATH contains many directories, or if access to those directories is slow,
rebuilding the cache using this method may also be slow. In many cases, the
CLEAR keyword is sufficient, since IDL will rebuild the empty cache as program
execution requires it to search for .pro and .sav files.

Situations in which IDL will not use the Path Cache

By default, IDL uses the path cache whenever it tries to locate .pro or .sav files.
However, IDL will never use the path cache in the following situations:

Current Working Directory

The path cache is neither checked nor added to if the file being searched for exists in
the current working directory. Before IDL searches !PATH for a file to compile, it
always looks in the current working directory without checking the cache.

Relative Paths

The path cache does not cache directories specified relative to the current directory,
even though relative paths are allowed in the specification of !PATH.

An absolute (or fully qualified) path is a path that completely specifies the location of
a file. Under UNIX, an absolute path is specified relative to the root of the filesystem,
and therefore starts with a slash (/) character. Under Microsoft Windows, an absolute
IDL Reference Guide PATH_CACHE

1432
path starts with a drive letter (C:, for example) or a double backslash (\\) (if the file
is specified using the Universal Naming Convention format). In contrast, a relative
path is incomplete, and must be interpreted relative to the current working directory
of the IDL process. IDL only caches absolute paths.

Executive Commands

The path cache is neither checked nor added to when a .COMPILE or .RUN executive
command is issued. In such cases, IDL performs a standard directory-by-directory
search of the directories included in !PATH.

IDL_NOCACHE File Present

IDL will not cache the contents of any directory that contains a file named
IDL_NOCACHE. See “Marking Specific Directories as Uncacheable” on page 1433 for
additional information on this feature.

Path Cache Disabled

IDL will neither check nor add files to the path cache if it has been disabled. See
“Disabling the Path Cache”, below, for additional information.

Disabling the Path Cache

By default, IDL caches the locations of .pro and .sav files in all directories
specified by the !PATH system variable. Use of the path cache can be fully disabled in
the following ways:

1. By issuing the PATH_CACHE command with the ENABLE keyword set equal
to zero. This will disable the path cache until you manually re-enable it, or for
the duration of the current IDL session. See the description of the ENABLE
keyword, above, for details.

2. By unchecking the “Enable Path Caching” checkbox on the Path tab of the
IDLDE Preferences dialog. See “Path Preferences” in Chapter 5 of the Using
IDL manual for details.

3. By defining an environment variable named IDL_PATH_CACHE_DISABLE
before starting IDL. See “Environment Variables Used by IDL” in Chapter 1 of
the Using IDL manual for details.

In addition, you can selectively disable use of the path cache for specific directories
by creating a file named IDL_NOCACHE in the directory. See “Marking Specific
Directories as Uncacheable”, below, for details.
PATH_CACHE IDL Reference Guide

 1433
Marking Specific Directories as Uncacheable

You can mark specific directories as being uncacheable even though the directory is
included in !PATH. To do so, create a file named IDL_NOCACHE in that directory.

Note
IDL does not inspect the contents of an IDL_NOCACHE file; it can contain anything
you wish, or nothing at all. Under Unix operating systems, the IDL_NOCACHE file
must be named exactly as shown, using all uppercase characters in the name. Under
Microsoft Windows, the characters can have any case, but RSI suggests you use
upper case for consistency.

When IDL encounters a directory containing an IDL_NOCACHE file during normal
path searching, it makes a special entry in the path cache telling it that the directory
must not be cached. Once this is done, all future attempts to locate files in that
directory will be done without using cached information.

Note
If the directory to which you add an IDL_NOCACHE file has already been added to
the path cache for the current IDL session, you must clear the existing cache (using
the CLEAR keyword to the PATH_CACHE procedure) before the no-cache setting
will take effect.

To re-enable path caching for a directory that has been marked as uncacheable,
remove the IDL_NOCACHE file, and then reset IDL’s path cache in one of the
following ways:

• Specify the CLEAR keyword to the PATH_CACHE procedure.

• Issue the .RESET_SESSION executive command.

• Exit and restart the IDL session.

Options for Avoiding Use of the Path Cache

In most cases, the files contained in directories included in !PATH do not change
during an IDL session. In such cases the path cache is completely transparent to the
IDL user, and serves only to speed compilation of IDL routines. As a result, there is
rarely a reason to globally disable the path cache.

If files are created or deleted in a directory included in !PATH during an IDL session,
the path cache can become confused and provide bad information to IDL about the
contents of that directory. There are several ways to handle this situation. The
IDL Reference Guide PATH_CACHE

1434
following list of alternatives is given in rough order of preference, with the easiest
and lowest-impact options given first:

1. Leave the path cache enabled, and change your current working directory to
the directory in which files are created or deleted. Since IDL checks the current
working directory before checking the directories in !PATH, use of the path
cache does not affect IDL’s ability to find these files.

2. If the addition or deletion of files in a directory included in !PATH is a rare
occurrence, leave the path cache enabled and clear it in one of the following
ways after the contents of the directory have changed:

• Specify the CLEAR keyword to the PATH_CACHE procedure.

• Issue the .RESET_SESSION executive command.

• Exit and restart the IDL session.

3. Leave the path cache enabled and use the .COMPILE or .RUN executive
commands to force the compilation of any file, regardless of the contents of the
path cache.

4. If you have a directory (other than your current working directory) in which
files are regularly added or deleted during the execution of IDL sessions, you
can leave path caching enabled but explicitly disable caching of that specific
directory by creating an IDL_NOCACHE file, as described in “Marking Specific
Directories as Uncacheable” on page 1433. This approach works for all IDL
sessions that access the directory, and is therefore convenient in long-term or
multi-user situations.

5. You can completely disable operation of the path cache using one of the
methods described under “Disabling the Path Cache” on page 1432. This is not
recommended, because most directories are not dynamic, and completely
disabling path caching sacrifices the performance advantages of caching
directories whose contents are static.

Note on Behavior at Startup

Depending on the value of your !PATH system variable, you may notice that some
directories are being cached immediately when IDL starts up. This will occur if your
path definition string includes the <IDL_DEFAULT> token, or if one or more entries
include the “+” symbol. In these cases, in order for IDL to build the !PATH system
variable, it must inspect subdirectories of the specified directories for the presence of
.pro and .sav files, with the side effect of adding these directories to the path cache.
See EXPAND_PATH for a discussion of IDL’s path expansion behavior.
PATH_CACHE IDL Reference Guide

 1435
Examples

The following statement disables path caching for the current session:

PATH_CACHE, ENABLE = 0

The following statement disables path caching for the current session and throws
away the current contents of the cache:

PATH_CACHE, ENABLE = 0, /CLEAR

Suppose you want to remove a directory included in !PATH from the cache without
resetting your IDL session. The following statements cause the specified directory
not to be included in future caching by creating a file named IDL_NOCACHE in that
directory:

OPENW, UNIT = u, '/home/idluser/idl_dev_dir/IDL_NOCACHE', /GET_LUN
FREE_LUN, u

The OPENW and FREE_LUN statements create an empty file with the desired name
in the target directory. Executing the following statement clears the cache so as to
reflect the change in the current IDL session:

PATH_CACHE, /CLEAR

The next time IDL encounters this directory in a path search, it will see the presence
of the IDL_NOCACHE and make a note in the path cache that the directory is not
cacheable.

Note
You can also create the IDL_NOCACHE file outside IDL using any convenient
command (text editor, Unix touch command, etc.). If the file is created outside
IDL, only the PATH_CACHE, /CLEAR statement is necessary.

Version History

Introduced: 6.0

See Also

.FULL_RESET_SESSION, .RESET_SESSION, “!PATH” in Appendix D,
“Environment Variables Used by IDL” in Chapter 1 of the Using IDL manual, “Path
Preferences” in Chapter 5 of the Using IDL manual
IDL Reference Guide PATH_CACHE

1436
PATH_SEP

The PATH_SEP function returns the proper file path segment separator character for
the current operating system. This is the character used by the host operating system
for delimiting subdirectory names in a path specification. Use this function instead of
hard-coding separators to make code more portable.

This routine is written in the IDL language. Its source code can be found in the file
path_sep.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = PATH_SEP([/PARENT_DIRECTORY] [, /SEARCH_PATH])

Return Value

Returns a string containing the specified separator character.

Arguments

None.

Keywords

Specify at most one of the following keywords:

PARENT_DIRECTORY

If set, PATH_SEP returns the standard directory notation used by the host operating
system to indicate the parent of a directory.

SEARCH_PATH

If set, PATH_SEP returns the character used to separate entries in a search path.

Version History

Introduced: 5.5

See Also

FILE_BASENAME, FILE_DIRNAME, FILE_SEARCH, FILEPATH
PATH_SEP IDL Reference Guide

 1437
PCOMP

The PCOMP function computes the principal components of an m-column, n-row
array, where m is the number of variables and n is the number of observations or
samples. The principal components of a multivariate data set may be used to restate
the data in terms of derived variables or may be used to reduce the dimensionality of
the data by reducing the number of variables (columns).

This routine is written in the IDL language. Its source code can be found in the file
pcomp.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = PCOMP(A [, COEFFICIENTS=variable] [, /COVARIANCE] [, /DOUBLE]
[, EIGENVALUES=variable] [, NVARIABLES=value] [, /STANDARDIZE]
[, VARIANCES=variable])

Return Value

The result is an nvariables-column (nvariables ≤ m), n-row array of derived variables.

Arguments

A

An m-column, n-row, single- or double-precision floating-point array.

Keywords

COEFFICIENTS

Use this keyword to specify a named variable that will contain the principal
components used to compute the derived variables. The principal components are the
coefficients of the derived variables and are returned in an m-column, m-row array.
The rows of this array correspond to the coefficients of the derived variables. The
coefficients are scaled so that the sums of their squares are equal to the eigenvalue
from which they are computed.
IDL Reference Guide PCOMP

1438
COVARIANCE

Set this keyword to compute the principal components using the covariances of the
original data. The default is to use the correlations of the original data to compute the
principal components.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision result. Set DOUBLE=0 to use single-precision for computations and to
return a single-precision result. The default is /DOUBLE if Array is double precision,
otherwise the default is DOUBLE=0.

EIGENVALUES

Use this keyword to specify a named variable that will contain a one-column, m-row
array of eigenvalues that correspond to the principal components. The eigenvalues are
listed in descending order.

NVARIABLES

Use this keyword to specify the number of derived variables. A value of zero,
negative values, and values in excess of the input array’s column dimension result in a
complete set (m-columns and n-rows) of derived variables.

STANDARDIZE

Set this keyword to convert the variables (the columns) of the input array to
standardized variables (variables with a mean of zero and variance of one).

VARIANCES

Use this keyword to specify a named variable that will contain a one-column, m-row
array of variances. The variances correspond to the percentage of the total variance
for each derived variable.

Examples

PRO ex_pcomp

;Define an array with 4 variables and 20 observations.
array = [[19.5, 43.1, 29.1, 11.9], $

[24.7, 49.8, 28.2, 22.8], $
[30.7, 51.9, 37.0, 18.7], $
[29.8, 54.3, 31.1, 20.1], $
PCOMP IDL Reference Guide

 1439
[19.1, 42.2, 30.9, 12.9], $
[25.6, 53.9, 23.7, 21.7], $
[31.4, 58.5, 27.6, 27.1], $
[27.9, 52.1, 30.6, 25.4], $
[22.1, 49.9, 23.2, 21.3], $
[25.5, 53.5, 24.8, 19.3], $
[31.1, 56.6, 30.0, 25.4], $
[30.4, 56.7, 28.3, 27.2], $
[18.7, 46.5, 23.0, 11.7], $
[19.7, 44.2, 28.6, 17.8], $
[14.6, 42.7, 21.3, 12.8], $
[29.5, 54.4, 30.1, 23.9], $
[27.7, 55.3, 25.7, 22.6], $
[30.2, 58.6, 24.6, 25.4], $
[22.7, 48.2, 27.1, 14.8], $
[25.2, 51.0, 27.5, 21.1]]

;Remove the mean from each variable.
m = 4 ; number of variables
n = 20 ; number of observations
means = TOTAL(array, 2)/n
array = array - REBIN(means, m, n)

;Compute derived variables based upon the principal components.
result = PCOMP(array, COEFFICIENTS = coefficients, $

EIGENVALUES=eigenvalues, VARIANCES=variances, /COVARIANCE)
PRINT, 'Result: '
PRINT, result, FORMAT = '(4(F8.2))'
PRINT
PRINT, 'Coefficients: '
FOR mode=0,3 DO PRINT, $

mode+1, coefficients[*,mode], $
FORMAT='("Mode#",I1,4(F10.4))'

eigenvectors = coefficients/REBIN(eigenvalues, m, m)
PRINT
PRINT, 'Eigenvectors: '
FOR mode=0,3 DO PRINT, $

mode+1, eigenvectors[*,mode],$
FORMAT='("Mode#",I1,4(F10.4))'

array_reconstruct = result ## eigenvectors
PRINT
PRINT, 'Reconstruction error: ', $

TOTAL((array_reconstruct - array)^2)
PRINT
PRINT, 'Energy conservation: ', TOTAL(array^2),

TOTAL(eigenvalues)*(n-1)
PRINT
PRINT, ' Mode Eigenvalue PercentVariance'
FOR mode=0,3 DO PRINT, $
IDL Reference Guide PCOMP

1440
mode+1, eigenvalues[mode], variances[mode]*100

END

When the above program is compiled and executed, the following output is produced:

Result:
-107.38 13.40 -1.41 -0.03

3.20 0.70 5.95 -0.02
32.50 38.66 -3.87 0.01
40.89 13.79 -4.98 -0.01

-107.24 19.36 1.77 0.02
18.43 -17.15 -1.47 -0.00
99.89 -6.23 0.13 0.02
45.38 8.11 6.53 -0.01
-21.31 -18.31 3.75 -0.01
5.54 -11.17 -4.52 0.02
83.14 4.97 0.09 0.01
87.11 -3.16 2.81 0.00

-101.32 -11.78 -6.12 0.01
-73.07 6.24 6.61 0.02
-137.02 -19.10 1.33 0.01

57.11 6.96 0.84 -0.01
42.13 -10.07 -2.14 0.01
83.30 -16.69 -2.72 -0.01
-54.13 2.56 -4.21 -0.03
2.84 -1.06 1.62 -0.01

Coefficients:
Mode#1 4.8799 5.0568 1.0282 4.7936
Mode#2 1.0147 -0.9545 3.4885 -0.7743
Mode#3 -0.6183 -0.9554 0.2690 1.5796
Mode#4 -0.0900 0.0752 0.0472 0.0022

Eigenvectors:
Mode#1 0.0665 0.0689 0.0140 0.0653
Mode#2 0.0690 -0.0649 0.2372 -0.0526
Mode#3 -0.1601 -0.2473 0.0697 0.4089
Mode#4 -5.6290 4.7013 2.9540 0.1372

Reconstruction error: 1.44876e-010

Energy conservation: 1748.17 1748.17

Mode Eigenvalue PercentVariance
1 73.4205 79.7970
2 14.7099 15.9875
3 3.86271 4.19818
4 0.0159915 0.0173803
PCOMP IDL Reference Guide

 1441
The first two derived variables account for 96% of the total variance of the original
data.

Version History

Introduced: 5.0

See Also

CORRELATE, EIGENQL
IDL Reference Guide PCOMP

1442
PLOT

The PLOT procedure draws graphs of vector arguments. If one parameter is used, the
vector parameter is plotted on the ordinate versus the point number on the abscissa.
To plot one vector as a function of another, use two parameters. PLOT can also be
used to create polar plots by setting the POLAR keyword.

Syntax

PLOT, [X,] Y [, /ISOTROPIC] [, MAX_VALUE=value] [, MIN_VALUE=value]
[, NSUM=value] [, /POLAR] [, THICK=value] [, /XLOG] [, /YLOG]
[, /YNOZERO]

Graphics Keywords: [, BACKGROUND=color_index] [, CHARSIZE=value]
[, CHARTHICK=integer] [, CLIP=[X0, Y0, X1, Y1]] [, COLOR=value] [, /DATA | ,
/DEVICE | , /NORMAL] [, FONT=integer] [, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}]
[, /NOCLIP] [, /NODATA] [, /NOERASE] [, POSITION=[X0, Y0, X1, Y1]]
[, PSYM=integer{0 to 10}] [, SUBTITLE=string] [, SYMSIZE=value] [, /T3D]
[, THICK=value] [, TICKLEN=value] [, TITLE=string]
[, {X | Y | Z}CHARSIZE=value]
[, {X | Y | Z}GRIDSTYLE=integer{0 to 5}]
[, {X | Y | Z}MARGIN=[left, right]]
[, {X | Y | Z}MINOR=integer]
[, {X | Y | Z}RANGE=[min, max]]
[, {X | Y | Z}STYLE=value]
[, {X | Y | Z}THICK=value]
[, {X | Y | Z}TICK_GET=variable]
[, {X | Y | Z}TICKFORMAT=string]
[, {X | Y | Z}TICKINTERVAL= value]
[, {X | Y | Z}TICKLAYOUT=scalar]
[, {X | Y | Z}TICKLEN=value]
[, {X | Y | Z}TICKNAME=string_array]
[, {X | Y | Z}TICKS=integer]
[, {X | Y | Z}TICKUNITS=string]
[, {X | Y | Z}TICKV=array]
[, {X | Y | Z}TITLE=string]
[, ZVALUE=value{0 to 1}]
PLOT IDL Reference Guide

 1443
Arguments

X

A vector argument. If X is not specified, Y is plotted as a function of point number
(starting at zero). If both arguments are provided, Y is plotted as a function of X.

This argument is converted to double precision floating-point before plotting. Plots
created with PLOT are limited to the range and precision of double-precision
floating-point values.

Y

The ordinate data to be plotted. This argument is converted to double-precision
floating-point before plotting.

Keywords

ISOTROPIC

Set this keyword to force the scaling of the X and Y axes to be equal.

Note
The X and Y axes will be scaled isotropically and then fit within the rectangle
defined by the POSITION keyword; one of the axes may be shortened. See
“POSITION” on page 3877 for more information.

MAX_VALUE

The maximum value to be plotted. If this keyword is present, data values greater than
the value of MAX_VALUE are treated as missing and are not plotted. Note that the
IEEE floating-point value NaN is also treated as missing data. (See “Special
Floating-Point Values” in Chapter 18 of the Building IDL Applications manual for
more information on IEEE floating-point values.)

MIN_VALUE

The minimum value to be plotted. If this keyword is present, data values less than the
value of MIN_VALUE are treated as missing and are not plotted. Note that the IEEE
floating-point value NaN is also treated as missing data. (See “Special Floating-Point
Values” in Chapter 18 of the Building IDL Applications manual for more information
on IEEE floating-point values.)
IDL Reference Guide PLOT

1444
NSUM

The presence of this keyword indicates the number of data points to average when
plotting. If NSUM is larger than 1, every group of NSUM points is averaged to
produce one plotted point. If there are m data points, then m/NSUM points are
displayed. On logarithmic axes a geometric average is performed.

It is convenient to use NSUM when there is an extremely large number of data points
to plot because it plots fewer points, the graph is less cluttered, and it is quicker.

POLAR

Set this keyword to produce polar plots. The X and Y vector parameters, both of
which must be present, are first converted from polar to Cartesian coordinates. The
first parameter is the radius, and the second is the angle (expressed in radians). For
example, to make a polar plot, you would use a command such as:

PLOT, /POLAR, R, THETA

THICK

Controls the thickness of the lines connecting the points. A thickness of 1.0 is normal,
2 is double wide, etc.

XLOG

Set this keyword to specify a logarithmic X axis, producing a log-linear plot. Set both
XLOG and YLOG to produce a log-log plot. Note that logarithmic axes that have
ranges of less than a decade are not labeled.

YNOZERO

Set this keyword to inhibit setting the minimum Y axis value to zero when the Y data
are all positive and nonzero, and no explicit minimum Y value is specified (using
YRANGE, or !Y.RANGE). By default, the Y axis spans the range of 0 to the
maximum value of Y, in the case of positive Y data. Set bit 4 in !Y.STYLE to make
this option the default.

YLOG

Set this keyword to specify a logarithmic Y axis, producing a linear-log plot. Set both
XLOG and YLOG to produce a log-log plot. Note that logarithmic axes that have
ranges of less than a decade are not labeled.
PLOT IDL Reference Guide

 1445
Graphics Keywords Accepted

See Appendix B, “Graphics Keywords”, for the description of graphics and plotting
keywords not listed above. BACKGROUND, CHARSIZE, CHARTHICK, CLIP,
COLOR, DATA, DEVICE, FONT, LINESTYLE, NOCLIP, NODATA, NOERASE,
NORMAL, POSITION, PSYM, SUBTITLE, SYMSIZE, T3D, THICK, TICKLEN,
TITLE, [XYZ]CHARSIZE, [XYZ]GRIDSTYLE, [XYZ]MARGIN, [XYZ]MINOR,
[XYZ]RANGE, [XYZ]STYLE, [XYZ]THICK, [XYZ]TICKFORMAT,
[XYZ]TICKINTERVAL, [XYZ]TICKLAYOUT, [XYZ]TICKLEN,
[XYZ]TICKNAME, [XYZ]TICKS, [XYZ]TICKUNITS, [XYZ]TICKV,
[XYZ]TICK_GET, [XYZ]TITLE, ZVALUE.

Examples

The PLOT procedure has many keywords that allow you to create a vast variety of
plots. Here are a few simple examples using the PLOT command.

; Create a simple dataset:
D = FINDGEN(100)

; Create a simple plot with the title "Simple Plot":
PLOT, D, TITLE = 'Simple Plot'

; Plot one argument versus another:
PLOT, SIN(D/3), COS(D/6)

; Create a polar plot:
PLOT, D, D, /POLAR, TITLE = 'Polar Plot'

; Use plotting symbols instead of connecting lines by including the
; PSYM keyword. Label the X and Y axes with XTITLE and YTITLE:
PLOT, SIN(D/10), PSYM=4, XTITLE='X Axis', YTITLE='Y Axis'

Version History

Introduced: Original

See Also

IPLOT, OPLOT, PLOTS
IDL Reference Guide PLOT

1446
PLOT_3DBOX

The PLOT_3DBOX procedure plots a function of two variables (e.g., Z=f(X, Y))
inside a 3-D box. Optionally, the data can be projected onto the “walls” surrounding
the plot area.

This routine is written in the IDL language. Its source code can be found in the file
plot_3dbox.pro in the lib subdirectory of the IDL distribution.

Syntax

PLOT_3DBOX, X, Y, Z [, GRIDSTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, PSYM=integer{1 to
10}] [, /SOLID_WALLS] [, /XY_PLANE] [, XYSTYLE={0 | 1 | 2 | 3 | 4 | 5}]
[, /XZ_PLANE] [, XZSTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, /YZ_PLANE] [, YZSTYLE={0
| 1 | 2 | 3 | 4 | 5}] [, AX=degrees] [, AZ=degrees] [, ZAXIS={1 | 2 | 3 | 4}]

Graphics Keywords: Accepts all graphics keywords accepted by PLOT except for:
FONT, PSYM, SYMSIZE, {XYZ}TICK_GET, and ZVALUE.

Arguments

X

A vector (i.e., a one-dimensional array) of X coordinates.

Y

A vector of Y coordinates.

Z

A vector of Z coordinates. Z[i] is a function of X[i] and Y[i].
PLOT_3DBOX IDL Reference Guide

 1447
Keywords

GRIDSTYLE

Set this keyword to the linestyle index for the type of line to be used when drawing
the gridlines. Linestyles are described in the following table:

PSYM

Set this keyword to a plotting symbol index to be used in plotting the data. For more
information, see “PSYM” on page 3878.

SOLID_WALLS

Set this keyword to cause the boundary “walls” of the plot to be filled with the color
index specified by the COLOR keyword.

XY_PLANE

Set this keyword to plot the X and Y values on the Z=0 axis plane.

XYSTYLE

Set this keyword to the linestyle used to draw the XY plane plot. See the table above
for a list of linestyles.

XZ_PLANE

Set this keyword to plot the Y and Z values on the Y=MAX(Y) axis plane.

Index Linestyle

0 Solid

1 Dotted

2 Dashed

3 Dash Dot

4 Dash Dot Dot

5 Long Dashes

Table 75: IDL Linestyles
IDL Reference Guide PLOT_3DBOX

1448
XZSTYLE

Set this keyword to the linestyle used to draw the XZ plane plot. See the table above
for a list of linestyles.

YZ_PLANE

Set this keyword to plot the Y and Z values on the X=MAX(X) axis plane.

YZSTYLE

Set this keyword to the linestyle used to draw the YZ plane plot. See the table above
for a list of linestyles.

SURFACE Keywords

In addition to the keywords described above, the AX, AZ, and ZAXIS keywords to
the SURFACE procedure are accepted by PLOT_3DBOX. See “SURFACE” on
page 1934.

Graphics Keywords Accepted

See Appendix B, “Graphics Keywords”, for the description of graphics and plotting
keywords not listed above. BACKGROUND, CHARSIZE, CHARTHICK, CLIP,
COLOR, DATA, DEVICE, LINESTYLE, NOCLIP, NOERASE, NORMAL,
POSITION, SUBTITLE, T3D, THICK, TICKLEN, TITLE, [XYZ]CHARSIZE,
[XYZ]GRIDSTYLE, [XYZ]MARGIN, [XYZ]MINOR, [XYZ]RANGE,
[XYZ]STYLE, [XYZ]THICK, [XYZ]TICKFORMAT, [XYZ]TICKLEN,
[XYZ]TICKNAME, [XYZ]TICKS, [XYZ]TICKV, [XYZ]TITLE.

Examples

; Create some data to be plotted:
X = REPLICATE(5., 10.)
X1 = COS(FINDGEN(36)*10.*!DTOR)*2.+5.
X = [X, X1, X]
Y = FINDGEN(56)
Z = REPLICATE(5., 10)
Z1 = SIN(FINDGEN(36)*10.*!DTOR)*2.+5.
Z = [Z, Z1, Z]

; Create the box plot with data projected on all of the walls. The
; PSYM value of -4 plots the data as diamonds connected by lines:
PLOT_3DBOX, X, Y, Z, /XY_PLANE, /YZ_PLANE, /XZ_PLANE, $

/SOLID_WALLS, GRIDSTYLE=1, XYSTYLE=3, XZSTYLE=4, $
YZSTYLE=5, AZ=40, TITLE='Example Plot Box', $
PLOT_3DBOX IDL Reference Guide

 1449
XTITLE='X Coordinate', YTITLE='Y Coodinate', $
ZTITLE='Z Coordinate', SUBTITLE='Sub Title', $
/YSTYLE, ZRANGE=[0,10], XRANGE=[0,10], $
PSYM=-4, CHARSIZE=1.6

Version History

Introduced: Pre 4.0

See Also

IPLOT, PLOTS, SURFACE
IDL Reference Guide PLOT_3DBOX

1450
PLOT_FIELD

The PLOT_FIELD procedure plots a 2-D field. N random points are picked, and from
each point a path is traced along the field. The length of the path is proportional to the
field vector magnitude.

This routine is written in the IDL language. Its source code can be found in the file
plot_field.pro in the lib subdirectory of the IDL distribution.

Syntax

PLOT_FIELD, U, V [, ASPECT=ratio] [, LENGTH=value] [, N=num_arrows]
[, TITLE=string]

Arguments

U

A 2-D array giving the field vector at each point in the U(X) direction.

V

A 2-D array giving the field vector at each point in the V(Y) direction.

Keywords

ASPECT

Set this keyword to the aspect ratio of the plot (i.e., the ratio of the X size to Y size).
The default is 1.0.

LENGTH

Set this keyword to the length of the longest field vector expressed as a fraction of the
plotting area. The default is 0.1.

N

Set this keyword to the number of arrows to draw. The default is 200.

TITLE

Set this keyword to the title of plot. The default is “Velocity Field”.
PLOT_FIELD IDL Reference Guide

 1451
Examples

; Create array X:
X = FINDGEN(20, 20)

; Create array Y:
Y = FINDGEN(20, 20)*3

; Plot X vs. Y:
PLOT_FIELD, X, Y

The above commands produce the following plot:

Version History

Introduced: Original

See Also

FLOW3, VEL, VELOVECT
IDL Reference Guide PLOT_FIELD

1452
PLOTERR

The PLOTERR procedure plots individual data points with error bars.

This routine is written in the IDL language. Its source code can be found in the file
ploterr.pro in the lib subdirectory of the IDL distribution.

Syntax

PLOTERR, [X ,] Y , Err [, TYPE={1 | 2 | 3 | 4}] [, PSYM=integer{1 to 10}]

Arguments

X

An optional array of X values. The procedure checks the number of arguments passed
to decide if X was passed. If X is not passed, INDGEN(Y) is assumed for X values.

Y

The array of Y values. Y cannot be of type string.

Err

The array of error-bar values.

Keywords

TYPE

The type of plot to be produced. The possible types are:

• 1 = X Linear - Y Linear (default)

• 2 = X Linear - Y Log

• 3 = X Log - Y Linear

• 4 = X Log - Y Log

PSYM

The plotting symbol to use. The default is +7.
PLOTERR IDL Reference Guide

 1453
Version History

Introduced: Original

See Also

ERRPLOT, IPLOT, OPLOTERR, PLOT
IDL Reference Guide PLOTERR

1454
PLOTS

The PLOTS procedure plots vectors or points on the current graphics device in either
two or three dimensions. The coordinates can be given in data, device, or normalized
form using the DATA (the default), DEVICE, or NORMAL keywords.

The COLOR keyword can be set to a scalar or vector value. If it is set to a vector
value, the line segment connecting (Xi, Yi) to (Xi+1, Yi+1) is drawn with a color index
of COLORi+1. In this case, COLOR must have the same number of elements as X and
Y.

Syntax

PLOTS, X [, Y [, Z]] [, /CONTINUE]

Graphics Keywords: [, CLIP=[X0, Y0, X1, Y1]] [, COLOR=value] [, /DATA | ,
/DEVICE | , /NORMAL] [, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, /NOCLIP]
[, PSYM=integer{0 to 10}] [, SYMSIZE=value] [, /T3D] [, THICK=value]
[, Z=value]

Arguments

X

A vector or scalar argument providing the X components of the points to be
connected. If only one argument is specified, X must be an array of either two or three
vectors (i.e., (2,*) or (3,*)). In this special case, X[0,*] are taken as the X
values, X[1,*] are taken as the Y values, and X[2,*] are taken as the Z values.

Y

An optional argument providing the Y coordinate(s) of the points to be connected.

Z

An optional argument providing the Z coordinates of the points to be connected. If Z
is not provided, X and Y are used to draw lines in two dimensions.

Z has no effect if the keyword T3D is not specified and the system variable !P.T3D=
0.
PLOTS IDL Reference Guide

 1455
Keywords

CONTINUE

Set this keyword to continue drawing a line from the last point of the most recent call
to PLOTS.

For example:

; Position at (0,0):
PLOTS, 0, 0

; Draws vector from (0,0) to (1,1):
PLOTS, 1, 1, /CONTINUE

; Draws two vectors from (1,1) to (2,2) to (3,3):
PLOTS, [2,3], [2,3], /CONTINUE

Graphics Keywords Accepted

See Appendix B, “Graphics Keywords”, for the description of graphics and plotting
keywords not listed above. CLIP, COLOR, DATA, DEVICE, LINESTYLE,
NOCLIP, NORMAL, PSYM, SYMSIZE, T3D, THICK, Z.

Examples

; Draw a line from (100, 200) to (600, 700), in device coordinates,
; using color index 12:
PLOTS, [100,600], [200,700], COLOR=12, /DEVICE

; Draw a polyline where the line color is proportional to the
; ordinate that ends each line segment.
; First create datasets X and Y:
X = SIN(FINDGEN(100)) & Y = COS(FINDGEN(100))

; Now plot X and Y in normalized coordinates with colors as
; described above:
PLOTS, X, Y, COLOR = BYTSCL(Y, TOP=!D.N COLORS-1), /NORMAL

; Load a good colortable to better show the result:
LOADCT, 13

; Draw 3-D vectors over an established SURFACE plot.
; The SAVE keyword tells IDL to save the 3-D transformation
; established by SURFACE.
SURFACE, DIST(5), /SAVE
IDL Reference Guide PLOTS

1456
; Draw a line between (0,0,0) and (3,3,3). The T3D keyword makes
; PLOTS use the previously established 3-D transformation:
PLOTS, [0,3], [0,3], [0,3], /T3D

; Draw a line between (3,0,0) and (3,3,3):
PLOTS, [3,3], [0,3], [0,3], /T3D

; Draw a line between (0,3,0) and (3,3,3):
PLOTS, [0,3], [3,3], [0,3], /T3D

Version History

Introduced: Original

See Also

ANNOTATE, IPLOT, XYOUTS
PLOTS IDL Reference Guide

 1457
PNT_LINE

The PNT_LINE function computes the perpendicular distance between a point P0
and a line between points L0 and L1. This function is limited by the machine
accuracy of single precision floating point.

This routine is written in the IDL language. Its source code can be found in the file
pnt_line.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = PNT_LINE(P0, L0, L1 [, Pl] [, /INTERVAL])

Return Value

Returns the perpendicular distance.

Arguments

P0

The location of the point. P0 may have 2 to n elements, for n dimensions.

L0

One end-point of the line. L0 must have same number of elements as P0.

L1

The other end-point of the line. L1 must have the same number of elements as L0.

Pl

A named variable that will contain the location of the point on the line between L0
and L1 that is closest to P0. Pl is not necessarily in the interval (L0, L1).

Keywords

INTERVAL

If set, and if the point on the line between L0 and L1 that is closest to P0 is not within
the interval (L0, L1), PNT_LINE will return the distance from P0 to the closer of the
two endpoints L0 and L1.
IDL Reference Guide PNT_LINE

1458
Examples

To print the distance between the point (2,3) and the line from (-3,3) to (5,12), and
also the location of the point on the line closest to (2,3), enter the following
command:

PRINT, PNT_LINE([2,3], [-3,3], [5,12], Pl), Pl

IDL prints:

3.73705 -0.793104 5.48276

Version History

Introduced: Pre 4.0

See Also

CIR_3PNT, SPH_4PNT
PNT_LINE IDL Reference Guide

 1459
POINT_LUN

The POINT_LUN procedure sets or obtains the current position of the file pointer for
the specified file.

Note
POINT_LUN cannot be used with files opened with the RAWIO keyword to the
OPEN routines. Depending upon the device in question, the IOCTL function might
be used instead for files of this type.

Use Of POINT_LUN On Compressed Files

In general, it is not possible to arbitrarily move the file pointer within a compressed
file (files opened with the COMPRESS keyword to OPEN) because the file
compression code needs to maintain a compression state for the file that includes all
the data that has already been passed in the stream. This limitation results in the
following constraints on the use of POINT_LUN with compressed files:

• POINT_LUN is not allowed on compressed files open for output, except to
positions beyond the current file position. The compression code emulates
such motion by outputting enough zero bytes to move the pointer to the new
position.

• POINT_LUN is allowed to arbitrary positions on compressed files opened for
input. However, this feature is emulated by positioning the file to the beginning
of the file and then reading and discarding enough data to move the file pointer
to the desired position. This can be extremely slow.

For these reasons, use of POINT_LUN on compressed files, although possible under
some circumstances, is best avoided.

Syntax

POINT_LUN, Unit, Position

Arguments

Unit

The file unit for the file in question. If Unit is positive, POINT_LUN sets the file
position to the position given by Position. If negative, POINT_LUN gets the current
IDL Reference Guide POINT_LUN

1460
file position and assigns it to the variable given by Position. Note that POINT_LUN
cannot be used with the 3 standard file units (0, -1, and -2).

Position

If Unit is positive, Position gives the byte offset into the file at which the file pointer
should be set. For example, to rewind the file to the beginning, specify 0.

If Unit is negative, Position must be a named variable into which the current file
position will be stored. The returned type will be a longword signed integer if the
position is small enough to fit, and an unsigned 64-bit integer otherwise.

Keywords

None.

Examples

To move the file pointer 2048 bytes into the file associated with file unit number 1,
enter:

POINT_LUN, 1, 2048

To return the file pointer for file unit number 2, enter:

POINT_LUN, -2, pos

Version History

Introduced: Original

See Also

GET_LUN, OPEN, TRUNCATE_LUN
POINT_LUN IDL Reference Guide

 1461
POLAR_CONTOUR

The POLAR_CONTOUR procedure draws a contour plot from data in polar
coordinates. Data can be regularly- or irregularly-gridded. All of the keyword options
supported by CONTOUR are available to POLAR_CONTOUR.

This routine is written in the IDL language. Its source code can be found in the file
polar_contour.pro in the lib subdirectory of the IDL distribution.

Syntax

POLAR_CONTOUR, Z, Theta, R [, C_ANNOTATION=vector_of_strings]
[, C_CHARSIZE=value] [, C_CHARTHICK=integer] [, C_COLORS=vector]
[, C_LINESTYLE=vector] [, /FILL | , CELL_FILL [, C_ORIENTATION=degrees]
[, C_SPACING=value]] [, C_THICK=vector] [, /CLOSED] [, /IRREGULAR]
[, LEVELS=vector | NLEVELS=integer{1 to 29}] [, MAX_VALUE=value]
[, MIN_VALUE=value] [, /OVERPLOT] [, /PATH_DATA_COORDS |
,TRIANGULATION=variable] [, /XLOG] [, /YLOG] [, /ZAXIS]
[, SHOW_TRIANGULATION=color_index]

Arguments

Z

The data values to be contoured. If the data is regularly gridded, Z must have the
dimensions (N_ELEMENTS(Theta), N_ELEMENTS(R). Note that the ordering of
the elements in the array Z is opposite that used by the POLAR_SURFACE routine.

Theta

A vector of angles in radians. For regularly-gridded data, Theta must have the same
number of elements as the first dimension of Z. For a scattered grid, Theta must have
the same number of elements as Z.

R

A vector of radius values. For regularly-gridded data, R must have the same number
of elements as the second dimension of Z. For a scattered grid, R must have the same
number of elements as Z.
IDL Reference Guide POLAR_CONTOUR

1462
Keywords

POLAR_CONTOUR accepts all of the keywords accepted by the CONTOUR routine
except C_LABELS, DOWNHILL, FOLLOW, PATH_FILENAME, PATH_INFO,
and PATH_XY. See “CONTOUR” on page 292. In addition, there is one unique
keyword:

SHOW_TRIANGULATION

Set this keyword to a color index to be used in overplotting the triangulation between
datapoints.

Examples

This example uses POLAR_CONTOUR with regularly-gridded data:

;Handle TrueColor displays:
DEVICE, DECOMPOSED=0

;Load color table
TEK_COLOR

nr = 12 ; number of radii
nt = 18 ; number of Thetas

; Create a vector of radii:
r = FINDGEN(nr)/(nr-1)

; Create a vector of Thetas:
theta = 2*!PI * FINDGEN(nt)/(nt-1)

; Create some data values to be contoured:
z = COS(theta*3) # (r-0.5)^2

; Create the polar contour plot:
POLAR_CONTOUR, z, theta, r, /FILL, c_color=[2, 3, 4, 5]

Version History

Introduced: 4.0

See Also

CONTOUR
POLAR_CONTOUR IDL Reference Guide

 1463
POLAR_SURFACE

The POLAR_SURFACE function interpolates a surface from polar coordinates (R,
Theta, Z) to rectangular coordinates (X, Y, Z).

This routine is written in the IDL language. Its source code can be found in the file
polar_surface.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = POLAR_SURFACE(Z, R, Theta [, /GRID] [, SPACING=[xspacing,
yspacing]] [, BOUNDS=[x0, y0, x1, y1]] [, /QUINTIC] [, MISSING=value])

Return Value

The function returns a two-dimensional array of the same type as Z.

Arguments

Z

An array containing the surface value at each point. If the data are regularly gridded
in R and Theta, Z is a two dimensional array, where Zi,j has a radius of Ri and an
azimuth of Thetaj. If the data are irregularly-gridded, Ri and Thetai contain the radius
and azimuth of each Zi. Note that the ordering of the elements in the array Z is
opposite that used by the POLAR_CONTOUR routine.

R

The radius. If the data are regularly gridded in R and Theta, Zi,j has a radius of Ri. If
the data are irregularly-gridded, R must have the same number of elements as Z, and
contains the radius of each point.

Theta

The azimuth, in radians. If the data are regularly gridded in R and Theta, Zi,j has an
azimuth of Thetaj. If the data are irregularly-gridded, Theta must have the same
number of elements as Z, and contains the azimuth of each point.
IDL Reference Guide POLAR_SURFACE

1464
Keywords

GRID

Set this keyword to indicate that Z is regularly gridded in R and Theta.

SPACING

A two element vector containing the desired grid spacing of the resulting array in x
and y. If omitted, the grid will be approximately 51 by 51.

BOUNDS

A four element vector, [x0, y0, x1, y1], containing the limits of the xy grid of the
resulting array. If omitted, the extent of input data sets the limits of the grid.

QUINTIC

Set this keyword to use quintic interpolation, which is slower but smoother than the
default linear interpolation.

MISSING

Use this keyword to specify a value to use for areas within the grid but not within the
convex hull of the data points. The default is 0.0.

Examples

; The radius:
R = FINDGEN(50) / 50.0

; Theta:
THETA = FINDGEN(50) * (2 * !PI / 50.0)

; Make a function (tilted circle):
Z = R # SIN(THETA)

; Show it:
SURFACE, POLAR_SURFACE(Z, R, THETA, /GRID)

Version History

Introduced: Pre 4.0
POLAR_SURFACE IDL Reference Guide

 1465
See Also

POLAR keyword to PLOT
IDL Reference Guide POLAR_SURFACE

1466
POLY

The POLY function evaluates a polynomial function of a variable.

This routine is written in the IDL language. Its source code can be found in the file
poly.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = POLY(X, C)

Return Value

The result is equal to:

C0 + C1x + C2x2 + ...

Arguments

X

The variable. This value can be a scalar, vector or array.

C

The vector of polynomial coefficients. The degree of the polynomial is
N_ELEMENTS(C) - 1.

Keywords

None.

Version History

Introduced: Original

See Also

FZ_ROOTS
POLY IDL Reference Guide

 1467
POLY_2D

The POLY_2D function performs polynomial warping of images. This function
performs a geometrical transformation in which the resulting array is defined by:

g [x, y] = f [x', y'] = f [a [x, y], b [x, y]]

where g[x, y] represents the pixel in the output image at coordinate (x, y), and f [x', y']
is the pixel at (x', y') in the input image that is used to derive g[x, y]. The functions
a (x, y) and b (x, y) are polynomials in x and y of degree N, whose coefficients are
given by P and Q, and specify the spatial transformation:

Either the nearest neighbor or bilinear interpolation methods can be selected.

Syntax

Result = POLY_2D(Array, P, Q [, Interp [, Dimx, Dimy]] [, CUBIC={-1 to 0}]
[, MISSING=value])

Arguments

Array

A two-dimensional array of any basic type except string. The result has the same type
as Array.

x′ a x y,() Pi j, x
j
yi

j 0=

N

∑
i 0=

N

∑= =

y′ b x y,() Qi j, xjyi

j 0=

N

∑
i 0=

N

∑= =
IDL Reference Guide POLY_2D

1468
P and Q

P and Q are arrays containing the polynomial coefficients. Each array must contain
(N+1)2 elements (where N is the degree of the polynomial). For example, for a linear
transformation, P and Q contain four elements and can be a 2 x 2 array or a 4-element
vector. Pi,j contains the coefficient used to determine x’, and is the weight of the term
xjyi. The POLYWARP procedure can be used to fit (x’, y’) as a function of (x, y) and
determines the coefficient arrays P and Q.

Interp

Set this argument to 1 to perform bilinear interpolation. Set this argument to 2 to
perform cubic convolution interpolation (as described under the CUBIC keyword,
below). Otherwise, the nearest neighbor method is used. For the linear case, (N=1),
bilinear interpolation requires approximately twice as much time as does the nearest
neighbor method.

Dimx

If present, Dimx specifies the number of columns in the output. If omitted, the output
has the same number of columns as Array.

Dimy

If present, Dimy specifies the number of rows in the output. If omitted, the output has
the same number of rows as Array.

Keywords

CUBIC

Set this keyword to a value between -1 and 0 to use the cubic convolution
interpolation method with the specified value as the interpolation parameter. Setting
this keyword equal to a value greater than zero specifies a value of -1 for the
interpolation parameter. Park and Schowengerdt (see reference below) suggest that a
value of -0.5 significantly improves the reconstruction properties of this algorithm.
Note that cubic convolution interpolation works only with one- and two-dimensional
arrays.

Cubic convolution is an interpolation method that closely approximates the
theoretically optimum sinc interpolation function using cubic polynomials.
According to sampling theory, details of which are beyond the scope of this
document, if the original signal, f, is a band-limited signal, with no frequency
component larger than ω0, and f is sampled with spacing less than or equal to 1/2ω0,
POLY_2D IDL Reference Guide

 1469
then f can be reconstructed by convolving with a sinc function: sinc (x) = sin (πx) /
(πx).

In the one-dimensional case, four neighboring points are used, while in the two-
dimensional case 16 points are used. Note that cubic convolution interpolation is
significantly slower than bilinear interpolation.

For further details see:

Rifman, S.S. and McKinnon, D.M., “Evaluation of Digital Correction Techniques for
ERTS Images; Final Report”, Report 20634-6003-TU-00, TRW Systems, Redondo
Beach, CA, July 1974.

S. Park and R. Schowengerdt, 1983 “Image Reconstruction by Parametric Cubic
Convolution”, Computer Vision, Graphics & Image Processing 23, 256.

MISSING

Specifies the output value for points whose x’, y’ is outside the bounds of Array. If
MISSING is not specified, the resulting output value is extrapolated from the nearest
pixel of Array.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

Some simple linear (degree one) transformations are:

P0,0 P1,0 P0,1 P1,1 Q0,0 Q1,0 Q0,1 Q1,1 Effect

0 0 1 0 0 1 0 0 Identity

0 0 0.5 0 0 1 0 0 Stretch X by a factor of 2

0 0 1 0 0 2.0 0 0 Shrink Y by a factor of 2

Table 76: Simple Transformations for Use with POLY_2D
IDL Reference Guide POLY_2D

1470
POLY_2D is often used in conjunction with the POLYWARP procedure to warp
images.

z 0 1 0 0 1 0 0 Shift left by z pixels

0 1 0 0 0 0 1 0 Transpose

P0,0 P1,0 P0,1 P1,1 Q0,0 Q1,0 Q0,1 Q1,1 Effect

Table 76: Simple Transformations for Use with POLY_2D
POLY_2D IDL Reference Guide

 1471
; Create and display a simple image:
A = BYTSCL(SIN(DIST(250)), TOP=!D.TABLE_SIZE) & TV, A

; Set up the arrays of original points to be warped:
XO = [61, 62, 143, 133]
YO = [89, 34, 38, 105]

; Set up the arrays of points to be fit:
XI = [24, 35, 102, 92]
YI = [81, 24, 25, 92]

; Use POLYWARP to generate the P and Q inputs to POLY_2D:
POLYWARP, XI, YI, XO, YO, 1, P, Q

; Perform an image warping based on P and Q:
B = POLY_2D(A, P, Q)

; Display the new image:
TV, B, 250, 250

Images can also be warped over irregularly gridded control points using the
WARP_TRI procedure.

Version History

Introduced: Original

See Also

POLYWARP
IDL Reference Guide POLY_2D

1472
POLY_AREA

The POLY_AREA function returns the area of a polygon given the coordinates of its
vertices.

It is assumed that the polygon has n vertices with n sides and the edges connect the
vertices in the order:

[(x1,y1), (x2,y2), ... , (xn,yn), (x1,y1)]

such that the last vertex is connected to the first vertex.

This routine is written in the IDL language. Its source code can be found in the file
poly_area.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = POLY_AREA(X, Y [, /DOUBLE] [, /SIGNED])

Return Value

If either of the input arguments is double-precision or if the DOUBLE keyword is set,
the result is a double-precision value, otherwise, the result is single-precision.

Arguments

X

An n-element vector of X coordinate locations for the vertices.

Y

An n-element vector of Y coordinate locations for the vertices.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision result. Explicitly set DOUBLE=0 to use single-precision for computations
and to return a single-precision result. By default, if either of the arguments to
POLY_AREA is double-precision, computations are done in double-precision; if
both arguments are single-precision, computations are done in single-precision.
POLY_AREA IDL Reference Guide

 1473
SIGNED

If set, returns a signed area. Polygons with edges traversed in counterclockwise order
have a positive area; polygons traversed in the clockwise order have a negative area.

Version History

Introduced: Original

See Also

DEFROI, POLYFILLV
IDL Reference Guide POLY_AREA

1474
POLY_FIT

The POLY_FIT function performs a least-square polynomial fit with optional
weighting and returns a vector of coefficients.

The POLY_FIT routine uses matrix inversion to determine the coefficients. A
different version of this routine, SVDFIT, uses singular value decomposition (SVD).
The SVD technique is more flexible and robust, but may be slower.

This routine is written in the IDL language. Its source code can be found in the file
poly_fit.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = POLY_FIT(X, Y, Degree [, CHISQ=variable] [, COVAR=variable]
[, /DOUBLE] [, MEASURE_ERRORS=vector] [, SIGMA=variable]
[, STATUS=variable] [, YBAND=variable] [, YERROR=variable]
[, YFIT=variable])

Return Value

POLY_FIT returns a vector of coefficients of length Degree+1. If the DOUBLE
keyword is set, or if X or Y are double precision, then the result will be double
precision, otherwise the result will be single precision.

Arguments

X

An n-element vector of independent variables.

Y

A vector of dependent variables, the same length as X.

Degree

The degree of the polynomial to fit.

Yfit, Yband, Sigma, Corrm

The Yfit, Yband, Sigma, and Corrm arguments are obsolete, and have been replaced
by the YFIT, YBAND, YERROR, and COVAR keywords, respectively. Code using these
POLY_FIT IDL Reference Guide

 1475
arguments will continue to work as before, but new code should use the keywords
instead.

Keywords

CHISQ

Set this keyword to a named variable that will contain the value of the chi-square
goodness-of-fit.

COVAR

Set this keyword to a named variable that will contain the Covariance matrix of the
coefficients.

Note
The COVAR matrix depends only upon the independent variable X and (optionally)
the MEASURE_ERRORS. The values do not depend upon Y. See section 15.4 of
Numerical Recipes in C (Second Edition) for details.

DOUBLE

Set this keyword to force computations to be done in double-precision arithmetic. All
computations are performed using double-precision arithmetic.

MEASURE_ERRORS

Set this keyword to a vector containing standard measurement errors for each point
Y[i]. This vector must be the same length as X and Y.

Note
For Gaussian errors (e.g., instrumental uncertainties), MEASURE_ERRORS
should be set to the standard deviations of each point in Y. For Poisson or statistical
weighting, MEASURE_ERRORS should be set to SQRT(Y).

SIGMA

Set this keyword to a named variable that will contain the 1-sigma uncertainty
estimates for the returned parameters.

Note
If MEASURE_ERRORS is omitted, then you are assuming that a polynomial is the
correct model for your data, and therefore, no independent goodness-of-fit test is
IDL Reference Guide POLY_FIT

1476
possible. In this case, the values returned in SIGMA are multiplied by
SQRT(CHISQ/(N–M)), where N is the number of points in X, and M is the number
of coefficients. See section 15.2 of Numerical Recipes in C (Second Edition) for
details.

STATUS

Set this keyword to a named variable to receive the status of the operation. Possible
status values are:

• 0 = Successful completion.

• 1 = Singular array (which indicates that the inversion is invalid). Result is NaN.

• 2 = Warning that a small pivot element was used and that significant accuracy
was probably lost.

• 3 = Undefined (NaN) error estimate was encountered.

Note
If STATUS is not specified, any error messages will be output to the screen.

Tip
Status values of 2 or 3 can often be resolved by setting the DOUBLE keyword.

YBAND

Set this keyword to a named variable that will contain the 1 standard deviation error
estimate for each point.

YERROR

Set this keyword to a named variable that will contain the standard error between
YFIT and Y.

YFIT

Set this keyword to a named variable that will contain the vector of calculated Y
values. These values have an error of + or – YBAND.
POLY_FIT IDL Reference Guide

 1477
Examples

In this example, we use X and Y data corresponding to the known polynomial
f (x) = 0.25 - x + x2. Using POLY_FIT to compute a second degree polynomial fit
returns the exact coefficients (to within machine accuracy).

; Define an 11-element vector of independent variable data:
X = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

; Define an 11-element vector of dependent variable data:
Y = [0.25, 0.16, 0.09, 0.04, 0.01, 0.00, 0.01, 0.04, 0.09, $
 0.16, 0.25]

; Define a vector of measurement errors:
measure_errors = REPLICATE(0.01, 11)

; Compute the second degree polynomial fit to the data:
result = POLY_FIT(X, Y, 2, MEASURE_ERRORS=measure_errors, $

SIGMA=sigma)

; Print the coefficients:
PRINT, 'Coefficients: ', result
PRINT, 'Standard errors: ', sigma

IDL prints:

Coefficients: 0.250000 -1.00000 1.00000
Standard errors: 0.00761853 0.0354459 0.0341395

Version History

Introduced: Original

See Also

COMFIT, CURVEFIT, GAUSSFIT, LINFIT, REGRESS, SFIT, SVDFIT
IDL Reference Guide POLY_FIT

1478
POLYFILL

The POLYFILL procedure fills the interior of a region of the display enclosed by an
arbitrary two or three-dimensional polygon. The available filling methods are: solid
fill, parallel lines, or a pattern contained in an array. Not all methods are available on
every hardware output device. See “Fill Methods” below.

Note
POLYFILL uses the current graphics device’s own polygon filling methodology
when possible. For some devices, polygon filling is designed to avoid filling a given
pixel more than once when neighboring polygons (that is, polygons with shared
edges) are drawn. If the resulting pixel fill from POLYFILL is unsatisfactory,
consider using DRAW_ROI instead.

The polygon is defined by a list of connected vertices stored in X, Y, and Z. The
coordinates can be given in data, device, or normalized form using the DATA,
DEVICE, or NORMAL keywords.

Fill Methods

Line-fill method: Filling using parallel lines is device-independent and works on all
devices that can draw lines. Crosshatching can be simulated by performing multiple
fills with different orientations. The spacing, linestyle, orientation, and thickness of
the filling lines can be specified using the corresponding keyword parameters. The
LINE_FILL keyword selects this filling style, but is not required if either the
ORIENTATION or SPACING parameters are present.

Solid fill method: By default, POLYFILL fills the polygon with a solid color. For
devices that do not directly support filling with a solid color, the solid fill is
automatically emulated using the line-fill method.

Patterned fill: Some output devices support filling with a pattern. For these devices,
the fill pattern array can be explicitly specified with the PATTERN keyword. Refer to
the description of that keyword for a list of devices that support patterned fill.

Syntax

POLYFILL, X [, Y [, Z]] [, IMAGE_COORD=array] [, /IMAGE_INTERP]
[, /LINE_FILL] [, PATTERN=array] [, SPACING=centimeters]
[, TRANSPARENT=value]
POLYFILL IDL Reference Guide

 1479
Graphics Keywords: [, CLIP=[X0, Y0, X1, Y1]] [, COLOR=value] [, /DATA | ,
/DEVICE | , /NORMAL] [, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5}] [, /NOCLIP]
[, ORIENTATION=ccw_degrees_from_horiz] [, /T3D] [, THICK=value] [, Z=value]

Arguments

X

A vector argument providing the X coordinates of the points to be connected. The
vector must contain at least three elements. If only one argument is specified, X must
be an array of either two or three vectors (i.e., (2,*) or (3,*)). In this special case,
the vector X[0,*] specifies the X values, X[1,*] specifies Y, and X[2,*] contain
the Z values.

Y

A vector argument providing the Y coordinates of the points to be connected. Y must
contain at least three elements.

Z

An optional vector argument providing the Z coordinates of the points to be
connected. If Z is not provided, X and Y are used to draw lines in two dimensions. Z
must contain at least three elements. Z has no effect if the keyword T3D is not
specified and the system variable !P.T3D= 0.

Keywords

IMAGE_COORD (Z-Buffer Output Only)

A 2 x n array containing the fill pattern array subscripts of each of the n polygon
vertices. Use this keyword in conjunction with the PATTERN keyword to warp
images over 2-D and 3-D polygons.

IMAGE_INTERP (Z-Buffer Output Only)

Specifies the method of sampling the PATTERN array when the IMAGE_COORD
keyword is present. The default method is to use nearest-neighbor sampling. Bilinear
interpolation sampling is performed if IMAGE_INTERP is set.

LINE_FILL

Set this keyword to indicate that polygons are to be filled with parallel lines, rather
than using solid or patterned filling methods.When using the line-drawing method of
IDL Reference Guide POLYFILL

1480
filling, the thickness, linestyle, orientation, and spacing of the lines may be specified
with keywords.

PATTERN

A rectangular array of pixels giving the fill pattern. If this keyword parameter is
omitted, POLYFILL fills the area with a solid color. The pattern array may be of any
size; if it is smaller than the filled area the pattern array is cyclically repeated.

Note
This keyword is supported for the following devices:

METAFILE, PRINTER (Unix & Windows only), PS, WIN, X, and Z.

For the PostScript device, fill patterns are only supported with language level 2.
Use the LANGUAGE_LEVEL keyword to DEVICE to set the PostScript language
level to 2 if filled patterns are to be used. On Windows98, the pattern size is limited
to 8x8.

For example, to fill the current plot window with a grid of dots, enter the following
commands:

; Define pattern array as 10 by 10:
PAT = BYTARR(10,10)

; Set center pixel to bright:
PAT[5,5] = 255

; Fill the rectangle defined by the four corners of the window with
; the pattern:
POLYFILL, !X.WINDOW([0,1,1,0]), $

!Y.WINDOW([0,0,1,1]), /NORM, PAT = PAT

SPACING

The spacing, in centimeters, between the parallel lines used to fill polygons.

TRANSPARENT (Z-Buffer output only)

Specifies the minimum pixel value to draw in conjunction with the PATTERN and
IMAGE_COORD keywords. Pixels less than this value are not drawn and the Z-
buffer is not updated.
POLYFILL IDL Reference Guide

 1481
Graphics Keywords Accepted

See Appendix B, “Graphics Keywords”, for the description of graphics and plotting
keywords not listed above. CLIP, COLOR, DATA, DEVICE, LINESTYLE,
NOCLIP, NORMAL, ORIENTATION, T3D, THICK, Z.

Z-Buffer-Specific Keywords

Certain keyword parameters are only active when the Z-buffer is the currently
selected graphics device: IMAGE_COORD, IMAGE_INTERP, TRANSPARENT
and COLOR. These parameters allow images to be warped over 2-D or 3-D polygons,
and the output of shaded polygons. See “The Z-Buffer Device” in Appendix A.

For shaded polygons, the COLOR keyword can specify an array that contains the
color index at each vertex. Color indices are linearly interpolated between vertices. If
COLOR contains a scalar, the entire polygon is drawn with the given color index, just
as with the other graphics output devices.

Images can be warped over polygons by passing in the image with the PATTERN
parameter, and a (2, n) array containing the image space coordinates that correspond
to each of the N vertices with the IMAGE_COORD keyword.

The IMAGE_INTERP keyword indicates that bilinear interpolation is to be used,
rather than the default nearest-neighbor sampling. Pixels less than the value of
TRANSPARENT are not drawn, simulating transparency.

Examples

Fill a rectangular polygon that has the vertices (30,30), (100, 30), (100, 100), and (30,
100) in device coordinates:

; Create the vectors of X and Y values:
X = [30, 100, 100, 30] & Y = [30, 30, 100, 100]

; Fill the polygon with color index 175:
POLYFILL, X, Y, COLOR = 175, /DEVICE

Version History

Introduced: Original

See Also

POLYFILLV
IDL Reference Guide POLYFILL

1482
POLYFILLV

The POLYFILLV function returns a vector containing the subscripts of the array
elements contained inside a polygon defined by vectors.

The X and Y parameters are vectors that contain the subscripts of the vertices that
define the polygon in the coordinate system of the two-dimensional Sx by Sy array.
The Sx and Sy parameters define the number of columns and rows in the array
enclosing the polygon. At least three points must be specified, and all points should
lie within the limits: 0 ≤ Xi < Sx and 0 ≤ Yi < Sy for all i.

As with the POLYFILL procedure, the polygon is defined by connecting each point
with its successor and the last point with the first. This function is useful for defining,
analyzing, and displaying regions of interest within a two-dimensional array.

The scan line coordinate system defined by Rogers in Procedural Elements for
Computer Graphics, McGraw-Hill, 1985, page 71, is used. In this system, the scan
lines are considered to pass through the center of each row of pixels. Pixels are
activated if the center of the pixel is to the right of the intersection of the scan line and
the polygon edge within the interval.

Syntax

Result = POLYFILLV(X, Y, Sx, Sy [, Run_Length])

Return Value

Returns a vector containing the one-dimensional subscripts of the array elements
contained inside a polygon defined by vectors X and Y. If no points are contained
within the polygon, a -1 is returned and an informational message is printed.

Arguments

X

A vector containing the X subscripts of the vertices that define the polygon.

Y

A vector containing the Y subscripts of the vertices that define the polygon.
POLYFILLV IDL Reference Guide

 1483
Sx

The number of columns in the array surrounding the polygon.

Sy

The number of rows in the array surrounding the polygon.

Run_Length

Set this optional parameter to a nonzero value to make POLYFILLV return a vector of
run lengths, rather than subscripts. For large polygons, a considerable savings in
space results. When run-length encoded, each element with an even subscript result
contains the length of the run, and the following element contains the starting index
of the run.

Examples

To determine the mean and standard deviation of the elements within a triangular
region defined by the vertices at pixel coordinates (100, 100), (200, 300), and (300,
100), inside a 512 x 512 array called DATA, enter the commands:

; Get the subscripts of the elements inside the triangle:
P = DATA[POLYFILLV([100,200,300], [100,300,100], 512, 512)]

; Use the STDEV function to obtain the mean and standard deviation
; of the selected elements:
STD = STDEV(P,MEAN)

Version History

Introduced: Original

See Also

POLYFILL
IDL Reference Guide POLYFILLV

1484
POLYSHADE

The POLYSHADE function creates a shaded-surface representation of one or more
solids described by a set of polygons. This function accepts, as arguments, an array of
three-dimensional vertices and a list of the indices of the vertices that describe each
polygon.

Shading values are determined from one of three sources: a light source model, a
user-specified array containing vertex shade values, or a user-specified array
containing polygon shade values.

The shaded surface is constructed using the scan line algorithm. The default shading
model is a combination of diffuse reflection and depth cueing. With this shading
model, polygons are shaded using either constant shading, in which each polygon is
given a constant intensity, or with Gouraud shading where the intensity is computed
at each vertex and then interpolated over the polygon. Use the SET_SHADING
procedure to control the direction of the light source and other shading parameters.

User-specified shading arrays allow “4-dimensional” displays that consist of a
surface defined by a set of polygons, shaded with values from another variable.

Syntax

Result = POLYSHADE(Vertices, Polygons)

or

Result = POLYSHADE(X, Y, Z, Polygons)

Keywords: [, /DATA | , /NORMAL] [, POLY_SHADES=array] [, SHADES=array]
[, /T3D] [, TOP=value] [, XSIZE=columns] [, YSIZE=rows]

Return Value

Returns a shaded-surface representation. Output is a two-dimensional byte array
containing the shaded image unless the current graphics output device is the Z-buffer.
If the current output device is the Z-buffer, the results are merged with the Z-buffer’s
contents and the function result contains a dummy value.
POLYSHADE IDL Reference Guide

 1485
Arguments

Vertices

A (3, n) array containing the X, Y, and Z coordinates of each vertex. Coordinates can
be in either data or normalized coordinates, depending on which keywords are
present.

X, Y, Z

The X, Y, and Z coordinates of each vertex can, alternatively, be specified as three
array expressions of the same dimensions.

Polygons

An integer or longword array containing the indices of the vertices for each polygon.
The vertices of each polygon should be listed in counterclockwise order when
observed from outside the surface. The vertex description of each polygon is a vector
of the form: [n, i0, i1, ..., in-1] and the array Polygons is the concatenation of the lists
of each polygon. For example, to render a pyramid consisting of four triangles,
Polygons would contain 16 elements, made by concatenating four, four-element
vectors of the form [3, V0, V1, V2]. V0, V1, and V2 are the indices of the vertices
describing each triangle.

Keywords

DATA

Set this keyword to indicate that the vertex coordinates are in data units, the default
coordinate system.

NORMAL

Set this keyword to indicate that coordinates are in normalized units, within the three
dimensional (0,1) cube.

POLY_SHADES

An array expression, with the same number of elements as there are polygons defined
in the Polygons array, containing the color index used to render each polygon. No
interpolation is performed if all pixels within a given polygon have the same shade
value. For most displays, this parameter should be scaled into the range of bytes.
IDL Reference Guide POLYSHADE

1486
SHADES

An array expression, with the same number of elements as Vertices, containing the
color index at each vertex. The shading of each pixel is interpolated from the
surrounding SHADE values. For most displays, this parameter should be scaled into
the range of bytes.

Warning
When using the SHADES keyword on TrueColor devices, we recommend that
decomposed color support be turned off by setting DECOMPOSED=0 for
DEVICE.

T3D

Set this keyword to use the three-dimensional to two-dimensional transformation
contained in the homogeneous 4 by 4 matrix !P.T. Note that if T3D is set, !P.T must
contain a valid transformation matrix. The SURFACE, SCALE3, and T3D
procedures (and others) can all be used to set up transformations.

TOP

The maximum shading value when light source shading is in effect. The default value
is one less than the number of colors available in the currently selected graphics
device.

XSIZE

The number of columns in the output image array. If this parameter is omitted, the
number of columns is equal to the X size of the currently selected display device.

Warning: The size parameters should be explicitly specified when the current
graphics device is PostScript or any other high-resolution device. Making the output
image the default full device size is likely to cause an insufficient memory error.

YSIZE

The number of rows in the output image array. If this parameter is omitted, the
number of rows is equal to the Y resolution of the currently selected display device.

Examples

POLYSHADE is often used in conjunction with SHADE_VOLUME for volume
visualization. The following example creates a spherical volume dataset and renders
an isosurface from that dataset:
POLYSHADE IDL Reference Guide

 1487
; Create an empty, 3-D array:
SPHERE = FLTARR(20, 20, 20)

; Create the spherical dataset:
FOR X=0,19 DO FOR Y=0,19 DO FOR Z=0,19 DO $

SPHERE(X, Y, Z) = SQRT((X-10)^2 + (Y-10)^2 + (Z-10)^2)

; Find the vertices and polygons for a density level of 8:
SHADE_VOLUME, SPHERE, 8, V, P

; Set up an appropriate 3-D transformation so we can see the
; sphere. This step is very important:
SCALE3, XRANGE=[0,20], YRANGE=[0,20], ZRANGE=[0,20]

; Render the image. Note that the T3D keyword has been set so that
; the previously-established 3-D transformation is used:
image = POLYSHADE(V, P, /T3D)

; Display the image:
TV, image

Version History

Introduced: Original

See Also

IVOLUME, PROJECT_VOL, RECON3, SET_SHADING, SHADE_SURF,
SHADE_VOLUME, VOXEL_PROJ
IDL Reference Guide POLYSHADE

1488
POLYWARP

The POLYWARP procedure performs polynomial spatial warping.

Using least squares estimation, POLYWARP determines the coefficients Kxi,j and
Ky(i,j) of the polynomial functions:

Kx and Ky can be used as inputs P and Q to the built-in function POLY_2D. This
coordinate transformation may be then used to map from Xo, Yo coordinates into Xi,
Yi coordinates.

This routine is written in the IDL language. Its source code can be found in the file
polywarp.pro in the lib subdirectory of the IDL distribution.

Syntax

POLYWARP, Xi, Yi, Xo, Yo, Degree, Kx, Ky [, /DOUBLE] [, STATUS=variable]

Arguments

Xi, Yi

Vectors of X and Y coordinates to be fit as a function of Xo and Yo.

Xo, Yo

Vectors of X and Y independent coordinates. These vectors must have the same
number of elements as Xi and Yi.

Xi Kxi j, Xo
j

Yo
i⋅⋅

i j,
∑=

Yi Kyi j, Xo
j

Yo
i⋅⋅

i j,
∑=
POLYWARP IDL Reference Guide

 1489
Degree

The degree of the fit. The number of coordinate pairs must be greater than or equal to
(Degree+1)2.

Kx

A named variable that will contain the array of coefficients for Xi as a function of
(Xo, Yo). This parameter is returned as a (Degree+1) by (Degree+1) element array.

Ky

A named variable that will contain the array of coefficients for Yi. This parameter is
returned as a (Degree+1) by (Degree+1) element array.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision result. Explicitly set DOUBLE=0 to ensure the use of single-precision for
computations and to return a single-precision result. By default, POLYWARP
performs computations in double precision and returns a double-precision result if
any of the inputs are double-precision; computations are performed in single
precision and the result returned as single-precision if all of the inputs are single-
precision.

STATUS

Set this keyword to a named variable to receive the status of the operation. Possible
status values are:

Value Description

0 Successful completion.

1 Singular array (which indicates that the inversion is invalid).

2 Warning that a small pivot element was used and that
significant accuracy was probably lost.

Table 77: STATUS Keyword Values
IDL Reference Guide POLYWARP

1490
Note
If STATUS is not specified, any warning messages will be output to the screen.

Examples

The following example shows how to display an image and warp it using the
POLYWARP and POLY_2D routines.
POLYWARP IDL Reference Guide

 1491
; Create and display the original image:
A = BYTSCL(SIN(DIST(250)))
TVSCL, A

; Now set up the Xi’s and Yi’s:
XI = [24, 35, 102, 92]
YI = [81, 24, 25, 92]

; Enter the Xo’s and Yo’s:
XO = [61, 62, 143, 133]
YO = [89, 34, 38, 105]

; Run POLYWARP to obtain a Kx and Ky:
POLYWARP, XI, YI, XO, YO, 1, KX, KY

; Create a warped image based on Kx and Ky with POLY_2D:
B = POLY_2D(A, KX, KY)

; Display the new image:
TV, B

Version History

Introduced: Original

See Also

POLY_2D, WARP_TRI
IDL Reference Guide POLYWARP

1492
POPD

The POPD procedure changes the current working directory to the directory saved on
the top of the directory stack maintained by the PUSHD and POPD procedures. This
top entry is then removed from the stack.

Attempting to pop a directory when the stack is empty causes a warning message to
be printed. The current directory is not changed in this case. The common block
DIR_STACK is used to store the directory stack.

This routine is written in the IDL language. Its source code can be found in the file
popd.pro in the lib subdirectory of the IDL distribution.

Syntax

POPD

Arguments

None.

Keywords

None.

Version History

Introduced: Pre 4.0

See Also

CD, PRINTD, PUSHD
POPD IDL Reference Guide

 1493
POWELL

The POWELL procedure minimizes a user-written function Func of two or more
independent variables using the Powell method. POWELL does not require a user-
supplied analytic gradient.

POWELL is based on the routine powell described in section 10.5 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

POWELL, P, Xi, Ftol, Fmin, Func [, /DOUBLE] [, ITER=variable]
[, ITMAX=value]

Arguments

P

On input, P is an n-element vector specifying the starting point. On output, it is
replaced with the location of the minimum.

Xi

On input, Xi is an initial n by n element array whose columns contain the initial set of
directions (usually the n unit vectors). On output, it is replaced with the then-current
directions.

Ftol

An input value specifying the fractional tolerance in the function value. Failure to
decrease by more than Ftol in one iteration signals completeness. For single-
precision computations, a value of 1.0 × 10-4 is recommended; for double-precision
computations, a value of 1.0 × 10-8 is recommended.

Fmin

On output, Fmin contains the value at the minimum-point P of the user-supplied
function specified by Func.
IDL Reference Guide POWELL

1494
Func

A scalar string specifying the name of a user-supplied IDL function of two or more
independent variables to be minimized. This function must accept a vector argument
X and return a scalar result.

For example, suppose we wish to minimize the function

To evaluate this expression, we define an IDL function named POWFUNC:

FUNCTION powfunc, X
RETURN, (X[0] + 2.0*X[1]) * EXP(-X[0]^2 -X[1]^2)

END

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

ITER

Use this keyword to specify an output variable that will be set to the number of
iterations performed.

ITMAX

Use this keyword to specify the maximum allowed number of iterations. The default
is 200.

Warning
POWELL halts once the value specified with ITMAX has been reached.

Examples

We can use POWELL to minimize the function POWFUNC given above.

PRO TEST_POWELL

; Define the fractional tolerance:
ftol = 1.0e-4

; Define the starting point:
P = [.5d, -.25d]

f x y,() x 2y+()e
x2– y2–

=

POWELL IDL Reference Guide

 1495
; Define the starting directional vectors in column format:
xi = TRANSPOSE([[1.0, 0.0],[0.0, 1.0]])

; Minimize the function:
POWELL, P, xi, ftol, fmin, 'powfunc'

; Print the solution point:
PRINT, 'Solution point: ', P

; Print the value at the solution point:
PRINT, 'Value at solution point: ', fmin

END

FUNCTION powfunc, X
RETURN, (X[0] + 2.0*X[1]) * EXP(-X[0]^2 -X[1]^2)

END

IDL prints:

Solution point: -0.31622777 -0.63245552
Value at solution point: -0.95900918

The exact solution point is [-0.31622777, -0.63245553].

The exact minimum function value is -0.95900918.

Version History

Introduced: 4.0

See Also

AMOEBA, DFPMIN, SIMPLEX
IDL Reference Guide POWELL

1496
PRIMES

The PRIMES function computes the first K prime numbers.

This routine is written in the IDL language. Its source code can be found in the file
primes.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = PRIMES(K)

Return Value

The result is a K-element long integer vector.

Arguments

K

An integer or long integer scalar that specifies the number of primes to be computed.

Examples

To compute the first 25 prime numbers:

PRINT, PRIMES(25)

IDL prints:

2 3 5 7 11 13
17 19 23 29 31 37
41 43 47 53 59 61
67 71 73 79 83 89
97

Version History

Introduced: 4.0
PRIMES IDL Reference Guide

 1497
PRINT/PRINTF

The two PRINT procedures perform formatted output. PRINT performs output to the
standard output stream (IDL file unit -1), while PRINTF requires a file unit to be
explicitly specified.

Format Compatibility

If the FORMAT keyword is not present and PRINT is called with more than one
argument, and the first argument is a scalar string starting with the characters “$(”,
this initial argument is taken to be the format specification, just as if it had been
specified via the FORMAT keyword. This feature is maintained for compatibility
with version 1 of VMS IDL.

Syntax

PRINT [, Expr1, ..., Exprn]

PRINTF [, Unit, Expr1, ..., Exprn]

Keywords: [, AM_PM=[string, string]] [, DAYS_OF_WEEK=string_array{7
names}] [, FORMAT=value] [, MONTHS=string_array{12 names}]
[, /STDIO_NON_FINITE]

Arguments

Unit

For PRINTF, Unit specifies the file unit to which the output is sent.

Expri

The expressions to be output.

Keywords

AM_PM

Supplies a string array of 2 names to be used for the names of the AM and PM string
when processing explicitly formatted dates (CAPA, CApA, and CapA format codes)
with the FORMAT keyword.
IDL Reference Guide PRINT/PRINTF

1498
DAYS_OF_WEEK

Supplies a string array of 7 names to be used for the names of the days of the week
when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the FORMAT keyword.

FORMAT

If FORMAT is not specified, IDL uses its default rules for formatting the output.
FORMAT allows the format of the output to be specified in precise detail, using a
FORTRAN-style specification. See “Using Explicitly Formatted Input/Output” in
Chapter 10 of the Building IDL Applications manual.

MONTHS

Supplies a string array of 12 names to be used for the names of the months when
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) with
the FORMAT keyword.

STDIO_NON_FINITE

Set this keyword to allow the writing of data files readable by C or FORTRAN
programs on a given platform; it is otherwise unnecessary.The various systems
supported by IDL differ widely in the representation used for non-finite floating point
values (i.e., NaN and Infinity). Consider that the following are all possible
representations for NaN on at least one IDL platform:

NaN, NanQ, ?.0000, nan0x2, nan0x7, 1.#QNAN, -1.#IND0.

And the following are considered to be Infinity:

Inf, Infinity, ++.0000, ----.0000, 1.#INF

On input, IDL can recognize any of these, but on output, it uses the same standard
representation on all platforms. This promotes cross-platform consistency. To cause
IDL to use the system C library sprintf() function to format such values, yielding
the native representation for that platform, set the STDIO_NON_FINITE keyword.

Obsolete Keywords

The following keywords are obsolete:

• REWRITE

For information on obsolete keywords, See Appendix I, “Obsolete Features”.
PRINT/PRINTF IDL Reference Guide

 1499
Examples

To print the string “IDL is fun.” enter the command:

PRINT, 'IDL is fun.'

To print the same message to the open file associated with file unit number 2, use the
command:

PRINTF, 2, 'IDL is fun.'

Version History

Introduced: Original

See Also

ANNOTATE, MESSAGE, WRITEU, XYOUTS
IDL Reference Guide PRINT/PRINTF

1500
PRINTD

The PRINTD procedure prints the contents of the directory stack maintained by the
PUSHD and POPD procedures. The contents of the directory stack are listed on the
default output device. The common block DIR_STACK is used to store the directory
stack.

This routine is written in the IDL language. Its source code can be found in the file
printd.pro in the lib subdirectory of the IDL distribution.

Syntax

PRINTD

Arguments

None.

Keywords

None.

Version History

Introduced: Pre 4.0

See Also

CD, POPD, PUSHD
PRINTD IDL Reference Guide

 1501
PRO

The PRO statement defines an IDL procedure.

Note
For information on using the PRO statement, see Chapter 4, “Procedures and
Functions” in the Building IDL Applications manual.

Syntax

PRO Procedure_Name, argument1, ..., argumentn
…

END

Arguments

argumentn

A parameter that is passed to the procedure.

Keywords

None.

Examples

The following example demonstrates the use of arguments in a PRO statement:

PRO MYPROCEDURE
X = 5
; Call the ADD procedure:
ADD, 3, X

END

PRO ADD, A, B
PRINT, 'A = ', A
PRINT, 'B = ', B
A = A + B
PRINT, 'A = ', A

END
IDL Reference Guide PRO

1502
After running myprocedure.pro, IDL returns:

A = 3
B = 5
A = 8

Version History

Introduced: Original
PRO IDL Reference Guide

 1503
PRODUCT

The PRODUCT function returns the product of elements within an array. The product
of the array elements over a given dimension is returned if the Dimension argument is
present. Because the product can easily overflow, the product is computed using
double-precision arithmetic and the Result is double precision.

Tip
If your array has a mix of very large and very small values, the product may
underflow or overflow during the computation, even though the final result would
be within double-precision limits. In this case, you should not use PRODUCT, but
instead compute the product by taking the logarithm, using the TOTAL function,
and then taking the exponential: Result = EXP(TOTAL(ALOG(Array))).

Syntax

Result = PRODUCT(Array [, Dimension] [, /CUMULATIVE] [, /NAN])

Return Value

Returns the product of the elements of Array.

Arguments

Array

The array for which to compute the product. This array can be of any basic type
except string.

Dimension

An optional argument specifying the dimension over which to compute the product,
starting at one. If this argument is not present or zero, the product of all the array
elements is returned. If this argument is present, the result is an array with one less
dimension than Array. For example, if the dimensions of Array are N1, N2, N3, and
Dimension is 2, the dimensions of the result are (N1, N3), and element (i,j) of the
result contains the product:

Ri j, Ai k j, ,

k 0=

N2 1–

∏=
IDL Reference Guide PRODUCT

1504
Keywords

CUMULATIVE

If this keyword is set, the result is an array of the same size as the input, with each
element, i, containing the product of the input array elements 0 to i. This keyword
also works with the Dimension parameter, in which case the cumulative product is
performed over the given dimension.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as missing
data with the value 1.

Thread Pool Keywords

This routine is written to make use of IDL's thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords”.

Examples

To find the product of all elements in a one-dimensional array:

; Define a one-dimensional array:
array = [20, 10, 5, 5, 3]

; Find the product of the array elements:
prod = PRODUCT(array)

; Print the results:
PRINT, 'Product of Array = ', prod

IDL prints:

Product of Array = 15000.000
PRODUCT IDL Reference Guide

 1505
Now find the product of elements in a two-dimensional array:

; Define a two-dimensional array:
array = FINDGEN(4,4) + 1

; Find the product of all array elements:
prodAll = PRODUCT(array)

; Find the product along the first dimension:
prod1 = PRODUCT(array, 1)

; Find the product along the second dimension:
prod2 = PRODUCT(array, 2)

; Print the results:
PRINT, 'Product of all elements = ', prodAll
PRINT, 'Product along first dimension: '
PRINT, prod1
PRINT, 'Product along second dimension: '
PRINT, prod2

IDL prints:

Product of all elements 2.0922790e+013
Product along first dimension:
 24.000000 1680.0000 11880.000 43680.000
Product along second dimension:
 585.00000 1680.0000 3465.0000 6144.0000

Version History

Introduced: 5.6

See Also

FACTORIAL, TOTAL
IDL Reference Guide PRODUCT

1506
PROFILE

The PROFILE function extracts a profile from an image and returns the values of the
image along the profile line marked by the user.

This routine is written in the IDL language. Its source code can be found in the file
profile.pro in the lib subdirectory of the IDL distribution.

Using PROFILE

To mark a profile line after calling PROFILE, click in the image with the left mouse
button to mark the beginning and ending points. The pixel coordinates of the selected
points are displayed in the IDL command log.

Syntax

Result = PROFILE(Image [, XX, YY] [, /NOMARK] [, XSTART=value]
[, YSTART=value])

Return Value

Returns a floating-point vector containing the values along the profile line.

Arguments

Image

The data array representing the image. This array can be of any type except complex.

XX

A named variable that will contain the X coordinates of the points along the selected
profile.

YY

A named variable that will contain the Y coordinates of the points along the selected
profile.
PROFILE IDL Reference Guide

 1507
Keywords

NOMARK

Set this keyword to inhibit marking the image with the profile line.

XSTART

The starting X location of the lower-left corner of Image. If this keyword is not
specified, 0 is assumed.

YSTART

The starting Y location of the lower-left corner of Image. If this keyword is not
specified, 0 is assumed.

Examples

This example displays an image, selects a profile, and plots that profile in a new
window:

; Create an image:
A = BYTSCL(DIST(256))

; Display the image:
TV, A

; Extract a profile from the image:
R = PROFILE(A)

Mark two points on the image with the mouse.

; Create a new plotting window:
WINDOW, /FREE

; Plot the profile:
PLOT, R

Note
The PROFILES procedure is an interactive version of this routine.

Version History

Introduced: Original
IDL Reference Guide PROFILE

1508
See Also

PROFILES
PROFILE IDL Reference Guide

 1509
PROFILER

The PROFILER procedure allows you to access the IDL Code Profiler. The IDL
Code Profiler helps you analyze the performance of your applications. You can easily
monitor the calling frequency and execution time for procedures and functions.

Syntax

PROFILER [, Module] [, /CLEAR] [, DATA=variable] [, OUTPUT=variable]
[, /REPORT] [, /RESET] [, /SYSTEM]

Arguments

Module

The program to which changes in profiling will be applied. If Module is not specified,
profiling changes will be applied to all currently-compiled programs.

Note
The Module is often named with respect to the file in which it is stored. For
example, the file build_it.pro may contain the module, build_it. If you
specify the file name, you will incur a syntax error.

Keywords

CLEAR

Set this keyword to disable profiling of Module or of all compiled modules if Module
is not specified.

DATA

Set this keyword to a specified variable containing output of the report as an unnamed
structure with the following tags and data types:

{NAME:char, COUNT:long, ONLY_TIME:double, TIME:double,
SYSTEM:byte}

OUTPUT

Set this keyword to a specified variable in which to store the results of the REPORT
keyword.
IDL Reference Guide PROFILER

1510
REPORT

Set this keyword to report the results of profiling. If you enter a program at the
command line, the PROFILER procedure will report the status of all the specified
modules used either since the beginning of the IDL session, or since the PROFILER
was reset.

RESET

Set this keyword to clear the results of profiling.

SYSTEM

Set this keyword to profile IDL system procedures and functions. By default, only
user-written or library files, which have been compiled, are profiled.

Examples

; Include IDL system procedures and functions when profiling:
PROFILER, /SYSTEM

; Create a dataset using the library function DIST. Note that DIST
; is immediately compiled:
A= DIST(500)

; Display the image:
TV, A

; Retrieve the profiling results:
PROFILER, /REPORT

IDL prints:

Module Type Count Only(s) Avg.(s) Time(s) Avg.(s)
FINDGEN (S) 1 0.000239 0.000239 0.000239 0.000239
FLTARR (S) 1 0.010171 0.010171 0.010171 0.010171
N_ELEMENTS (S) 1 0.000104 0.000104 0.000104 0.000104
ON_ERROR (S) 1 0.000178 0.000178 0.000178 0.000178
SQRT (S) 251 0.099001 0.000394 0.099001 0.000394
TV (S) 1 2.030000 2.030000 2.030000 2.030000

Version History

Introduced: 5.1
PROFILER IDL Reference Guide

 1511
See Also

Chapter 17, “Debugging an IDL Program” in the Building IDL Applications manual.
IDL Reference Guide PROFILER

1512
PROFILES

The PROFILES procedure interactively draws row or column profiles of an image in
a separate window. A new window is created and the mouse location in the original
window is used to plot profiles in the new window.

This routine is written in the IDL language. Its source code can be found in the file
profiles.pro in the lib subdirectory of the IDL distribution.

Using PROFILES

Moving the mouse within the original image interactively creates profile plots in the
newly-created profile window. Pressing the left mouse button toggles between row
and column profiles. The right mouse button exits.

Syntax

PROFILES, Image [, /ORDER] [, SX=value] [, SY=value] [, WSIZE=value]

Arguments

Image

The variable that represents the image displayed in the current window. This data
need not be scaled into bytes. The profile graphs are made from this array, even if it is
not currently displayed.

Keywords

ORDER

Set this keyword to 1 for images written top down or 0 for bottom up. Default is the
current value of !ORDER.

SX

Starting X position of the image in the window. If this keyword is omitted, 0 is
assumed.

SY

Starting Y position of the image in the window. If this keyword is omitted, 0 is
assumed.
PROFILES IDL Reference Guide

 1513
WSIZE

The size of the PROFILES window as a fraction or multiple of 640 by 512.

Examples

Create and display an image and use the PROFILES routine on it.

; Create an image:
A = BYTSCL(DIST(256))

; Display the image:
TV, A

; Run the PROFILES routine:
PROFILES, A, WSIZE = .5

A 320 x 256 pixel PROFILES window should appear. Move the cursor over the
original image to see the profile at the cursor position. Press the left mouse button to
toggle between row and column profiles. Press the right mouse button (with the
cursor over the original image) to exit the routine.

Version History

Introduced: Pre 4.0

See Also

PROFILE
IDL Reference Guide PROFILES

1514
PROJECT_VOL

The PROJECT_VOL function returns a two-dimensional image that is the projection
of a 3-D volume of data onto a plane (similar to an X-ray). The returned image is a
translucent rendering of the volume (the highest data values within the volume show
up as the brightest regions in the returned image). Depth queuing and opacity may be
used to affect the image. The volume is projected using a 4x4 matrix, so any type of
projection may be used including perspective. Typically the system viewing matrix
(!P.T) is used as the 4x4 matrix.

Note
The VOXEL_PROJ procedure performs many of the same functions as this routine,
and is faster.

This routine is written in the IDL language. Its source code can be found in the file
project_vol.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = PROJECT_VOL(Vol, X_Sample, Y_Sample, Z_Sample
[, /AVG_INTENSITY] [, /CUBIC] [, DEPTH_Q=value] [, OPAQUE=3D_array]
[, TRANS=array] [, XSIZE=longword integer] [, YSIZE=longword integer]
[, /Z_BUFFER])

Return Value

Returns a projection of the volumetric data.

Arguments

Vol

A 3-D array of any type except string or structure containing the three-dimensional
volume of data to project.

X_Sample

A long integer specifying the number of rays to project along the X dimension of the
image. The returned image will have the dimensions X_sample by Y_sample.
PROJECT_VOL IDL Reference Guide

 1515
Y_Sample

A long integer specifying the number of rays to project along the Y dimension of the
image. To preserve the correct aspect ratio of the data, Y_sample should equal
X_sample.

Z_Sample

A long integer specifying the number of samples to take along each ray. Higher
values for X_sample, Y_sample, and Z_sample increase the image resolution as well
as execution time.

Keywords

AVG_INTENSITY

If this keyword is set, the average intensity method of projection is used. The default
is a maximum intensity projection. This keyword is ignored if the Z_BUFFER
keyword is set.

CUBIC

If this keyword is set, the cubic method of interpolation is used. The default is
bilinear interpolation.

DEPTH_Q

Set this keyword to indicate that the image should be created using depth queuing.
The depth queuing should be a single floating-point value between 0.0 and 1.0. This
value specifies the brightness of the farthest regions of the volume relative to the
closest regions of the volume. A value of 0.0 will cause the back side of the volume to
be completely blacked out, while a value of 1.0 indicates that the back side will show
up just as bright as the front side. The default is 1.0 (indicating no depth queuing).

OPAQUE

A 3-D array of any type except string or structure, with the same size and dimensions
as Vol. This array specifies the opacity of each cell in the volume. OPAQUE values of
0 allow all light to pass through. OPAQUE values are cumulative. For example, if a
ray emanates from a data value of 50, and then passes through 10 opaque cells (each
with a data value of 0 and an opacity value of 5) then that ray would be completely
blocked out (the cell with the data value of 50 would be invisible on the returned
image). The default is no opacity.
IDL Reference Guide PROJECT_VOL

1516
TRANS

A 4x4 floating-point array to use as the transformation matrix when projecting the
volume. The default is to use the system viewing matrix (!P.T).

XSIZE

The x size of the returned image to return. CONGRID is used to resize the final image
to be XSIZE by YSIZE. The default is the x size of the current window (or the x size
of the Z-buffer). If no current window exists, then the default is X_sample.

YSIZE

The y size of the returned image. CONGRID is used to resize the final image to be
XSIZE by YSIZE. The default is the y size of the current window (or the y size of the
Z-buffer). If no current window exists, then the default is Y_sample.

Z_BUFFER

If this keyword is set, the projection is combined with the contents of the Z-buffer.
The default is to not use the Z-buffer contents.

Examples

Use the T3D routine to set up a viewing projection and render a volume of data using
PROJECT_VOL.

; First, create some data:
vol = RANDOMU(S, 40, 40, 40)
FOR I=0, 10 DO vol = SMOOTH(vol, 3)
vol = BYTSCL(vol(3:37, 3:37, 3:37))
opaque = RANDOMU(S, 40, 40, 40)
FOR I=0, 10 DO opaque = SMOOTH(opaque, 3)
opaque = BYTSCL(opaque(3:37, 3:37, 3:37), TOP=25B)

; Set up the view:
xmin = 0 & ymin = 0 & zmin = 0
xmax = 34 & ymax = 34 & zmax = 34
!X.S = [-xmin, 1.0] / (xmax - xmin)
!Y.S = [-ymin, 1.0] / (ymax - ymin)
!Z.S = [-zmin, 1.0] / (zmax - zmin)
T3D, /RESET
T3D, TRANSLATE=[-0.5, -0.5, -0.5]
T3D, SCALE=[0.7, 0.7, 0.7]
T3D, ROTATE=[30, -30, 60]
T3D, TRANSLATE=[0.5, 0.5, 0.5]
WINDOW, 0, XSIZE=512, YSIZE=512
PROJECT_VOL IDL Reference Guide

 1517
; Generate and display the image:
img = PROJECT_VOL(vol, 64, 64, 64, DEPTH_Q=0.7, $

OPAQUE=opaque, TRANS=(!P.T))
TVSCL, img

Version History

Introduced: Pre 4.0

See Also

POLYSHADE, VOXEL_PROJ
IDL Reference Guide PROJECT_VOL

1518
PS_SHOW_FONTS

The PS_SHOW_FONTS procedure displays all the PostScript fonts that IDL knows
about, with both the StandardAdobe and ISOLatin1 encodings. Each display takes a
separate page, and each character in each font is shown with its character index.

A PostScript file is produced, one page per font/mapping combination. The output
file contains almost 70 pages of output. A PostScript previewer is recommended
rather than sending it to a printer.

This routine is written in the IDL language. Its source code can be found in the file
ps_show_fonts.pro in the lib subdirectory of the IDL distribution.

Syntax

PS_SHOW_FONTS [, /NOLATIN]

Arguments

None.

Keywords

NOLATIN

Set this keyword to prevent output of ISOLatin1 encodings.

Version History

Introduced: Pre 4.0

See Also

PSAFM
PS_SHOW_FONTS IDL Reference Guide

 1519
PSAFM

The PSAFM procedure takes an Adobe Font Metrics file as input and generates a new
AFM file in the format that IDL likes. This new file differs from the original in the
following ways:

• Information not used by IDL is removed.

• AFM files with the AdobeStandardEncoding are supplemented with an
ISOLatin1Encoding.

This routine is written in the IDL language. Its source code can be found in the file
psafm.pro in the lib subdirectory of the IDL distribution.

Syntax

PSAFM, Input_Filename, Output_Filename

Arguments

Input_Filename

A string that contains the name of existing AFM file from Adobe.

Output_Filename

A string that specifies the name of new IDL-format AFM file to be created.

Keywords

None.

Version History

Introduced: Pre 4.0

See Also

PS_SHOW_FONTS
IDL Reference Guide PSAFM

1520
PSEUDO

The PSEUDO procedure creates a pseudo-color table based on the LHB (Lightness,
Hue, and Brightness) system and loads it.

The pseudo-color mapping used is generated by first translating from the LHB
coordinate system to the LAB coordinate system, finding N colors spread out along a
helix that spans this LAB space (supposedly a near maximal entropy mapping for the
eye, given a particular N) and remapping back into the RGB (Red, Green, and Blue)
colorspace. The result is loaded as the current colortable.

This routine is written in the IDL language. Its source code can be found in the file
pseudo.pro in the lib subdirectory of the IDL distribution.

Syntax

PSEUDO, Litlo, Lithi, Satlo, Sathi, Hue, Loops [, Colr]

Arguments

Litlo

Starting lightness, from 0 to 100%.

Lithi

Ending lightness, from 0 to 100%.

Satlo

Starting saturation, from 0 to 100%.

Sathi

Ending saturation, from 0 to 100%.

Hue

Starting hue, in degrees, from 0 to 360.

Loops

The number of loops of hue to make in the color helix. This value can range from 0 to
around 3 to 5 and need not be an integer.
PSEUDO IDL Reference Guide

 1521
Colr

An optional (256,3) integer array in which the new R, G, and B values are returned.
Red = Colr[*,0], green = Colr[*,1], blue = Colr[*,2].

Keywords

None.

Version History

Introduced: Original

See Also

COLOR_CONVERT, COLOR_QUAN
IDL Reference Guide PSEUDO

1522
PTR_FREE

The PTR_FREE procedure destroys the heap variables pointed at by its pointer
arguments. Any memory used by the heap variable is released, and the variable
ceases to exist. No change is made to the arguments themselves and all pointers to the
destroyed variables continue to exist. Such pointers are known as dangling
references. PTR_FREE is the only way that pointer heap variables can be destroyed.
If PTR_FREE is not called on a heap variable, it continues to exist until the IDL
session ends, even if no pointers remain that can be used to reference it.

Note
PTR_FREE is not recursive. That is, if the heap variable pointed at by pointer1
contains pointer2, destroying pointer1 will not destroy the heap variable
pointed at by pointer2. Take care not to lose the only pointer to a heap variable by
destroying a pointer to a heap variable that contains that pointer.

Syntax

PTR_FREE, P1, ... …, Pn

Arguments

Pi

Scalar or array arguments of pointer type. If the NULL pointer is passed, PTR_FREE
ignores it quietly.

Keywords

None.

Version History

Introduced: 5.0
PTR_FREE IDL Reference Guide

 1523
PTR_NEW

The PTR_NEW function provides the primary mechanism for creating heap
variables.

Syntax

Result = PTR_NEW([InitExpr] [, /ALLOCATE_HEAP] [, /NO_COPY])

Return Value

It returns a pointer to the created variable.

Arguments

InitExpr

If InitExpr is provided, PTR_NEW uses it to initialize the newly created heap
variable. Note that the new heap variable does not point at the InitExpr variable in any
sense—the new heap variable simply contains a copy of its value.

If InitExpr is not provided, PTR_NEW does not create a new heap variable, and
returns the Null Pointer, a special pointer with a fixed known value that can never
point at a heap variable. The null pointer is useful as a terminator in dynamic data
structures, or as a placeholder in structure definitions.

Keywords

ALLOCATE_HEAP

Set this keyword to cause PTR_NEW to allocate an undefined heap variable rather
than return a null pointer when InitExpr is not specified.

NO_COPY

Usually, when the InitExpr argument is provided, PTR_NEW allocates additional
memory to make a copy. If the NO_COPY keyword is set, the value data is taken
away from the InitExpr variable and attached directly to the heap variable. This
feature can be used to move data very efficiently. However, it has the side effect of
causing the InitExpr variable to become undefined. Using the NO_COPY keyword is
completely equivalent to the statement:

Result = PTR_NEW(TEMPORARY(InitExpr))
IDL Reference Guide PTR_NEW

1524
and is provided as a syntactic convenience.

Version History

Introduced: 5.0
PTR_NEW IDL Reference Guide

 1525
PTR_VALID

The PTR_VALID function verifies the validity of its pointer arguments, or
alternatively returns a vector of pointers to all the existing valid pointer heap
variables.

Syntax

Result = PTR_VALID([Arg] [, /CAST] [, COUNT=variable])

Return Value

If called with an pointer or array of pointers as its argument, PTR_VALID returns a
byte array of the same size as the argument. Each element of the result is set to True
(1) if the corresponding pointer in the argument refers to an existing valid heap
variable, or to False (0) otherwise.

If called with an integer or array of integers as its argument and the CAST keyword is
set, PTR_VALID returns an array of pointers. Each element of the result is a pointer
to the heap variable indexed by the integer value. Integers used to index heap
variables are shown in the output of the HELP and PRINT commands. This is useful
primarily in programming/debugging when you have lost a reference but see it with
HELP and need to get a reference to it interactively in order to determine what it is
and take steps to fix the code. See the “Examples” section below for an example.

If no argument is specified, PTR_VALID returns a vector of pointers to all existing
valid pointer heap variables—even if there are currently no pointers to the heap
variable. This usage allows you to “reclaim” pointer heap variables to which all
pointers have been lost. If no valid pointer heap variables exist, a scalar null pointer is
returned.

Arguments

Arg

Arg can be one of the following:

1. A scalar or array argument of pointer type.

2. If the CAST keyword is set, an integer index or array of integer indices to heap
variables. Integers used to index heap variables are shown in the output of the
HELP and PRINT commands.
IDL Reference Guide PTR_VALID

1526
Keywords

CAST

Set this keyword to create a new pointer to each heap variable index specified in Arg.

COUNT

Set this keyword equal to a named variable that will contain the number of currently
valid heap variables. This value is returned as a longword integer.

Examples

To determine if a given pointer refers to a valid heap variable:

IF (PTR_VALID(p)) THEN …

To destroy all existing pointer heap variables:

PTR_FREE, PTR_VALID()

You can use the CAST keyword to “reclaim” lost heap variables. For example:

A = PTR_NEW(10)
PRINT, A

IDL prints:

<PtrHeapVar2>

In this case, the integer index to the heap variable is 2. If we reassign the variable A,
we will “lose” the pointer, but the heap variable will still exist:

A=0
PRINT, A, PTR_VALID()

IDL prints:

0 <PtrHeapVar2>

We can reclaim the lost heap variable using the CAST keyword:

A = PTR_VALID(2, /CAST)
PRINT, A

IDL prints:

<PtrHeapVar2>
PTR_VALID IDL Reference Guide

 1527
Version History

Introduced: 5.0
IDL Reference Guide PTR_VALID

1528
PTRARR

The PTRARR function returns a pointer vector or array. The individual elements of
the array are set to the Null Pointer.

Syntax

Result = PTRARR(D1, ... …, D8 [, /ALLOCATE_HEAP | , /NOZERO])

Return Value

Returns a vector or array of the specified dimensions.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified.

Keywords

ALLOCATE_HEAP

Normally, PTRARR sets every element of the result to the null pointer. It you wish
IDL to allocate heap variables for every element of the array instead, set the
ALLOCATE_HEAP keyword. In this case, every element of the array will be
initialized to point at an undefined heap variable.

NOZERO

If ALLOCATE_HEAP is not specified, PTRARR sets every element of the result to
the null pointer. If NOZERO is nonzero, this initialization is not performed and
PTRARR executes faster. NOZERO is ignored if ALLOCATE_HEAP is specified.

Warning
If you specify NOZERO, the resulting array will have whatever value happens to
exist at the system memory location that the array is allocated from. You should be
careful to initialize such an array to valid pointer values.
PTRARR IDL Reference Guide

 1529
Example

Create P, a 3 element by 3 element pointer array with each element containing the
Null Pointer by entering:

P = PTRARR(3, 3)

Version History

Introduced: 5.0
IDL Reference Guide PTRARR

1530
PUSHD

The PUSHD procedure pushes a directory onto the top of the directory stack
maintained by the PUSHD and POPD procedures. The name of the current directory
is pushed onto the directory stack. This directory becomes the next directory used by
POPD. IDL changes directories to the one specified by the Dir argument. The
common block DIR_STACK is used to store the directory stack.

This routine is written in the IDL language. Its source code can be found in the file
pushd.pro in the lib subdirectory of the IDL distribution.

Syntax

PUSHD, Dir

Arguments

Dir

A string containing the name of the directory to change to. The current directory is
pushed onto the top of the directory stack.

Keywords

None.

Version History

Introduced: Pre 4.0

See Also

CD, POPD, PRINTD
PUSHD IDL Reference Guide

 1531
QGRID3

The QGRID3 function linearly interpolates the dependent variable values to points in
a regularly sampled volume. Its inputs are a triangulation of scattered data points in
three dimensions, and the value of a dependent variable for each point.

Syntax

Result = QGRID3(XYZ, F, Tetrahedra [, DELTA=vector] [, DIMENSION=vector]
[, MISSING=value] [, START=vector])

or

Result = QGRID3(X, Y, Z, F, Tetrahedra [, DELTA=array] [, DIMENSION=array]
[, MISSING=value] [, START=array])

Return Value

Result is a 3-dimensional array of either single or double precision floating type, of
the specified dimensions.

Arguments

XYZ

This is a 3-by-n array containing the scattered points.

X, Y, Z

One-dimensional vectors containing the X, Y, and Z point coordinates.

Tetrahedra

A longword array containing the point indices of each tetrahedron, as created by
QHULL.

Keywords

Note
Any of the keywords may be set to a scalar if all elements are the same.
IDL Reference Guide QGRID3

1532
DELTA

A scalar or three element array specifying the grid spacing in X, Y, and Z. If this
keyword is not specified, it is set to create a grid of DIMENSION cells, enclosing the
volume from START to [max(x), max(y), max(z)].

DIMENSION

A three element array specifying the grid dimensions in X, Y, and Z. Default value is
25 for each dimension.

MISSING

The value to be used for grid points that lie outside the convex hull of the scattered
points. The default is 0.

START

A three element array specifying the start of the grid in X, Y, and Z. Default value is
[min(x), min(y), min(z)].

Examples

Example 1

This example interpolates a data set measured on an irregular grid.

; Create a dataset of N points.
n = 200
x = RANDOMU(seed, n)
y = RANDOMU(seed, n)
z = RANDOMU(seed, n)

; Create dependent variable.
f = x^2 - x*y + z^2 + 1

; Obtain a tetrahedra using the QHULL procedure.
QHULL, x, y, z, tet, /DELAUNAY

; Create a volume with dimensions [51, 51, 51]
; over the unit cube.
volume = QGRID3(x, y, z, f, tet, START=0, DIMENSION=51, $

DELTA=0.02)

; Display the volume.
XVOLUME, BYTSCL(volume)
QGRID3 IDL Reference Guide

 1533
Example 2

This example is similar to the previous one, however in this example we use a [3, n]
array of points.

; Create a dataset of N points.
n = 200
p = RANDOMU(seed, 3, n)

; Create dependent variable.
f = p[0,*]^2 - p[0,*]*p[1,*] + p[2,*]^2 + 1

; Obtain a tetrahedra.
QHULL, p, tet, /DELAUNAY

; Create a volume with dimensions [51, 51, 51] over the unit cube.
volume = QGRID3(p, f, tet, START=0, DIMENSION=51, DELTA=0.02)

; Display the volume.
XVOLUME, BYTSCL(volume)

Example 3

The following example uses the data from the irreg_grid2.txt ASCII file. This
file contains scattered three-dimensional data. This file contains bore hole data for a
square mile of land. The QHULL procedure is used to triangulate the three-
dimensional locations. The QGRID3 function uses the results from QHULL to grid
the data into a volume. The scattered data is displayed as symbol polyline objects in
the XOBJVIEW utility. The resulting gridded volume is displayed in the XVOLUME
utility:

; Import the Data:

; Determine the path to the file. This file contains bore hole
; data for a square mile of land. The bore hole samples were
; roughly taken diagonally from the upper left corner of the
; square to the lower right corner.
file = FILEPATH('irreg_grid2.txt', $

SUBDIRECTORY = ['examples', 'data'])

; Import the data from the file into a structure.
dataStructure = READ_ASCII(file)

; Get the imported array from the first field of
; the structure.
dataArray = TRANSPOSE(dataStructure.field1)
IDL Reference Guide QGRID3

1534
; Initialize the variables of this example from
; the imported array.
x = dataArray[*, 0]
y = dataArray[*, 1]
z = dataArray[*, 2]
data = dataArray[*, 3]

; Determine number of data points.
nPoints = N_ELEMENTS(data)

; Triangulate the Data with QHULL:

; Construct the convex hulls of the volume.
QHULL, x, y, z, tetrahedra, /DELAUNAY

; Grid the Data and Display the Results:

; Initialize volume parameters.
cubeSize = [51, 51, 51]
; Grid the data into a volume.
volume = QGRID3(x, y, z, data, tetrahedra, START = 0, $

DIMENSION = cubeSize, DELTA = 0.02)
; Scale the volume to be able to view the full data value range
; with the color tables provided in the XVOLUME utility.
scaledVolume = BYTSCL(volume)

; Display the results in the XVOLUME utility.
XVOLUME, scaledVolume

; Derive the isosurface for mineral deposits with the data value
; of 2.5.
ISOSURFACE, volume, 2.5, vertices, connectivity

; Initialize a model to contain the isosurface.
oModel = OBJ_NEW('IDLgrModel')

; Initialize the polygon object of the isosurface.
oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $

POLYGONS = connectivity, COLOR = [0, 0, 255])

; Determine the range in each direction.
xRange = [0, cubeSize[0]]
yRange = [0, cubeSize[1]]
zRange = [0, cubeSize[2]]

; Initialize an axis for each direction.
oAxes = OBJARR(3)
oAxes[0] = OBJ_NEW('IDLgrAxis', 0, RANGE = xRange, $

LOCATION = [xRange[0], yRange[0], zRange[0]], /EXACT, $
QGRID3 IDL Reference Guide

 1535
TICKLEN = (0.02*(yRange[1] - yRange[0])))
oAxes[1] = OBJ_NEW('IDLgrAxis', 1, RANGE = yRange, $

LOCATION = [xRange[0], yRange[0], zRange[0]], /EXACT, $
TICKLEN = (0.02*(xRange[1] - xRange[0])))

oAxes[2] = OBJ_NEW('IDLgrAxis', 2, RANGE = zRange, $
LOCATION = [xRange[0], yRange[1], zRange[0]], /EXACT, $
TICKLEN = (0.02*(xRange[1] - xRange[0])))

; Add the polygon and axes object to the model.
oModel -> Add, oPolygon
oModel -> Add, oAxes

; Rotate the model for a better perspective.
oModel -> Rotate, [0, 0, 1], 30.
oModel -> Rotate, [1, 0, 0], -45.

; Display the model, which contains the isosurface.
XOBJVIEW, oModel, /BLOCK, SCALE = 0.75, $

TITLE = 'Isosurface at the Value of 2.5'

; Cleanup object references.
OBJ_DESTROY, [oModel]

Version History

Introduced: 5.5

See Also

QHULL
IDL Reference Guide QGRID3

1536
QHULL

The QHULL procedure constructs convex hulls, Delaunay triangulations, and
Voronoi diagrams of a set of points of 2-dimensions or higher. It uses and is based on
the program QHULL, which is described in Barber, Dobkin and Huhdanpaa, “The
Quickhull Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No 4, December 1996, Pages 469-483.

For more information about QHULL see http://www.geom.umn.edu/software/qhull/.

Syntax

QHULL, V, Tr

or,

QHULL, V0 , V1, [, V2 ... [, V6]] , Tr

Keywords: [, BOUNDS=variable] [, CONNECTIVITY=variable]
[, /DELAUNAY] [, SPHERE=variable] [, VDIAGRAM=array]
[, VNORMALS=array] [, VVERTICES=array]

Arguments

V

An input argument providing an nd-by-np array containing the locations of np points,
in nd dimensions. The number of dimensions, nd, must be greater than or equal to 2.

V0, V1, V2, ..., V(N–1)

Input vectors of dimension np-by-1 elements each containing the i-th coordinate of
np points in nd dimensions. A maximum of seven input vectors may be specified.

Tr

An nd1-by-nt array containing the indices of either the convex hull (nd1 is equal to
nd), or the Delaunay triangulation (nd1 is equal to nd+1) of the input points.
QHULL IDL Reference Guide

http://www.geom.umn.edu/software/qhull/

 1537
Keywords

BOUNDS

Set this keyword equal to a named variable that will contain the indices of the vertices
of the convex hull.

Note
The order of the vertices returned in this variable is unspecified.

CONNECTIVITY

Set this keyword to a named variable in which the adjacency list for each of the np
nodes is returned. The list has the following form:

Each element i, 0 ≤ i < np, contains the starting index of the connectivity list
(list) for node i within the list array. To obtain the adjacency list for node i,
extract the list elements from list[i] to list[i+1] – 1. The adjacency list is not
ordered. To obtain the connectivity list, either the DELAUNAY or SPHERE
keywords must also be specified.

For example, to perform a spherical triangulation, use the following procedure call:

QHULL, lon, lat, CONNECTIVITY = list, SHPERE = sphere

which returns the adjacency list in the variable list. The subscripts of the nodes
adjacent to lon[i] and lat[i] are contained in the array: list[list[i] :list[i+1] – 1].

DELAUNAY

Performs a Delaunay triangulation and returns the vertex indices of the resulting
polyhedra; otherwise, the convex hull of the data are returned.

SPHERE

Computes the Delaunay triangulation of the points which lie on the surface of a
sphere. The V0 argument contains the longitude, in degrees, and V1 contains the
latitude, in degrees, of each point.

VDIAGRAM

When specified, this keyword returns the connectivity of the Voronoi diagram.

For two-dimensional arrays, VDIAGRAM is a 4-by-nv integer array. For each
Voronoi ridge, i, VDIAGRAM[0:1, i] contains the index of the two input points the
ridge bisects. VDIAGRAM [2:3, i] contains the indices within VVERTICES of the
IDL Reference Guide QHULL

1538
Voronoi vertices. In the case of an unbounded half-space, VDIAGRAM[2, i] is set to
a negative index, j, indicating that the corresponding Voronoi ridge is unbounded, and
that the equation for the ridge is contained in VNORMAL[*, –j-1], and starts at
Voronoi vertex [3, i].

For three-dimensional or higher dimensional arrays, VDIAGRAM is returned as a
connectivity vector. This vector has the form [n, v0, v1, i0, i1, ..., in-3], where n is the
number of points needed to describe that particular Voronoi ridge, v0 and v1 contain
the indices for the two input points that the ridge bisects, and i0...in -3 contain the
indices within VVERTICES of the Voronoi vertices. In the case of an unbounded
half-space, VDIAGRAM[i] is set to a negative index, j, indicating that the
corresponding Voronoi ridge is unbounded, and that the equation for the ridge is
contained in VNORMAL[*, –j-1], and starts at VDIAGRAM[i+1].

VNORMALS

When specified, this keyword returns the normals of each Voronoi ridge that is
unbounded. The normals consist of a (nd+1)-by-nu array, where nd is the number of
dimensions, and nu is the number of unbounded vertices. The first nd elements in
each row contain the equation for the unbounded ridge, normalized by the last
element in each row. See the preceding description of VDIAGRAM for details.

VVERTICES

When specified, this keyword returns the Voronoi vertices.

Examples

pro ex_qhull

 ; Create a collection of random points.
 n = 20
 seed = 15
 x = RANDOMU(seed, n)
 y = RANDOMU(seed, n)

 ; Construct the Delaunay triangulation
 ; and the Voronoi diagram.
 QHULL, x, y, triangle, /DELAUNAY, $
 VDIAGRAM=vdiag, VVERTICES=vvert, VNORM=vnorm

 ; Plot our input points.
 PLOT, [-0.1, 1.1], [-0.1, 1.1], /NODATA, $
 XSTYLE=4, YSTYLE=4
 PLOTS, x, y, PSYM=4
QHULL IDL Reference Guide

 1539
 ; Plot the Voronoi diagram.
 for i=0,N_ELEMENTS(vdiag[2,*])-1 do begin
 j = vdiag[2,i] + 1
 ; Bounded or unbounded?
 if (j gt 0) then begin ; Bounded.
 PLOTS, vvert[*, vdiag[2:3,i]], PSYM=-5
 endif else begin
 ; Unbounded, retrieve normal equation.
 ; Vnorm[2,*] contains the normalization parameter.
 offset = [vnorm[1,-j], -vnorm[0,-j]]*vnorm[2,-j]
 xy1 = vvert[*, vdiag[3,i]]
 ; Reverse the normal direction if necessary.
 if (xy1[1] lt xy1[0]) then offset = -offset
 PLOTS, [[xy1], [xy1 + 5*offset]]
 endelse
 endfor

end

For some other examples using the QHULL procedure, see the QGRID3 function.

Version History

Introduced: 5.5

See Also

QGRID3
IDL Reference Guide QHULL

1540
QROMB

The QROMB function evaluates the integral of a function over the closed interval [A,
B] using Romberg integration.

QROMB is based on the routine qromb described in section 4.3 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = QROMB(Func, A, B [, /DOUBLE] [, EPS=value] [, JMAX=value]
[, K=value])

Return Value

The result will have the same structure as the smaller of A and B, and the resulting
type will be single- or double-precision floating, depending on the input types.

Arguments

Func

A scalar string specifying the name of a user-supplied IDL function to be integrated.
This function must accept a single scalar argument X and return a scalar result. It
must be defined over the closed interval [A, B].

For example, if we wish to integrate the cubic polynomial

y = x3 + (x - 1)2 + 3

we define a function CUBIC to express this relationship in the IDL language:

FUNCTION cubic, X
RETURN, X^3 + (X - 1.0)^2 + 3.0

END

A

The lower limit of the integration. A can be either a scalar or an array.

B

The upper limit of the integration. B can be either a scalar or an array.
QROMB IDL Reference Guide

 1541
Note
If arrays are specified for A and B, then QROMB integrates the user-supplied
function over the interval [Ai, Bi] for each i. If either A or B is a scalar and the other
an array, the scalar is paired with each array element in turn.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

EPS

The desired fractional accuracy. For single-precision calculations, the default value is
1.0 × 10-6. For double-precision calculations, the default value is 1.0 × 10-12.

JMAX

2(JMAX - 1) is the maximum allowed number of steps. If this keyword is not specified,
a default of 20 is used.

K

Integration is performed by Romberg’s method of order 2K. If not specified, the
default is K=5. (K=2 is Simpson’s rule).

Examples

Example 1

To integrate the CUBIC function (listed above) over the interval [0, 3] and print the
result:

PRINT, QROMB('cubic', 0.0, 3.0)

IDL prints:

32.2500

This is the exact solution.
IDL Reference Guide QROMB

1542
Example 2

This example evaluates the volume under a surface using the following double
integration:

The exact solution to this equation is 3.

The example consists of four routines: the main routine, the integration in the y
direction, the second integration of the x coefficient, and the second integration of the
x2 coefficient. The main routine is the last routine in the program. To run this
example, copy the text of all four routines, paste them into an IDL editor window, and
save the window’s contents as DoubleIntegration.pro.

FUNCTION XSquaredCoef, x

; Integration of the x squared coefficient.
secondIntegration = 9.*x^2
RETURN, secondIntegration

END

FUNCTION XCoef, x

; Integration of the linear x coefficient.
secondIntegration = x
RETURN, secondIntegration

END

FUNCTION YDirection, y

; Re-write equation to consider both x coefficents.
firstIntegration = QROMB('XSquaredCoef', 0., 1.)*y^2 $
+ 4.*(QROMB('XCoef', 0., 1.))*y + 1.
RETURN, firstIntegration

END

PRO DoubleIntegration

; Determine the volume under the surface represented
; by 9x^2y^2 + 4xy + 1 over a specific region.
volume = QROMB('YDirection', 0., 1.)

volume 9x
2
y

2
4xy 1+ +() x ydd

0

1

∫
0

1

∫=
QROMB IDL Reference Guide

 1543
; Output results.
PRINT, 'Resulting Volume: ', volume

END

Example 3

This example evaluates the mass of a volume using the following triple integration on
a three-dimensional equation representing its density:

The exact solution to this equation is 3.

The example consists of six routines: the main routine, the integration in the z-
direction, the second integration of the xy coefficient, the second integration of the
second x2y2 coefficient, the third integration in the x coefficient, and the third
integration in the x2 coefficient. The main routine is the last routine in the program.
To run this example, copy the text of all six routines, paste them into an IDL editor
window, and save the window’s contents as TripleIntegration.pro.

FUNCTION XSquaredCoef, x

; Integration of the x squared coefficient.
thirdIntegration = 9.*x^2
RETURN, thirdIntegration

END

FUNCTION XCoef, x

; Integration of the linear x coefficient.
thirdIntegration = x
RETURN, thirdIntegration

END

FUNCTION XSquaredYSquaredCoef, y

; Integration of the y squared coefficient.
secondIntegration = QROMB('XSquaredCoef', 0., 1.)*y^2
RETURN, secondIntegration

END

mass 9x
2
y

2
8xyz 1+ +() x y zddd

0

1

∫
0

1

∫
0

1

∫=
IDL Reference Guide QROMB

1544
FUNCTION XYCoef, y

; Integration of the linear y coefficient.
secondIntegration = QROMB('XCoef', 0., 1.)*y
RETURN, secondIntegration

END

FUNCTION ZDirection, z

; Re-write equation to consider all the x and y
; coefficients.
firstIntegration = QROMB('XSquaredYSquaredCoef', 0., 1.) + $
8.*(QROMB('XYCoef', 0., 1.))*z + 1.
RETURN, firstIntegration

END

PRO TripleIntegration

; Determine the mass of the density represented
; by 9x^2y^2 + 8xyz + 1 over a specific region.
mass = QROMB('ZDirection', 0., 1.)

; Output results.
PRINT, 'Resulting Mass: ', mass

END

Version History

Introduced: 4.0

See Also

INT_2D, INT_3D, INT_TABULATED, QROMO, QSIMP
QROMB IDL Reference Guide

 1545
QROMO

The QROMO function evaluates the integral of a function over the open interval (A,
B) using a modified Romberg’s method.

QROMO is based on the routine qromo described in section 4.4 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = QROMO(Func, A [, B] [, /DOUBLE] [, EPS=value] [, JMAX=value]
[, K=value] [, /MIDEXP | , /MIDINF | , /MIDPNT | , /MIDSQL | , /MIDSQU])

Return Value

Returns the integral of the function.

Arguments

Func

A scalar string specifying the name of a user-supplied IDL function to be integrated.
This function must accept a single scalar argument X and return a scalar result. It
must be defined over the open interval (A, B).

For example, if we wish to integrate the fourth-order polynomial

y = 1 / x4

we define a function HYPER to express this relationship in the IDL language:

FUNCTION hyper, X
RETURN, 1.0 / X^4

END

A

The lower limit of the integration. A can be either a scalar or an array.

 B

The upper limit of the integration. B can be either a scalar or an array. If the MIDEXP
keyword is specified, B is assumed to be infinite, and should not be supplied by the
user.
IDL Reference Guide QROMO

1546
Note: If arrays are specified for A and B, then QROMO integrates the user-supplied
function over the interval [Ai, Bi] for each i. If either A or B is a scalar and the other an
array, the scalar is paired with each array element in turn.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

EPS

The fractional accuracy desired, as determined by the extrapolation error estimate.
For single-precision calculations, the default value is 1.0 × 10-6. For double-precision
calculations, the default value is 1.0 × 10-12.

JMAX

Set to specify the maximum allowed number of mid quadrature points to be
3(JMAX - 1). The default value is 14.

K

Integration is performed by Romberg’s method of order 2K. If not specified, the
default is K=5.

MIDEXP

Use the midexp() function (see Numerical Recipes, section 4.4) as the integrating
function. If the MIDEXP keyword is specified, argument B is assumed to be infinite,
and should not be supplied by the user.

MIDINF

Use the midinf() function (see Numerical Recipes, section 4.4) as the integrating
function.

MIDPNT

Use the midpnt() function (see Numerical Recipes, section 4.4) as the integrating
function. This is the default if no other integrating function keyword is specified.
QROMO IDL Reference Guide

 1547
MIDSQL

Use the midsql() function (see Numerical Recipes, section 4.4) as the integrating
function.

MIDSQU

Use the midsqu() function (see Numerical Recipes, section 4.4) as the integrating
function.

Examples

Consider the following function:

FUNCTION hyper, X
RETURN, 1.0 / X^4

END

This example integrates the HYPER function over the open interval (2, ∞) and prints
the result:

PRINT, QROMO('hyper', 2.0, /MIDEXP)

IDL prints:

0.0412050

Warning
When using the MIDEXP keyword, the upper integration limit is assumed to be
infinity and is not supplied.

Version History

Introduced: 4.0

See Also

INT_2D, INT_3D, INT_TABULATED, QROMB, QSIMP
IDL Reference Guide QROMO

1548
QSIMP

The QSIMP function performs numerical integration of a function over the closed
interval [A, B] using Simpson’s rule.

QSIMP is based on the routine qsimp described in section 4.2 of Numerical Recipes
in C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Syntax

Result = QSIMP(Func, A, B [, /DOUBLE] [, EPS=value] [, JMAX=value])

Return Value

The result will have the same structure as the smaller of A and B, and the resulting
type will be single- or double-precision floating, depending on the input types.

Arguments

Func

A scalar string specifying the name of a user-supplied IDL function to be integrated.
This function must accept a single scalar argument X and return a scalar result. It
must be defined over the closed interval [A, B].

For example, if we wish to integrate the fourth-order polynomial

y = (x4 - 2x2) sin(x)

we define a function SIMPSON to express this relationship in the IDL language:

FUNCTION simpson, X
RETURN, (X^4 - 2.0 * X^2) * SIN(X)

END

A

The lower limit of the integration. A can be either a scalar or an array.

B

The upper limit of the integration. B can be either a scalar or an array.
QSIMP IDL Reference Guide

 1549
Note
If arrays are specified for A and B, then QSIMP integrates the user-supplied
function over the interval [Ai, Bi] for each i. If either A or B is a scalar and the other
an array, the scalar is paired with each array element in turn.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

EPS

The desired fractional accuracy. For single-precision calculations, the default value is
1.0 × 10-6. For double-precision calculations, the default value is 1.0 × 10-12.

JMAX

2(JMAX - 1) is the maximum allowed number of steps. If not specified, a default of 20
is used.

Examples

To integrate the SIMPSON function (listed above) over the interval [0, π/2] and print
the result:

; Define lower limit of integration:
A = 0.0

; Define upper limit of integration:
B = !PI/2.0

PRINT, QSIMP('simpson', A, B)

IDL prints:

-0.479158

The exact solution can be found using the integration-by-parts formula:

FB = 4.*B*(B^2-7.)*SIN(B) - (B^4-14.*B^2+28.)*COS(B)
FA = 4.*A*(A^2-7.)*SIN(A) - (A^4-14.*A^2+28.)*COS(A)
exact = FB - FA
PRINT, exact
IDL Reference Guide QSIMP

1550
IDL prints:

-0.479156

Version History

Introduced: 4.0

See Also

INT_2D, INT_3D, INT_TABULATED, QROMB, QROMO
QSIMP IDL Reference Guide

 1551
QUERY_* Routines

Query routines allow users to obtain information about an image file without having
to read the file. The following QUERY_* routines are available in IDL:

All of the QUERY_* routines return a result, which is a long with the value of 1 if the
query was successful (and the file type was correct) or 0 on failure. If the query was
successful, the return argument will be an anonymous structure containing all of the
available information for that image format.

The status is intended to be used to determine if it is appropriate to use the
corresponding READ_ routine for a given file. The return status of the QUERY_*
will indicate success if the corresponding READ_ routine is likely to be able to read
the file. The return status will indicate failure for cases that contain formats that are
not supported by the READ_ routines, even though the files may be valid outside of
the IDL environment. For example, IDL’s READ_BMP does not support 1-bit-deep
images and so the QUERY_BMP function would return failure in the case of a
monochrome BMP file.

The returned anonymous structure will have (minimally) the following fields for all
file formats. If the file does not support multiple images in a single file, the
NUM_IMAGES field will always be 1 and the IMAGE_INDEX field will always be
0. Individual routines document additional fields which are returned for a specific
format.

• QUERY_BMP • QUERY_PNG

• QUERY_DICOM • QUERY_PPM

• QUERY_IMAGE • QUERY_SRF

• QUERY_JPEG • QUERY_TIFF

• QUERY_MRSID • QUERY_WAV

• QUERY_PICT •
IDL Reference Guide QUERY_* Routines

1552
General Query * Routine Info Structures

All the routines accept the IMAGE_INDEX keyword although formats which do not
support multiple images in a single file will ignore this keyword.

QUERY_TIFF-Specific Routine Info Structures

Field IDL data type Description

CHANNELS Long Number of samples per pixel

DIMENSIONS 2-D long array Size of the image in pixels

HAS_PALETTE Integer True if a palette is present

NUM_IMAGES Long Number of images in the file

IMAGE_INDEX Long Image number for which this structure
is valid

PIXEL_TYPE Integer IDL basic type code for a pixel sample

TYPE String String identifying the file format

Table 78: Query Routines Info Structure

Field IDL data type Description

BITS_PER_SAMPLE Long Number of bits per channel. Possible
values are 1, 4, 8, 16, or 32.

Table 79: QUERY_TIFF Routine Info Structure
QUERY_* Routines IDL Reference Guide

 1553
ORIENTATION Long Image orientation (columns, rows):

• 1 = Left to right, top to bottom
(default)

• 2 = Right to left, top to bottom

• 3 = Right to left, bottom to top

• 4 = Left to right, bottom to top

• 5 = Top to bottom, left to right

• 6 = Top to bottom, right to left

• 7 = Bottom to top, right to left

• 8 = Bottom to top, left to right

PLANAR_CONFIG Long How the components of each pixel are
stored. Possible values are:

• 1 = Pixel interleaved RGB image
or a two-dimensional image (no
interleaving exists). Pixel
components (such as RGB) are
stored contiguously.

• 2 = Image interleaved. Pixel
components are stored in separate
planes.

PHOTOMETRIC Long Color mode used for the image data.
Possible values are:

• 0 = White is zero

• 1 = Black is zero

• 2 = RGB color model

• 3 = Palette color model

• 4 = Transparency mask

• 5 = Separated (usually CMYK)

Field IDL data type Description

Table 79: QUERY_TIFF Routine Info Structure (Continued)
IDL Reference Guide QUERY_* Routines

1554
RESOLUTION Float array Two-element vector [X resolution, Y
resolution] containing the number of
pixels per unit (as reported in the
UNITS field).

UNITS Long Units of measurement for
RESOLUTION:

• 1 = No units

• 2 = Inches (the default)

• 3 = Centimeters

For example, if the UNITS field
contains the value 2, then the values in
the RESOLUTION field represent
pixels per inch.

TILE_SIZE Long array Two-element vector [Tile width, Tile
height]. Non-tiled images will contain
[Image width, 1]

Field IDL data type Description

Table 79: QUERY_TIFF Routine Info Structure (Continued)
QUERY_* Routines IDL Reference Guide

 1555
QUERY_BMP

QUERY_BMP is a method of obtaining information about a BMP image file without
having to read the file. See “QUERY_* Routines” on page 1551 for more
information.

Syntax

Result = QUERY_BMP (Filename [, Info])

Return Value

This routine returns a long with the value of 1 (one) if the query was successful (and
the file type was correct) or 0 (zero) on failure.

Arguments

Filename

A scalar string containing the pathname of the BMP file to query.

Info

Returns an anonymous structure containing information about the image in the file.
The Info.TYPE field will return the value ‘BMP’.

Note
See “General Query * Routine Info Structures” on page 1552 for detailed structure
information.

Keywords

There are no keywords for this routine.

Version History

Introduced: 5.2

See Also

QUERY_* Routines, READ_BMP, WRITE_BMP
IDL Reference Guide QUERY_BMP

1556
QUERY_DICOM

The QUERY_DICOM function tests a file for compatibility with READ_DICOM
and returns an optional structure containing information about images in the DICOM
file. This function supports cases in which a blank DICOM tag is supplied.

This routine is written in the IDL language. Its source code can be found in the file
query_dicom.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = QUERY_DICOM(Filename [, Info] [, IMAGE_INDEX=index])

Return Value

This routine returns a long with the value of 1 (one) if the query was successful or 0
(zero) on failure. A result of 1 means it is likely that the file can be read by
READ_DICOM.

Arguments

Filename

A scalar string containing the full pathname of the file to query.

Info

Returns an anonymous structure containing information about the image in the file.
The Info.TYPE field will return the value ‘DICOM’.

Note
See “General Query * Routine Info Structures” on page 1552 for detailed structure
information.

Keywords

IMAGE_INDEX

Set this keyword to the index (zero based) of the image being queried in the file. This
keyword has no effect on files containing a single image.
QUERY_DICOM IDL Reference Guide

 1557
Examples

DICOM palette vectors are 16 bit quantities and may not cover the entire dynamic
range of the image. To view a paletted DICOM image use the following:

IF (QUERY_DICOM('file.dcm',info)) THEN BEGIN
IF (info.has_palette) THEN BEGIN

TV, READ_IMAGE('file.dcm',r, g, b), /ORDER
TVLCT,r/256, g/256, b/256

ENDIF
ENDIF

Version History

Introduced: 5.2

See Also

READ_DICOM
IDL Reference Guide QUERY_DICOM

1558
QUERY_IMAGE

The QUERY_IMAGE function determines whether a file is recognized as a
supported image file. QUERY_IMAGE first checks the filename suffix, and if found,
calls the corresponding QUERY_ routine. For example, if the specified file is
image.bmp, QUERY_BMP is called to determine if the file is a valid .bmp file. If the
file does not contain a filename suffix, or if the query fails on the specified filename
suffix, QUERY_IMAGE checks against all supported file types.

Syntax

Result = QUERY_IMAGE (Filename[, Info] [, CHANNELS=variable]
[, DIMENSIONS=variable] [, HAS_PALETTE=variable]
[, IMAGE_INDEX=index] [, NUM_IMAGES=variable] [, PIXEL_TYPE=variable]
[, SUPPORTED_READ=variable] [, SUPPORTED_WRITE=variable]
[, TYPE=variable])

Return Value

Result is a long with the value of 1 if the query was successful (the file was
recognized as an image file) or 0 on failure. The return status will indicate failure for
files that contain formats that are not supported by the corresponding READ_*
routine, even though the file may be valid outside the IDL environment.

If the file is a supported image file, an optional structure containing information about
the image is returned. If the file is not a supported image file, QUERY_IMAGE
returns 0.

Arguments

Filename

A scalar string containing the name of the file to query.
QUERY_IMAGE IDL Reference Guide

 1559
Info

An optional anonymous structure containing information about the image. This
structure is valid only when the return value of the function is 1. The Info structure
for all image types has the following fields:

Keywords

CHANNELS

Set this keyword to a named variable to retrieve the number of channels in the image.

DIMENSIONS

Set this keyword to a named variable to retrieve the image dimensions as a two-
dimensional array.

HAS_PALETTE

Set this keyword to a named variable to equal to 1 if a palette is present, else 0.

IMAGE_INDEX

Set this keyword to the index of the image to query from the file. The default is 0, the
first image.

Tag Type

CHANNELS Long

DIMENSIONS Two-dimensional long array

FILENAME Scalar string

HAS_PALETTE Integer

IMAGE_INDEX Long

NUM_IMAGES Long

PIXEL_TYPE Integer

TYPE Scalar string

Table 80: The Info Structure for All Image Types
IDL Reference Guide QUERY_IMAGE

1560
NUM_IMAGES

Set this keyword to a named variable to retrieve the number of images in the file.

PIXEL_TYPE

Set this keyword to a named variable to retrieve the IDL Type Code of the image
pixel format. See the documentation for the SIZE routine for a complete list of IDL
Type Codes.

The valid types for PIXEL_TYPE are:

• 1 = Byte

• 2 = Integer

• 3 = Longword Integer

• 4 = Floating Point

• 5 = Double-precision Floating Point

• 12 = Unsigned Integer

• 13 - Unsigned Longword Integer

• 14 - 64-bit Integer

• 15 - Unsigned 64-bit Integer

SUPPORTED_READ

Set this keyword to a named variable to retrieve a string array of image types
recognized by READ_IMAGE. If the SUPPORTED_READ keyword is used the
filename and info arguments are optional.

SUPPORTED_WRITE

Set this keyword to a named variable to retrieve a string array of image types
recognized by WRITE_IMAGE. If the SUPPORTED_WRITE keyword is used the
filename and info arguments are optional.

TYPE

Set this keyword to a named variable to retrieve the image type as a scalar string.
Possible return values are BMP, JPEG, PNG, PPM, SRF, TIFF, or DICOM.
QUERY_IMAGE IDL Reference Guide

 1561
Version History

Introduced: 5.3
IDL Reference Guide QUERY_IMAGE

1562
QUERY_JPEG

QUERY_JPG is a method of obtaining information about a JPEG image file without
having to read the file. See “QUERY_* Routines” on page 1551 for more
information.

Syntax

Result = QUERY_JPEG (Filename [, Info])

Return Value

This routine returns a long with the value of 1 (one) if the query was successful (and
the file type was correct) or 0 (zero) on failure.

Arguments

Filename

A scalar string containing the pathname of the JPEG file to query.

Info

Returns an anonymous structure containing information about the image in the file.
The Info.TYPE field will return the value ‘JPEG’.

Note
See “General Query * Routine Info Structures” on page 1552 for detailed structure
information.

Keywords

None.

Version History

Introduced: 5.2

See Also

QUERY_* Routines, READ_JPEG, WRITE_JPEG
QUERY_JPEG IDL Reference Guide

 1563
QUERY_MRSID

The QUERY_MRSID function allows you to obtain information about a MrSID
image file without having to read the file. It is a wrapper around the object interface
that presents MrSID image loading in a familiar way to users of the QUERY_* image
routines. (See “QUERY_* Routines” on page 1551 for more information.) However
this function is not as efficient as the object interface and the object interface should
be used whenever possible. See “IDLffMrSID” on page 2629 for information about
the object interface.

Syntax

Result = QUERY_MRSID(Filename [, Info] [, LEVEL=lvl])

Return Value

This routine returns a long with the value of 1 (one) if the query was successful (and
the file type was correct) or 0 (zero) on failure.

Arguments

Filename

A scalar string containing the full path and filename of the MrSID file to query.

Info

Returns an anonymous structure containing information about the image in the file.
The Info.TYPE field will return the value 'MrSID'.

The anonymous structure is detailed in the QUERY_* Routines documentation.
However, the info structure filled in by QUERY_MRSID has additional members
appended to the end:

• info.LEVELS – a named variable that will contain a two-element integer
vector of the form [minlvl, maxlvl] that specifies the range of levels within the
current image. Higher levels are lower resolution. A level of 0 equals full
resolution. Negative values specify higher levels of resolution.

• Info.GEO_VALID – a long integer with a value of 1 if the file contains valid
georeferencing data, or 0 if the georeferencing data is nonexistent or
unsupported.
IDL Reference Guide QUERY_MRSID

1564
Note
Always verify that this keyword returns 1 before using the data returned by any
other GEO_* keyword.

• Info.GEO_PROJTYPE – unsigned integer.

• Info.GEO_ORIGIN – 2-element double precision array.

• Info.GEO_RESOLUTION – 2-element double precision array.

See “IDLffMrSID::GetProperty” on page 2637 for more information on GEO_*
values.

Keywords

LEVEL

Set this keyword to an integer that specifies the level to which the DIMENSIONS
field of the info structure corresponds. This can be used, for example, to determine
what level is required to fit the image into a certain area. If this keyword is not
specified, the dimensions at level 0 are returned.

Examples

; Select the image file.
file = QUERY_MRSID(FILEPATH('test_gs.sid', $

SUBDIRECTORY=['examples', 'data']), info, LEVEL = -2)

HELP, file
; IDL returns 1 indicating the correct file type
; and successful query.

; Print the range of levels of resolution available within
; the file.
PRINT, 'Range of image levels = ', info.LEVELS

; Print the image dimensions when the image level is set to -2
; as specified by LEVEL = -2 in the QUERY_MRSID statement.
PRINT, 'dimensions of image at LEVEL is -2 =', info.DIMENSIONS
; IDL returns 2048 by 2048

; Check for valid georeferencing data.
PRINT, 'Result of georeferencing query', info.GEO_VALID
; IDL returns 0 indicating that the file does not contain
; georeferencing data.
QUERY_MRSID IDL Reference Guide

 1565
Version History

Introduced: 5.5
IDL Reference Guide QUERY_MRSID

1566
QUERY_PICT

QUERY_PICT is a method of obtaining information about a PICT image file without
having to read the file. See “QUERY_* Routines” on page 1551 for more
information.

Syntax

Result = QUERY_PICT (Filename [, Info])

Return Value

This routine returns a long with the value of 1 (one) if the query was successful (and
the file type was correct) or 0 (zero) on failure.

Arguments

Filename

A scalar string containing the pathname of the PICT file to query.

Info

Returns an anonymous structure containing information about the image in the file.
The Info.TYPE field will return the value ‘PICT’.

Note
See “General Query * Routine Info Structures” on page 1552 for detailed structure
information.

Keywords

None

Version History

Introduced: 5.2

See Also

QUERY_* Routines, READ_PICT, WRITE_PICT
QUERY_PICT IDL Reference Guide

 1567
QUERY_PNG

QUERY_PNG is a method of obtaining information about a PNG image file without
having to read the file. See “QUERY_* Routines” on page 1551 for more
information.

Syntax

Result = QUERY_PNG (Filename [, Info])

Return Value

This routine returns a long with the value of 1 (one) if the query was successful (and
the file type was correct) or 0 (zero) on failure.

Arguments

Filename

A scalar string containing the pathname of the PNG file to query.

Info

Returns an anonymous structure containing information about the image in the file.
The Info.TYPE field will return the value ‘PNG’.

Note
See “General Query * Routine Info Structures” on page 1552 for detailed structure
information.

Keywords

None

Examples

Query included in creating RGBA (16-bit/channel) and Color Indexed
(8-bits/channel) image.

rgbdata = UINDGEN(4,320,240)
cidata = BYTSCL(DIST(256))
red = indgen(256)
IDL Reference Guide QUERY_PNG

1568
green = indgen(256)
blue = indgen(256)
WRITE_PNG,'rgb_image.png',rgbdata
WRITE_PNG,'ci_image.png',cidata,red,green,blue

; Query and Read the data:
names = ['rgb_image.png','ci_image.png','unknown.png']

FOR i=0,N_ELEMENTS(names)-1 DO BEGIN
ok = QUERY_PNG(names[i],s)
IF (ok) THEN BEGIN
HELP,s,/STRUCTURE
IF (s.HAS_PALETTE) THEN BEGIN

img = READ_PNG(names[i],rpal,gpal,bpal)
HELP,img,rpal,gpal,bpal

ENDIF ELSE BEGIN
img = READ_PNG(names[i])
HELP,img

ENDELSE
ENDIF ELSE BEGIN

PRINT,names[i],' is not a PNG file'
ENDELSE

ENDFOR
END

Version History

Introduced: 5.2

See Also

QUERY_* Routines, READ_PNG, WRITE_PNG
QUERY_PNG IDL Reference Guide

 1569
QUERY_PPM

QUERY_PPM is a method of obtaining information about a PPM image file without
having to read the file. See “QUERY_* Routines” on page 1551 for more
information.

Syntax

Result = QUERY_PPM (Filename [, Info] [, MAXVAL=variable])

Return Value

This routine returns a long with the value of 1 (one) if the query was successful (and
the file type was correct) or 0 (zero) on failure.

Arguments

Filename

A scalar string containing the pathname of the PPM file to query.

Info

Returns an anonymous structure containing information about the image. The
Info.TYPE field will return the value ‘PPM’.

Additional field in the Info structure: MAXVAL - maximum pixel value in the image.

Note
See “General Query * Routine Info Structures” on page 1552 for detailed structure
information.

Keywords

MAXVAL

Set this keyword to a named variable to retrieve the maximum pixel value in the
image.
IDL Reference Guide QUERY_PPM

1570
Version History

Introduced: 5.2

See Also

QUERY_* Routines, READ_PPM, WRITE_PPM
QUERY_PPM IDL Reference Guide

 1571
QUERY_SRF

QUERY_SRF is a method of obtaining information about an SRF image file without
having to read the file. See “QUERY_* Routines” on page 1551 for more
information.

Syntax

Result = QUERY_SRF (Filename [, Info])

Return Value

This routine returns a long with the value of 1 (one) if the query was successful (and
the file type was correct) or 0 (zero) on failure.

Arguments

Filename

A scalar string containing the pathname of the SRF file to query.

Info

Returns an anonymous structure containing information about the image in the file.
The Info.TYPE field will return the value ‘SRF’.

Note
See “General Query * Routine Info Structures” on page 1552 for detailed structure
information.

Keywords

None.

Version History

Introduced: 5.2

See Also

QUERY_* Routines, READ_SRF, WRITE_SRF
IDL Reference Guide QUERY_SRF

1572
QUERY_TIFF

QUERY_TIFF is a method of obtaining information about a TIFF image file without
having to read the file. See “QUERY_* Routines” on page 1551 for more
information.

Syntax

Result = QUERY_TIFF (Filename [, Info] [, IMAGE_INDEX=index])

Return Value

This routine returns a long with the value of 1 (one) if the query was successful (and
the file type was correct) or 0 (zero) on failure.

Arguments

Filename

A scalar string containing the pathname of the TIFF file to query.

Info

Returns an anonymous structure containing information about the image in the file.
The Info.TYPE field will return the value ‘TIFF’.

Note
In addition to the fields returned in the Info structure for all image types, there are a
number of extra fields in the Info structure for TIFF images. See “QUERY_TIFF-
Specific Routine Info Structures” on page 1552 for detailed structure info.

Keywords

IMAGE_INDEX

Image number index. If this value is larger than the number of images in the file, the
function returns 0 (failure).
QUERY_TIFF IDL Reference Guide

 1573
Examples

This is an example of using QUERY_TIFF to write and read a multi-image TIFF file.
The first image is a 16-bit, single channel image stored using compression. The second
image is an RGB image stored using 32-bits/channel uncompressed.

; Write the image data:
data = FIX(DIST(256))
rgbdata = LONARR(3,320,240)
WRITE_TIFF,'multi.tif',data,COMPRESSION=1,/SHORT
WRITE_TIFF,'multi.tif',rgbdata,/LONG,/APPEND

; Read the image data back:
ok = QUERY_TIFF('multi.tif',s)
IF (ok) THEN BEGIN

FOR i=0,s.NUM_IMAGES-1 DO BEGIN
imp = QUERY_TIFF('multi.tif',t,IMAGE_INDEX=i)
img = READ_TIFF('multi.tif',IMAGE_INDEX=i)
HELP,t,/STRUCTURE
HELP,img

ENDFOR
ENDIF

Version History

Introduced: 5.2

See Also

QUERY_* Routines, READ_TIFF, WRITE_TIFF
IDL Reference Guide QUERY_TIFF

1574
QUERY_WAV

The QUERY_WAV function checks that the file is actually a .WAV file and that the
READ_WAV function can read the data in the file. Optionally, it can return additional
information about the data in the file.

Syntax

Result = QUERY_WAV (Filename[, Info])

Return Value

This routine returns a long with the value of 1 (one) if the query was successful (and
the file type was correct) or 0 (zero) on failure.

Arguments

Filename

A scalar string containing the full pathname of the .WAV file to read.

Info

An anonymous structure containing information about the data in the file. The fields
are defined as:

Keywords

None.

Tag Type Definition

CHANNELS INT Number of data channels in the file.

SAMPLES_PER_SEC LONG Data sampling rate in samples per
second.

BITS_PER_SAMPLE INT Number of valid bits in the data.

Table 81: The Info Structure for Info Fields
QUERY_WAV IDL Reference Guide

 1575
Version History

Introduced: 5.3
IDL Reference Guide QUERY_WAV

1576
R_CORRELATE

The R_CORRELATE function computes Spearman’s (rho) or Kendalls’s (tau) rank
correlation of two sample populations X and Y. The result is a two-element vector
containing the rank correlation coefficient and the two-sided significance of its
deviation from zero. The significance is a value in the interval [0.0, 1.0]; a small
value indicates a significant correlation.

where Rxi and Ryi are the magnitude-based ranks among X and Y, respectively.
Elements of identical magnitude are ranked using a rank equal to the mean of the
ranks that would otherwise be assigned.

This routine is written in the IDL language. Its source code can be found in the file
r_correlate.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = R_CORRELATE(X, Y [, D=variable] [, /KENDALL] [, PROBD=variable]
[, ZD=variable])

Return Value

Returns a two-element vector indicating the rank correlation coefficient and the
significance of its deviation from zero.

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Y

An n-element integer, single-, or double-precision floating-point vector.

rho

Rxi Rx–() Ryi Ry–()

i 0=

N 1–

∑

Rxi Rx–()
2

i 0=

N 1–

∑ Ryi Ry–()
2

i 0=

N 1–

∑

---=
R_CORRELATE IDL Reference Guide

 1577
Keywords

D

Set this keyword to a named variable that will contain the sum-squared difference of
ranks. If the KENDALL keyword is set, this parameter is returned as zero.

KENDALL

Set this keyword to compute Kendalls’s (tau) rank correlation. By default,
Spearman’s (rho) rank correlation is computed.

PROBD

Set this keyword to a named variable that will contain the two-sided significance level
of ZD. If the KENDALL keyword is set, this parameter is returned as zero.

ZD

Set this keyword to a named variable that will contain the number of standard
deviations by which D deviates from its null-hypothesis expected value. If the
KENDALL keyword is set, this parameter is returned as zero.

Examples

; Define two n-element sample populations:
X = [257, 208, 296, 324, 240, 246, 267, 311, 324, 323, 263, $

305, 270, 260, 251, 275, 288, 242, 304, 267]
Y = [201, 56, 185, 221, 165, 161, 182, 239, 278, 243, 197, $

271, 214, 216, 175, 192, 208, 150, 281, 196]

; Compute Spearman’s (rho) rank correlation of X and Y.
result = R_CORRELATE(X, Y)
PRINT, 'Spearman’s (rho) rank correlation: ', result

; Compute Kendalls’s (tau) rank correlation of X and Y:
result = R_CORRELATE(X, Y, /KENDALL)
PRINT, 'Kendalls’s (tau) rank correlation: ', result

IDL prints:

Spearman’s (rho) rank correlation: 0.835967 4.42899e-006
Kendalls’s (tau) rank correlation: 0.624347 0.000118729
IDL Reference Guide R_CORRELATE

1578
Version History

Introduced: 4.0

See Also

A_CORRELATE, C_CORRELATE, CORRELATE, M_CORRELATE,
P_CORRELATE
R_CORRELATE IDL Reference Guide

 1579
R_TEST

The R_TEST function tests the hypothesis that a binary population (a sequence of 1s
and 0s) represents a “random sampling”.

This routine is written in the IDL language. Its source code can be found in the file
r_test.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = R_TEST(X [, N0=variable] [, N1=variable] [, R=variable])

Return Value

The result is a two-element vector containing the nearly-normal test statistic Z and its
associated probability. This two-tailed test is based on the “theory of runs” and is
often referred to as the “Runs Test for Randomness.”

Arguments

X

An n-element integer, single-, or double-precision floating-point vector. Elements not
equal to 0 or 1 are removed and the length of X is correspondingly reduced.

Keywords

N0

Set this keyword to a named variable that will contain the number of 0s in X.

N1

Set this keyword to a named variable that will contain the number of 1s in X.

R

Set this keyword to a named variable that will contain the number of runs (clusters of
0s and 1s) in X.
IDL Reference Guide R_TEST

1580
Examples

; Define a binary population:
X = [0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, $

1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1]

; Test the hypothesis that X represents a random sampling against
; the hypothesis that it does not represent a random sampling at
; the 0.05 significance level:
result = R_TEST(X, R = r, N0 = n0, N1 = n1)
PRINT, result

IDL prints:

[2.26487, 0.0117604]

Print the values of the keyword parameters:

PRINT, 'Runs: ', r & PRINT, 'Zeros: ', n0 & PRINT, 'Ones: ', n1
Runs: 22
Zeros: 16
Ones: 14

The computed probability (0.0117604) is less than the 0.05 significance level and
therefore we reject the hypothesis that X represents a random sampling. The results
show that there are too many runs, indicating a non-random cyclical pattern.

Version History

Introduced: 4.0

See Also

CTI_TEST, FV_TEST, KW_TEST, LNP_TEST, MD_TEST, RS_TEST, S_TEST,
TM_TEST, XSQ_TEST
R_TEST IDL Reference Guide

 1581
RADON

The RADON function implements the Radon transform, used to detect features
within a two-dimensional image. This function can be used to return either the Radon
transform, which transforms lines through an image to points in the Radon domain,
or the Radon backprojection, where each point in the Radon domain is transformed to
a straight line in the image.

Radon Transform Theory

The Radon transform is used to detect features within an image. Given a function
A(x, y), the Radon transform is defined as:

This equation describes the integral along a line s through the image, where ρ is the
distance of the line from the origin and θ is the angle from the horizontal.

In medical imaging, each point R(θ, ρ) is called a ray-sum, while the resulting image
is called a shadowgram. An image can be reconstructed from its ray-sums using the
backprojection operator:

where the output, B(x, y), is an image of A(x, y) blurred by the Radon transform.

Figure 16: The Radon Transform

R θ ρ,() A ρ θcos s θsin– ρ θsin s θcos+(,)
∞–

∞
∫= ds

B x y,() R θ x θcos, y θsin+()
0

π
∫= dθ
IDL Reference Guide RADON

1582
How IDL Implements the Radon Transform

To avoid the use of a two-dimensional interpolation and decrease the interpolation
errors, the Radon transform equation is rotated by θ, and the interpolation is then
done along the line s. The transform is divided into two regions, one for nearly-
horizontal lines (θ ≤ 45°; 135°≤ θ ≤ 180°), and the other for steeper lines
(45° < θ < 135°), where θ is assumed to lie on the interval [0°, 180°].

For nearest-neighbor interpolation (the default), the discrete transform formula for an
image A(m, n) [m = 0, ..., M–1, n = 0, ..., N–1] is:

where brackets [] indicate rounding to the nearest integer, and the slope and offsets
are given by:

For linear interpolation, the transform is:

where the slope and offsets are the same as above, and   indicates flooring to the
nearest lower integer. The weighting w is given by the difference between am + b and
its floored value, or between a’n + b’ and its floored value.

R θ ρ(,)

∆x
θsin

-------------- A

m
∑ m am b+[](,)

∆y
θcos

--------------- A
n
∑ a'n b'+[] n(,)

θsin
2

2
------->

θsin
2

2
-------≤









=

a
∆x
∆y
------ θcos

θsin
------------– b

ρ xmin– θcos ymin– θsin

∆y θsin
--==

a'
1
a
--- b'

ρ xmin– θcos ymin– θsin

∆x θcos
--==
RADON IDL Reference Guide

 1583
How IDL Implements the Radon Backprojection

For the backprojection transform, the discrete formula for nearest-neighbor
interpolation is:

with the nearest-neighbor for ρ given by:

For backprojection with linear interpolation:

and ρ is the same as in the nearest-neighbor.

Syntax

Radon Transform:

Result = RADON(Array [, /DOUBLE] [, DRHO=scalar] [, DX=scalar]
[, DY=scalar] [, /GRAY] [, /LINEAR] [, NRHO=scalar] [, NTHETA=scalar]
[, RHO=variable] [, RMIN=scalar] [, THETA=variable] [, XMIN=scalar]
[, YMIN=scalar])

R θ ρ(,)

∆x
θsin

-------------- 1(w–)
m
∑ A m am b+(,) wA m am b+ 1+(,)+

∆y
θcos

--------------- 1 w–()A

n
∑ a'n b'+ n(,) wA a'n b'+ 1+ n(,)+

θsin
2

2
------->

θsin
2

2
-------≤









=

B m n(,) ∆θ R
t

∑ θt ρ[](,)=

ρ m(∆x xmin) θcos t n∆y ymin+()+ + θsin t ρmin–{ }∆ρ 1–
=

B m n(,) ∆θ 1 w–()
t

∑ R θt ρ(,) wR θt ρ 1+(,)+=

w ρ ρ–=
IDL Reference Guide RADON

1584
Radon Backprojection:

Result = RADON(Array, /BACKPROJECT, RHO=variable, THETA=variable
[, /DOUBLE] [, DX=scalar] [, DY=scalar] [, /LINEAR] [, NX=scalar]
[, NY=scalar] [, XMIN=scalar] [, YMIN=scalar])

Return Value

The result of this function is a two-dimensional floating-point array, or a complex
array if the input image is complex. If Array is double-precision, or if the DOUBLE
keyword is set, the result is double-precision, otherwise, the result is single-precision.

Arguments

Array

The two-dimensional array of size M by N to be transformed.

Keywords

BACKPROJECT

If set, the backprojection is computed, otherwise, the forward transform is computed.

Note
The Radon backprojection does not return the original image. Instead, it returns an
image blurred by the Radon transform. Because the Radon transform is not one-to-
one, multiple (x, y) points are mapped to a single (θ, ρ).

DOUBLE

Set this keyword to force the computation to be done using double-precision
arithmetic.

DRHO

Set this keyword equal to a scalar specifying the spacing between ρ coordinates,
expressed in the same units as Array. The default is one-half of the diagonal distance
between pixels, 0.5[(DX2 + DY2)]1/2. Smaller values produce finer resolution, and
are useful for zooming in on interesting features. Larger values may result in
undersampling, and are not recommended. If BACKPROJECT is specified, this
keyword is ignored.
RADON IDL Reference Guide

 1585
DX

Set this keyword equal to a scalar specifying the spacing between the horizontal (x)
coordinates. The default is 1.0.

DY

Set this keyword equal to a scalar specifying the spacing between the vertical (y)
coordinates. The default is 1.0.

GRAY

Set or omit this keyword to perform a weighted Radon transform, with the weighting
given by the pixel values. If GRAY is explicitly set to zero, the image is treated as a
binary image with all nonzero pixels considered as 1.

LINEAR

Set this keyword to use linear interpolation rather than the default nearest-neighbor
sampling. Results are more accurate but slower when linear interpolation is used.

NRHO

Set this keyword equal to a scalar specifying the number of ρ coordinates to use. The
default is 2 CEIL([MAX(x2 + y2)]1/2 / DRHO) + 1. If BACKPROJECT is specified,
this keyword is ignored.

NTHETA

Set this keyword equal to a scalar specifying the number of θ coordinates to use over
the interval [0, π]. The default is CEIL(π [(M2+ N2)/2]1/2). Larger values produce
smoother results, and are useful for filtering before backprojection. Smaller values
result in broken lines in the transform, and are not recommended. If BACKPROJECT
is specified, this keyword is ignored.

NX

If BACKPROJECT is specified, set this keyword equal to a scalar specifying the
number of horizontal coordinates in the output Result. The default is
FLOOR(2 MAX(|RHO|)(DX2 + DY2)-1/2 + 1). For the forward transform this
keyword is ignored.
IDL Reference Guide RADON

1586
NY

If BACKPROJECT is specified, set this keyword equal to a scalar specifying the
number of vertical coordinates in the output Result. The default is
FLOOR(2 MAX(|RHO|)(DX2 + DY2)-1/2 + 1). For the forward transform, this
keyword is ignored.

RHO

For the forward transform, set this keyword to a named variable that will contain the
radial (ρ) coordinates. If BACKPROJECT is specified, this keyword must contain the
ρ coordinates of the input Array. The ρ coordinates should be evenly spaced and in
increasing order.

RMIN

Set this keyword equal to a scalar specifying the minimum ρ coordinate to use for the
forward transform. The default is –0.5(NRHO – 1) DRHO. If BACKPROJECT is
specified, this keyword is ignored.

THETA

For the forward transform, set this keyword to a named variable containing a vector
of angular (θ) coordinates to use for the transform. If NTHETA is specified instead,
and THETA is set to a named variable, on exit THETA will contain the θ coordinates.
If BACKPROJECT is specified, this keyword must contain the θ coordinates of the
input Array.

XMIN

Set this keyword equal to a scalar specifying the x-coordinate of the lower-left corner
of the input Array. The default is – (M–1)/2, where Array is an M by N array. If
BACKPROJECT is specified, set this keyword equal to a scalar specifying the x-
coordinate of the lower-left corner of the Result. In this case the default is
–DX (NX–1)/2.

YMIN

Set this keyword equal to a scalar specifying the y-coordinate of the lower-left corner
of the input Array. The default is – (N–1)/2, where Array is an M by N array. If
BACKPROJECT is specified, set this keyword equal to a scalar specifying the y-
coordinate of the lower-left corner of the Result. In this case, the default is
–DY (NY–1)/2.
RADON IDL Reference Guide

 1587
Examples

This example displays the Radon transform and the Radon backprojection:

PRO radon_example

DEVICE, DECOMPOSED=0

;Create an image with a ring plus random noise:
x = (LINDGEN(128,128) MOD 128) - 63.5
y = (LINDGEN(128,128)/128) - 63.5
radius = SQRT(x^2 + y^2)
array = (radius GT 40) AND (radius LT 50)
array = array + RANDOMU(seed,128,128)

;Create display window, set graphics properties:
WINDOW, XSIZE=440,YSIZE=700, TITLE='Radon Example'
!P.BACKGROUND = 255 ; white
!P.COLOR = 0 ; black
!P.FONT=2
ERASE

XYOUTS, .05, .94, 'Ring and Random Pixels', /NORMAL
;Display the image. 255b changes black values to white:
TVSCL, 255b - array, .05, .75, /NORMAL

;Calculate and display the Radon transform:
XYOUTS, .05, .70, 'Radon Transform', /NORMAL
result = RADON(array, RHO=rho, THETA=theta)
TVSCL, 255b - result, .08, .32, /NORMAL
PLOT, theta, rho, /NODATA, /NOERASE, $

POSITION=[0.08,0.32, 1, 0.68], $
XSTYLE=9,YSTYLE=9,XTITLE='Theta', YTITLE='R'

;For simplicity in this example, remove everything except
;the two stripes. A better (and more complicated) method would
;be to choose a threshold for the result at each value of theta,
;perhaps based on the average of the result over the theta
;dimension.
result[*,0:55] = 0
result[*,73:181] = 0
result[*,199:*] = 0

;Find the Radon backprojection and display the output:
XYOUTS, .05, .26, 'Radon Backprojection', /NORMAL
backproject = RADON(result, /BACKPROJECT, RHO=rho, THETA=theta)
TVSCL, 255b - backproject, .05, .07, /NORMAL
IDL Reference Guide RADON

1588
END

The following figure displays the program output. The top image is an image of a ring
and random pixels, or noise. The center image is the Radon transform, and displays
the line integrals through the image. The bottom image is the Radon backprojection,
after filtering all noise except for the two strong horizontal stripes in the middle
image.

References

1. Herman, Gabor T. Image Reconstruction from Projections. New York:
Academic Press, 1980.

Figure 17: Radon Example - Original image (top), Radon transform (center), and
backprojection of the altered Radon transform (bottom).
RADON IDL Reference Guide

 1589
2. Hiriyannaiah, H. P. X-ray computed tomography for medical imaging. IEEE
Signal Processing Magazine, March 1997: 42-58.

3. Jain, Anil K. Fundamentals of Digital Image Processing. Englewood Cliffs,
NJ: Prentice-Hall, 1989.

4. Toft, Peter. The Radon Transform: Theory and Implementation. Denmark:
Technical University; 1996. Ph.D. Thesis.

Version History

Introduced: 5.4

See Also

HOUGH, VOXEL_PROJ
IDL Reference Guide RADON

1590
RANDOMN

The RANDOMN function returns one or more normally-distributed, floating-point,
pseudo-random numbers with a mean of zero and a standard deviation of one.
RANDOMN uses the Box-Muller method for generating normally-distributed
(Gaussian) random numbers.

Syntax

Result = RANDOMN(Seed [, D1 [, ..., D8]] [[, BINOMIAL=[trials, probability]]
[, /DOUBLE] [, GAMMA=integer{>0}] [, /NORMAL] [, POISSON=value]
[, /UNIFORM] | [, /LONG]])

Return Value

Returns an array containing the random numbers of the specified dimensions.

Arguments

Seed

A variable or constant used to initialize the random sequence on input, and in which
the state of the random number generator is saved on output.

The state of the random number generator is contained in a long integer vector. This
state is saved in the Seed argument when the argument is a named variable. To
continue the pseudo-random number sequence, input the variable containing the
saved state as the Seed argument in the next call to RANDOMN or RANDOMU.
Each independent random number sequence should maintain its own state variable.
To maintain a state over repeated calls to a procedure, the seed variable may be stored
in a COMMON block.

In addition to states maintained by the user in variables, the RANDOMU and
RANDOMN functions contain a single shared generic state that is used if a named
variable is not supplied as the Seed argument or the named variable supplied is
undefined. The generic state is initialized once using the time-of-day, and may be re-
initialized by providing a Seed argument that is a constant or expression.

If the Seed argument is:

• an undefined variable — the generic state is used and the resulting generic
state array is stored in the variable.
RANDOMN IDL Reference Guide

 1591
• a named variable that contains a longword array of the proper length — it is
used to continue the pseudo-random sequence, and is updated.

• a named variable containing a scalar — the scalar value is used to start a new
sequence and the resulting state array is stored back in the variable.

• a constant or expression — the value is used to re-initialize the generic state.

Note
RANDOMN and RANDOMU use the same sequence. Starting or restarting the
sequence for one starts or restarts the sequence for the other. Some IDL routines use
the random number generator, so using them will initialize the seed sequence. An
example of such a routine is CLUST_WTS.

Note
Do not alter the seed value returned by this function. The only valid use for the seed
argument is to pass it back to a subsequent call. Changing the value of the seed will
corrupt the random sequence.

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified. If no dimensions are specified,
RANDOMN returns a scalar result

Keywords

The formulas for the binomial, gamma, and Poisson distributions are from section 7.3
of Numerical Recipes in C: The Art of Scientific Computing (Second Edition),
published by Cambridge University Press.

BINOMIAL

Set this keyword to a 2-element array, [n, p], to generate random deviates from a
binomial distribution. If an event occurs with probability p, with n trials, then the
number of times it occurs has a binomial distribution.

Note
For n > 1.0 x 107, you should set the DOUBLE keyword.
IDL Reference Guide RANDOMN

1592
DOUBLE

Set this keyword to force the computation to be done using double-precision
arithmetic.

RANDOMN constructs double-precision uniform random deviates using the
formula:

where i1 and i2 are integer random deviates in the range [1...imax], and imax = 231 - 2
is the largest possible integer random deviate. The Y values will be in the range 0 < Y
< 1.

GAMMA

Set this keyword to an integer order i > 0 to generate random deviates from a gamma
distribution. The gamma distribution is the waiting time to the ith event in a Poisson
random process of unit mean. A gamma distribution of order equal to 1 is the same as
the exponential distribution.

Note
For GAMMA > 1.0 x 107, you should set the DOUBLE keyword.

LONG

Set this keyword to return integer uniform random deviates in the range
[1...231 – 2]. If LONG is set, all other keywords are ignored.

NORMAL

Set this keyword to generate random deviates from a normal distribution.

POISSON

Set this keyword to the mean number of events occurring during a unit of time. The
POISSON keyword returns a random deviate drawn from a Poisson distribution with
that mean.

Note
For POISSON > 1.0 x 107, you should set the DOUBLE keyword.

Y i1 1–() imax i2+⋅

imax
2

1+
---=
RANDOMN IDL Reference Guide

 1593
UNIFORM

Set this keyword to generate random deviates from a uniform distribution.

Examples

If you start the sequence with an undefined variable—if RANDOMN has already
been called, Seed is no longer undefined—IDL initializes the sequence with the
system time:

; Generate one random variable and initialize the sequence with an
; undefined variable:
randomValue = RANDOMN(seed)

The new state is saved in seed. To generate repeatable experiments, begin the
sequence with a particular seed:

seed_value = 5L

; Generate one random variable and initialize the sequence with 5:
randomValue = RANDOMN(seed_value)

PRINT, randomValue

IDL prints:

0.521414

To restart the sequence with a particular seed, re-initialize the variable:

seed = 5L

;Get a normal random number, and restart the sequence with a seed
;of 5.
randomValue = RANDOMN(seed)

PRINT, randomValue

IDL prints:

0.521414

To continue the same sequence:

PRINT, RANDOMN(seed)

IDL prints:

-0.945489

To create a 10 by 10 array of normally-distributed, random numbers, type:

R = RANDOMN(seed, 10, 10)
IDL Reference Guide RANDOMN

1594
Since seed is undefined, the generic state is used to initialize the random number
generator. Print the resulting values by entering:

PRINT, R

A more interesting example plots the probability function of 2000 numbers returned
by RANDOMN. Type:

PLOT, HISTOGRAM(RANDOMN(SEED, 2000), BINSIZE=0.1)

To obtain a sequence of 1000 exponential (gamma distribution, order 1) deviates,
type:

Result = RANDOMN(seed, 1000, GAMMA=1)

Intuitively, the result contains a random series of waiting times for events occurring
an average of one per time period.

To obtain a series of 1000 random elapsed times required for the arrival of two events,
type:

;Returns a series of 1000 random elapsed times required for the
;arrival of two events.
Result = RANDOMN(seed, 1000, GAMMA=2)

To obtain a 128 x 128 array filled with Poisson deviates, with a mean of 1.5, type:

Result = RANDOMN(seed, 128, 128, POISSON=1.5)

To simulate the count of “heads” obtained when flipping a coin 10 times, type:

Result = RANDOMN(seed, BINOMIAL=[10,.5])

Version History

Introduced: Original

See Also

RANDOMU
RANDOMN IDL Reference Guide

 1595
RANDOMU

The RANDOMU function returns one or more uniformly-distributed, floating-point,
pseudo-random numbers in the range 0 < Y <1.0.

The random number generator is taken from: “Random Number Generators: Good
Ones are Hard to Find”, Park and Miller, Communications of the ACM, Oct 1988, Vol
31, No. 10, p. 1192. To remove low-order serial correlations, a Bays-Durham shuffle
is added, resulting in a random number generator similar to ran1() in Section 7.1 of
Numerical Recipes in C: The Art of Scientific Computing (Second Edition), published
by Cambridge University Press.

Syntax

Result = RANDOMU(Seed [, D1 [, ..., D8]] [[, BINOMIAL=[trials, probability]]
[, /DOUBLE] [, GAMMA=integer{>0}] [, /NORMAL] [, POISSON=value]
[, /UNIFORM] | [, /LONG]])

Return Value

Returns an array of uniformly distributed random numbers of the specified
dimensions.

Arguments

Seed

A variable or constant used to initialize the random sequence on input, and in which
the state of the random number generator is saved on output.

The state of the random number generator is contained in a long integer vector. This
state is saved in the Seed argument when the argument is a named variable. To
continue the pseudo-random number sequence, input the variable containing the
saved state as the Seed argument in the next call to RANDOMN or RANDOMU.
Each independent random number sequence should maintain its own state variable.
To maintain a state over repeated calls to a procedure, the seed variable may be stored
in a COMMON block.

In addition to states maintained by the user in variables, the RANDOMU and
RANDOMN functions contain a single shared generic state that is used if a named
variable is not supplied as the Seed argument or the named variable supplied is
IDL Reference Guide RANDOMU

1596
undefined. The generic state is initialized once using the time-of-day, and may be re-
initialized by providing a Seed argument that is a constant or expression.

If the Seed argument is:

• an undefined variable — the generic state is used and the resulting generic
state array is stored in the variable.

• a named variable that contains a longword array of the proper length — it is
used to continue the pseudo-random sequence, and is updated.

• a named variable containing a scalar — the scalar value is used to start a new
sequence and the resulting state array is stored back in the variable.

• a constant or expression — the value is used to re-initialize the generic state.

Note
RANDOMN and RANDOMU use the same sequence, so starting or restarting the
sequence for one starts or restarts the sequence for the other. Some IDL routines use
the random number generator, so using them will initialize the seed sequence. An
example of such a routine is CLUST_WTS.

Note
Do not alter the seed value returned by this function. The only valid use for the seed
argument is to pass it back to a subsequent call. Changing the value of the seed will
corrupt the random sequence.

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified. If no dimensions are specified,
RANDOMU returns a scalar result

Keywords

The formulas for the binomial, gamma, and Poisson distributions are from Section
7.3 of Numerical Recipes in C: The Art of Scientific Computing (Second Edition),
published by Cambridge University Press.
RANDOMU IDL Reference Guide

 1597
BINOMIAL

Set this keyword to a 2-element array, [n, p], to generate random deviates from a
binomial distribution. If an event occurs with probability p, with n trials, then the
number of times it occurs has a binomial distribution.

Note
For n > 1.0 × 107, you should set the DOUBLE keyword.

DOUBLE

Set this keyword to force the computation to be done using double-precision
arithmetic.

RANDOMU constructs double-precision uniform random deviates using the
formula:

where i1 and i2 are integer random deviates in the range [1...imax], and
imax = 231– 2 is the largest possible integer random deviate. The Y values will be in
the range 0 < Y < 1.

GAMMA

Set this keyword to an integer order i > 0 to generate random deviates from a gamma
distribution. The gamma distribution is the waiting time to the ith event in a Poisson
random process of unit mean. A gamma distribution of order equal to 1 is the same as
the exponential distribution.

Note
For GAMMA > 1.0 x 107, you should set the DOUBLE keyword.

LONG

Set this keyword to return integer uniform random deviates in the range
[1...231 – 2]. If LONG is set, all other keywords are ignored.

NORMAL

Set this keyword to generate random deviates from a normal distribution.

Y i1 1–() imax i2+⋅

imax
2

1+
---=
IDL Reference Guide RANDOMU

1598
POISSON

Set this keyword to the mean number of events occurring during a unit of time. The
POISSON keyword returns a random deviate drawn from a Poisson distribution with
that mean.

Note
For POISSON > 1.0 × 107, you should set the DOUBLE keyword.

UNIFORM

Set this keyword to generate random deviates from a uniform distribution.

Examples

This example simulates rolling two dice 10,000 times and plots the distribution of the
total using RANDOMU. Enter:

PLOT, HISTOGRAM(FIX(6 * RANDOMU(S, 10000)) + $
FIX(6 * RANDOMU(S, 10000)) + 2)

In the above statement, the expression RANDOMU(S, 10000) is a 10,000-element,
floating-point array of random numbers greater than or equal to 0 and less than 1.
Multiplying this array by 6 converts the range to 0 ≤ Y < 6.

Applying the FIX function yields a 10,000-point integer vector with values from 0 to
5, one less than the numbers on one die. This computation is done twice, once for
each die, then 2 is added to obtain a vector from 2 to 12, the total of two dice.

The HISTOGRAM function makes a vector in which each element contains the
number of occurrences of dice rolls whose total is equal to the subscript of the
element. Finally, this vector is plotted by the PLOT procedure.

An example of reusing a state vector to generate a repeatable sequence:

; Init seed for a repeatable sequence:
seed = 1001L

; Print 1st 5 numbers of sequence:
print,randomu(seed,5)

IDL prints:

 0.705884 0.285924 0.231151 0.715447 0.532836
RANDOMU IDL Reference Guide

 1599
Reuse a state vector:

; Re-init seed to same sequence:
seed = 1001L

; Get 5 number of sequence with 5 calls:
for i=0,4 do print, randomu(seed)

IDL prints:

 0.705884
 0.285924
 0.231151
 0.715447
 0.532836

Version History

Introduced: Original

See Also

RANDOMN
IDL Reference Guide RANDOMU

1600
RANKS

The RANKS function computes the magnitude-based ranks of a sample population X.
Elements of identical magnitude “ties” are ranked according to the mean of the ranks
that would otherwise be assigned.

This routine is written in the IDL language. Its source code can be found in the file
ranks.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = RANKS(X)

Return Value

The result is a vector of ranks equal in length to X.

Arguments

X

An n-element integer, single-, or double-precision floating-point vector. The elements
of this vector must be in ascending order based on their magnitude.

Keywords

None.

Examples

; Define an n-element sample population:
X = [-0.8, 0.1, -2.3, -0.6, 0.2, 1.1, -0.3, 0.6, -0.2, 1.1, $

-0.7, -0.2, 0.6, 0.4, -0.1, 1.1, -0.3, 0.3, -1.3, 1.1]

; Allocate a two-column, n-row array to store the results:
array = FLTARR(2, N_ELEMENTS(X))

; Sort the sample population and store in the 0th column of ARRAY:
array[0, *] = X[SORT(X)]
; Compute the ranks of the sorted sample population and store in
; the 1st column of ARRAY:
array[1, *] = RANKS(X[SORT(X)])
RANKS IDL Reference Guide

 1601
; Display the sorted sample population and corresponding ranks
; with a two-decimal format:
PRINT, array, FORMAT = '(2(5x, f5.2))'

IDL prints:

-2.30 1.00
-1.30 2.00
-0.80 3.00
-0.70 4.00
-0.60 5.00
-0.30 6.50
-0.30 6.50
-0.20 8.50
-0.20 8.50
-0.10 10.00
0.10 11.00
0.20 12.00
0.30 13.00
0.40 14.00
0.60 15.50
0.60 15.50
1.10 18.50
1.10 18.50
1.10 18.50
1.10 18.50

Version History

Introduced: 4.0

See Also

R_CORRELATE
IDL Reference Guide RANKS

1602
RDPIX

The RDPIX procedure interactively displays the X position, Y position, and pixel
value at the cursor.

This routine is written in the IDL language. Its source code can be found in the file
rdpix.pro in the lib subdirectory of the IDL distribution.

Using RDPIX

RDPIX displays a stream of X, Y, and pixel values when the mouse cursor is moved
over a graphics window. Press the left or center mouse button to create a new line of
output. Press the right mouse button to exit the procedure.

Syntax

RDPIX, Image [, X0, Y0]

Arguments

Image

The array that contains the image being displayed. This array may be of any type.
Rather than reading pixel values from the display, values are taken from this
parameter, avoiding scaling difficulties.

X0, Y0

The location of the lower-left corner of the image area on screen. If these parameters
are not supplied, they are assumed to be zero.

Keywords

None.

Version History

Introduced: Original

See Also

CURSOR, TVRD
RDPIX IDL Reference Guide

 1603
READ/READF

The READ procedures perform formatted input into variables.

READ performs input from the standard input stream (IDL file unit 0), while READF
requires a file unit to be explicitly specified.

Syntax

READ, [Prompt,] Var1, ..., Varn

READF, [Prompt,] Unit, Var1, ..., Varn

Keywords: [, AM_PM=[string, string]] [, DAYS_OF_WEEK=string_array{7
names}] [, FORMAT=value] [, MONTHS=string_array{12 names}]
[, PROMPT=string]

Arguments

Prompt

Note
The PROMPT keyword should be used instead of the Prompt argument for
compatibility with window-based versions of IDL.

A string or explicit expression (i.e, not a named variable) to be used as a prompt. This
argument should not be included if the FORMAT keyword is specified. Also, if this
argument begins with the characters “$(”, it is taken to be a format specification as
described below under “Format Compatibility”.

Using the Prompt argument does not work well with IDL for Windows. The desired
prompt string is written to the log window instead of the command input window. To
create custom prompts compatible with these versions of IDL, use the PROMPT
keyword, described below.

Unit

For READF, Unit specifies the file unit from which the input is taken.

Vari

The named variables to receive the input.
IDL Reference Guide READ/READF

1604
Note
Vari may not be an element of an array variable (arrayvar[n]) or a field within a
structure variable (structvar.tag). See “Parameter Passing Mechanism” in
Chapter 4 of the Building IDL Applications manual for details.

If the variable specified for the Vari argument has not been previously defined, the
input data is assumed to be of type float, and the variable will be created as a float.

Keywords

AM_PM

Supplies a string array of two names to be used for the names of the AM and PM
string when processing explicitly formatted dates (CAPA, CApA, and CapA format
codes) with the FORMAT keyword.

DAYS_OF_WEEK

Supplies a string array of 7 names to be used for the names of the days of the week
when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the FORMAT keyword.

FORMAT

If FORMAT is not specified, IDL uses its default rules for formatting the input.
FORMAT allows the format of the input to be specified in precise detail, using a
FORTRAN-style specification. See “Using Explicitly Formatted Input/Output” in
Chapter 10 of the Building IDL Applications manual.

MONTHS

Supplies a string array of 12 names to be used for the names of the months when
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) with
the FORMAT keyword.

PROMPT

Set this keyword to a scalar string to be used as a customized prompt for the READ
command. If the PROMPT keyword or Prompt argument is not supplied, IDL uses a
colon followed by a space (“: ”) as the input prompt.

Obsolete Keywords

The following keywords are obsolete:
READ/READF IDL Reference Guide

 1605
• KEY_ID

• KEY_MATCH

• KEY_VALUE

For information on obsolete keywords, See Appendix I, “Obsolete Features”.

Format Compatibility

If the FORMAT keyword is not present and READ is called with more than one
argument, and the first argument is a scalar string starting with the characters “$(”,
this initial argument is taken to be the format specification, just as if it had been
specified via the FORMAT keyword. This feature is maintained for compatibility
with version 1 of VMS IDL.

Examples

To read a string value into the variable B from the keyboard, enter:

; Define B as a string before reading:
B = ''

; Read input from the terminal:
READ, B, PROMPT='Enter Name: '

To read formatted data from the previously-opened file associated with logical unit
number 7 into variable C, use the command:

READF, 7, C

Version History

Introduced: Original

See Also

READS, READU, WRITEU
IDL Reference Guide READ/READF

1606
READ_ASCII

The READ_ASCII function reads data from an ASCII file into an IDL structure
variable. READ_ASCII may be used with templates created by the
ASCII_TEMPLATE function.

This routine handles ASCII files consisting of an optional header of a fixed number
of lines, followed by columnar data. One or more rows of data constitute a record.
Each data element within a record is considered to be in a different column, or field.
The data in one field must be of, or promotable to, a single type (e.g., FLOAT).
Adjacent fields may be collected into multi-column fields, called groups. Files may
also contain comments, which exist between a user-specified comment string and the
corresponding end-of-line.

READ_ASCII is designed to be used with templates created by the ASCII template
function.

This routine is written in the IDL language. Its source code can be found in the file
read_ascii.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = READ_ASCII([Filename] [, COMMENT_SYMBOL=string]
[, COUNT=variable] [, DATA_START=lines_to_skip] [, DELIMITER=string]
[, HEADER=variable] [, MISSING_VALUE=value] [, NUM_RECORDS=value]
[, RECORD_START=index] [, TEMPLATE=value] [, /VERBOSE])

Arguments

Filename

A string containing the name of an ASCII file to read into an IDL variable. If
filename is not specified, a dialog allows the user to choose a file.

Keywords

You can define the attributes of a field in two ways. If you use a template, you can
either use a previously generated template, or create a template with
ASCII_TEMPLATE. You can use COMMENT_SYMBOL, DATA_START,
DELIMITER, or MISSING_VALUE to either override template attributes or to
provide one-time attributes for the file to be read, without a template.
READ_ASCII IDL Reference Guide

 1607
COMMENT_SYMBOL

Set this keyword to a string that identifies the character used to delineate comments in
the ASCII file to be read. When READ_ASCII encounters the comment character, it
discards data from that point until it reaches the end of the current line, identifying
the rest of the line as a comment. The default character the null string, ‘’, specifying
that no comments will be recognized.

COUNT

Set this keyword equal to a named variable that will contain the number of records
read.

DATA_START

Set this keyword equal to the number of header lines you want to skip. The default
value is 0 if no template is specified.

DELIMITER

Set this keyword to a string that identifies the end of a field. If no delimiter is
specified, READ_ASCII uses information provided by the template in use. The
default is a space, ‘ ’, specifying that an empty element constitutes the end of a field.

HEADER

Set this keyword equal to a named variable that will contain the header in a string
array of length DATA_START. If no header exists, an empty string is returned.

MISSING_VALUE

Set this keyword equal to a value used to replace any missing or invalid data. The
default value, if no template is supplied, is !VALUES.F_NAN. See “!VALUES” on
page 3895 for details.

NUM_RECORDS

Set this keyword equal to the number of records to read. The default is to read up to
and including the last record.

RECORD_START

Set this keyword equal to the index of the first record to read. The default is the first
record of the file (record 0).
IDL Reference Guide READ_ASCII

1608
TEMPLATE

Use this keyword to specify the ASCII file template (generated by the function
ASCII_TEMPLATE), that defines attributes of the file to be read. Specific attributes
of the template may be overridden by the following keywords:
COMMENT_SYMBOL, DATA_START, DELIMITER, MISSING_VALUE.

VERBOSE

Set this keyword to print runtime messages.

Examples

To read ASCII data using default file attributes, except for setting the number of
skipped header lines to 10, type:

data = READ_ASCII(file, DATA_START=10)

To use a template to define file attributes, overriding the number of skipped header
lines defined in the template, type:

data = READ_ASCII(file, TEMPLATE=template, DATA_START=10)

To use the ASCII_TEMPLATE GUI to generate a template within the function, type:

data = READ_ASCII(myfile, TEMPLATE=ASCII_TEMPLATE(myfile))

Version History

Introduced: 5.0

See Also

ASCII_TEMPLATE
READ_ASCII IDL Reference Guide

 1609
READ_BINARY

The READ_BINARY function reads the contents of a binary file using a passed
template or basic command line keywords. Data is read from the given filename or
from the current file position in the open file pointed to by FileUnit. If no template is
provided, keywords can be used to read a single IDL array of data.

Syntax

Result = READ_BINARY ([Filename] | FileUnit [, TEMPLATE=template] |
[[, DATA_START=value] [, DATA_TYPE=typecodes] [, DATA_DIMS=array]
[, ENDIAN=string]])

Return Value

The result is an array or anonymous structure containing all of the entities read from
the file.

Arguments

Filename

A scalar string containing the name of the binary file to read. If filename and file unit
are not specified, a dialog allows the user to choose a file.

FileUnit

A scalar containing an open IDL file unit number to read from.

Keywords

DATA_DIMS

Set this keyword to a scalar or array of up to eight elements specifying the size of the
data to be read and returned. For example, DATA_DIMS=[512,512] specifies that a
two-dimensional, 512 by 512 array be read and returned. DATA_DIMS=0 specifies
that a single, scalar value be read and returned. Default is -1, which, if a TEMPLATE
is not supplied that specifies otherwise, indicates that READ_BINARY will read to
end-of-file and store the result in a 1-D array.
IDL Reference Guide READ_BINARY

1610
DATA_START

Set this keyword to specify where to begin reading in a file. This value is as an offset,
in bytes, that will be applied to the initial position in the file. The default is 0.

DATA_TYPE

Set this keyword to an IDL typecode of the data to be read. See documentation for the
SIZE function for a listing of typecodes. Default is 1 (IDL’s BYTE typecode).

ENDIAN

Set this keyword to one of three string values: ‘big”, “little” or “native” which
specifies the byte ordering of the file to be read. If the computer running
READ_BINARY uses byte ordering that is different than that of the file,
READ_BINARY will swap the order of bytes in multi-byte data types read from the
file. (Default: “native” = perform no byte swapping.)

TEMPLATE

Set this keyword to a template structure (created using the BINARY_TEMPLATE
function) describing the file to be read. The TEMPLATE keyword cannot be used
simultaneously with keywords DATA_START, DATA_TYPE, DATA_DIMS, or
ENDIAN.

When a template is used with READ_BINARY, the the return value is a structure
containing fields specified by the template. If a template is not used, the return value
is an array.

Version History

Introduced: 5.3

See Also

BINARY_TEMPLATE
READ_BINARY IDL Reference Guide

 1611
READ_BMP

The READ_BMP function reads a Microsoft Windows Version 3 device independent
bitmap file (.BMP) and returns the image.

READ_BMP does not handle 1-bit-deep images or compressed images, and is not
fast for 4-bit images. The algorithm works best on images where the number of bytes
in each scan-line is evenly divisible by 4.

This routine is written in the IDL language. Its source code can be found in the file
read_bmp.pro in the lib subdirectory of the IDL distribution.

Note
To find information about a potential BMP file before trying to read its data, use the
QUERY_BMP function.

Syntax

Result = READ_BMP(Filename, [, R, G, B] [, Ihdr] [, /RGB])

Return Value

Returns a byte array containing the image. Dimensions are taken from the
BITMAPINFOHEADER of the file. In the case of 4-bit or 8-bit images, the
dimensions of the resulting array are (biWidth, biHeight).

For 24-bit images, the dimensions are (3, biWidth, biHeight). Color interleaving
is blue, green, red; i.e., Result[0,i,j] = blue, Result[1,i,j] = green, etc.

Arguments

Filename

A scalar string specifying the full path name of the bitmap file to read.

R, G, B

Named variables that will contain the color tables from the file. There 16 elements
each for 4 bit images, 256 elements each for 8 bit images. Color tables are not defined
or used for 24 bit images.
IDL Reference Guide READ_BMP

1612
Ihdr

A named variable that will contain a structure holding the BITMAPINFOHEADER
from the file. Tag names are as defined in the MS Windows Programmer’s Reference
Manual, Chapter 7.

Keywords

RGB

If this keyword is set, color interleaving of 16- and 24-bit images will be R, G, B, i.e.,
Result[0,i,j] = red, Result[1,i,j] = green, Result[2,i,j] = blue.

Examples

To open, read, and display the BMP file named foo.bmp in the current directory and
store the color vectors in the variables R, G, and B, enter:

; Read and display an image:
TV, READ_BMP('foo.bmp', R, G, B)

; Load its colors:
TVLCT, R, G, B

Many applications that use 24-bit BMP files outside IDL expect BMP files to be
stored as BGR. For example, enter the following commands.

; Make a red square image:
a = BYTARR(3, 200, 200)
a[0, *, *] = 255

;View the image:
TV, a, /TRUE
WRITE_BMP, 'foo.bmp', a

If you open the .bmp file in certain bitmap editors, you may find that the square is
blue.

image = READ_BMP('foo.bmp')

; IDL reads the image back in and interprets it as red:
TV, image, /TRUE

; Flip the order of the indices by adding the RGB keyword:
image = READ_BMP('foo.bmp', /RGB)

; Displays the image in blue:
TV, image, /TRUE
READ_BMP IDL Reference Guide

 1613
Version History

Introduced: Pre 4.0

See Also

WRITE_BMP, QUERY_BMP
IDL Reference Guide READ_BMP

1614
READ_DICOM

The READ_DICOM function reads an image from a DICOM file along with any
associated color table.The return array type depends on the DICOM image pixel type.

This routine is written in the IDL language. Its source code can be found in the file
read_dicom.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = READ_DICOM (Filename [, Red, Green, Blue] [, IMAGE_INDEX=index])

Return Value

The return value can be a 2-D array for grayscale or a 3-D array for TrueColor
images. TrueColor images are always returned in pixel interleave format.

Arguments

Filename

This argument is a scalar string that contains the full pathname of the file to read.

Red, Green, Blue

Named variables that will contain the red, green, and blue color vectors from the
DICOM file if they exist.

Note
DICOM color vectors contain 16- bit color values that may need to be converted for
use with IDL graphics routines.

Keywords

IMAGE_INDEX

Set this keyword to the index of the image to read from the file.

Examples

TVSCL,READ_DICOM(FILEPATH('mr_knee.dcm',$
SUBDIR=['examples','data']))
READ_DICOM IDL Reference Guide

 1615
Version History

Introduced: 5.2

See Also

QUERY_DICOM
IDL Reference Guide READ_DICOM

1616
READ_IMAGE

The READ_IMAGE function reads the image contents of a file and returns the image
in an IDL variable. If the image contains a palette it can be returned as well in three
IDL variables. READ_IMAGE returns the image in the form of a two-dimensional
array (for grayscale images) or a (3, n, m) array (for TrueColor images).
READ_IMAGE can read most types of image files supported by IDL. See
QUERY_IMAGE for a list of supported formats.

Syntax

Result = READ_IMAGE (Filename [, Red, Green, Blue] [, IMAGE_INDEX=index])

Return Value

Result is the image array read from the file or scalar value of -1 if the file could not be
read.

Arguments

Filename

A scalar string containing the name of the file to read.

Red

An optional named variable to receive the red channel of the color table if a color
table exists.

Green

An optional named variable to receive the green channel of the color table if a color
table exists.

Blue

An optional named variable to receive the blue channel of the color table if a color
table exists.
READ_IMAGE IDL Reference Guide

 1617
Keywords

IMAGE_INDEX

Set this keyword to the index of the image to read from the file. The default is 0, the
first image.

Version History

Introduced: 5.3
IDL Reference Guide READ_IMAGE

1618
READ_INTERFILE

The READ_INTERFILE procedure reads image data stored in Interfile (v3.3) format.

READ_INTERFILE can only read a series of images if all images have the same
height and width. It does not get additional keyword information beyond what is
needed to read the image data. If any problems occur when reading the file,
READ_INTERFILE prints a message and stops.

If the data is stored on a bigendian machine and read on a littleendian machine (or
vice versa) the order of bytes in each pixel element may be reversed, requiring a call
to BYTEORDER

This routine is written in the IDL language. Its source code can be found in the file
read_interfile.pro in the lib subdirectory of the IDL distribution.

Syntax

READ_INTERFILE, File, Data

Return Value

Returns a 3-D array containing the image data.

Arguments

File

A scalar string containing the name of the Interfile to read. Note: if the Interfile has a
header file and a data file, this should be the name of the header file (also called the
administrative file).

Data

A named variable that will contain a 3-D array of data as read from the file. Assumed
to be a series of 2-D images.

Keywords

None.
READ_INTERFILE IDL Reference Guide

 1619
Examples

READ_INTERFILE, '0_11.hdr', X

Version History

Introduced: Pre 4.0
IDL Reference Guide READ_INTERFILE

1620
READ_JPEG

The READ_JPEG procedure reads JPEG (Joint Photographic Experts Group) format
compressed images from files or memory. JPEG is a standardized compression
method for full-color and gray-scale images. This procedure reads JFIF, the JPEG
File Interchange Format, including those produced by WRITE_JPEG. Such files are
usually simply called JPEG files

READ_JPEG can optionally quantize TrueColor images contained in files to a
pseudo-color palette with a specified number of colors, and with optional color
dithering.

This procedure is based in part on the work of the Independent JPEG Group. For a
brief explanation of JPEG, see “WRITE_JPEG” on page 2351.

Note
All JPEG files consist of byte data. Input data is converted to bytes before being
written to a JPEG file.

Note
To find information about a potential JPEG file before trying to read its data, use the
QUERY_JPEG function.

Syntax

READ_JPEG [, Filename | , UNIT=lun] , Image [, Colortable] [, BUFFER=variable]
[, COLORS=value{8 to 256}] [, DITHER={0 | 1 | 2}] [, /GRAYSCALE] [, /ORDER]
[, TRUE={1 | 2 | 3}] [, /TWO_PASS_QUANTIZE]

Arguments

Filename

A scalar string specifying the full pathname of the JFIF format (JPEG) file to be read.
If this parameter is not present, the UNIT and/or the BUFFER keywords must be
specified.

Image

A named variable to contain the image data read from the file.
READ_JPEG IDL Reference Guide

 1621
Colortable

A named variable to contain the colormap, when reading a TrueColor image that is to
be quantized. On completion, this variable contains a byte array with dimensions
(NCOLORS, 3). This argument is filled only if the image is color quantized (refer to
the COLORS keyword).

Keywords

BUFFER

Set this keyword to a named variable that is used for a buffer. A buffer variable need
only be supplied when reading multiple images per file. Initialize the buffer variable
to empty by setting it to 0.

COLORS

If the image file contains a TrueColor image that is to be displayed on an indexed
color destination, set COLORS to the desired number of colors to be quantized.
COLORS can be set to a value from 8 to 256. The DITHER and
TWO_PASS_QUANTIZE keywords affect the method, speed, and quality of the
color quantization. These keywords have no effect if the file contains a grayscale
image.

DITHER

Set this keyword to use dithering with color quantization (i.e., if the COLORS
keyword is in use). Dithering is a method that distributes the color quantization error
to surrounding pixels, to achieve higher-quality results. Set the DITHER keyword to
one of the following values:

• 0 = No dithering. Images are read quickly, but quality is low.

• 1 = Floyd-Steinberg dithering. This method is relatively slow, but produces the
highest quality results. This is the default behavior.

• 2 = Ordered dithering. This method is faster than Floyd-Steinberg dithering,
but produces lower quality results.

GRAYSCALE

Set this keyword to return a monochrome (grayscale) image, regardless of whether
the file contains an RGB or grayscale image.
IDL Reference Guide READ_JPEG

1622
ORDER

JPEG/JFIF images are normally written in top-to-bottom order. If the image is to be
stored into the Image array in the standard IDL order (from bottom-to-top) set
ORDER to 0. This is the default. If the image array is to be top-to-bottom order, set
ORDER to 1.

TRUE

Use this keyword to specify the index of the dimension for color interleaving when
reading a TrueColor image. The default is 1, for pixel interleaving, (3, m, n). A value
of 2 indicates line interleaving (m, 3, n), and 3 indicates band interleaving, (m, n, 3).

TWO_PASS_QUANTIZE

Set this keyword to use a two-pass color quantization method when quantization is in
effect (i.e., the COLORS keyword is in use). This method requires more memory and
time, but produces superior results to the default one-pass quantization method.

UNIT

This keyword can be used to designate the logical unit number of an already open
JFIF file, allowing the reading of multiple images per file or the embedding of JFIF
images in other data files. When using this keyword, Filename should not be
specified.

Note
When opening a file intended for use with the UNIT keyword, if the filename does
not end in .jpg, or .jpeg, you must specify the STDIO keyword to OPEN in order
for the file to be compatible with READ_JPEG.

Examples

; Read a JPEG grayscale image:
READ_JPEG, 'test.jpg', a

; Display the image:
TV, a

; Read and display a JPEG TrueColor image on a TrueColor display:
READ_JPEG, 'test.jpg', a, TRUE=1

; Display the image returned with pixel interleaving
; (i.e., with dimensions 3, m, n):
READ_JPEG IDL Reference Guide

 1623
TV, a, TRUE=1

Read the image, setting the number of colors to be quantized to the maximum number
of available colors.

; Read a JPEG TrueColor image on an 8-bit pseudo-color display:
READ_JPEG, 'test.jpg', a, ctable, COLORS=!D.N_COLORS-1

; Display the image:
TV, a

; Load the quantized color table:
TVLCT, ctable

We could have also included the TWO_PASS_QUANTIZE and DITHER keywords
to improve the image’s appearance.

Using the BUFFER keyword.

; Initialize buffer:
buff = 0
OPENR, 1, 'images.jpg'

; Process each image:
FOR i=1, nimages DO BEGIN

; Read next image:
READ_JPEG, UNIT=1, BUFFER=buff, a

; Display the image:
TV, a

ENDFOR

; Done:
CLOSE, 1

Version History

Introduced: Pre 4.0

See Also

WRITE_JPEG, QUERY_JPEG
IDL Reference Guide READ_JPEG

1624
READ_MRSID

The READ_MRSID function extracts and returns image data from a MrSID file at
the specified level and location. It is a wrapper around the object interface that
presents MrSID image loading in a familiar way to users of the READ_* image
routines. However this function is not as efficient as the object interface and the
object interface should be used whenever possible. See “IDLffMrSID” on page 2629
for information about the object interface

Syntax

Result = READ_MRSID (Filename [, LEVEL=lvl] [, SUB_RECT=rect])

Return Value

ImageData returns an n-by-w-by-h array containing the image data where n is 1 for
grayscale or 3 for RGB images, w is the width and h is the height.

Note
The returned image is ordered bottom-up, the first pixel returned is located at the
bottom-left of the image. This differs from how data is stored in the MrSID file
where the image is top-down, meaning the pixel at the start of the file is located at
the top-left of the image.

Arguments

Filename

A scalar string containing the full path and filename of the MrSID file to read.

Keywords

LEVEL

Set this keyword to an integer that specifies the level at which to read the image. If
this keyword is not set, the maximum level (see QUERY_MRSID) is used which
returns the minimum resolution.
READ_MRSID IDL Reference Guide

 1625
SUB_RECT

Set this keyword to a four-element vector [x, y, xdim, ydim] specifying the position
of the lower left-hand corner and the dimensions of the sub-rectangle of the MrSID
image to return. This is useful for displaying only a portion of the high-resolution
image. If this keyword is not set, the entire image will be returned. This may require
significant memory if a high-resolution level is selected. If the sub-rectangle is
greater than the bounds of the image at the selected level the area outside the image
bounds will be set to black.

Note
The elements of SUB_RECT are measured in pixels at the current level. This means
the point x = 10, y = 10 at level 1 will be located at x = 20, y = 20 at level 0 and
x = 5, y = 5 at level 2.

Examples

; Query the file.
result = QUERY_MRSID(FILE_SEARCH(!DIR, 'test_gs.sid'), info)

; If result is not zero, read in an image from the file and
; display it.
IF (result NE 0) THEN BEGIN

PRINT, info
imageData = READ_MRSID(FILE_SEARCH(!DIR, 'test_gs.sid'), $

SUB_RECT = [0, 0, 200, 200], LEVEL = 3)
oImage = OBJ_NEW('IDLgrImage', imageData, ORDER = 0)
XOBJVIEW, oImage, BACKGROUND = [255,255,0]

ENDIF

; Use the file access object to query the file.
oMrSID = OBJ_NEW('IDLffMrSID', FILE_SEARCH(!DIR, 'test_gs.sid'))
oMrSID -> GetProperty, PIXEL_TYPE=pt, $

CHANNELS = chan, DIMENSIONS = dims, $
TYPE = type, LEVELS = lvls

PRINT, pt, chan, dims, type, lvls

; Use the object to read in an image from the file.
lvls = -3
dimsatlvl = oMrSID -> GetDimsAtLevel(lvls)
PRINT, dimsatlvl
imageData = oMrSID -> GetImageData(LEVEL = 3)
PRINT, size(imageData)
OBJ_DESTROY, oImage
IDL Reference Guide READ_MRSID

1626
Version History

Introduced: 5.5
READ_MRSID IDL Reference Guide

 1627
READ_PICT

The READ_PICT procedure reads the contents of a PICT (version 2) format image
file and returns the image and color table vectors (if present) in the form of IDL
variables. The PICT format is used by Apple Macintosh computers.

This routine is written in the IDL language. Its source code can be found in the file
read_pict.pro in the lib subdirectory of the IDL distribution.

Note
To find information about a potential PICT file before trying to read its data, use the
QUERY_PICT function.

Syntax

READ_PICT, Filename, Image [, R, G, B]

Arguments

Filename

A scalar string specifying the full pathname of the PICT file to read.

Image

A named variable that will contain the 2-D image read from Filename.

R, G, B

Named variables that will contain the Red, Green, and Blue color vectors read from
the PICT file.

Keywords

None.

Examples

To open and read the PICT image file named foo.pict in the current directory, store
the image in the variable image1, and store the color vectors in the variables R, G,
and B, enter:
IDL Reference Guide READ_PICT

1628
READ_PICT, 'foo.pict', image1, R, G, B

To load the new color table and display the image, enter:

TVLCT, R, G, B
TV, image1

Version History

Introduced: Pre 4.0

See Also

WRITE_PICT, QUERY_PICT
READ_PICT IDL Reference Guide

 1629
READ_PNG

The READ_PNG routine reads the image contents of a Portable Network Graphics
(PNG) file and returns the image in an IDL variable. If the image contains a palette
(see QUERY_PNG), it can be returned as well in three IDL variables. READ_PNG
supports 1, 2, 3 and 4 channel images with channel depths of 8 or 16 bits.

Note
IDL supports version 1.0.5 of the PNG Library.

Note
Only single channel 8-bit images may have palettes. If an 8-bit, single-channel
image has index values marked as “transparent,” these can be retrieved as well.

Note
To find information about a potential PNG file before trying to read its data, use the
QUERY_PNG function.

Syntax

Result = READ_PNG (Filename [, R, G, B] [,/ORDER] [, /VERBOSE]
[, /TRANSPARENT])

or

READ_PNG, Filename, Image [, R, G, B] [,/ORDER] [, /VERBOSE]
[, /TRANSPARENT]

Note
The procedure form of READ_PNG is available to ease the conversion of IDL code
that uses the removed READ_GIF procedure. Instances of READ_GIF can be
changed to READ_PNG by simply replacing “READ_GIF” with “READ_PNG”.
Note, however, that the CLOSE and MULTIPLE keywords to READ_GIF are not
accepted by the READ_PNG procedure. Remember, too, that your .gif files must be
converted to .png in order for READ_PNG to work."

Return Value

For 8-bit images, Result will be a two- or three-dimensional array of type byte. For
16-bit images, Result will be of type unsigned integer (UINT).
IDL Reference Guide READ_PNG

1630
Arguments

Filename

A scalar string containing the full pathname of the PNG file to read.

R, G, B

Named variables that will contain the Red, Green, and Blue color vectors if a color
table exists.

Keywords

ORDER

Set this keyword to indicate that the rows of the image should be read from bottom to
top. The rows are read from top to bottom by default. ORDER provides compatibility
with PNG files written using versions of IDL prior to IDL 5.4, which wrote PNG files
from bottom to top.

VERBOSE

Produces additional diagnostic output during the read.

TRANSPARENT

Returns an array of pixel index values that are to be treated as “transparent” for the
purposes of image display. If there are no transparent values then TRANSPARENT
will be set to a long-integer scalar with the value 0.

Examples

Create an RGBA (16-bits/channel) and a Color Indexed (8-bit/channel) image with a
palette:

rgbdata = UINDGEN(4,320,240)
cidata = BYTSCL(DIST(256))
red = indgen(256)
green = indgen(256)
blue = indgen(256)
WRITE_PNG,'rgb_image.png',rgbdata
WRITE_PNG,'ci_image.png',cidata,red,green,blue
;Query and read the data
names = ['rgb_image.png','ci_image.png','unknown.png']
FOR i=0,N_ELEMENTS(names)-1 DO BEGIN
READ_PNG IDL Reference Guide

 1631
ok = QUERY_PNG(names[i],s)
IF (ok) THEN BEGIN

HELP,s,/STRUCTURE
IF (s.HAS_PALETTE) THEN BEGIN

img = READ_PNG(names[i],rpal,gpal,bpal)
HELP,img,rpal,gpal,bpal

ENDIF ELSE BEGIN
img = READ_PNG(names[i])
HELP,img

ENDELSE
ENDIF ELSE BEGIN

PRINT,names[i],' is not a PNG file'
ENDELSE

ENDFOR
END

Version History

Introduced: 5.2

See Also

WRITE_PNG, QUERY_PNG
IDL Reference Guide READ_PNG

1632
READ_PPM

The READ_PPM procedure reads the contents of a PGM (gray scale) or PPM
(portable pixmap for color) format image file and returns the image in the form of a
2-D byte array (for grayscale images) or a (3, n, m) byte array (for TrueColor
images).

Files to be read should adhere to the PGM/PPM standard. The following file types are
supported: P2 (graymap ASCII), P5 (graymap RAWBITS), P3 (TrueColor ASCII
pixmaps), and P6 (TrueColor RAWBITS pixmaps). Maximum pixel values are
limited to 255. Images are always stored with the top row first.

PPM/PGM format is supported by the PBMPLUS toolkit for converting various
image formats to and from portable formats, and by the Netpbm package.

This routine is written in the IDL language. Its source code can be found in the file
read_ppm.pro in the lib subdirectory of the IDL distribution.

Note
To find information about a potential PPM file before trying to read its data, use the
QUERY_PPM function.

Syntax

READ_PPM, Filename, Image [, MAXVAL=variable]

Arguments

Filename

A scalar string specifying the full path name of the PGM or PPM file to read.

Image

A named variable that will contain the image. For grayscale images, Image is a 2-D
byte array. For TrueColor images, Image is a (3, n, m) byte array.

Keywords

MAXVAL

A named variable that will contain the maximum pixel value.
READ_PPM IDL Reference Guide

 1633
Examples

To open and read the PGM image file named “foo.pgm” in the current directory and
store the image in the variable IMAGE1:

READ_PPM, 'foo.pgm', IMAGE1

Version History

Introduced: 4.0

See Also

WRITE_PPM, QUERY_PPM
IDL Reference Guide READ_PPM

1634
READ_SPR

The READ_SPR function reads a row-indexed sparse array. Row-indexed sparse
arrays are created using the SPRSIN function and written to a file using the
WRITE_SPR function.

This routine is written in the IDL language. Its source code can be found in the file
read_spr.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = READ_SPR(Filename)

Return Value

Returns the row-indexed sparse array from the specified file.

Arguments

Filename

A scalar string specifying the name of the file containing a row-indexed sparse array.

Examples

Suppose we have already saved a row-indexed sparse array to a file named sprs.as,
as described in the documentation for the WRITE_SPR routine. To read the sparse
array from the file and store it in a variable sprs, use the following command:

sprs = READ_SPR('sprs.as')

Version History

Introduced: Pre 4.0

See Also

FULSTR, LINBCG, SPRSAB, SPRSAX, SPRSIN, WRITE_SPR
READ_SPR IDL Reference Guide

 1635
READ_SRF

The READ_SRF procedure reads the contents of a Sun rasterfile and returns the
image and color table vectors (if present) in the form of IDL variables.

READ_SRF only handles 1-, 8-, 24-, and 32-bit rasterfiles of type RT_OLD and
RT_STANDARD. See the file /usr/include/rasterfile.h for the structure of
Sun rasterfiles.

This routine is written in the IDL language. Its source code can be found in the file
read_srf.pro in the lib subdirectory of the IDL distribution.

Note
To find information about a potential SRF file before trying to read its data, use the
QUERY_SRF function.

Syntax

READ_SRF, Filename, Image [, R, G, B]

Arguments

Filename

A scalar string containing the name of the rasterfile to read.

Image

A named variable that will contain the 2-D byte array (image).

R, G, B

Named variables that will contain the Red, Green, and Blue color vectors, if the
rasterfile contains colormaps.

Keywords

None.
IDL Reference Guide READ_SRF

1636
Examples

To open and read the Sun rasterfile named sun.srf in the current directory, store the
image in the variable image1, and store the color vectors in the variables R, G, and B,
enter:

READ_SRF, 'sun.srf', image1, R, G, B

To load the new color table and display the image, enter:

TVLCT, R, G, B
TV, image1

Version History

Introduced: Original

See Also

WRITE_SRF, QUERY_SRF
READ_SRF IDL Reference Guide

 1637
READ_SYLK

The READ_SYLK function reads the contents of a SYLK (Symbolic Link) format
spreadsheet data file and returns the contents of the file, or of a cell data range, in an
IDL variable.

Note
This routine reads only numeric and string SYLK data. It ignores all spreadsheet
and cell formatting information (cell width, text justification, font type, date, time,
and monetary notations, etc). Note also that the data in a given cell range must be of
the same data type (all integers, for example) in order for the read operation to
succeed. See the example below for further information.

This routine is written in the IDL language. Its source code can be found in the file
read_sylk.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = READ_SYLK(File [, /ARRAY] [, /COLMAJOR] [, NCOLS=columns]
[, NROWS=rows] [, STARTCOL=column] [, STARTROW=row] [, /USEDOUBLES]
[, /USELONGS])

Return Value

READ_SYLK returns either a vector of structures or a 2-D array containing the
spreadsheet cell data. By default, READ_SYLK returns a vector of structures, each
of which contains the data from one row of the table being read. In this case, the
individual fields in the structures have the tag names “Col0”, “Col1”, ..., “Coln”. If
the COLMAJOR keyword is specified, each of the structures returned contains data
from one column of the table, and the tag names are “Row0”, “Row1”, ..., “Rown”.

Arguments

File

A scalar string specifying the full path name of the SYLK file to read.
IDL Reference Guide READ_SYLK

1638
Keywords

ARRAY

Set this keyword to return an IDL array rather than a vector of structures. Note that all
the data in the cell range specified must be of the same data type to successfully
return an array.

COLMAJOR

Set this keyword to create a vector of structures each containing data from a single
column of the table being read. If you are creating an array rather than a vector of
structures (the ARRAY keyword is set), setting COLMAJOR has the same effect as
transposing the resulting array.

This keyword should be set when importing spreadsheet data which has column
major organization (data stored in columns rather than rows).

NCOLS

Set this keyword to the number of spreadsheet columns to read. If not specified, all of
the cell columns found in the file are read.

NROWS

Set this keyword to the number of spreadsheet rows to read. If not specified, all of the
cell rows found in the file are read.

STARTCOL

Set this keyword to the first column of spreadsheet cells to read. If not specified, the
read operation begins with the first column found in the file (column 0).

STARTROW

Set this keyword to the first row of spreadsheet cells to read. If not specified, the read
operation begins with the first row of cells found in the file (row 0).

USEDOUBLES

Set this keyword to read any floating-point cell data as double-precision rather than
the default single-precision.
READ_SYLK IDL Reference Guide

 1639
USELONGS

Set this keyword to read any integer cell data as long integer type rather than the
default integer type.

Examples

Suppose the following spreadsheet table, with the upper left cell (value = “Index”) at
location (0, 0), has been saved as the SYLK file “file.slk”:

Index Name Gender Platform
1 Beth F Windows
2 Lubos M UNIX
3 Louis M Windows
4 Thierry M UNIX

Note that the data format of the title row (string, string, string, string) is inconsistent
with the following four rows (int, string, string, string) in the table. Because of this, it
is impossible to read all of the table into a single IDL variable. The following two
commands, however, will read all of the data:

title = READ_SYLK("file.slk", NROWS = 1)
table = READ_SYLK("file.slk", STARTROW = 1)

;Display the top row of the table.
PRINT, title

IDL prints:

{ Index Name Gender Platform}

Print the table:

PRINT, table

IDL prints:

{1 Beth F Windows}{2 Lubos M UNIX}{3 Louis M Windows}{4 Thierry M
UNIX}

To retrieve only the “Name” column:

names = READ_SYLK("file.slk", /ARRAY, STARTROW = 1, $

STARTCOL = 1, NCOLS = 1)

PRINT, names

IDL prints:

Beth Lubos Louis Thierry
IDL Reference Guide READ_SYLK

1640
To retrieve the “Name” column in column format:

namescol = READ_SYLK("file.slk", /ARRAY, /COLMAJOR, $
STARTROW = 1, STARTCOL = 1, NCOLS = 1)

PRINT, namescol

IDL prints:

Beth
Lubos
Louis
Thierry

Version History

Introduced: 4.0

See Also

WRITE_SYLK
READ_SYLK IDL Reference Guide

 1641
READ_TIFF

The READ_TIFF function reads single or multi-channel images from TIFF format
files and returns the image and color table vectors in the form of IDL variables.

Note
To find information about a potential TIFF file before trying to read its data, use the
QUERY_TIFF function. The obsolete routine TIFF_DUMP may also be used to
examine the structure and tags of a TIFF file.

Note
READ_TIFF does not support LZW-compressed files.

Syntax

Result = READ_TIFF(Filename [, R, G, B] [, CHANNELS=scalar or vector]
[, GEOTIFF=variable] [, IMAGE_INDEX=value] [, INTERLEAVE={0 | 1 |2}]
[, ORIENTATION=variable] [, PLANARCONFIG=variable] [, SUB_RECT=[x, y,
width, height]] [, /VERBOSE])

Return Value

READ_TIFF returns a byte, unsigned integer, long, or float array (based on the data
format in the TIFF file) containing the image data. The dimensions of the Result are
[Columns, Rows] for single-channel images, or [Channels, Columns, Rows] for
multi-channel images, unless a different type of interleaving is specified with the
INTERLEAVE keyword.

For 1-bit (bilevel) images, the image values are 0 or 1. For 4-bit grayscale images the
image values are in the range 0 to 15.

RGB images are a special case of multi-channel images, and contain three channels.
Most TIFF readers and writers can handle only images with one or three channels.

As a special case, for three-channel TIFF image files that are stored in planar
interleave format, and if four parameters are provided, READ_TIFF returns the
integer value zero, sets the variable defined by the PLANARCONFIG keyword to 2,
and returns three separate images in the variables defined by the R, G, and B
arguments.
IDL Reference Guide READ_TIFF

1642
Arguments

Filename

A scalar string specifying the full pathname of the TIFF file to read.

R, G, B

Named variables that will contain the Red, Green, and Blue color vectors of the color
table from the file if one exists. If the TIFF file is written as a three-channel image,
interleaved by plane, and the R, G, and B parameters are present, the three channels
of the image are returned in the R, G, and B variables.

Keywords

CHANNELS

Set this keyword to a scalar or vector giving the channel numbers to be returned for a
multi-channel image, starting with zero. The default is to return all of the channels.
This keyword is ignored for single-channel images, or for three-channel planar-
interleaved images when the R, G, and B arguments are specified.

GEOTIFF

Returns an anonymous structure containing one field for each of the GeoTIFF tags
and keys found in the file. If no GeoTIFF information is present in the file, the
returned variable is undefined.

The GeoTIFF structure is formed using fields named from the following table.

Anonymous Structure Field Name IDLDatatype

TAGS:

"MODELPIXELSCALETAG" DOUBLE[3]

"MODELTRANSFORMATIONTAG" DOUBLE[4,4]

"MODELTIEPOINTTAG" DOUBLE[6,*]

KEYS:

"GTMODELTYPEGEOKEY" INT

Table 82: GEOTIFF Structures
READ_TIFF IDL Reference Guide

 1643
"GTRASTERTYPEGEOKEY" INT

"GTCITATIONGEOKEY" STRING

"GEOGRAPHICTYPEGEOKEY" INT

"GEOGCITATIONGEOKEY" STRING

"GEOGGEODETICDATUMGEOKEY" INT

"GEOGPRIMEMERIDIANGEOKEY" INT

"GEOGLINEARUNITSGEOKEY" INT

"GEOGLINEARUNITSIZEGEOKEY" DOUBLE

"GEOGANGULARUNITSGEOKEY" INT

"GEOGANGULARUNITSIZEGEOKEY" DOUBLE

"GEOGELLIPSOIDGEOKEY" INT

"GEOGSEMIMAJORAXISGEOKEY" DOUBLE

"GEOGSEMIMINORAXISGEOKEY" DOUBLE

"GEOGINVFLATTENINGGEOKEY" DOUBLE

"GEOGAZIMUTHUNITSGEOKEY" INT

"GEOGPRIMEMERIDIANLONGGEOKEY" DOUBLE

"PROJECTEDCSTYPEGEOKEY" INT

"PCSCITATIONGEOKEY" STRING

"PROJECTIONGEOKEY" INT

"PROJCOORDTRANSGEOKEY" INT

"PROJLINEARUNITSGEOKEY" INT

"PROJLINEARUNITSIZEGEOKEY" DOUBLE

"PROJSTDPARALLEL1GEOKEY" DOUBLE

"PROJSTDPARALLEL2GEOKEY" DOUBLE

Anonymous Structure Field Name IDLDatatype

Table 82: GEOTIFF Structures (Continued)
IDL Reference Guide READ_TIFF

1644
Note
If a GeoTIFF key appears multiple times in a file, only the value for the first
instance of the key is returned.

"PROJNATORIGINLONGGEOKEY" DOUBLE

"PROJNATORIGINLATGEOKEY" DOUBLE

"PROJFALSEEASTINGGEOKEY" DOUBLE

"PROJFALSENORTHINGGEOKEY" DOUBLE

"PROJFALSEORIGINLONGGEOKEY" DOUBLE

"PROJFALSEORIGINLATGEOKEY" DOUBLE

"PROJFALSEORIGINEASTINGGEOKEY" DOUBLE

"PROJFALSEORIGINNORTHINGGEOKEY" DOUBLE

"PROJCENTERLONGGEOKEY" DOUBLE

"PROJCENTERLATGEOKEY" DOUBLE

"PROJCENTEREASTINGGEOKEY" DOUBLE

"PROJCENTERNORTHINGGEOKEY" DOUBLE

"PROJSCALEATNATORIGINGEOKEY" DOUBLE

"PROJSCALEATCENTERGEOKEY" DOUBLE

"PROJAZIMUTHANGLEGEOKEY" DOUBLE

"PROJSTRAIGHTVERTPOLELONGGEOKEY" DOUBLE

"VERTICALCSTYPEGEOKEY" INT

"VERTICALCITATIONGEOKEY" STRING

"VERTICALDATUMGEOKEY" INT

"VERTICALUNITSGEOKEY" INT

Anonymous Structure Field Name IDLDatatype

Table 82: GEOTIFF Structures (Continued)
READ_TIFF IDL Reference Guide

 1645
IMAGE_INDEX

Selects the image number within the file to be read (see QUERY_TIFF to determine
the number of images in the file).

INTERLEAVE

For multi-channel images, set this keyword to one of the following values to force the
Result to have a specific interleaving, regardless of the type of interleaving in the file
being read:

If this keyword is not specified, the Result will always be pixel interleaved, regardless
of the type of interleaving in the file being read. For files stored in planar-interleave
format, this keyword is ignored if the R, G, and B arguments are specified.

ORIENTATION

Set this keyword to a named variable that will contain the orientation value from the
TIFF file. Possible return values are:

Value Description

0 Pixel interleaved: Result will have dimensions
[Channels, Columns, Rows].

1 Scanline (row) interleaved: Result will have dimensions
[Columns, Channels, Rows].

2 Planar interleaved: Result will have dimensions
[Columns, Rows, Channels].

Table 83: INTERLEAVE Keyword Values

Value Description

0 Column 0 represents the left-hand side, and row 0 represents
the bottom (same as 4)

1 Column 0 represents the left-hand side, and row 0 represents
the top.

2 Column 0 represents the right-hand side, and row 0 represents
the top.

Table 84: ORIENTATION Keyword Values
IDL Reference Guide READ_TIFF

1646
If an orientation value does not appear in the TIFF file, an orientation of 0 is returned.

PLANARCONFIG

Set this keyword to a named variable that will contain the interleave parameter for the
TIFF file. This parameter is returned as 1 for TIFF files that are GrayScale, Palette, or
interleaved by pixel. This parameter is returned as 2 for multi-channel TIFF files
interleaved by image.

SUB_RECT

Set this keyword to a four-element array, [x, y, width, height], that specifies a
rectangular region within the file to extract. Only the rectangular portion of the image
selected by this keyword is read and returned. The rectangle is measured in pixels
from the lower left corner (right hand coordinate system).

Tip
For tiled TIFF images, use the TILE_SIZE tag returned by QUERY_TIFF to
determine the optimal sizes for the SUB_RECT keyword.

VERBOSE

Produce additional diagnostic output during the read.

3 Column 0 represents the right-hand side, and row 0 represents
the bottom.

4 Column 0 represents the left-hand side, and row 0 represents
the bottom (same as 0)

5 Column 0 represents the top, and row 0 represents the left-
hand side.

6 Column 0 represents the top, and row 0 represents the right-
hand side.

7 Column 0 represents the bottom, and row 0 represents the
right-hand side.

8 Column 0 represents the bottom, and row 0 represents the left-
hand side.

Value Description

Table 84: ORIENTATION Keyword Values (Continued)
READ_TIFF IDL Reference Guide

 1647
Obsolete Keywords

The following keywords are obsolete:

• ORDER

• UNSIGNED

For information on obsolete keywords, See Appendix I, “Obsolete Features”.

Examples

Example 1

Read the file my.tif in the current directory into the variable image, and save the
color tables in the variables, R, G, and B by entering:

image = READ_TIFF('my.tif', R, G, B)

To view the image, load the new color table and display the image by entering:

TVLCT, R, G, B
TV, image

Example 2

Write and read a multi-image TIFF file. The first image is a 16-bit single-channel image
stored using compression. The second image is an RGB image stored using 32-
bits/channel uncompressed.

; Write the image data:
data = FIX(DIST(256))
rgbdata = LONARR(3,320,240)
WRITE_TIFF,'multi.tif',data,COMPRESSION=1,/SHORT
WRITE_TIFF,'multi.tif',rgbdata,/LONG,/APPEND

; Read the image data back:
ok = QUERY_TIFF('multi.tif',s)
IF (ok) THEN BEGIN
FOR i=0,s.NUM_IMAGES-1 DO BEGIN
imp = QUERY_TIFF('multi.tif',t,IMAGE_INDEX=i)
img = READ_TIFF('multi.tif',IMAGE_INDEX=i)
HELP,t,/STRUCTURE
HELP,img
ENDFOR
ENDIF
IDL Reference Guide READ_TIFF

1648
Example 3

Write and read a multi-channel image:

data = LINDGEN(10, 256, 256) ; 10 channels

; Write the image data:
WRITE_TIFF, 'multichannel.tif', data, /LONG

; Read back only channels [0,2,4,6,8], using planar-interleaving
img = READ_TIFF('multichannel.tif', CHANNELS=[0,2,4,6,8], $

INTERLEAVE=2)

HELP, img

IDL prints:

IMG LONG = Array[256, 256, 5]

Version History

Introduced: 5.0

See Also

WRITE_TIFF, QUERY_TIFF
READ_TIFF IDL Reference Guide

 1649
READ_WAV

The READ_WAV function reads the audio stream from the named .WAV file.
Optionally, it can return the sampling rate of the audio stream.

Syntax

Result = READ_WAV (Filename [, Rate])

Return Value

In the case of a single channel stream, the returned variable is a BYTE or INT
(depending on the number of bits per sample) one-dimensional array. In the case of a
file with multiple channels, a similar two-dimensional array is returned, with the
leading dimension being the channel number.

Arguments

Filename

A scalar string containing the full pathname of the .WAV file to read.

Rate

Returns an IDL long containing the sampling rate of the stream in samples per
second.

Keywords

None.

Version History

Introduced: 5.3
IDL Reference Guide READ_WAV

1650
READ_WAVE

The READ_WAVE procedure reads a .wave or .bwave file created by the
Wavefront Advanced Data Visualizer into a series of IDL variables.

Note
READ_WAVE only preserves the structure of the variables if they are regularly
gridded.

This routine is written in the IDL language. Its source code can be found in the file
read_wave.pro in the lib subdirectory of the IDL distribution.

Syntax

READ_WAVE, File, Variables, Names, Dimensions [, MESHNAMES=variable]

Arguments

File

A scalar string containing the name of the Wavefront file to read.

Variables

A named variable that will contain a block of the variables contained in the wavefront
file. Since each variable in a wavefront file can have more than one field (for instance,
a vector variable has 3 fields), the fields of each variable make up the major index
into the variable block. For instance, if a Wavefront file had one scalar variable and
one vector variable, the scalar would be extracted as follows:

scalar_variable = variables[0,*,*,*]

and the vector variable would be extracted as follows:

vector_variable = variables[1:3,*,*,*]

To find the dimensions of the returned variable, see the description of the Dimensions
argument.

Names

A named variable that will contain the string names of each variable contained in the
file.
READ_WAVE IDL Reference Guide

 1651
Dimensions

A named variable that will contain a long array describing how many fields in the
large returned variable block each variable occupies. In the above example of one
scalar variable followed by a vector variable, the dimension variable would be
[1,3].

This indicates that the first field of the returned variable block would be the scalar
variable and the following 3 fields would comprise the vector variable.

Keywords

MESHNAMES

Set this keyword to a named variable that will contain the name of the mesh used in
the Wavefront file for each variable.

Version History

Introduced: Pre 4.0

See Also

WRITE_WAVE
IDL Reference Guide READ_WAVE

1652
READ_X11_BITMAP

The READ_X11_BITMAP procedure reads bitmaps stored in the X Windows X11
format. The X Windows bitmap program produces a C header file containing the
definition of a bitmap produced by that program. This procedure reads such a file and
creates an IDL byte array containing the bitmap. It is used primarily to read bitmaps
to be used as IDL widget button labels.

This routine is written in the IDL language. Its source code can be found in the file
read_x11_bitmap.pro in the lib subdirectory of the IDL distribution.

Syntax

READ_X11_BITMAP, File, Bitmap [, X, Y] [, /EXPAND_TO_BYTES]

Arguments

File

A scalar string containing the name of the file containing the bitmap.

Bitmap

A named variable that will contain the bitmap. This variable is returned as a byte
array.

X

A named variable that will contain the width of the bitmap.

Y

A named variable that will contain the height of the bitmap.

Keywords

EXPAND_TO_BYTES

Set this keyword to instruct READ_X11_BITMAP to return a 2-D array which has
one bit per byte (0 for a 0 bit, 255 for a 1 bit) instead.
READ_X11_BITMAP IDL Reference Guide

 1653
Examples

To open and read the X11 bitmap file named my.x11 in the current directory, store
the bitmap in the variable bitmap1, and the width and height in the variables X and Y,
enter:

READ_X11_BITMAP, 'my.x11', bitmap1, X, Y

To display the new bitmap, enter:

READ_X11_BITMAP, 'my.x11', image, /EXPAND_TO_BYTES
TV, image, /ORDER

Version History

Introduced: Pre 4.0

See Also

READ_XWD
IDL Reference Guide READ_X11_BITMAP

1654
READ_XWD

The READ_XWD function reads the contents of a file created by the xwd (X
Windows Dump) command and returns the image and color table vectors in the form
of IDL variables.

Note
This function is intended to be used only on files containing 8-bit pixmaps created
with xwd version 6 or later.

This routine is written in the IDL language. Its source code can be found in the file
read_xwd.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = READ_XWD(Filename[, R, G, B])

Return Value

READ_XWD returns a 2-D byte array containing the image. If the file cannot be
open or read, the return value is zero.

Arguments

Filename

A scalar string specifying the full pathname of the XWD file to read.

R, G, B

Named variables that will contain the Red, Green, and Blue color vectors, if the
XWD file contains color tables.

Keywords

None.
READ_XWD IDL Reference Guide

 1655
Examples

To open and read the X Windows Dump file named my.xwd in the current directory,
store the image in the variable image1, and store the color vectors in the variables, R,
G, and B, enter:

image1 = READ_XWD('my.xwd', R, G, B)

To load the new color table and display the image, enter:

TVLCT, R, G, B
TV, image1

Version History

Introduced: Pre 4.0

See Also

READ_X11_BITMAP
IDL Reference Guide READ_XWD

1656
READS

The READS procedure performs formatted input from a string variable and writes the
results into one or more output variables. This procedure differs from the READ
procedure only in that the input comes from memory instead of a file.

This routine is useful when you need to examine the format of a data file before
reading the information it contains. Each line of the file can be read into a string using
READF. Then the components of that line can be read into variables using READS.

Syntax

READS, Input, Var1, ..., Varn [, AM_PM=[string, string]]
[, DAYS_OF_WEEK=string_array{7 names}] [, FORMAT=value]
[, MONTHS=string_array{12 names}]

Arguments

Input

The string variable from which the input is taken. If the supplied argument is not a
string, it is automatically converted. The argument can be scalar or array. If Input is
an array, the individual string elements are treated as successive lines of input.

Vari

The named variables to receive the input.

Note
If the variable specified for the Vari argument has not been previously defined, the
input data is assumed to be of type float, and the variable will be cast as a float.

Keywords

AM_PM

Supplies a string array of 2 names to be used for the names of the AM and PM string
when processing explicitly formatted dates (CAPA, CApA, and CapA format codes)
with the FORMAT keyword.
READS IDL Reference Guide

 1657
DAYS_OF_WEEK

Supplies a string array of 7 names to be used for the names of the days of the week
when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the FORMAT keyword.

FORMAT

If FORMAT is not specified, IDL uses its default rules for formatting the input.
FORMAT allows the format of the input to be specified in precise detail, using a
FORTRAN-style specification. See “Using Explicitly Formatted Input/Output” in
Chapter 10 of the Building IDL Applications manual.

MONTHS

Supplies a string array of 12 names to be used for the names of the months when
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) with
the FORMAT keyword.

Version History

Introduced: Pre 4.0

See Also

READ/READF, READU
IDL Reference Guide READS

1658
READU

The READU procedure reads unformatted binary data from a file into IDL variables.
READU transfers data directly with no processing of any kind performed on the data.

Syntax

READU, Unit, Var1, ..., Varn [, TRANSFER_COUNT=variable]

Arguments

Unit

The IDL file unit from which input is taken.

Vari

Named variables to receive the data. For non-string variables, the number of bytes
required for Var are read. When READU is used with a variable of type string, IDL
reads exactly the number of bytes contained in the existing string. For example, to
read a 5-character string, enter:

temp = '12345'
READU, unit, temp

Keywords

TRANSFER_COUNT

Set this keyword to a named variable in which to return the number of elements
transferred by the input operation. Note that the number of elements is not the same
as the number of bytes (except in the case where the data type being transferred is
bytes). For example, transferring 256 floating-point numbers yields a transfer count
of 256, not 1024 (the number of bytes transferred).

This keyword is useful with files opened with the RAWIO keyword to the OPEN
routines. Normally, attempting to read more data than is available from a file causes
the unfilled space to be zeroed and an error to be issued. This does not happen with
files opened with the RAWIO keyword. Instead, the programmer must keep track of
the transfer count.
READU IDL Reference Guide

 1659
Obsolete Keywords

The following keywords are obsolete:

• KEY_ID

• KEY_MATCH

• KEY_VALUE

For information on obsolete keywords, See Appendix I, “Obsolete Features”.

Examples

The following commands can be used to open the IDL distribution file people.dat and
read an image from that file:

; Open the file for reading as file unit 1:
OPENR, 1, FILEPATH('people.dat', SUBDIR = ['examples','data'])

; The image is a 192 by 192 byte array, so make B that size:
B = BYTARR(192, 192)

; Read the data into B:
READU, 1, B

; Close the file:
CLOSE, 1

; Display the image:
TV, B

Version History

Introduced: Original

See Also

READ/READF, READS, WRITEU, Chapter 10, “Files and Input/Output” in the
Building IDL Applications manual, “Unformatted Input/Output with Structures” in
Chapter 7 of the Building IDL Applications manual.
IDL Reference Guide READU

1660
REAL_PART

The REAL_PART function returns the real part of its complex-valued argument.

Syntax

Result = REAL_PART(Z)

Return Value

If the complex-valued argument is double-precision, the result will be double-
precision, otherwise the result will be single-precision floating-point. If the argument
is not complex, then the result will be double-precision if the argument is double-
precision, otherwise the result will be single-precision.

Arguments

Z

A scalar or array for which the real part is desired. Z may be of any numeric type.

Examples

The following example demonstrates how you can use REAL_PART to obtain the
real parts of an array of complex variables.

; Create an array of complex values:
cValues = COMPLEX([1, 2, 3],[4, 5, 6])

; Print just the real parts of each element in cValues:
PRINT, REAL_PART(cValues)

IDL prints:

 1.00000 2.00000 3.00000

Version History

Introduced: 5.5

See Also

COMPLEX, DCOMPLEX, IMAGINARY
REAL_PART IDL Reference Guide

 1661
REBIN

The REBIN function resizes a vector or array to dimensions given by the parameters
Di. The supplied dimensions must be integral multiples or factors of the original
dimension. The expansion or compression of each dimension is independent of the
others, so that each dimension can be expanded or compressed by a different value.

If the dimensions of the desired result are not integer multiples of the original
dimensions, use the CONGRID function.

Syntax

Result = REBIN(Array, D1 [, ..., D8] [, /SAMPLE])

Return Value

Returns the resized array or vector of the specified dimensions.

Arguments

Array

The array to be resampled. Array can be of any basic type except complex or string.

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified.

Note
The dimensions of the resulting resampled array must be integer multiples or
factors of the corresponding original dimensions.

Keywords

SAMPLE

Normally, REBIN uses bilinear interpolation when magnifying and neighborhood
averaging when minifying. Set the SAMPLE keyword to use nearest neighbor
IDL Reference Guide REBIN

1662
sampling for both magnification and minification. Bilinear interpolation gives higher
quality results but requires more time.

Rules Used by REBIN

Assume the original vector X has n elements and the result is to have m elements.

Let f = n/m, the ratio of the size of the original vector, X to the size of the result. 1/f
must be an integer if n < m (expansion). f must be an integer if compressing, (n > m).
The various resizing options can be described as:

• Expansion, n < m, SAMPLE = 0: Yi = F(X, f ⋅ i) i = 0, 1, ... , m-1

The linear interpolation function, F(X, p) that interpolates X at location p, is
defined as:

• Expansion, n < m, SAMPLE = 1:

• Compression, n > m, SAMPLE = 0:

• Compression, n > m, SAMPLE = 1:

• No change, n = m: Yi = Xi

F X p,()
X p p p–() X p 1+ X p–()⋅+ if p n 1–<

X p if p n 1–≥



=

Yi X fi=

Yi 1 f⁄() Xj

j fi=

f i 1+() 1–

∑=

Yi X fi=
REBIN IDL Reference Guide

 1663
Endpoint Effects When Expanding

When expanding an array, REBIN interpolates, it never extrapolates. Each of the n-1
intervals in the n-element input array produces m/n interpolates in the m-element
output array. The last m/n points of the result are obtained by duplicating element n-1
of the input array because their interpolates would lie outside the input array.

For example

; A four point vector:
A = [0, 10, 20, 30]

; Expand by a factor of 3:
B = REBIN(A, 12)

PRINT, B

IDL prints:

0 3 6 10 13 16 20 23 26 30 30 30

Note that the last element is repeated three times. If this effect is undesirable, use the
INTERPOLATE function. For example, to produce 12 equally spaced interpolates
from the interval 0 to 30:

B = INTERPOLATE(A, 3./11. * FINDGEN(12))
PRINT, B

IDL prints:

0 2 5 8 10 13 16 19 21 24 27 30

Here, the sampling ratio is (n - 1)/(m - 1).

Examples

Create and display a simple image by entering:

D = SIN(DIST(50)/4) & TVSCL, D

Resize the image to be 5 times its original size and display the result by entering:

D = REBIN(D, 250, 250) & TVSCL, D

Version History

Introduced: Original
IDL Reference Guide REBIN

1664
See Also

CONGRID
REBIN IDL Reference Guide

 1665
RECALL_COMMANDS

The RECALL_COMMANDS function returns a string array containing the entries in
IDL’s command recall buffer.

Syntax

Result = RECALL_COMMANDS()

Return Value

The size of the returned array is the size of recall buffer, even if fewer than commands
have been entered (any “empty” buffer entries will contain null strings). The default
size of the command recall buffer is 20 lines. (See “!EDIT_INPUT” on page 3905 for
more information about the command recall buffer.)

Element zero of the returned array contains the most recent command.

Arguments

None.

Keywords

None.

Version History

Introduced: 5.0
IDL Reference Guide RECALL_COMMANDS

1666
RECON3

The RECON3 function can reconstruct a three-dimensional data array from two or
more images (or projections) of an object. For example, if you placed a dark object in
front of a white background and then photographed it three times (each time rotating
the object a known amount) then these three images could be used with RECON3 to
approximate a 3-D volumetric representation of the object. RECON3 also works with
translucent projections of an object. RECON3 returns a 3-D byte array.

This routine is written in the IDL language. Its source code can be found in the file
recon3.pro in the lib subdirectory of the IDL distribution.

Using RECON3

Images used in reconstruction should show strong light/dark contrast between the
object and the background. If the images contain low (dark) values where the object
is and high (bright) values where the object isn’t, the MODE keyword should be set
to +1 and the returned volume will have low values where the object is, and high
values where the object isn’t. If the images contain high (bright) values where the
object is and low (dark) values where the object isn’t, the MODE keyword should be
set to -1 and the returned volume will have high values where the object is, and low
values where the object isn’t.

In general, the object must be CONVEX for a good reconstruction to be possible.
Concave regions are not easily reconstructed. An empty coffee cup, for example,
would be reconstructed as if it were full.

The more images the better. Images from many different angles will improve the
quality of the reconstruction. It is also important to supply images that are parallel
and perpendicular to any axes of symmetry. Using the coffee cup as an example, at
least one image should be looking through the opening in the handle. Telephoto
images are also better for reconstruction purposes than wide angle images.

Syntax

Result = RECON3(Images, Obj_Rot, Obj_Pos, Focal, Dist,Vol_Pos, Img_Ref,
Img_Mag, Vol_Size [, /CUBIC] [, MISSING=value] [, MODE=value] [, /QUIET])

Return Value

Returns a 3-D data array.
RECON3 IDL Reference Guide

 1667
Arguments

Images

A 3-D array containing the images to use to reconstruct the volume. Execution time
increases linearly with more images. Images must be an 8-bit (byte) array with
dimensions (x, y, n) where x is the horizontal image dimension, y is the vertical image
dimension, and n is the number of images. Note that n must be at least 2.

Obj_Rot

A 3 x n floating-point array specifying the amount the object is rotated to make it
appear as it does in each image. The object is first rotated about the X axis, then about
the Y axis, and finally about the Z axis (with the object’s reference point at the
origin). Obj_Rot[0, *] is the X rotation for each image, Obj_Rot[1, *] is the Y
rotation, and Obj_Rot[2, *] is the Z rotation.

Obj_Pos

A 3 x n floating-point array specifying the position of the object’s reference point
relative to the camera lens. The camera lens is located at the coordinate origin and
points in the negative Z direction (the view up vector points in the positive Y
direction). Obj_Pos should be expressed in this coordinate system. Obj_Pos[0, *] is
the X position for each image, Obj_Pos[1, *] is the Y position, and Obj_Pos[2, *] is
the Z position. All the values in Obj_Pos[2, *] should be less than zero. Note that the
values for Obj_Pos, Focal, Dist, and Vol_Pos should all be expressed in the same
units (mm, cm, m, in, ft, etc.).

Focal

An n-element floating-point array specifying the focal length of the lens for each
image. Focal may be set to zero to indicate a parallel image projection (infinite focal
length).

Dist

An n-element floating-point array specifying the distance from the camera lens to the
image plane (film) for each image. Dist should be greater than Focal.

Vol_Pos

A 3 x 2 floating-point array specifying the two opposite corners of a cube that
surrounds the object. Vol_Pos should be expressed in the object’s coordinate system
IDL Reference Guide RECON3

1668
relative to the object’s reference point. Vol_Pos[*, 0] specifies one corner and
Vol_Pos[*, 1] specifies the opposite corner.

Img_Ref

A 2 x n integer or floating-point array that specifies the pixel location at which the
object’s reference point appears in each of the images. Img_Ref[0, *] is the X
coordinate for each image and Img_Ref[1, *] is the Y coordinate.

Img_Mag

A 2 x n integer or floating-point array that specifies the magnification factor for each
image. This number is actually the length (in pixels) that a test object would appear in
an image if it were n units long and n units distant from the camera lens. Img_Mag[0,
*] is the X dimension (in pixels) of a test object for each image, and Img_Mag[1, *] is
the Y dimension. All elements in Img_Mag should be greater than or equal to 1.

Vol_Size

A 3-element integer or floating-point array that specifies the size of the 3-D byte
array to return. Execution time (and resolution) increases exponentially with larger
values for Vol_Size. Vol_Size[0] specifies the X dimension of the volume, Vol_Size[1]
specifies the Y dimension, and Vol_Size[2] specifies the Z dimension.

Keywords

CUBIC

Set this keyword to use cubic interpolation. The default is to use tri-linear
interpolation, which is slightly faster.

MISSING

Set this keyword equal to a byte value for cells in the 3-D volume that do not map to
any of the supplied images. The value of MISSING is passed to the INTERPOLATE
function. The default value is zero.

MODE

Set this keyword to a value less than zero to define each cell in the 3-D volume as the
minimum of the corresponding pixels in the images. Set MODE to a value greater
than zero to define each cell in the 3-D volume as the maximum of the corresponding
pixels in the images. If MODE is set equal to zero then each cell in the 3-D volume is
defined as the average of the corresponding pixels in the images.
RECON3 IDL Reference Guide

 1669
MODE should usually be set to -1 when the images contain a bright object in front of
a dark background or to +1 when the images contain a dark object in front of a light
background. Setting MODE=0 (the default) requires more memory since the volume
array must temporarily be kept as an integer array instead of a byte array.

QUIET

Set this keyword to suppress the output of informational messages when the
processing of each image is completed.

Examples

Assumptions for this example:

• The object’s major axis is parallel to the Z axis.

• The object’s reference point is at its center.

• The camera lens is pointed directly at this reference point.

• The reference point is 5000 mm in front of the camera lens.

• The focal length of the camera lens is 200 mm.

If the camera is focused on the reference point, then the distance from the lens to the
camera’s image plane must be:

dist = (d * f) / (d - f) = (5000 * 200) / (5000 - 200) = (1000000 / 4800) = 208.333 mm

The object is roughly 600 mm wide and 600 mm high. The reference point appears in
the exact center of each image.

If the object is 600 mm high and 5000 mm distant from the camera lens, then the
object image height must be:

hi = (h * f) / (d - f) = (600 * 200) / (5000 - 200) = (120000 / 4800) = 25.0 mm

The object image appears 200 pixels high so the final magnification factor is:

img_mag = (200 / 25) = 8.0

From these assumptions, we can set up the following reconstruction:

; First, define the variables:
imgx = 256
imgy = 256
frames = 3
images = BYTARR(imgx, imgy, frames)
obj_rot = Fltarr(3, frames)
obj_pos = Fltarr(3, frames)
focal = Fltarr(frames)
IDL Reference Guide RECON3

1670
dist = Fltarr(frames)
vol_pos = Fltarr(3, 2)
img_ref = Fltarr(2, frames)
img_mag = Fltarr(2, frames)
vol_size = [40, 40, 40]

; The object is 5000 mm directly in front of the camera:
obj_pos[0, *] = 0.0
obj_pos[1, *] = 0.0
obj_pos[2, *] = -5000.0

; The focal length of the lens is constant for all the images:
focal[*] = 200.0

; The distance from the lens to the image plane is also constant:
dist[*] = 208.333

; The cube surrounding the object is 600 mm x 600 mm:
vol_pos[*, 0] = [-300.0, -300.0, -300.0]
vol_pos[*, 1] = [300.0, 300.0, 300.0]

; The image reference point appears at the center of all the
; images:
img_ref[0, *] = imgx / 2
img_ref[1, *] = imgy / 2

; The image magnification factor is constant for all images.
; (The images haven’t been cropped or resized):
img_mag[*,*] = 8.0

; Only the object rotation changes from one image to the next.
; Note that the object is rotated about the X axis first, then Y,
; and then Z. Create some fake images for this example:
images[30:160, 20:230, 0] = 255
images[110:180, 160:180, 0] = 180
obj_rot[*, 0] = [-90.0, 0.0, 0.0]
images[70:140, 100:130, 1] = 255
obj_rot[*, 1] = [-70.0, 75.0, 0.0]
images[10:140, 70:170, 2] = 255
images[80:90, 170:240, 2] = 150
obj_rot[*, 2] = [-130.0, 215.0, 0.0]

; Reconstruct the volume:
vol = RECON3(images, obj_rot, obj_pos, focal, dist, $

vol_pos, img_ref, img_mag, vol_size, Missing=255B, Mode=(-1))

; Display the volume:
shade_volume, vol, 8, v, p
scale3, xrange=[0,40], yrange=[0,40], zrange=[0,40]
RECON3 IDL Reference Guide

 1671
image = polyshade(v, p, /t3d, xs=400, ys=400)
tvscl, image

Version History

Introduced: Pre 4.0

See Also

POLYSHADE, SHADE_VOLUME, VOXEL_PROJ
IDL Reference Guide RECON3

1672
REDUCE_COLORS

The REDUCE_COLORS procedure reduces the number of colors used in an image
by eliminating pixel values without members.

The pixel distribution histogram is obtained and the WHERE function is used to find
bins with non-zero values. Next, a lookup table is made where table[old_pixel_value]
contains new_pixel_value, and is then applied to the image.

This routine is written in the IDL language. Its source code can be found in the file
reduce_colors.pro in the lib subdirectory of the IDL distribution.

Syntax

REDUCE_COLORS, Image, Values

Arguments

Image

On input, a variable that contains the original image array. On output, this variable
contains the color-reduced image array, writing over the original.

Values

A named variable that, on output, contains a vector of non-zero pixel values. If Image
contains pixel values from 0 to M, Values will be an M+1 element vector containing
the mapping from the old values to the new. Values[i] contains the new color index of
old pixel index i.

Keywords

None.

Examples

To reduce the number of colors and display an image with the original color tables R,
G, B enter the commands:

REDUCE_COLORS, image, v
TVLCT, R[V], G[V], B[V]
REDUCE_COLORS IDL Reference Guide

 1673
Version History

Introduced: Pre 4.0

See Also

COLOR_QUAN
IDL Reference Guide REDUCE_COLORS

1674
REFORM

The REFORM function changes the dimensions of an array without changing the
total number of elements.

Syntax

Result = REFORM(Array, D1 [, ..., D8] [, /OVERWRITE])

Return Value

If no dimensions are specified, REFORM returns a copy of Array with all dimensions
of size 1 removed. If dimensions are specified, the result is given those dimensions.
Only the dimensions of Array are changed – the actual data remains unmodified.

Arguments

Array

The array to have its dimensions modified.

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Array must have the same number of elements as specified by the
product of the new dimensions.

Keywords

OVERWRITE

Set this keyword to cause the specified dimensions to overwrite the present
dimensions of the Array parameter. No data are copied, only the internal array
descriptor is changed. The result of the function, in this case, is the Array parameter
with its newly-modified dimensions. For example, to change the dimensions of the
variable a, without moving data, enter:

a = REFORM(a, n1, n2, /OVERWRITE)
REFORM IDL Reference Guide

 1675
Examples

REFORM can be used to remove “degenerate” leading dimensions of size one. Such
dimensions can appear when a subarray is extracted from an array with more
dimensions. For example

; a is a 3-dimensional array:
a = INTARR(10,10,10)

; Extract a "slice" from a:
b = a[5,*,*]

; Use HELP to show what REFORM does:
HELP, b, REFORM(b)

Executing the above statements produces the output:

B INT = Array[1, 10, 10]
<Expression> INT = Array[10, 10]

The statements:

b = REFORM(a,200,5)
b = REFORM(a,[200,5])

have identical effect. They create a new array, b, with dimensions of (200, 5), from a.

Version History

Introduced: Original

See Also

REVERSE, ROT, ROTATE, TRANSPOSE
IDL Reference Guide REFORM

1676
REGION_GROW

The REGION_GROW function performs region growing for a given region within an
N-dimensional array by finding all pixels within the array that are connected
neighbors to the region pixels and that fall within provided constraints. The
constraints are specified either as a threshold range (a minimum and maximum pixel
value) or as a multiple of the standard deviation of the region pixel values. If the
threshold is used (this is the default), the region is grown to include all connected
neighboring pixels that fall within the given threshold range. If the standard deviation
multiplier is used, the region is grown to include all connected neighboring pixels that
fall within the range of the mean (of the region's pixel values) plus or minus the given
multiplier times the sample standard deviation.

Syntax

Result = REGION_GROW(Array, ROIPixels [, /ALL_NEIGHBORS]
[, STDDEV_MULTIPLIER=value | THRESHOLD=[min,max]])

Return Value

REGION_GROW returns the vector of array indices that represent pixels within the
grown region. The grown region will not include pixels at the edges of the input array.
If no pixels fall within the grown region, this function will return the value -1.

Arguments

Array

An N-dimensional array of data values. The region will be grown according to the
data values within this array.

ROIPixels

A vector of indices into Array that represent the initial region that is to be grown.

Keywords

ALL_NEIGHBORS

Set this keyword to indicate that all adjacent neighbors to a given pixel should be
considered during region growing (sometimes known as 8-neighbor searching when
REGION_GROW IDL Reference Guide

 1677
the array is two-dimensional). The default is to search only the neighbors that are
exactly one unit in distance from the current pixel (sometimes known as 4-neighbor
searching when the array is two-dimensional).

STDDEV_MULTIPLIER

Set this keyword to a scalar value that serves as the multiplier of the sample standard
deviation of the original region pixel values. The expanded region includes
neighboring pixels that fall within the range of the mean of the region’s pixel values
plus or minus the given multiplier times the sample standard deviation as follows:

Mean +/- StdDevMultiplier * StdDev

This keyword is mutually exclusive of THRESHOLD. If both keywords are specified,
a warning message will be issued and the THRESHOLD value will be used.

THRESHOLD

Set this keyword to a two-element vector, [min,max], of the inclusive range within
which the pixel values of the grown region must fall. The default is the range of pixel
values within the initial region. This keyword is mutually exclusive of
STDDEV_MULTIPLIER. If both keywords are specified, a warning message will be
issued and the THRESHOLD value will be used.

Note
If neither keyword is specified, THRESHOLD is used by default. The range of
threshold values is based upon the pixel values within the original region and
therefore does not have to be provided.

Examples

The following example demonstrates how you can grow a pre-defined region within
an image of human red blood cells.

; Load an image.
fname = FILEPATH('rbcells.jpg', SUBDIR=['examples','data'])
READ_JPEG, fname, img
imgDims = SIZE(img, /DIMENSIONS)

; Define original region pixels.
x = FINDGEN(16*16) MOD 16 + 276.
y = LINDGEN(16*16) / 16 + 254.
roiPixels = x + y * imgDims[0]

; Grow the region.
IDL Reference Guide REGION_GROW

1678
newROIPixels = REGION_GROW(img, roiPixels)

; Load a grayscale color table.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Set the topmost color table entry to red.
topClr = !D.TABLE_SIZE-1
TVLCT, 255, 0, 0, topClr

; Show the results.
tmpImg = BYTSCL(img, TOP=(topClr-1))
tmpImg[roiPixels] = topClr
WINDOW, 0, XSIZE=imgDims[0], YSIZE=imgDims[1], $

TITLE='Original Region'
TV, tmpImg

tmpImg = BYTSCL(img, TOP=(topClr-1))
tmpImg[newROIPixels] = topClr
WINDOW, 2, XSIZE=imgDims[0], YSIZE=imgDims[1], $

TITLE='Grown Region'
TV, tmpImg

Version History

Introduced: 5.5
REGION_GROW IDL Reference Guide

 1679
REGISTER_CURSOR

The REGISTER_CURSOR procedure associates the given name with the given
cursor information. This name can then be used with the
IDLgrWindow::SetCurrentCursor method.

Syntax

REGISTER_CURSOR, Name, Image[, MASK=value] [, HOTSPOT=value]
[, /OVERWRITE]

Arguments

Name

This argument sets the name to associate with this cursor. The name is case-
insensitive. Once registered, the name can be used with the
IDLgrWindow::SetCurrentCursor method.

Image

Set this argument to a 16 line by 16 column bitmap, contained in a 16-element short
integer vector, specifying the cursor pattern. The offset from the upper-left pixel to
the point that is considered the "hot spot" can be provided using the HOTSPOT
keyword.

Keywords

MASK

This keyword can be used to simultaneously specify the mask that should be used. In
the mask, bits that are set indicate bits in the IMAGE that should be seen and bits that
are not are "masked out".

HOTSPOT

Set this keyword to a two-element vector specifying the [x, y] pixel offset of the
cursor "hot spot", the point which is considered to be the mouse position, from the
lower-left corner of the cursor image. The cursor image is displayed top-down (the
first row is displayed at the top).
IDL Reference Guide REGISTER_CURSOR

1680
OVERWRITE

By default, if the cursor already exists, the values are not changed. By setting this
keyword to true, the current cursor value is updated with the values provided by this
routine call.

Version History

Introduced: 5.6

See Also

IDLgrWindow::SetCurrentCursor
REGISTER_CURSOR IDL Reference Guide

 1681
REGRESS

The REGRESS function performs a multiple linear regression fit and returns an
Nterm-element column vector of coefficients.

REGRESS fits the function:

yi = const + a0x0, i + a1x1, i + ... + aNterms-1xNterms-1, i

This routine is written in the IDL language. Its source code can be found in the file
regress.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = REGRESS(X, Y, [, CHISQ=variable] [, CONST=variable]
[, CORRELATION=variable] [, /DOUBLE] [, FTEST=variable]
[, MCORRELATION=variable] [, MEASURE_ERRORS=vector]
[, SIGMA=variable] [, STATUS=variable] [, YFIT=variable])

Return Value

REGRESS returns a 1 x Nterm array of coefficients. If the DOUBLE keyword is set,
or if X or Y are double-precision, then the result will be double precision, otherwise
the result will be single precision.

Arguments

X

An Nterms by Npoints array of independent variable data, where Nterms is the
number of coefficients (independent variables) and Npoints is the number of samples.

Y

An Npoints-element vector of dependent variable points.

Weights

The Weights argument is obsolete, and has been replaced by the
MEASURE_ERRORS keyword. Code that uses the Weights argument will continue to
work as before, but new code should use the MEASURE_ERRORS keyword instead.
Note that the definition of the MEASURE_ERRORS keyword is different from that of
the Weights argument. Using the Weights argument, SQRT(1/Weights[i]) represents
IDL Reference Guide REGRESS

1682
the measurement error for each point Y[i]. Using the MEASURE_ERRORS keyword,
the measurement error for each point is represented as simply
MEASURE_ERRORS[i]. Also note that the RELATIVE_WEIGHTS keyword is not
necessary when using the MEASURE_ERRORS keyword.

Yfit, Const, Sigma, Ftest, R, Rmul, Chisq, Status

The Yfit, Const, Sigma, Ftest, R, Rmul, Chisq, and Status arguments are obsolete, and
have been replaced by the YFIT, CONST, SIGMA, FTEST, CORRELATION,
MCORRELATION, CHISQ, and STATUS keywords, respectively. Code that uses
these arguments will continue to work as before, but new code should use the
keywords instead.

Keywords

CHISQ

Set this keyword equal to a named variable that will contain the value of the
chi-square goodness-of-fit.

CONST

Set this keyword to a named variable that will contain the constant term of the fit.

CORRELATION

Set this keyword to a named variable that will contain the vector of linear correlation
coefficients.

DOUBLE

Set this keyword to force computations to be done in double-precision arithmetic.

FTEST

Set this keyword to a named variable that will contain the F-value for the goodness-
of-fit test.

MCORRELATION

Set this keyword to a named variable that will contain the multiple linear correlation
coefficient.
REGRESS IDL Reference Guide

 1683
MEASURE_ERRORS

Set this keyword to a vector containing standard measurement errors for each point
Y[i]. This vector must be the same length as X and Y.

Note
For Gaussian errors (e.g., instrumental uncertainties), MEASURE_ERRORS
should be set to the standard deviations of each point in Y. For Poisson or statistical
weighting, MEASURE_ERRORS should be set to SQRT(Y).

RELATIVE_WEIGHT

This keyword is obsolete. Code using the Weights argument and
RELATIVE_WEIGHT keyword will continue to work as before, but new code should
use the MEASURE_ERRORS keyword, for which case the RELATIVE_WEIGHT
keyword is not necessary. Using the Weights argument, it was necessary to specify the
RELATIVE_WEIGHT keyword if no weighting was desired. This is not the case with
the MEASURE_ERRORS keyword—when MEASURE_ERRORS is omitted,
REGRESS assumes you want no weighting.

SIGMA

Set this keyword to a named variable that will contain the 1-sigma uncertainty
estimates for the returned parameters.

Note
If MEASURE_ERRORS is omitted, then you are assuming that the regression
model is the correct model for your data, and therefore, no independent goodness-
of-fit test is possible. In this case, the values returned in SIGMA are multiplied by
SQRT(CHISQ/(N–M)), where N is the number of points in X, and M is the number
of coefficients. See section 15.2 of Numerical Recipes in C (Second Edition) for
details.

STATUS

Set this keyword to a named variable that will contain the status of the operation.
Possible status values are:

• 0 = successful completion

• 1 = singular array (which indicates that the inversion is invalid)

• 2 = warning that a small pivot element was used and that significant accuracy
was probably lost.
IDL Reference Guide REGRESS

1684
Note
If STATUS is not specified, any error messages will be output to the screen.

YFIT

Set this keyword to a named variable that will contain the vector of calculated Y
values.

Examples

; Create two vectors of independent variable data:
X1 = [1.0, 2.0, 4.0, 8.0, 16.0, 32.0]
X2 = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0]
; Combine into a 2x6 array
X = [TRANSPOSE(X1), TRANSPOSE(X2)]

; Create a vector of dependent variable data:
Y = 5 + 3*X1 - 4*X2

; Assume Gaussian measurement errors for each point:
measure_errors = REPLICATE(0.5, N_ELEMENTS(Y))

; Compute the fit, and print the results:
result = REGRESS(X, Y, SIGMA=sigma, CONST=const, $

MEASURE_ERRORS=measure_errors)
PRINT, 'Constant: ', const
PRINT, 'Coefficients: ', result[*]
PRINT, 'Standard errors: ', sigma

IDL prints:

Constant: 4.99999
Coefficients: 3.00000 -3.99999
Standard errors: 0.0444831 0.282038

Version History

Introduced: Original

See Also

CURVEFIT, GAUSSFIT, LINFIT, LMFIT, POLY_FIT, SFIT, SVDFIT
REGRESS IDL Reference Guide

 1685
REPEAT...UNTIL

The REPEAT...UNTIL statement repeats its subject statement(s) until an expression
evaluates to true. The condition is checked after the subject statement is executed.
Therefore, the subject statement is always executed at least once, even if the
expression evaluates to true the first time.

Note
For information on using REPEAT_UNTIL and other IDL program control
statements, see Chapter 12, “Program Control” in the Building IDL Applications
manual.

Syntax

REPEAT statement UNTIL expression

or

REPEAT BEGIN

statements

ENDREP UNTIL expression

Examples

This example shows that because the subject of a REPEAT statement is evaluated
before the expression, it is always executed at least once:

i = 1

REPEAT BEGIN

PRINT, i

ENDREP UNTIL (i EQ 1)

Version History

Introduced: Original
IDL Reference Guide REPEAT...UNTIL

1686
REPLICATE

The REPLICATE function returns an array with the given dimensions, filled with the
scalar value specified as the first parameter.

Syntax

Result = REPLICATE(Value, D1 [, ..., D8])

Return Value

Returns the array of the given dimensions.

Arguments

Value

The scalar value with which to fill the resulting array. The type of the result is the
same as that of Value. Value can be any single element expression such as a scalar or
1 element array. This includes structures.

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
REPLICATE IDL Reference Guide

 1687
Examples

Create D, a 5-element by 5-element array with every element set to the string “IDL”
by entering:

D = REPLICATE('IDL', 5, 5)

REPLICATE can also be used to create arrays of structures. For example, the
following command creates a structure named “emp” that contains a string name field
and a long integer employee ID field:

employee = {emp, NAME:' ', ID:0L}

To create a 10-element array of this structure, enter:

emps = REPLICATE(employee, 10)

Version History

Introduced: Original

See Also

MAKE_ARRAY
IDL Reference Guide REPLICATE

1688
REPLICATE_INPLACE

The REPLICATE_INPLACE procedure updates an existing array by replacing all or
selected parts of it with a specified value. REPLICATE_INPLACE can be faster and
use less memory than the IDL function REPLICATE or the IDL array notation for
large arrays that already exist.

Note
REPLICATE_INPLACE is much faster when operating on entire arrays and rows,
than when used on columns or higher dimensions.

Syntax

REPLICATE_INPLACE, X, Value [, D1, Loc1 [, D2, Range]]

Arguments

X

The array to be updated. X can be of any numeric type. REPLICATE_INPLACE does
not change the size and type of X.

Value

The value which will fill all or part of X. Value may be any scalar or one-element
array that IDL can convert to the type of X. REPLICATE_INPLACE does not change
Value.

D1

An optional parameter indicating which dimension of X is to be updated.

Loc1

An array with the same number of elements as the number of dimensions of X. The
Loc1 and D1 arguments together determine which one-dimensional subvector (or
subvectors, if D1 and Range are provided) of X is to be updated.

D2

An optional parameter, indicating in which dimension of X a group of one-
dimensional subvectors are to be updated. D2 should be different from D1.
REPLICATE_INPLACE IDL Reference Guide

 1689
Range

An array of indices of dimension D2 of X, indicating where to put one-dimensional
updates of X.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

; Create a multidimensional zero array:
A = FLTARR(40, 90, 10)

; Populate it with the value 4.5. (i.e., A[*]= 4.5):
REPLICATE_INPLACE, A, 4.5
;Update a single subvector.(i.e., A[*,4,0]= 20.):
REPLICATE_INPLACE, A, 20, 1, [0,4,0]

; Update a group of subvectors.(i.e., A[0, [0, 5,89], *] = -8):
REPLICATE_INPLACE, A, -8, 3, [0,0,0], 2, [0,5,89]

; Update a 2-dimensional slice of A (i.e., A[9,*, *] = 0.):
REPLICATE_INPLACE, A, 0., 3, [9,0,0] , 2, LINDGEN(90)

Version History

Introduced: 5.1

See Also

REPLICATE, BLAS_AXPY
IDL Reference Guide REPLICATE_INPLACE

1690
RESOLVE_ALL

The RESOLVE_ALL procedure iteratively resolves (by compiling) any uncompiled
procedures or functions that are called in any already-compiled procedure or
function. The process ends when there are no unresolved routines left to compile. If
an unresolved procedure or function is not in the IDL search path, this routine exits
with an error, and no additional routines are compiled.

RESOLVE_ALL is of special interest when using SAVE to construct an IDL .sav
file containing the compiled code for a package of routines. If you are constructing
such a .sav file and it contains calls to built-in IDL system functions that are not
present under all operating systems (e.g., IOCTL), you must make sure to use
FORWARD_FUNCTION to tell IDL that these names are functions. Otherwise, IDL
may interpret them as arrays and generate unintended results.

Warning
RESOLVE_ALL does not resolve procedures or functions that are called via quoted
strings such as CALL_PROCEDURE, CALL_FUNCTION, or EXECUTE, or in
keywords that can contain procedure names such as TICKFORMAT or
EVENT_PRO. You must manually compile these routines if they are not called
normally elsewhere.

Similarly, RESOLVE_ALL does not resolve widget event handler procedures based
on a call to the widget routine that uses the event handler. In general, it is best to
include the event handling routine in the same program file as the widget creation
routine—building widget programs in this way ensures that RESOLVE_ALL will
“catch” the event handler for a widget application.

This routine is written in the IDL language. Its source code can be found in the file
resolve_all.pro in the lib subdirectory of the IDL distribution.

Syntax

RESOLVE_ALL [, CLASS=string] [, /CONTINUE_ON_ERROR] [, /QUIET]

Arguments

None.
RESOLVE_ALL IDL Reference Guide

 1691
Keywords

CLASS

Set this keyword to a string or string array containing object class names.

RESOLVE_ALL’s rules for finding uncompiled functions and procedures are not
able to find object definitions or methods, because those things are not known to IDL
until the object classes are actually instantiated and the methods called. However, if
the CLASS keyword is set, RESOLVE_ALL will ensure that the *__define.pro
files for the specified classes and their superclasses are compiled and executed.
RESOLVE_ALL then locates all methods for the specified classes and their
superclasses, and makes sure they are also compiled.

CONTINUE_ON_ERROR

Set this keyword to allow continuation upon error.

QUIET

Set this keyword to suppress informational messages.

Version History

Introduced: 4.0

Added CLASS keyword: 6.0

See Also

.COMPILE, RESOLVE_ROUTINE, ROUTINE_INFO
IDL Reference Guide RESOLVE_ALL

1692
RESOLVE_ROUTINE

The RESOLVE_ROUTINE procedure compiles user-written or library procedures or
functions, given their names. Routines are compiled even if they are already defined.
RESOLVE_ROUTINE looks for the given filename in IDL’s search path. If the file is
not found in the path, then the routine exits with an error.

Syntax

RESOLVE_ROUTINE, Name [, /COMPILE_FULL_FILE]
[, /EITHER | , /IS_FUNCTION] [, /NO_RECOMPILE]

Arguments

Name

A scalar string or string array containing the name or names of the procedures to
compile. If Name contains functions rather than procedures, set the IS_FUNCTION
keyword. The Name argument cannot contain the path to the .pro file—it must
contain only a .pro filename. If you want to specify a path to the .pro file, use the
.COMPILE executive command.

Keywords

COMPILE_FULL_FILE

When compiling a file to find a specified routine, IDL normally stops compiling
when the desired routine (Name) is found. If set, COMPILE_FULL_FILE compiles
the entire file.

EITHER

If set, indicates that the caller does not know whether the supplied routine names are
functions or procedures, and will accept either. This keyword overrides the
IS_FUNCTION keyword.

IS_FUNCTION

Set this keyword to compile functions rather than procedures.
RESOLVE_ROUTINE IDL Reference Guide

 1693
NO_RECOMPILE

Normally, RESOLVE_ROUTINE compiles all specified routines even if they have
already been compiled. Setting NO_RECOMPILE indicates that such routines are
not recompiled.

Version History

Introduced: 4.0

See Also

.COMPILE, RESOLVE_ALL, ROUTINE_INFO
IDL Reference Guide RESOLVE_ROUTINE

1694
RESTORE

The RESTORE procedure restores the IDL variables and routines saved in a file by
the SAVE procedure.

Warning
While files containing IDL data variables can be restored by any version of IDL that
supports the data types of the saved variables (in particular, by any version of IDL
later than the version that created the SAVE file), files containing IDL routines and
system variables can only be restored by versions of IDL that share the same
internal code representation. Since the internal code representation changes
regularly, you should always archive the IDL language source files (.pro files) for
routines you are placing in IDL .sav files so you can recompile the code when a
new version of IDL is released.

Syntax

RESTORE [[, Filename] | [, FILENAME=name]]
[, /RELAXED_STRUCTURE_ASSIGNMENT]
[, RESTORED_OBJECTS=variable] [, /VERBOSE]

Arguments

Filename

A scalar string that contains the name of the file from which the IDL objects should
be restored. If not present, the file idlsave.dat is used. If the file to be restored is
not in your current working directory or IDL search path, you will need to specify the
path to the file. See the following example for more information.

Keywords

FILENAME

This keyword serves exactly the same purpose as the Filename argument—only one
of them needs to be provided.

RELAXED_STRUCTURE_ASSIGNMENT

Normally, RESTORE is unable to restore a structure variable if the definition of its
type has changed since the SAVE file was written. A common case where this occurs
RESTORE IDL Reference Guide

 1695
is when objects are saved and the class structure of the objects change before they are
restored in another IDL session. In such cases, RESTORE issues an error, skips the
structure, and continues restoring the remainder of the SAVE file.

Setting the RELAXED_STRUCTURE_ASSIGNMENT keyword causes RESTORE
to restore such incompatible values using “relaxed structure assignment,” in which all
possible data are restored using a field-by-field copy. (See the description of the
STRUCT_ASSIGN procedure for additional details.)

RESTORED_OBJECTS

Set this keyword equal to a named variable that will contain an array of object
references for any objects restored. The resulting list of objects is useful for
programmatically calling the objects’ restore methods. If no objects are restored, the
variable will contain a null object reference.

VERBOSE

Set this keyword to have IDL print an informative message for each restored object.

Examples

Suppose that you have saved all the variables from a previous IDL session with the
command:

SAVE, /VARIABLES, FILENAME = 'session1.sav'

If the file session1.sav is located in your current working directory, the variable
associated with the file can be restored by entering:

RESTORE, 'session1.sav'

Note
To restore a file that is not in your current working directory, you must specify the
file path.

Version History

Introduced: Original

See Also

JOURNAL, SAVE, STRUCT_ASSIGN
IDL Reference Guide RESTORE

1696
RETALL

The RETALL command returns control to the main program level. The effect is the
same as entering the RETURN command at the interactive command prompt until the
main level is reached.

Syntax

RETALL

Arguments

None

Version History

Introduced: Original

See Also

RETURN
RETALL IDL Reference Guide

 1697
RETURN

The RETURN command causes the program context to revert to the next-higher
program level. RETURN can be called at the interactive command prompt (see
“.RETURN” on page 71), inside a procedure definition, or inside a function
definition.

Calling RETURN from the main program level has no effect other than to print an
informational message in the command log.

Calling RETURN inside a procedure definition returns control to the calling routine,
or to the main level. Since the END statement in a procedure definition also returns
control to the calling routine, it is only necessary to use RETURN in a procedure
definition if you wish control to revert to the calling routine before the procedure
reaches its END statement.

In a function definition, RETURN serves to define the value passed out of the
function. Only a single value can be returned from a function.

Note
The value can be an array or structure containing multiple data items.

Syntax

RETURN [, Return_value]

Arguments

Return_value

In a function definition, the Return_value is the value passed out of the function when
it completes its processing.

Return values are not allowed in procedure definitions, or when calling RETURN at
the interactive command prompt.

Examples

You can use RETURN within a procedure definition to exit the procedure at some
point other than the end. For example, note the following procedure:

PRO RET_EXAMPLE, value
IF (value NE 0) THEN BEGIN
IDL Reference Guide RETURN

1698
PRINT, value, ' is nonzero'
RETURN
END

PRINT, 'Input argument was zero.'
END

If the input argument is non-zero, the routine prints the value and exits back to the
calling procedure or main level. If the input argument is zero, control proceeds until
the END statement is reached.

When defining functions, use RETURN to specify the value returned from the
function. For example, the following function:

FUNCTION RET_EXAMPLE2, value
RETURN, value * 2

END

multiplies the input value by two and returns the result. If this function is defined at
the main level, calling it from the IDL command prompt produces the following:

PRINT, RET_EXAMPLE2(4)

IDL prints:

8

Version History

Introduced: Original

See Also

RETALL
RETURN IDL Reference Guide

 1699
REVERSE

The REVERSE function reverses the order of one dimension of an array.

This routine is written in the IDL language. Its source code can be found in the file
reverse.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = REVERSE(Array [, Subscript_Index] [, /OVERWRITE])

Return Value

Returns the reversed dimension of the array.

Arguments

Array

The array containing the original data.

Subscript_Index

An integer specifying the dimension index (1, 2, 3, etc.) that will be reversed. This
argument must be less than or equal to the number of dimensions of Array. If this
argument is omitted, the first subscript is reversed.

Keywords

OVERWRITE

Set this keyword to conserve memory by doing the transformation “in-place.” The
result overwrites the previous contents of the array. This keyword is ignored for one-
or two-dimensional arrays.

Examples

Reverse the order of an array where each element is set to the value of its subscript:

; Create an array:
A = [[0,1,2],[3,4,5],[6,7,8]]
IDL Reference Guide REVERSE

1700
; Print the array:
PRINT, 'Original Array:'
PRINT, A

; Reverse the columns of A.
PRINT, 'Reversed Columns:'
PRINT, REVERSE(A)

; Reverse the rows of A:
PRINT, 'Reversed Rows:'
PRINT, REVERSE(A, 2)

IDL prints:

Original Array:
 0 1 2
 3 4 5
 6 7 8
Reversed Columns:
 2 1 0
 5 4 3
 8 7 6
Reversed Rows:
 6 7 8
 3 4 5
 0 1 2

Version History

Introduced: Original

See Also

INVERT, REFORM, ROT, ROTATE, SHIFT, TRANSPOSE
REVERSE IDL Reference Guide

 1701
RK4

The RK4 function uses the fourth-order Runge-Kutta method to advance a solution to
a system of ordinary differential equations one time-step H, given values for the
variables Y and their derivatives Dydx known at X.

RK4 is based on the routine rk4 described in section 16.1 of Numerical Recipes in C:
The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Syntax

Result = RK4(Y, Dydx, X, H, Derivs [, /DOUBLE])

Return Value

Returns the integrations of the ordinary differential equations.

Arguments

Y

A vector of values for Y at X

Dydx

A vector of derivatives for Y at X.

X

A scalar value for the initial condition.

H

A scalar value giving interval length or step size.

Derivs

A scalar string specifying the name of a user-supplied IDL function that calculates
the values of the derivatives Dydx at X. This function must accept two arguments: A
scalar floating value X, and one n-element vector Y. It must return an n-element vector
result.
IDL Reference Guide RK4

1702
For example, suppose the values of the derivatives are defined by the following
relations:

dy0 / dx = –0.5y0, dy1 / dx = 4.0 – 0.3y1 – 0.1y0

We can write a function DIFFERENTIAL to express these relationships in the IDL
language:

FUNCTION differential, X, Y
RETURN, [-0.5 * Y[0], 4.0 - 0.3 * Y[1] - 0.1 * Y[0]]

END

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

To integrate the example system of differential equations for one time step, H:

; Define the step size:
H = 0.5

; Define an initial X value:
X = 0.0

; Define initial Y values:
Y = [4.0, 6.0]

; Calculate the initial derivative values:
dydx = DIFFERENTIAL(X,Y)

; Integrate over the interval (0, 0.5):
result = RK4(Y, dydx, X, H, 'differential')

; Print the result:
PRINT, result

IDL prints:

3.11523 6.85767

This is the exact solution vector to five-decimal precision.
RK4 IDL Reference Guide

 1703
Version History

Introduced: 4.0

See Also

BROYDEN, NEWTON
IDL Reference Guide RK4

1704
ROBERTS

The ROBERTS function returns an approximation to the Roberts edge enhancement
operator for images:

where (j, k) are the coordinates of each pixel Fjk in the Image. This is equivalent to a
convolution using the masks,

where the underline indicates the current pixel Fjk. The last column and row are set to
zero.

Syntax

Result = ROBERTS(Image)

Return Value

ROBERTS returns a two-dimensional array of the same size as Image. If Image is of
type byte or integer, then the result is of integer type, otherwise the result is of the
same type as Image.

Note
To avoid overflow for integer types, the computation is done using the next larger
signed type and the result is transformed back to the correct type. Values larger than
the maximum for that integer type are truncated. For example, for integers the
function is computed using type long, and on output, values larger than 32767 are
set equal to 32767.

Arguments

Image

The two-dimensional array containing the image to which edge enhancement is
applied.

Gjk Fjk Fj 1 k 1+,+– Fj k 1+, Fj 1 k,+–+=

0 1–

1 0
and

1 0

0 1–
ROBERTS IDL Reference Guide

 1705
Keywords

None.

Examples

If the variable myimage contains a two-dimensional image array, a Roberts
sharpened version of myimage can be displayed with the command:

TVSCL, ROBERTS(myimage)

Version History

Introduced: 4.0

See Also

SOBEL
IDL Reference Guide ROBERTS

1706
ROT

The ROT function rotates an image by an arbitrary amount. At the same time, it can
magnify, demagnify, and/or translate an image.

Note
If you want to rotate an array by a multiple of 90 degrees, you should use the
ROTATE function for faster results.

This routine is written in the IDL language. Its source code can be found in the file
rot.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = ROT(A, Angle, [Mag, X0, Y0] [, /INTERP] [, CUBIC=value{-1 to 0}]
[, MISSING=value] [, /PIVOT])

Return Value

Returns the rotated and optionally transformed image.

Arguments

A

The image array to be rotated. This array can be of any type, but must have two
dimensions. The output image has the same dimensions and data type of the input
image.

ANGLE

Angle of rotation in degrees clockwise.

MAG

An optional magnification factor. A value of 1.0 results in no change. A value greater
than one performs magnification. A value less than one but greater than zero
performs demagnification.
ROT IDL Reference Guide

 1707
X0

X subscript for the center of rotation. If omitted, X0 equals the number of columns in
the image divided by 2.

Y0

Y subscript for the center of rotation. If omitted, Y0 equals the number of rows in the
image divided by 2.

Keywords

INTERP

Set this keyword to use bilinear interpolation. The default is to use nearest neighbor
sampling.

CUBIC

Set this keyword to a value between -1 and 0 to use the cubic convolution
interpolation method with the specified value as the interpolation parameter. Setting
this keyword equal to a value greater than zero specifies a value of -1 for the
interpolation parameter. Park and Schowengerdt (see reference below) suggest that a
value of -0.5 significantly improves the reconstruction properties of this algorithm.

Cubic convolution is an interpolation method that closely approximates the
theoretically optimum sinc interpolation function using cubic polynomials.
According to sampling theory, details of which are beyond the scope of this
document, if the original signal, f, is a band-limited signal, with no frequency
component larger than ω0, and f is sampled with spacing less than or equal to 1/(2ω0),
then f can be reconstructed by convolving with a sinc function: sinc(x) = sin(πx) /
(πx).

In the one-dimensional case, four neighboring points are used, while in the two-
dimensional case 16 points are used.

Note
Cubic convolution interpolation is significantly slower than bilinear interpolation.

For further details see:

Rifman, S.S. and McKinnon, D.M., “Evaluation of Digital Correction Techniques for
ERTS Images; Final Report”, Report 20634-6003-TU-00, TRW Systems, Redondo
Beach, CA, July 1974.
IDL Reference Guide ROT

1708
S. Park and R. Schowengerdt, 1983 “Image Reconstruction by Parametric Cubic
Convolution”, Computer Vision, Graphics & Image Processing 23, 256.

MISSING

Set this keyword to a value to be substituted for pixels in the output image that map
outside the input image.

PIVOT

Set this keyword to cause the image to pivot around the point (X0, Y0) so that this
point maps into the same point in the output image. By default, the point (X0, Y0) in
the input image is mapped into the center of the output image.

Examples

; Create a byte image:
A = BYTSCL(DIST(256))

; Display it:
TV, A

; Rotate the image 33 degrees, magnify it 15 times, and use
; bilinear interpolation to make the output look nice:
B = ROT(A, 33, 1.5, /INTERP)

; Display the rotated image:
TV, B

Version History

Introduced: Original

See Also

ROTATE
ROT IDL Reference Guide

 1709
ROTATE

The ROTATE function returns a rotated and/or transposed copy of Array. ROTATE
can only rotate arrays in multiples of 90 degrees. To rotate by amounts other than
multiples of 90 degrees, use the ROT function. Note, however, that ROTATE is more
efficient.

ROTATE can also be used to reverse the order of elements in vectors. For example, to
reverse the order of elements in the vector X, use the expression ROTATE(X,2). If X
= [0,1,2,3] then ROTATE(X,2)yields the resulting array, [3,2,1,0].

Note
Transposition, if specified, is performed before rotation.

Syntax

Result = ROTATE(Array, Direction)

Return Value

Returns the rotated and/or transposed array.

Arguments

Array

The array to be rotated. Array can have only one or two dimensions. The result has
the same type as Array. The dimensions of the result are the same as those of Array if
Direction is equal to 0 or 2. The dimensions are transposed if the direction is 4 or
greater.

Direction

Direction specifies the operation to be performed as follows:

Direction Transpose? Rotation Counterclockwise X1 Y1

0 No None X0 Y0

1 No 90° -Y0 X0

Table 85: Rotation Directions
IDL Reference Guide ROTATE

1710
In the table above, (X0, Y0) are the original subscripts, and (X1, Y1) are the subscripts
of the resulting array. The notation -Y0 indicates a reversal of the Y axis, Y1 = Ny - Y0
- 1. Direction is taken modulo 8, so a rotation of -1 is the same as 7, 9 is the same as
1, etc.

Note
The assertion that Array is rotating counterclockwise may cause some confusion.
Remember that when arrays are displayed on the screen (using TV or TVSCL, for
example), the image is drawn by default with the origin (0,0) at the bottom left
corner of the window. (This default can be changed by changing the value of the
!ORDER system variable.) When arrays are printed on the console or command log
window (using the PRINT command, for example), the (0,0) element is drawn in
the upper left corner of the array. This means that while an image displayed in a
graphics window appears to rotate counterclockwise, an array printed in the
command log appears to rotate clockwise.

Examples

Create and display a wedge image by entering:

F = REPLICATE(1, 256) # FINDGEN(256) & TVSCL, F

To display the image rotated 90 degrees counterclockwise, enter:

TVSCL, ROTATE(F, 1)

Version History

Introduced: Original

2 No 180° -X0 -Y0

3 No 270° Y0 -X0

4 Yes None Y0 X0

5 Yes 90° -X0 Y0

6 Yes 180° -Y0 -X0

7 Yes 270° X0 -Y0

Direction Transpose? Rotation Counterclockwise X1 Y1

Table 85: Rotation Directions (Continued)
ROTATE IDL Reference Guide

 1711
See Also

ROT, TRANSPOSE
IDL Reference Guide ROTATE

1712
ROUND

The ROUND function rounds the argument to its closest integer.

Syntax

Result = ROUND(X [, /L64])

Return Value

Returns the integer closest to its argument. If the input value X is integer type, Result
has the same value and type as X. Otherwise, Result is returned as a 32-bit longword
integer with the same structure as X.

Arguments

X

The value for which the ROUND function is to be evaluated. This value can be any
numeric type (integer, floating, or complex). Note that only the real part of a complex
argument is rounded and returned.

Keywords

L64

If set, the result type is 64-bit integer no matter what type the input has. This is useful
for situations in which a floating point number contains a value too large to be
represented in a 32-bit integer.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
ROUND IDL Reference Guide

 1713
Examples

Print the rounded values of a 2-element vector:

PRINT, ROUND([5.1, 5.9])

IDL prints:

5 6

Print the result of rounding 3000000000.1, a value that is too large to represent in a
32-bit integer:

PRINT, ROUND(3000000000.1D, /L64)

IDL prints:

3000000000

Version History

Introduced: Pre 4.0

See Also

CEIL, COMPLEXROUND, FLOOR
IDL Reference Guide ROUND

1714
ROUTINE_INFO

The ROUTINE_INFO function provides information about currently-compiled
procedures and functions.

Syntax

Result = ROUTINE_INFO([Routine [[, /PARAMETERS{must specify Routine}]
[, /SOURCE] [, /UNRESOLVED] [, /VARIABLES] | , /SYSTEM]] [, /DISABLED]
[, /ENABLED] [, /FUNCTIONS])

Return Value

Returns a string array consisting of the names of defined procedures or functions, or
of parameters or variables used by a single procedure or function.

Arguments

Routine

A scalar string containing the name of routine for which information will be returned.
Routine can be either a procedure or a function. If Routine is not supplied,
ROUTINE_INFO returns a list of all currently-compiled procedures.

Keywords

DISABLED

Set this keyword to get the names of currently disabled system procedures or
functions (in conjunction with the FUNCTIONS keyword). Use of DISABLED
implies use of the SYSTEM keyword, since user routines cannot be disabled.

ENABLED

Set this keyword to get the names of currently enabled system procedures or
functions (in conjunction with the FUNCTIONS keyword). Use of ENABLED
implies use of the SYSTEM keyword, since user routines cannot be disabled.

FUNCTIONS

Set this keyword to return a string array containing currently-compiled functions. By
default, ROUTINE_INFO returns a list of compiled procedures. If the SYSTEM
ROUTINE_INFO IDL Reference Guide

 1715
keyword is also set, ROUTINE_INFO returns a list of all IDL built-in internal
functions.

PARAMETERS

Set this keyword to return an anonymous structure with the following fields:

• NUM_ARGS — An integer containing the number of positional parameters
used in Routine.

• NUM_KW_ARGS — An integer containing the number of keyword
parameters used in Routine.

• ARGS — A string array containing the names of the positional parameters
used in Routine.

• KW_ARGS — A string array containing the names of the keyword
parameters used in Routine.

You must supply the Routine argument when using this keyword. If Routine is a
function, you must specify the FUNCTIONS keyword as well. Note that specifying
the SYSTEM keyword along with this keyword will generate an error.

If Routine does not take any arguments, the ARGS field is not included in the
anonymous structure. Similarly, if Routine does not take any keywords, the
KW_ARGS field is not included.

SOURCE

Set this keyword to return an array of anonymous structures with the following fields:

• NAME — A string containing the name of the procedure or function.

• PATH — A string containing the full path specification of the file that contains
the definition of the procedure or function.

If Routine is specified, information for the specified procedure is returned. If Routine
is not specified, information for all compiled procedures is returned. If the
FUNCTIONS keyword is also set, ROUTINE_INFO returns information for the
specified function or for all compiled functions.

If a routine is unresolved or its path information is unavailable, the PATH field will
contain a null string. If a routine has been SAVEd and then RESTOREd, the PATH
field will contain the path to the SAVE file.

Note
Specifying the SYSTEM keyword along with this keyword will generate an error.
IDL Reference Guide ROUTINE_INFO

1716
SYSTEM

Set this keyword to return a string array listing all IDL built-in internal procedures.
Built-in internal procedures are part of the IDL executable, and are not written in the
IDL language. If the FUNCTIONS keyword is also set, ROUTINE_INFO returns a
list of all IDL built-in internal functions.

UNRESOLVED

Set this keyword to return a string array listing procedures that are referenced in any
currently-compiled procedure or function, but which are themselves not yet
compiled. If the FUNCTIONS keyword is also set, ROUTINE_INFO returns a list of
functions that are referenced but not yet compiled.

Note that specifying the SYSTEM keyword along with this keyword will generate an
error.

VARIABLES

Set this keyword to return a string array listing variables defined in the procedure. If
the FUNCTIONS keyword is also set, ROUTINE_INFO returns a string array listing
variables defined in the function.

You must supply the Routine argument when using this keyword. Note that
specifying the SYSTEM keyword along with this keyword will generate an error.

Version History

Introduced: 5.0

See Also

RESOLVE_ALL, RESOLVE_ROUTINE
ROUTINE_INFO IDL Reference Guide

 1717
RS_TEST

The RS_TEST function tests the hypothesis that two sample populations X and Y
have the same mean of distribution against the hypothesis that they differ. X and Y
may be of different lengths. This type of test is often referred to as the “Wilcoxon
Rank-Sum Test” or the “Mann-Whitney U-Test.”

The Mann-Whitney statistics for X and Y are defined as follows:

where Nx and Ny are the number of elements in X and Y, respectively, and Wx and Wy
are the rank sums for X and Y, respectively. The test statistic Z, which closely follows
a normal distribution for sample sizes exceeding 10 elements, is defined as follows:

This routine is written in the IDL language. Its source code can be found in the file
rs_test.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = RS_TEST(X, Y [, UX=variable] [, UY=variable])

Return Value

The result is a two-element vector containing the nearly-normal test statistic Z and
the one-tailed probability of obtaining a value of Z or greater.

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Ux NxNy
Nx Nx 1+()

2
---------------------------- Wx–+=

Uy NxNy
Ny Ny 1+()

2
---------------------------- Wy–+=

Z
Ux NxNy() 2⁄–

NxNy Nx Ny 1+ +()() 12⁄
---=
IDL Reference Guide RS_TEST

1718
Y

An m-element integer, single-, or double-precision floating-point vector.

Keywords

UX

Set this keyword to a named variable that will contain the Mann-Whitney statistic for
X.

UY

Set this keyword to a named variable that will contain the Mann-Whitney statistic for
Y.

Examples

; Define two sample populations:
X = [-14, 3, 1, -16, -21, 7, -7, -13, -22, -17, -14, -8, $

7, -18, -13, -9, -22, -25, -24, -18, -13, -13, -18, -5]
Y = [-18, -9, -16, -14, -3, -9, -16, 10, -11, -3, -13, $

-21, -2, -11, -16, -12, -13, -6, -9, -7, -11, -9]

; Test the hypothesis that two sample populations, {xi, yi}, have
; the same mean of distribution against the hypothesis in that they
; differ at the 0.05 significance level:
PRINT, RS_TEST(X, Y, UX = ux, UY = uy)

; Print the Mann-Whitney statistics:
PRINT, 'Mann-Whitney Statistics: Ux = ', ux, ', Uy = ', uy

IDL prints:

[1.45134, 0.0733429]
Mann-Whitney Statistics: Ux = 330.000, Uy = 198.000

The computed probability (0.0733429) is greater than the 0.05 significance level and
therefore we do not reject the hypothesis that X and Y have the same mean of
distribution.

Version History

Introduced: 4.0
RS_TEST IDL Reference Guide

 1719
See Also

FV_TEST, KW_TEST, S_TEST, TM_TEST
IDL Reference Guide RS_TEST

1720
S_TEST

The S_TEST function tests the hypothesis that two sample populations X and Y have
the same mean of distribution against the hypothesis that they differ.

This routine is written in the IDL language. Its source code can be found in the file
s_test.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = S_TEST(X, Y [, ZDIFF=variable])

Return Value

The result is a two-element vector containing the maximum number of signed
differences between corresponding pairs of xi and yi and its one-tailed significance.
This type of test is often referred to as the “Sign Test.”

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Y

An n-element integer, single-, or double-precision floating-point vector.

Keywords

ZDIFF

Set this keyword to a named variable that will contain the number of differences
between corresponding pairs of xi and yi resulting in zero. Paired data resulting in a
difference of zero are excluded from the ranking and the sample size is
correspondingly reduced.

Examples

; Define two n-element sample populations:
X = [47, 56, 54, 49, 36, 48, 51, 38, 61, 49, 56, 52]
Y = [71, 63, 45, 64, 50, 55, 42, 46, 53, 57, 75, 60]
S_TEST IDL Reference Guide

 1721
; Test the hypothesis that the two sample populations have the same
; mean of distribution against the hypothesis that they differ at
; the 0.05 significance level:
PRINT, S_TEST(X, Y, ZDIFF = zdiff)

IDL prints:

[9.00000, 0.0729981]

The computed probability (0.0729981) is greater than the 0.05 significance level and
therefore we do not reject the hypothesis that X and Y have the same mean of
distribution.

Version History

Introduced: 4.0

See Also

FV_TEST, KW_TEST, MD_TEST, RS_TEST, TM_TEST
IDL Reference Guide S_TEST

1722
SAVE

The SAVE procedure saves variables, system variables, and IDL routines in a .sav
file using the XDR (eXternal Data Representation) format for later recovery by
RESTORE. Note that variables and routines cannot be saved in the same file. Note
also that save files containing routines may not be compatible between different
versions of IDL, but that files containing data are always backwards-compatible.

Note
When using the SAVE procedure, some users identify binary files containing
variable data using a .dat extension instead of a .sav extension. While any extension
can be used to identify files created with SAVE, it is recommended that you use the
.sav extension to easily identify files that can be restored.

Syntax

SAVE [, Var1, ..., Varn] [, /ALL] [, /COMM, /VARIABLES] [, /COMPRESS]
[, FILENAME=string] [, /ROUTINES] [, /SYSTEM_VARIABLES] [, /VERBOSE]

Arguments

Varn

One or more strings containing the names of variables, routine definitions, or
common blocks that are to be saved. If no Var arguments are provided, all variables,
routine definitions, or common blocks are saved.

Keywords

ALL

Set this keyword to save all common blocks, system variables, and local variables
from the current IDL session.

Note
Routines and variables cannot be saved in the same file. Setting the ALL keyword
does not save routines.
SAVE IDL Reference Guide

 1723
COMM

Set this keyword to save all main level common block definitions. Note that setting
this keyword does not cause the contents of the common block to be saved unless the
VARIABLES keyword is also set.

COMPRESS

If COMPRESS is set, IDL writes all data to the SAVE file using the ZLIB
compression library to reduce its size. IDL’s save file compression support is based
on the freely available ZLIB library by Mark Adler and Jean-loup Gailly.

Compressed .sav files can be restored by the RESTORE procedure in exactly the
same manner as any other .sav file. The only visible differences are that the files
will be smaller, and writing and reading them will be somewhat slower under typical
conditions.

FILENAME

A string containing the name of the file into which the IDL objects should be saved. If
this keyword is not specified, the file idlsave.dat is used. It is recommended that
the extension, .sav, be specified for any file created with the SAVE procedure.

ROUTINES

Set this keyword to save user defined procedures and functions in a machine
independent, binary form. If parameters are present, they must be strings containing
the names of the procedures and/or functions to be saved. If no parameters are
present, all compiled routines are saved. Routines and variables cannot be saved in
the same file.

Warning
.sav files containing routines are not guaranteed to be compatible between
successive versions of IDL. You will not be able to RESTORE .sav files
containing routines if they are made with incompatible versions of IDL. In this case,
you should recompile your original code with the newer version of IDL. A .sav
file containing data will always be restorable.

SYSTEM_VARIABLES

Set this keyword to save the current state of all system variables.
IDL Reference Guide SAVE

1724
Warning
Saving system variables is not recommended, as the structure may change between
versions of IDL.

VARIABLES

Set this keyword to save all variables in the current program unit. This option is the
default.

VERBOSE

Set this keyword to print an informative message for each saved object.

Examples

Save the status of all currently-defined variables in the file variables1.sav by
entering:

SAVE, /VARIABLES, FILENAME = 'variables1.sav'

The variables can be restored with the RESTORE procedure.

Save the user procedures MYPROC and MYFUN:

SAVE, /ROUTINES, 'MYPROC', 'MYFUN', FILENAME = 'myroutines.sav'

Version History

Introduced: Original

See Also

JOURNAL, RESOLVE_ALL, RESTORE
SAVE IDL Reference Guide

 1725
SAVGOL

The SAVGOL function returns the coefficients of a Savitzky-Golay smoothing filter,
which can then be applied using the CONVOL function. The Savitzky-Golay
smoothing filter, also known as least squares or DISPO (digital smoothing
polynomial), can be used to smooth a noisy signal.

The filter is defined as a weighted moving average with weighting given as a
polynomial of a certain degree. The returned coefficients, when applied to a signal,
perform a polynomial least-squares fit within the filter window. This polynomial is
designed to preserve higher moments within the data and reduce the bias introduced
by the filter. The filter can use any number of points for this weighted average.

This filter works especially well when the typical peaks of the signal are narrow. The
heights and widths of the curves are generally preserved.

Tip
You can use this function in conjunction with the CONVOL function for smoothing
and optionally for numeric differentiation.

This routine is written in the IDL language. Its source code can be found in the file
savgol.pro in the lib subdirectory of the IDL distribution.

SAVGOL is based on the Savitzky-Golay Smoothing Filters described in section 14.8
of Numerical Recipes in C: The Art of Scientific Computing (Second Edition),
published by Cambridge University Press, and is used by permission.

Syntax

Result = SAVGOL(Nleft, Nright, Order, Degree [, /DOUBLE])

Return Value

This function returns an array of floating-point numbers that are the coefficients of
the smoothing filter.

Arguments

Nleft

An integer specifying the number of data points to the left of each point to include in
the filter.
IDL Reference Guide SAVGOL

1726
Nright

An integer specifying the number of data points to the right of each point to include
in the filter.

Note
Larger values of Nleft and Nright produce a smoother result at the expense of
flattening sharp peaks.

Order

An integer specifying the order of the derivative desired. For smoothing, use order 0.
To find the smoothed first derivative of the signal, use order 1, for the second
derivative, use order 2, etc.

Note
Order must be less than or equal to the value specified for Degree.

Degree

An integer specifying the degree of smoothing polynomial. Typical values are 2 to 4.
Lower values for Degree will produce smoother results but may introduce bias,
higher values for Degree will reduce the filter bias, but may “over fit” the data and
give a noisier result.

Note
Degree must be less than the filter width (Nleft + Nright + 1).

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Tip
The DOUBLE keyword is recommended for Degree greater than 9.

Examples

The following example creates a noisy 400-point vector with 4 Gaussian peaks of
decreasing width. It then plots the original vector, the vector smoothed with a 33-
SAVGOL IDL Reference Guide

 1727
point Boxcar smoother (the SMOOTH function), and the vector smoothed with 33-
point wide Savitzky-Golay filter of degree 4. The bottom plot shows the first
derivative of the noisy signal and the first derivative using the Savitzky-Golay filter of
degree 4:

n = 401 ; number of points
np = 4 ; number of peaks
; Form the baseline:
y = REPLICATE(0.5, n)
; Index the array:
x = FINDGEN(n)
; Add each Gaussian peak:
FOR i=0, np-1 DO BEGIN
 c = (i + 0.5) * FLOAT(n)/np ; Center of peak
 peak = -(3 * (x-c) / (75. / 1.5 ^ i))^2
 ; Add Gaussian. Cutoff of -50 avoids underflow errors for
 ; tiny exponentials:
 y = y + EXP(peak>(-50))
ENDFOR
; Add noise:
y1 = y + 0.10 * RANDOMN(-121147, n)

!P.MULTI=[0,1,3]

; Boxcar smoothing width 33:
PLOT, x, y1, TITLE='Signal+Noise; Smooth (width33)'
OPLOT, SMOOTH(y1, 33, /EDGE_TRUNCATE), THICK=3

; Savitzky-Golay with 33, 4th degree polynomial:
savgolFilter = SAVGOL(16, 16, 0, 4)
PLOT, x, y1, TITLE='Savitzky-Golay (width 33, 4th degree)'
OPLOT, x, CONVOL(y1, savgolFilter, /EDGE_TRUNCATE), THICK=3

; Savitzky-Golay width 33, 4th degree, 1st derivative:
savgolFilter = SAVGOL(16, 16, 1, 4)
PLOT, x, DERIV(y1), YRANGE=[-0.2, 0.2], TITLE=$
 'First Derivative: Savitzky-Golay(width 33, 4th degree, order 1)'
OPLOT, x, CONVOL(y1, savgolFilter, /EDGE_TRUNCATE), THICK=3

The following is the resulting plot. Notice how the Savitzky-Golay filter preserves the
high peaks but does not do as much smoothing on the flatter regions. Note also that
IDL Reference Guide SAVGOL

1728
the Savitzky-Golay filter is able to construct a good approximation of the first
derivative.

Version History

Introduced: 5.4

See Also

CONVOL, DIGITAL_FILTER, SMOOTH

Figure 18: SAVGOL Example
SAVGOL IDL Reference Guide

 1729
SCALE3

The SCALE3 procedure sets up transformation and scaling parameters for basic 3-D
viewing. This procedure is similar to SURFR and SCALE3D, except that the data
ranges must be specified and the scaling does not vary with rotation. Results are
stored in the system variables !P.T, !X.S, !Y.S, and !Z.S.

This routine is written in the IDL language. Its source code can be found in the file
scale3.pro in the lib subdirectory of the IDL distribution.

Syntax

SCALE3 [, XRANGE=vector] [, YRANGE=vector] [, ZRANGE=vector]
[, AX=degrees] [, AZ=degrees]

Arguments

None.

Keywords

XRANGE

A two-element vector containing the minimum and maximum X values. If omitted,
the X-axis scaling remains unchanged.

YRANGE

A two-element vector containing the minimum and maximum Y values. If omitted,
the Y-axis scaling remains unchanged.

ZRANGE

A two-element vector containing the minimum and maximum Z values. If omitted,
the Z-axis scaling remains unchanged.

AX

Angle of rotation about the X axis. The default is 30 degrees.

AZ

Angle of rotation about the Z axis. The default is 30 degrees.
IDL Reference Guide SCALE3

1730
Examples

Set up a 3-D transformation where the data range is 0 to 20 for each of the 3 axes and
the viewing area is rotated 20 degrees about the X axis and 55 degrees about the Z
axis:

SCALE3, XRANGE=[0, 20], YRANGE=[0, 20], ZRANGE=[0, 20], AX=20,
AZ=55

Version History

Introduced: Pre 4.0

See Also

SCALE3D, SURFR, T3D
SCALE3 IDL Reference Guide

 1731
SCALE3D

The SCALE3D procedure scales the 3-D unit cube (a cube with the length of each
side equal to 1) into the viewing area. Eight data points are created at the vertices of
the 3-D unit cube. The vertices are then transformed by the value of the system
variable !P.T. The system is translated to bring the minimum (x,y,z) point to the
origin, and then scaled to make each coordinate’s maximum value equal to 1. The
!P.T system variable is modified as a result.

This routine is written in the IDL language. Its source code can be found in the file
scale3D.pro in the lib subdirectory of the IDL distribution.

Syntax

SCALE3D

Arguments

None.

Keywords

None.

Version History

Introduced: Original

See Also

SCALE3, SURFR, T3D
IDL Reference Guide SCALE3D

1732
SEARCH2D

The SEARCH2D function finds “objects” or regions of similar data values within a
two-dimensional array. Given a starting location and a range of values to search for,
SEARCH2D finds all the cells within the array that are within the specified range and
have some path of connectivity through these cells to the starting location. In addition
to searching for cells within a global range of data values, SEARCH2D can also
search for adjacent cells whose values deviate from their neighbors within specified
tolerances.

This routine is written in the IDL language. Its source code can be found in the file
search2d.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = SEARCH2D(Array, Xpos, Ypos, Min_Val, Max_Val [, DECREASE=value,
INCREASE=value[, LPF_BAND=integer{≥3}]] [, /DIAGONAL])

Return Value

SEARCH2D returns a longword array that contains a list of the array subscripts that
define the located object or region. The original X and Y indices of the array
subscripts returned by SEARCH2D can be found with the following IDL code:

index_y = Result / (SIZE(Array))(1)
index_x = Result - (index_y * (SIZE(Array))(1))

where Result is the array returned by SEARCH2D and Array is the original input
array. The object within Array can be subscripted as Array(Region) or
Array(index_x, index_y).

Arguments

Array

A two-dimensional array, of any data type, to be searched.

Xpos

The X coordinate (dimension 0 of Array) of the starting location.

Ypos

The Y coordinate (dimension 1 of Array) of the starting location.
SEARCH2D IDL Reference Guide

 1733
Min_Val

The minimum data value for which to search. All array subscripts of all cells that are
connected to the starting cell, and have a value between Min_Val and Max_Val
(inclusive) are returned.

Max_Val

The maximum data value for which to search.

Keywords

DECREASE

This keyword and the INCREASE keyword allow you to compensate for changing
intensities of data values within an object. An edge-enhanced copy of Array is made
and compared to the orginal array if this keyword is set. The search is limited to
pixels for which the edge-enhanced gradient value lies between the DECREASE and
INCREASE values. When DECREASE or INCREASE is set, any adjacent cells are
found if their corresponding data values in the edge enhanced array are greater than
DECREASE and less than INCREASE. In any case, the adjacent cells will never be
selected if their data values are not between Min_Val and Max_Val. The default for
this keyword is 0.0 if INCREASE is specified.

INCREASE

This keyword and the DECREASE keyword allow you to compensate for changing
intensities of data values within an object. An edge-enhanced copy of Array is made
and compared to the orginal array if this keyword is set. The search is limited to
pixels for which the edge-enhanced gradient value lies between the DECREASE and
INCREASE values. When DECREASE or INCREASE is set, any adjacent cells are
found if their corresponding data values in the edge enhanced array are greater than
DECREASE and less than INCREASE. In any case, the adjacent cells will never be
selected if their data values are not between Min_Val and Max_Val. The default for
this keyword is 0.0 if DECREASE is specified.

LPF_BAND

Set this keyword to an integer value of 3 or greater to perform low-pass filtering on
the edge-enhanced array. The value of LPF_BAND is used as the width of the
smoothing window. This keyword is only effective when the DECREASE or
INCREASE keywords are also specified. The default is no smoothing.
IDL Reference Guide SEARCH2D

1734
DIAGONAL

Set this keyword to cause SEARCH2D to find cells meeting the search criteria whose
surrounding squares share a common corner. Normally, cells are considered adjacent
only when squares surrounding the cells share a common edge. Setting this option
requires more memory and execution time.

Examples

Find all the indices corresponding to an object in an image:

; Create an image with different valued regions:
img = FLTARR(512, 512)
img[3:503, 9:488] = 0.7
img[37:455, 18:438] = 0.5
img[144:388, 90:400] = 0.7
img[200:301, 1:255] = 1.0
img[155:193, 333:387] = 0.3
TVSCL, img ;Display the image.

; Search for an object starting at (175, 300) whose data values are
; between (0.6) and (0.8):
region = SEARCH2D(img, 175, 300, 0.6, 0.8, /DIAGONAL)

; Scale the background cells into the range 0 to 127:
img = BYTSCL(img, TOP=127B)

; Highlight the object region by setting it to 255:
img[region] = 255B

; Display the array with the highlighted object in it:
TVSCL, img

Version History

Introduced: Pre 4.0

See Also

SEARCH3D
SEARCH2D IDL Reference Guide

 1735
SEARCH3D

The SEARCH3D function finds “objects” or regions of similar data values within a
3-D array of data. Given a starting location and a range of values to search for,
SEARCH3D finds all the cells within the volume that are within the specified range
of values and have some path of connectivity through these cells to the starting
location. In addition to searching for cells within a global range of data values,
SEARCH3D can also search for adjacent cells whose values deviate from their
neighbors within specified tolerances.

This routine is written in the IDL language. Its source code can be found in the file
search3d.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = SEARCH3D(Array, Xpos, Ypos, Zpos, Min_Val, Max_Val [, /DECREASE,
/INCREASE [, LPF_BAND=integer{≥3}]] [, /DIAGONAL])

Return Value

SEARCH3D returns a longword array that contains a list of the array subscripts that
define the selected object or region. The original X and Y indices of the array
subscripts returned by SEARCH3D can be found with the following IDL code:

S = SIZE(Array)
index_z = Result / (S[1] * S[2])
index_y = (Result - (index_z * S[1] * S[2])) / S[1]
index_x = (Result - (index_z * S[1] * S[2])) - (index_y * S[1])

where Result is the array returned by SEARCH3D and Array is the original input
volume. The object within Array can be subscripted as Array[Region] or
Array[index_x, index_y, index_z].

Arguments

Array

The three-dimensional array, of any data type except string, to be searched.

Xpos

The X coordinate (dimension 0 or Array) of the starting location.
IDL Reference Guide SEARCH3D

1736
Ypos

The Y coordinate (dimension 1 of Array) of the starting location.

Zpos

The Z coordinate (dimension 2 of Array) of the starting location.

Min_Val

The minimum data value for which to search. All array subscripts of all the cells that
are connected to the starting cell, and have a value between Min_Val and Max_Val
(inclusive) are returned.

Max_Val

The maximum data value for which to search.

Keywords

DECREASE

This keyword and the INCREASE keyword allow you to compensate for changing
intensities of data values within an object. An edge-enhanced copy of Array is made
and compared to the orginal array if this keyword is set. When DECREASE or
INCREASE is set, any adjacent cells are found if their corresponding data values in
the edge enhanced array are greater than DECREASE and less than INCREASE. In
any case, the adjacent cells will never be selected if their data values are not between
Min_Val and Max_Val. The default for this keyword is 0.0 if INCREASE is specified.

INCREASE

This keyword and the DECREASE keyword allow you to compensate for changing
intensities of data values within an object. An edge-enhanced copy of Array is made
and compared to the orginal array if this keyword is set. When DECREASE or
INCREASE is set, any adjacent cells are found if their corresponding data values in
the edge enhanced array are greater than DECREASE and less than INCREASE. In
any case, the adjacent cells will never be selected if their data values are not between
Min_Val and Max_Val. The default for this keyword is 0.0 if DECREASE is
specified.
SEARCH3D IDL Reference Guide

 1737
LPF_BAND

Set this keyword to an integer value of 3 or greater to perform low-pass filtering on
the edge-enhanced array. The value of LPF_BAND is used as the width of the
smoothing window. This keyword is only effective when the DECREASE or
INCREASE keywords are also specified. The default is no smoothing.

DIAGONAL

Set this keyword to cause SEARCH3D to find cells meeting the search criteria whose
surrounding cubes share a common corner or edge. Normally, cells are considered
adjacent only when cubes surrounding the cells share a common edge. Setting this
option requires more memory and execution time.

Examples

Find all the indices corresponding to an object contained in a 3-D array:

; Create some data.
vol = RANDOMU(s, 40, 40, 40)
vol[3:13, 1:15, 17:33] = 1.3
vol[15:25, 5:25, 15:25] = 0.2
vol[5:30,17:38,7:28] = 1.3
vol[9:23, 16:27, 7:33] = 1.5

; Search for an object starting at (6, 22, 16) whose data values
; are between (1.2) and (1.4):
region = SEARCH3D(vol, 6, 22, 16, 1.2, 1.4, /DIAGONAL)

; Scale the background cells into the range 0 to 127:
vol = BYTSCL(vol, TOP=127B)

; Highlight the object region by setting it to 255:
vol[Region] = 255B
WINDOW, 0, XSIZE=640, YSIZE=512, RETAIN=2

; Set up a 3-D view:
CREATE_VIEW, XMAX=39, YMAX=39, ZMAX=39, AX=(-30), AZ=30, ZOOM=0.8

; Display the volume with the highlighted object in it:
TVSCL, PROJECT_VOL(vol, 64, 64, 40, DEPTH_Q=0.4)

Version History

Introduced: Pre 4.0
IDL Reference Guide SEARCH3D

1738
See Also

SEARCH2D
SEARCH3D IDL Reference Guide

 1739
SET_PLOT

The SET_PLOT procedure sets the output device used by the IDL graphics
procedures. Keyword parameters control how the color tables are transferred to the
newly selected graphics device. SET_PLOT performs the following actions:

• It sets the read-only system variable !D to reflect the configuration of the new
device.

• It sets the default color !P.COLOR to the maximum color index minus one or,
in the case of devices with white backgrounds, such as PostScript, to 0 (black).

• If the COPY keyword is set, the device color tables are copied directly from
IDL’s internal color tables. If the new device’s color tables contain more
indices than those of the old device, the new device’s tables are not completely
filled.

• If the INTERPOLATE keyword is set, the internal color tables are interpolated
to fill the range of the new device.

• It sets the clipping rectangle to the entire device surface.

Warning
After calling SET_PLOT to change graphics devices, the scaling contained in the
axis structures !X, !Y, and !Z is invalid. Any routines that rely on data coordinates
should not be called until a new data coordinate system has been established. Be
careful when switching devices as the number of color indices frequently differs
between devices. When in doubt, reload the color table of the new device explicitly.

Syntax

SET_PLOT, Device [, /COPY] [, /INTERPOLATE]

Arguments

Device

A scalar string containing the name of the device to use. The case of Device is
ignored by IDL. See Appendix A, “IDL Graphics Devices” for a list of device names.
IDL Reference Guide SET_PLOT

1740
Keywords

COPY

Set this keyword to copy the device’s color table from the internal color table,
preserving the current color mapping. The default is not to load the color table upon
selection.

Warning
Unless this keyword is set, IDL’s internal color tables will incorrectly reflect the
state of the device’s color tables until they are reloaded by TVLCT or the LOADCT
procedure. Assuming that the previously-selected device’s color table contains M
elements, and the new device’s color table contains N elements, then the minimum
of M and N elements are loaded.

INTERPOLATE

Set this keyword to indicate that the current contents of the internal color table should
be interpolated to cover the range of the newly-selected device. Otherwise, the
internal color tables are not changed.

Examples

Change the IDL graphics device to PostScript by entering:

SET_PLOT, 'PS'

After changing the plotting device, all graphics commands are sent to that device
until changed again by another use of the SET_PLOT routine.

Version History

Introduced: Original
SET_PLOT IDL Reference Guide

 1741
SET_SHADING

The SET_SHADING procedure modifies the light source shading parameters that
affect the output of SHADE_SURF and POLYSHADE. Parameters can be changed
to control the light-source direction, shading method, and the rejection of hidden
surfaces. SET_SHADING first resets the shading parameters to their default values.
The parameter values specified in the call then overwrite the default values. To reset
all parameters to their default values, simply call this procedure with no parameters.

Syntax

SET_SHADING [, /GOURAUD] [, LIGHT=[x, y, z]] [, /REJECT]
[, VALUES=[darkest, brightest]]

Arguments

None.

Keywords

GOURAUD

This keyword controls the method of shading the surface polygons by the
POLYSHADE procedure. The SHADE_SURF procedure always uses the Gouraud
method. Set this keyword to a nonzero value (the default), to use Gouraud shading.
Set this keyword to zero to shade each polygon with a constant intensity.

Gouraud shading interpolates intensities from each vertex along each edge. Then,
when scan converting the polygons, the shading is interpolated along each scan line
from the edge intensities. Gouraud shading is slower than constant shading but
usually results in a more realistic appearance.

LIGHT

A three-element vector that specifies the direction of the light source. The default
light source vector is [0,0,1], with the light rays parallel to the Z axis.

REJECT

Set this keyword (the default) to reject polygons as being hidden if their vertices are
ordered in a clockwise direction as seen by the viewer. This keyword should always
be set when rendering enclosed solids whose original vertex lists are in
IDL Reference Guide SET_SHADING

1742
counterclockwise order. When rendering surfaces that are not closed or are not in
counterclockwise order this keyword can be set to zero although shading anomalies at
boundaries between visible and hidden surfaces may occur.

VALUES

A two-element array that specifies the range of pixel values (color indices) to use.
The first element is the color index for the darkest pixel. The second element is the
color index for the brightest pixel. For example, to render a shaded surface with the
darkest shade set to pixel value 100 and the brightest value set to 150, use the
commands:

SET_SHADING, VALUES=[100, 150]
SHADE_SURF, dataset

Examples

Change the light source so that the light rays are parallel to the X axis:

SET_SHADING, LIGHT = [1, 0, 0]

Version History

Introduced: Pre 4.0

See Also

POLYSHADE, SHADE_SURF
SET_SHADING IDL Reference Guide

 1743
SETENV

The SETENV procedure adds or changes an environment string in the process
environment.

Syntax

SETENV, Environment_Expression

Arguments

Environment_Expression

A scalar string or string array containing an environment expressions to be added to
the environment.

Keywords

None.

Examples

Change the current shell variable by entering:

SETENV,'SHELL=/bin/sh'

Make sure to eliminate any whitespace around the equal sign:

; This is an incorrect usage--there are spaces around the equal
; sign:
SETENV, 'VAR = H:\rsi'

; This is correct--VAR is set to H:\rsi:
SETENV, 'VAR=H:\rsi'

Version History

Introduced: Original

See Also

GETENV
IDL Reference Guide SETENV

1744
SETUP_KEYS

The SETUP_KEYS procedure sets function keys for use with UNIX versions of IDL
when used with the standard tty command interface.

Under UNIX, the number of function keys, their names, and the escape sequences
they send to the host computer vary enough between various keyboards that IDL
cannot be written to understand all keyboards. Therefore, IDL provides a very
general routine named DEFINE_KEY that allows the user to specify the names and
escape sequences of function keys.

SETUP_KEYS provides a convenient interface to DEFINE_KEY, using user input
(via the keywords described below), the TERM environment variable and the type of
machine the current IDL is running on to determine what kind of keyboard you are
using, and then uses DEFINE_KEY to enter the proper definitions for the function
keys.

The new mappings for the keys can be viewed using the command

HELP, /KEYS.

The need for SETUP_KEYS has diminished in recent years because most UNIX
terminal emulators have adopted the ANSI standard for function keys, as represented
by VT100 terminals and their many derivatives, as well as xterm and the newer CDE
based dtterm.

The current version of IDL already knows the function keys of such terminals, so
SETUP_KEYS is not required. However, SETUP_KEYS is still needed to define
keys on non-ANSI terminals such as the Sun shelltool, SGI Iris-ansi terminal
emulator, or IBM’s aixterm.

IDL does not support the function keys from the hpterm terminal emulator supplied
on HP systems. Hpterm uses non ANSI-standard escape sequences which IDL cannot
parse. RSI recommends the use of the xterm or dtterm terminal emulators instead.

This routine is written in the IDL language. Its source code can be found in the file
setup_keys.pro in the lib subdirectory of the IDL distribution.

Syntax

SETUP_KEYS [, /EIGHTBIT] [, /SUN | , /VT200 | , /HP9000 | , /MIPS | , /PSTERM
| , /SGI] [, /APP_KEYPAD] [, /NUM_KEYPAD]
SETUP_KEYS IDL Reference Guide

 1745
Arguments

None.

Keywords

Note
If no keyword is specified, SETUP_KEYS uses !VERSION to determine the type
of machine running IDL. It assumes that the keyboard involved is of the same type
(this assumption is correct).

ANSI

Set this keyword to establish function key definitions for ANSI keyboards.

EIGHTBIT

Set this keyword to use the 8-bit versions of the escape codes (instead of the default
7-bit) when establishing VT200 function key definitions.

SUN

Set this keyword to establish function key definitions for a Sun3 keyboard.

VT200

Set this keyword to establish function key definitions for a DEC VT200 keyboard.

HP9000

Set this keyword to establish function key definitions for an HP 9000 series 300
keyboard. Although the HP 9000 series 300 supports both xterm and hpterm
windows, IDL supports only user-definable key definitions in xterm windows—
hpterm windows use non-standard escape sequences which IDL does not attempt to
handle.

IBM

Set this keyword to establish function key definitions for IBM keyboards.

MIPS

Set this keyword to establish function key definitions for a Mips RS series keyboard.
IDL Reference Guide SETUP_KEYS

1746
SGI

Set this keyword to establish function key definitions for SGI keyboards.

APP_KEYPAD

Set this keyword to define escape sequences for the group of keys in the numeric
keypad, enabling these keys to be programmed within IDL.

NUM_KEYPAD

Set this keyword to disable programmability of the numeric keypad.

Version History

Introduced: Pre 4.0

See Also

DEFINE_KEY
SETUP_KEYS IDL Reference Guide

 1747
SFIT

The SFIT function determines a polynomial fit to a surface and returns a fitted array.
The function fitted is:

This routine is written in the IDL language. Its source code can be found in the file
sfit.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = SFIT(Data, Degree [, KX=variable])

Arguments

Data

The two-dimensional array of data to fit. The sizes of the dimensions may be unequal.

Degree

The maximum degree of fit (in one dimension).

Keywords

KX

Set this keyword to a named variable that will contain the array of coefficients for a
polynomial function of x and y to fit data. This parameter is returned as a Degree+1
by Degree+1 array.

Examples

; Create a grid from zero to six radians in the X and Y directions:
X = (FINDGEN(61)/10) # REPLICATE(1,61)
Y = TRANSPOSE(X)

f x y,() kxj i, xi yj⋅ ⋅∑=
IDL Reference Guide SFIT

1748
; Evaluate a function at each point:
F = -SIN(2*X) + COS(Y/2)

; Compute a sixth-degree polynomial fit to the function data:
result = SFIT(F, 6)

; Display the original function on the left and the fitted function
; on the right, using identical axis scaling:
WINDOW, XSIZE = 800, YSIZE = 400

; Set up side-by-side plots:
!P.MULTI = [0, 2, 1]

; Set background color to white:
!P.BACKGROUND = 255

; Set plot color to black:
!P.COLOR = 0

SURFACE, F, X, Y, ZRANGE = [-3, 3], ZSTYLE = 1
SURFACE, result, X, Y

The following figure shows the result of this example:

Version History

Introduced: Pre 4.0

Figure 19: The Original Function (Left) and the Fitted Function (Right)
SFIT IDL Reference Guide

 1749
See Also

CURVEFIT, GAUSSFIT, LINFIT, LMFIT, POLY_FIT, REGRESS, SVDFIT
IDL Reference Guide SFIT

1750
SHADE_SURF

The SHADE_SURF procedure creates a shaded-surface representation of a regular or
nearly-regular gridded surface with shading from either a light source model or from
a user-specified array of intensities. This procedure and its parameters are similar to
SURFACE. Given a regular or near-regular grid of elevations it produces a shaded-
surface representation of the data with hidden surfaces removed.

The SET_SHADING procedure can be used to control the direction of the light
source and other shading parameters.

If the graphics output device has scalable pixels (e.g., PostScript), the output image is
scaled so that its largest dimension is less than or equal to 512 (unless the PIXELS
keyword is set to some other value). This default resolution may not be high enough
for some datasets. If your output looks jagged or “stair-stepped”, try specifying a
larger value with the PIXELS keyword.

When outputting to a device that prints black on a white background, (e.g.,
PostScript), pixels that contain the background color index of 0 are set to white.

Restrictions

If the (X, Y) grid is not regular or nearly regular, errors in hidden line removal will
occur. If the T3D keyword is set, the 3-D to 2-D transformation matrix contained in
!P.T must project the Z axis to a line parallel to the device Y axis, or errors will occur.
The SHADE_SURF_IRR procedure can be used to render many datasets that do not
meet these requirements. Irregularly-gridded data can also be made interpolated to a
regular grid using the TRIGRID and TRIANGULATE routines.

Syntax

SHADE_SURF, Z [, X, Y] [, AX=degrees] [, AZ=degrees] [, IMAGE=variable]
[, MAX_VALUE=value] [, MIN_VALUE=value] [, PIXELS=pixels] [, /SAVE]
[, SHADES=array] [, /XLOG] [, /YLOG]

Graphics Keywords: [, CHARSIZE=value] [, CHARTHICK=integer]
[, COLOR=value][, /DATA | , /DEVICE | , /NORMAL] [, FONT=integer]
[, /NODATA] [, POSITION=[X0, Y0, X1, Y1]] [, SUBTITLE=string] [, /T3D]
[, THICK=value] [, TICKLEN=value] [, TITLE=string]
[, {X | Y | Z}CHARSIZE=value]
[, {X | Y | Z}GRIDSTYLE=integer{0 to 5}]
[, {X | Y | Z}MARGIN=[left, right]]
[, {X | Y | Z}MINOR=integer]
SHADE_SURF IDL Reference Guide

 1751
[, {X | Y | Z}RANGE=[min, max]]
[, {X | Y | Z}STYLE=value]
[, {X | Y | Z}THICK=value]
[, {X | Y | Z}TICKFORMAT=string]
[, {X | Y | Z}TICKINTERVAL= value]
[, {X | Y | Z}TICKLAYOUT=scalar]
[, {X | Y | Z}TICKLEN=value]
[, {X | Y | Z}TICKNAME=string_array]
[, {X | Y | Z}TICKS=integer]
[, {X | Y | Z}TICKUNITS=string]
[, {X | Y | Z}TICKV=array]
[, {X | Y | Z}TICK_GET=variable]
[, {X | Y | Z}TITLE=string]
[, ZVALUE=value{0 to 1}]

Arguments

Z

The two-dimensional array to be displayed. If X and Y are provided, the surface is
plotted as a function of the (X, Y) locations specified by their contents. Otherwise, the
surface is generated as a function of the array index of each element of Z.

This argument is converted to double-precision floating-point before plotting. Plots
created with SHADE_SURF are limited to the range and precision of double-
precision floating-point values.

X

A vector or two-dimensional array specifying the X coordinates of the grid. If this
argument is a vector, each element of X specifies the X coordinate for a column of Z
(e.g., X[0] specifies the X coordinate for Z[0,*]). If X is a two-dimensional array,
each element of X specifies the X coordinate of the corresponding point in Z (Xij
specifies the X coordinate for Zij).

This argument is converted to double-precision floating-point before plotting.

Y

A vector or two-dimensional array specifying the Y coordinates of the grid. If this
argument is a vector, each element of Y specifies the Y coordinate for a row of Z (e.g.,
Y[0] specifies the Y coordinate for Z[*,0]). If Y is a two-dimensional array, each
element of Y specifies the Y coordinate of the corresponding point in Z (Yij specifies
the Y coordinate for Zij).
IDL Reference Guide SHADE_SURF

1752
This argument is converted to double-precision floating-point before plotting.

Keywords

AX

This keyword specifies the angle of rotation, about the X axis, in degrees towards the
viewer. This keyword is effective only if !P.T3D and the T3D keyword are not set. If
!P.T3D is set, the three-dimensional to two-dimensional transformation used by
SURFACE is contained in the 4 by 4 array !P.T.

The surface represented by the two-dimensional array is first rotated, AZ (see below)
degrees about the Z axis, then by AX degrees about the X axis, tilting the surface
towards the viewer (AX > 0), or away from the viewer.

The AX and AZ keyword parameters default to +30 degrees if omitted.

The three-dimensional to two-dimensional transformation represented by AX and
AZ, can be saved in !P.T by including the SAVE keyword.

AZ

This keyword specifies the counterclockwise angle of rotation about the Z axis. This
keyword is effective only if !P.T3D is not set. The order of rotation is AZ first, then
AX.

IMAGE

A named variable into which an image containing the shaded surface is stored. If this
keyword is omitted, the image is displayed but not saved.

MAX_VALUE

The maximum value to be plotted. If this keyword is present, data values greater than
the value of MAX_VALUE are treated as missing and are not plotted. Note that the
IEEE floating-point value NaN is also treated as missing data. (See “Special
Floating-Point Values” in Chapter 18 of the Building IDL Applications manual for
more information on IEEE floating-point values.)

MIN_VALUE

The minimum value to be plotted. If this keyword is present, data values less than the
value of MIN_VALUE are treated as missing and are not plotted. Note that the IEEE
floating-point value NaN is also treated as missing data. (See “Special Floating-Point
SHADE_SURF IDL Reference Guide

 1753
Values” in Chapter 18 of the Building IDL Applications manual for more information
on IEEE floating-point values.)

PIXELS

Set this keyword to a scalar value that specifies the maximum size of the image
dimensions, in pixels. PIXELS only applies when the output device uses scalable
pixels (e.g., the PostScript device). Use this keyword to increase the resolution of the
output image if the default looks jagged or “stair-stepped”.

SAVE

Set this keyword to save the 3-D to 2-D transformation matrix established by
SHADE_SURF in the system variable field !P.T. Use this keyword when combining
the output of SHADE_SURF with the output of other routines in the same plot.

SHADES

An array expression, of the same dimensions as Z, that contains the color index at
each point. The shading of each pixel is interpolated from the surrounding SHADE
values. If this parameter is omitted, light-source shading is used. For most displays,
this parameter should be scaled into the range of bytes.

Warning
When using the SHADES keyword on True Color devices, we recommend that
decomposed color support be turned off, by setting DECOMPOSED=0 for
DEVICE.

XLOG

Set this keyword to specify a logarithmic X axis.

YLOG

Set this keyword to specify a logarithmic Y axis.

Graphics Keywords Accepted

See Appendix B, “Graphics Keywords”, for the description of graphics and plotting
keywords not listed above. CHARSIZE, CHARTHICK, COLOR, DATA, DEVICE,
FONT, NODATA, NORMAL, POSITION, SUBTITLE, T3D, THICK, TICKLEN,
TITLE, [XYZ]CHARSIZE, [XYZ]GRIDSTYLE, [XYZ]MARGIN, [XYZ]MINOR,
[XYZ]RANGE, [XYZ]STYLE, [XYZ]THICK, [XYZ]TICKFORMAT,
[XYZ]TICKINTERVAL, [XYZ]TICKLAYOUT, [XYZ]TICKLEN,
IDL Reference Guide SHADE_SURF

1754
[XYZ]TICKNAME, [XYZ]TICKS, [XYZ]TICKUNITS, [XYZ]TICKV,
[XYZ]TICK_GET, [XYZ]TITLE, ZVALUE.

Examples

; Create a simple dataset:
D = DIST(40)
; Display the dataset as a light-source shaded surface:
SHADE_SURF, D, TITLE = 'Shaded Surface'

Instead of light-source shading, an array of the same size as the elevation dataset can
be used to color the surface. This technique creates four-dimensional displays.

; Create an array of shades to use:
S = SIN(D)

; Now create a new shaded surface that uses the array of shading
; values instead of the light source:
SHADE_SURF, D, SHADES = BYTSCL(S)

Note that the BYTSCL function is used to scale S into the range of bytes.

Version History

Introduced: Original

See Also

ISURFACE, POLYSHADE, SET_SHADING, SHADE_VOLUME, SURFACE
SHADE_SURF IDL Reference Guide

 1755
SHADE_SURF_IRR

The SHADE_SURF_IRR procedure creates a shaded surface representation of an
irregularly gridded elevation dataset.

The data must be representable as an array of quadrilaterals. This routine should be
used when the (X, Y, Z) arrays are too irregular to be drawn by SHADE_SURF, but
are still semi-regular.

This routine is written in the IDL language. Its source code can be found in the file
shade_surf_irr.pro in the lib subdirectory of the IDL distribution.

Syntax

SHADE_SURF_IRR, Z, X, Y [, AX=degrees] [, AZ=degrees] [, IMAGE=variable]
[, PLIST=variable] [, /T3D]

Arguments

Z

An n x m array of elevations.

X

An n x m array containing the X location of each Z value.

Y

An n x m array containing the Y location of each Z value.

The grid described by X and Y must consist of quadrilaterals, must be semi-regular,
and must be in “clockwise” order. Clockwise ordering means that:

;for all j
x[i,j] <= x[i+1, j]

and

;for all i
y[i,j] <= y[i, j+1]
IDL Reference Guide SHADE_SURF_IRR

1756
Keywords

AX

The angle of rotation about the X axis. The default is 30 degrees.

AZ

The angle of rotation about the Z axis. The default is 30 degrees.

IMAGE

Set this keyword to a named variable that will contain the resulting shaded surface
image. The variable is returned as a byte array of the same size as the currently
selected graphics device.

PLIST

Set this keyword to a named variable that will contain the polygon list on return. This
feature is useful when you want to make a number of images from the same set of
vertices and polygons.

T3D

Set this keyword to indicate that the generalized transformation matrix in !P.T is to be
used (in which case the keyword values for AX and AZ are ignored)

Examples

The following example creates a semi-regular data set in the proper format at displays
the resulting irregular surface.

; Create some elevation data:
z = DIST(10,10)*100.0
; Create arrays to hold X and Y data:
x = FLTARR(10,10) & y = FLTARR(10,10)
; Ensure that X and Y arrays are in "clockwise" order:
FOR i = 0,9 do x[0:9,i] = FINDGEN(10)
FOR j = 0,9 DO y[j,0:9] = FINDGEN(10)
; Make X and Y arrays irregular:
x = x + RANDOMU(seed,10,10)*0.49
y = y + RANDOMU(seed,10,10)*0.49
; Display the irregular surface:
SHADE_SURF_IRR, z, x, y
SHADE_SURF_IRR IDL Reference Guide

 1757
Version History

Introduced: Pre 4.0

See Also

SHADE_SURF, TRIGRID
IDL Reference Guide SHADE_SURF_IRR

1758
SHADE_VOLUME

Given a 3-D volume and a contour value, SHADE_VOLUME produces a list of
vertices and polygons describing the contour surface. This surface can then be
displayed as a shaded surface by the POLYSHADE procedure. Shading is obtained
from either a single light-source model or from user-specified values.

SHADE_VOLUME computes the polygons that describe a three dimensional contour
surface. Each volume element (voxel) is visited to find the polygons formed by the
intersections of the contour surface and the voxel edges. The method used by SHADE
VOLUME is that of Klemp, McIrvin and Boyd, 1990: “PolyPaint—A Three-
Dimensional Rendering Package,” American Meteorology Society Proceedings, Sixth
International Conference on Interactive Information and Processing Systems. This
method is similar to the marching cubes algorithm described by Lorenson and Cline,
1987: “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,”
Computer Graphics 21, 163-169.

This routine is limited to processing datasets that will fit in memory.

Syntax

SHADE_VOLUME, Volume, Value, Vertex, Poly [, /LOW] [, SHADES=array]
[, /VERBOSE] [, XRANGE=vector] [, YRANGE=vector] [, ZRANGE=vector]

Arguments

Volume

A three-dimensional array that contains the dataset to be contoured. If the Volume
array is dimensioned (D0, D1, D2), the resulting vertex coordinates are as follows:

0 < X < D0 - 1; 0 < Y < D1 - 1; 0 < Z < D2 - 1.

If floating-point NaN values are present in Volume, then SHADE_VOLUME may
generate inconsistent surfaces and may return NaN values in the Vertex argument.
The surfaces generated by SHADE_VOLUME may also vary across platforms if
NaN data is present in the Volume parameter.

Value

The scalar contour value. This value specifies the constant-density surface (also
called an isosurface) to be rendered.
SHADE_VOLUME IDL Reference Guide

 1759
Vertex

The name of a variable to receive the vertex array. On output, this variable is set to a
(3, n) floating-point array, suitable for input to POLYSHADE.

Poly

A named variable to receive the polygon list, an n-element, longword array. This list
describes the vertices of each polygon and is suitable for input to POLYSHADE. The
vertices of each polygon are listed in counterclockwise order when observed from
outside the surface. The vertex description of each polygon is a vector of the form:
[n, i0, i1, ..., in-1] and the Poly array is the concatenation of the lists of each polygon.
For example, when rendering a pyramid consisting of four triangles, Poly would
contain 16 elements, made by concatenating four, four-element vectors of the form
[3, V0, V1, V2]. V0, V1, and V2 are the indices of the vertices describing each triangle.

Keywords

LOW

Set this keyword to display the low side of the contour surface (i.e., the contour
surfaces enclose high data values). If this keyword is omitted or is 0, the high side of
the contour surface is displayed and the contour encloses low data values. If this
parameter is incorrectly specified, errors in shading will result.

SHADES

An optional array, converted to byte type before use, that contains the user-specified
shading color index for each voxel. This array must have the same dimensions as
Volume. On exit, this array is replaced by another array, that contains the shading
value for each vertex, contained in Vertex.

Warning
When using the SHADES keyword on True Color devices, we recommend that
decomposed color support be turned off, by setting DECOMPOSED=0 for
DEVICE.

VERBOSE

Set this keyword to print a message indicating the number of polygons and vertices
that are produced.
IDL Reference Guide SHADE_VOLUME

1760
XRANGE

An optional two-element vector that contains the limits, over the first dimension, of
the sub-volume to be considered.

YRANGE

An optional two-element vector that contains the limits, over the second dimension,
of the sub-volume to be considered.

ZRANGE

An optional two-element vector containing the limits, over the third dimension, of the
sub-volume to be considered.

Examples

The following procedure shades a volume passed as a parameter. It uses the SCALE3
procedure to establish the viewing transformation. It then calls SHADE_VOLUME
to produce the vertex and polygon lists, and POLYSHADE to draw the contour
surface.

PRO SHOWVOLUME, vol, thresh, LOW = low
; Get the dimensions of the volume:
s = SIZE(vol)
; Error, must be a 3-D array:
IF s[0] NE 3 THEN MESSAGE, 'Error: vol must be a 3-D array'
; Establish the 3-D transformation and coordinate ranges:
SCALE3, XRANGE=[0, S[1]], YRANGE=[0, S[2]], ZRANGE=[0, S[3]]
; Default = view high side of contour surface:
IF N_ELEMENTS(low) EQ 0 THEN low = 0
; Produce vertices and polygons:
SHADE_VOLUME, vol, thresh, v, p, LOW = low
; Produce image of surface and display:
TV, POLYSHADE(v, p, /T3D)

END

Version History

Introduced: Pre 4.0

See Also

INTERVAL_VOLUME, IVOLUME, POLYSHADE, SHADE_SURF, XVOLUME
SHADE_VOLUME IDL Reference Guide

 1761
SHIFT

The SHIFT function shifts elements of vectors or arrays along any dimension by any
number of elements. Positive shifts are to the right while left shifts are expressed as a
negative number. All shifts are circular.

Elements shifted off one end wrap around and are shifted onto the other end. In the
case of vectors the action of SHIFT can be expressed:

Result(i + s) modulation = Arrayi for (0 ≤ 1 < n)

where s is the amount of the shift, and n is the number of elements in the array.

Syntax

Result = SHIFT(Array, S1, ..., Sn)

Return Value

The result is a vector or array of the same structure and type as Array.

Arguments

Array

The array to be shifted.

Si

The shift parameters. The Si arguments can be either a single array containing the
shift parameters for each dimension, or a sequence of up to eight scalar shift values.
For arrays of more than one dimension, the parameter Sn specifies the shift applied to
the n-th dimension. S1 specifies the shift along the first dimension and so on. If only
one shift parameter is present and the parameter is an array, the array is treated as a
vector (i.e., the array is treated as having one-dimensional subscripts).

A shift specification of 0 means that no shift is to be performed along that dimension.

Keywords

None.
IDL Reference Guide SHIFT

1762
Examples

The following example demonstrates using SHIFT with a vector. by entering:

A = INDGEN(5)

; Print the original vector, the vector shifted one position to the
; right, and the vector shifted one position to the left:
PRINT, A, SHIFT(A, 1), SHIFT(A, -1)

IDL prints:

0 1 2 3 4
4 0 1 2 3
1 2 3 4 0

Notice how elements of the vector that shift off the end wrap around to the other end.
This “wrap around” occurs when shifting arrays of any dimension.

Version History

Introduced: Original

See Also

ISHFT
SHIFT IDL Reference Guide

 1763
SHMDEBUG

The SHMDEBUG function enables a debugging mode in which IDL prints an
informational message (including a traceback) every time a variable created with the
SHMVAR function loses its reference to the underlying memory segment created by.
There are many reasons why a such a variable might lose its reference; some reasons
have to do with the internal implementation of the IDL interpreter and are not
obvious or visible to the IDL user.

Note
The SHMDEBUG debugging mode should be used for problem solving only, and
should not be part of production code.

Syntax

Result = SHMDEBUG(Enable)

Return Value

SHMDEBUG returns the previous setting of the debugging state.

Arguments

Enable

Set this argument equal to a non-zero value to enable debugging, or to zero to disable
debugging.

Keywords

None.

Examples

Create a memory segment, tie a variable to it, enable debugging, and then cause the
variable to lose the reference:

old_debug = SHMDEBUG(1) ; Enable debug mode
SHMMAP, 'A', 100 ; 100 element floating vector
z = SHMVAR('A') ; Variable tied to segment
z[0] = FINDGEN(100) ; Does not lose reference
IDL Reference Guide SHMDEBUG

1764
z = FINDGEN(100) ; Loses reference
% Variable released shared memory segment: A
% Released at: $MAIN$

The assignment z[0] = FINDGEN(100) explicitly uses subscripting to assign the
FINDGEN value to the array. Under normal circumstances, using subscripting in this
way on the left hand side of an assignment is inefficient and not recommended. In this
case, however, it has the desirable side effect of causing the variable Z to maintain its
connection to its existing underlying memory. In contrast, the second (normally more
desirable) assignment without the subscript causes IDL to allocate different memory
for the variable Z, with the side effect of losing the connection to the shared memory
segment.

Version History

Introduced: 5.6

See Also

SHMMAP, SHMUNMAP, SHMVAR
SHMDEBUG IDL Reference Guide

 1765
SHMMAP

The SHMMAP procedure maps anonymous shared memory, or local disk files, into
the memory address space of the currently executing IDL process. Mapped memory
segments are associated with an IDL array specified by the user as part of the call to
SHMMAP. The type and dimensions of the specified array determine the length of
the memory segment.

The array can be of any type except pointer, object reference, or string. (Structure
types are allowed as long as they do not contain any pointers, object references, or
strings.) By default, the array type is single-precision floating-point; other types can
be chosen by specifying the appropriate keyword.

Once such a memory segment exists, it can be tied to an actual IDL variable using the
SHMVAR function, or unmapped using SHMUNMAP.

Why Use Mapped Memory?

• Shared memory is often used for interprocess communication. Any process
that has a shared memory segment mapped into its address space is able to
“see” any changes made by any other process that has access to the same
segment. Shared memory is the default for SHMMAP, unless the FILENAME
keyword is specified.

• Memory-mapped files allow you to treat the contents of a local disk file as if it
were simple memory. Reads and writes to such memory are automatically
written to the file by the operating system using its standard virtual memory
mechanisms. Access to mapped files has the potential to be faster than
standard Input/Output using Read/Write system calls because it does not go
through the expensive system call interface, and because it does not require the
operating system to copy data between user and kernel memory buffers when
performing the I/O. However, it is not as general or flexible as the standard I/O
mechanisms, and is therefore not a replacement for them.

Warning
Unlike most IDL functionality, incorrect use of SHMMAP can corrupt or even
crash your IDL process. Proper use of these low level operating system features
requires systems programming experience, and is not recommended for those
without such experience. You should be familiar with the memory and file mapping
features of your operating system and the terminology used to describe such
features.
IDL Reference Guide SHMMAP

1766
SHMMAP uses the facilities of the underlying operating system. Any of several
alternatives may be used, as described in “Types Of Memory Segments” on
page 1773. SHMMAP uses the following rules, in the specified order, to determine
which method to use:

1. If the FILENAME keyword is present, SHMMAP creates a memory mapped
file segment.

2. If the SYSV keyword is used under UNIX, a System V shared memory
segment is created or attached. Use of the SYSV keyword under Windows will
cause an error to be issued.

3. If none of the above options are specified, SHMMAP creates an anonymous
shared memory segment. Under UNIX, this is done with Posix shared memory.
Under Windows, the CreateFileMapping() system call is used.

Syntax

SHMMAP [, SegmentName] [, D1, ..., D8] [, /BYTE] [, /COMPLEX]
[, /DCOMPLEX] [, /DESTROY_SEGMENT] [, DIMENSION=value] [, /DOUBLE]
[, FILENAME=value] [, /FLOAT] [, GET_NAME=value]
[, GET_OS_HANDLE=value] [, /INTEGER] [, /L64] [, /LONG] [, OFFSET=value]
[, OS_HANDLE=value] [, /PRIVATE] [, SIZE=value] [, /SYSV]
[, TEMPLATE=value] [, TYPE=value] [, /UINT] [, /UL64] [, /ULONG]

Arguments

SegmentName

A scalar string supplying the name by which IDL will refer to the shared memory
segment. This name is only used by IDL, and does not necessarily correspond to the
name used for the shared memory segment by the underlying operating system. See
the discussion of the OS_HANDLE keyword for more information on the underlying
operating system name. If SegmentName is not specified, IDL will generate a unique
name. The SegmentName can be obtained using the GET_NAME keyword.

Di

The dimensions of the result. The Di arguments can be either a single array
containing the dimensions or a sequence of scalar dimensions. Up to eight
dimensions can be specified.
SHMMAP IDL Reference Guide

 1767
Keywords

BYTE

Set this keyword to specify that the memory segment should be treated as a byte
array.

COMPLEX

Set this keyword to specify that the memory segment should be treated as a complex,
single-precision floating-point array.

DCOMPLEX

Set this keyword to specify that the memory segment should be treated as a complex,
double-precision floating-point array.

DESTROY_SEGMENT

The UNIX anonymous shared memory mechanisms (Posix shm_open() and System
V shmget()) create shared memory segments that are not removed from the
operating system kernel until explicitly destroyed (or the system is rebooted). At any
time, a client program can attach to such an existing segment, read or write to it, and
then detach. This can be convenient in situations where the need for the shared
memory is long lived, and programs that need it come and go. It also can create a
problem, however, in that shared memory segments that are not explicitly destroyed
can cause memory leaks in the operating system. Hence, it is important to properly
destroy such segments when they are no longer required.

For UNIX anonymous shared memory (Posix or System V), the default behavior is
for IDL to destroy any shared memory segments it created when the segments are
unmapped, and not to destroy segments it did not create. The DESTROY_SEGMENT
keyword is used to override this default: set DESTROY_SEGMENT to 1 (one) to
indicate that IDL should destroy the segment when it is unmapped, or 0 (zero) to
indicate that it should not destroy it. All such destruction occurs when the segment is
unmapped (via the SHMUNMAP procedure) and not during the call to SHMMAP.

The DESTROY_SEGMENT keyword is ignored under the Windows operating
system. Under UNIX, it is ignored for mapped files.

DIMENSION

Set this keyword equal to a vector of 1 to 8 elements specifying the dimensions of the
result. Setting this keyword is equivalent to specifying an array via the D argument.
IDL Reference Guide SHMMAP

1768
DOUBLE

Set this keyword to specify that the memory segment should be treated as a double-
precision floating-point array.

FILENAME

By default, SHMMAP maps anonymous shared memory. Set the FILENAME
keyword equal to a string containing the path name of a file to be mapped to create a
memory-mapped file. A shared mapped file can serve as shared memory between
unrelated processes. The primary difference between anonymous shared memory and
mapped files is that mapped files require a file of the specified size to exist in the
filesystem, whereas anonymous shared memory has no user-visible representation in
the filesystem.

By default, files are mapped as shared, meaning that all processes that map the file
will see any changes made. All changes are written back to the file by the operating
system and become permanent. You must have write access to the file in order to map
it as shared.

To change the default behavior, set the PRIVATE keyword. When a file is mapped
privately, changes made to the file are not written back to the file by the operating
system, and are not visible to any other processes. You do not need write access to a
file in order to map it privately — read access is sufficent.

Note
The non-private form of file mapping corresponds to the MAP_SHARED flag to the
UNIX mmap() function, or the PAGE_READWRITE to the Windows
CreateFileMapping() system call.

FLOAT

Set this keyword to specify that the memory segment should be treated as a single-
precision floating-point array.

GET_NAME

If SegmentName is not specified in a call to SHMMAP, IDL automatically generates a
name. Set this keyword equal to a named variable that will receive the name assigned
by IDL to the memory segment.
SHMMAP IDL Reference Guide

 1769
GET_OS_HANDLE

Set this keyword equal to a named variable that will receive the operating system
name (or handle) for the memory segment. The meaning of the operating system
handle depends on both the operating system and the type of memory segment used.
See the description of the OS_HANDLE keyword for details.

INTEGER

Set this keyword to specify that the memory segment should be treated as an integer
array.

L64

Set this keyword to specify that the memory segment should be treated as a 64-bit
integer array.

LONG

Set this keyword to specify that the memory segment should be treated as a longword
integer array.

OFFSET

If present and non-zero, this keyword specifies an offset (in bytes) from the start of
the shared memory segment or memory mapped file that will be used as the base
address for the IDL array associated with the memory segment.

Note
Most computer hardware is not able to access arbitrary data types at arbitrary
memory addresses. Data must be properly aligned for its type or the program will
crash with an alignment error (often called a bus error) when the data is accessed.
The specific rules differ between machines, but in many cases the address of a data
object must be evenly divisible by the size of that object. IDL will issue an error if
you specify an offset that is not valid for the array specified.

Note
The actual memory mapping primitives provided by the underlying operating
system require such offsets to be integer multiples of the virtual memory pagesize
(sometimes called the allocation granularity) for the system. This value is typically
a power of two such as 8K or 64K. In contrast, IDL allows arbitrary offsets as long
as they satisfy the alignment constraints of the data type. This is implemented by
mapping the page that contains the specified offset, and then adjusting the memory
address to point at the specified byte within that page. In rounding your offset
IDL Reference Guide SHMMAP

1770
request back to the nearest page boundary, IDL may map slightly more memory
than your request would seem to require, but never more than a single page.

OS_HANDLE

Set this keyword equal to the name (or handle) used by the underlying operating
system for the memory segment. If you do not specify the OS_HANDLE keyword,
SHMMAP will under some circumstances provide a default value. The specific
meaning and syntax of the OS_HANDLE depends on both the operating system and
the form of memory used. See the following sections for operating-system specific
behavior, and “Types Of Memory Segments” on page 1773 for behavior differences
based on the form of memory used.

Posix (UNIX) Shared Memory

Use the OS_HANDLE keyword to supply a string value containing the system global
name of the shared memory segment. Such names are expected to start with a slash
(/) character, and not to contain any other slash characters. You can think of this as
mimicking the syntax for a file in the root directory of the system, although no such
file is created. See your system documentation for the shm_open() system call for
specific details. If you do not supply the OS_HANDLE keyword, SHMMAP will
create one for you by prepending a slash character to the value given by the
SegmentName argument.

UNIX System V Shared Memory

Use the OS_HANDLE keyword to supply an integer value containing the system
global identifier of an existing shared memory segment to attach to the process. If you
do not supply the OS_HANDLE keyword, then SHMMAP creates a new memory
segment. The identifier for this segment is available via the GET_OS_HANDLE
keyword.

Windows Anonymous Shared Memory

Use the OS_HANDLE keyword to supply a global system name for the mapping
object underlying the anonymous shared memory. If the OS_HANDLE keyword is
not specified, SHMMAP uses the value of the SegmentName argument.

UNIX Memory Mapped Files

The OS_HANDLE keyword has no meaning for UNIX memory mapped files and is
quietly ignored.
SHMMAP IDL Reference Guide

 1771
Windows Memory Mapped Files

Use the OS_HANDLE keyword to supply a global system name for the mapping
object underlying the mapped file. Use of the OS_HANDLE will ensure that every
process accessing the shared file will see a coherent view of its contents, and is thus
recommended for Windows memory mapped files. However, if you do not supply the
OS_HANDLE handle keyword for a memory mapped file, no global name is passed
to the Windows operating system, and a unique mapping object for the file will be
created.

PRIVATE

Set this keyword to specify that a private file mapping is required. In a private file
mapping, any changes written to the mapped memory are visible only to the process
that makes them, and such changes are not written back to the file. This keyword is
ignored unless the FILENAME keyword is also present.

Mapping a file as shared requires that you have write access to the file, but a private
mapping requires only read access. Use PRIVATE to map files for which you do not
have write access, or when you want to ensure that the original file will not be altered
by your process.

Note
Due to limitations of the operating system, the PRIVATE keyword is not allowed
under the Windows 9x operating systems (Windows 95, Windows 98,
Windows ME). Windows NT and related systems do not have this limitation.

Note
Under UNIX, the private form of file mapping corresponds to the MAP_PRIVATE
flag to the mmap() system call. Under Windows, the non-private form corresponds
to the PAGE_WRITECOPY option to the Windows CreateFileMapping() system
call. When your process alters data within a page of privately mapped memory, the
operating system performs a copy on write operation in which the contents of that
page are copied to a new memory page visible only to your process. This private
memory usually comes from anonymous swap space or the system pagefile. Hence,
private mapped files require more system resources than shared mappings.

It is possible for some processes to use private mappings to a given file while others
use a public mapping to the same file. In such cases, the private mappings will see
changes made by the public processes up until the moment the private process itself
makes a change to the page. The pagesize granularity and timing issues between
IDL Reference Guide SHMMAP

1772
such processes can make such scenarios very difficult to control. RSI does not
recommend combining simultaneous shared and private mappings to the same file.

SIZE

Set this keyword equal to a size vector specifying the type and dimensions to be
associated with the memory segment. The format of a size vector is given in the
description of the SIZE function.

SYSV

Under UNIX, the default form of anonymous memory is Posix shared memory,
(shm_open() and shm_unlink()). Specify the SYSV keyword to use System V
shared memory (shmget(), shmctl(), and shmdt()) instead. On systems where it
is available, Posix shared memory is more flexible and has fewer limitations. System
V shared memory is available on all UNIX implementations, and serves as an
alternative when Posix memory does not exist, or when interfacing to exiting non-
IDL software that uses System V shared memory. See “Types Of Memory Segments”
on page 1773 for a full discussion.

TEMPLATE

Set this keyword equal to a variable of the type and dimensions to be associated with
the memory segment.

TYPE

Set this keyword to specify the type code for the memory segment. See the
description of the SIZE function for a list of IDL type codes.

UINT

Set this keyword to specify that the memory segment should be treated as a unsigned
integer array.

ULONG

Set this keyword to specify that the memory segment should be treated as a unsigned
longword integer array.

UL64

Set this keyword to specify that the memory segment should be treated as a unsigned
64-bit integer array.
SHMMAP IDL Reference Guide

 1773
Types Of Memory Segments

SHMMAP is a relatively direct interface to the shared memory and file mapping
primitives provided by the underlying operating system. The SHMMAP interface
attempts to minimize the differences between these primitives, and for simple shared
memory use, it may not be necessary to fully understand the underlying mechanisms.
For most purposes, however, it is necessary to understand the operating system
primitives in order to understand how to use SHMMAP properly.

UNIX

In modern UNIX systems, the mmap() system call forms the primary basis for both
file mapping and anonymous shared memory. The existence of System V shared
memory, which is an older form of anonymous shared memory, adds some
complexity to the situation.

UNIX Memory Mapped Files

To memory map a file under UNIX, you open the file using the open() system call,
and then map it using mmap(). Once the file is mapped, you can close the file, and
the mapping remains in place until explicitly unmapped, or until the process exits or
calls exec() to run a different program.

If more than one process maps a file at the same time using the MAP_SHARED flag to
mmap(), then those processes will be able to see each others’ changes. Hence,
memory mapped files are one form of shared memory. Although the requirement for
a scratch file large enough to satisfy the mapping is inconvenient, limitations in
System V shared memory have led many UNIX programmers to use memory mapped
files in this way.

UNIX System V Shared Memory

Anonymous shared memory has traditionally been implemented via an API
commonly referred to as System V IPC. The shmget() function is used to create a
shared memory segment. The caller does not name the segment. Instead, the
operating system assigns each such segment a unique integer ID when it is created.
Once a shared memory segment exists, the shmdt() function can be used to map it
into the address space of any process that knows the identifier. This segment persists
in the OS kernel until it is explicitly destroyed via the shmctl() function, or until
the system is rebooted. This is true even if there are no processes currently mapped to
the segment. This can be convenient in situations where the need for the shared
memory is long lived, and programs that need it come and go. It also can create a
problem, however, since shared memory segments that are not explicitly destroyed
IDL Reference Guide SHMMAP

1774
can cause memory leaks in the operating system. Hence, it is important to properly
destroy such segments when they are no longer required.

System V shared memory has been part of UNIX for a long time. It is available on all
UNIX platforms, and there is a large amount of existing code that uses it. There are,
however, some limitations on its utility:

• Many systems place extremely small limits on the size allowed for such
memory segments. These limits are often kernel parameters that can be
adjusted by the system administrator. The details are highly system dependent.
Consult your system documentation for details.

• The caller does not have the option of naming the shared memory segment.
Instead, the operating system assigns an arbitrary number, which means that
processes that want to map such a segment have to have a mechanism for
finding the correct identifier to use before they can proceed. This, in turn,
requires some additional form of interprocess communication.

RSI recommends the use of Posix shared memory instead of System V shared
memory for those platforms that support it and applications that can use it. Under
UNIX, SHMMAP defaults to Posix shared memory to implement anonymous shared
memory. To use System V shared memory, you must specify the SYSV keyword. See
the Examples section below for an example of using System V shared memory.

Posix Shared Memory

Posix shared memory is a newer alternative for anonymous shared memory. It is part
of the UNIX98 standard, and although not all current UNIX systems support it, it will
in time be available on all UNIX systems. Posix shared memory uses the
shm_open() and ftruncate() system calls to create a memory segment that can
be accessed via a file descriptor. This descriptor is then used with the mmap() system
call to map the memory segment in the usual manner. The primary difference
between this, and simply using mmap() on a scratch file to implement shared
memory is that no scratch file is required (the disk space comes from the system
swapspace). As with System V shared memory, Posix shared memory segments exist
in the operating system until explicitly destroyed (using the shm_unlink() system
call). Unlike System V shared memory, but like all the other forms, Posix shared
memory allows the caller to supply the name of the segment. This simplifies the
situation in which multiple processes want to map the same segment. One of them
creates it, and the others simply map it, all of them using the same name to reference
it.

Posix shared memory is the default for SHMMAP on all UNIX platforms — even
those that do not yet support it. (To use System V shared memory instead, you must
SHMMAP IDL Reference Guide

 1775
specify the SYSV keyword.) There are several reasons for making Posix shared
memory the default for all UNIX platforms:

• To remain UNIX compliant, all platforms will have to implement the UNIX98
standard. Most have, and the remainder are currently in the process of doing
so. We believe that Posix shared memory will be available on all UNIX
systems very soon.

• Having different defaults for different UNIX platforms would cause
unnecessary confusion; the confusion would only increase as platforms added
support for Posix shared memory, causing the platform’s SHMMAP default to
change with later IDL releases. Since in most cases you need to know the
underlying mechanism in use, the default should be easy to determine, and
should not change over time.

• In the long run, it is desirable for the best option to be the default.

Microsoft Windows

Under Microsoft Windows, the CreateFileMapping() system call forms the basis
for shared memory as well as memory mapped files. To map a file, you open the file
and then pass the handle for that file to CreateFileMapping(). To create a region
of anonymous mapped memory instead of a mapped file, you pass a special file
handle (0xffffffff) to CreateFileMapping(). In this case, the disk space used
to back the shared memory is taken from the system pagefile.
CreateFileMapping() accepts an optional parameter (lpname), which if present,
is used to give the resulting memory mapping object a system global name. If you
specify such a name, and a mapping object with that name already exists, you will
receive a handle to the existing mapping object. Otherwise, CreateFileMapping()
creates a new mapping object for the file. Hence, to create anonymous (no file) shared
memory between unrelated processes, IDL calls CreateFileMapping() with the
special 0xffffffff file handle, and specifies a global name for it.

A global name (supplied via the OS_HANDLE keyword) is the only name by which
an anonymous shared memory segment can be referenced within the system. Global
names are not required for memory mapped files, because each process can create a
separate mapping object and use it to refer to the same file. Although this does allow
the unrelated processes to see each others’ changes, their views of the file will not be
coherent (that is, identical). With coherent access, all processes see exactly the same
memory at exactly the same time because they are all mapping the same physical
page of memory. To get coherent access to a memory mapped file, every process
should specify the OS_HANDLE keyword to ensure that they use the same mapping
object. Coherence is only an issue when the contents of the file are altered; when
using read-only access to a mapped file, you need not be concerned with this issue.
IDL Reference Guide SHMMAP

1776
The Windows operating system automatically destroys a mapping object when the
last process with an open handle to it closes that handle. Destruction of the mapping
object may be the result of an explicit call to CloseHandle(), or may involve an
implicit close that happens when the process exits. This differs from the UNIX
behavior for anonymous shared memory, and consequently the benefits and
disadvantages are reversed. The advantage is that it is not possible to forget to destroy
a mapping object, and end up with the operating system holding memory that is no
longer useful, but which cannot be freed. On the other hand, you must ensure that at
least one open handle to the object is open at all times, or the system might free an
object that you intended to use again.

Note
Under Windows, when attaching to an existing memory object by providing the
global segment name, IDL is not able to verify that the memory segment returned
by the operating system is large enough to satisfy the IDL array specified to
SHMMAP for its type and size. If the segment is not large enough, the IDL program
will crash with an illegal memory access exception when it attempts to access
memory addresses beyond the end of the segment. Hence, the IDL user must ensure
that such pre-existing memory segments are long enough for the specified IDL
array.

Reference Counts And Memory Segment Lifecycle

You can see a list of all current memory segments created with SHMMAP by issuing
the statement

HELP,/SHARED_MEMORY

To access a current segment, it must be tied to an IDL variable using the SHMVAR
function. IDL maintains a reference count of the number of variables currently
accessing each memory segment, and does not allow a memory segment to be
removed from the IDL process as long as variables that reference it still exist.

SHMMAP will not allow you to create a new memory segment with the same
SegmentName as an existing segment. You should therefore be careful to pick unique
segment names. One way to ensure that segment names are unique is to not provide
the SegmentName argument when calling SHMMAP. In this case, SHMMAP will
automatically choose a unique name, which can be obtained using the GET_NAME
keyword.

The SHMUNMAP procedure is used to remove a memory segment from the IDL
session. In addition, it may remove the memory segment from the system. (Whether
the memory segment is removed from the system depends on the type of segment,
SHMMAP IDL Reference Guide

 1777
and on the arguments used with SHMMAP when the segment was initially attached.)
If no variables from the current IDL session are accessing the segment (that is, if the
IDL-maintained reference count is 0), the segment is removed immediately. If
variables in the current IDL session are still referencing the segment, the segment is
marked for removal when the last such variable drops its reference. Once SHMMAP
is called on a memory segment, no additional calls to SHMVAR are allowed for it
within the current IDL session; this means that a segment marked by SHMUNMAP
as UnmapPending cannot be used for new variables within the current IDL session.

Note
IDL has no way to determine whether a process other than itself is accessing a
shared memory segment. As a result, it is possible for IDL to destroy a memory
segment that is in use by another process. The specific details depend on the type of
memory segment, and the options used with SHMMAP when the segment was
loaded. When creating applications that use shared memory, you should ensure that
all applications that use the segment (be they instances of IDL or any other
application) communicate regarding their use of the shared memory and act in a
manner that avoids this pitfall.

Examples

Example 1

Create a shared memory segment of 1000000 double-precision data elements, and
then fill it with a DINDGEN ramp:

SHMMAP, 'MYSEG', /DOUBLE, 1000000
z = SHMVAR('MYSEG')
z[0] = DINDGEN(1000000)

Note
When using shared memory, using the explicit subscript of the variable (z, in this
case) maintains the variable’s connection with the shared memory segment. When
not using shared memory, assignment without subscripting is more efficient and is
recommended.

Example 2

Create the same shared memory segment as the previous example, but let IDL choose
the segment name:

SHMMAP, /DOUBLE, DIMENSION=[1000000], GET_NAME=segname
z = SHMVAR(segname)
IDL Reference Guide SHMMAP

1778
z[0] = DINDGEN(1000000)

Example 3

Create the same shared memory segment as the previous example, but use a
temporary file, mapped into IDL’s address space, instead of anonymous shared
memory. The file needs to be the correct length for the data we will be mapping onto
it. We satisfy this need while simultaneously initializing it with the DINDGEN vector
by writing the vector to the file. The use of the OS_HANDLE keyword improves
performance and correctness under Windows while being quietly ignored under
UNIX:

filename = FILEPATH('idl_scratch', /TMP)
OPENW, unit, filename, /GET_LUN
WRITEU, unit, DINDGEN(1000000)
CLOSE, unit
SHMMAP, /DOUBLE, DIMENSION=[1000000], GET_NAME=segname, $
FILENAME=filename, OS_HANDLE='idl_scratch'
z = SHMVAR(segname)

Example 4

Create an anonymous shared memory segment using UNIX System V shared
memory. Use of System V shared memory differs from the other methods in two
ways:

• The system identifier for the segment is a number chosen by the system instead
of a name selected by the user.

• With SYSV memory, you have to explicitly indicate whether the operation is a
create operation (no OS_HANDLE keyword) or merely an attach to an
existing segment (OS_HANDLE is present). The other methods create the
segment as needed, and will automatically attach to a memory segment with
the desired operating system handle if it already exists. The SHMMAP call
does not explicitly have to specify that the segment should be created.

In this example, we will use the type and size of the existing myvar variable to
determine the size of the memory:

SHMMAP, TEMPLATE=myvar, GET_NAME=segname, /SYSV, $
GET_OS_HANDLE=oshandle

In this case, the SYSV keyword forces the use of System V shared memory. The
absence of the OS_HANDLE keyword tells SHMMAP to create the segment, instead
of simply mapping an existing one. In a different IDL session running on the same
machine, if you knew the proper OS_HANDLE value for this segment, you could
attach to the segment created above as follows:
SHMMAP IDL Reference Guide

 1779
SHMMAP, TEMPLATE=myvar, GET_NAME=segname, /SYSV, $
OS_HANDLE=oshandle

In this case, the OS_HANDLE keyword tells SHMMAP the identifier of the memory
segment, causing it to attach to the existing segment instead of creating a new one.

Version History

Introduced: 5.6

See Also

SHMDEBUG, SHMUNMAP, SHMVAR
IDL Reference Guide SHMMAP

1780
SHMUNMAP

The SHMUNMAP procedure is used to remove a memory segment previously
created by SHMMAP from the IDL session. In addition, it may remove the memory
segment from the system. (Whether the memory segment is removed from the system
depends on the type of segment, and on the arguments used with SHMMAP when the
segment was initially attached.) If no variables from the current IDL session are
accessing the segment (that is, if the IDL-maintained reference count is 0), the
segment is removed immediately. If variables in the current IDL session are still
referencing the segment, the segment is marked for removal when the last such
variable drops its reference.

During this UnmapPending phase:

• The segment still exists in the system, so attempts to use SHMMAP to create a
new segment with the same SegmentName will fail.

• Additional calls to SHMVAR to attach new variables to this segment will fail.

Note
IDL has no way to determine whether a process other than itself is accessing a
shared memory segment. As a result, it is possible for IDL to destroy a memory
segment that is in use by another process. The specific details depend on the type of
memory segment, and the options used with SHMMAP when the segment was
loaded. When creating applications that use shared memory, you should ensure that
all applications that use the segment (be they instances of IDL or any other
application) communicate regarding their use of the shared memory and act in a
manner that avoids this pitfall.

Syntax

SHMUNMAP, SegmentName

Arguments

SegmentName

A scalar string containing the IDL name for the shared memory segment, as assigned
by SHMMAP.
SHMUNMAP IDL Reference Guide

 1781
Keywords

None.

Examples

To destroy a memory segment previously created by SHMMAP with the segment
name myseg:

SHMUNMAP, 'myseg'

Version History

Introduced: 5.6

See Also

SHMDEBUG, SHMMAP, SHMVAR
IDL Reference Guide SHMUNMAP

1782
SHMVAR

The SHMVAR function creates an IDL array variable that uses the memory from a
current mapped memory segment created by the SHMMAP procedure. Variables
created by SHMVAR are used in much the same way as any other IDL variable, and
provide the IDL user with the ability to alter the contents of anonymous shared
memory or memory mapped files.

By default, the variable created by SHMVAR is given the type and dimensions that
were specified to SHMMAP when the memory segment was created. However, this
default can be changed by SHMVAR via a variety of keywords as well as via the Di
arguments. The created array can be of any type except for pointer, object reference,
or string. Structure types are allowed as long as they do not contain any pointers,
object references, or strings.

Syntax

Result = SHMVAR(SegmentName [, D1, ..., D8] [, /BYTE] [, /COMPLEX]
[, /DCOMPLEX] [, DIMENSION=value] [, /DOUBLE] [, /FLOAT] [, /INTEGER]
[, /L64] [, /LONG] [, SIZE=value] [, TEMPLATE=value] [, TYPE=value] [, /UINT]
[, /UL64] [, /ULONG])

Return Value

An IDL array variable that uses memory from a the specified mapped memory
segment.

Arguments

SegmentName

A scalar string supplying the IDL name for the shared memory segment, as assigned
by SHMMAP.

Di

The dimensions of the result. The Di arguments can be either a single array
containing the dimensions or a sequence of scalar dimensions. Up to eight
dimensions can be specified. If no dimensions are specified, the parameters specified
to SHMMAP are used.
SHMVAR IDL Reference Guide

 1783
Keywords

BYTE

Set this keyword to specify that the memory segment should be treated as a byte
array.

COMPLEX

Set this keyword to specify that the memory segment should be treated as a complex,
single-precision floating-point array.

DCOMPLEX

Set this keyword to specify that the memory segment should be treated as a complex,
double-precision floating-point array.

DIMENSION

Set this keyword equal to a vector of 1 to 8 elements specifying the dimensions of the
result. This is equivalent to the array form of the Di plain arguments. If no dimensions
are specified, the parameters specified to SHMMAP are used.

DOUBLE

Set this keyword to specify that the memory segment should be treated as a double-
precision floating-point array.

FLOAT

Set this keyword to specify that the memory segment should be treated as a single-
precision floating-point array.

INTEGER

Set this keyword to specify that the memory segment should be treated as an integer
array.

L64

Set this keyword to specify that the memory segment should be treated as a 64-bit
integer array.
IDL Reference Guide SHMVAR

1784
LONG

Set this keyword to specify that the memory segment should be treated as a longword
integer array.

SIZE

Set this keyword equal to a size vector specifying the type and dimensions to be
associated with the memory segment. The format of a size vector is given in the
description of the SIZE function. If no dimensions are specified, the parameters
specified to SHMMAP are used.

TEMPLATE

Set this keyword equal to a variable of the type and dimensions to be associated with
the memory segment. If no dimensions are specified, the parameters specified to
SHMMAP are used.

TYPE

Set this keyword to specify the type code for the memory segment. See the
description of the SIZE function for a list of IDL type codes.

UINT

Set this keyword to specify that the memory segment should be treated as a unsigned
integer array.

ULONG

Set this keyword to specify that the memory segment should be treated as a unsigned
longword integer array.

UL64

Set this keyword to specify that the memory segment should be treated as a unsigned
64-bit integer array.

Examples

See the examples given for the SHMMAP procedure.

Version History

Introduced: 5.6
SHMVAR IDL Reference Guide

 1785
See Also

SHMDEBUG, SHMMAP, SHMUNMAP
IDL Reference Guide SHMVAR

1786
SHOW3

The SHOW3 procedure combines an image, a surface plot of the image data, and a
contour plot of the images data in a single tri-level display.

This routine is written in the IDL language. Its source code can be found in the file
show3.pro in the lib subdirectory of the IDL distribution.

Syntax

SHOW3, Image [, X, Y] [, /INTERP] [, E_CONTOUR=structure]
[, E_SURFACE=structure] [, SSCALE=scale]

Arguments

Image

The two-dimensional array to display.

X

A vector containing the X values of each column of Image. If the X argument is
omitted, columns have values 0, 1, ..., ncolumns-1.

Y

A vector containing the Y values of each row of Image. If the Y argument is omitted,
rows have values 0, 1, ..., nrows-1.

Keywords

INTERP

Set this keyword to use bilinear interpolation on the pixel display. This technique is
slightly slower, but for small images, it makes a better display.

E_CONTOUR

Set this keyword equal to an anonymous structure containing additional keyword
parameters that are passed to the CONTOUR procedure. Tag names in the structure
should be valid keyword arguments to CONTOUR, and the values associated with
each tag should be valid keyword values.
SHOW3 IDL Reference Guide

 1787
E_SURFACE

Set this keyword equal to an anonymous structure containing additional keyword
parameters that are passed to the SURFACE procedure. Tag names in the structure
should be valid keyword arguments to SURFACE, and the values associated with
each tag should be valid keyword values.

SSCALE

Reduction scale for surface. The default is 1. If this keyword is set to a value other
than 1, the array size is reduced by this factor for the surface display. That is, the
number of points used to draw the wire-mesh surface is reduced. If the array
dimensions are not an integral multiple of SSCALE, the image is reduced to the next
smaller multiple.

Examples

; Create a dataset:
A = BESELJ(SHIFT(DIST(30,20), 15, 10)/2.,0)

; Show it with default display:
SHOW3, A

; Specify X axis proportional to square root of values:
SHOW3, A, SQRT(FINDGEN(30))

; Label CONTOUR lines with double size characters, and include
;downhill tick marks:
SHOW3, A, E_CONTOUR={C_CHARSIZE:2, DOWN:1}

; Draw a surface with a skirt and scale Z axis from -2 to 2:
SHOW3, A, E_SURFACE={SKIRT:-1, ZRANGE:[-2,2]}

Version History

Introduced: Original

See Also

CONTOUR, ICONTOUR, ISURFACE, SURFACE
IDL Reference Guide SHOW3

1788
SHOWFONT

The SHOWFONT procedure displays a TrueType or vector-drawn font (from the file
hersh1.chr, located in the resource/fonts subdirectory of the IDL distribution)
on the current graphics device.

This routine is written in the IDL language. Its source code can be found in the file
showfont.pro in the lib subdirectory of the IDL distribution.

Syntax

SHOWFONT, Font, Name [, /ENCAPSULATED] [, /TT_FONT]

Arguments

Font

The index number of the font (may range from 3 to 29) or, if the TT_FONT keyword
is set, a string that contains the name of the TrueType font to display.

Name

A string that contains the text of a title to appear at the top of the font display.

Keywords

ENCAPSULATED

Set this keyword, if the current graphics device is “PS”, to make encapsulated
PostScript output.

TT_FONT

If this keyword is set, the specified font will be interpreted as a TrueType font.

Examples

To create a display of the Helvetica italic TrueType font on the screen:

SHOWFONT, 'Helvetica Italic', 'Helvetica Italic', /TT_FONT

To create a display of Font 3 for PostScript:

; Set output to PostScript:
SHOWFONT IDL Reference Guide

 1789
SET_PLOT, 'PS'

; Specify the output filename. If we didn’t specify this, the file
; would be saved as idl.ps by default:
DEVICE, FILENAME='font3.ps'

;Display font 3:
SHOWFONT, 3, 'Simplex Roman'

; Close the new PS file:
DEVICE, /CLOSE

Version History

Introduced: Pre 4.0

See Also

EFONT, PS_SHOW_FONTS
IDL Reference Guide SHOWFONT

1790
SIMPLEX

The SIMPLEX function uses the simplex method to solve linear programming
problems. Given a set of N independent variables Xi, where i = 0, ..., N, the simplex
method seeks to maximize the following function,

with the assumption that Xi ≥ 0. The Xi are further constrained by the following
equations:

where M = M1 + M2 + M3 is the total number of equations, and the constraint values
cj must all be positive.

To solve the above problem using the SIMPLEX function, the Z equation is rewritten
as a vector:

The constraint equations are rewritten as a matrix with N+1 columns and M rows,
where all of the b coefficients have had their sign reversed:

Note
The constraint matrix must be organized so that the coefficients for the less-than (<)
equations come first, followed by the coefficients of the greater-than (>) equations,
and then the coefficients of the equal (=) equations.

Z a1X1 a2X2 …aNXN+ +=

bj1X1 bj2X2 …bjNXN+ + cj≤ j 1 2 … M1,,,=

bj1X1 bj2X2 …bjNXN cj≥+ + j M1 1+ M1 2+, …, M1 M2+,=

bj1X1 bj2X2 …bjNXN cj=+ + j M1 M2 1+ + M1 M2 2+ +, …, M,=

Zequation a1 a2 …aN
=

Constraints

c1 b– 11 b– 12… b– 1N

c2 b– 21 b– 22… b– 2N

:

:

:

:

:

:

cM b– M1 b– M2… b– MN

=

SIMPLEX IDL Reference Guide

 1791
The SIMPLEX function is based on the routine simplx described in section 10.8 of
Numerical Recipes in C: The Art of Scientific Computing (Second Edition), published
by Cambridge University Press, and is used by permission.

Syntax

Result = SIMPLEX(Zequation, Constraints, M1, M2, M3
[, Tableau [, Izrov [, Iposv]]] [, /DOUBLE] [, EPS = value] [, STATUS = variable])

Return Value

The Result is a vector of N+1 elements containing the maximum Z value and the
values of the N independent X variables (the optimal feasible vector):

Arguments

Zequation

A vector containing the N coefficients of the Zequation to be maximized.

Constraints

An array of N+1 columns by M rows containing the constraint values and coefficients
for the constraint equations.

M1

An integer giving the number of less-than constraint equations contained in
Constraints. M1 may be zero, indicating that there are no less than constraints.

M2

An integer giving the number of greater-than constraint equations contained in
Constraints. M2 may be zero, indicating that there are no greater than constraints.

M3

An integer giving the number of equal-to constraint equations contained in
Constraints. M3 may be zero, indicating that there are no equal to constraints. The
total of M1 + M2 + M3 should equal M, the number of constraint equations.

Result Zmax X1 X2…XN
=

IDL Reference Guide SIMPLEX

1792
Tableau

Set this optional argument to a named variable in which to return the output array
from the simplex algorithm. For more detailed discussion about this argument, see
the write-up in section 10.8 of Numerical Recipes in C.

Izrov

Set this optional argument to a named variable in which to return the output izrov
variable from the simplex algorithm. For more detailed discussion about this
argument, see the write-up in section 10.8 of Numerical Recipes in C.

Iposv

Set this optional argument to a named variable in which to return the output iposv
variable from the simplex algorithm. For more detailed discussion about this
argument, see the write-up in section 10.8 of Numerical Recipes in C.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision result. Set DOUBLE to 0 to use single-precision for computations and to
return a single-precision result. The default is /DOUBLE if any of the inputs are
double-precision, otherwise the default is 0.

EPS

Set this keyword to a number close to machine accuracy, which is used to test for
convergence at each iteration. The default is 10–6.

STATUS

Set this keyword to a named variable to receive the status of the operation. Possible
status values are:

Value Description

0 Successful completion.

1 The objective function is unbounded.

Table 86: SIMPLEX Function Status Values
SIMPLEX IDL Reference Guide

 1793
Examples

The following example is taken from Numerical Recipes in C.

Find the Z value which maximizes the equation Z = X1 + X2 + 3 X3 - 0.5 X4, with the
following constraints:

To find the solution, enter the following code at the IDL command line:

; Set up the Zequation with the X coefficients.
Zequation = [1,1,3,-0.5]
; Set up the Constraints matrix.
Constraints = [$

[740, -1, 0, -2, 0], $
[0, 0, -2, 0, 7], $
[0.5, 0, -1, 1, -2], $
[9, -1, -1, -1, -1]]

; Number of less-than constraint equations.
m1 = 2
; Number of greater-than constraint equations.
m2 = 1
; Number of equal constraint equations.
m3 = 1
;
; Call the function.
result = SIMPLEX(Zequation, Constraints, m1, m2, m3)
;
; Print out the results.
PRINT, 'Maximum Z value is: ', result[0]
PRINT, 'X coefficients are: '
PRINT, result[1:*]

IDL prints:

2 No solution satisfies the given constraints.

3 The routine did not converge.

Value Description

Table 86: SIMPLEX Function Status Values (Continued)

X1 2X3 740≤+

2X2 7X4– 0≤

X2 X3– 2X4+ 0.5≥

X1 X2 X3 X4+ + + 9=
IDL Reference Guide SIMPLEX

1794
Maximum Z value is: 17.0250
X coefficients are:
 0.000000 3.32500 4.72500 0.950000

Therefore, the optimal feasible vector is X1 = 0.0, X2 = 3.325, X3 = 4.725, and
X4 = 0.95.

Version History

Introduced: 5.5

See Also

AMOEBA, DFPMIN, POWELL
SIMPLEX IDL Reference Guide

 1795
SIN

The periodic function SIN returns the trigonometric sine of X.

Syntax

Result = SIN(X)

Return Value

Returns the double-precision floating-point, complex or single-precision floating-
point value.

Arguments

X

The angle for which the sine is desired, specified in radians. If X is double-precision
floating or complex, the result is of the same type. All other types are converted to
single-precision floating-point and yield floating-point results. When applied to
complex numbers:

SIN(x) = (EXP(I*x) + EXP(-I*x))/(2*I)

where I is defined as COMPLEX(0, 1).

If input argument X is an array, the result has the same structure, with each element
containing the sine of the corresponding element of X.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
IDL Reference Guide SIN

1796
Examples

To find the sine of 0.5 radians and print the result, enter:

PRINT, SIN(0.5)

The following example plots the SIN function between 0 and 2π with 100 intervals:

X = 2*!PI/100 * FINDGEN(100)
PLOT, X, SIN(X)

Note
!PI is a read-only system variable that contains the single-precision value for π.

Version History

Introduced: Original

See Also

ASIN, SINH
SIN IDL Reference Guide

 1797
SINDGEN

The SINDGEN function returns a string array with the specified dimensions. Each
element of the array is set to the string representation of the value of its one-
dimensional subscript, using IDL’s default formatting rules.

Syntax

Result = SINDGEN(D1 [, ..., D8])

Return Value

Returns a string array of the specified dimensions.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Examples

To create S, a six-element string vector with each element set to the string value of its
subscript, enter:

S = SINDGEN(6)

Version History

Introduced: Original

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, L64INDGEN,
LINDGEN, UINDGEN, UL64INDGEN, ULINDGEN
IDL Reference Guide SINDGEN

1798
SINH

The SINH function returns the hyperbolic sine of X.

Syntax

Result = SINH(X)

Return Value

Returns the double-precision floating-point, complex or single-precision floating-
point value.

Arguments

X

The angle for which the hyperbolic sine is desired, specified in radians. If X is
double-precision floating or complex, the result is of the same type. All other types
are converted to single-precision floating-point and yield floating-point results. SINH
is defined as:

sinh x = (eu - e-u) / 2

If X is an array, the result has the same structure, with each element containing the
hyperbolic sine of the corresponding element of X.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
SINH IDL Reference Guide

 1799
Examples

To find the hyperbolic sine of each element in the array [.5, .2, .4] and print the result,
enter:

PRINT, SINH([.5, .2, .4])

To plot the SINH function between 0 and 2π with 100 intervals, enter:

X = 2*!PI/100 * FINDGEN(100)
PLOT, X, SINH(X)

Note
!PI is a read-only system variable that contains the single-precision value of π.

Version History

Introduced: Original

See Also

ASIN, SIN
IDL Reference Guide SINH

1800
SIZE

The SIZE function returns size and type information for its argument if no keywords
are set. If a keyword is set, SIZE returns the specified quantity.

Syntax

Result = SIZE(Expression [, /L64] [, /DIMENSIONS | , /FILE_LUN | ,
/N_DIMENSIONS | , /N_ELEMENTS | , /STRUCTURE | , /TNAME | , /TYPE])

Return Value

The returned vector is always of integer type. The first element is equal to the number
of dimensions of Expression. This value is zero if Expression is scalar or undefined.
The next elements contain the size of each dimension, one element per dimension
(none if Expression is scalar or undefined). After the dimension sizes, the last two
elements contain the type code (zero if undefined) and the number of elements in
Expression, respectively. The type codes are listed below.

IDL Type Codes and Names

The following table lists the IDL type codes and type names returned by the SIZE
function:

Type Code Type Name Data Type

0 UNDEFINED Undefined

1 BYTE Byte

2 INT Integer

3 LONG Longword integer

4 FLOAT Floating point

5 DOUBLE Double-precision floating

6 COMPLEX Complex floating

7 STRING String

8 STRUCT Structure

Table 87: IDL Type Codes and Names
SIZE IDL Reference Guide

 1801
Arguments

Expression

The expression for which size information is requested.

Keywords

With the exception of L64, the following keywords determine the return value of the
SIZE function and are mutually exclusive — specify at most one of the following.

DIMENSIONS

Set this keyword to return the dimensions of Expression. If Expression is scalar, the
result is a scalar containing a 0. For arrays, the result is an array containing the array
dimensions. The result is a 32-bit integer when possible, and 64-bit integer if the
number of elements in Expression requires it. Set L64 to force 64-bit integers to be
returned in all cases.If Expression is undefined, IDL reports eight dimensions.

FILE_LUN

Set this keyword to return the file unit to which Expression is associated, if it is an
IDL file variable, as created with the ASSOC function. If Expression is not a file
variable, 0 is returned (0 is not a valid file unit for ASSOC).

9 DCOMPLEX Double-precision complex

10 POINTER Pointer

11 OBJREF Object reference

12 UINT Unsigned Integer

13 ULONG Unsigned Longword Integer

14 LONG64 64-bit Integer

15 ULONG64 Unsigned 64-bit Integer

Type Code Type Name Data Type

Table 87: IDL Type Codes and Names (Continued)
IDL Reference Guide SIZE

1802
L64

By default, the result of SIZE is 32-bit integer when possible, and 64-bit integer if the
number of elements in Expression requires it. Set L64 to force 64-bit integers to be
returned in all cases. In addition to affecting the default result, L64 also affects the
output from the DIMENSIONS, N_ELEMENTS, and STRUCTURE keywords.

Note
Only 64-bit versions of IDL are capable of creating variables requiring 64-bit SIZE
output. Check the value of !VERSION.MEMORY_BITS to see if your IDL is 64-
bit or not.

N_DIMENSIONS

Set this keyword to return the number of dimension in Expression, if it is an array. If
Expression is scalar or undefined, 0 is returned.

N_ELEMENTS

Set this keyword to return the number of data elements in Expression. Setting this
keyword is equivalent to using the N_ELEMENTS function. The result will be 32-bit
integer when possible, and 64-bit integer if the number of elements in Expression
requires it. Set L64 to force 64-bit integers to be returned in all cases. If Expression is
undefined, 0 is returned.

STRUCTURE

Set this keyword to return all available information about Expression in a structure.

Note
Since the structure is a named structure, the size of its fields is fixed. The result is an
IDL_SIZE (32-bit) structure when possible, and an IDL_SIZE64 structure
otherwise. Set L64 to force an IDL_SIZE64 structure to be returned in all cases.

The following are descriptions of the fields in the returned structure:

Field Description

TYPE_NAME Name of IDL type of Expression.

TYPE Type code of Expression.

Table 88: Structure Fields
SIZE IDL Reference Guide

 1803
TNAME

Set this keyword to return the IDL type of Expression as a string. See “IDL Type
Codes and Names” on page 1800 for details.

TYPE

Set this keyword to return the IDL type code for Expression. See “IDL Type Codes
and Names” on page 1800 for details. For an example illustrating how to determine
the type code of an expression, see “Determining the Size/Type of an Array” in
Chapter 15 of the Building IDL Applications manual.

Examples

Print the size information for a 10 by 20 floating-point array by entering:

PRINT, SIZE(FINDGEN(10, 20))

IDL prints:

2 10 20 4 200

This IDL output indicates the array has 2 dimensions, equal to 10 and 20, a type code
of 4, and 200 elements total.

Similarly, to print only the number of dimensions of the same array:

PRINT, SIZE(FINDGEN(10, 20), /N_DIMENSIONS)

IDL prints:

2

FILE_LUN If Expression is an IDL file variable, as created with
the ASSOC function, the file unit to which it is
associated; otherwise, 0.

N_ELEMENTS Number of data elements in Expression.

N_DIMENSIONS If Expression is an array, the number of dimensions;
otherwise, Expression is 0.

DIMENSIONS An 8-element array containing the dimensions of
Expression.

Field Description

Table 88: Structure Fields (Continued)
IDL Reference Guide SIZE

1804
Version History

Introduced: Original
SIZE IDL Reference Guide

 1805
SKEWNESS

The SKEWNESS function computes the statistical skewness of an n-element vector.
Skewness determines whether a distribution is symmetric about its maximum.
Positive skewness indicates the distribution is skewed to the right, with a longer tail to
the right of the distribution maximum. Negative skewness indicates the distribution is
skewed to the left, with a longer tail to the left of the distribution maximum.

SKEWNESS calls the IDL function MOMENT.

Syntax

Result = SKEWNESS(X [, /DOUBLE] [, /NAN])

Return Value

Returns the floating point or double precision statistical skewness. If the variance of
the vector is zero, the skewness is not defined, and SKEWNESS returns
!VALUES.F_NAN as the result.

Arguments

X

A numeric vector.

Keywords

DOUBLE

Set this keyword to force computations to be done in double-precision arithmetic.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as missing
data. (See “Special Floating-Point Values” in Chapter 18 of the Building IDL
Applications manual for more information on IEEE floating-point values.)

Examples

; Define the n-element vector of sample data:
IDL Reference Guide SKEWNESS

1806
x = [65, 63, 67, 64, 68, 62, 70, 66, 68, 67, 69, 71, 66, 65, 70]
; Compute the skewness:
result = SKEWNESS(x)
PRINT, 'Skewness = ', result

IDL prints:

Skewness = -0.0942851

Version History

Introduced: 5.1

See Also

KURTOSIS, MEAN, MEANABSDEV, MOMENT, STDDEV, VARIANCE
SKEWNESS IDL Reference Guide

 1807
SKIP_LUN

The SKIP_LUN procedure reads data in an open file and moves the file pointer. It is
useful in situations where it is necessary to skip over a known amount of data in a file
without the requirement of having the data available in an IDL variable. SKIP_LUN
can skip over a fixed amount of data, specified in bytes or lines of text, or can skip
over the remainder of the input file from the current position to end of file. Since
SKIP_LUN actually performs an input operation to advance the file pointer, it is not
as efficient as POINT_LUN for skipping over a fixed number of bytes in a disk file.
For that reason, use of POINT_LUN is preferred when possible. SKIP_LUN is
especially useful in situations such as:

• Skipping over a fixed number of lines of text. Since lines of text can have
variable length, it can be difficult to use POINT_LUN to skip them.

• Skipping data from a file that is not a regular disk file (for example, data from
an internet socket).

Syntax

SKIP_LUN, FromUnit, [, Num] [, /EOF] [, /LINES]
[, /TRANSFER_COUNT=variable]

Arguments

FromUnit

An integer that specifies the file unit for the file in which the file pointer is to be
moved. Data in FromUnit is skipped, starting at the current position of the file
pointer. The file pointer is advanced as data is read and skipped. The file specified by
FromUnit must be open, and must not have been opened with the RAWIO keyword to
OPEN.

Num

The amount of data to skip. This value is specified in bytes, unless the LINES
keyword is specified, in which case it is taken to be the number of text lines. If Num is
not specified, SKIP_LUN acts as if the EOF keyword has been set, and skips all data
in FromUnit (the source file) from the current position of the file pointer to the end of
the file.
IDL Reference Guide SKIP_LUN

1808
If Num is specified and the source file comes to end of file before the specified
amount of data is skipped, SKIP_LUN issues an end-of-file error. The EOF keyword
alters this behavior.

Keywords

EOF

Set this keyword to ignore the value given by Num (if present) and instead skip all
data from the current position of the file pointer in FromUnit and the end of the file.

Note
If EOF is set, no end-of-file error is issued even if the amount of data skipped does
not match the amount specified by Num. The TRANSFER_COUNT keyword can
be used with EOF to determine how much data was skipped.

LINES

Set this keyword to indicate that the Num argument specifies the number of lines of
text to be skipped. By default, the Num argument specifies the number of bytes of
data to skip.

TRANSFER_COUNT

Set this keyword equal to a named variable that will contain the amount of data
skipped. If LINES is specified, this value is the number of lines of text. Otherwise, it
is the number of bytes. TRANSFER_COUNT is primarily useful in conjunction with
the EOF keyword. If EOF is not specified, TRANSFER_COUNT will be the same as
the value specified for Num.

Examples

Skip the next 8 lines of text from a file:

SKIP_LUN, FromUnit, 8, /LINES

Skip the remainder of the data in a file, and use the TRANSFER_COUNT keyword to
determine how much data was skipped:

SKIP_LUN, FromUnit, /EOF, TRANSFER_COUNT=n

Skip the remainder of the text lines in a file, and use the TRANSFER_COUNT
keyword to determine how many lines were skipped:

SKIP_LUN, FromUnit, /EOF, /LINES, TRANSFER_COUNT=n
SKIP_LUN IDL Reference Guide

 1809
Version History

Introduced: 5.6

See Also

CLOSE, COPY_LUN, EOF, FILE_COPY, FILE_LINK, FILE_MOVE, OPEN,
POINT_LUN, READ/READF, WRITEU
IDL Reference Guide SKIP_LUN

1810
SLICER3

The IDL SLICER3 is a widget-based application to visualize three-dimensional
datasets. This program supersedes the SLICER program.

This routine is written in the IDL language. Its source code can be found in the file
slicer3.pro in the lib subdirectory of the IDL distribution.

Note
See “The SLICER3 Graphical User Interface” on page 1812 for details on working
with volumetric data within this application.

Syntax

SLICER3 [, hData3D] [, DATA_NAMES=string/string_array] [, /DETACH]
[, GROUP=widget_id] [, /MODAL]

Arguments

hData3D

A pointer to a three-dimensional data array, or an array of pointers to multiple three-
dimensional arrays. If multiple arrays are specified, they all must have the same X, Y,
and Z dimensions. If hData3D is not specified, SLICER3 creates a 2 x 2 x 2 array of
byte data using the IDL BYTARR function. You can also load data interactively via
the File menu of the SLICER3 application (see “Examples” on page 1827 for
details).

Note
If data are loaded in this fashion, any data passed to SLICER3 via a pointer (or
pointers) is deleted, and the pointers become invalid.

Keywords

DATA_NAMES

Set this keyword equal to a string array of names for the data. The names appear on
the droplist widget for the current data. If the number of elements of DATA_NAMES
is less than the number of elements in hData3D then default names will be generated
for the unnamed data.
SLICER3 IDL Reference Guide

 1811
DETACH

Set this keyword to place the drawing area in a window that is detached from the
SLICER3 control panel. The drawing area can only be detached if SLICER3 is not
run as a modal application.

GROUP

Set this keyword equal to the Widget ID of an existing widget that serves as the
“group leader” for the SLICER3 graphical user interface. When a group leader is
destroyed, all widgets in the group are also destroyed. If SLICER3 is started from a
widget application, then GROUP should always be specified.

MODAL

Set this keyword to block user interaction with all other widgets (and block the
command line) until the SLICER3 exits. If SLICER3 is started from some other
widget-based application, then it is usually advisable to run SLICER3 with the
MODAL keyword set.

Note
SLICER3 modifies the current color table, as well as various elements of the
plotting system (i.e., the “!X”, “!Y”, “!Z”, and “!P” system variables). If the
MODAL keyword is set (recommended), then SLICER3 will, upon exit, restore
these system variables (and the color tables) to the values they had when SLICER3
was started.
IDL Reference Guide SLICER3

1812
The SLICER3 Graphical User Interface

The following options are available via SLICER3’s graphical user interface.

File Menu

Load

Select this menu option to choose a file containing a 3-D array (or arrays) to load into
SLICER3. The file must have been written in the format specified in the following
table. For each data array in the file, the following values must be included. Note that
the first six values are returned by the IDL SIZE function; see “Examples” on
page 1827 for an example of how to create a data file suitable for SLICER3 with just
a few IDL commands.

Figure 20: SLICER3 Graphical User Interface

Data item Data Type Number of
Bytes

Number of dimension in array.

Note - This is always 3 for valid SLICER3
data.)

long 4

Table 89: SLICER3 Data File Structure
SLICER3 IDL Reference Guide

 1813
If multiple arrays are present in the file, they must all have the same dimensions.

Note
Files saved by the “Save Subset” operation (see below) are suitable for input via the
“Load” operation.

Data files that are moved from one platform to another may not load as expected, due
to byte ordering differences. See the BYTEORDER and SWAP_ENDIAN for details.

Save/Save Subset

SLICER3 must be in BLOCK mode to for this option to be available.

Select this menu option to save a subset of the 3-D data enclosed in the current block
to the specified file. Subsets saved in this fashion are suitable for loading via the
“Load” menu option. If multiple 3-D arrays are available when this option is selected,
multiple subsets are saved to the file.

Size of first dimension. long 4

Size of second dimension. long 4

Size of third dimension. long 4

Data type (Must be type 1 through 5. See
“SIZE” on page 1800
for a list of data types.)

long 4

Total number of elements (dimX, dimY,
dimZ).

long 4

Number of characters in data name. (See
“STRLEN” on page 1905 for the easiest way
to determine this number.)

long 4

Data name byte strlen()

3-D data array. varies varies

Data item Data Type Number of
Bytes

Table 89: SLICER3 Data File Structure (Continued)
IDL Reference Guide SLICER3

1814
Save/Save Tiff Image

Select this menu option to save the contents of the current SLICER3 image window
as a TIFF image in the specified file. When running in 8-bit mode, a “Class P” palette
color TIFF file is created. In 24-bit mode, a “Class R” (interleaved by image) TIFF
file is created.

Quit

Select this menu option to exit SLICER3.

Tools Menu

Erase

Select this menu option to erase the display window and delete all the objects in the
display list.

Delete/...

As graphical objects are created, they are added to the display list. Select this menu
option to delete a specific object from the list. When an object is deleted, the screen is
redrawn with the remaining objects.

Colors/Reset Colors

Select this menu option to restore the original color scheme.

Colors/Differential Shading

Use this menu option to change the percentage of differential shading applied to the
X, Y, and Z slices.

Colors/Slice/Block

Use this menu option to launch the XLOADCT application to modify the colors used
for slices and blocks

Colors/Surface

Use this menu option to launch the XLOADCT application to modify the colors used
for isosurfaces.

Colors/Projection

Use this menu option to launch the XLOADCT application to modify the colors used
for projections.
SLICER3 IDL Reference Guide

 1815
Note
On some platforms, the selected colors may not become visible until after you exit
the “XLOADCT” application.

Options

Select this menu option to display a panel that allows you to set:

• The axis visibility.

• The wire-frame cube visibility.

• The display window size.

Main Draw Window

Operations available in the Main Draw Window are dependent on the mode selected
in the Mode pulldown menu. In general, when coordinate input is required from the
user, it is performed by clicking a mouse button on the “surface” of the wire-frame
cube that surrounds the data. This 3-D location is then used as the basis for whatever
input is needed. In most cases, the “front” side of the cube is used. In a few cases, the
coordinate input is on the “back” side of the cube.

Data Pulldown Menu

If multiple datasets are currently available in SLICER3, this menu allows you to
select which data will be displayed in the Main Draw Window. Slices, blocks, iso-
surfaces, etc. are created from the currently selected data. If only one dataset is
loaded, this menu is inactive.
IDL Reference Guide SLICER3

1816
Mode Pulldown Menu

This menu is used to select the current mode of operation.

Slice Mode

To display a slice, click and drag the left mouse button on the wire-frame cube. When
the button is released, a slice through the data will be drawn at that location.

Draw Radio Button

When in Draw mode, new slices will be merged into the current Z-buffer contents.

Expose Radio Button

When in Expose mode, new slices will be drawn in front of everything else.

Orthogonal Radio Button

When in Orthogonal mode, use the left mouse button in the main draw window to
position and draw an orthogonal slicing plane. Clicking the right mouse button in the
main draw window (or any mouse button in the small window) will toggle the slicing
plane orientation.

Figure 21: Mode Pulldown Menu
SLICER3 IDL Reference Guide

 1817
X/Y/Z Radio Buttons

• X: This sets the orthogonal slicing plane orientation to be perpendicular to the
X axis.

• Y: This sets the orthogonal slicing plane orientation to be perpendicular to the
Y axis.

• Z: This sets the orthogonal slicing plane orientation to be perpendicular to the
Z axis.

Oblique Radio Button

Clicking any mouse button in the small window will reset the oblique slicing plane to
its default orientation.

Normal Radio Button

When in this mode, click and drag the left mouse button in the big window to set the
surface normal for the oblique slicing plane.

Center Radio Button

When in this mode, click and drag the left mouse button in the big window to set the
center point for the surface normal.

Display Button

Clicking this button will cause an oblique slicing plane to be drawn.
IDL Reference Guide SLICER3

1818
Block Mode

When in Block mode, use the left mouse button in the main draw window to set the
location for the “purple” corner of the block. Use the right mouse button to locate the
opposite “blue” corner of the block. When in Block mode, the “Save Subset”
operation under the main “File” menu is available.

Add

When in this mode, the block will be “added” to the current Z-buffer contents.

Subtract

When in this mode, the block will be “subtracted” from the current Z-buffer contents.
Subtract mode is only effective when the block intersects some other object in the
display (such as an iso-surface).

Display Button

Clicking this button will cause the block to be drawn.

Figure 22: Block Mode
SLICER3 IDL Reference Guide

 1819
Surface Mode

An iso-surface is like a contour line on a contour map. On one side of the line, the
elevation is higher than the contour level, and on the other side of the line, the
elevation is lower than the contour level. An iso-surface, however, is a 3-D surface
that passes through the data such that the data values on one side of the surface are
higher than the threshold value, and on the other side of the surface, the data values
are lower than the threshold value.

When in Surface mode, a logarithmic histogram plot of the data is displayed in the
small draw window. Click and drag a mouse button on this plot to set the iso-surface
threshold value. This value is also shown in the text widget below the plot. The
threshold value may also be set by typing a new value in this text widget. The
histogram plot is affected by the current threshold settings. (See Threshold mode,
below).

Low

Selecting this mode will cause the iso-surface polygon facing to face towards the
lower data values. Usually, this is the mode to use when the iso-surface is desired to
surround high data values.

Figure 23: Surface Mode
IDL Reference Guide SLICER3

1820
High

Selecting this mode will cause the iso-surface polygon facing to face towards the
higher data values. Usually, this is the mode to use when the iso-surface is desired to
surround low data values.

Shading pulldown menu

Iso-surfaces are normally rendered with light-source shading. If multiple datasets are
currently loaded, then this menu allows the selection of a different 3-D array for the
source of the iso-surface shading values. If only one dataset is currently loaded, then
this menu is inactive.

Display Button

Clicking this button will cause the iso-surface to be created and drawn. Iso-surfaces
often consist of tens of thousands of polygons, and can sometimes take considerable
time to create and render.

Projection Mode

A “voxel” projection of a 3-D array is the projection of the data values within that
array onto a viewing plane. This is similar to taking an X-ray image of a 3-D object.

Max

Select this mode for a Maximum intensity projection.

Figure 24: Projection Mode
SLICER3 IDL Reference Guide

 1821
Avg

Select this mode for an Average intensity projection.

Low

Select this mode for a Low resolution projection.

Med

Select this mode for a Medium resolution projection.

High

Select this mode for a High resolution projection.

Depth Queue % Slider

Use the slider to set the depth queue percent. A value of 50, for example, indicates
that the farthest part of the projection will be 50% as bright as the closest part of the
projection.

Display Button

Clicking this button will cause the projection to be calculated and drawn. Projections
can sometimes take considerable time to display. Higher resolution projections take
more computation time.
IDL Reference Guide SLICER3

1822
Threshold Mode

When in Threshold mode, a logarithmic histogram plot of the data is displayed in the
small draw window. Click and drag the left mouse button on this plot to set the
minimum and maximum threshold values. To expand a narrow range of data values
into the full range of available colors, set the threshold range before displaying slices,
blocks, or projections. The threshold settings also affect the histogram plot in
“Surface” mode. The minimum and maximum threshold values are also shown in the
text widgets below the histogram plot.

Click and drag the right mouse button on the histogram plot to set the transparency
threshold. Portions of any slice, block, or projection that are less than the
transparency value are not drawn (clear). Iso-surfaces are not affected by the
transparency threshold. The transparency threshold value is also shown in a text
widget below the histogram plot.

Min

In this text widget, a minimum threshold value can be entered.

Max

In this text widget, a maximum threshold value can be entered.

Transp.

In this text widget, a transparency threshold value can be entered.

Figure 25: Threshold Mode
SLICER3 IDL Reference Guide

 1823
Profile Mode

In Profile mode, a plot is displayed showing the data values along a line. This line is
also shown superimposed on the data in the main draw window. The bottom of the
plot corresponds to the “purple” end of the line, and the top of the plot corresponds to
the “blue” end of the line.

Orthogonal

Click and drag the left mouse button to position the profile line, based upon a point
on the “front” faces of the wire-frame cube. Click and drag the right mouse button to
position the profile line, based upon a point on the “back” faces of the wire-frame
cube. As the profile line is moved, The profile plot is dynamically updated.

Oblique

Click and drag the left mouse button to position the “purple” end of the profile line on
one of the “front” faces of the wire-frame cube. Click and drag the right mouse button
to position the “blue” end of the profile line on one of the “back” faces of the wire-
frame cube. As the profile line is moved, The profile plot is dynamically updated.

Figure 26: Profile Mode
IDL Reference Guide SLICER3

1824
Probe Mode

In Probe mode, click and drag a mouse button over an object in the main draw
window. The actual X-Y-Z location within the data volume is displayed in the three
text widgets. Also, the data value at that 3-D location is displayed in the status
window, above the main draw window. If the cursor is inside the wire-frame cube, but
not on any object, then the status window displays “No data value”, and the three text
widgets are empty. If the cursor is outside the wire-frame cube, then the status
window and text widgets are empty.

X

Use this text widget to enter the X coordinate for the probe.

Y

Use this text widget to enter the Y coordinate for the probe.

Z

Use this text widget to enter the Z coordinate for the probe.

Figure 27: Probe Mode
SLICER3 IDL Reference Guide

 1825
View Mode

In view mode, a small window shows the orientation of the data cube in the current
view. As view parameters are changed, this window is dynamically updated. The
main draw window is then updated when the user clicks on “Display”, or exits View
mode.

Display

Clicking on this button will cause the objects in the main view window to be drawn in
the new view. If any view parameters have been changed since the last time the main
view was updated, the main view will be automatically redrawn when the user exits
View mode.

1st Rotation

Use this slider to set the angle of the first view rotation (in degrees). The droplist
widget adjacent to the slider indicates which axis this rotation is about.

2nd Rotation

Use this slider to set the angle of the second view rotation (in degrees). The droplist
widget adjacent to the slider indicates which axis this rotation is about.

Figure 28: View Mode
IDL Reference Guide SLICER3

1826
Zoom % Slider

Use this slider to set the zoom factor percent. Depending upon the view rotations,
SLICER3 may override this setting to ensure that all eight corners of the data cube
are within the window.

Z % Slider

Use this slider to set a scale factor for the Z axis (to compensate for the data’s aspect
ratio).

Operational Details

The SLICER3 procedure has the following side effects:

• SLICER3 sets the position for the light source and enables back-facing
polygons to be drawn (see the IDL “SET_SHADING” command).

• SLICER3 overwrites the existing contents of the Z-buffer. Upon exiting
SLICER3, the Z-buffer contents are the same as what was last displayed by
SLICER3.

• On 24-bit displays, SLICER3 sets the device to non-decomposed color mode
(DEVICE, DECOMPOSED=0).

• SLICER3 breaks the color table into 6 “bands”, based upon the number of
available colors (where max_color=!D.N_COLORS on 8-bit displays, and
max_color=256 on 24-bit displays and nColor = (max_color - 9) /
5):

Band Start
index

Band End
index

Used For

0 nColor-1 X Slices.

nColor (2*nColor)-1 Y Slices.

2*nColor (3*nColor)-1 Z Slices.

3*nColor (4*nColor)-1 Iso-surfaces

4*nColor (5*nColor)-1 Projections

Table 90: SLICER3 Band Start/End
SLICER3 IDL Reference Guide

 1827
Annotation colors are the last “band”, and they are set up as shown in the table:

On 24-bit displays, you can often improve performance by running SLICER3 in 8-bit
mode. This can be accomplished (on some platforms) by entering the following
command at the start of the IDL session (before any windows are created):

Device, Pseudo_Color=8

Examples

The following IDL commands open a data file from the IDL distribution and load it
into SLICER3:

; Choose a data file:
file=FILEPATH('head.dat', SUBDIR=['examples', 'data'])

; Open the data file:
OPENR, UNIT, file, /GET_LUN

; Create an array to hold the data:
data = BYTARR(80, 100, 57, /NOZERO)

; Read the data into the array:
READU, UNIT, data

; Close the data file:
CLOSE, UNIT

Color index Color

max_color - 1 White

max_color - 2 Yellow

max_color - 3 Cyan

max_color - 4 Purple

max_color - 5 Red

max_color - 6 Green

max_color - 7 Blue

max_color - 8 Black

Table 91: SLICER3 Color Bands
IDL Reference Guide SLICER3

1828
; Create a pointer to the data array:
hData = PTR_NEW(data, /NO_COPY)

; Load the data into SLICER3:
SLICER3, hdata, DATA_NAMES='Dave'

Note
If data are loaded via the File menu after SLICER3 is launched with a pointer
argument (as shown above), the pointer becomes invalid. You can use an IDL
statement like the following to “clean up” after calling SLICER3 in this fashion:

if PTR_VALID(hdata) then PTR_FREE, hdata

Because we did not launch SLICER3 with the MODAL keyword, the last contents of
the main draw window still reside in IDL’s Z-buffer. To retrieve this image after
exiting SLICER3, use the following IDL statements:

; Save the current graphics device:
current_device = !D.Name

; Change to the Z-buffer device:
SET_PLOT, 'Z'

; Read the image from the Z-buffer:
image_buffer = TVRD()

; Return to the original graphics device:
SET_PLOT, current_device

; Display the image:
TV, image_buffer

The following IDL commands manually create a data save file suitable for dynamic
loading into SLICER3. Note that if you load data into SLICER3 as shown above, you
can also create save files by switching to BLOCK mode and using the Save Subset
menu option.

; Store some 3-D data in a variable called data_1:
data_1 = INDGEN(20,30,40)

; Store some 3-D data in a variable called data_2:
data_2 = FINDGEN(20,30,40)

; Define the names for the datasets. Their names will appear in the
; "Data" pulldown menu in SLICER3:
data_1_name ='Test Data 1'
data_2_name ='Data 2'
SLICER3 IDL Reference Guide

 1829
; Select a data file name:
dataFile = PICKFILE()

; Write the file:
GET_LUN, lun
OPENW, lun, dataFile
WRITEU, lun, SIZE(data_1)
WRITEU, lun, STRLEN(data_1_name)
WRITEU, lun, BYTE(data_1_name)
WRITEU, lun, data_1
WRITEU, lun, SIZE(data_2)
WRITEU, lun, STRLEN(data_2_name)
WRITEU, lun, BYTE(data_2_name)
WRITEU, lun, data_2
CLOSE, lun
FREE_LUN, lun

Version History

Introduced: 5.0

See Also

GRID3, EXTRACT_SLICE, IVOLUME, SHADE_VOLUME, XVOLUME
IDL Reference Guide SLICER3

1830
SLIDE_IMAGE

The SLIDE_IMAGE procedure creates a scrolling graphics window for examining
large images. By default, 2 draw widgets are used. The draw widget on the left shows
a reduced version of the complete image, while the draw widget on the right displays
the actual image with scrollbars that allow sliding the visible window.

This routine is written in the IDL language. Its source code can be found in the file
slide_image.pro in the lib subdirectory of the IDL distribution.

Syntax

SLIDE_IMAGE [, Image] [, /BLOCK] [, CONGRID=0]
[, FULL_WINDOW=variable] [, GROUP=widget_id] [, /ORDER] [, /REGISTER]
[, RETAIN={0 | 1 | 2}] [, SLIDE_WINDOW=variable] [, SHOW_FULL=0]
[, TITLE=string] [, TOP_ID=variable] [, XSIZE=width] [, XVISIBLE=width]
[, YSIZE=height] [, YVISIBLE=height]

Arguments

Image

A 2-D image array to be displayed. If this argument is not specified, no image is
displayed. The FULL_WINDOW and SCROLL_WINDOW keywords can be used to
obtain the window numbers of the two draw widgets so they can be drawn into at a
later time.

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting BLOCK=1 will cause all
widget applications to block, not just this application. For more information, see the
documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have
SLIDE_IMAGE block, any earlier calls to XMANAGER must have been called
SLIDE_IMAGE IDL Reference Guide

 1831
with the NO_BLOCK keyword. See the documentation for the NO_BLOCK
keyword to XMANAGER for an example.

CONGRID

Normally, the image is processed with the CONGRID procedure before it is written
to the fully visible window on the left. Specifying CONGIRD=0 will force the image
to be drawn as is.

FULL_WINDOW

Set this keyword to a named variable that will contain the IDL window number of the
fully visible window. This window number can be used with the WSET procedure to
draw to the scrolling window at a later point.

GROUP

Set this keyword to the widget ID of the widget that calls SLIDE_IMAGE. If set, the
death of the caller results in the death of SLIDE_IMAGE.

ORDER

This keyword is passed directly to the TV procedure to control the order in which the
images are drawn. Usually, images are drawn from the bottom up. Set this keyword to
a non-zero value to draw images from the top down.

REGISTER

Set this keyword to create a “Done” button for SLIDE_IMAGE and register the
widgets with the XMANAGER procedure.

The basic widgets used in this procedure do not generate widget events, so it is not
necessary to process events in an event loop. The default is therefore to simply create
the widgets and return. Hence, when REGISTER is not set, SLIDE_IMAGE can be
displayed and the user can still type commands at the IDL command prompt.

RETAIN

This keyword is passed directly to the WIDGET_DRAW function. RETAIN specifies
how backing store should be handled for the window. Valid values are:

• 0 — Specifies no backing store. In this case, it is recommended that the
REGISTER keyword be set so that expose and scroll events are handled.
IDL Reference Guide SLIDE_IMAGE

1832
• 1 — Requests that the server or window system provide backing store. This is
the default if RETAIN is not specified.

• 2 — Specifies that IDL provide backing store directly.

See “Backing Store” on page 3824 for details.

SLIDE_WINDOW

Set this keyword to a named variable that will contain the IDL window number of the
sliding window. This window number can be used with the WSET procedure to draw
to the scrolling window at a later time.

SHOW_FULL

Set this keyword to zero to show the entire image at full resolution in one scrolling
graphics window. By default, SHOW_FULL is set, displaying two draw widgets.

Note
On Windows platforms only, using TVRD to return the array size of the displayed
image will cause the returned array to be off by the size of the frame (one pixel per
side). To return the dimensions of the original image, you must modify the
slide_image.pro library routine so that the FRAME keyword is not used with
SHOW_FULL.

TITLE

Set this keyword to the title to be used for the SLIDE_IMAGE widget. If this
keyword is not specified, “Slide Image” is used.

TOP_ID

Set this keyword to a named variable that will contain the top widget ID of the
SLIDE_IMAGE hierarchy. This ID can be used to kill the hierarchy as shown below:

SLIDE_IMAGE, TOP_ID=base, ...
WIDGET_CONTROL, /DESTROY, base

XSIZE

Set this keyword to the maximum width of the image that can be displayed by the
scrolling window. This keyword should not be confused with the visible size of the
image, controlled by the XVISIBLE keyword. If XSIZE is not specified, the width of
Image is used. If Image is not specified, 256 is used.
SLIDE_IMAGE IDL Reference Guide

 1833
XVISIBLE

Set this keyword to the width of the viewport on the scrolling window. If this
keyword is not specified, 256 is used.

YSIZE

Set this keyword to the maximum height of the image that can be displayed by the
scrolling window. This keyword should not be confused with the visible size of the
image, controlled by the YVISIBLE keyword. If YSIZE is not present the height of
Image is used. If Image is not specified, 256 is used.

YVISIBLE

Set this keyword to the height of the viewport on the scrolling window. If this
keyword is not present, 256 is used.

Examples

Open an image from the IDL distribution and load it into SLIDE_IMAGE:

; Create a variable to hold the image:
image = BYTARR(768,512)

OPENR, unit, FILEPATH('nyny.dat', SUBDIR=['examples','data']),
/GET_LUN
READU, unit, image
CLOSE, unit

; Scale the image into byte range of the display:
image = BYTSCL(image)

; Display the image:
SLIDE_IMAGE, image

Version History

Introduced: Pre 4.0

See Also

IIMAGE, TV, TVSCL, WIDGET_DRAW, WINDOW
IDL Reference Guide SLIDE_IMAGE

1834
SMOOTH

The SMOOTH function returns a copy of Array smoothed with a boxcar average of
the specified width. The result has the same type and dimensions as Array. The
algorithm used by SMOOTH is:

where N is the number of elements in A.

Syntax

Result = SMOOTH(Array, Width [, /EDGE_TRUNCATE] [, MISSING=value]
[, /NAN])

Return Value

Returns the smoothed array, which has the same dimensions as the input array.

Arguments

Array

The array to be smoothed. Array can have any number of dimensions.

Width

The width of the smoothing window. Width can either be a scalar or a vector with
length equal to the number of dimensions of Array. If Width is a scalar then the same
width is applied for each dimension that has length greater than 1 (dimensions of
length 1 are skipped). If Width is a vector, then each element of Width is used to
specify the smoothing width for each dimension of Array. Values for Width must be
smaller than the corresponding Array dimension. If a Width value is even, then
Width+1 will be used instead. The value of Width does not affect the running time of
SMOOTH to a great extent.

Ri

1
w
---- Ai j w 2⁄–+ i,

j 0=

w 1–

∑
w 1–()

2
------------------ ... N w 1+()

2
------------------–, ,=

Ai otherwise,








=

SMOOTH IDL Reference Guide

 1835
Note
A Width value of zero or 1 implies no smoothing. However, if the NAN keyword is
set, then any NaN values within the Array will be treated as missing data and will be
replaced.

Tip
For a multi-dimensional array, set widths to 1 within the Width vector for
dimensions that you don't want smoothed.

Keywords

EDGE_TRUNCATE

Set this keyword to apply the smoothing function to all points. If the neighborhood
around a point includes a point outside the array, the nearest edge point is used to
compute the smoothed result. If EDGE_TRUNCATE is not set, the end points are
copied from the original array to the result with no smoothing.

For example, when smoothing an n-element vector with a three point wide smoothing
window, the first point of the result R0 is equal to A0 if EDGE_TRUNCATE is not
set, but is equal to (A0+A0+A1)/3 if the keyword is set. In the same manner, point
Rn-1 is set to An-1 if EDGE_TRUNCATE is not set, or to (An-2+An-1+An-1)/3 if it is.

Points not within a distance of Width/2 from an edge are not affected by this keyword.

Note
Normally, two-dimensional floating-point arrays are smoothed in one pass. If both
the EDGE_TRUNCATE and NAN keywords are specified for a two-dimensional
array, the result is obtained in two passes, one for each dimension. Therefore, the
results may differ slightly when both the EDGE_TRUNCATE and NAN keywords
are set.

MISSING

The value to return for elements that contain no valid points within the kernel. The
default is the IEEE floating-point value NaN. This keyword is only used if the NAN
keyword is set.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. (See “Special Floating-Point Values” in Chapter 18
IDL Reference Guide SMOOTH

1836
of the Building IDL Applications manual for more information on IEEE floating-
point values.) Elements with the value NaN are treated as missing data, and are
ignored when computing the smooth value for neighboring elements. In the Result,
missing elements are replaced by the smoothed value of all other valid points within
the smoothing window. If all points within the window are missing, then the result at
that point is given by the MISSING keyword.

Note
SMOOTH should never be called without the NAN keyword if the input array may
possibly contain NaN values.

Examples

Create and display a simple image by entering:

 WINDOW, XSIZE=800, YSIZE=400
 D = SIN(DIST(256)/3)
 TVSCL, D

Now display the same dataset smoothed with a width of 9 in each dimension by
entering:

 TVSCL, SMOOTH(D, 9), 256, 0

Now smooth only in the vertical direction with a width of 15:

 TVSCL, SMOOTH(D, [1, 15]), 512, 0

Version History

Introduced: Original

See Also

DIGITAL_FILTER, LEEFILT, MEDIAN, TS_DIFF, TS_FCAST, TS_SMOOTH
SMOOTH IDL Reference Guide

 1837
SOBEL

The SOBEL function returns an approximation to the Sobel edge enhancement
operator for images,

where (j, k) are the coordinates of each pixel Fjk in the Image. This is equivalent to a
convolution using the masks,

All of the edge points in the result are set to zero.

Syntax

Result = SOBEL(Image)

Return Value

SOBEL returns a two-dimensional array of the same size as Image. If Image is of
type byte or integer then the result is of integer type, otherwise the result is of the
same type as Image.

Note
To avoid overflow for integer types, the computation is done using the next larger
signed type and the result is transformed back to the correct type. Values larger than
the maximum for that integer type are truncated. For example, for integers the

Gjk Gx Gy+=

GX Fj 1 k 1+,+ 2Fj 1+ k, Fj 1 k 1–,+ Fj 1– k 1+, 2Fj 1– k, Fj 1– k 1–,+ +()–++=

GY Fj 1– k 1–, 2Fj k 1–, Fj 1 k 1–,+ Fj 1– k 1+, 2Fj k 1+, Fj 1 k 1+,++ +()–++=

1– 0 1

2– 0 2

1– 0 1
X mask =

1 2 1

0 0 0

1– 2– 1–
Y mask =
IDL Reference Guide SOBEL

1838
function is computed using type long, and on output, values larger than 32767 are
set equal to 32767.

Arguments

Image

The two-dimensional array containing the image to which edge enhancement is
applied.

Keywords

None.

Examples

If the variable myimage contains a two-dimensional image array, a Sobel sharpened
version of myimage can be displayed with the command:

TVSCL, SOBEL(myimage)

Version History

Introduced: Original

See Also

ROBERTS
SOBEL IDL Reference Guide

 1839
SOCKET

The SOCKET procedure, supported on UNIX and Microsoft Windows platforms,
opens a client-side TCP/IP Internet socket as an IDL file unit. Such files can be used
in the standard manner with any of IDL’s Input/Output routines.

Tip
RSI recommends that you don’t use the EOF procedure as a way to check to see if a
socket is empty. It is recommended that you structure your communication across
the socket so that using EOF is not necessary to know when the communication is
complete.

Syntax

SOCKET, Unit, Host, Port [, CONNECT_TIMEOUT=value] [, ERROR=variable]
[, /GET_LUN] [, /RAWIO] [, READ_TIMEOUT=value] [, /SWAP_ENDIAN]
[, /SWAP_IF_BIG_ENDIAN] [, /SWAP_IF_LITTLE_ENDIAN] [, WIDTH=value]
[, WRITE_TIMEOUT=value]

UNIX-Only Keywords: [, /STDIO]

Arguments

Unit

The unit number to associate with the opened socket.

Host

The name of the host to which the socket is connected. This can be either a standard
Internet host name (e.g. ftp.RSInc.com) or a dot-separated numeric address (e.g.
192.5.156.21).

Port

The port to which the socket is connected on the remote machine. If this is a well-
known port (as contained in the /etc/services file on a UNIX host), then you can
specify its name (e.g. daytime); otherwise, specify a number.
IDL Reference Guide SOCKET

1840
Keywords

CONNECT_TIMEOUT

Set this keyword to the number of seconds to wait before giving up and issuing an
error to shorten the connect timeout from the system-supplied default. Most experts
recommend that you not specify an explicit timeout, and instead use your operating
system defaults.

Note
Although you can use CONNECT_TIMEOUT to shorten the timeout, you cannot
increase it past the system-supplied default.

ERROR

A named variable in which to place the error status. If an error occurs in the attempt
to open File, IDL normally takes the error handling action defined by the
ON_ERROR and/or ON_IOERROR procedures. SOCKET always returns to the
caller without generating an error message when ERROR is present. A nonzero error
status indicates that an error occurred. The error message can then be found in the
system variable !ERROR_STATE.MSG.

GET_LUN

Set this keyword to use the GET_LUN procedure to set the value of Unit before the
file is opened. Instead of using the two statements:

GET_LUN, Unit
OPENR, Unit, 'data.dat'

you can use the single statement:

OPENR, Unit, 'data.dat', /GET LUN

RAWIO

Set this keyword to disable all use of the standard operating system I/O for the file, in
favor of direct calls to the operating system. This allows direct access to devices, such
as tape drives, that are difficult or impossible to use effectively through the standard
I/O. Using this keyword has the following implications:

• No formatted or associated (ASSOC) I/O is allowed on the file. Only READU
and WRITEU are allowed.
SOCKET IDL Reference Guide

 1841
• Normally, attempting to read more data than is available from a file causes the
unfilled space to be set to zero and an error to be issued. This does not happen
with files opened with RAWIO. When using RAWIO, the programmer must
check the transfer count, either via the TRANSFER_COUNT keywords to
READU and WRITEU, or the FSTAT function.

• The EOF and POINT_LUN functions cannot be used with a file opened with
RAWIO.

• Each call to READU or WRITEU maps directly to UNIX read(2) and write(2)
system calls. The programmer must read the UNIX system documentation for
these calls and documentation on the target device to determine if there are any
special rules for I/O to that device. For example, the size of data that can be
transferred to many cartridge tape drives is often forced to be a multiple of 512
bytes.

READ_TIMEOUT

Set this keyword to the number of seconds to wait for data to arrive before giving up
and issuing an error. By default, IDL blocks indefinitely until the data arrives.
Typically, this option is unnecessary on a local network, but it is useful with networks
that are slow or unreliable.

STDIO (UNIX Only)

Under UNIX, forces the file to be opened via the standard C I/O library (stdio) rather
than any other more native OS API that might usually be used. This is primarily of
interest to those who intend to access the file from external code, and is not necessary
for most uses.

Note
Under Windows, the STDIO feature is not possible. Requesting it causes IDL to
throw an error.

SWAP_ENDIAN

Set this keyword to swap byte ordering for multi-byte data when performing binary
I/O on the specified file. This is useful when accessing files also used by another
system with byte ordering different than that of the current host.
IDL Reference Guide SOCKET

1842
SWAP_IF_BIG_ENDIAN

Setting this keyword is equivalent to setting SWAP_ENDIAN; it only takes effect if
the current system has big endian byte ordering. This keyword does not refer to the
byte ordering of the input data, but to the computer hardware.

SWAP_IF_LITTLE_ENDIAN

Setting this keyword is equivalent to setting SWAP_ENDIAN; it only takes effect if
the current system has little endian byte ordering. This keyword does not refer to the
byte ordering of the input data, but to the computer hardware.

WIDTH

The desired output width. When using the defaults for formatted output, IDL uses the
following rules to determine where to break lines:

• If the output file is a terminal, the terminal width is used.

• Otherwise, a default of 80 columns is used.

The WIDTH keyword allows the user to override this default.

WRITE_TIMEOUT

Set this keyword to the number of seconds to wait to send data before giving up and
issuing an error. By default, IDL blocks indefinitely until it is possible to send the
data. Typically, this option is unnecessary on a local network, but it is useful with
networks that are slow or unreliable.

Examples

Most UNIX systems maintain a daytime server on the daytime port (port 13). These
servers send a 1 line response when connected to, containing the current time of day.

; To obtain the current time from the host bullwinkle:
SOCKET, 1, 'bullwinkle','daytime'
date=''
READF, 1, date
CLOSE, 1
PRINT, date

IDL prints:

Wed Sep 15 17:20:27 1999
SOCKET IDL Reference Guide

 1843
Version History

Introduced: 5.3

SWAP_IF_BIG_ENDIAN, SWAP_IF_LITTLE_ENDIAN keywords added: 5.6
IDL Reference Guide SOCKET

1844
SORT

The SORT function returns a vector of subscripts that allow access to the elements of
Array in ascending order.

Syntax

Result = SORT(Array [, /L64])

Return Value

The result is always a vector of integer type with the same number of elements as
Array.

Arguments

Array

The array to be sorted. Array can be any basic type of vector or array. String arrays
are sorted using the ASCII collating sequence. Complex arrays are sorted by their
magnitude. Array values which are Not A Number (NaN) are moved to the end of the
resulting array.

Keywords

L64

By default, the result of SORT is 32-bit integer when possible, and 64-bit integer if
the number of elements being sorted requires it. Set L64 to force 64-bit integers to be
returned in all cases.

Note
Only 64-bit versions of IDL are capable of creating variables requiring a 64-bit sort.
Check the value of !VERSION.MEMORY_BITS to see if your IDL is 64-bit or not.

Examples

Example 1

A = [4, 3, 7, 1, 2]
PRINT, 'SORT(A) = ', SORT(A)
SORT IDL Reference Guide

 1845
; Display the elements of A in sorted order:
PRINT, 'Elements of A in sorted order: ', A[SORT(A)]

; Display the elements of A in descending order:
PRINT, 'Elements of A in descending order: ', A[REVERSE(SORT(A))]

IDL prints:

SORT(A) = 3 4 1 0 2
Elements of A in sorted order: 1 2 3 4 7
Elements of A in descending order: 7 4 3 2 1

SORT(A) returns “3 4 1 0 2” because:

A[3] < A[4] < A[1] < A[0] < A[2]

Example 2

Sorting NaN Values

When sorting data including Not A Number (NaN) values, the NaN entries are moved
to the end of the resulting array. For example:

values = [500, !VALUES.F_NAN, -500]
PRINT, SORT(values)

IDL prints:

2 0 1

Version History

Introduced: Original

See Also

REVERSE, UNIQ, WHERE
IDL Reference Guide SORT

1846
SPAWN

The SPAWN procedure spawns a child process to execute a command or series of
commands. The result of calling SPAWN depends on the platform on which it is
being used:

• Under UNIX, the shell used (if any) is obtained from the SHELL environment
variable. The NOSHELL keyword can be used to execute a command directly
as a child process without starting a shell process.

• Under Windows, a Command Shell is opened. The NOSHELL keyword can be
used to execute the specified command directly without starting an
intermediate command interpreter shell.

Note
See “Using SPAWN Without a Shell Under UNIX” on page 1851 for notes on
executing commands without using a shell process under UNIX. See “Execution
Directory under Microsoft Windows” on page 1851 for a caution regarding
Windows network paths.

If SPAWN is called without arguments, an interactive command interpreter process is
started, in which you can enter one or more operating system commands.

By default, IDL waits for the child process started by SPAWN to finish before it
continues. It is possible to have IDL instead continue execution in parallel with the
child process. The syntax for this depends on the operating system on your system:

• Under UNIX, include an ampersand (&) at the end of your shell command.

• Under Windows, specify the NOWAIT keyword to SPAWN.

Note
For more information on using SPAWN, see the External Development Guide.

Syntax

SPAWN [, Command [, Result] [, ErrResult]]

Keywords (all platforms): [, COUNT=variable] [, EXIT_STATUS=variable]
[,/NOSHELL] [, /NULL_STDIN] [, PID=variable] [, /STDERR]

UNIX-Only Keywords: [, /NOTTYRESET] [, /SH] [, /UNIT=variable {Command
required, Result not allowed}]
SPAWN IDL Reference Guide

 1847
Windows-Only Keywords: [, /HIDE] [, /LOG_OUTPUT] [, /NOWAIT]

Arguments

Command

A string containing the commands to be executed.

If Command is present, it must be specified as follows:

• On UNIX, Command is expected to be scalar unless used in conjunction with
the NOSHELL keyword, in which case Command is expected to be a string
array where each element is passed to the child process as a separate argument.

• On Windows, Command can be a scalar string or string array. If it is a string
array, SPAWN glues together each element of the string array, with each
element separated by whitespace.

If Command is not present, SPAWN starts an interactive command interpreter
process, which you can use to enter one or more operating system commands. While
you use the command interpreter process, IDL is suspended. Under Windows, an
interactive command shell window is created for this purpose. UNIX spawn does not
create a separate window, but simply runs on the user’s current tty, using the default
shell (as specified by the SHELL environment variable). The SH keyword can be
used to force use of the Bourne shell (/bin/sh).

Note
Using SPAWN in this manner is equivalent to using the IDL $ command. The
difference between these two is that $ can only be used interactively while SPAWN
can be used interactively or in IDL programs

Result

A named variable in which to place the output from the child process. Each line of
output becomes a single array element. If Result is not present, the output from the
child shell process goes to the standard output (usually the terminal).

ErrResult

A named variable in which to place the error output (stderr) from the child process.
Each line of output becomes a single array element. If ErrResult is not present, the
error output from the child shell process goes to the standard error file.
IDL Reference Guide SPAWN

1848
Note
See the STDERR keyword for another error stream option.

Keywords

COUNT

If Result is present and this keyword is also specified, COUNT specifies a named
variable into which the number of lines of output is placed. This value gives the
number of elements placed into Result.

EXIT_STATUS

Set this keyword to a named variable in which the exit status for the child process is
returned. The meaning of this value is operating system dependent:

• Under UNIX, it is the value passed by the child to exit(2), and is analogous to
the value returned by $? under most UNIX shells. If the UNIT keyword is
used, this keyword always returns 0. In this case, use the EXIT_STATUS
keyword to FREE_LUN or CLOSE to determine the final exit status of the
process.

• Under Windows, it is the value returned by the Win32 GetExitCodeProcess()
system function. If the NOWAIT keyword is set, EXIT_STATUS returns 0.

HIDE (WINDOWS Only)

If HIDE is set, the command interpreter shell window is minimized to prevent the
user from seeing it.

LOG_OUTPUT (WINDOWS Only)

Normally, IDL starts a command interpreter shell, and output from the child process
is displayed in the command interpreter’s window. If LOG_OUTPUT is set, the
command interpreter window is minimized (as with HIDE) and all output is diverted
to the IDLDE log window. If the Result or ErrResult arguments are present, they take
precedence over LOG_OUTPUT.

NOSHELL

Set this keyword to specify that Command should execute directly as a child process
without an intervening shell process.
SPAWN IDL Reference Guide

 1849
• UNIX – When using the NOSHELL keyword under UNIX, you must specify
Command as a string array in which the first element is the name of the
command to execute and the following arguments are the arguments to be
passed to the command. See “Using SPAWN Without a Shell Under UNIX” on
page 1851 for notes on executing commands without using a shell process.

• Windows – Use this keyword to start the specified Command directly, without
the use of an intervening command shell. This is useful for Windows programs
that do not require a console, such as Notepad.

Many common DOS commands (e.g. DIR) are not distinct programs, and are
instead implemented as part of the command interpreter. Specifying
NOSHELL with such commands results in the command not being found. In
such cases, the HIDE keyword might be useful.

NOTTYRESET (UNIX Only)

Some UNIX systems drop characters when the tty mode is switched between normal
and raw modes. IDL switches between these modes when reading command input
and when using the GET_KBRD function. On such systems, IDL avoids losing
characters by delaying the switch back to normal mode until it is truly needed. This
method has the benefit of avoiding the large number of mode changes that would
otherwise be necessary. Routines that cause output to be sent to the standard output
(e.g., I/O operations, user interaction and SPAWN) ensure that the tty is in its normal
mode before performing their operations.

If the NOTTYRESET keyword is set, SPAWN does not switch the tty back to normal
mode before launching the child process assuming instead that the child will not send
output to the tty. Use this keyword to avoid characters being dropped in a loop of the
form:

WHILE (GET_KBRD(0) NE 'q') SPAWN, command

This keyword has no effect on systems that don’t suffer from dropped characters.

NOWAIT (WINDOWS Only)

If this keyword is set, the IDL process continues executing in parallel with the
subprocess. Normally, the IDL process suspends execution until the subprocess
completes.

NULL_STDIN

If set, the null device is connected to the standard input of the child process. The null
device is either /dev/null (under UNIX) or NUL (under Windows).
IDL Reference Guide SPAWN

1850
PID

A named variable into which the Process Identification number of the child process is
stored.

SH (UNIX Only)

Set this keyword to force the use of the Bourne shell (/bin/sh). Usually, the shell
used is determined by the SHELL environment variable.

STDERR

If set, the child’s error output (stderr) is combined with the standard output and
returned in Result. STDERR and the ErrResult argument are mutually exclusive. You
should use one or the other, but not both.

UNIT (UNIX Only)

If UNIT is present, SPAWN creates a child process in the usual manner, but instead of
waiting for the specified command to finish, it attaches a bidirectional pipe between
the child process and IDL. From the IDL session, the pipe appears as a logical file
unit. The other end of the pipe is attached to the child process standard input and
output. The UNIT keyword specifies a named variable into which the number of the
file unit is stored.

Once the child process is started, the IDL session can communicate with it through
the usual input/output facilities. After the child process has done its task, the CLOSE
procedure can be used to kill the process and close the pipe. Since SPAWN uses
GET_LUN to allocate the file unit, FREE_LUN should be used to free the unit.

If UNIT is present, Command must be present, and Result is not allowed.

Obsolete Keywords

The following keywords are obsolete:

• FORCE

• MACCREATOR

• NOCLISYM

• NOLOGNAM

• NOTIFY

For information on obsolete keywords, See Appendix I, “Obsolete Features”.
SPAWN IDL Reference Guide

 1851
Using SPAWN Without a Shell Under UNIX

When a Unix program is run, its name and arguments are provided to it as an array of
strings, one string per argument. The first string is the name of the program, and the
remainder (if any) are the arguments. C programmers will recognize this as the
standard (argc, argv) arguments passed to the main() function when the program is
run. When you execute a command via a Unix shell, one of the operations that the
shell carries out for you is to split the command and arguments apart on whitespace
boundaries (blanks and tabs) to create this array of arguments. It then runs the
program for you, using one of the Unix system exec() functions.

By default, SPAWN creates a shell process and passes the command to this shell
instead of simply creating a child process to directly execute the command. Use of a
shell is the default because the shell provides useful facilities such as wildcard
expansion and argument processing (described above). Although this is usually
desirable, it has the drawback of being slower than necessary, and of using an
additional process for the shell.

When SPAWN is called with the NOSHELL keyword set, the command is executed
as a direct child process, avoiding the extra overhead of starting a shell. This is faster,
but since there is no shell, you must specify the arguments in the standard form
required by Unix programs. When you specify the NOSHELL keyword, the
Command argument should be a string array. The first element of the array is the
name of the command to use, and the following elements contain the arguments.

For example, consider the command,

SPAWN, 'ps ax'

that uses the UNIX ps command to show running processes on the computer. To issue
this command without a shell, you would write it as follows:

SPAWN, ['ps', 'ax'], /NOSHELL

Execution Directory under Microsoft Windows

SPAWN attempts to use IDL’s current working directory as the current directory for
the spawned process. However, Microsoft Windows does not support the
specification of a UNC path as the current directory for a Command Shell. Issuing a
SPAWN command when IDL’s current working directory is set to a UNC path will
cause Windows to generate an error that looks something like:

CMD.EXE was started with '\\host\dir' as the current directory
path. UNC paths are not supported. Defaulting to Windows
directory.
IDL Reference Guide SPAWN

1852
If your application requires that you be able to use SPAWN when IDL’s current
working directory is set to a directory on a Windows network, consider mapping the
UNC path to a Windows drive letter and setting that to be IDL’s working directory.

Examples

Example 1: Interactive use of SPAWN

To simply spawn a shell process from within IDL, enter the command:

SPAWN

To execute the UNIX ls command and return to the IDL prompt, enter:

SPAWN, 'ls'

To execute the UNIX ls command and store the result in the IDL string variable
listing, enter:

SPAWN, 'ls', listing

Example 2: Noninteractive use of SPAWN

It is sometimes useful to create a temporary scratch file, removing the file when it is
no longer needed. SPAWN could be used as shown below to manage the removal of
the scratch file.

OPENW, UNIT, 'scratch.dat', /GET_LUN

;...IDL commands go here.

;Deallocate the file unit and close the file.
FREE_LUN, UNIT

;Use the !VERSION system variable to determine the proper file
;deletion command for the current operating system.
CASE !VERSION.OS OF

'Windows': CMD = 'DEL'
ELSE: CMD = 'rm'

ENDCASE

;Delete the file using SPAWN.
SPAWN, CMD + ' scratch.dat'

END
SPAWN IDL Reference Guide

 1853
Note
The DELETE keyword to the OPEN procedure or the FILE_DELETE procedure
more efficiently handles this job. The above example should serve only to
demonstrate use of the SPAWN procedure.

Version History

Introduced: Original

See Also

“Dollar Sign ($)” on page 3945, Chapter 2, “Using SPAWN and UNIX Pipes” in the
External Development Guide manual
IDL Reference Guide SPAWN

1854
SPH_4PNT

Given four 3-dimensional points, the SPH_4PNT procedure returns the center and
radius necessary to define the unique sphere passing through those points.

This routine is written in the IDL language. Its source code can be found in the file
sph_4pnt.pro in the lib subdirectory of the IDL distribution.

Syntax

SPH_4PNT, X, Y, Z, Xc, Yc, Zc, R [, /DOUBLE]

Arguments

X, Y, Z

4-element floating-point or double-precision vectors containing the X, Y, and Z
coordinates of the points.

Xc, Yc, Zc

Named variables that will contain the sphere’s center X, Y, and Z coordinates.

R

A named variable that will contain the sphere’s radius.

Keywords

DOUBLE

Set this keyword to force computations to be done in double-precision arithmetic.

Examples

Find the center and radius of the unique sphere passing through the points: (1, 1, 0),
(2, 1, 2), (1, 0, 3), (1, 0, 1):

; Define the floating-point vectors containing the x, y and z
; coordinates of the points:
X = [1, 2, 1, 1] + 0.0
Y = [1, 1, 0, 0] + 0.0
Z = [0, 2, 3, 1] + 0.0
SPH_4PNT IDL Reference Guide

 1855
; Compute sphere’s center and radius:
SPH_4PNT, X, Y, Z, Xc, Yc, Zc, R

; Print the results:
PRINT, Xc, Yc, Zc, R

IDL prints:

-0.500000 2.00000 2.00000 2.69258

Version History

Introduced: Pre 4.0

See Also

CIR_3PNT, PNT_LINE
IDL Reference Guide SPH_4PNT

1856
SPH_SCAT

The SPH_SCAT function performs spherical gridding. Scattered samples on the
surface of a sphere are interpolated to a regular grid. This routine is a convenient
interface to the spherical gridding and interpolation provided by TRIANGULATE
and TRIGRID.

This routine is written in the IDL language. Its source code can be found in the file
sph_scat.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = SPH_SCAT(Lon, Lat, F [, BOUNDS=[lonmin, latmin, lonmax, latmax]]
[, BOUT=variable] [, GOUT=variable] [, GS=[lonspacing, latspacing]]
[, NLON=value] [, NLAT=value])

Return Value

Returns a regularly-interpolated grid of the function.

Arguments

Lon

A vector of sample longitudes, in degrees.

Note
Lon, Lat, and F must all have the same number of points.

Lat

A vector of sample latitudes, in degrees.

F

A vector of data values which are functions of Lon and Lat. Fi represents a value at
(Loni, Lati).
SPH_SCAT IDL Reference Guide

 1857
Keywords

BOUNDS

Set this keyword to a four-element vector containing the grid limits in longitude and
latitude of the output grid. The four elements are: [Lonmin, Latmin, Lonmax, Latmax]. If
this keyword is not set, the grid limits are set to the extent of Lon and Lat.

Note
To cover all longitudes, you must explicitly specify the values for the BOUNDS
keyword.

BOUT

Set this keyword to a named variable that, on return, contains a four-element vector
(similar to BOUNDS) that describes the actual extent of the regular grid.

GOUT

Set this keyword to a named variable that, on return, contains a two-element vector
(similar to GS) that describes the actual grid spacing.

GS

Set this keyword to a two-element vector that specifies the spacing between grid
points in longitude (the first element) and latitude (the second element).

If this keyword is not set, the default value is based on the extents of Lon and Lat. The
default longitude spacing is (Lonmax - Lonmin)/(NLON-1). The default latitude
spacing is (Latmax - Latmin)/(NLAT-1). If NLON and NLAT are not set, the default
grid size of 26 by 26 is used for NLON and NLAT.

NLON

The output grid size in the longitude direction. The default value is 26.

Note
NLON need not be specified if the size can be inferred from GS and BOUNDS.

NLAT

The output grid size in the latitude direction. The default value is 26.
IDL Reference Guide SPH_SCAT

1858
Note
NLAT need not be specified if the size can be inferred from GS and BOUNDS.

Examples

; Create some random longitude points:
lon = RANDOMU(seed, 50) * 360. -180.

; Create some random latitude points:
lat = RANDOMU(seed, 50) * 180. -90.

; Make a function to fit:
z = SIN(lat*!DTOR)
c = COS(lat*!DTOR)
x = COS(lon*!DTOR) * c
y = SIN(lon*!DTOR) * c

; The finished dependent variable:
f = SIN(x+y) * SIN(x*z)
; Interpolate the data and return the result in variable r:
r = SPH_SCAT(lon, lat, f, BOUNDS=[0, -90, 350, 85], GS=[10,5])

Version History

Introduced: 4.0

See Also

TRIANGULATE, TRIGRID
SPH_SCAT IDL Reference Guide

 1859
SPHER_HARM

The SPHER_HARM function returns the value of the spherical harmonic Ylm(θ,φ),
- l ≤ m ≤ l, l ≥ 0, which is a function of two coordinates on a spherical surface.

The spherical harmonics are related to the associated Legendre polynomial by:

For negative m the following relation is used:

where * represents the complex conjugate.

This routine is written in the IDL language. Its source code can be found in the file
spher_harm.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = SPHER_HARM(Theta, Phi, L, M, [, /DOUBLE])

Return Value

SPHER_HARM returns a complex scalar or array containing the value of the
spherical harmonic function. The return value has the same dimensions as the input
arguments Theta and Phi. If one argument (Theta or Phi) is a scalar and the other
argument is an array, the function uses the scalar value with each element of the array,
and returns an array with the same dimensions as the input array.

If either Theta or Phi are double-precision or if the DOUBLE keyword is set, the
result is double-precision complex, otherwise the result is single-precision complex.

Arguments

Theta

The value of the polar (colatitudinal) coordinate θ at which Ylm(θ,φ) is evaluated.
Theta can be either a scalar or an array.

Ylm θ φ(,)
2l 1+

4π
-------------- l m–()!

l m+()!
-------------------Pm

l
θcos()e

imφ
=

Y1 m–, θ φ(,) 1–()m
Y *

lm
θ φ(,)=
IDL Reference Guide SPHER_HARM

1860
Phi

The value of the azimuthal (longitudinal) coordinate φ at which Ylm(θ,φ) is evaluated.
Phi can be either a scalar or an array.

L

A scalar integer, L ≥ 0, specifying the order l of Ylm(θ,φ). If L is of type float, it will
be truncated.

M

A scalar integer, –L ≤ M ≤ L, specifying the azimuthal order m of Ylm(θ,φ). If M is of
type float, it will be truncated.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

This example visualizes the electron probability density for the hydrogen atom in
state 3d0. (Feynman, Leighton, and Sands, 1965: The Feynman Lectures on Physics,
Calif. Inst. Tech, Ch. 19):

; Define a data cube (N x N x N)
n = 41L
a = 60*FINDGEN(n)/(n-1) - 29.999 ; [-1,+1]
x = REBIN(a, n, n, n) ; X-coordinates of cube
y = REBIN(REFORM(a,1,n), n, n, n) ; Y-coordinates
z = REBIN(REFORM(a,1,1,n), n, n, n); Z-coordinates

; Convert from rectangular (x,y,z) to spherical (phi, theta, r)
spherCoord = CV_COORD(FROM_RECT= $
 TRANSPOSE([[x[*]],[y[*]],[z[*]]]), /TO_SPHERE)
phi = REFORM(spherCoord[0,*], n, n, n)
theta = REFORM(!PI/2 - spherCoord[1,*], n, n, n)
r = REFORM(spherCoord[2,*], n, n, n)

; Find electron probability density for hydrogen atom in state 3d0
; Angular component
L = 2 ; state "d" is electron spin L=2
M = 0 ; Z-component of spin is zero
angularState = SPHER_HARM(theta, phi, L, M)
SPHER_HARM IDL Reference Guide

 1861
; Radial component for state n=3, L=2
radialFunction = EXP(-r/2)*(r^2)
waveFunction = angularState*radialFunction
probabilityDensity = ABS(waveFunction)^2

SHADE_VOLUME, probabilityDensity, $
 0.1*MEAN(probabilityDensity), vertex, poly
oPolygon = OBJ_NEW('IDLgrPolygon', vertex, $
 POLYGON=poly, COLOR=[180,180,180])
XOBJVIEW, oPolygon

The results are shown in the following figure (rotated in XOBJVIEW for clarity):

Version History

Introduced: 5.4

See Also

LEGENDRE, LAGUERRE

Figure 29: SPHER_HARM Example of Hydrogen Atom
(object rotated in XOBJVIEW for clarity)
IDL Reference Guide SPHER_HARM

1862
SPL_INIT

The SPL_INIT function is called to establish the type of interpolating spline for a
tabulated set of functional values Xi, Yi = F(Xi).

It is important to realize that SPL_INIT should be called only once to process an
entire tabulated function in arrays X and Y. Once this has been done, values of the
interpolated function for any value of X can be obtained by calls (as many as desired)
to the separate function SPL_INTERP.

SPL_INIT is based on the routine spline described in section 3.3 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = SPL_INIT(X, Y [, /DOUBLE] [, YP0=value] [, YPN_1=value])

Return Value

Returns the values of the 2nd derivative of the interpolating function at the points Xi.

Arguments

X

An n-element input vector that specifies the tabulate points in ascending order.

Y

An n-element input vector that specifies the values of the tabulated function F(Xi)
corresponding to Xi.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

YP0

The first derivative of the interpolating function at the point X0. If YP0 is omitted, the
second derivative at the boundary is set to zero, resulting in a “natural spline.”
SPL_INIT IDL Reference Guide

 1863
YPN_1

The first derivative of the interpolating function at the point Xn-1. If YPN_1 is
omitted, the second derivative at the boundary is set to zero, resulting in a “natural
spline.”

Examples

Example 1

X = (FINDGEN(21)/20.) * 2.0*!PI
Y = SIN(X)
PRINT, SPL_INIT(X, Y, YP0 = -1.1, YPN_1 = 0.0)

IDL Prints:

23.1552 -6.51599 1.06983 -1.26115 -0.839544 -1.04023
-0.950336 -0.817987 -0.592022 -0.311726 2.31192e-05 0.311634
0.592347 0.816783 0.954825 1.02348 0.902068 1.02781
-0.198994 3.26597 -11.0260

Example 2

PRINT, SPL_INIT(X, Y, YP0 = -1.1)

IDL prints:

23.1552 -6.51599 1.06983 -1.26115 -0.839544 -1.04023
-0.950336 -0.817988 -0.592020 -0.311732 4.41521e-05 0.311555
0.592640 0.815690 0.958905 1.00825 0.958905 0.815692
0.592635 0.311567 0.00000

Version History

Introduced: 4.0

See Also

SPL_INTERP, SPLINE, SPLINE_P
IDL Reference Guide SPL_INIT

1864
SPL_INTERP

Given the arrays X and Y, which tabulate a function (with the Xi in ascending order),
and given the array Y2, which is the output from SPL_INIT, and given an input value
of X2, the SPL_INTERP function returns a cubic-spline interpolated value for the
given value of XI.

SPL_INTERP is based on the routine splint described in section 3.3 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = SPL_INTERP(X, Y, Y2, X2 [, /DOUBLE])

Return Value

Returns either single- or double-precision floating result of the same structure as X2.

Arguments

X

An input array that specifies the tabulated points in ascending order.

Y

An input array that specifies the values of the tabulate function corresponding to Xi.

Y2

The output from SPL_INIT for the specified X and Y.

X2

The input value for which an interpolated value is desired. X can be scalar or an array
of values. The result of SPL_INTERP will have the same structure.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
SPL_INTERP IDL Reference Guide

 1865
Examples

To create a spline interpolation over a tabulated set of data, [Xi, Yi], first create the
tabulated data. In this example, Xi will be in the range [0.0, 2π] and Yi in the range
[sin(0.0), sin(2π)].

X = (FINDGEN(21)/20.0) * 2.0 * !PI
Y = SIN(X)

; Calculate interpolating cubic spline:
Y2 = SPL_INIT(X, Y)

; Define the X values P at which we desire interpolated Y values:
X2= FINDGEN(11)/11.0 * !PI

; Calculate the interpolated Y values corresponding to X2[i]:
result = SPL_INTERP(X, Y, Y2, X2)

PRINT, result

IDL prints:

0.00000 0.281733 0.540638 0.755739 0.909613 0.989796
0.989796 0.909613 0.755739 0.540638 0.281733

The exact solution vector is sin(X2).

To interpolate a line in the XY plane, see SPLINE_P.

Version History

Introduced: 4.0

See Also

SPL_INIT, SPLINE, SPLINE_P
IDL Reference Guide SPL_INTERP

1866
SPLINE

The SPLINE function performs cubic spline interpolation.

This routine is written in the IDL language. Its source code can be found in the file
spline.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = SPLINE(X, Y, T [, Sigma])

Return Value

Returns the result of the cubic spline interpolation.

Arguments

X

The abscissa vector. Values must be monotonically increasing.

Y

The vector of ordinate values corresponding to X.

T

The vector of abscissa values for which the ordinate is desired. The values of T must
be monotonically increasing.

Sigma

The amount of “tension” that is applied to the curve. The default value is 1.0. If sigma
is close to 0, (e.g., .01), then effectively there is a cubic spline fit. If sigma is large,
(e.g., greater than 10), then the fit will be like a polynomial interpolation.

Keywords

None.

Examples

The commands below show a typical use of SPLINE:
SPLINE IDL Reference Guide

 1867
; X values of original function:
X = [2.,3.,4.]

; Make a quadratic
Y = (X-3)^2
;Values for interpolated points:
T = FINDGEN(20)/10.+2

; Do the interpolation:
Z = SPLINE(X,Y,T)

Version History

Introduced: Original

See Also

SPL_INIT, SPLINE_P
IDL Reference Guide SPLINE

1868
SPLINE_P

The SPLINE_P procedure performs parametric cubic spline interpolation with
relaxed or clamped end conditions.

This routine is both more general and faster than the SPLINE function. One call to
SPLINE_P is equivalent to two calls to SPLINE, as both the X and Y are interpolated
with splines. It is suited for interpolating between randomly placed points, and the
abscissa values need not be monotonic. In addition, the end conditions may be
optionally specified via tangents.

This routine is written in the IDL language. Its source code can be found in the file
spline_p.pro in the lib subdirectory of the IDL distribution.

Syntax

SPLINE_P, X, Y, Xr, Yr [, INTERVAL=value] [, TAN0=[X0, Y0]]
[, TAN1=[Xn-1, Yn-1]]

Arguments

X

The abscissa vector. X should be floating-point or double-precision.

Y

The vector of ordinate values corresponding to X. Y should be floating-point or
double-precision.

Neither X or Y need be monotonic.

Xr

A named variable that will contain the abscissa values of the interpolated function.

Yr

A named variable that will contain the ordinate values of the interpolated function.
SPLINE_P IDL Reference Guide

 1869
Keywords

INTERVAL

Set this keyword equal to the desired interval in XY space between interpolants. If
omitted, approximately 8 interpolants per XY segment will result.

TAN0

The tangent to the spline curve at X[0], Y[0]. If omitted, the tangent is calculated to
make the curvature of the result zero at the beginning. TAN0 is a two element vector,
containing the X and Y components of the tangent.

TAN1

The tangent to the spline curve at X[n-1], Y[n-1]. If omitted, the tangent is calculated
to make the curvature of the result zero at the end. TAN1 is a two element vector,
containing the X and Y components of the tangent.

Examples

The commands below show a typical use of SPLINE_P:

; Abscissas for square with a vertical diagonal:
X = [0.,1,0,-1,0]

; Ordinates:
Y = [0.,1,2,1,0]

; Interpolate with relaxed end conditions:
SPLINE_P, X, Y, XR, YR

; Show it:
PLOT, XR, YR

As above, but with setting both the beginning and end tangents:

SPLINE_P, X, Y, XR, YR, TAN0=[1,0], TAN1=[1,0]

This yields approximately 32 interpolants.

As above, but with setting the interval to 0.05, making more interpolants, closer
together:

SPLINE_P, X, Y, XR, YR, TAN0=[1,0], TAN1=[1,0], INTERVAL=0.05

This yields 116 interpolants and looks close to a circle.
IDL Reference Guide SPLINE_P

1870
Version History

Introduced: Pre 4.0

See Also

SPL_INIT, SPLINE
SPLINE_P IDL Reference Guide

 1871
SPRSAB

The SPRSAB function performs matrix multiplication on two row-indexed sparse
arrays created by SPRSIN. The routine computes all components of the matrix
products, but only stores those values whose absolute magnitude exceeds the
threshold value.

SPRSAB is based on the routine sprstm described in section 2.7 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission. The difference between the
two routines is that SPRSAB performs the matrix multiplication A∗B rather than
A*BT.

Syntax

Result = SPRSAB(A, B [, /DOUBLE] [, THRESHOLD=value])

Return Value

The result is a row-indexed sparse array.

Arguments

A, B

Row-indexed sparse arrays created by the SPRSIN function.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

THRESHOLD

Use this keyword to set the criterion for deciding the absolute magnitude of the
elements to be retained in sparse storage mode. For single-precision calculations, the
default value is 1.0 × 10-7. For double-precision calculations, the default is
1.0 × 10-14.
IDL Reference Guide SPRSAB

1872
Examples

; Begin by creating two arrays:
A = [[5.0, 0.0, 0.0, 1.0], $

[3.0, -2.0, 0.0, 1.0], $
[4.0, -1.0, 0.0, 2.0], $
[0.0, 3.0, 3.0, 1.0]]

B = [[1.0, 2.0, 3.0, 1.0], $
[3.0, -3.0, 0.0, 1.0], $
[-1.0, 3.0, 1.0, 2.0], $
[0.0, 3.0, 3.0, 1.0]]

; Convert the arrays to sparse array format before multiplying.
; The variable SPARSE holds the result in sparse array form:
sparse = SPRSAB(SPRSIN(A), SPRSIN(B))

; Restore the sparse array structure to full storage mode:
result = FULSTR(sparse)

; Print the result:
PRINT, 'result:'
PRINT, result

; Check this result by multiplying the original arrays:
exact = B # A
PRINT, 'exact:'
PRINT, exact

IDL prints:

result:
5.00000 13.0000 18.0000 6.00000
-3.00000 15.0000 12.0000 2.00000
1.00000 17.0000 18.0000 5.00000
6.00000 3.00000 6.00000 10.0000
exact:
5.00000 13.0000 18.0000 6.00000
-3.00000 15.0000 12.0000 2.00000
1.00000 17.0000 18.0000 5.00000
6.00000 3.00000 6.00000 10.0000

Version History

Introduced: 4.0
SPRSAB IDL Reference Guide

 1873
See Also

FULSTR, LINBCG, SPRSAX, SPRSIN, SPRSTP, READ_SPR, WRITE_SPR
IDL Reference Guide SPRSAB

1874
SPRSAX

The SPRSAX function takes a row-indexed sparse array created by the SPRSIN
function and multiplies it by an n-element vector to its right.

SPRSAX is based on the routine sprsax described in section 2.7 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = SPRSAX(A, X [, /DOUBLE])

Return Value

Returns a n-element vector.

Arguments

A

A row-indexed sparse array created by the SPRSIN function.

X

An n-element right hand vector.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

; Begin by creating an array A:
A = [[5.0, 0.0, 0.0], $

[3.0, -2.0, 0.0], $
[4.0, -1.0, 0.0]]

; Define the right-hand vector:
X = [1.0, 2.0, -1.0]
SPRSAX IDL Reference Guide

 1875
; Convert to sparse format, then multiply by X:
result = SPRSAX(SPRSIN(A),X)

; Print the result:
PRINT, result

IDL prints:

5.00000 -1.00000 2.00000

Version History

Introduced: 4.0

See Also

FULSTR, LINBCG, SPRSAB, SPRSIN, SPRSTP, READ_SPR, WRITE_SPR
IDL Reference Guide SPRSAX

1876
SPRSIN

The SPRSIN function converts an array, or list of subscripts and values, into a row-
index sparse storage mode, retaining only elements with an absolute magnitude
greater than or equal to the specified threshold. The list form is much more efficient
than the array form if the density of the matrix is low.

SPRSIN is based on the routine sprsin described in section 2.7 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = SPRSIN(A [, /COLUMN] [, /DOUBLE] [, THRESHOLD=value])

or

Result = SPRSIN(Columns, Rows, Values, N [, /DOUBLE] [, THRESHOLD=value])

Return Value

The result is a row-indexed sparse array contained in structure form. The structure
consists of two linear sparse storage vectors: SA, a vector of array values, and IJA, a
vector of subscripts to the SA vector. The length of these vectors is equal to 1 plus the
number of diagonal elements of the array, plus the number of off-diagonal elements
with an absolute magnitude greater that or equal to the threshold value. Diagonal
elements of the array are always retained even if their absolute magnitude is less than
the specified threshold.

Arguments

A

An n by n array of any type except string or complex.

Columns

A vector containing the column subscripts of the non-zero elements. Values must be
in the range of 0 to (N-1).
SPRSIN IDL Reference Guide

 1877
Rows

A vector, of the same length as Column, containing the row subscripts of the non-zero
elements. Values must be in the range of 0 to (N-1).

Values

A vector, of the same length as Column, containing the values of the non-zero
elements.

N

The size of the resulting sparse matrix.

Keywords

COLUMN

Set this keyword if the input array A is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors). This keyword is
not allowed in the list form of the call.

DOUBLE

Set this keyword to convert the sparse array to double-precision.

THRESHOLD

Use this keyword to set the criterion for deciding the absolute magnitude of the
elements to be retained in sparse storage mode. For single-precision calculations, the
default value is 1.0 × 10-7. For double-precision values, the default is 1.0 × 10-14.

Examples

Example1

Suppose we wish to convert the following array to sparse storage format:

A = [[5.0, -0.2, 0.1], $
[3.0, -2.0, 0.3], $
[4.0, -1.0, 0.0]]

; Convert to sparse storage mode. All elements of the array A that
; have absolute values less than THRESH are set to zero.
sparse = SPRSIN(A, THRESH = 0.5)
IDL Reference Guide SPRSIN

1878
The variable SPARSE now contains a representation of A in structure form. See the
description of FULSTR for an example that restores such a structure to full storage
mode.

Example2

This example demonstrates how to use the list form of the call to SPRSIN. The
following line of code creates a sparse matrix, equivalent to a 100 by 100 identity
matrix, i.e. all diagonal elements are set to 1, all other elements are zero:

I100 = SPRSIN(LINDGEN(100), LINDGEN(100), REPLICATE(1.0,100), 100)

Version History

Introduced: 4.0

See Also

FULSTR, LINBCG, SPRSAB, SPRSAX, SPRSTP, READ_SPR, WRITE_SPR
SPRSIN IDL Reference Guide

 1879
SPRSTP

The SPRSTP function constructs the transpose of a sparse matrix.

Syntax

Result = SPRSTP(A)

Return Value

Returns the sparse matrix of the given sparse array.

Arguments

A

A row-indexed sparse array created by the SPRSIN function.

Keywords

None

Examples

This example creates a 100 by 100 pseudo-random sparse matrix, with 1000 non-zero
elements, and then computes the product of the matrix and its transpose:

n = 100 ;Dimensions of matrix
m = 1000 ;Number of non-zero elements
a = SPRSIN(RANDOMU(seed, m)*n, RANDOMU(seed, m)*n, $

RANDOMU(seed, m),n)
b = SPRSAB(a, SPRSTP(a)) ;Transpose and create the product

Version History

Introduced: 4.0

See Also

FULSTR, LINBCG, SPRSAB, SPRSAX, SPRSIN, READ_SPR, WRITE_SPR
IDL Reference Guide SPRSTP

1880
SQRT

The SQRT function computes the square root of X.

Syntax

Result = SQRT(X)

Return Value

Returns the square root of X.

Arguments

X

The value for which the square root is desired. If X is double-precision floating-point
or complex, the result is of the same type. All other types are converted to single-
precision floating-point and yield floating-point results. When applied to complex
numbers, z = x+iy:

The ambiguous sign is taken to be the same as the sign of y. The result has the same
structure as X.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

z1 2/ 1
2
--- r x+()

1 2/
i

1
2
--- r x–()

1 2/
±=

r x2 y2+=
SQRT IDL Reference Guide

 1881
Examples

To find the square root of 145 and store the result in variable S, enter:

S = SQRT(145)

Version History

Introduced: Original

See Also

“Exponentiation” in Chapter 2 of the Building IDL Applications manual.
IDL Reference Guide SQRT

1882
STANDARDIZE

The STANDARDIZE function computes standardized variables from an array of m
variables (columns) and n observations (rows).

This routine is written in the IDL language. Its source code can be found in the file
standardize.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = STANDARDIZE(A [, /DOUBLE])

Return Value

The result is an m-column, n-row array where all columns have a mean of zero and a
variance of one.

Arguments

A

An m-column, n-row single- or double-precision floating-point array.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

; Define an array with 4 variables and 20 observations:
array = $
 [[19.5, 43.1, 29.1, 11.9], $
 [24.7, 49.8, 28.2, 22.8], $
 [30.7, 51.9, 37.0, 18.7], $
 [29.8, 54.3, 31.1, 20.1], $
 [19.1, 42.2, 30.9, 12.9], $
 [25.6, 53.9, 23.7, 21.7], $
 [31.4, 58.5, 27.6, 27.1], $
 [27.9, 52.1, 30.6, 25.4], $
 [22.1, 49.9, 23.2, 21.3], $
 [25.5, 53.5, 24.8, 19.3], $
STANDARDIZE IDL Reference Guide

 1883
 [31.1, 56.6, 30.0, 25.4], $
 [30.4, 56.7, 28.3, 27.2], $
 [18.7, 46.5, 23.0, 11.7], $
 [19.7, 44.2, 28.6, 17.8], $
 [14.6, 42.7, 21.3, 12.8], $
 [29.5, 54.4, 30.1, 23.9], $
 [27.7, 55.3, 25.7, 22.6], $
 [30.2, 58.6, 24.6, 25.4], $
 [22.7, 48.2, 27.1, 14.8], $
 [25.2, 51.0, 27.5, 21.1]]

; Compute the mean and variance of each variable using the MOMENT
; function. The skewness and kurtosis are also computed:
FOR K = 0, 3 DO PRINT, MOMENT(array[K,*])

; Compute the standardized variables:
result = STANDARDIZE(array)

; Compute the mean and variance of each standardized variable using
; the MOMENT function. The skewness and kurtosis are also computed:
FOR K = 0, 3 DO PRINT, MOMENT(result[K,*])

IDL prints:

25.3050 25.2331 -0.454763 -1.10028
51.1700 27.4012 -0.356958 -1.19516
27.6200 13.3017 0.420289 0.104912
20.1950 26.0731 -0.363277 -1.24886

-7.67130e-07 1.00000 -0.454761 -1.10028
-3.65451e-07 1.00000 -0.356958 -1.19516
-1.66707e-07 1.00000 0.420290 0.104913
4.21703e-07 1.00000 -0.363278 -1.24886

Version History

Introduced: 5.0

See Also

MOMENT
IDL Reference Guide STANDARDIZE

1884
STDDEV

The STDDEV function computes the standard deviation of an n-element vector.

Syntax

Result = STDDEV(X [, /DOUBLE] [, /NAN])

Return Value

The result is the standard deviation of the given vector.

Arguments

X

A numeric vector.

Keywords

DOUBLE

If this keyword is set, computations are performed in double precision arithmetic.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as missing
data. (See “Special Floating-Point Values” in Chapter 18 of the Building IDL
Applications manual for more information on IEEE floating-point values.)

Examples

; Define the n-element vector of sample data:
x = [65, 63, 67, 64, 68, 62, 70, 66, 68, 67, 69, 71, 66, 65, 70]

; Compute the standard deviation:
result = STDDEV(x)

PRINT, result

IDL prints:

2.65832
STDDEV IDL Reference Guide

 1885
Version History

Introduced: 5.1

See Also

KURTOSIS, MEAN, MEANABSDEV, MOMENT, SKEWNESS, VARIANCE
IDL Reference Guide STDDEV

1886
STOP

The STOP procedure stops the execution of a running program or batch file. Control
reverts to the interactive mode.

Syntax

STOP [, Expr1, ..., Exprn]

Arguments

Expri

One or more expressions whose value is printed. If no parameters are present, a brief
message describing where the STOP was encountered is printed.

Keywords

None.

Examples

Suppose that you want to stop the execution of a procedure and print the values of the
variables A, B, C and NUM. At the appropriate location in your procedure include
the command:

STOP, A, B, C, NUM

To continue execution of the procedure (if possible) enter the IDL executive
command:

.CONT

Version History

Introduced: Original

See Also

BREAKPOINT, EXIT, WAIT
STOP IDL Reference Guide

 1887
STRARR

The STRARR function returns a string array containing zero-length strings.

Syntax

Result = STRARR(D1 [, ..., D8])

Return Value

The result is a string array of the specified dimensions.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified.

Examples

To create S, a 20-element string vector, enter:

S = STRARR(20)

Version History

Introduced: Original

See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LON64ARR, LONARR, MAKE_ARRAY, UINTARR, ULON64ARR, ULONARR
IDL Reference Guide STRARR

1888
STRCMP

The STRCMP function performs string comparisons between its two String
arguments, returning True (1) for those that match and False (0) for those that do not.
Normally, the IDL equality operator (EQ) is used for such comparisons, but
STRCMP can optionally perform case-insensitive comparisons and can be limited to
compare only the first N characters of the two strings, both of which require extra
steps using the EQ operator.

Syntax

Result = STRCMP(String1, String2 [, N] [, /FOLD_CASE])

Return Value

If all of the arguments are scalar, the result is scalar. If one of the arguments is an
array, the result is an integer with the same structure. If more than one argument is an
array, the result has the structure of the smallest array. Each element of the result
contains True (1) if the corresponding elements of String1 and String2 are the same,
and False (0) otherwise.

Arguments

String1, String2

The strings to be compared.

N

Normally String1 and String2 are compared in their entirety. If N is specified, the
comparison is made on at most the first N characters of each string.

Keywords

FOLD_CASE

String comparison is normally a case sensitive operation. Set FOLD_CASE to
perform case insensitive comparisons instead.
STRCMP IDL Reference Guide

 1889
Examples

Compare two strings in a case-insensitive manner, considering only the first 3
characters:

Result = STRCMP('Moose', 'moo', 3, /FOLD_CASE)
PRINT, Result

IDL prints:

 1

Version History

Introduced: 5.3

See Also

STREGEX, STRJOIN, STRMATCH, STRMID, STRPOS, STRSPLIT
IDL Reference Guide STRCMP

1890
STRCOMPRESS

The STRCOMPRESS function returns a copy of String with all whitespace (blanks
and tabs) compressed to a single space or completely removed.

Syntax

Result = STRCOMPRESS(String [, /REMOVE_ALL])

Return Value

The result is a compressed string.

Arguments

String

The string to be compressed. If not of type string, it is converted using IDL’s default
formatting rules. If String is an array, the result is an array with the same structure—
each element contains a compressed copy of the corresponding element of String.

Keywords

REMOVE_ALL

Set this keyword to remove all whitespace. Normally, all whitespace is compressed to
a single space.

Examples

; Create a string variable S:
S = 'This is a string with spaces in it.'

; Print S with all of the whitespace removed:
PRINT, STRCOMPRESS(S, /REMOVE_ALL)

IDL Output

Thisisastringwithspacesinit.

Version History

Introduced: Original
STRCOMPRESS IDL Reference Guide

 1891
See Also

STRTRIM
IDL Reference Guide STRCOMPRESS

1892
STREAMLINE

The STREAMLINE procedure generates the visualization graphics from a path. The
output is a polygonal ribbon which is tangent to a vector field along its length. The
ribbon is generated by placing a line at each vertex in the direction specified by each
normal value multiplied by the anisotropy factor. The input normal array is not
normalized before use, making it possible to vary the ribbon width as well.

Syntax

STREAMLINE, Verts, Conn, Normals, Outverts, Outconn [, ANISOTROPY=array]
[, SIZE=vector] [, PROFILE=array]

Arguments

Verts

Input array of path vertices ([3, n] array).

Conn

Input path connectivity array in IDLgrPolyline POLYLINES keyword format. There
is one set of line segments in this array for each streamline.

Normals

Normal estimate at each input vertex ([3, n] array).

Outverts

Output vertices ([3xn] float array). Useful if the routine is to be used with Direct
Graphics or the user wants to manipulate the data directly.

Outconn

Output polygonal connectivity array to match the output vertices.

Keywords

ANISOTROPY

Set this input keyword to a three-element array describing the distance between grid
points in each dimension. The default value is [1.0, 1.0, 1.0]
STREAMLINE IDL Reference Guide

 1893
SIZE

Set this keyword to a vector of values (one for each path point). These values are used
to specify the width of the ribbon or the size of profile at each point along its path.
This keyword is generally used to convey additional data parameters along the
streamline.

PROFILE

Set this keyword to an array of two-dimensional points which are treated as the cross
section of the ribbon instead of a line segment. If the first and last points in the array
are the same, a closed profile is generated. The profile is placed at each path vertex in
the plane perpendicular to the line connecting each path vertex with the vertex normal
defining the up direction. This allows for the generation of streamtubes and other
geometries.

Version History

Introduced: 5.3
IDL Reference Guide STREAMLINE

1894
STREGEX

The STREGEX function performs regular expression matching against the strings
contained in StringExpression. STREGEX can perform either a simple boolean
True/False evaluation of whether a match occurred, or it can return the position and
offset within the strings for each match. The regular expressions accepted by this
routine, which correspond to “Posix Extended Regular Expressions”, are similar to
those used by such UNIX tools as egrep, lex, awk, and Perl.

For more information about regular expressions, see “Learning About Regular
Expressions” in Chapter 5 of the Building IDL Applications manual.

STREGEX is based on the regex package written by Henry Spencer, modified by RSI
only to the extent required to integrate it into IDL. This package is freely available at
ftp://zoo.toronto.edu/pub/regex.shar.

Syntax

Result = STREGEX(StringExpression, RegularExpression [, /BOOLEAN |
, /EXTRACT | , LENGTH=variable [, /SUBEXPR]] [, /FOLD_CASE])

Return Value

By default, STREGEX returns the position and length of the matched string within
StringExpression. If no match is found, -1 is returned for both of these. Optionally, it
can return a Boolean True/False result of the match, or the matched strings.

Arguments

StringExpression

String to be matched.

RegularExpression

A scalar string containing the regular expression to match. See “Learning About
Regular Expressions” in Chapter 5 of the Building IDL Applications manual for a
description of the meta characters that can be used in a regular expression.
STREGEX IDL Reference Guide

ftp://zoo.toronto.edu/pub/regex.shar

 1895
Keywords

BOOLEAN

Normally, STREGEX returns the position of the first character in StringExpression
that matches RegularExpression. Setting BOOLEAN modifies this behavior to
simply return a True/False value indicating if a match occurred or not.

EXTRACT

Normally, STREGEX returns the position of the first character in StringExpression
that matches RegularExpression. Setting EXTRACT modifies this behavior to simply
return the matched substrings. The EXTRACT keyword cannot be used with either
BOOLEAN or LENGTH.

FOLD_CASE

Regular expression matching is normally a case-sensitive operation. Set
FOLD_CASE to perform case-insensitive matching instead.

LENGTH

If present, specifies a variable to receive the lengths of the matches. Together with
this result of this function, which contains the starting points of the matches in
StringExpression, LENGTH can be used with the STRMID function to extract the
matched substrings. The LENGTH keyword cannot be used with either BOOLEAN
or EXTRACT.

SUBEXPR

By default, STREGEX only reports the overall match. Setting SUBEXPR causes it to
report the overall match as well as any subexpression matches. A subexpression is
any part of a regular expression written within parentheses. For example, the regular
expression ‘(a)(b)(c+)’ has 3 subexpressions, whereas the functionally equivalent
'abc+' has none. The SUBEXPR keyword cannot be used with BOOLEAN.

If a subexpression participated in the match several times, the reported substring is
the last one it matched. Note, as an example in particular, that when the regular
expression ‘(b*)+’ matches ‘bbb’, the parenthesized subexpression matches the three
'b's and then an infinite number of empty strings following the last ‘b’, so the reported
substring is one of the empties. This occurs because the ‘*’ matches zero or more
instances of the character that precedes it.
IDL Reference Guide STREGEX

1896
In order to return multiple positions and lengths for each input, the result from
SUBEXPR has a new first dimension added compared to StringExpression.

Examples

Example 1

To match a string starting with an “a”, followed by a “b”, followed by 1 or more “c”:

pos = STREGEX('aaabccc', 'abc+', length=len)
PRINT, STRMID('aaabccc', pos, len)

IDL Prints:

abccc

To perform the same match, and also find the locations of the three parts:

pos = STREGEX('aaabccc', '(a)(b)(c+)', length=len, /SUBEXPR)
print, STRMID('aaabccc', pos, len)

IDL Prints:

abccc a b ccc

Or more simply:

print,STREGEX('aaabccc','(a)(b)(c+)',/SUBEXPR,/EXTRACT)

IDL Prints:

abccc a b ccc

Example 2

This example searches a string array for words of any length beginning with “f” and
ending with “t” without the letter “o” in between:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'affluent']
PRINT, STREGEX(str, '^f[^o]*t$', /EXTRACT, /FOLD_CASE)

This statement results in:

Feet FAST ferret

Note the following about this example:

• Unlike the * wildcard character used by STRMATCH, the * meta character
used by STREGEX applies to the item directly on its left, which in this case is
[^o], meaning “any character except the letter ‘o’ ”. Therefore, [^o]* means
“zero or more characters that are not ‘o’ ”, whereas the following statement
would find only words whose second character is not “o”:
STREGEX IDL Reference Guide

 1897
PRINT, str[WHERE(STRMATCH(str, 'f[!o]*t', /FOLD_CASE) EQ 1)]

• The anchors (^ and $) tell STREGEX to find only words that begin with “f”
and end with “t”. If we left out the ^ anchor in the above example, STREGEX
would also return “ffluent” (a substring of “affluent”). Similarly, if we left out
the $ anchor, STREGEX would also return “fat” (a substring of “fate”).

Version History

Introduced: 5.3

See Also

STRCMP, STRJOIN, STRMATCH, STRMID, STRPOS, STRSPLIT
IDL Reference Guide STREGEX

1898
STRETCH

The STRETCH procedure stretches the image display color tables so the full range
runs from one color index to another. The modified colortable is loaded, but the
COLORS common block is not changed. The original colortable can be restored by
calling STRETCH with no arguments. A colortable must be loaded before
STRETCH can be called.

This routine is written in the IDL language. Its source code can be found in the file
stretch.pro in the lib subdirectory of the IDL distribution.

Syntax

STRETCH [, Low, High [, Gamma]] [, /CHOP]

Arguments

Low

The lowest pixel value to use. If this parameter is omitted, 0 is assumed. Appropriate
values range from 0 to the number of available colors-1. If no parameters are
supplied, the original color tables are restored.

High

The highest pixel value to use. If this parameter is omitted, the number of colors-1 is
assumed. Appropriate values range from 0 to the number of available colors-1.

Gamma

An optional Gamma correction factor. If this value is omitted, 1.0 is assumed.
Gamma correction works by raising the color indices to the Gamma power, assuming
they are scaled into the range 0 to 1.

Keywords

CHOP

Set this keyword to set color indices above the upper threshold to color index 0.
Normally, values above the upper threshold are set to the maximum color index.
STRETCH IDL Reference Guide

 1899
Examples

Load the STD GAMMA-II color table by entering:

LOADCT, 5

Create and display and image by entering:

TVSCL, DIST(300)

Now adjust the color table with STRETCH. Make the entire color table fit in the
range 0 to 70 by entering:

STRETCH, 0, 70

Notice that pixel values above 70 are now colored white. Restore the original color
table by entering:

STRETCH

Version History

Introduced: Original

See Also

GAMMA_CT, H_EQ_CT, MULTI, XLOADCT
IDL Reference Guide STRETCH

1900
STRING

The STRING function returns its arguments converted to string type. It is similar to
the PRINT procedure, except that its output is placed in a string rather than being
output to the terminal. The case in which a single expression of type byte is specified
without the FORMAT keyword is special—see the “Differences Between STRING
and PRINT” on page 1901 for details.

Note
Applying the STRING function to a byte array containing a null (zero) value will
result in the resulting string being truncated at that position.

Syntax

Result = STRING(Expression1, ..., Expressionn [, AM_PM=[string, string]]
[, DAYS_OF_WEEK=string_array{7 names}] [, FORMAT=value]
[, MONTHS=string_array{12 names}] [, /PRINT])

Return Value

Returns a string containing the specified expression.

Arguments

Expressionn

The expressions to be converted to string type.

Note
If you supply a comma-separated list of expressions without specifying a FORMAT,
and the combined length of the expressions is greater than the current width of your
tty or command log window, STRING will create a string array with one element
for each expression, rather than concatenating all expressions into a single string. In
this case, you can either specify a FORMAT, or use the string concatenation
operator, “+”.
STRING IDL Reference Guide

 1901
Keywords

AM_PM

Supplies a string array of 2 names to be used for the names of the AM and PM string
when processing explicitly formatted dates (CAPA, CApA, and CapA format codes)
with the FORMAT keyword.

DAYS_OF_WEEK

Supplies a string array of 7 names to be used for the names of the days of the week
when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the FORMAT keyword.

FORMAT

A format string to be used in formatting the expressions. See “Using Explicitly
Formatted Input/Output” in Chapter 10 of the Building IDL Applications manual.

MONTHS

Supplies a string array of 12 names to be used for the names of the months when
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) with
the FORMAT keyword.

PRINT

Set this keyword to specify that any special case processing should be ignored and
that STRING should behave exactly as the PRINT procedure would.

Differences Between STRING and PRINT

The behavior of STRING differs from the behavior of the PRINT procedure in the
following ways (unless the PRINT keyword is set):

• When called with a single non-byte argument and no format specification,
STRING returns a result that has the same dimensions as the original
argument. For example, the statement:

HELP, STRING(INDGEN(5))

gives the result:

<Expression> STRING = Array[5]
IDL Reference Guide STRING

1902
while:

HELP, STRING(INDGEN(5), /PRINT)

results in:

<Expression> STRING =' 0 1 2 3 4'

• If called with a single argument of byte type and the FORMAT keyword is not
used, STRING simply stores the unmodified values of each byte element in the
result. This result is a string containing the byte values from the original
argument. Thus, the result has one less dimension than the original argument.
For example, a 2-dimensional byte array becomes a vector of strings, a byte
vector becomes a scalar string. However, a byte scalar also becomes a string
scalar. For example, the statement:

PRINT, STRING([72B, 101B, 108B, 108B, 111B])

produces the output:

Hello

because the argument to STRING, is a byte vector. Its first element is a 72B
which is the ASCII code for “H”, the second is 101B which is an ASCII “e”,
and so forth.

• If both the FORMAT and PRINT keywords are not present and STRING is
called with more than one argument, and the last argument is a scalar string
starting with the characters “$(” or “(”, this final argument is taken to be the
format specification, just as if it had been specified via the FORMAT keyword.
This feature is maintained for compatibility with version 1 of VMS IDL.

Examples

To convert the contents of variable A to string type and store the result in the variable
B, enter:

B = STRING(A)

Version History

Introduced: Original

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, LONG64,
UINT, ULONG, ULONG64
STRING IDL Reference Guide

 1903
STRJOIN

The STRJOIN function collapses a string scalar or array into merged strings. This
function reduces the rank of its input array by one dimension. The strings in the
removed first dimension are concatenated into a single string using the string in
Delimiter to separate them.

Syntax

Result = STRJOIN(String [, Delimiter] [, /SINGLE])

Return Value

Returns the merged strings.

Arguments

String

A string scalar or array to be collapsed into merged strings.

Delimiter

The separator string to use between the joined strings. If Delimiter is not specified, an
empty string is used.

Keywords

SINGLE

If SINGLE is set, the entire String is joined into a single scalar string result.

Examples

Replace all the blanks in a sentence with colons:

str = 'Out, damned spot! Out I say!'
print, (STRJOIN(STRSPLIT(str, /EXTRACT), ':'))

IDL prints:

Out,:damned:spot!:Out:I:say!
IDL Reference Guide STRJOIN

1904
Version History

Introduced: 5.3

See Also

STRCMP, STREGEX, STRMATCH, STRMID, STRPOS, STRSPLIT
STRJOIN IDL Reference Guide

 1905
STRLEN

The STRLEN function returns the length of its string-type argument. If the argument
is not a string, it is first converted to string type.

Syntax

Result = STRLEN(Expression)

Return Value0

Returns the string length.

Arguments

Expression

The expression for which the string length is desired. If this parameter is not a string,
it is converted using IDL’s default formatting rules in order to determine the length.
The result is a long integer. If Expression is an array, the result is a long integer array
with the same structure, where each element contains the length of the corresponding
Expression element.

Keywords

None.

Examples

To find the length of the string “IDL is fun” and print the result, enter:

PRINT, STRLEN('IDL is fun')

IDL prints:

 10

Version History

Introduced: Original
IDL Reference Guide STRLEN

1906
STRLOWCASE

The STRLOWCASE function returns a copy of String converted to lowercase
characters. Only uppercase characters are modified—lowercase and non-alphabetic
characters are copied without change.

Syntax

Result = STRLOWCASE(String)

Return Value

Returns a string composed of lowercase characters.

Arguments

String

The string to be converted. If this argument is not a string, it is converted using IDL’s
default formatting rules. If String is an array, the result is an array with the same
structure—each element contains a lower case copy of the corresponding element of
String.

Keywords

None.

Examples

To convert the string “IDL is fun” to all lowercase characters and print the result,
enter:

PRINT, STRLOWCASE('IDL is fun')

IDL prints:

idl is fun

Version History

Introduced: Original
STRLOWCASE IDL Reference Guide

 1907
See Also

STRUPCASE
IDL Reference Guide STRLOWCASE

1908
STRMATCH

The STRMATCH function compares its search string, which can contain wildcard
characters, against the input string expression. The result is an array with the same
structure as the input string expression. Those elements that match the corresponding
input string are set to True (1), and those that do not match are set to False (0).

The wildcards understood by STRMATCH are similar to those used by the standard
UNIX shell:

Syntax

Result = STRMATCH(String, SearchString [, /FOLD_CASE])

Return Value

Returns 1 if the pattern specified by SearchString exists in String, or 0 otherwise. If
the String argument contains an array of strings, the result is an array of 1s and 0s
with the same number of elements as String, indicating which elements contain
SearchString.

Wildcard
Character

Description

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of
characters separated by "-" matches any character lexically
between the pair, inclusive. If the first character following the
opening [is a !, any character not enclosed is matched. To
prevent one of these characters from acting as a wildcard, it
can be quoted by preceding it with a backslash character (e.g.
"*" matches the asterisk character). Quoting any other
character (including \ itself) is equivalent to the character (e.g.
"\a" is the same as "a").

Table 92: Wildcard Characters used by STRMATCH
STRMATCH IDL Reference Guide

 1909
Arguments

String

A scalar string or string array to be searched.

SearchString

A scalar string containing the pattern to search for in String. The pattern string can
contain wildcard characters as discussed above.

Keywords

FOLD_CASE

The comparison is usually case sensitive. Setting the FOLD_CASE keyword causes a
case insensitive match to be done instead.

Examples

Example 1

Find all 4-letter words in a string array that begin with “f” or “F” and end with “t” or
“T”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f??t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet FAST fort

Example 2

Find words of any length that begin with “f” and end with “t”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f*t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet FAST ferret fort
IDL Reference Guide STRMATCH

1910
Example 3

Find 4-letter words beginning with “f” and ending with “t”, with any combination of
“o” and “e” in between:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f[eo][eo]t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet

Example 4

Find all words beginning with “f” and ending with “t” whose second character is not
the letter “o”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f[!o]*t', /FOLD_CASE) EQ 1)]

This results in:

Feet FAST ferret

Version History

Introduced: 5.3

See Also

STRCMP, STRJOIN, STREGEX, STRMID, STRPOS, STRSPLIT
STRMATCH IDL Reference Guide

 1911
STRMESSAGE

The STRMESSAGE function returns the text of the error message specified by Err.
This function is especially useful in conjunction with the CODE field of the
!ERROR_STATE system variable which always contains the error number of the last
error. The MSG field of the !ERROR_STATE system variable contains the text of the
last error message.

Syntax

Result = STRMESSAGE(Err [, /BLOCK | , /CODE | , /NAME])

Return Value

Returns the error message text.

Arguments

Err

The error number or text. Programs must not make the assumption that certain error
numbers are always related to certain error messages—the actual correspondence
changes over time as IDL is modified.

Keywords

BLOCK

Set this keyword to return the name of the message block that defines Err. If this
keyword is specified, Err must be an error code.

CODE

Set this keyword to return the error code for the error message specified in Err. If this
keyword is specified, Err must be an error name.

NAME

Set this keyword to return a string containing the error message that goes with Err. If
this keyword is specified, Err must be an error code.
IDL Reference Guide STRMESSAGE

1912
Examples

Print the error message associated with error number 4 by entering:

PRINT, STRMESSAGE(4)

Version History

Introduced: Original

See Also

MESSAGE
STRMESSAGE IDL Reference Guide

 1913
STRMID

The STRMID function extracts one or more substring from a string expression. Each
extracted string is the result of removing characters.

Syntax

Result = STRMID(Expression, First_Character [, Length] [, /REVERSE_OFFSET])

Return Value

The result of the function is a string of Length characters taken from Expression,
starting at character position First_Character.

The form of First_Character and Length control how they are applied to Expression.
Either argument can be a scalar or an array:

• If a scalar value is supplied for First_Character and Length, then those values
are applied to all elements of Expression. The result has the same structure and
number of elements as Expression.

If First_Character or Length is an array, the size of their first dimension determines
how many substrings are extracted from each element of Expression. We call this the
“stride”. If both are arrays, they must have the same stride. If First_Character or
Length do not contain enough elements to process Expression, STRMID
automatically loops back to the beginning as necessary. Excess values are ignored. If
the stride is 1, the result will have the same structure and number of elements as
Expression. If it is greater than 1, the result will have an additional dimension, with
the new first dimension having the same size as the stride.

Arguments

Expression

The expression from which the substrings are to be extracted. If this argument is not a
string, it is converted using IDL's default formatting rules.

First_Character

The starting position within Expression at which the substring starts. The first
character position is 0.
IDL Reference Guide STRMID

1914
Length

The length of the substring. If there are not enough characters left in the main string
to obtain Length characters, the substring is truncated. If Length is not supplied,
STRMID extracts all characters from the specified start position to the end of the
string.

Keywords

REVERSE_OFFSET

Specifies that First_Character should be counted from the end of the string
backwards. This allows simple extraction of strings from the end.

Examples

If the variable B contains the string “IDL is fun”, the substring “is” can be extracted
and stored in the variable C with the command:

C = STRMID(B, 4, 2)

Version History

Introduced: Original

See Also

STRPOS, STRPUT, STRTRIM
STRMID IDL Reference Guide

 1915
STRPOS

The STRPOS function finds the first occurrence of a substring within an object string.

Syntax

Result = STRPOS(Expression, Search String [, Pos] [, /REVERSE_OFFSET]
[, /REVERSE_SEARCH])

Return Value

If Search_String occurs in Expression, STRPOS returns the character position of the
match, otherwise it returns -1.

Arguments

Expression

The expression in which to search for the substring. If this argument is not a string, it
is converted using IDL’s default formatting rules. If Expression is an array, the result
is an array with the same structure, where each element contains the position of the
substring within the corresponding element Expression. If Expression is the null
string, STRPOS returns the value -1.

Search_String

The substring to be searched for within Expression. If this argument is not a string, it
is converted using IDL’s default formatting rules. If Search_String is the null string,
STRPOS returns the smaller of Pos or one less than the length of Expression.

Pos

The character position at which the search is begun. If Pos is omitted and the
REVERSE_SEARCH keyword is not set, the search begins at the first character
(character position 0). If REVERSE_SEARCH is set, the default is to start at the last
character in the string. If Pos is less than zero, zero is used for the starting position.
IDL Reference Guide STRPOS

1916
Keywords

REVERSE_OFFSET

Normally, the value of Pos is used as an offset from the beginning of the expression
towards the end. Set REVERSE_OFFSET to use it as an offset from the last character
of the string moving towards the beginning. This keyword makes it easy to position
the starting point of the search at a fixed offset from the end of the string.

REVERSE_SEARCH

STRPOS usually starts at Pos and moves toward the end of the string looking for a
match. If REVERSE_SEARCH is set, the search instead moves towards the
beginning of the string.

Examples

Example 1

Find the position of the string “fun” within the string “IDL is fun” and print the result
by entering:

PRINT, STRPOS('IDL is fun', 'fun')

IDL prints:

 7

Example 2

The REVERSE_SEARCH keyword to the STRPOS function makes it easy to find
the last occurrence of a substring within a string. In the following example, we search
for the last occurrence of the letter “I” (or “i”) in a sentence:

sentence = 'IDL is fun.'
sentence = STRUPCASE(sentence)
lasti = STRPOS(sentence, 'I', /REVERSE_SEARCH)
PRINT, lasti

This results in:

4

Note that although REVERSE_SEARCH tells STRPOS to begin searching from the
end of the string, the STRPOS function still returns the position of the search string
from the beginning of the string (where 0 is the position of the first character).
STRPOS IDL Reference Guide

 1917
Version History

Introduced: Original

See Also

STRMID, STRPUT, STRTRIM
IDL Reference Guide STRPOS

1918
STRPUT

The STRPUT procedure inserts the contents of one string into another. The source
string, Source, is inserted into the destination string, Destination, starting at the given
position, Position. Characters in Destination before the starting position and after the
starting position plus the length of Source remain unchanged. The length of the
destination string is not changed. If the insertion extends past the end of the
destination, it is clipped at the end.

Syntax

STRPUT, Destination, Source [, Position]

Arguments

Destination

The named string variable into which Source is inserted. Destination must be a
named variable of type string. If it is an array, Source is inserted into every element of
the array.

Source

A scalar string to be inserted into Destination. If this argument is not a string, it is
converted using IDL’s default formatting rules.

Position

The character position at which the insertion is begun. If Position is omitted, the
insertion begins at the first character (character position 0). If Position is less than
zero, zero is used for the initial position.

Keywords

None.

Examples

If the variable A contains the string “IBM is fun”, the substring “IBM” can be
overwritten with the string “IDL” by entering:

STRPUT, A, 'IDL', 0
STRPUT IDL Reference Guide

 1919
The following commands demonstrate the clipping of output that extends past the end
of the destination string:

STRPUT, A, 'FUNNY', 7
PRINT, A

IDL prints:

IDL is FUN

Version History

Introduced: Original

See Also

STRMID, STRPOS, STRTRIM
IDL Reference Guide STRPUT

1920
STRSPLIT

The STRSPLIT function splits its input String argument into separate substrings,
according to the specified delimiter or regular expression. By default, the position of
the substrings is returned. The EXTRACT keyword can be used to cause STRSPLIT
to return an array containing the substrings.

Syntax

Result = STRSPLIT(String [, Pattern] [, COUNT=variable] [, ESCAPE=string |
, /REGEX [, /FOLD_CASE]] [, /EXTRACT | , LENGTH=variable]
[, /PRESERVE_NULL])

Return Value

Returns an array containing either the positions of the substrings or the substrings
themselves (if the EXTRACT keyword is specified).

Arguments

String

A scalar string to be split into substrings.

Pattern

Pattern can contain one of two types of information:

• A string containing the character codes that are considered to be separators. In
this case, IDL performs a simple string search for those characters. This
method is simple and fast.

• A regular expression, as implemented by the STREGEX function, which is
used by IDL to match the separators. This method is slower and more complex,
but can handle extremely complicated input strings.

Pattern is an optional argument. If it is not specified, STRSPLIT defaults to splitting
on spans of whitespace (space or tab characters) in String.
STRSPLIT IDL Reference Guide

 1921
Keywords

COUNT

Set this keyword to a named variable that will contain the number of matched
substrings returned by STRSPLIT. This value will be 0 if either of the String or
Pattern arguments is null. Otherwise, it will cointain the number of elements in the
Result array.

ESCAPE

When doing simple pattern matching, the ESCAPE keyword can be used to specify
any characters that should be considered to be “escape” characters. Preceding any
character with an escape character prevents STRSPLIT from treating it as a separator
character even if it is found in Pattern.

Note that if the EXTRACT keyword is set, STRSPLIT will automatically remove the
escape characters from the resulting substrings. If EXTRACT is not specified,
STRSPLIT cannot perform this editing, and the returned position and offsets will
include the escape characters.

For example:

print, STRSPLIT('a\,b', ',', ESCAPE='\', /EXTRACT)

IDL prints:

a,b

ESCAPE cannot be specified with the FOLD_CASE or REGEX keywords.

EXTRACT

By default, STRSPLIT returns an array of character offsets into String that indicate
where the substrings are located. These offsets, along with the lengths available from
the LENGTH keyword can be used later with STRMID to extract the substrings. Set
EXTRACT to bypass this step, and cause STRSPLIT to return the substrings.
EXTRACT cannot be specified with the LENGTH keyword.

FOLD_CASE

Indicates that the regular expression matching should be done in a case-insensitive
fashion. FOLD_CASE can only be specified if the REGEX keyword is set, and
cannot be used with the ESCAPE keyword.
IDL Reference Guide STRSPLIT

1922
LENGTH

Set this keyword to a named variable to receive the lengths of the substrings. Together
with this result of this function, LENGTH can be used with the STRMID function to
extract the matched substrings. The LENGTH keyword cannot be used with the
EXTRACT keyword.

PRESERVE_NULL

Normally, STRSPLIT will not return null length substrings unless there are no non-
null values to report, in which case STRSPLIT will return a single null string. Set
PRESERVE_NULL to cause all null substrings to be returned.

REGEX

For complex splitting tasks, the REGEX keyword can be specified. In this case,
Pattern is taken to be a regular expression to be matched against String to locate the
separators. If REGEX is specified and Pattern is not, the default Pattern is the regular
expression:

'[' + STRING(9B) + ']+'

which means “any series of one or more space or tab characters” (9B is the byte value
of the ASCII TAB character).

Note that the default Pattern contains a space after the [character.

The REGEX keyword cannot be used with the ESCAPE keyword.

Note
You must call the STRSPLIT procedure with the /REGEX keyword when the target
string is more than one character.

Examples

Example 1

To split a string on spans of whitespace and replace them with hyphens:

Str = 'STRSPLIT chops up strings.'
print, STRJOIN(STRSPLIT(Str, /EXTRACT), '-')

IDL prints:

STRSPLIT-chops-up-strings.
STRSPLIT IDL Reference Guide

 1923
Example 2

As an example of a more complex splitting task that can be handled with the simple
character-matching mode of STRSPLIT, consider a sentence describing different
colored ampersand characters. For unknown reasons, the author used commas to
separate all the words, and used ampersands or backslashes to escape the commas
that actually appear in the sentence (which therefore should not be treated as
separators). The unprocessed string looks like:

Str = 'There,was,a,red,&&&,,a,yellow,&&\,,and,a,blue,\&.'

We use STRSPLIT to break this line apart, and STRJOIN to reassemble it as a
standard blank-separated sentence:
IDL Reference Guide STRSPLIT

1924
S = STRSPLIT(Str, ',', ESCAPE='&\', /EXTRACT)
PRINT, STRJOIN(S, ' ')

IDL prints:

There was a red &, a yellow &, and a blue &.

Example 3

Strings separated by multi-character delimiters cannot be split using the simple
character matching mode of STRSPLIT. Such delimiters require the use of a regular
expression. For instance, consider splitting the following string on double ampersand
boundaries.

str = ‘red&&blue&&yellow&&odds&ends’

The desired result of such splitting would be four strings, with the values ‘red’,
‘blue’, ‘yellow’, and ‘odds&ends’. You might be tempted to use STRSPLIT as
follows:

PRINT, STRSPLIT(str,’&&’,/EXTRACT)

which causes IDL to print:

red blue yellow odds ends

IDL split the string on single ampersand boundaries, yielding 5 strings instead of the
desired 4. When using the simple character matching mode of STRSPLIT, the
characters in the Pattern argument specify a set of possible single character
delimiters. The order of these characters is unimportant, and specifying a character
more than once has no effect (the extras are ignored).

To properly split the above string using a regular expression:

print, strsplit(str,’&&’,/EXTRACT, /REGEX)

producing the desired IDL output:

red blue yellow odds&ends

Example 4

Finally, suppose you had a complicated string, in which every token was preceded by
the count of characters in that token, with the count enclosed in angle brackets:

str = '<4>What<1>a<7>tangled<3>web<2>we<6>weave.'

This is too complex to handle with simple character matching, but can be easily
handled using the regular expression '<[0-9]+>' to match the separators. This regular
expression can be read as “an opening angle bracket, followed by one or more
STRSPLIT IDL Reference Guide

 1925
numeric characters between 0 and 9, followed by a closing angle bracket.” The
STRJOIN function is used to glue the resulting substrings back together:

S = STRSPLIT(str,'<[0-9]+>',/EXTRACT,/REGEX)
PRINT, STRJOIN(S, ' ')

IDL prints:

What a tangled web we weave.

Version History

Introduced: 5.3

See Also

STRCMP, STRJOIN, STRMATCH, STREGEX, STRMID, STRPOS
IDL Reference Guide STRSPLIT

1926
STRTRIM

The STRTRIM function removes leading and/or trailing blank from the input String.

Syntax

Result = STRTRIM(String [, Flag])

Return Value

Returns a copy of string with the specified blank spaces removed.

Arguments

String

The string to have leading and/or trailing blanks removed. If this argument is not a
string, it is converted using IDL’s default formatting rules. If it is an array, the result
is an array with the same structure where each element contains a trimmed copy of
the corresponding element of String.

Flag

A value that controls the action of STRTRIM. If Flag is zero or not present, trailing
blanks are removed. Leading blanks are removed if it is equal to 1. Both are removed
if it is equal to 2.

Examples

Converting variables to string type often results in undesirable leading blanks. For
example, the following command converts the integer 56 to string type:

C = STRING(56)

Entering the command:

HELP, C

IDL prints:

C STRING = ' 56'

which shows that there are six leading spaces before the characters 5 and 6. To
remove these leading blanks, enter the command:

C = STRTRIM(C, 1)
STRTRIM IDL Reference Guide

 1927
To confirm that the blanks were removed, enter:

HELP, C

IDL prints:

C STRING = '56'

Version History

Introduced: Original

See Also

STRMID, STRPOS, STRPUT, STRSPLIT
IDL Reference Guide STRTRIM

1928
STRUCT_ASSIGN

The IDL “=” operator is unable to assign a structure value to a structure of a different
type. The STRUCT_ASSIGN procedure performs “relaxed structure assignment,”
which is a field-by-field copy of a structure to another structure. Fields are copied
according to the following rules:

1. Any fields found in the destination structure that are not found in the source
structure are “zeroed” (set to zero, the empty string, or a null pointer or object
reference depending on the type of field).

2. Any fields in the source structure that are not found in the destination structure
are quietly ignored.

3. Any fields that are found in both the source and destination structures are
copied one at a time. If necessary, type conversion is done to make their types
agree. If a field in the source structure has fewer data elements than the
corresponding field in the destination structure, then the “extra” elements in
the field in the destination structure are zeroed. If a field in the source structure
has more elements than the corresponding field in the destination structure, the
extra elements are quietly ignored.

Relaxed structure assignment is especially useful when restoring structures from disk
files into an environment where the structure definition has changed. See the
description o f the RELAXED_STRUCTURE_ASSIGNMENT keyword to the
RESTORE procedure for additional details. “Relaxed Structure Assignment” in
Chapter 7 of the Building IDL Applications manual provides a more in-depth
discussion of the structure-definition process.

Syntax

STRUCT_ASSIGN, Source, Destination [, /NOZERO] [, /VERBOSE]

Arguments

Source

A named variable or element of an array containing a structure, the contents of which
will be assigned to the structure specified by the Destination argument. Source can be
an object reference if STRUCT_ASSIGN is called inside an object method.
STRUCT_ASSIGN IDL Reference Guide

 1929
Destination

A named variable containing a structure into which the contents of the structure
specified by the Source argument will be inserted. Destination can be an object
reference if STRUCT_ASSIGN is called inside an object method.

Keywords

NOZERO

Normally, any fields found in the destination structure that are not found in the source
structure are zeroed. Set NOZERO to prevent this action and leave the original
contents of such fields unchanged.

VERBOSE

Set this keyword to cause STRUCT_ASSIGN to issue informational messages about
any incompatibilities that prevent data from being copied.

Examples

The following example creates two anonymous structures, then uses
STRUCT_ASSIGN to insert the contents of the first into the second:

source = { a:FINDGEN(4), b:12 }
dest = { a:INDGEN(2), c:20 }
STRUCT_ASSIGN, /VERBOSE, source, dest

IDL prints:

% STRUCT_ASSIGN: <Anonymous> tag A is longer than destination.
The end will be clipped.

% STRUCT_ASSIGN: Destination lacks <Anonymous> tag B. Not copied.

After assignment, dest contains a two-element integer array [0, 1] in its field A and
the integer 0 in its field C. Since dest does not have a field B, field B from source
is not copied.

Version History

Introduced: 5.1
IDL Reference Guide STRUCT_ASSIGN

1930
STRUCT_HIDE

The IDL HELP procedure displays information on all known structures or object
classes when used with the STRUCTURES or OBJECTS keywords. Although this is
usually the desired behavior, authors of large vertical applications or library routines
may wish to prevent IDL from displaying information on structures or objects that are
not part of their public interface, but which exist solely in support of the internal
implementation. The STRUCT_HIDE procedure is used to mark such structures or
objects as hidden. Items so marked are not displayed by HELP, /STRUCTURE unless
the user sets the FULL keyword, but are otherwise unaltered.

Note
STRUCT_HIDE is primarily intended for use with named structures or objects.
Although it can be safely used with anonymous structures, there is no visible benefit
to doing so as anonymous structures are hidden by default.

Tip
Authors of objects will often place a call to STRUCT_HIDE in the _ _DEFINE
procedure that defines the structure.

Syntax

STRUCT_HIDE, Arg1 [, Arg2, ..., Argn]

Arguments

Arg1, ..., Argn

If an argument is a variable of one of the following types, its underlying structure
and/or object definition is marked as being hidden from the HELP procedure’s
default output:

• Structure

• Pointer that refers to a heap variable of structure type

• Object Reference

Any arguments that are not one of these types are quietly ignored. No change is made
to the value of any argument.
STRUCT_HIDE IDL Reference Guide

 1931
Keywords

None

Examples

This example shows how a structure can be hidden if an application designer doesn’t
want end-users to be able to see it, but variables are not hidden. To create a named
structure called bullwinkle and prevent it from appearing in the HELP procedure’s
default output, do the following.

; Define a variable containing the named structure:
tmp = { bullwinkle, moose:1, squirrel:0 }
; IDL returns BULLWINKLE in addition to the other system variables.
HELP, /STRUCTURE, /BRIEF
; Next, specifically hide the structure using
; the STRUCT_HIDE procedure.
STRUCT_HIDE, tmp
; This time IDL returns the system variables but
; not the BULLWINKLE structure.
HELP, /STRUCTURE, /BRIEF
; IDL returns the variable tmp showing that it is
; a named structure called BULLWINKLE.
HELP, tmp

Version History

Introduced: 5.3

See Also

COMPILE_OPT
IDL Reference Guide STRUCT_HIDE

1932
STRUPCASE

The STRUPCASE function returns a copy of String converted to upper case. Only
lowercase characters are modified—uppercase and non-alphabetic characters are
copied without change.

Syntax

Result = STRUPCASE(String)

Return Value

Returns a string composed of uppercase characters.

Arguments

String

The string to be converted. If this argument is not a string, it is converted using IDL’s
default formatting rules. If it is an array, the result is an array with the same structure
where each element contains an uppercase copy of the corresponding element of
String.

Keywords

None.

Examples

To print an uppercase version of the string “IDL is fun”, enter:

PRINT, STRUPCASE('IDL is fun')

IDL prints:

IDL IS FUN

Version History

Introduced: Original
STRUPCASE IDL Reference Guide

 1933
See Also

STRLOWCASE
IDL Reference Guide STRUPCASE

1934
SURFACE

The SURFACE procedure draws a wire-mesh representation of a two-dimensional
array projected into two dimensions, with hidden lines removed.

Restrictions

If the (X, Y) grid is not regular or nearly regular, errors in hidden line removal occur.
The TRIGRID and TRIANGULATE routines can be used to interpolate irregularly-
gridded data points to a regular grid before plotting.

If the T3D keyword is set, the 3-D to 2-D transformation matrix contained in !P.T
must project the Z axis to a line parallel to the device Y axis, or errors will occur.

The surface lines may blend together when drawing large arrays, especially on low or
medium resolution displays. Use the REBIN or CONGRID procedure to resample the
array to a lower resolution before plotting.

Syntax

SURFACE, Z [, X, Y] [, AX=degrees] [, AZ=degrees] [, BOTTOM=index]
[, /HORIZONTAL] [, /LEGO] [, /LOWER_ONLY | , /UPPER_ONLY]
[, MAX_VALUE=value] [, MIN_VALUE=value] [, /SAVE] [, SHADES=array]
[, SKIRT=value] [, /XLOG] [, /YLOG] [, ZAXIS={1 | 2 | 3 | 4}] [, /ZLOG]

Graphics Keywords: Accepts all graphics keywords accepted by PLOT except for:
PSYM, SYMSIZE. See “Graphics Keywords Accepted” on page 1938.

Arguments

Z

The two-dimensional array to be displayed. If X and Y are provided, the surface is
plotted as a function of the (X, Y) locations specified by their contents. Otherwise, the
surface is generated as a function of the array index of each element of Z.

This argument is converted to double-precision floating-point before plotting. Plots
created with SURFACE are limited to the range and precision of double-precision
floating-point values.

X

A vector or two-dimensional array specifying the X coordinates of the grid. If this
argument is a vector, each element of X specifies the X coordinate for a column of Z
SURFACE IDL Reference Guide

 1935
(e.g., X[0] specifies the X coordinate for Z[0,*]). If X is a two-dimensional array,
each element of X specifies the X coordinate of the corresponding point in Z (Xij
specifies the X coordinate for Zij).

This argument is converted to double-precision floating-point before plotting.

Y

A vector or two-dimensional array specifying the Y coordinates of the grid. If this
argument is a vector, each element of Y specifies the Y coordinate for a row of Z (e.g.,
Y[0] specifies the Y coordinate for Z[*,0]). If Y is a two-dimensional array, each
element of Y specifies the Y coordinate of the corresponding point in Z (Yij specifies
the Y coordinate for Zij).

This argument is converted to double-precision floating-point before plotting.

Keywords

AX

This keyword specifies the angle of rotation, about the X axis, in degrees towards the
viewer. This keyword is effective only if !P.T3D is not set. If !P.T3D is set, the three-
dimensional to two-dimensional transformation used by SURFACE is taken from the
4 by 4 array !P.T.

The surface represented by the two-dimensional array is first rotated, AZ (see below)
degrees about the Z axis, then by AX degrees about the X axis, tilting the surface
towards the viewer (AX > 0), or away from the viewer.

The AX and AZ keyword parameters default to +30 degrees if omitted and !P.T3D is
0.

The three-dimensional to two-dimensional transformation represented by AX and
AZ, can be saved in !P.T by including the SAVE keyword.

AZ

This keyword specifies the counterclockwise angle of rotation about the Z axis. This
keyword is effective only if !P.T3D is not set. The order of rotation is AZ first, then
AX.

BOTTOM

The color index used to draw the bottom surface. If not specified, the bottom is drawn
with the same color as the top.
IDL Reference Guide SURFACE

1936
HORIZONTAL

A keyword flag which if set causes SURFACE to only draw lines across the plot
perpendicular to the line of sight. The default is for SURFACE to draw both across
the plot and from front to back.

LEGO

Set this keyword to produce stacked histogram-style plots. Each data value is
rendered as a box covering the XY extent of the cell and with a height proportional to
the Z value.

If the X and Y arguments are specified, only Nx-1 columns and Ny-1 rows are drawn.
(This means that the last row and column of array data are not displayed.) The
rectangular area covered by Z[i, j] is given by X[i], X[i+1], Y[j], and Y[j+1].

LOWER_ONLY

Set this keyword to draw only the lower surface of the object. By default, both
surfaces are drawn.

MAX_VALUE

The maximum value to be plotted. If this keyword is present, data values greater than
the value of MAX_VALUE are treated as missing and are not plotted. Note that the
IEEE floating-point value NaN is also treated as missing data. (See “Special
Floating-Point Values” in Chapter 18 of the Building IDL Applications manual for
more information on IEEE floating-point values.)

MIN_VALUE

The minimum value to be plotted. If this keyword is present, data values less than the
value of MIN_VALUE are treated as missing and are not plotted. Note that the IEEE
floating-point value NaN is also treated as missing data. (See “Special Floating-Point
Values” in Chapter 18 of the Building IDL Applications manual for more information
on IEEE floating-point values.)

SAVE

Set this keyword to save the 3-D to 2-D transformation matrix established by
SURFACE in the system variable field !P.T. Use this keyword when combining the
output of SURFACE with additional output from other routines in the same plot.
SURFACE IDL Reference Guide

 1937
When used with AXIS, the SAVE keyword parameter saves the scaling parameters
established by the call in the appropriate axis system variable, !X, !Y, or !Z. This
causes subsequent overplots to be scaled to the new axis.

For example, to display a two-dimensional array using SURFACE, and to then
superimpose contours over the surface (this example assumes that !P.T3D is zero, its
default value.), enter the following commands:

; Make a surface plot and save the transformation:
SURFACE, Z, /SAVE

; Make contours, don’t erase, use the 3-D to 2-D transform placed
; in !P.T by SURFACE:
CONTOUR, Z, /NOERASE, /T3D

To display a surface and to then display a flat contour plot, registered above the
surface:

; Make the surface, save transform:
SURFACE, Z, /SAVE

; Now display a flat contour plot, at the maximum Z value
; (normalized coordinates):
CONTOUR, Z, /NOERASE, /T3D, ZVALUE=1.0

You can display the contour plot below the surface with by using a ZVALUE of 0.0.

SHADES

This keyword allows user-specified coloring of the mesh surfaces. Set this keyword to
an array that specifies the color index of the lines emanating from each data point
toward the top and right.

Warning
When using the SHADES keyword on True Color devices, we recommend that
decomposed color support be turned off, by setting DEVICE, DECOMPOSED=0.
See “DEVICE” on page 488 and “DECOMPOSED” on page 3795.

SKIRT

This keyword represents a Z-value at which to draw a skirt around the array. The Z
value is expressed in data units. The default is no skirt.

If the skirt is drawn, each point on the four edges of the surface is connected to a
point on the skirt which has the given Z value, and the same X and Y values as the
edge point. In addition, each point on the skirt is connected to its neighbor.
IDL Reference Guide SURFACE

1938
UPPER_ONLY

Set this keyword to draw only the upper surface of the object. By default, both
surfaces are drawn.

XLOG

Set this keyword to specify a logarithmic X axis.

YLOG

Set this keyword to specify a logarithmic Y axis.

ZAXIS

This keyword specifies the placement of the Z axis for the SURFACE plot.

By default, SURFACE draws the Z axis at the upper left corner of the axis box. To
suppress the Z axis, use ZAXIS=-1 in the call. The position of the Z axis is
determined from the value of ZAXIS as follows: 1 = lower right, 2 = lower left, 3 =
upper left, and 4 = upper right.

ZLOG

Set this keyword to specify a logarithmic Z axis.

Graphics Keywords Accepted

See Appendix B, “Graphics Keywords”, for the description of graphics and plotting
keywords not listed above. BACKGROUND, CHARSIZE, CHARTHICK, CLIP,
COLOR, DATA, DEVICE, FONT, LINESTYLE, NOCLIP, NODATA, NOERASE,
NORMAL, POSITION, SUBTITLE, T3D, THICK, TICKLEN, TITLE,
[XYZ]CHARSIZE, [XYZ]GRIDSTYLE, [XYZ]MARGIN, [XYZ]MINOR,
[XYZ]RANGE, [XYZ]STYLE, [XYZ]THICK, [XYZ]TICKFORMAT,
[XYZ]TICKINTERVAL, [XYZ]TICKLAYOUT, [XYZ]TICKLEN,
[XYZ]TICKNAME, [XYZ]TICKS, [XYZ]TICKUNITS, [XYZ]TICKV,
[XYZ]TICK_GET, [XYZ]TITLE, ZVALUE.

Examples

; Create a simple dataset to display:
D = DIST(30)

; Plot a simple wire-mesh surface representation of D:
SURFACE, D
SURFACE IDL Reference Guide

 1939
; Create a wire-mesh plot of D with a title and a "skirt" around
; the edges of the dataset at Z=0:
SURFACE, D, SKIRT=0.0, TITLE = 'Surface Plot', CHARSIZE = 2

Version History

Introduced: Original

See Also

CONTOUR, ISURFACE, SHADE_SURF
IDL Reference Guide SURFACE

1940
SURFR

The SURFR procedure sets up 3-D transformations. This procedure duplicates the
rotation, translation, and scaling features of the SURFACE routine, but does not
display any data. The resulting transformations are stored in the !P.T system variable.

This routine is written in the IDL language. Its source code can be found in the file
surfr.pro in the lib subdirectory of the IDL distribution.

Syntax

SURFR [, AX=degrees] [, AZ=degrees]

Arguments

None.

Keywords

AX

Angle of rotation about the X axis. The default is 30 degrees.

AZ

Angle of rotation about the Z axis. The default is 30 degrees.

Version History

Introduced: Original

See Also

SCALE3, SCALE3D, T3D
SURFR IDL Reference Guide

 1941
SVDC

The SVDC procedure computes the Singular Value Decomposition (SVD) of a
square (n x n) or non-square (n x m) array as the product of orthogonal and diagonal
arrays. SVD is a very powerful tool for the solution of linear systems, and is often
used when a solution cannot be determined by other numerical algorithms.

The SVD of an (n x m) non-square array A is computed as the product of an (n x m)
column orthogonal array U, an (n x n) diagonal array SV, composed of the singular
values, and the transpose of an (n x n) orthogonal array V: A = U SV VT

SVDC is based on the routine svdcmp described in section 2.6 of Numerical Recipes
in C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Note
If you are working with complex inputs, instead use the LA_SVD procedure.

Syntax

SVDC, A, W, U, V [, /COLUMN] [, /DOUBLE] [, ITMAX=value]

Arguments

A

The square (n x n) or non-square (n x m) single- or double-precision floating-point
array to decompose.

W

On output, W is an n-element output vector containing the “singular values.”

U

On output, U is an n-column, m-row orthogonal array used in the decomposition of A.

V

On output, V is an n-column, n-row orthogonal array used in the decomposition of A.
IDL Reference Guide SVDC

1942
Keywords

COLUMN

Set this keyword if the input array A is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

ITMAX

Set this keyword to specify the maximum number of iterations. The default value is
30.

Examples

To find the singular values of an array A:

; Define the array A:
A = [[1.0, 2.0, -1.0, 2.5], $

[1.5, 3.3, -0.5, 2.0], $
[3.1, 0.7, 2.2, 0.0], $
[0.0, 0.3, -2.0, 5.3], $
[2.1, 1.0, 4.3, 2.2], $
[0.0, 5.5, 3.8, 0.2]]

; Compute the Singular Value Decomposition:
SVDC, A, W, U, V

; Print the singular values:
PRINT, W

IDL prints:

8.81973 2.65502 4.30598 6.84484

To verify the decomposition, use the relationship A = U ## SV ## TRANSPOSE(V),
where SV is a diagonal array created from the output vector W:

sv = FLTARR(4, 4)
FOR K = 0, 3 DO sv[K,K] = W[K]
result = U ## sv ## TRANSPOSE(V)
PRINT, result
SVDC IDL Reference Guide

 1943
IDL prints:

1.00000 2.00000 -1.00000 2.50000
 1.50000 3.30000 -0.500001 2.00000
 3.10000 0.700000 2.20000 0.00000
 2.23517e-08 0.300000 -2.00000 5.30000
 2.10000 0.999999 4.30000 2.20000
 -3.91155e-07 5.50000 3.80000 0.200000

This is the input array, to within machine precision.

Version History

Introduced: 4.0

See Also

CHOLDC, LA_SVD, LUDC, SVSOL, “Linear Systems” in Chapter 22 of the Using
IDL manual.
IDL Reference Guide SVDC

1944
SVDFIT

The SVDFIT function performs a least squares fit with optional error estimates.
Either a user-supplied function written in the IDL language or a built-in polynomial
can be used to fit the data.

SVDFIT is based on the routine svdfit described in section 15.4 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = SVDFIT(X, Y [, M] [, A=vector] [, CHISQ=variable] [, COVAR=variable]
[, /DOUBLE] [, FUNCTION_NAME=string] [, /LEGENDRE]
[, MEASURE_ERRORS=vector] [, SIGMA=variable] [, SING_VALUES=variable]
[, SINGULAR=variable] [, STATUS=variable] [, TOL=value]
[, VARIANCE=variable] [, YFIT=variable])

Return Value

Returns a vector of coefficients.

Arguments

X

An n-element vector of independent variables.

Y

A vector of dependent variables, the same length as X.

M

The number of coefficients in the fitting function. For polynomials, M is equal to the
degree of the polynomial + 1. If the M argument is not specified, you must supply
initial coefficient estimates using the A keyword. In this case, M is set equal to the
number of elements of the array specified by the A keyword.
SVDFIT IDL Reference Guide

 1945
Keywords

A

This keyword is both an input and output keyword. Set this keyword equal to a
variable containing a vector of initial estimates for the fitted function parameters. On
exit, SVDFIT returns in this variable a vector of coefficients that are improvements of
the initial estimates. If A is supplied, the M argument will be set equal to the number
of elements in the vector specified by A.

CHISQ

Set this keyword equal to a named variable that will contain the value of the
chi-sqaure goodness-of-fit.

COVAR

Set this keyword equal to a named variable that will contain the covariance matrix of
the fitted coefficients.

Note
The COVAR matrix depends only upon the independent variable X and (optionally)
the MEASURE_ERRORS. The values do not depend upon Y. See section 15.4 of
Numerical Recipes in C (Second Edition) for details.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

FUNCTION_NAME

Set this keyword equal to a string containing the name of a user-supplied IDL basis
function with M coefficients. If this keyword is omitted, and the LEGENDRE
keyword is not set, IDL assumes that the IDL procedure SVDFUNCT, found in the
file svdfunct.pro, located in the lib subdirectory of the IDL distribution, is to be
used. SVDFUNCT uses the basis functions for the fitting polynomial:

y A i()x
i

i 0=

M

∑=
IDL Reference Guide SVDFIT

1946
The function to be fit must be written as an IDL function and compiled prior to
calling SVDFIT. The function must accept values of X (a scalar), and M (a scalar). It
must return an M-element vector containing the basis functions.

See the “Examples” section below for an example function.

LEGENDRE

Set this keyword to use Legendre polynomials instead of the function specified by the
FUNCTION_NAME keyword. If the LEGENDRE keyword is set, the IDL uses the
function SVDLEG found in the file svdleg.pro, located in the lib subdirectory of
the IDL distribution.

MEASURE_ERRORS

Set this keyword to a vector containing standard measurement errors for each point
Y[i]. This vector must be the same length as X and Y.

Note
For Gaussian errors (e.g., instrumental uncertainties), MEASURE_ERRORS
should be set to the standard deviations of each point in Y. For Poisson or statistical
weighting, MEASURE_ERRORS should be set to SQRT(Y).

SIGMA

Set this keyword to a named variable that will contain the 1-sigma uncertainty
estimates for the returned parameters.

Note
If MEASURE_ERRORS is omitted, then you are assuming that the polynomial (or
your user-supplied model) is the correct model for your data, and therefore, no
independent goodness-of-fit test is possible. In this case, the values returned in
SIGMA are multiplied by SQRT(CHISQ/(N–M)), where N is the number of points
in X, and M is the number of coefficients. See section 15.2 of Numerical Recipes in
C (Second Edition) for details.

SING_VALUES

Set this keyword to a named variable in which to return the singular values from the
SVD. Singular values which have been removed will be set to zero.
SVDFIT IDL Reference Guide

 1947
SINGULAR

Set this keyword equal to a named variable that will contain the number of singular
values returned. This value should be 0. If not, the basis functions do not accurately
characterize the data.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

• STATUS = 0: The computation was successful.

• STATUS > 0: Singular values were found and were removed. STATUS
contains the number of singular values.

Note
If STATUS is not specified, any error messages will be output to the screen.

TOL

Set this keyword to the tolerance used when removing singular values. The default is
10-5 for single precision, and 2x10-12 for double precision (these defaults are
approximately 100 and 10000 times the machine precisions for single and double
precision, respectively).

Setting TOL to a larger value may remove coefficients that do not contribute to the
solution, which may reduce the errors on the remaining coefficients.

VARIANCE

Set this keyword equal to a named variable that will contain the variance (sigma
squared) of each coefficient M.

WEIGHTS

The WEIGHTS keyword is obsolete and has been replaced by the
MEASURE_ERRORS keyword. Code that uses the WEIGHTS keyword will continue
to work as before, but new code should use the MEASURE_ERRORS keyword. Note
that the definition of the MEASURE_ERRORS keyword is not the same as the
WEIGHTS keyword. Using the WEIGHTS keyword, 1/WEIGHTS[i] represents the
measurement error for each point Y[i]. Using the MEASURE_ERRORS keyword, the
measurement error is represented as simply MEASURE_ERRORS[i].
IDL Reference Guide SVDFIT

1948
YFIT

Set this keyword equal to a named variable that will contain the vector of calculated Y
values.

Examples

This example fits a function of the following form:

First, create the function in IDL, then create a procedure to perform the fit. Create the
following file called example_svdfit.pro:

PRO example_svdfit

; Provide an array of coefficients:
C = [7.77, 8.88, -9.99]
X = FINDGEN(100)/15.0 + 0.1
Y = C[0] + C[1] * SIN(2*X)/X + C[2] * COS(4.*X)^2.

; Set uncertainties to 5%:
measure_errors = 0.05 * Y

; Provide an initial guess:
A=[1,1,1]
result_a = SVDFIT(X, Y, A=A, MEASURE_ERRORS=measure_errors, $
 FUNCTION_NAME='myfunct', SIGMA=SIGMA, YFIT=YFIT)

; Plot the results:
PLOT, X, YFIT
FOR I = 0, N_ELEMENTS(A)-1 DO $
 PRINT, I, result_a[I], SIGMA[I], C[I],$
 FORMAT = $
 '(" result_a (",I1,") = ",F7.4," +- ",F7.4," VS. ",F7.4)'
END

FUNCTION myfunct, X ,M
 RETURN,[[1.0], [SIN(2*X)/X], [COS(4.*X)^2.]]
END

F x() A 0() A 1() 2x()
x

----------- A 2() 4x()cos
2

+sin+=
SVDFIT IDL Reference Guide

 1949
Place the file example_svdfit.pro in a directory in the IDL search path, and enter
example_svdfit at the command prompt to create the plot.

In addition to creating the above plot, IDL prints:

result_a (0) = 7.7700 +- 0.0390 VS. 7.7700
result_a (1) = 8.8800 +- 0.0468 VS. 8.8800
result_a (2) = -9.9900 +- 0.0506 VS. -9.9900

Version History

Introduced: Original

SING_VALUES, STATUS, and TOL keywords added: 5.6

See Also

CURVEFIT, GAUSSFIT, LINFIT, LMFIT, POLY_FIT, REGRESS, SFIT
IDL Reference Guide SVDFIT

1950
SVSOL

The SVSOL function uses “back-substitution” to solve a set of simultaneous linear
equations Ax = b, given the U, W, and V arrays returned by the SVDC procedure.
None of the input arguments are modified, making it possible to call SVSOL multiple
times with different right hand vectors, B.

SVSOL is based on the routine svbksb described in section 2.6 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = SVSOL(U, W, V, B [, /COLUMN] [, /DOUBLE])

Return Value

Returns the solution to the linear system using decomposition and back substitution.

Arguments

U

An n-column, m-row orthogonal array used in the decomposition of A. Normally, U is
returned from the SVDC procedure.

W

An n-element vector containing “singular values.” Normally, W is returned from the
SVDC procedure. Small values (close to machine floating-point precision) should be
set to zero prior to calling SVSOL.

V

An n-column, n-row orthogonal array used in the decomposition of A. Normally, V is
returned from the SVDC procedure.

B

An m-element vector containing the right hand side of the linear system Ax = b.
SVSOL IDL Reference Guide

 1951
Keywords

COLUMN

Set this keyword if the input arrays U and V are in column-major format (composed
of column vectors) rather than in row-major format (composed of row vectors).

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

To solve the linear system Ax = b using Singular-value decomposition and back
substitution, begin with an array A which serves as the coefficient array:

; Define the array A:
A = [[1.0, 2.0, -1.0, 2.5], $

[1.5, 3.3, -0.5, 2.0], $
[3.1, 0.7, 2.2, 0.0], $
[0.0, 0.3, -2.0, 5.3], $
[2.1, 1.0, 4.3, 2.2], $
[0.0, 5.5, 3.8, 0.2]]

; Define the right-hand side vector B:
B = [0.0, 1.0, 5.3, -2.0, 6.3, 3.8]

; Decompose A:
SVDC, A, W, U, V

; Compute the solution and print the result:
PRINT, SVSOL(U, W, V, B)

IDL prints:

1.00095 0.00881170 0.984176 -0.0100954

This is the correct solution.

Version History

Introduced: 4.0

See Also

CRAMER, GS_ITER, LU_COMPLEX, CHOLSOL, LUSOL, SVDC, TRISOL
IDL Reference Guide SVSOL

1952
SWAP_ENDIAN

The SWAP_ENDIAN function reverses the byte ordering of arbitrary scalars, arrays
or structures. It can make “big endian” number “little endian” and vice-versa.

Note
The BYTEORDER procedure can be used to reverse the byte ordering of scalars
and arrays (SWAP_ENDIAN also allows structures).

This routine is written in the IDL language. Its source code can be found in the file
swap_endian.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = SWAP_ENDIAN(Variable [, /SWAP_IF_BIG_ENDIAN]
[, /SWAP_IF_LITTLE_ENDIAN])

Return Value

SWAP_ENDIAN returns values of the same type and structure as the input value,
with the pertinent bytes reversed.

Arguments

Variable

The named variable—scalar, array, or structure—to be swapped.

Keywords

SWAP_IF_BIG_ENDIAN

If this keyword is set, the swap request will only be performed if the platform running
IDL uses “big endian” byte ordering. On little endian machines, the SWAP_ENDIAN
request quietly returns without doing anything. Note that this keyword does not refer
to the byte ordering of the input data, but to the computer hardware.

SWAP_IF_LITTLE_ENDIAN

If this keyword is set, the swap request will only be performed if the platform running
IDL uses “little endian” byte ordering. On big endian machines, the SWAP_ENDIAN
SWAP_ENDIAN IDL Reference Guide

 1953
request quietly returns without doing anything. Note that this keyword does not refer
to the byte ordering of the input data, but to the computer hardware.

Examples

; Reverse the byte order of A:
A = SWAP_ENDIAN(A)

Version History

Introduced: Pre 4.0

SWAP_IF_BIG_ENDIAN and SWAP_IF_LITTLE_ENDIAN keywords added: 5.6

See Also

BYTEORDER, SWAP_ENDIAN_INPLACE
IDL Reference Guide SWAP_ENDIAN

1954
SWAP_ENDIAN_INPLACE

The SWAP_ENDIAN_INPLACE procedure reverses the byte ordering of arbitrary
scalars, arrays or structures. It can make “big endian” number “little endian” and
vice-versa.

Note
The BYTEORDER procedure can be used to reverse the byte ordering of scalars
and arrays (SWAP_ENDIAN_INPLACE also allows structures).

SWAP_ENDIAN_INPLACE differs from the SWAP_ENDIAN function in that it
alters the input data in place rather than making a copy as does SWAP_ENDIAN.
SWAP_ENDIAN_INPLACE can therefore be more efficient, if a copy of the data is
not needed. The pertinent bytes in the input variable are reversed.

This routine is written in the IDL language. Its source code can be found in the file
swap_endian_inplace.pro in the lib subdirectory of the IDL distribution.

Syntax

SWAP_ENDIAN_INPLACE, Variable [, /SWAP_IF_BIG_ENDIAN]
[, /SWAP_IF_LITTLE_ENDIAN]

Arguments

Variable

The named variable—scalar, array, or structure—to be swapped.

Keywords

SWAP_IF_BIG_ENDIAN

If this keyword is set, the swap request will only be performed if the platform running
IDL uses “big endian” byte ordering. On little endian machines, the
SWAP_ENDIAN_INPLACE request quietly returns without doing anything. Note
that this keyword does not refer to the byte ordering of the input data, but to the
computer hardware.
SWAP_ENDIAN_INPLACE IDL Reference Guide

 1955
SWAP_IF_LITTLE_ENDIAN

If this keyword is set, the swap request will only be performed if the platform running
IDL uses “little endian” byte ordering. On big endian machines, the
SWAP_ENDIAN_INPLACE request quietly returns without doing anything. Note
that this keyword does not refer to the byte ordering of the input data, but to the
computer hardware.

Examples

Reverse the byte order of A:

SWAP_ENDIAN_INPLACE, A

Version History

Introduced: 5.6

See Also

BYTEORDER, SWAP_ENDIAN
IDL Reference Guide SWAP_ENDIAN_INPLACE

1956
SWITCH

The SWITCH statement is used to select one statement for execution from multiple
choices, depending upon the value of the expression following the word SWITCH.

Each statement that is part of a SWITCH statement is preceded by an expression that
is compared to the value of the SWITCH expression. SWITCH executes by
comparing the SWITCH expression with each selector expression in the order
written. If a match is found, program execution jumps to that statement and execution
continues from that point. Whereas CASE executes at most one statement within the
CASE block, SWITCH executes the first matching statement and any following
statements in the SWITCH block. Once a match is found in the SWITCH block,
execution falls through to any remaining statements. For this reason, the BREAK
statement is commonly used within SWITCH statements to force an immediate exit
from the SWITCH block.

The ELSE clause of the SWITCH statement is optional. If included, it matches any
selector expression, causing its code to be executed. For this reason, it is usually
written as the last clause in the switch statement. The ELSE statement is executed
only if none of the preceding statement expressions match. If an ELSE clause is not
included and none of the values match the selector, program execution continues
immediately below the SWITCH without executing any of the SWITCH statements.

SWITCH is similar to the CASE statement. For more information on using SWITCH
and other IDL program control statements, as well as the differences between
SWITCH and CASE, see Chapter 12, “Program Control” in the Building IDL
Applications manual.

Syntax

SWITCH expression OF

expression: statement

...

expression: statement

ELSE: statement

ENDSWITCH
SWITCH IDL Reference Guide

 1957
Examples

This example illustrates how, unlike CASE, SWITCH executes the first matching
statement and any following statements in the SWITCH block:

x=2

SWITCH x OF
1: PRINT, 'one'
2: PRINT, 'two'
3: PRINT, 'three'
4: PRINT, 'four'

ENDSWITCH

IDL Prints:

two
three
four

Version History

Introduced: 5.4

See Also

CASE
IDL Reference Guide SWITCH

1958
SYSTIME

The SYSTIME function returns the current time as either a date/time string, as the
number of seconds elapsed since 1 January 1970, or as a Julian date/time value.

Syntax

String = SYSTIME([0 [, ElaspedSeconds]] [, /UTC])

or

Seconds = SYSTIME(1 | /SECONDS)

or

Julian = SYSTIME(/JULIAN [, /UTC])

Return Value

Returns the specified time.

Arguments

SecondsFlag

If SecondsFlag is present and nonzero, the number of seconds elapsed since
1 January 1970 UTC is returned as a double-precision, floating-point value.

Otherwise, if SecondsFlag is not present or zero, a scalar string containing the
date/time is returned in standard 24-character system format as follows:

DOW MON DD HH:MM:SS YEAR

where DOW is the day of the week, MON is the month, DD is the day of the month,
HH is the hour, MM is the minute, SS is the second, and YEAR is the year. By
default, the date/time string is adjusted for the local time zone; use the UTC keyword
to override this default.

Note
If the JULIAN or SECONDS keyword is set, the SecondsFlag argument is ignored.

ElapsedSeconds

If the SecondsFlag argument is zero, the ElapsedSeconds argument may be set to the
number of seconds past 1 January 1970 UTC. In this case, SYSTIME returns the
SYSTIME IDL Reference Guide

 1959
corresponding date/time string (rather than the string for the current time). The
returned date/time string is adjusted for the local time zone, unless the UTC keyword
is set. If this argument is present, the JULIAN keyword is not allowed.

Keywords

JULIAN

Set this keyword to specify that the current time is to be returned as a a double
precision floating value containing the current Julian date/time. By default, the
current time is adjusted for the local time zone; use the UTC keyword to override this
default. This keyword is not allowed if the ElapsedSeconds argument is present.

Note
If the JULIAN keyword is set, a small offset is added to the returned Julian date to
eliminate roundoff errors when calculating the day fraction from hours, minutes,
and seconds. This offset is given by the larger of EPS and EPS*Julian, where Julian
is the integer portion of the Julian date, and EPS is the EPS field from MACHAR.
For typical Julian dates, this offset is approximately 6x10–10 (which corresponds to
5x10–5 seconds). This offset ensures that if the Julian date is converted back to hour,
minute, and second, then the hour, minute, and second will have the same integer
values as were originally input.

SECONDS

Set this keyword to specify that the current time is to be returned as the number of
seconds elapsed since 1 January 1970 UTC. This option is equivalent to setting the
SecondsFlag argument to a non-zero value.

UTC

Set this keyword to specify that the value returned by SYSTIME is to be returned in
Universal Time Coordinated (UTC) rather than being adjusted for the current time
zone. UTC time is defined as Greenwich Mean Time updated with leap seconds.

Examples

Print today’s date as a string:

PRINT, SYSTIME()

Print today’s date as a string in UTC (rather than local time zone):

PRINT, SYSTIME(/UTC)
IDL Reference Guide SYSTIME

1960
Print today’s date as a Julian date/time value in UTC:

PRINT, SYSTIME(/JULIAN, /UTC), FORMAT='(f12.2)'

Compute the seconds elapsed since 1 January 1970 UTC:

seconds = SYSTIME(1) ; or seconds = SYSTIME(/SECONDS)

Verify that the seconds from the previous example are correct:

PRINT, SYSTIME(0, seconds)

Print the day of the week:

PRINT, STRMID(SYSTIME(0), 0, 3)

Compute the time required to perform a 16,384 point FFT:

T = SYSTIME(1)
A = FFT(FINDGEN(16384), -1)
PRINT, SYSTIME(1) - T, 'Seconds'

Version History

Introduced: Original

See Also

CALDAT, CALENDAR, JULDAY, TIMEGEN
SYSTIME IDL Reference Guide

 1961
T_CVF

The T_CVF function computes the cutoff value V in a Student’s t distribution with Df
degrees of freedom such that the probability that a random variable X is greater than
V is equal to a user-supplied probability P.

Note
T_CVF computes the cutoff value using the one-tailed probability. The cutoff value
for the two-tailed probability, which is the probability that the absolute value of X is
greater than V), can be computed as T_CVF(P/2, Df).

This routine is written in the IDL language. Its source code can be found in the file
t_cvf.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = T_CVF(P, Df)

Return Value

Returns the cutoff value.

Arguments

P

A non-negative single- or double-precision floating-point scalar, in the interval [0.0,
1.0], that specifies the probability of occurrence or success.

Df

A positive integer, single- or double-precision floating-point scalar that specifies the
number of degrees of freedom of the Student’s t distribution.

Keywords

None.
IDL Reference Guide T_CVF

1962
Examples

Use the following command to compute the cutoff value in a Student’s t distribution
with five degrees of freedom such that the probability that a random variable X is
greater than the cutoff value is 0.025.

result = T_CVF(0.025, 5)
PRINT, result
T_CVF IDL Reference Guide

 1963
IDL prints:

2.57058

Version History

Introduced: 4.0

See Also

CHISQR_CVF, F_CVF, GAUSS_CVF, T_PDF
IDL Reference Guide T_CVF

1964
T_PDF

The T_PDF function computes the probability P that, in a Student’s t distribution
with Df degrees of freedom, a random variable X is less than or equal to a user-
specified cutoff value V.

Note
T_PDF computes the one-tailed probability. The two-tailed probability, which is the
probability that the absolute value of X is less than or equal to V, can be computed as
1 - 2×(1 - T_PDF(V, Df)).

This routine is written in the IDL language. Its source code can be found in the file
t_pdf.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = T_PDF(V, Df)

Return Value

If both arguments are scalar, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of V and Df, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the input array.

If any of the arguments are double-precision, the result is double-precision, otherwise
the result is single-precision.

Arguments

V

A scalar or array that specifies the cutoff value(s).

Df

A scalar or array that specifies the number of degrees of freedom of the Student’s t
distribution.
T_PDF IDL Reference Guide

 1965
Keywords

None.

Examples

Use the following command to compute the probability that a random variable X,
from the Student’s t distribution with 15 degrees of freedom, is less than or equal to
0.691:

PRINT, T_PDF(0.691, 15)

IDL prints:

0.749940

Version History

Introduced: 4.0

See Also

BINOMIAL, CHISQR_PDF, F_PDF, GAUSS_PDF, T_CVF
IDL Reference Guide T_PDF

1966
T3D

The T3D procedure implements three-dimensional transforms.

This routine accumulates one or more sequences of translation, scaling, rotation,
perspective, and oblique transformations and stores the result in !P.T, the 3D
transformation system variable. All the IDL graphic routines use this (4,4) matrix for
output. Note that !P.T3D is not set, so for the transformations to have effect you must
set !P.T3D = 1 (or set the T3D keyword in subsequent calls to graphics routines).

This procedure is based on that of Foley & Van Dam, Fundamentals of Interactive
Computer Graphics, Chapter 8, “Viewing in Three Dimensions”. The matrix notation
is reversed from the normal IDL sense, i.e., here, the first subscript is the column, the
second is the row, in order to conform with this reference.

A right-handed system is used. Positive rotations are counterclockwise when looking
from a positive axis position towards the origin.

This routine is written in the IDL language. Its source code can be found in the file
t3d.pro in the lib subdirectory of the IDL distribution.

Syntax

T3D [, Array | , /RESET] [, MATRIX=variable] [, OBLIQUE=vector]
[, PERSPECTIVE=p{eye at (0,0,p)}] [, ROTATE=[x, y, z]] [, SCALE=[x, y, z]]
[, TRANSLATE=[x, y, z]] [, /XYEXCH | , /XZEXCH | , /YZEXCH]

Arguments

Array

An optional 4 x 4 matrix used as the starting transformation. If Array is missing, the
current !P.T transformation is used. Array is ignored if /RESET is set.

Keywords

The transformation specified by each keyword is performed in the order of their
descriptions below (e.g., if both TRANSLATE and SCALE are specified, the
translation is done first).
T3D IDL Reference Guide

 1967
MATRIX

Set this keyword to a named variable that will contain the result. If this keyword is
specified, !P.T is not modified.

OBLIQUE

A two-element vector of oblique projection parameters. Points are projected onto the
XY plane at Z=0 as follows:

x' = x + z(d * COS(a))
y' = y + z(d * SIN(a))

where OBLIQUE[0] = d and OBLIQUE[1] = a.

PERSPECTIVE

Perspective transformation. This parameter is a scalar (p) that indicates the Z distance
of the center of the projection. Objects are projected into the XY plane at Z=0, and
the “eye” is at point (0,0,p).

RESET

Set this keyword to reset the transformation to the default identity matrix.

ROTATE

A three-element vector of the rotations, in DEGREES, about the X, Y, and Z axes.
Rotations are performed in the order of X, Y, and then Z.

SCALE

A three-element vector of scale factors for the X, Y, and Z axes.

TRANSLATE

A three-element vector of the translations in the X, Y, and Z directions.

XYEXCH

Set this keyword to exchange the X and Y axes.

XZEXCH

Set this keyword to exchange the X and Z axes.
IDL Reference Guide T3D

1968
YZEXCH

Set this keyword to exchange the Y and Z axes.

Examples

To reset the transformation, rotate 30 degs about the X axis and do perspective
transformation with the center of the projection at Z = -1, X=0, and Y=0, enter:

T3D, /RESET, ROT = [30,0,0], PERS = 1.

Transformations may be cascaded, for example:

T3D, /RESET, TRANS = [-.5,-.5,0], ROT = [0,0,45]
T3D, TRANS = [.5,.5,0]

The first command resets, translates the point (.5,.5,0) to the center of the viewport,
then rotates 45 degrees counterclockwise about the Z axis. The second call to T3D
moves the origin back to the center of the viewport.

Version History

Introduced: Original

See Also

SCALE3, SCALE3D, SURFR
T3D IDL Reference Guide

 1969
TAG_NAMES

The TAG_NAMES function returns a string array containing the names of the tags in
a structure expression. It can also be used to determine the expression’s structure
name (if the structure has a name).

Syntax

Result = TAG_NAMES(Expression [, /STRUCTURE_NAME])

Return Value

Returns structure tag names or the expression’s structure name.

Arguments

Expression

The structure expression for which the tag names are returned. This argument must
be of structure type. TAG_NAMES does not search for tags recursively, so if
Expression is a structure containing nested structures, only the names of tags in the
outermost structure are returned.

Keywords

STRUCTURE_NAME

Set this keyword to return a scalar string that contains the name of the structure
instead of the names of the tags in the structure. If the structure is “anonymous”, a
null string is returned.

Examples

Print the names of the tags in the system variable !P by entering:

PRINT, TAG_NAMES(!P)

IDL prints:

BACKGROUND CHARSIZE CHARTHICK CLIP COLOR FONT LINESTYLE MULTI
NOCLIP NOERASE NSUM POSITION PSYM REGION SUBTITLE SYMSIZE T
T3D THICK TITLE TICKLEN CHANNEL
IDL Reference Guide TAG_NAMES

1970
Print the name of the structure in the system variable !P:

PRINT, TAG_NAMES(!P, /STRUCTURE_NAME)

IDL prints:

!PLT

Version History

Introduced: Original

See Also

CREATE_STRUCT, N_TAGS
TAG_NAMES IDL Reference Guide

 1971
TAN

The TAN function computes the tangent of X.

Syntax

Result = TAN(X)

Return Value

Returns the tangent of the specified angle.

Arguments

X

The angle for which the tangent is desired, specified in radians. If X is double-
precision floating or complex, the result is of the same type. All other types are
converted to single-precision floating-point and yield floating-point results. If X is an
array, the result has the same structure, with each element containing the tangent of
the corresponding element of X.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

; Find the tangent of 0.5 radians and store the result in
; the variable T:
T = TAN(0.5)
IDL Reference Guide TAN

1972
Version History

Introduced: Original

See Also

ATAN, TANH
TAN IDL Reference Guide

 1973
TANH

The TANH function returns the hyperbolic tangent of X.

Syntax

Result = TANH(X)

Return Value

Returns the single- or double-precision hyperbolic tangent.

Arguments

X

The value for which the hyperbolic tangent is desired, specified in radians. If X is
double-precision floating or complex, the result is of the same type. All other types
are converted to single-precision floating-point and yield floating-point results.
TANH is defined as:

If X is an array, the result has the same structure, with each element containing the
hyperbolic tangent of the corresponding element of X.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

tanh x() ex e x––
ex e x–+
-------------------=
IDL Reference Guide TANH

1974
Examples

; Find the hyperbolic tangent of 1 radian and print the result:
PRINT, TANH(1)

; Plot the hyperbolic tangent from -5 to +5 with an increment
; of 0.1:
PLOT, TANH(FINDGEN(101)/10. - 5)

Version History

Introduced: Original

See Also

ATAN, TAN
TANH IDL Reference Guide

 1975
TEK_COLOR

The TEK_COLOR procedure loads a 32-color colortable similar to the default
Tektronix 4115 colortable. This colortable is useful because of its distinct colors.

By default, this palette consists of 32 colors. The first 9 colors are: Index 0=black,
1=white, 2=red, 3=green, 4=blue, 5=cyan, 6=magenta, 8=orange.

Syntax

TEK_COLOR [, Start_Index, Colors]

Arguments

Start_Index

An optional starting index for the palette. The default is 0. If this argument is
included, the colors are loaded into the current colortable starting at the specified
index.

Colors

The number of colors to load. The default is 32, which is also the maximum.

Keywords

None.

Version History

Introduced: Pre 4.0

See Also

LOADCT, XLOADCT
IDL Reference Guide TEK_COLOR

1976
TEMPORARY

The TEMPORARY function returns a temporary copy of a variable, and sets the
original variable to “undefined”. This function can be used to conserve memory when
performing operations on large arrays, as it avoids making a new copy of results that
are only temporary. In general, the TEMPORARY routine can be used to advantage
whenever a variable containing an array on the left hand side of an assignment
statement is also referenced on the right hand side.

Syntax

Result = TEMPORARY(Variable)

Return Value

Returns a copy of a specified variable.

Arguments

Variable

The variable to be referenced and deleted.

Keywords

None.

Examples

Assume the variable A is a large array of integers. The statement:

A = A + 1

creates a new array for the result of the addition, places the sum into the new array,
assigns it to A, and then frees the old allocation of A. Total storage required is twice
the size of A. The statement:

A = TEMPORARY(A) + 1

requires no additional space.

Note
If the operation performed on Variable requires that Variable be converted to
another data type, there is no benefit to using TEMPORARY. For instance, if the
TEMPORARY IDL Reference Guide

 1977
array A in the above example contained byte data rather than integer data, the array
would have to be converted to integer type before the addition could be performed.
In such a case, memory could not be re-used.

Version History

Introduced: Pre 4.0

See Also

DELVAR
IDL Reference Guide TEMPORARY

1978
TETRA_CLIP

The TETRA_CLIP function clips a tetrahedral mesh to an arbitrary plane in space
and returns a tetrahedral mesh of the remaining portion. An auxiliary array of data
may also be passed and clipped. This array can have multiple values for each vertex
(the trailing array dimension must match the number of vertices in the Vertsin array).

A tetrahedral connectivity array consists of groups of four vertex index values. Each
set of four index values specifies four vertices which define a single tetrahedron.

Syntax

Result = TETRA_CLIP (Plane, Vertsin, Connin, Vertsout, Connout
[, AUXDATA_IN=array, AUXDATA_OUT=variable] [, CUT_VERTS=variable])

Return Value

The return value is the number of tetrahedra returned.

Arguments

Plane

Input four-element array describing the equation of the plane to be clipped to. The
elements are the coefficients (a,b,c,d) of the equation ax+by+cz+d=0.

Vertsin

Input array of tetrahedral vertices [3, n].

Connin

Input tetrahedral mesh connectivity array.

Vertsout

Output array of tetrahedral vertices [3, n].

Connout

Output tetrahedral mesh connectivity array.
TETRA_CLIP IDL Reference Guide

 1979
Keywords

AUXDATA_IN

Input array of auxiliary data. If present, these values are interpolated and returned
through AUXDATA_OUT. The trailing array dimension must match the number of
vertices in the Vertsin array.

AUXDATA_OUT

Set this keyword to a named variable to contain an output array of interpolated
auxiliary data.

CUT_VERTS

Set this keyword to a named variable to contain an output array of vertex indices (into
Vertsout) of the vertices which are considered to be ‘on’ the clipped surface.

Version History

Introduced: 5.5
IDL Reference Guide TETRA_CLIP

1980
TETRA_SURFACE

The TETRA_SURFACE function extracts a polygonal mesh as the exterior surface of
a tetrahedral mesh. The output of this function is a polygonal mesh connectivity array
that can be used with the input Verts array to display the outer surface of the
tetrahedral mesh.

Syntax

Result = TETRA_SURFACE (Verts, Connin)

Return Value

Returns a polygonal mesh connectivity array. When used with the input vertex array,
this function yields the exposed tetrahedral mesh surface.

Arguments

Verts

Array of vertices [3, n].

Connin

Tetrahedral connectivity array.

Keywords

None.

Version History

Introduced: 5.5
TETRA_SURFACE IDL Reference Guide

 1981
TETRA_VOLUME

The TETRA_VOLUME function computes properties of a tetrahedral mesh array.
The basic property is the volume. An auxiliary data array may be supplied which
specifies weights at each vertex which are interpolated through the volume during
integration. Higher order moments (with respect to the X, Y, and Z axis) may be
computed as well (with or without weights).

Syntax

Result = TETRA_VOLUME (Verts, Conn [, AUXDATA=array]
[, MOMENT=variable])

Return Value

Returns the cumulative (weighted) volume of the tetrahedrons in the mesh.

Arguments

Verts

Array of vertices [3, n].

Conn

Tetrahedral connectivity array.

Keywords

AUXDATA

Array of input auxiliary data (one value per vertex). If present, these values are used
to weight a vertex. The volume area integral will linearly interpolate these values.
The volume integral will linearly interpolate these values within each tetrahedra. The
default weight is 1.0 which results in a basic volume.
IDL Reference Guide TETRA_VOLUME

1982
MOMENT

Set this keyword to a named variable that will contain a three-element float vector
which corresponds to the first order moments computed with respect to the X, Y and
Z axis. The computation is:

where v is the (weighted) volume of the tetrahedron and c is the centroid of the
tetrahedron, thus

yields the (weighted) centroid of the tetrahedral mesh.

Version History

Introduced: 5.5

m vici

ntetras
∑=

m volume⁄
TETRA_VOLUME IDL Reference Guide

 1983
THIN

The THIN function returns the “skeleton” of a bi-level image. The skeleton of an
object in an image is a set of lines that reflect the shape of the object. The set of
skeletal pixels can be considered to be the medial axis of the object. For a much more
extensive discussion of skeletons and thinning algorithms, see Algorithms for
Graphics and Image Processing, Theo Pavlidis, Computer Science Press, 1982. The
THIN function is adapted from Algorithm 9.1 (the classical thinning algorithm).

On input, the bi-level image is a rectangular array in which pixels that compose the
object have a nonzero value. All other pixels are zero. The result is a byte type image
in which skeletal pixels are set to 2 and all other pixels are zero.

Syntax

Result = THIN(Image [, /NEIGHBOR_COUNT] [, /PRUNE])

Return Value

Returns the thinned, two-dimensional byte array.

Arguments

Image

The two-dimensional image (array) to be thinned.

Keywords

NEIGHBOR_COUNT

Set this keyword to select an alternate form of output. In this form, output pixel
values count the number of neighbors an individual skeletal pixel has (including
itself). For example, a pixel that is part of a line will have the value 3 (two neighbors
and itself). Terminal pixels will have the value 2, while isolated pixels have the value
1.

PRUNE

If the PRUNE keyword is set, pixels with single neighbors are removed iteratively
until only pixels with 2 or more neighbors exist. This effectively removes (or
“prunes”) skeleton branches, leaving only closed paths.
IDL Reference Guide THIN

1984
Examples

The following commands display the “thinned” edges of a Sobel filtered image:

; Open a file for reading:
OPENR, 1, FILEPATH('people.dat', SUBDIR = ['examples','data'])

; Create a byte array in which to store the image:
A = BYTARR(192, 192)

; Read first 192 by 192 image:
READU, 1, A

; Close the file:
CLOSE, 1

; Display the image:
TV, A, 0

; Apply the Sobel filter, threshold the image at value 75, and
; display the thinned edges:
TVSCL, THIN(SOBEL(A) GT 75), 1

Version History

Introduced: Pre 4.0

See Also

ROBERTS, SOBEL
THIN IDL Reference Guide

 1985
THREED

The THREED procedure plots a 2-D array as a pseudo 3-D plot. The orientation of
the data is fixed. This routine is written in the IDL language. Its source code can be
found in the file threed.pro in the lib subdirectory of the IDL distribution.

Syntax

THREED, A [, Sp] [, TITLE=string] [, XTITLE=string] [, YTITLE=string]

Arguments

A

The two-dimensional array to plot.

Sp

The spacing between plot lines. If Sp is omitted, the spacing is set to: (MAX(A)-
MIN(A))/ROWS. If Sp is negative, hidden lines are not removed.

Keywords

TITLE

Set this keyword to the main plot title.

XTITLE

Set this keyword to the X axis title.

YTITLE

Set this keyword to the Y axis title.

Examples

; Create a 2-D dataset:
A = -SHIFT(DIST(30), 15, 15)
; Make a THREED plot:
THREED, A
; Compare to SURFACE:
SURFACE, A
IDL Reference Guide THREED

1986
Version History

Introduced: Original

See Also

SURFACE
THREED IDL Reference Guide

 1987
TIME_TEST2

The TIME_TEST2 procedure is a general-purpose IDL benchmark program that
performs approximately 20 common operations and prints the time required.

This routine is written in the IDL language. Its source code can be found in the file
time_test.pro in the lib subdirectory of the IDL distribution. This file also
contains the procedure GRAPHICS_TIMES, used to time graphical operations.

Syntax

TIME_TEST2 [, Filename]

Arguments

Filename

An optional string that contains the name of output file for the results of the time test.

Keywords

None.

Examples

; Run the computational tests:
TIME_TEST2

; Run the graphics tests. Note that TIME_TEST2 must be compiled
; before GRAPHICS_TIMES will run:
GRAPHICS_TIMES

Version History

Introduced: 4.0

See Also

SYSTIME
IDL Reference Guide TIME_TEST2

1988
TIMEGEN

The TIMEGEN function returns an array, with specified dimensions, of double-
precision floating-point values that represent times in terms of Julian dates.

The Julian date is the number of days elapsed since Jan. 1, 4713 B.C.E., plus the time
expressed as a day fraction. Following the astronomical convention, the day is
defined to start at 12 PM (noon). Julian date 0.0d is therefore Jan. 1, 4713 B.C.E. at
12:00:00.

The first value of the returned array corresponds to a Julian date start time, and each
subsequent value corresponds to the next Julian date in the sequence. The sequence is
determined by specifying the time unit (such as months or seconds) and the step size,
or spacing, between the units. You can also construct more complicated arrays by
including smaller time units within each major time interval.

A small offset is added to each Julian date to eliminate roundoff errors when
calculating the day fraction from the hour, minute, second. This offset is given by the
larger of EPS and EPS*Julian, where Julian is the integer portion of the Julian date
and EPS is the double-precision floating-point precision parameter from MACHAR.
For typical Julian dates the offset is approximately 6x10-10 (which corresponds to
5x10-5 seconds). This offset ensures that when the Julian date is converted back to the
hour, minute, and second, the hour, minute, and second will have the same integer
values.

Tip
Because of the large magnitude of the Julian date (1 Jan 2000 is Julian day
2451545), the precision of most Julian dates is limited to 1 millisecond (0.001
seconds). If you are not interested in the date itself, you can improve the precision
by subtracting a large offset or setting the START keyword to zero.

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000, respectively.

Syntax

Result = TIMEGEN([D1,...,D8 | , FINAL=value] [, DAYS=vector]
[, HOURS=vector] [, MINUTES=vector] [, MONTHS=vector] [, SECONDS=vector]
[, START=value] [, STEP_SIZE=value] [, UNITS=string] [, YEAR=value])
TIMEGEN IDL Reference Guide

 1989
Return Value

Returns the specified time values.

Arguments

Di

The dimensions of the result. The dimension parameters may be any scalar
expression. Up to eight dimensions may be specified. If the dimension arguments are
not integer values, IDL will truncate them to integer values before creating the new
array. The dimension arguments are required unless keyword FINAL is set, in which
case they are ignored.

Keywords

DAYS

Set this keyword to a scalar or a vector giving the day values that should be included
within each month. This keyword is ignored if the UNITS keyword is set to “Days”,
“Hours”, “Minutes”, or “Seconds”.

Note
Day values that are beyond the end of the month will be set equal to the last day for
that month. For example, setting DAY=[31] will automatically return the last day in
each month.

FINAL

Set this keyword to a double-precision value representing the Julian date/time to use
as the last value in the returned array. In this case, the dimension arguments are
ignored and Result is a one-dimensional array, with the number of elements
depending upon the step size. The FINAL time may be less than the START time, in
which case STEP_SIZE should be negative.

Note
If the step size is not an integer then the last element may not be equal to the FINAL
time. In this case, TIMEGEN will return enough elements such that the last element
is less than or equal to FINAL.
IDL Reference Guide TIMEGEN

1990
HOURS

Set this keyword to a scalar or a vector giving the hour values that should be included
within each day. This keyword is ignored if UNITS is set to “Hours”, “Minutes”, or
“Seconds”.

MINUTES

Set this keyword to a scalar or a vector giving the minute values that should be
included within each hour. This keyword is ignored if UNITS is set to “Minutes” or
“Seconds”.

MONTHS

Set this keyword to a scalar or a vector giving the month values that should be
included within each year. This keyword is ignored if UNITS is set to “Months”,
“Days”, “Hours”, “Minutes”, or “Seconds”.

SECONDS

Set this keyword to a scalar or a vector giving the second values that should be
included within each minute. This keyword is ignored if UNITS is set to “Seconds”.

START

Set this keyword to a double-precision value representing the Julian date/time to use
as the first value in the returned array. The default is 0.0d [corresponding to January
1, 4713 B.C.E. at 12 pm (noon)].

Note
If subintervals are provided by MONTHS, DAYS, HOURS, MINUTES, or
SECONDS, then the first element may not be equal to the START time. In this case
the first element in the returned array will be greater than or equal to START.

Tip
Other array generation routines in IDL (such as FINDGEN) do not allow you to
specify a starting value because the resulting array can be added to a scalar
representing the start value. For TIMEGEN it is correct to add a scalar to the array if
the units are days, hours, minutes, seconds, or sub-seconds. For example:

MyTimes = TIMEGEN(365, UNITS="Days") + SYSTIME(/JULIAN)

However, if the units are months or years, the start value is necessary because the
number of days in a month or year can vary depending upon the year in which they
TIMEGEN IDL Reference Guide

 1991
fall (for instance, consider leap years). For example:

MyTimes = TIMEGEN(12, UNITS="Months", START=JULDAY(1,1,2000))

STEP_SIZE

Set this keyword to a scalar value representing the step size between the major
intervals of the returned array. The step size may be negative. The default step size is
1. When the UNITS keyword is set to “Years” or “Months”, the STEP_SIZE value is
rounded to the nearest integer.

UNITS

Set this keyword to a scalar string indicating the time units to be used for the major
intervals for the generated array. Valid values include:

• “Years” or “Y”

• “Months” or “M”

• “Days” or “D”

• “Hours” or “H”

• “Minutes” or “I”

• “Seconds” or “S”

The case (upper or lower) is ignored. If this keyword is not specified, then the default
for UNITS is the time unit that is larger than the largest keyword present:

Largest Keyword
Present Default UNITS

SECONDS=vector “Minutes”

MINUTES=vector “Hours”

HOURS=vector “Days”

DAYS=vector “Months”

MONTHS=vector “Years”

YEAR=value “Years”

Table 93: Defaults for the UNITS keyword
IDL Reference Guide TIMEGEN

1992
If none of the above keywords are present, the default is UNITS=“Days”.

YEAR

Set this keyword to a scalar giving the starting year. If YEAR is specified then the
starting year from START is ignored.

Examples

Generate an array of 366 time values that are one day apart starting with January 1,
2000:

MyDates = TIMEGEN(366, START=JULDAY(1,1,2000))

Generate an array of 20 time values that are 12 hours apart starting with the current
time:

MyTimes = TIMEGEN(20, UNITS='Hours', STEP_SIZE=12, $
START=SYSTIME(/JULIAN))

Generate an array of time values that are 1 hour apart from 1 January 2000 until the
current time:

MyTimes = TIMEGEN(START=JULDAY(1,1,2000), $
FINAL=SYSTIME(/JULIAN), UNITS='Hours')

Generate an array of time values composed of seconds, minutes, and hours that start
from the current hour:

MyTimes = TIMEGEN(60, 60, 24, $
START=FLOOR(SYSTIME(/JULIAN)*24)/24d, UNITS='S')

Generate an array of 24 time values with monthly intervals, but with subintervals at 5
PM on the first and fifteenth of each month:

MyTimes = TIMEGEN(24, START=FLOOR(SYSTIME(/JULIAN)), $
DAYS=[1,15], HOURS=17)

Version History

Introduced: 5.4

See Also

“Format Codes” in Chapter 10 of the Building IDL Applications manual, CALDAT,
JULDAY, LABEL_DATE, SYSTIME
TIMEGEN IDL Reference Guide

 1993
TM_TEST

The TM_TEST function computes the Student’s T-statistic and the probability that
two sample populations X and Y have significantly different means. X and Y may be
of different lengths. The default assumption is that the data is drawn from populations
with the same true variance. This type of test is often referred to as the t-means test.

The T-statistic for sample populations x and y with means x and y is defined as:

where x = (x0, x1, x2, ..., xN-1) and y = (y0, y1, y2 ..., yM-1)

This routine is written in the IDL language. Its source code can be found in the file
tm_test.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = TM_TEST(X, Y [, /PAIRED] [, /UNEQUAL])

Return Value

The result is a two-element vector containing the T-statistic and its significance. The
significance is a value in the interval [0.0, 1.0]; a small value (0.05 or 0.01) indicates
that X and Y have significantly different means.

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

T x y–

xi x–()2 yi y–()2

j 0=

M 1–

∑+

j 0=

N 1–

∑
N M 2–+()

--
1
N
---- 1

M
-----+ 

 

--=
IDL Reference Guide TM_TEST

1994
Y

An m-element integer, single-, or double-precision floating-point vector. If the
PAIRED keyword is set, X and Y must have the same number of elements.

Keywords

PAIRED

If this keyword is set, X and Y are assumed to be paired samples and must have the
same number of elements.

UNEQUAL

If this keyword is set, X and Y are assumed to be from populations with unequal
variances.

Examples

; Define two n-element sample populations.
X = [257, 208, 296, 324, 240, 246, 267, 311, 324, 323, 263, $

305, 270, 260, 251, 275, 288, 242, 304, 267]
Y = [201, 56, 185, 221, 165, 161, 182, 239, 278, 243, 197, $

271, 214, 216, 175, 192, 208, 150, 281, 196]

; Compute the Student’s t-statistic and its significance assuming
; that X and Y belong to populations with the same true variance:
PRINT, TM_TEST(X, Y)

IDL prints:

5.52839 2.52455e-06

The result indicates that X and Y have significantly different means.

Version History

Introduced: 4.0

See Also

FV_TEST, KW_TEST, RS_TEST, S_TEST
TM_TEST IDL Reference Guide

 1995
TOTAL

The TOTAL function returns the sum of the elements of Array. The sum of the array
elements over a given dimension is returned if the Dimension argument is present.

Syntax

Result = TOTAL(Array [, Dimension] [, /CUMULATIVE] [, /DOUBLE] [, /NAN])

Return Value

Returns the array sum for the specified dimensions.

Arguments

Array

The array to be summed. This array can be of any basic type except string. If Array is
double-precision floating-point, complex, or double-precision complex, the result is
of the same type. Otherwise, the result is single-precision floating-point.

Dimension

The dimension over which to sum, starting at one. If this argument is not present or
zero, the scalar sum of all the array elements is returned. If this argument is present,
the result is an array with one less dimension than Array. For example, if the
dimensions of Array are N1, N2, N3, and Dimension is 2, the dimensions of the result
are (N1, N3), and element (i,j) of the result contains the sum:

Keywords

CUMULATIVE

If this keyword is set, the result is an array of the same size as the input, with each
element, i, containing the sum of the input array elements 0 to i. This keyword also
works with the Dimension parameter, in which case the sum is performed over the
given dimension.

Ai k j, ,k 0=

N2 1–
∑

IDL Reference Guide TOTAL

1996
DOUBLE

Set this keyword to perform the summation in double-precision floating-point.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as missing
data. (See “Special Floating-Point Values” in Chapter 18 of the Building IDL
Applications manual for more information on IEEE floating-point values.)

Note
Since the value NaN is treated as missing data, if Array contains only NaN values
the TOTAL routine will return 0.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

The thread pool is used for non-cumulative sums, and is not used if the
CUMULATIVE keyword is specified. In a cumulative sum, each result value depends
on all of the previous results, so overlapped execution is not possible.

You should be aware that when summing a large number of values, the result from
TOTAL can depend heavily upon the order in which the numbers are added. Since the
thread pool will add values in a different order, you may obtain a different — but
equally correct — result than that obtained using the standard non-threaded
implementation. This effect occurs because TOTAL uses floating point arithmetic,
and the mantissa of a floating point value has a fixed number of significant digits. The
effect is especially obvious when using single precision arithmetic, but can also affect
double precision computations. Such differences do not mean that the sums are
incorrect. Rather, they mean that they are equal within the ability of the floating point
representation used to represent them. For more information on floating-point
numbers, see “Accuracy & Floating-Point Operations” in Chapter 22 of the Using
IDL manual.

It is also worth noting that this effect, while illustrated by the use of the thread pool, is
not caused by the use of threading. It is simply caused by the different order in which
TOTAL IDL Reference Guide

 1997
the numbers are summed, as can be illustrated by the following non-threaded
example:

vec = FINDGEN(100000)
PRINT, TOTAL(vec, /TPOOL_NO) - TOTAL(REVERSE(vec), /TPOOL_NO)

IDL prints:

-96768.0

As you can see, the small floating-point errors can accumulate across the sum of a
large number of values.

Note
The computation above was done on a Sun Sparc workstation. Your result will
depend on the architecture of your CPU; it may be slightly different, and in the
notable case of Intel-compatible X86 CPUs may actually be zero due to the use of
internal 80-bit floating point registers on that CPU which give it better than double
precision accuracy for some computations. Nonetheless, you should be aware of the
fact that the order of operations can influence the result.

Examples

Example 1

This example sums the elements of a one-dimensional array:

; Define a one-dimensional array:
A = [20, 10, 5, 5, 3]

; Sum the elements of the array:
SUMA = TOTAL([20, 10, 5, 5, 3])

; Print the results:
PRINT, 'A = ', A
PRINT, 'Sum of A = ', SUMA

IDL prints:

A = 20 10 5 5 3
Sum of A = 43.0000

Example 2

The results are different when a multi-dimensional array is used:

; Define a multi-dimensional array:
A = FINDGEN(5,5)
IDL Reference Guide TOTAL

1998
; Sum each of the rows in A:
SUMROWS = TOTAL(A, 1)

; Sum each of the columns in A:
SUMCOLS = TOTAL(A, 2)

; Print the results:
PRINT, 'A = ', A
PRINT, 'Sum of each row:', SUMROWS
PRINT, 'Sum of each column:', SUMCOLS

IDL prints:

A = 0.000000 1.00000 2.00000 3.00000 4.00000
5.00000 6.00000 7.00000 8.00000 9.00000
10.0000 11.0000 12.0000 13.0000 14.0000
15.0000 16.0000 17.0000 18.0000 19.0000
20.0000 21.0000 22.0000 23.0000 24.0000

Sum of each row: 10.0000 35.0000 60.0000 85.0000 110.000

Sum of each column: 50.0000 55.0000 60.0000 65.0000 70.0000

Version History

Introduced: Original

See Also

FACTORIAL
TOTAL IDL Reference Guide

 1999
TRACE

The TRACE function computes the trace of an n by n array.

This routine is written in the IDL language. Its source code can be found in the file
trace.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = TRACE(A [, /DOUBLE])

Return Value

Returns the sum of the values along the array diagonal.

Arguments

A

An n by n real or complex array.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

; Define an array:
A = [[2.0,1.0, 1.0, 1.5], $

[4.0, -6.0, 0.0, 0.0], $
[-2.0, 7.0, 2.0, 2.5], $
[1.0, 0.5, 0.0, 5.0]]

; Compute the trace of A:
result = TRACE(A)

;Print the result:
PRINT, 'TRACE(A) = ', result

IDL prints:

TRACE(A) = 3.00000
IDL Reference Guide TRACE

2000
Version History

Introduced: 5.0

See Also

TOTAL
TRACE IDL Reference Guide

 2001
TrackBall Object

See Appendix , “TrackBall”
IDL Reference Guide TrackBall Object

2002
TRANSPOSE

The TRANSPOSE function returns the transpose of Array. If an optional permutation
vector is provided, the dimensions of Array are rearranged as well.

Syntax

Result = TRANSPOSE(Array [, P])

Return Value

Returns the reflection of the array along a diagonal.

Arguments

Array

The array to be transposed.

P

A vector specifying how the dimensions of Array will be permuted. The elements of
P correspond to the dimensions of Array; the ith dimension of the output array is
dimension P[i] of the input array. Each element of the vector P must be unique.
Dimensions start at zero and can not be repeated.

If P is not present, the order of the dimensions of Array is reversed.

Keywords

None.

Examples

Example 1

Print a simple array and its transpose by entering:

; Create an array:
A = INDGEN(3,3)
TRANSA = TRANSPOSE(A)
TRANSPOSE IDL Reference Guide

 2003
; Print the array and its transpose:
PRINT, 'A:'
PRINT, A
PRINT, 'Transpose of A:'
PRINT, TRANSA

IDL prints:

A:
0 1 2
3 4 5
6 7 8

Transpose of A:
0 3 6
1 4 7
2 5 8

Example 2

This example demonstrates multi-dimensional transposition:

; Create the array:
A = INDGEN(2, 3, 4)

; Take the transpose, reversing the order of the indices:
B = TRANSPOSE(A)

; Re-order the dimensions of A, so that the second dimension
; becomes the first, the third becomes the second, and the first
; becomes the third:
C = TRANSPOSE(A, [1, 2, 0])

; View the sizes of the three arrays:
HELP, A, B, C

IDL prints:

A INT = Array[2, 3, 4]
B INT = Array[4, 3, 2]
C INT = Array[3, 4, 2]

Version History

Introduced: Original
IDL Reference Guide TRANSPOSE

2004
See Also

REFORM, ROT, ROTATE, REVERSE
TRANSPOSE IDL Reference Guide

 2005
TRI_SURF

The TRI_SURF function interpolates a regularly- or irregularly-gridded set of points
with a smooth quintic surface.

TRI_SURF is similar to MIN_CURVE_SURF but the surface fitted is a smooth
surface, not a minimum curvature surface. TRI_SURF has the advantage of being
much more efficient for larger numbers of points.

Note
The TRI_SURF function is designed to interpolate low resolution data. Large arrays
may cause TRI_SURF to issue the following error message:
Partial Derivative Approximation Failed to Converge”
In such cases, interpolation is most likely unnecessary.

This routine is written in the IDL language. Its source code can be found in the file
tri_surf.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = TRI_SURF(Z [, X, Y] [, /EXTRAPOLATE] [, MISSING=value]
[, /REGULAR] [, XGRID=[xstart, xspacing] | [, XVALUES=array]]
[, YGRID=[yxstart, yspacing] | [, YVALUES=array]] [, GS=[xspacing, yspacing]]
[, BOUNDS=[xmin, ymin, xmax, ymax]] [, NX=value] [, NY=value])

Return Value

The result is s a two-dimensional floating-point array containing the interpolated
surface, sampled at the grid points.

Arguments

X, Y, Z

arrays containing the X, Y, and Z coordinates of the data points on the surface. Points
need not be regularly gridded. For regularly gridded input data, X and Y are not used:
the grid spacing is specified via the XGRID and YGRID (or XVALUES and
YVALUES) keywords, and Z must be a two dimensional array. For irregular grids, all
three parameters must be present and have the same number of elements.
IDL Reference Guide TRI_SURF

2006
Keywords

EXTRAPOLATE

Set this keyword to cause TRI_SURF to extrapolate the surface to points outside the
convex hull of input points. This keyword has no effect if the input points are
regularly gridded.

LINEAR

Set this keyword to use linear interpolation, without gradient estimates, instead of
quintic interpolation. Linear interpolation does not extrapolate, although it is faster
and more numerically stable.

MISSING

Set this keyword equal to the value to which points outside the convex hull of input
points should be set. The default is 0. This keyword has no effect if the input points
are regularly gridded.

Input Grid Description:

REGULAR

If set, the Z parameter is a two-dimensional array of dimensions (n,m), containing
measurements over a regular grid. If any of XGRID, YGRID, XVALUES, or
YVALUES are specified, REGULAR is implied. REGULAR is also implied if there
is only one parameter, Z. If REGULAR is set, and no grid specifications are present,
the grid is set to (0, 1, 2, ...).

XGRID

A two-element array, [xstart, xspacing], defining the input grid in the x direction. Do
not specify both XGRID and XVALUES.

XVALUES

An n-element array defining the x locations of Z[i,j]. Do not specify both XGRID and
XVALUES.

YGRID

A two-element array, [ystart, yspacing], defining the input grid in the y direction. Do
not specify both YGRID and YVALUES.
TRI_SURF IDL Reference Guide

 2007
YVALUES

An n-element array defining the y locations of Z[i,j]. Do not specify both YGRID and
YVALUES.

Output Grid Description:

Note
The output grid must enclose the convex hull of the input points.

GS

The output grid spacing. If present, GS must be a two-element vector [xs, ys], where
xs is the horizontal spacing between grid points and ys is the vertical spacing. The
default is based on the extents of x and y. If the grid starts at x value xmin and ends at
xmax, then the default horizontal spacing is (xmax - xmin)/(NX-1). YS is computed in
the same way. The default grid size, if neither NX or NY are specified, is 26 by 26.

BOUNDS

If present, BOUNDS must be a four-element array containing the grid limits in x and
y of the output grid: [xmin, ymin, xmax, ymax]. If not specified, the grid limits are set
to the extent of x and y.

NX

The output grid size in the x direction. NX need not be specified if the size can be
inferred from GS and BOUNDS. The default value is 26.

NY

The output grid size in the y direction. NY need not be specified if the size can be
inferred from GS and BOUNDS. The default value is 26.

Examples

Example 1

Regularly gridded case:

; Make some random data
Z = randomu(seed, 5, 6)

; Interpolate to a 26 x 26 grid:
CONTOUR, TRI_SURF(Z, /REGULAR)
IDL Reference Guide TRI_SURF

2008
Example 2

Irregularly gridded case:

; Make a random set of points that lie on a Gaussian:
N = 15
X = RANDOMU(seed, N)
Y = RANDOMU(seed, N)

; The Gaussian:
Z = EXP(-2 * ((X-.5)^2 + (Y-.5)^2))

; Use a 26 by 26 grid over the rectangle bounding x and y.
; Get the surface:
R = TRI_SURF(Z, X, Y)

; Alternatively, get a surface over the unit square, with spacing
; of 0.05:
R = TRI_SURF(z, x, y, GS=[0.05, 0.05], BOUNDS=[0,0,1,1])

; Alternatively, get a 10 by 10 surface over the rectangle bounding
; x and y:
R = TRI_SURF(z, x, y, NX=10, NY=10)

Version History

Introduced: Pre 4.0

See Also

CONTOUR, MIN_CURVE_SURF
TRI_SURF IDL Reference Guide

 2009
TRIANGULATE

The TRIANGULATE procedure constructs a Delaunay triangulation of a planar set
of points. Delaunay triangulations are very useful for the interpolation, analysis, and
visual display of irregularly-gridded data. In most applications, after the irregularly
gridded data points have been triangulated, the function TRIGRID is invoked to
interpolate surface values to a regular grid.

Since Delaunay triangulations have the property that the circumcircle of any triangle
in the triangulation contains no other vertices in its interior, interpolated values are
only computed from nearby points.

TRIANGULATE can, optionally, return the adjacency list that describes, for each
node, the adjacent nodes in the Delaunay triangulation. With this list, the Voronoi
polygon (the polygon described by the set of points which are closer to that node than
to any other node) can be computed for each node. This polygon contains the area
influenced by its associated node. Tiling of the region in this manner is also called
Dirichlet, Wigner-Seithz, or Thiessen tessellation.

The grid returned by the TRIGRID function can be input to various routines such as
SURFACE, TV, and CONTOUR. See the description of TRIGRID for an example.

TRIANGULATE and TRIDGRID can also be used to perform gridding and
interpolation over the surface of a sphere. The interpolation is C1 continuous,
meaning that the result is continuous over both the function value and its first
derivative. This feature is ideal for interpolating an irregularly-sampled dataset over
part or all of the surface of the earth (or other (spherical) celestial bodies).
Extrapolation outside the convex hull of sample points is also supported. To perform
spherical gridding, you must include the FVALUE and SPHERE keywords described
below. The spherical gridding technique used in IDL is based on the paper
“Interpolation of Data on the Surface of a Sphere”, R. Renka, Oak Ridge National
Laboratory Report ORNL/CSD-108, 1982.

Syntax

TRIANGULATE, X, Y, Triangles [, B] [, CONNECTIVITY=variable]
[, SPHERE=variable [, /DEGREES]] [, FVALUE=variable] [, REPEATS=variable]

Arguments

X

An array that contains the X coordinates of the points to be triangulated.
IDL Reference Guide TRIANGULATE

2010
Y

An array that contains the Y coordinates of the points to be triangulated. Parameters
X and Y must have the same number of elements.

Triangles

A named variable that, on exit, contains the list of triangles in the Delaunay
triangulation of the points specified by the X and Y arguments. Triangles is a
longword array dimensioned (3, number of triangles), where Triangles[0, i],
Triangles[1, i], and Triangles[2, i] contain the indices of the vertices of
the i-th triangle (i.e., X[Tr[*, i]] and Y[Triangles[*, i]] are the X and Y
coordinates of the vertices of the i-th triangle).

B

An optional, named variable that, upon return, contains a list of the indices of the
boundary points in counterclockwise order.

Keywords

CONNECTIVITY

Set this keyword to a named variable in which the adjacency list for each of the N
nodes (xy point) is returned. The list has the following form:

Each element i, 0 ≤ i < N, contains the starting index of the connectivity list for node
i within the list array. To obtain the adjacency list for node i, extract the list elements
from LIST[i] to LIST[i+1]-1.

The adjacency list is ordered in the counter-clockwise direction. The first item on the
list of boundary nodes is the subscript of the node itself. For interior nodes, the list
contains the subscripts of the adjacent nodes in counter-clockwise order.

For example, the call:

TRIANGULATE, X, Y, CONNECTIVITY = LIST

returns the adjacency list in the variable LIST. The subscripts of the nodes adjacent to
X[i] and Y[i] are contained in the array:

LIST[LIST[i] : LIST[i+1]-1]

DEGREES

Set this keyword to indicate that the X and Y arguments contain longitude and latitude
coordinates specified in degrees. This keyword is only effective if the SPHERE
TRIANGULATE IDL Reference Guide

 2011
keyword is specified. If DEGREES is not set, X and Y are assumed to be specified in
radians when a spherical triangulation is performed.

FVALUE

Set this keyword to a named variable that contains sample values for each
longitude/latitude point in a spherical triangulation. On output, the elements of
FVALUE are rearranged to correspond to the new ordering of X and Y (as described
in the SPHERE keyword, below). This reordered array can be passed to TRIGRID to
complete the interpolation.

REPEATS

Set this keyword to a named variable to return a (2, n) list of the indices of duplicated
points. That is, for each i,

X[REPEATS[0,i]] = X[REPEATS[1,i]]

and

Y[REPEATS[0,i]] = Y[REPEATS[1,i]]

Note
Use the GRID_INPUT procedure to handle repeated points (duplicate locations).

SPHERE

Set this keyword to a named variable in which the results from a spherical
triangulation are returned. This result is a structure that can be passed to TRIGRID to
perform spherical gridding. The structure contains the 3D Cartesian locations sample
points and the adjacency list that describes the triangulation.

When spherical triangulation is performed, X and Y are interpreted as longitude and
latitude, in either degrees or radians (see the DEGREE keyword, above). Also, the
order of the elements within the X and Y parameters is rearranged (see the FVALUE
keyword, above).

Examples

For some examples using the TRIANGULATE routine, see the TRIGRID function.

Version History

Introduced: Pre 4.0
IDL Reference Guide TRIANGULATE

2012
See Also

SPH_SCAT, TRIGRID
TRIANGULATE IDL Reference Guide

 2013
TRIGRID

Given data points defined by the parameters X, Y, and Z and a triangulation of the
planar set of points determined by X and Y, the TRIGRID function returns a regular
grid of interpolated Z values. Linear or smooth quintic polynomial interpolation can
be selected. Extrapolation for gridpoints outside of the triangulation area is also an
option.

An input triangulation can be constructed using the procedure TRIANGULATE.
Together, the TRIANGULATE procedure and the TRIGRID function constitute
IDL’s solution to the problem of irregularly-gridded data, including spherical
gridding.

Syntax

Result = TRIGRID(X, Y, Z, Triangles [, GS, Limits])

For spherical gridding: Result = TRIGRID(F , GS, Limits, SPHERE=S)

Keywords: [, /DEGREES] [, EXTRAPOLATE=array | , /QUINTIC]
[, INPUT=variable] [, MAX_VALUE=value] [, MIN_VALUE=value]
[, MISSING=value] [, NX=value] [, NY=value] [, SPHERE=variable]
[, XGRID=variable] [, YGRID=variable] [, XOUT=vector, YOUT=vector]

Return Value

The resulting grid is a two-dimensional array with user-specified bounds and spacing.
The data type of the resulting grid is either floating-point or double-precision
floating-point depending upon the data type of Z.

Arguments

X, Y, Z

Input arrays of X, Y, and Z coordinates of data points. Integer, long, double-precision
and floating-point values are allowed. In addition, Z can be a complex array. All three
arrays must have the same number of elements.

F

When performing a spherical gridding, this argument should be the named variable
that contains the rearranged sample values that were returned by TRIANGULATE’s
FVALUE keyword.
IDL Reference Guide TRIGRID

2014
Triangles

A longword array of the form output by TRIANGULATE. That is, Triangles has the
dimensions (3, number of triangles) and, for each i, Triangles[0,i],
Triangles[1,i], and Triangles[2,i] are the indices of the vertices of the i-th
triangle.

GS

If present, GS should be a two-element vector [XS, YS], where XS is the horizontal
spacing between grid points and YS is the vertical spacing. The default is based on the
extents of X and Y. If the grid starts at X value x0 and ends at x1,then the horizontal
spacing is

(x1- x0)/50

The default for YS is computed in the same way. Since the default grid spacing
divides each axis into 50 intervals and produces 51 samples, TRIGRID returns a grid
with dimensions (51, 51).

If the NX or NY keywords are set to specify the output grid dimensions, either or
both of the values of GS may be set to 0. In this case, the grid spacing is computed as
the respective range divided by the dimension minus one:

(x1- x0)/(NX-1) and (y1- y0)/(NY-1)

For spherical gridding, GS is assumed to be specified in radians, unless the
DEGREES keyword is set.

Limits

If present, Limits should be a four-element vector [x0, y0, x1, y1] that specifies the data
range to be gridded (x0 and y0 are the lower X and Y data limits, and x1 and y1 are the
upper limits). The default for Limits is:

[MIN(X), MIN(Y), MAX(X), MAX(Y)]

If the NX or NY keywords are not specified, the size of the grid produced is specified
by the value of Limits. If the NX or NY keywords are set to specify the output grid
dimensions, a grid of the specified size will be used regardless of the value of Limits.

Keywords

DEGREES

For a spherical gridding, set this keyword to indicate that the grid spacing (the GS
argument) is specified in degrees rather than radians.
TRIGRID IDL Reference Guide

 2015
EXTRAPOLATE

Set this keyword equal to an array of boundary node indices (as returned by the
optional parameter B of the TRIANGULATE procedure) to extrapolate to grid points
outside the triangulation. The extrapolation is not smooth, but should give acceptable
results in most cases.

Setting this keyword sets the quintic interpolation mode, as if the QUINTIC keyword
has been specified.

INPUT

Set this keyword to a named variable (which must be an array of the appropriate size
to hold the output from TRIGRID) in which the results of the gridding are returned.
This keyword is provided to make it easy and memory-efficient to perform multiple
calls to TRIGRID. The interpolates within each triangle overwrite the array and the
array is not initialized.

MAX_VALUE

Set this keyword to a value that represents the maximum Z value to be gridded. Data
larger than this value are treated as missing data and are not gridded.

MIN_VALUE

Set this keyword to a value that represents the minimum Z value to be gridded. Data
smaller than this value are treated as missing data and are not gridded.

MISSING

The Z value to be used for grid points that lie outside the triangles in Triangles. The
default is 0. This keyword also applies to data points outside the range specified by
MIN_VALUE and MAX_VALUE.

Note
Letting MISSING default to 0 does not always produce the same result as explicitly
setting it to 0. For example, if you specify INPUT and not EXTRAPOLATE, letting
MISSING default to 0 will result in the INPUT values being used for data outside
the Triangles; explicitly setting MISSSING to 0 will result in 0 being used for the
data outside the Triangles.

NX

The output grid size in the x direction. The default value is 51.
IDL Reference Guide TRIGRID

2016
NY

The output grid size in the y direction. The default value is 51.

QUINTIC

If QUINTIC is set, smooth interpolation is performed using Akima’s quintic
polynomials from “A Method of Bivariate Interpolation and Smooth Surface Fitting
for Irregularly Distributed Data Points” in ACM Transactions on Mathematical
Software, 4, 148-159. The default method is linear interpolation.

Derivatives are estimated by Renka’s global method in “A Triangle-Based C1
Interpolation Method” in Rocky Mountain Journal of Mathematics, vol. 14, no. 1,
1984.

QUINTIC is not available for complex data values. Setting the EXTRAPOLATE
keyword implies the use of quintic interpolation; it is not necessary to specify both.

SPHERE

For a spherical gridding, set this keyword to the named variable that contains the
results of the spherical triangulation returned by TRIANGULATE’s SPHERE
keyword.

XGRID

Set this keyword to a named variable that will contain a vector of X values for the
output grid.

XOUT

Set this keyword to a vector specifying the output grid X values. If this keyword is
supplied, the GS and Limits arguments are ignored. Use this keyword to specify
irregularly spaced rectangular output grids. If XOUT is specified, YOUT must also
be specified. If keyword NX is also supplied then only the first NX points of XOUT
will be used.

YGRID

Set this keyword to a named variable that will contain a vector of Y values for the
output grid.
TRIGRID IDL Reference Guide

 2017
The following table shows the interrelationships between the keywords
EXATRAPOLATE, INPUT, MAX_VALUE, MIN_VALUE, MISSING, and
QUINTIC.

YOUT

Set this keyword to a vector specifying the output grid Y values. If this keyword is
supplied, the GS and Limits arguments are ignored. Use this keyword to specify
irregularly spaced rectangular output grids. If keyword NY is also supplied then only
the first NY points of YOUT will be used.

Examples

Example 1

This example creates and displays a 50 point random normal distribution. The
random points are then triangulated, with the triangulation displayed. Next, the
interpolated surface is computed and displayed using linear and quintic interpolation.
Finally, the smooth extrapolated surface is generated and shown.

PRO TrigridExample

; Make 50 normal x, y points:
x = RANDOMN(seed, 50)

INPUT EXTRAPOLATE MISSING
Not in

Triangles

Beyond
MIN_VALUE,
MAX_VALUE

no no no uses 0 uses 0

no no yes uses MISSING uses MISSING

no yes no EXTRAPOLATEs uses 0

no yes yes EXTRAPOLATEs uses MISSING

yes no no uses INPUT uses INPUT

yes no yes uses MISSING uses MISSING

yes yes no EXTRAPOLATEs uses INPUT

yes yes yes EXTRAPOLATEs uses MISSING

Table 94: Keyword Interrelationships for the TRIGRID function
IDL Reference Guide TRIGRID

2018
y = RANDOMN(seed, 50)

; Make the Gaussian:
z = EXP(-(x^2 + y^2))

; Show points:
PLOT, x, y, psym=1
in=' '
READ,"Press enter",in

; Obtain triangulation:
TRIANGULATE, x, y, tr, b

; Show the triangles:
FOR i=0, N_ELEMENTS(tr)/3-1 DO BEGIN & $

; Subscripts of vertices [0,1,2,0]:
t = [tr[*,i], tr[0,i]] & $
; Connect triangles:
PLOTS, x[t], y[t] & $

ENDFOR

; Show linear surface:
SURFACE, TRIGRID(x, y, z, tr)
in=' '
READ,"Press enter",in

; Show smooth quintic surface:
SURFACE, TRIGRID(x, y, z, tr, /QUINTIC)
in=' '
READ,"Press enter",in

; Show smooth extrapolated surface:
SURFACE, TRIGRID(x, y, z, tr, EXTRA = b)
in=' '
READ,"Press enter",in

; Output grid size is 12 x 24:
SURFACE, TRIGRID(X, Y, Z, Tr, NX=12, NY=24)
in=' '
READ,"Press enter",in

; Output grid size is 20 x 11. The X grid is
; [0, .1, .2, ..., 19 * .1 = 1.9]. The Y grid goes from 0 to 1:
SURFACE, TRIGRID(X, Y, Z, Tr, [.1, .1], NX=20)
in=' '
READ,"Press enter",in
TRIGRID IDL Reference Guide

 2019
; Output size is 20 x 40. The range of the grid in X and Y is
; specified by the Limits parameter. Grid spacing in X is
; [5-0]/(20-1) = 0.263. Grid spacing in Y is (4-0)/(40-1) = 0.128:
SURFACE, TRIGRID(X, Y, Z, Tr, [0,0], [0,0,5,4],NX=20, NY=40)
in=' '
READ,"Press enter",in

WDELETE

END

Example 2

This example shows how to perform spherical gridding:

PRO SphericalGrid
; Create some random longitude points:
lon = RANDOMU(seed, 50) * 360. - 180.

; Create some random latitude points:
lat = RANDOMU(seed, 50) * 180. - 90.

; Make a fake function value to be passed to FVALUE. The system
; variable !DTOR contains the conversion value for degrees to
; radians.
f = SIN(lon * !DTOR)^2 * COS(lat * !DTOR)

; Perform a spherical triangulation:
TRIANGULATE, lon, lat, tr, $

SPHERE=s, FVALUE=f, /DEGREES

; Perform a spherical triangulation using the values returned from
; TRIANGULATE. The result, r, is a 180 by 91 element array:
r=TRIGRID(f, SPHERE=s, [2.,2.],$

[-180.,-90.,178.,90.], /DEGREES)

; Display the surface
SURFACE, r
END

Example 3

This example demonstrates the use of the INPUT keyword:

PRO TrigridInputKeyword

; Make 50 normal x, y points:
x = RANDOMN(seed, 50)
y = RANDOMN(seed, 50)
IDL Reference Guide TRIGRID

2020
; Make the Gaussian:
z = EXP(-(x^2 + y^2))

; Show points:
PLOT, x, y, psym=1

; Obtain triangulation:
TRIANGULATE, x, y, tr, b

;Show the triangles.
FOR i=0, N_ELEMENTS(tr)/3-1 DO BEGIN $

; Subscripts of vertices [0,1,2,0]:
t = [tr[*,i], tr[0,i]] & $
; Connect triangles:
PLOTS, x[t], y[t]

ENDFOR

; The default size for the return value of trigrid. xtemp should be
; the same type as Z. xtemp provides temporary space for trigrid:
xtemp=FLTARR(51,51)
xtemp = TRIGRID(x, y, z, INPUT = xtemp, tr)

; Show linear surface:
SURFACE, xtemp, TITLE='Linear surface', CHARSIZE=2
in=' '
READ,"Press enter",in
xtemp = TRIGRID(x, y, z, tr, INPUT = xtemp, /QUINTIC)

; Show smooth quintic surface:
SURFACE, xtemp, TITLE='Smooth Quintic surface', CHARSIZE=2
in=' '
READ,"Press enter",in
xtemp = TRIGRID(x, y, z, tr, INPUT = xtemp, EXTRA = b)

; Show smooth extrapolated surface:
SURFACE, xtemp, TITLE='Smooth Extrapolated surface', CHARSIZE=2
in=' '
READ,"Press enter",in
END

Example 4

The XOUT and YOUT keywords allow you to obtain an irregular interval from the
TRIGRID routine. This example creates an irregularly-gridded dataset of a Gaussian
surface. A grid is formed from these points with the TRIANGULATE and TRIGRID
routines. The inputs to the XOUT and YOUT keywords are determined at random to
produce an irregular interval. These inputs are sorted before setting them to XOUT
and YOUT because these keywords require monotonically ascending or descending
TRIGRID IDL Reference Guide

 2021
values. The lines of the resulting surface are spaced at the irregular intervals provided
by the settings of the XOUT and YOUT keywords.

PRO GriddingIrregularIntervals

; Make 100 normal x, y points:
x = RANDOMN(seed, 100)
y = RANDOMN(seed, 100)
PRINT, MIN(x), MAX(x)
PRINT, MIN(y), MAX(y)

; Make a Gaussian surface:
z = EXP(-(x^2 + y^2))

; Obtain triangulation:
TRIANGULATE, x, y, triangles, boundary

; Create random x values. These values will be used to
; form the x locations of the resulting grid.
gridX = RANDOMN(seed, 30)
; Sort x values. Sorted values are required for the XOUT
; keyword.
sortX = UNIQ(gridX, SORT(gridX))
gridX = gridX[sortX]
; Output sorted x values to be used with the XOUT
; keyword.
PRINT, 'gridX:'
PRINT, gridX

; Create random y values. These values will be used to
; form the y locations of the resulting grid.
gridY = RANDOMN(seed, 30)
; Sort y values. Sorted values are required for the YOUT
; keyword.
sortY = UNIQ(gridY, SORT(gridY))
gridY = gridY[sortY]
; Output sorted y values to be used with the YOUT
; keyword.
PRINT, 'gridY:'
PRINT, gridY

; Derive grid of initial values. The location of the
; resulting grid points are the inputs to the XOUT and
; YOUT keywords.
grid = TRIGRID(x, y, z, triangles, XOUT = gridX, $
 YOUT = gridY, EXTRAPOLATE = boundary)
IDL Reference Guide TRIGRID

2022
; Display resulting grid. The grid lines are not
; at regular intervals because of the randomness of the
; inputs to the XOUT and YOUT keywords.
SURFACE, grid, gridX, gridY, /XSTYLE, /YSTYLE

END

Version History

Introduced: Pre 4.0

See Also

SPH_SCAT, TRIANGULATE
TRIGRID IDL Reference Guide

 2023
TRIQL

The TRIQL procedure uses the QL algorithm with implicit shifts to determine the
eigenvalues and eigenvectors of a real, symmetric, tridiagonal array. The routine
TRIRED can be used to reduce a real, symmetric array to the tridiagonal form
suitable for input to this procedure.

TRIQL is based on the routine tqli described in section 11.3 of Numerical Recipes
in C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Note
If you are working with complex inputs, instead use the LA_TRIQL procedure.

Syntax

TRIQL, D, E, A [, /DOUBLE]

Arguments

D

On input, this argument should be an n-element vector containing the diagonal
elements of the array being analyzed. On output, D contains the eigenvalues.

E

An n-element vector containing the off-diagonal elements of the array. E0 is arbitrary.
On output, this parameter is destroyed.

A

A named variable that returns the n eigenvectors. If the eigenvectors of a tridiagonal
array are desired, A should be input as an identity array. If the eigenvectors of an
array that has been reduced by TRIRED are desired, A is input as the array Q output
by TRIRED.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
IDL Reference Guide TRIQL

2024
Examples

To compute eigenvalues and eigenvectors of a real, symmetric, tridiagonal array,
begin with an array A representing a symmetric array:

; Create the array A:
A = [[3.0, 1.0, -4.0], $

[1.0, 3.0, -4.0], $
[-4.0, -4.0, 8.0]]

; Compute the tridiagonal form of A:
TRIRED, A, D, E

; Compute the eigenvalues (returned in vector D) and the
; eigenvectors (returned in the rows of the array A):
TRIQL, D, E, A

; Print eigenvalues:
PRINT, 'Eigenvalues:'
PRINT, D

; Print eigenvectors:
PRINT, 'Eigenvectors:'
PRINT, A

IDL prints:

Eigenvalues:
2.00000 4.76837e-7 12.0000

Eigenvectors:
0.707107 -0.707107 0.00000
-0.577350 -0.577350 -0.577350
-0.408248 -0.408248 0.816497

The exact eigenvalues are:

[2.0, 0.0, 12.0]

The exact eigenvectors are:

[1.0/sqrt(2.0), -1.0/sqrt(2.0), 0.0/sqrt(2.0)],
[-1.0/sqrt(3.0), -1.0/sqrt(3.0), -1.0/sqrt(3.0)],
[-1.0/sqrt(6.0), -1.0/sqrt(6.0), 2.0/sqrt(6.0)]

Version History

Introduced: 4.0
TRIQL IDL Reference Guide

 2025
See Also

EIGENVEC, ELMHES, HQR, LA_TRIQL, TRIRED
IDL Reference Guide TRIQL

2026
TRIRED

The TRIRED procedure uses Householder’s method to reduce a real, symmetric array
to tridiagonal form.

TRIRED is based on the routine tred2 described in section 11.2 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Note
If you are working with complex inputs, instead use the LA_TRIRED procedure.

Syntax

TRIRED, A, D, E [, /DOUBLE]

Arguments

A

An n by n real, symmetric array that is replaced, on exit, by the orthogonal array Q
effecting the transformation. The routine TRIQL can use this result to find the
eigenvectors of the array A.

D

An n-element output vector containing the diagonal elements of the tridiagonal array.

E

An n-element output vector containing the off-diagonal elements.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

See the description of TRIQL for an example using this function.
TRIRED IDL Reference Guide

 2027
Version History

Introduced: 4.0

See Also

EIGENVEC, ELMHES, HQR, LA_TRIRED, TRIQL
IDL Reference Guide TRIRED

2028
TRISOL

The TRISOL function solves tridiagonal systems of linear equations that have the
form: ATU = R

Note
Because IDL subscripts are in column-row order, the equation above is written
ATU = R rather than AU = R. The result U is a vector of length n whose type is
identical to A.

TRISOL is based on the routine tridag described in section 2.4 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Note
If you are working with complex inputs, instead use the LA_TRISOL procedure.

Syntax

Result = TRISOL(A, B, C, R [, /DOUBLE])

Return Value

Returns a vector containing the solutions.

Arguments

A

A vector of length n containing the n-1 sub-diagonal elements of AT. The first
element of A, A0, is ignored.

B

An n-element vector containing the main diagonal elements of AT.

C

An n-element vector containing the n-1 super-diagonal elements of AT. The last
element of C, Cn-1, is ignored.
TRISOL IDL Reference Guide

 2029
R

An n-element vector containing the right hand side of the linear system
ATU = R.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Example

To solve a tridiagonal linear system, begin with an array representing a real
tridiagonal linear system. (Note that only three vectors need be specified; there is no
need to enter the entire array shown.)

; Define a vector A containing the sub-diagonal elements with a
; leading 0.0 element:
A = [0.0, 2.0, 2.0, 2.0]

; Define B containing the main diagonal elements:
B = [-4.0, -4.0, -4.0, -4.0]

; Define C containing the super-diagonal elements with a trailing
; 0.0 element:
C = [1.0, 1.0, 1.0, 0.0]

; Define the right-hand side vector:
R = [6.0, -8.0, -5.0, 8.0]

; Compute the solution and print:
result = TRISOL(A, B, C, R)
PRINT, result

4.0– 1.0 0.0 0.0

2.0 4.0– 1.0 0.0

0.0 2.0 4.0– 1.0

0.0 0.0 2.0 4.0–
IDL Reference Guide TRISOL

2030
IDL prints:

-1.00000 2.00000 2.00000 -1.00000

The exact solution vector is [-1.0, 2.0, 2.0, -1.0].

Version History

Introduced: 4.0

See Also

CRAMER, GS_ITER, LA_TRISOL, LU_COMPLEX, CHOLSOL, LUSOL,
SVSOL, TRISOL
TRISOL IDL Reference Guide

 2031
TRUNCATE_LUN

The TRUNCATE_LUN procedure truncates the contents of a file (which must be
open for write access) at the current position of the file pointer. After this operation,
all data before the current file pointer remains intact, and all data following the file
pointer are gone. The position of the current file pointer is not altered.

Syntax

TRUNCATE_LUN, Unit1, ..., Unitn

Arguments

Unitn

Scalar or array variables containing the logical file unit numbers of the open files to
be truncated.

Keywords

None.

Examples

Example 1

Truncate the entire contents of an existing file:

OPENU, unit, 'baddata.dat', /GET_LUN
TRUNCATE_LUN, unit
FREE_LUN, unit

Example 2

Given an existing file of 10,000 bytes, throw away the final 5,000 bytes, and then
write an additional 2,000 byte array in their place. The resulting file will be 7,000
bytes in length.

OPENU, unit, 'mydata.dat', /GET_LUN
POINT_LUN, unit, 5000
TRUNCATE_LUN, unit
WRITEU, unit, BYTARR(2000)
FREE_LUN, unit
IDL Reference Guide TRUNCATE_LUN

2032
Version History

Introduced: 5.6

See Also

GET_LUN, OPEN, POINT_LUN
TRUNCATE_LUN IDL Reference Guide

 2033
TS_COEF

The TS_COEF function computes the coefficients φ1, φ2, ... , φP used in a P-th order
autoregressive time-series forecasting model. This routine is written in the IDL
language. Its source code can be found in the file ts_coef.pro in the lib
subdirectory of the IDL distribution.

Syntax

Result = TS_COEF(X, P [, /DOUBLE] [, MSE=variable])

Return Value

Returns a P-element vector whose type is identical to X.

Arguments

X

An n-element single- or double-precision floating-point vector containing time-series
samples.

P

An integer or long integer scalar that specifies the number of coefficients to be
computed.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

MSE

Set this keyword to a named variable that will contain the mean square error of the
P-th order autoregressive model.
IDL Reference Guide TS_COEF

2034
Examples

; Define an n-element vector of time-series samples:
X = [6.63, 6.59, 6.46, 6.49, 6.45, 6.41, 6.38, 6.26, 6.09, 5.99, $

5.92, 5.93, 5.83, 5.82, 5.95, 5.91, 5.81, 5.64, 5.51, 5.31, $
5.36, 5.17, 5.07, 4.97, 5.00, 5.01, 4.85, 4.79, 4.73, 4.76]

; Compute the coefficients of a 5th order autoregressive model:
PRINT, TS_COEF(X, 5)

IDL prints:

1.30168 -0.111783 -0.224527 0.267629 -0.233363

Version History

Introduced: 4.0

See Also

TS_FCAST
TS_COEF IDL Reference Guide

 2035
TS_DIFF

The TS_DIFF function recursively computes the forward differences of an n-element
time-series k times. This routine is written in the IDL language. Its source code can
be found in the file ts_diff.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = TS_DIFF(X, K [, /DOUBLE])

Return Value

The result is an n-element differenced time-series with its last k elements as zeros.

Arguments

X

An n-element integer, single- or double-precision floating-point vector containing
time-series samples.

K

A positive integer or long integer scalar that specifies the number of times X is to be
differenced. K must be in the interval [1, N_ELEMENTS(X) - 1].

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

; Define an n-element vector of time-series samples:
X = [389, 345, 303, 362, 412, 356, 325, 375, $

410, 350, 310, 388, 399, 362, 325, 382, $
399, 382, 318, 385, 437, 357, 310, 391]

; Compute the second forward differences of X:
PRINT, TS_DIFF(X, 2)
IDL Reference Guide TS_DIFF

2036
IDL prints:

2 101 -9 -106 25 81 -15 -95 20
118 -67 -48 0 94 -40 -34 -47 131
-15 -132 33 128 0 0

Version History

Introduced: 4.0

See Also

SMOOTH, TS_FCAST
TS_DIFF IDL Reference Guide

 2037
TS_FCAST

The TS_FCAST function computes future or past values of a stationary time-series
using a P-th order autoregressive model.

A P-th order autoregressive model relates a forecasted value xt of the time series
X = [x0, x1, x2, ... , xt-1], as a linear combination of P past values.

The coefficients φ1, φ2, ... , φP are calculated such that they minimize the uncorrelated
random error terms, wt.

This routine is written in the IDL language. Its source code can be found in the file
ts_fcast.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = TS_FCAST(X, P, Nvalues [, /BACKCAST] [, /DOUBLE])

Return Value

The result is an Nvalues-element vector whose type is identical to X.

Arguments

X

An n-element single- or double-precision floating-point vector containing time-series
samples.

P

An integer or long integer scalar that specifies the number of actual time-series values
to be used in the forecast. In general, a larger number of values results in a more
accurate forecast.

Nvalues

An integer or long integer scalar that specifies the number of future or past values to
be computed.

xt φ1xt 1– φ2xt 2– … φPxt P– wt+ + + +=
IDL Reference Guide TS_FCAST

2038
Keywords

BACKCAST

Set this keyword to produce past values (backward forecasts or “backcasts”)

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

; Define an n-element vector of time-series samples:
X = [6.63, 6.59, 6.46, 6.49, 6.45, 6.41, 6.38, 6.26, 6.09, 5.99, $

5.92, 5.93, 5.83, 5.82, 5.95, 5.91, 5.81, 5.64, 5.51, 5.31, $
5.36, 5.17, 5.07, 4.97, 5.00, 5.01, 4.85, 4.79, 4.73, 4.76]

; Compute and print five future values of the time-series using ten
; time-series values:
PRINT, TS_FCAST(X, 10, 5)

; Compute five past values of the time-series using ten time-series
;values:
PRINT, TS_FCAST(X, 10, 5, /BACKCAST)

IDL prints:

4.65870 4.58380 4.50030 4.48828 4.46971
6.94862 6.91103 6.86297 6.77826 6.70282

Version History

Introduced: 4.0

See Also

A_CORRELATE, COMFIT, CURVEFIT, SMOOTH, TS_COEF, TS_DIFF
TS_FCAST IDL Reference Guide

 2039
TS_SMOOTH

The TS_SMOOTH function computes central, backward, or forward moving
averages of an n-element time-series. Autoregressive forecasting and backcasting are
used to extrapolate the time-series and compute a moving average for each point.

Note
Central moving averages require Nvalues/2 forecasts and Nvalues/2 backcasts.
Backward moving averages require Nvalues-1 backcasts. Forward moving averages
require Nvalues-1 forecasts.

This routine is written in the IDL language. Its source code can be found in the file
ts_smooth.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = TS_SMOOTH(X, Nvalues [, /BACKWARD] [, /DOUBLE] [, /FORWARD]
[, ORDER=value])

Return Value

The result is an n-element vector of the same data type as the input vector.

Arguments

X

An n-element single- or double-precision floating-point vector containing time-series
samples. Note that n must be greater than or equal to 11.

Nvalues

A scalar of type integer or long integer that specifies the number of time-series values
used to compute each moving-average. If central-moving averages are computed (the
default), this parameter must be an odd integer greater than or equal to three.
IDL Reference Guide TS_SMOOTH

2040
Keywords

BACKWARD

Set this keyword to compute backward-moving averages. If BACKWARD is set, the
Nvalues argument must be an integer greater than one.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

FORWARD

Set this keyword to compute forward-moving averages. If FORWARD is set, the
Nvalues argument must be an integer greater than one.

ORDER

An integer or long-integer scalar that specifies the order of the autoregressive model
used to compute the forecasts and backcasts of the time-series. By default, a time-
series with a length between 11 and 219 elements will use an autoregressive model
with an order of 10. A time-series with a length greater than 219 will use an
autoregressive model with an order equal to 5% of its length. The ORDER keyword
is used to override this default.

Examples

; Define an n-element vector of time-series samples:
X = [6.63, 6.59, 6.46, 6.49, 6.45, 6.41, 6.38, 6.26, 6.09, 5.99,$

5.92, 5.93, 5.83, 5.82, 5.95, 5.91, 5.81, 5.64, 5.51, 5.31,$
5.36, 5.17, 5.07, 4.97, 5.00, 5.01, 4.85, 4.79, 4.73, 4.76]

; Compute the 11-point central-moving-averages of the time-series:
PRINT, TS_SMOOTH(X, 11)

IDL prints:

6.65761 6.60592 6.54673 6.47646 6.40480 6.33364
6.27000 6.20091 6.14273 6.09364 6.04455 5.99000
5.92273 5.85455 5.78364 5.72636 5.65818 5.58000
5.50182 5.42727 5.34182 5.24545 5.15273 5.07000
5.00182 4.94261 4.87205 4.81116 4.75828 4.71280

Version History

Introduced: 5.0
TS_SMOOTH IDL Reference Guide

 2041
See Also

SMOOTH, TS_DIFF, TS_FCAST
IDL Reference Guide TS_SMOOTH

2042
TV

The TV procedure displays images on the image display without scaling the intensity.
To display an image with scaling, use the TVSCL procedure.

Note
To display a TrueColor image (an image with 16, 24, or 32 bits per pixel) you must
specify the TRUE keyword.

While the TV procedure does not scale the intensity of an image, it does convert the
input image data to byte type. Values outside the range [0,255] are “wrapped” during
the conversion. In addition, for displays with less than 256 colors, elements of the
input image with values between !D.TABLE_SIZE and 255 will be displayed using
the color index !D.TABLE_SIZE-1.

Syntax

TV, Image [, Position]

or

TV, Image [, X, Y [, Channel]]

Keywords: [, /CENTIMETERS | , /INCHES] [, /ORDER] [, TRUE={1 | 2 | 3}]
[, /WORDS] [, XSIZE=value] [, YSIZE=value]

Graphics Keywords: [, CHANNEL=value] [, /DATA | , /DEVICE | , /NORMAL]
[, /T3D | Z=value]

Arguments

Image

A vector or two-dimensional array to be displayed as an image. If this argument is not
already of byte type, it is converted prior to use.

X, Y

If X and Y are present, they specify the lower-left coordinate of the displayed image,
relative to the lower-left corner of the screen.
TV IDL Reference Guide

 2043
Position

An integer specifying the position for Image within the graphics window. Image
positions run from the top left of the screen to the bottom right. If a position number
is used instead of X and Y, the position of the image is calculated from the dimensions
of the image as follows (integer arithmetic is used).

For example, when displaying 128 by 128 images on a 512 by 512 display, the
position numbers run from 0 to 15 as follows:

Note
When using a device with scalable pixels (e.g., PostScript), the XSIZE and YSIZE
keywords should also be used.

Channel

The memory channel to be written to. The Channel argument is identical to the
CHANNEL graphics keyword.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Xsize Ysize, Size of display or window=

Xdim Ydim, Dimensions of image to be displayed=

Nx
Xsize
Ydim
------------- Images across screen= =

X XdimPositionmoduloNx
Starting X= =

Y Ysize Ydim 1 Position
Nx

-------------------+– Starting Y= =
IDL Reference Guide TV

2044
Keywords

CENTIMETERS

Set this keyword to indicate that the X, Y, Xsize, Ysize, and Z arguments are given in
centimeters from the origin. This system is useful when dealing with devices, such as
PostScript printers, that do not provide a direct relationship between image pixels and
the size of the resulting image.

INCHES

Set this keyword to indicate that all position and size values are given in inches from
the origin. This system is useful when dealing with devices, such as PostScript
printers, that do not provide a direct relationship between image pixels and the size of
the resulting image.

ORDER

If specified, ORDER overrides the current setting of the !ORDER system variable for
the current image only. If set, the image is drawn from the top down instead of the
normal bottom up.

TRUE

Set this keyword to a nonzero value to indicate that a TrueColor (16-, 24-, or 32-bit)
image is to be displayed. The value assigned to TRUE specifies the index of the
dimension over which color is interleaved. The image parameter must have three
dimensions, one of which must be equal to three. For example, set TRUE to 1 to
display an image that is pixel interleaved and has dimensions of (3, m, n). Specify 2
for row-interleaved images, of size (m, 3, n), and 3 for band-interleaved images of the
form (m, n, 3).

See “TrueColor Images” on page 3842 for an example using this keyword to write
24-bit images to the PostScript device.

WORDS

Set this keyword to indicate that words (short integers) instead of 8-bit bytes are to be
transferred to the device. This keyword is valid only when using devices that can
transfer 16-bit pixels. The normal transfer uses 8-bit pixels. If this keyword is set, the
Image parameter is converted to short integer type, if necessary, and then written to
the display.
TV IDL Reference Guide

 2045
XSIZE

The width of the resulting image. On devices with scalable pixel size (such as
PostScript), if XSIZE is specified the image will be scaled to fit the specified width.
If neither XSIZE nor YSIZE is specified, the image will be scaled to fill the plotting
area, while preserving the image’s aspect ratio. This keyword is ignored by pixel-
based devices that are unable to change the size of their pixels.

YSIZE

The height of the resulting image. On devices with scalable pixel size (such as
PostScript), if YSIZE is specified the image will be scaled to fit the specified height.
If neither XSIZE nor YSIZE is specified, the image will be scaled to fill the plotting
area, while preserving the image’s aspect ratio. This keyword is ignored by pixel-
based devices that are unable to change the size of their pixels.

Graphics Keywords Accepted

See Appendix B, “Graphics Keywords” for the description of graphics and plotting
keywords not listed above. CHANNEL, DATA, DEVICE, NORMAL, T3D, Z.

Examples

; Create and display a simple image:
D = BYTSCL(DIST(256)) & TV, D

; Erase the screen:
ERASE

; Use the position parameter to display a number of images in the
; same window.
; Display the image in the upper left corner.
TV, D, 0

; Display another copy of the image in the next position:
TV, D, 1

Version History

Introduced: Original

See Also

ERASE, IIMAGE, SLIDE_IMAGE, TVRD, TVSCL, WIDGET_DRAW, WINDOW
IDL Reference Guide TV

2046
TVCRS

The TVCRS procedure manipulates the display device cursor. The initial state of the
cursor is device dependent. Call TVCRS with one argument to enable or disable the
cursor. Call TVCRS with two parameters to enable the cursor and place it on pixel
location (X, Y).

Syntax

TVCRS [, ON_OFF]

or

TVCRS [, X, Y]

Keywords: [, /CENTIMETERS | , /INCHES] [, /HIDE_CURSOR]

Graphics Keywords: [, /DATA | , /DEVICE | , /NORMAL] [, /T3D | Z=value]

Arguments

ON_OFF

This argument specifies whether the cursor should be on or off. If this argument is
present and nonzero, the cursor is enabled. If ON_OFF is zero or no parameters are
specified, the cursor is turned off.

X

The column to which the cursor is set.

Y

The row to which the cursor is set.

Keywords

CENTIMETERS

Set this keyword to cause X and Y to be interpreted as centimeters, based on the
current device resolution.
TVCRS IDL Reference Guide

 2047
INCHES

Set this keyword to cause X and Y to be interpreted as inches, based on the current
device resolution.

HIDE_CURSOR

By default, disabling the cursor works differently for window systems than for other
devices. For window systems, the cursor is restored to the standard cursor used for
non-IDL windows (and remains visible), while for other devices it is completely
blanked out. If the HIDE keyword is set, disabling the cursor causes it to always be
blanked out.

Graphics Keywords Accepted

See Appendix B, “Graphics Keywords” for the description of graphics and plotting
keywords not listed above. DATA, DEVICE, NORMAL, T3D, Z.

Examples

To enable the graphics cursor and position it at device coordinate (100, 100), enter:

TVCRS, 100, 100

To position the cursor at data coordinate (0.5, 3.2), enter:

TVCRS, 0.5, 3.2, /DATA

Version History

Introduced: Original

See Also

CURSOR, RDPIX
IDL Reference Guide TVCRS

2048
TVLCT

The TVLCT procedure loads the display color translation tables from the specified
variables. Although IDL uses the RGB color system internally, color tables can be
specified to TVLCT using any of the following color systems: RGB (Red, Green,
Blue), HLS (Hue, Lightness, Saturation), and HSV (Hue, Saturation, Value). Alpha
values may also be used when using the second form of the command. The type and
meaning of each argument is dependent upon the color system selected, as described
below. Color arguments can be either scalar or vector expressions. If no color-system
keywords are present, the RGB color system is used.

Syntax

TVLCT, V1, V2, V3 [, Start] [, /GET] [, /HLS | , /HSV]

or

TVLCT, V [, Start] [, /GET] [, /HLS | , /HSV]

Arguments

TVLCT will accept either three n-element vectors (V1, V2, and V3) or a single n-by-3
array (V) as an argument. The vectors (or columns of the array) have different
meanings depending on the color system chosen. If an array V is specified, V[*,0] is
the same as V1, V[*,1] is the same as V2, V[*,2] is the same as V3. In the description
below, we assume that three vectors, V1, V2, and V3 are specified.

The V1, V2, and V3 arguments have different meanings depending upon which color
system they represent.

R, G, B Color System

The parameters V1, V2, and V3 contain the Red, Green, and Blue values, respectively.
Values are interpreted as integers in the range 0 (lowest intensity) to 255 (highest
intensity). The parameters can be scalars or vectors of up to 256 elements. By default,
the three arguments are assumed to be R, G, and B values.

H, L, S Color System

Parameters V1, V2, and V3 contain the Hue, Lightness, and Saturation values
respectively. All parameters are floating-point. Hue is expressed in degrees and is
reduced modulo 360. V2 (lightness) and V3 (saturation) and can range from 0 to 1.0.
Set the HLS keyword to have the arguments interpreted this way.
TVLCT IDL Reference Guide

 2049
H, S, V Color System

Parameters V1, V2, and V3 contain values for Hue, Saturation, and Value (similar to
intensity). All parameters are floating-point. Hue is in degrees. The Saturation and
Value can range from 0 to 1.0. Set the HSV keyword to have the arguments
interpreted this way.

Start

An integer value that specifies the starting point in the color translation table into
which the color intensities are loaded. If this argument is not specified, a value of
zero is used, causing the tables to be loaded starting at the first element of the
translation tables.

Keywords

GET

Set this keyword to return the RGB values from the internal color tables into the V1,
V2, and V3 parameters. For example, the statements:

TVLCT, H, S, V, /HSV
TVLCT, R, G, B, /GET

load a color table based in the HSV system, and then read the equivalent RGB values
into the variables R, G, and B.

HLS

Set this keyword to indicate that the parameters specify color using the HLS color
system.

HSV

Set this keyword to indicate that the parameters specify color using the HSV color
system.

Examples

; Initialize display.
DEVICE, DECOMPOSED = 0

; Create a set of R, G, and B colormap vectors:
R = BYTSCL(SIN(FINDGEN(256)))
G = BYTSCL(COS(FINDGEN(256)))
B = BINDGEN(256)
IDL Reference Guide TVLCT

2050
; Load these vectors into the color table:
TVLCT, R, G, B

; Display an image to see the effect of the new color table:
TVSCL, DIST(400)

Version History

Introduced: Original

See Also

LOADCT, XLOADCT, XPALETTE
TVLCT IDL Reference Guide

 2051
TVRD

The TVRD function returns the contents of the specified rectangular portion of the
current graphics window or device. (X0, Y0) is the coordinate of the lower left corner
of the area to be read and Nx, Ny is the size of the rectangle in columns and rows. The
result is a byte array of dimensions Nx by Ny. All parameters are optional. If no
arguments are supplied, the entire display device area is read.

Important Note about TVRD and Backing Store

On some systems, when backing store is provided by the window system (the
RETAIN keyword to DEVICE or WINDOW is set to 1), reading data from a window
using TVRD may cause unexpected results. For example, data may be improperly
read from the window even when the image displayed on screen is correct. Having
IDL provide the backing store (set the RETAIN keyword to 2) ensures that the
window contents will be read properly. More detailed notes about TVRD and the X
Window system can be found below in “Unexpected Results Using TVRD with X
Windows” on page 2053.

Note
When using TVRD on 16-bit TrueColor displays only 5 or 6 bits of pixel data are
stored for each color channel. Using TVRD on these displays returns channel data
where only the high 5 or 6 bits are significant; the other bits are indeterminate.

Syntax

Result = TVRD([X0 [, Y0 [, Nx [, Ny [, Channel]]]]] [, CHANNEL=value]
[, /ORDER] [, TRUE={1 | 2 | 3}] [, /WORDS])

Return Value

Returns a byte array of the specified dimensions.

Arguments

X0

The starting column of data to read. The default is 0.
IDL Reference Guide TVRD

2052
Y0

The starting row of data to read. The default is 0.

Nx

The number of columns to read. The default is the width of the display device or
window less X0.

Ny

The number of rows to read. The default is the height of the display device or window
less Y0.

Channel

The memory channel to be read. If not specified, this argument is assumed to be zero.
This parameter is ignored on display systems that have only one memory channel.

Keywords

CHANNEL

The memory channel to be read. The CHANNEL keyword is identical to the optional
Channel argument.

Note
If the display is a 24-bit display, and both the CHANNEL and TRUE parameters are
absent, the maximum RGB value in each pixel is returned.

ORDER

Set this keyword to override the current setting of the !ORDER system variable for
the current image only. If set, it causes the image to be read from the top down instead
of the normal bottom up.

TRUE

If this keyword is present, it indicates that a TrueColor image is to be read, if the
display is capable. The value assigned to TRUE specifies the index of the dimension
over which color is interleaved. The result is an (3, nx, ny) pixel-interleaved array if
TRUE is 1; or an (nx, 3, ny) line-interleaved array if TRUE is 2; or an (nx, ny, 3)
image-interleaved array if TRUE is 3.
TVRD IDL Reference Guide

 2053
WORDS

Set this keyword to indicate that words are to be transferred from the device. This
keyword is valid only when using devices that can transfer 16-bit pixels. The normal
transfer uses 8-bit pixels. If this keyword is set, the function result is an integer array.

Unexpected Results Using TVRD with X Windows

When using TVRD with the X Windows graphics device, there are two unexpected
behaviors that can be confusing to users:

• When reading from a window that is obscured by another window (i.e., the
target window has another window “on top” or “in front” of it), TVRD may
return the contents of the window in front as part of the image contained in the
target window.

• When reading from an iconified window, the X server may return a stream of
“BadMatch” protocol events.

IDL uses the Xlib function XGetSubImage() to implement TVRD. The following
quote is from the documentation for XGetSubImage() found in The X Window System
by Robert W. Scheifler and James Gettys, Second Edition, page 174. It explains the
reasons for the behaviors described above:

“If the drawable is a window, the window must be viewable, and it must be the case
that if there were no... overlapping windows, the specified rectangle of the window
would be fully visible on the screen, ... or a BadMatch error results. If the window has
backing-store, then the backing-store contents are returned for regions of the window
that are obscured... If the window does not have backing-store, the returned contents
of such obscured regions are undefined.”

Hence, the first behavior is caused by attempting to use TVRD on an obscured
window that does not have backing store provided by the X server. The result in this
case is undefined, meaning that the different servers can produce entirely different
results. Many servers simply return the image of the obscuring window.

The second behavior is caused by attempting to read from a non-viewable (i.e.,
unmapped) window. Although IDL could refuse to allow TVRD to work with
unmapped windows, some X servers return valid and useful results. Therefore,
TVRD is allowed to attempt to read from unmapped windows.

Both of these behavior problems can be solved by using one of the following
methods:

• Always make sure that your target window is mapped and is not obscured
before using TVRD on it. The following IDL command can be used:
IDL Reference Guide TVRD

2054
WSET, Window_Index

• Make IDL provide backing store (rather than the window system) by setting
the RETAIN keyword to DEVICE or WINDOW equal to 2.

For a full description of backing store, see “Backing Store” on page 3824. Note that
under X Windows, backing store is a request that may or may not be honored by the
X server. Many servers will honor backing store for 8-bit visuals but ignore them for
24-bit visuals because they require three times as much memory.

Examples

; Read the entire contents of the current display device into the
; variable T:
T = TVRD()

Version History

Introduced: Original

See Also

RDPIX, TV, WINDOW
TVRD IDL Reference Guide

 2055
TVSCL

The TVSCL procedure scales the intensity values of Image into the range of the
image display and outputs the data to the image display at the specified location. The
array is scaled so the minimum data value becomes 0 and the maximum value
becomes the maximum number of available colors (held in the system variable
!D.TABLE_SIZE) as follows:

where the maximum and minimum are found by scanning the array. The parameters
and keywords of the TVSCL procedure are identical to those accepted by the TV
procedure. For additional information about each parameter, consult the description
of TV.

Syntax

TVSCL, Image [, Position]

or

TVSCL, Image [, X, Y [, Channel]]

Keywords: [, /CENTIMETERS | , /INCHES] [, /NAN] [, /ORDER] [, TOP=value]
[, TRUE={1 | 2 | 3}] [, /WORDS] [, XSIZE=value] [, YSIZE=value]

Graphics Keywords: [, CHANNEL=value] [, /DATA | , /DEVICE | , /NORMAL]
[, /T3D | Z=value]

Arguments

Image

A two-dimensional array to be displayed as an image. If this argument is not already
of byte type, it is converted prior to use.

X, Y

If X and Y are present, they specify the lower left coordinate of the displayed image.

Position

Image position. See the discussion of the TV procedure for a full description.

Output !D.TABLE_SIZE - 1()
Data Datamin–

Datamax Datamin–
---=
IDL Reference Guide TVSCL

2056
Channel

The memory channel to be written. This argument is assumed to be zero if not
specified. This parameter is ignored on display systems that have only one memory
channel.

Keywords

TVSCL accepts all of the keywords accepted by the TV routine. See “TV” on
page 2042. In addition, there are two unique keywords:

NAN

Set this keyword to cause TVSCL to treat elements of Image that are not numbers
(that is, elements that have the special floating-point values Infinity or NaN) as
missing data, and display them using color index 0 (zero). Note that color index 0 is
also used to display elements that have the minimum value in the Image array.

TOP

The maximum value of the scaled result. If TOP is not specified, !D.TABLE_SIZE-1
is used. Note that the minimum value of the scaled result is always 0.

Graphics Keywords Accepted

See Appendix B, “Graphics Keywords” for the description of graphics and plotting
keywords not listed above. CHANNEL, DATA, DEVICE, NORMAL, T3D, Z.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

Display a floating-point array as an image using the TV command:

TV, DIST(200)
TVSCL IDL Reference Guide

 2057
Note that the image is not easily visible because the values in the array have not been
scaled into the full range of display values. Now display the image with the TVSCL
command by entering:

TVSCL, DIST(200)

Notice how much brighter the image appears.

Version History

Introduced: Original

See Also

ERASE, SLIDE_IMAGE, TV, WIDGET_DRAW, WINDOW
IDL Reference Guide TVSCL

2058
UINDGEN

The UINDGEN function creates an unsigned integer array. Each element of the array
is set to the value of its one-dimensional subscript.

Syntax

Result = UINDGEN(D1 [, ..., D8])

Return Value

Returns an unsigned integer array of the specified dimensions.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

To create UI, a 10-element by 10-element 16-bit array where each element is set to
the value of its one-dimensional subscript, enter:
UINDGEN IDL Reference Guide

 2059
UI = UINDGEN(10, 10)

Version History

Introduced: 5.2

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, L64INDGEN,
LINDGEN, SINDGEN, UL64INDGEN, ULINDGEN
IDL Reference Guide UINDGEN

2060
UINT

The UINT function returns a result equal to Expression converted to unsigned integer
type.

Syntax

Result = UINT(Expression[, Offset [, D1 [, ..., D8]]])

Return Value

Returns the specified dimensions of the given expression as an unsigned integer type.

Arguments

Expression

The expression to be converted to unsigned integer.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as unsigned integer data. See
the description in Chapter 3, “Constants and Variables” in the Building IDL
Applications manual for details.

Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
If no dimension arguments are given, the result is taken to be scalar.

The Di arguments can be either an array or a series of scalar expressions specifying
the dimensions of the result. If a single argument is specified, it can be either a scalar
expression or an array of up to eight elements. If multiple arguments are specified,
they must all be scalar expressions. Up to eight dimensions can be specified.

When converting from a string argument, it is possible that the string does not contain
a valid integer and no conversion is possible. The default action in such cases is to
print a warning message and return 0. The ON_IOERROR procedure can be used to
establish a statement to be jumped to in case of such errors.
UINT IDL Reference Guide

 2061
Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

If A contains the floating-point value 32000.0, it can converted to an unsigned integer
and stored in the variable B by entering:

B = UINT(A)

Version History

Introduced: 5.2

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, LONG64,
STRING, ULONG, ULONG64
IDL Reference Guide UINT

2062
UINTARR

The UINTARR function creates an unsigned integer vector or array.

Syntax

Result = UINTARR(D1 [, ..., D8] [, /NOZERO])

Return Value

Returns an unsigned integer vector or array of the specified dimensions.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, UINTARR sets every element of the result to zero. If NOZERO is set, this
zeroing is not performed and UINTARR executes faster.

Examples

To create L, a 100-element, unsigned integer vector with each element set to 0, enter:

L = UINTARR(100)

Version History

Introduced: 5.2
UINTARR IDL Reference Guide

 2063
See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LON64ARR, LONARR, MAKE_ARRAY, STRARR, ULON64ARR, ULONARR
IDL Reference Guide UINTARR

2064
UL64INDGEN

The UL64INDGEN function returns an unsigned 64-bit integer array with the
specified dimensions. Each element of the array is set to the value of its one-
dimensional subscript.

Syntax

Result = UL64INDGEN(D1 [, ..., D8])

Return Value

Returns the specified unsigned integer array.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
UL64INDGEN IDL Reference Guide

 2065
Examples

To create L, a 10-element by 10-element 64-bit array where each element is set to the
value of its one-dimensional subscript, enter:

L = UL64INDGEN(10, 10)

Version History

Introduced: 5.2

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, L64INDGEN,
LINDGEN, SINDGEN, UINDGEN, ULINDGEN
IDL Reference Guide UL64INDGEN

2066
ULINDGEN

The ULINDGEN function returns an unsigned longword array with the specified
dimensions. Each element of the array is set to the value of its one-dimensional
subscript.

Syntax

Result = ULINDGEN(D1 [, ..., D8])

Return Value

Returns the specified unsigned longword array.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new
array.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
ULINDGEN IDL Reference Guide

 2067
Examples

To create L, a 10-element by 10-element 32-bit array where each element is set to the
value of its one-dimensional subscript, enter:

L = ULINDGEN(10, 10)

Version History

Introduced: 5.2

See Also

BINDGEN, CINDGEN, DCINDGEN, DINDGEN, FINDGEN, L64INDGEN,
LINDGEN, SINDGEN, UINDGEN, UL64INDGEN
IDL Reference Guide ULINDGEN

2068
ULON64ARR

The ULON64ARR function returns an unsigned 64-bit integer vector or array.

Syntax

Result = ULON64ARR(D1 [, ..., D8] [, /NOZERO])

Return Value

Returns a vector or array of the specified dimensions.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, ULON64ARR sets every element of the result to zero. If NOZERO is set,
this zeroing is not performed and ULON64ARR executes faster.

Examples

To create L, a 100-element, unsigned 64-bit vector with each element set to 0, enter:

L = ULON64ARR(100)

Version History

Introduced: 5.2
ULON64ARR IDL Reference Guide

 2069
See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LON64ARR, LONARR, MAKE_ARRAY, STRARR, UINTARR, ULONARR
IDL Reference Guide ULON64ARR

2070
ULONARR

The ULONARR function returns an unsigned longword integer vector or array.

Syntax

Result = ULONARR(D1 [, ..., D8] [, /NOZERO])

Return Value

Returns an unsigned longword integer array of the specified dimensions.

Arguments

Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If a single argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must all be scalar
expressions. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, ULONARR sets every element of the result to zero. If NOZERO is set, this
zeroing is not performed and ULONARR executes more quickly.

Examples

To create L, a 100-element, unsigned longword vector with each element set to 0,
enter:

L = ULONARR(100)

Version History

Introduced: 5.2
ULONARR IDL Reference Guide

 2071
See Also

BYTARR, COMPLEXARR, DBLARR, DCOMPLEXARR, FLTARR, INTARR,
LON64ARR, LONARR, MAKE_ARRAY, STRARR, UINTARR, ULON64ARR,
IDL Reference Guide ULONARR

2072
ULONG

The ULONG function returns a result equal to Expression converted to the unsigned
longword integer type.

Syntax

Result = ULONG(Expression[, Offset [, D1 [, ..., D8]]])

Return Value

Returns the specified dimensions of the given expression as an unsigned longword
integer type.

Arguments

Expression

The expression to be converted to unsigned longword integer.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as unsigned longword integer
data. See the description in Chapter 3, “Constants and Variables” in the Building IDL
Applications manual for details.

Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
If no dimension arguments are given, the result is taken to be scalar.

The Di arguments can be either an array or a series of scalar expressions specifying
the dimensions of the result. If a single argument is specified, it can be either a scalar
expression or an array of up to eight elements. If multiple arguments are specified,
they must all be scalar expressions. Up to eight dimensions can be specified.

When converting from a string argument, it is possible that the string does not contain
a valid integer and no conversion is possible. The default action in such cases is to
print a warning message and return 0. The ON_IOERROR procedure can be used to
establish a statement to be jumped to in case of such errors.
ULONG IDL Reference Guide

 2073
Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

If A contains the floating-point value 32000.0, it can converted to an unsigned
longword integer and stored in the variable B by entering:

B = ULONG(A)

Version History

Introduced: 5.2

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, LONG64,
STRING, UINT, ULONG64
IDL Reference Guide ULONG

2074
ULONG64

The ULONG64 function returns a result equal to Expression converted to the
unsigned 64-bit integer type.

Syntax

Result = ULONG64(Expression[, Offset [, D1 [, ..., D8]]])

Return Value

Returns the specified dimensions of the given expression as an unsigned 64-bit
integer type.

Arguments

Expression

The expression to be converted to unsigned 64-bit integer.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as unsigned 64-bit integer data.
See the description in Chapter 3, “Constants and Variables” in the Building IDL
Applications manual for details.

Di

When extracting fields of data, the Di arguments specify the dimensions of the result.
If no dimension arguments are given, the result is taken to be scalar.

The Di arguments can be either an array or a series of scalar expressions specifying
the dimensions of the result. If a single argument is specified, it can be either a scalar
expression or an array of up to eight elements. If multiple arguments are specified,
they must all be scalar expressions. Up to eight dimensions can be specified.

When converting from a string argument, it is possible that the string does not contain
a valid integer and no conversion is possible. The default action in such cases is to
print a warning message and return 0. The ON_IOERROR procedure can be used to
establish a statement to be jumped to in case of such errors.
ULONG64 IDL Reference Guide

 2075
Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Examples

If A contains the floating-point value 32000.0, it can converted to an unsigned 64-bit
integer and stored in the variable B by entering:

B = ULONG64(A)

Version History

Introduced: 5.2

See Also

BYTE, COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, LONG64,
STRING, UINT, ULONG
IDL Reference Guide ULONG64

2076
UNIQ

The UNIQ function returns the subscripts of the unique elements in an array. Note
that repeated elements must be adjacent in order to be found. This routine is intended
to be used with the SORT function: see the examples below. This function was
inspired by the UNIX uniq(1) command.

This routine is written in the IDL language. Its source code can be found in the file
uniq.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = UNIQ(Array [, Index])

Return Value

UNIQ returns an array of indices into the original array. Note that the index of the last
element in each set of non-unique elements is returned. The following expression is a
copy of the sorted array with duplicate adjacent elements removed:

Array(UNIQ(Array))

UNIQ returns 0 (zero) if the argument supplied is a scalar rather than an array.

Arguments

Array

The array to be scanned. For UNIQ to work properly, the array must be sorted into
monotonic order unless the optional parameter Idx is supplied.

Index

This optional parameter is an array of indices into Array that order the elements into
monotonic order. That is, the expression:

Array(Index)

yields an array in which the elements of Array are rearranged into monotonic order. If
the array is not already in monotonic order, use the command:

UNIQ(Array, SORT(Array))
UNIQ IDL Reference Guide

 2077
Examples

Find the unique elements of an unsorted array:

; Create an array:
array = [1, 2, 1, 2, 3, 4, 5, 6, 6, 5]

; Variable B holds an array containing the sorted, unique values in
; array:
b = array[UNIQ(array, SORT(array))]
PRINT, b

IDL prints

1 2 3 4 5 6

Version History

Introduced: Pre 4.0

See Also

SORT, WHERE
IDL Reference Guide UNIQ

2078
USERSYM

The USERSYM procedure is used to define the plotting symbol that marks points
when the plotting symbol is set to plus or minus 8. Symbols can be drawn with
vectors or can be filled. Symbols can be of any size and can have up to 50 vertices.
See“Defining Your Own Plotting Symbols” in Chapter 17 of the Using IDL manual .

Syntax

USERSYM, X [, Y] [, COLOR=value] [, /FILL] [, THICK=value]

Arguments

X, Y

The X and/or Y parameters define the vertices of the symbol as offsets from the data
point in units of approximately the size of a character. In the case of a vector drawn
symbol, the symbol is formed by connecting the vertices in order. If only one
argument is specified, it must be a (2, N) array of vertices, with element [0, i]
containing the X coordinate of the vertex, and element [1, i] containing the Y. If both
arguments are provided, X contains only the X coordinates.

Keywords

COLOR

The color used to draw the symbols, or used to fill the polygon. The default color is
the same as the line color.

FILL

Set this keyword to fill the polygon defined by the vertices. If FILL is not set, lines
are drawn connecting the vertices.

THICK

The thickness of the lines used in drawing the symbol. The default thickness is 1.0.

Examples

Make a large, diamond-shaped plotting symbol. Define the vectors of X values by
entering:
USERSYM IDL Reference Guide

 2079
X = [-6, 0, 6, 0, -6]

Define the vectors of Y values by entering:

Y = [0, 6, 0, -6, 0]

Now call USERSYM to create the new plotting symbol 8. Enter:

USERSYM, X, Y

Generate a simple plot to test the plotting symbol by entering:

PLOT, FINDGEN(20), PSYM = 8

Version History

Introduced: Original

See Also

PLOT
IDL Reference Guide USERSYM

2080
VALUE_LOCATE

The VALUE_LOCATE function finds the intervals within a given monotonic vector
that brackets a given set of one or more search values. This function is useful for
interpolation and table-lookup, and is an adaptation of the locate() routine in
Numerical Recipes. VALUE_LOCATE uses the bisection method to locate the
interval.

Syntax

Result = VALUE_LOCATE (Vector, Value [, /L64])

Return Value

Each return value, Result [i], is an index, j, into Vector, corresponding to the interval
into which the given Value [i] falls. The returned values are in the range –1 ≤ j ≤ N–1,
where N is the number of elements in the input vector.

If Vector is monotonically increasing, the result j is:

if j = –1 Value [i] < Vector [0]

if 0 ≤ j < N–1 Vector [j] ≤ Value [i] < Vector [j+1]

if j = N–1 Vector [N–1] ≤ Value [i]

If Vector is monotonically decreasing

if j = –1 Vector [0] ≤ Value [i]

if 0 ≤ j < N–1 Vector [j+1] ≤ Value [i] < Vector [j]

if j = N–1 Value [i] < Vector [N–1]

Arguments

Vector

A vector of monotonically increasing or decreasing values. Vector may be of type
string, or any numeric type except complex, and may not contain the value NaN (not-
a-number).
VALUE_LOCATE IDL Reference Guide

 2081
Value

The value for which the location of the intervals is to be computed. Value may be
either a scalar or an array. The return value will contain the same number of elements
as this parameter.

Keywords

L64

By default, the result of VALUE_LOCATE is 32-bit integer when possible, and 64-
bit integer if the number of elements being processed requires it. Set L64 to force 64-
bit integers to be returned in all cases.

Note
Only 64-bit versions of IDL are capable of creating variables requiring a 64-bit
result. Check the value of !VERSION.MEMORY_BITS to see if your IDL is 64-bit
or not.

Examples

; Define a vector of values.
vec = [2,5,8,10]

; Compute location of other values within that vector.
loc = VALUE_LOCATE(vec, [0,3,5,6,12])
PRINT, loc

IDL prints:

-1 0 1 1 3

Version History

Introduced: 5.3
IDL Reference Guide VALUE_LOCATE

2082
VARIANCE

The VARIANCE function computes the statistical variance of an n-element vector.

Syntax

Result = VARIANCE(X [, /DOUBLE] [, /NAN])

Return Value

Returns the floating-point or double-precision statistical variance of the input vector.

Arguments

X

An n-element, floating-point or double-precision vector.

Keywords

DOUBLE

If this keyword is set, VARIANCE performs its computations in double precision
arithmetic and returns a double precision result. If this keyword is not set, the
computations and result depend upon the type of the input data (integer and float data
return float results, while double data returns double results).

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as missing
data. (See “Special Floating-Point Values” in Chapter 18 of the Building IDL
Applications manual for more information on IEEE floating-point values.)

Examples

; Define the n-element vector of sample data:
x = [1, 1, 1, 2, 5]
; Compute the variance:
result = VARIANCE(x)
PRINT, result
VARIANCE IDL Reference Guide

 2083
IDL prints:

3.00000

Version History

Introduced: 5.1

See Also

KURTOSIS, MEAN, MEANABSDEV, MOMENT, STDDEV, SKEWNESS
IDL Reference Guide VARIANCE

2084
VECTOR_FIELD
The VECTOR_FIELD procedure is used to place colored, oriented vectors of
specified length at each vertex in an input vertex array. The output can be sent
directly to an IDLgrPolyline object. The generated display is generally referred to as
a hedgehog display and is used to convey various aspects of a vector field.

Syntax
VECTOR_FIELD, Field, Outverts, Outconn [, ANISOTROPY=array]
[, SCALE=value] [, VERTICES=array]

Arguments

Field

Input vector field array. This can be a [3, x, y, z] array or a [2, x, y] array. The leading
dimension is the vector quantity to be displayed.

Outverts

Output vertex array ([3, N] or [2, N] array of floats). Useful if the routine is to be used
with Direct Graphics or the user wants to manipulate the data directly.

Outconn

Output polyline connectivity array to be applied to the output vertices.

Keywords

ANISOTROPY

Set this keyword to a two- or three-element array describing the distance between
grid points in each dimension. The default value is [1.0, 1.0, 1.0] for three-
dimensional data and [1.0, 1.0] for two-dimensional data.

SCALE

Set this keyword to a scalar scaling factor. All vector lengths are multiplied by this
value. The default is 1.0.
VECTOR_FIELD IDL Reference Guide

 2085
VERTICES

Set this keyword to a [3, n] or [2, n] array of points. If this keyword is set, the vector
field is interpolated at these points. The resulting interpolated vectors are displayed as
line segments at these locations. If the keyword is not set, each spatial sample point in
the input Field grid is used as the base point for a line segment.

Version History

Introduced: 5.3
IDL Reference Guide VECTOR_FIELD

2086
VEL

The VEL procedure draws a velocity (flow) field with arrows following the field
proportional in length to the field strength. Arrows are composed of a number of
small segments that follow the streamlines.

This routine is written in the IDL language. Its source code can be found in the file
vel.pro in the lib subdirectory of the IDL distribution.

Syntax

VEL, U, V [, NVECS=value] [, XMAX= value{xsize/ysize}]
[, LENGTH=value{longest/steps}] [, NSTEPS=value] [, TITLE=string]

Arguments

U

The X component at each point of the vector field. U must be a 2-D array.

V

The Y component at each point of the vector field. V must have the same dimensions
as U.

Keywords

LENGTH

The length of each arrow line segment expressed as a fraction of the longest vector
divided by the number of steps. The default is 0.1.

NSTEPS

The number of shoots or line segments for each arrow. The default is 10.

NVECS

The number of vectors (arrows) to draw. If this keyword is omitted, 200 vectors are
drawn.
VEL IDL Reference Guide

 2087
TITLE

A string containing the title for the plot.

XMAX

X axis size as a fraction of Y axis size. The default is 1.0. This argument is ignored
when !P.MULTI is set.

Examples

; Create a vector of X values:
X = DIST(20)

; Create a vector of Y values:
Y = SIN(X)*100

; Plot the vector field:
VEL, X, Y

Version History

Introduced: Pre 4.0

See Also

FLOW3, PLOT_FIELD, VELOVECT
IDL Reference Guide VEL

2088
VELOVECT

The VELOVECT procedure produces a two-dimensional velocity field plot. A
directed arrow is drawn at each point showing the direction and magnitude of the
field.

This routine is written in the IDL language. Its source code can be found in the file
velovect.pro in the lib subdirectory of the IDL distribution.

Syntax

VELOVECT, U, V [, X, Y] [, COLOR=index] [, MISSING=value [, /DOTS]]
[, LENGTH=value] [, /OVERPLOT] [Also accepts all PLOT keywords]

Arguments

U

The X component of the two-dimensional field. U must be a two-dimensional array.

V

The Y component of the two dimensional field. V must have the same dimensions as
U.

X

Optional abscissae values. X must be a vector with a length equal to the first
dimension of U and V.

Y

Optional ordinate values. Y must be a vector with a length equal to the second
dimension of U and V.

Keywords

Note
Keywords not described here are passed directly to the PLOT procedure and may be
used to set options such as TITLE, POSITION, NOERASE, etc.
VELOVECT IDL Reference Guide

 2089
COLOR

Set this keyword equal to the color index used for the plot.

DOTS

Set this keyword to 1 to place a dot at each missing point. Set this keyword to 0 or
omit it to draw nothing for missing points. Has effect only if MISSING is specified.

LENGTH

Set this keyword equal to the length factor. The default of 1.0 makes the longest (U,V)
vector the length of a cell.

MISSING

Set this keyword equal to the missing data value. Vectors with a length greater than
MISSING are ignored.

OVERPLOT

Set this keyword to make VELOVECT “overplot”. That is, the current graphics
screen is not erased, no axes are drawn, and the previously established scaling
remains in effect.

PLOT Keywords

In addition to the keywords described above, all other keywords accepted by the
PLOT procedure are accepted by VELOVECT. See PLOT.

Examples

; Create some random data:
U = RANDOMN(S, 20, 20)
V = RANDOMN(S, 20, 20)

; Plot the vector field:
VELOVECT, U, V

; Plot the field, using dots to represent vectors with values
; greater than 18:
VELOVECT, U, V, MISSING=18, /DOTS

; Plot with a title. Note that the XTITLE keyword is passed
; directly to the PLOT procedure:
VELOVECT, U, V, MISSING=18, /DOTS, XTITLE='Random Vectors'
IDL Reference Guide VELOVECT

2090
Version History

Introduced: Original

See Also

FLOW3, PLOT, PLOT_FIELD, VEL
VELOVECT IDL Reference Guide

 2091
VERT_T3D

The VERT_T3D function transforms a 3-D array by a 4x4 transformation matrix. The
3-D points are typically an array of polygon vertices that were generated by
SHADE_VOLUME or MESH_OBJ.

This routine is written in the IDL language. Its source code can be found in the file
vert_t3d.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = VERT_T3D(Vertex_List [, DOUBLE=value] [, MATRIX=4x4_array]
[, /NO_COPY] [, /NO_DIVIDE [, SAVE_DIVIDE=variable]])

Return Value

Returns the single- or double-precision coordinates of the transformed array.

Arguments

Vertex_List

A 3 x n array of 3-D coordinates to transform.

Keywords

DOUBLE

Set this keyword to a nonzero value to indicate that the returned coordinates should
be double-precision. If this keyword is not set, the default is to return single-precision
coordinates (unless double-precision arguments are input, in which case the
DOUBLE keyword is implied to be non-zero).

MATRIX

The 4x4 transformation matrix to use. The default is to use the system viewing matrix
(!P.T).
IDL Reference Guide VERT_T3D

2092
NO_COPY

Normally, a copy of Vertex_list is transformed and the original Vertex_list is
preserved. If NO_COPY is set, however, then the original Vertex_List will be
undefined after the call to VERT_T3D. Using the NO_COPY requires less memory.

NO_DIVIDE

Normally, when a [x, y, z, 1] vector is transformed by a 4x4 matrix, the final
homogeneous coordinates are obtained by dividing the x, y, and z components of the
result vector by the fourth element in the result vector. Setting the NO_DIVIDE
keyword will prevent VERT_T3D from performing this division. In some cases
(usually when a perspective transformation is involved) the fourth element in the
result vector can be very close to (or equal to) zero.

SAVE_DIVIDE

Set this keyword to a named variable that will hold receive the fourth element of the
transformed vector(s). If Vertex_list is a vector then SAVE_DIVIDE is a scalar. If
Vertex_list is an array then SAVE_DIVIDE is an array of n elements. This keyword
only has effect when the NO_DIVIDE keyword is set.

Examples

Transform four points representing a square in the x-y plane by first translating +2.0
in the positive X direction, and then rotating 60.0 degrees about the Y axis.

points = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], $
[1.0, 1.0, 0.0], [0.0, 1.0, 0.0]]

T3D, /RESET
T3D, TRANSLATE=[2.0, 0.0, 0.0]
T3D, ROTATE=[0.0, 60.0, 0.0]
points = VERT_T3D(points)

Version History

Introduced: Pre 4.0

See Also

T3D
VERT_T3D IDL Reference Guide

 2093
VOIGT

The VOIGT function returns the value of the classical Voigt function, H(a, u), defined
in terms of the Voigt damping parameter a and the frequency offset u:

The dimensionless frequency offset u and the damping parameter a are determined
by:

where ν0 is the line center frequency and the Doppler width ∆vD (assuming no
turbulence), is defined as:

and, Γ is the transition rate:

where γ is the spontaneous decay rate, and νcol is the atomic collision rate. (See
Radiative Processes in Astrophysics by G. B. Rybicki and A. P. Lightman (1979)
p. 291 for more information.)

H a u,() a
π
--- e y2– yd

a2 u y–()2+

∞–

∞

∫=

u
ν ν0–

∆νD
--------------=

a Γ
4π∆νD
-----------------=

∆vD

ν0

c
-----b

ν0

c
----- 2kT m⁄= =

Γ γ 2νcol+=
IDL Reference Guide VOIGT

2094
The Voigt function can be used to compute the intensity of an atomic absorption line
profile (also known as a VOIGT profile). The line profile φ(a, u) is defined as:

The algorithm is from Armstrong, JQSRT 7, 85. (1967). The definition of the
classical Voigt function H(a,u) can be found in Equation 7.4.13 of Abramowitz, M.
and Stegun, I.A., 1964, Handbook of Mathematical Functions (Washington:National
Bureau of Standards).

Syntax

Result = VOIGT(A, U)

Return Value

If both arguments are scalars, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of A and U, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the smallest input array. If
A is double-precision, the result is double-precision, otherwise the result is single-
precision.

Arguments

A

A scalar or array specifying the values for the Voigt damping parameter.

U

A scalar or array specifying the values for the dimensionless frequency offset in
Doppler widths.

φ a u,() H a u,()
∆vD π
------------------≡
VOIGT IDL Reference Guide

 2095
Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.

Version History

Introduced: Pre 4.0

See Also

LEEFILT, ROBERTS, SOBEL
IDL Reference Guide VOIGT

2096
VORONOI

The VORONOI procedure computes the Voronoi polygon of a point within an
irregular grid of points, given the Delaunay triangulation. The Voronoi polygon of a
point contains the region closer to that point than to any other point.

For interior points, the polygon is constructed by connecting the midpoints of the
lines connecting the point with its Delaunay neighbors. Polygons are traversed in a
counterclockwise direction.

For exterior points, the set is described by the midpoints of the connecting lines, plus
the circumcenters of the two triangles that connect the point to the two adjacent
exterior points.

This routine is written in the IDL language. Its source code can be found in the file
voronoi.pro in the lib subdirectory of the IDL distribution.

Syntax

VORONOI, X, Y, I0, C, Xp, Yp, Rect

Arguments

X

An array containing the X locations of the points.

Y

An array containing the Y locations of the points.

I0

An array containing the indices of the points.

C

A connectivity list from the Delaunay triangulation. This list is produced with the
CONNECTIVITY keyword of the TRIANGULATE procedure.

Xp, Yp

Named variables that will contain the X and Y vertices of Voronoi polygon.
VORONOI IDL Reference Guide

 2097
Rect

The bounding rectangle: [Xmin, Ymin, Xmax, Ymax]. Because the Voronoi polygon
(VP) for points on the convex hull extends to infinity, a clipping rectangle must be
supplied to close the polygon. This rectangle has no effect on the VP of interior
points. If this rectangle does not enclose all the Voronoi vertices, the results will be
incorrect. If this parameter, which must be a named variable, is undefined or set to a
scalar value, it will be calculated.

Examples

To draw the Voronoi polygons of each point of an irregular grid:

N = 20

; Create a random grid of N points:
X = RANDOMU(seed, N)
Y = RANDOMU(seed, N)

; Triangulate it:
TRIANGULATE, X, Y, tr, CONN=C

FOR I=0, N-1 DO BEGIN & $
; Get the ith polygon:
VORONOI, X, Y, I, C, Xp, Yp & $

; Draw it:
POLYFILL, Xp, Yp, COLOR = (I MOD 10) + 2 & $

ENDFOR

Version History

Introduced: Pre 4.0

See Also

TRIANGULATE
IDL Reference Guide VORONOI

2098
VOXEL_PROJ

The VOXEL_PROJ function generates visualizations of volumetric data by
computing 2-D projections of a colored, semi-transparent volume. Parallel rays from
any given direction are cast through the volume, onto the viewing plane. User-
selected colors and opacities can be assigned to arbitrary data ranges, simulating the
appearance of the materials contained within the volume.

The VOXEL_PROJ function can be combined with the Z-buffer to render volume
data over objects. Cutting planes can also be specified to view selected portions of the
volume. Other options include: selectable resolution to allow quick “preview”
renderings, and average and maximum projections.

VOXEL_PROJ renders volumes using an algorithm similar to the one described by
Drebin, Carpenter, and Hanrahan, in “Volume Rendering”, Computer Graphics,
Volume 22, Number 4, August 1988, pp. 125-134, but without the surface extraction
and enhancement step.

Voxel rendering can be quite time consuming. The time required to render a volume
is proportional to the viewing areas size, in pixels, times the thickness of the volume
cube in the viewing direction, divided by the product of the user-specified X, Y, and Z
steps.

Syntax

Result = VOXEL_PROJ(V [, RGBO] [, BACKGROUND=array]
[, CUTTING_PLANE=array] [, /INTERPOLATE] [, /MAXIMUM_INTENSITY]
[, STEP=[Sx, Sy, Sz]] [, XSIZE=pixels] [, YSIZE=pixels] [, ZBUFFER=int_array]
[, ZPIXELS=byte_array])

Return Value

Returns the specified voxel projection results.

Arguments

V

A three-dimensional array containing the volume to be rendered. This array is
converted to byte type if necessary.
VOXEL_PROJ IDL Reference Guide

 2099
RGBO

This optional parameter is used to specify the look-up tables that indicate the color
and opacity of each voxel value. This argument can be one of the following types:

• A (256, 4) byte array for TrueColor rendering. This array represents 256 sets of
red, green, blue, and opacity (RGBO) components for each voxel value, scaled
into the range of bytes (0 to 255). The R, G, and B components should already
be scaled by the opacity. For example, if a voxel value of 100 contains a
material that is red, and 35% opaque, the RGBO values should be,
respectively: [89, 0, 0, 89] because 255 * 0.35 = 89. If more than one material
is present, the RGBO arrays contain the sum of the individual RGBO arrays.
The content and shape of the RGBO curves is highly dependent upon the
volume data and experimentation is often required to obtain the best display.

• A (256, 2) byte array for volumes with only one material or monochrome
rendering. This array represents 256 sets of pixel values and their
corresponding opacities for each voxel value.

• If this argument is omitted, the average projection method, or maximum
intensity method (if the MAXIMUM_INTENSITY keyword is set) is used.

Keywords

BACKGROUND

A one- or three-element array containing the background color indices. The default is
(0,0,0), yielding a black background with most color tables.

CUTTING_PLANE

A floating-point array specifying the coefficients of additional cutting planes. The
array has dimensions of (4, N), where N is the number of additional cutting planes
from 1 to 6. Cutting planes are constraints in the form of:

C[0] * X + C[1] * Y + C[2] * Z + D > 0

The X, Y, and Z coordinates are specified in voxel coordinates. For example, to
specify a cutting plane that excludes all voxels with an X value greater than 10:

CUTTING_PLANE = [-1.0, 0, 0, 10.], for the constraint: -X + 10 > 0.

INTERPOLATE

Set this keyword to use tri-linear interpolation to determine the data value for each
step on a ray. Otherwise, the nearest-neighbor method is used. Setting this keyword
IDL Reference Guide VOXEL_PROJ

2100
improves the quality of images produced, especially when the volume has low
resolution in relation to the size of the viewing plane, at the cost of more computing
time.

MAXIMUM_INTENSITY

Set this keyword to make the value of each pixel in the viewing plane the maximum
data value along the corresponding ray. The RGBO argument is ignored if present.

STEP

Set this keyword to a three-element vector, [Sx, Sy, Sz], that controls the resolution of
the resulting projection. The first two elements contain the step size in the X and Y
view plane, in pixels. The third element is the sampling step size in the Z direction,
given in voxels. Sx and Sy must be integers equal to or greater than one, while Sz can
contain a fractional part. If Sx or Sy are greater than one, the values of intermediate
pixels in the output image are linearly interpolated. Higher step sizes require less time
because fewer rays are cast, at the expense of lower resolution in the output image.

XSIZE

The width, in pixels, of the output image. If this keyword is omitted, the output image
is as wide as the currently-selected output device.

YSIZE

The height, in pixels, of the output image. If this keyword is omitted, the output
image is as tall as the currently selected output device.

ZBUFFER

An integer array, with the same width and height as the output image, that contains
the depth portion of the Z-buffer. Include this parameter to combine the previously-
read contents of a Z-buffer with a voxel rendering. See the third example, below, for
details.

ZPIXELS

A byte array, with the same width and height as the output image, that contains the
image portion of the Z-buffer. Include this parameter to combine the contents of a Z-
buffer with a voxel rendering. See the third example, below, for details.
VOXEL_PROJ IDL Reference Guide

 2101
Examples

Example 1

In the following example, assume that variable V contains a volume of data, with
dimensions Vx by Vy by Vz. The volume contains two materials, muscle tissue
represented by a voxel range of 50 to 70, that we want to render with red color, and an
opacity of 20; and bone tissue represented by a voxel range of 220-255, that we want
to render with white color, and an opacity of 50:

; Create the opacity vector:
rgbo = BYTARR(256,4)

; Red and opacity for muscle:
rgbo[50:70, [0,3]] = 20

; White and opacity for bone:
rgbo[220:255, *] = 50

Example 2

Although it is common to use trapezoidal or Gaussian functions when forming the
RGBO arrays, this example uses rectangular functions for simplicity.

; Set up the axis scaling and default rotation:
SCALE3, XRANGE=[0, Vx-1], YRANGE=[0, Vy-1], ZRANGE=[0, Vz-1]

; Compute projected image:
C = VOXEL_PROJ(V, rgbo)

; Convert from 24-bit to 8-bit image and display:
TV, COLOR_QUAN(C, 3, R, G, B)

; Load quantized color tables:
TVLCT, R, G, B

This example required approximately 27 seconds on a typical workstation to compute
the view in a 640- by 512-pixel viewing window. Adding the keyword
STEP=[2,2,1] in the call to VOXEL_PROJ decreased the computing time to about
8 seconds, at the expense of slightly poorer resolution.

When viewing a volume with only one constituent, the RGBO array should contain
only an intensity/opacity value pair. To illustrate, if in the above example, only
muscle was of interest we create the RGBO argument as follows:

; Create an empty 256 x 2 array:
rgbo = BYTARR(256,2)
IDL Reference Guide VOXEL_PROJ

2102
; Intensity and opacity for muscle:
rgbo[50:70, *] = 20
SCALE3, XRANGE=[0, Vx-1], YRANGE=[0, Vy-1], ZRANGE=[0, Vz-1]

; Compute and display the projected image:
TV, VOXEL_PROJ(V, rgbo)

; Create color table array for red:
C = (FINDGEN(256)/255.) # [255., 0., 0]

; Load colors:
TVLCT, C[*,0], C[*,1], C[*,2]

Example 3

This example demonstrates combining a volume with the contents of the Z-buffer:

; Set plotting to Z-buffer:
SET_PLOT, 'Z'

; Turn on Z buffering:
DEVICE, /Z_BUFFER

; Set scaling:
SCALE3, XRANGE=[0, Vx-1], YRANGE=[0, Vy-1], ZRANGE=[0, Vz-1]

; Draw a polygon at z equal to half the depth:
POLYFILL, [0, Vx-1, Vx-1, 0], [0, 0, Vy-1, Vy-1], Vz/2., /T3D

; Read pixel values from the Z-buffer:
zpix = TVRD()

; Read depth values from the Z-buffer:
zbuff = TVRD(/WORDS,/CHAN)

; Back to display window:
SET_PLOT, 'X'

; Compute the voxel projection and use the ZPIXELS and ZBUFFER
; keywords to combine the volume with the previously-read contents
; of the Z-buffer:
C = VOXEL_PROJ(V, rgbo, ZPIX=zpix, ZBUFF=zbuff)

;Convert from 24-bit to 8-bit image and display.
TV, COLOR_QUAN(C, 3, R, G, B)

; Load the quantized color tables:
TVLCT, R, G, B
VOXEL_PROJ IDL Reference Guide

 2103
Version History

Introduced: Pre 4.0

See Also

POLYSHADE, PROJECT_VOL, RECON3, SHADE_VOLUME
IDL Reference Guide VOXEL_PROJ

2104
WAIT

The WAIT procedure suspends execution of an IDL program for a specified period.
Note that because of other activity on the system, the duration of program suspension
may be longer than requested.

Syntax

WAIT, Seconds

Arguments

Seconds

The duration of the wait, specified in seconds. This parameter can be a floating-point
value to specify a fractional number of seconds.

Keywords

None.

Examples

To make an IDL program suspend execution for about five and one half seconds, use
the command:

WAIT, 5.5

Version History

Introduced: Original

See Also

EXIT, STOP
WAIT IDL Reference Guide

 2105
WARP_TRI

The WARP_TRI function returns an image array with a specified geometric
correction applied. Images are warped using control (tie) points such that locations
(Xi, Yi) are shifted to (Xo, Yo).

The irregular grid defined by (Xo, Yo) is triangulated using TRIANGULATE. Then
the surfaces defined by (Xo, Yo, Xi) and (Xo, Yo, Yi) are interpolated using TRIGRID
to get the locations in the input image of each pixel in the output image. Finally,
INTERPOLATE is called to obtain the result. Linear interpolation is used by default.
Smooth quintic interpolation is used if the QUINTIC keyword is set.

This routine is written in the IDL language. Its source code can be found in the file
warp_tri.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = WARP_TRI(Xo, Yo, Xi, Yi, Image [, OUTPUT_SIZE=vector] [, /QUINTIC]
[, /EXTRAPOLATE] [, /TPS])

Return Value

Returns the warped image array.

Arguments

Xo, Yo

Vectors containing the locations of the control (tie) points in the output image.

Xi, Yi

Vectors containing the location of the control (tie) points in the input image. Xi and Yi
must be the same length as Xo and Yo.

Image

The image to be warped. May be any type of data.
IDL Reference Guide WARP_TRI

2106
Keywords

OUTPUT_SIZE

Set this keyword equal to a 2-element vector containing the size of the output image.
If omitted, the output image is the same size as Image.

QUINTIC

Set this keyword to use smooth quintic interpolation. Quintic interpolation is slower
but the derivatives are continuous across triangles, giving a more pleasing result than
the default linear interpolation.

EXTRAPOLATE

Set this keyword to extrapolate outside the convex hull of the tie points. Setting this
keyword implies the use of QUINTIC interpolation.

TPS

Set this keyword to use Thin Plate Spline interpolation, which interpolates a set of
irregularly sampled data value over a regular two dimensional grid. Thin plate splines
are ideal for modeling functions with complex local distortions, such as warping
functions, which are too complex to be fit with polynomials.

Version History

Introduced: Pre 4.0

See Also

INTERPOLATE, TRIANGULATE, TRIGRID
WARP_TRI IDL Reference Guide

 2107
WATERSHED

The WATERSHED function applies the morphological watershed operator to a
grayscale image. This operator segments images into watershed regions and their
boundaries. Considering the gray scale image as a surface, each local minimum can
be thought of as the point to which water falling on the surrounding region drains.
The boundaries of the watersheds lie on the tops of the ridges. This operator labels
each watershed region with a unique index, and sets the boundaries to zero.

Typically, morphological gradients, or images containing extracted edges are used for
input to the watershed operator. Noise and small unimportant fluctuations in the
original image can produce spurious minima in the gradients, which leads to
oversegmentation. Smoothing, or manually marking the seed points are two
approaches to overcoming this problem. For further reading, see Dougherty, “An
Introduction to Morphological Image Processing”, SPIE Optical Engineering Press,
1992.

Syntax

Result = WATERSHED (Image [, CONNECTIVITY={4 | 8}])

Return Value

Returns an image of the same dimensions as the input image. Each pixel of the result
will be either zero if the pixel falls along the segmentation between basins, or the
identifier of the basin in which that pixel falls.

Arguments

Image

The two-dimensional image to be segmented. Image is converted to byte type if
necessary.

Keywords

CONNECTIVITY

Set this keyword to either 4 (to select 4-neighbor connectivity) or 8 (to select 8-
neighbor connectivity). Connectivity indicates which pixels in the neighborhood of a
given pixel are sampled during the segmentation process. 4-neighbor connectivity
IDL Reference Guide WATERSHED

2108
samples only the pixels that are immediately adjacent horizontally and vertically. 8-
neighbor connectivity samples the diagonally adjacent neighbors in addition to the
immediate horizontal and vertical neighbors. The default is 4-neighbor connectivity.

Examples

The following code crudely segments the grains in the data file in the IDL Demo data
directory containing an magnified image of grains of pollen. Note that the IDL
Demos must be installed in order to read the image used in this example.

It inverts the image, because the watershed operator finds holes, and the grains of
pollen are bright. Next, the morphological closing operator is applied with a disc of
radius 9, contained within a 19 by 19 kernel, to eliminate holes in the image smaller
than the disc. The watershed operator is then applied to segment this image. The
borders of the watershed images, which have pixel values of zero, are then merged
with the original image and displayed as white.

;Radius of disc...
r = 9

;Create a disc of radius r
disc = SHIFT(DIST(2*r+1), r, r) LE r

;Read the image
READ_JPEG, FILEPATH('pollens.jpg', $

SUBDIR=['examples','demo','demodata']), a

;Invert the image
b = MAX(a) - a

TVSCL, b, 0

;Remove holes of radii less than r
c = MORPH_CLOSE(b, disc, /GRAY)

TVSCL, c, 1

;Create watershed image
d = WATERSHED(c)

;Display it, showing the watershed regions
TVSCL, d, 2

;Merge original image with boundaries of watershed regions
e = a > (MAX(a) * (d EQ 0b))

TVSCL, e, 3
WATERSHED IDL Reference Guide

 2109
Version History

Introduced: 5.3
IDL Reference Guide WATERSHED

2110
Wavelet Toolkit

For information, see the Chapter 1, “Introduction to the IDL Wavelet Toolkit” in the
IDL Wavelet Toolkit manual.
Wavelet Toolkit IDL Reference Guide

 2111
WDELETE

The WDELETE procedure deletes IDL windows.

Syntax

WDELETE [, Window_Index [, ...]]

Arguments

Window_Index

A list of one or more window indices to delete. If this argument is not specified, the
current window (as specified by the system variable !D.WINDOW) is deleted. If the
window being deleted is not the active window, the value of !D.WINDOW remains
unchanged. If the window being deleted is the active window, !D.WINDOW is set to
the highest numbered window index or to -1 if no windows remain open.

If this window index is the widget ID of a draw widget, that widget is deleted.

Keywords

None.

Examples

Create IDL graphics window number 5 by entering:

WINDOW, 5

Delete window 5 by entering:

WDELETE, 5

Version History

Introduced: Original

See Also

WINDOW, WSET, WSHOW
IDL Reference Guide WDELETE

2112
WF_DRAW

The WF_DRAW procedure draws weather fronts of various types using parametric
spline interpolation to smooth the lines. WF_DRAW uses the POLYFILL routine to
make the annotations on the front lines.

This routine is written in the IDL language. Its source code can be found in the file
wf_draw.pro in the lib subdirectory of the IDL distribution.

Syntax

WF_DRAW, X, Y [[, /COLD | , FRONT_TYPE=1] | [, /WARM | , FRONT_TYPE=2]
| [, /OCCLUDED | , FRONT_TYPE=3] | [, /STATIONARY | , FRONT_TYPE=4] |
[, /CONVERGENCE | , FRONT_TYPE=5]] [, COLOR=value] [, /DATA | ,
/DEVICE | , /NORMAL] [, INTERVAL=value] [, PSYM=value]
[, SYM_HT=value] [, SYM_LEN=value] [, THICK=value]

Arguments

X, Y

Vectors of abscissae and ordinates defining the front to be drawn.

Keywords

COLD

Set this keyword to draw a cold front. The default is a plain line with no annotations.
A cold front can also be specified by setting the keyword FRONT_TYPE = 1.

COLOR

Use this keyword to specify the color to use. The default = !P.COLOR.

CONVERGENCE

Set this keyword to draw a convergence line. A convergence line can also be specified
by setting the keyword FRONT_TYPE = 5.

DATA

Set this keyword if X and Y are specified in data coordinates.
WF_DRAW IDL Reference Guide

 2113
DEVICE

Set this keyword if X and Y are specified in device coordinates.

FRONT_TYPE

Set this keyword equal to the numeric index of type of front to draw. Front type
indices are as follows: COLD=1, WARM=2, OCCLUDED=3, STATIONARY=4,
CONVERGENCE = 5. Not required if plain line is desired or if an explicit front type
keyword is specified.

INTERVAL

Use this keyword to specify the spline interpolation interval, in normalized units. The
default = 0.01. Larger values give coarser approximations to curves, smaller values
make more interpolated points.

NORMAL

Set this keyword if X and Y are specified in normalized coordinates. This is the
default.

OCCLUDED

Set this keyword to draw an occluded front. An occluded front can also be specified
by setting the keyword FRONT_TYPE = 3.

PSYM

Set this keyword a standard PSYM value to draw a marker on each actual (X, Y) data
point. See “PSYM” on page 3878 for a list of the symbol types.

STATIONARY

Set this keyword to draw a stationary front. A stationary front can also be specified by
setting the keyword FRONT_TYPE = 4.

SYM_HT

Use this keyword to specify the height of front symbols, in normalized units. The
default = 0.02.

SYM_LEN

Use this keyword to specify the length and spacing factor for front symbols, in
normalized units. The default = 0.15.
IDL Reference Guide WF_DRAW

2114
THICK

Use this keyword to specify the line thickness. The default = 1.0.

WARM

Set this keyword to draw a warm front. A warm front can also be specified by setting
the keyword FRONT_TYPE = 2.

Examples

This example draws various fronts on a map of the United States. Note that this
example code is in the file wf_draw.pro, and can be run by entering
test_wf_draw at the IDL command line.

PRO test_wf_draw

MAP_SET, LIMIT = [25, -125, 50, -70], /GRID, /USA
WF_DRAW, [-120, -110, -100], [30, 50, 45], /COLD, /DATA, THICK=2
WF_DRAW, [-80, -80, -75], [50, 40, 35], /WARM, /DATA, THICK=2
WF_DRAW, [-80, -80, -75]-10., [50, 40, 35], /OCCLUDED, /DATA,$

THICK=2
WF_DRAW, [-120, -105], [40,35], /STATION, /DATA, THICK=2
WF_DRAW, [-100, -90, -90], [30,35,40], /CONVERG, /DATA, THICK=2

names=['None','Cold','Warm','Occluded','Stationary','Convergent']
x = [.015, .30]
y = 0.04
dy = 0.05
ty = N_ELEMENTS(names) * dy + y
POLYFILL, x[[0,1,1,0]],[0, 0, ty, ty],/NORM, COLOR=!P.BACKGROUND
FOR i=0, N_ELEMENTS(names)-1 DO BEGIN

WF_DRAW, x, y, /NORM, FRONT_TYPE=i, THICK=2
XYOUTS, x[1]+0.015, y[0], names[i], /NORM, CHARS=1.5
y = y + dy

ENDFOR

END

Version History

Introduced: Pre 4.0

See Also

ANNOTATE, XYOUTS
WF_DRAW IDL Reference Guide

 2115
WHERE

The WHERE function returns a vector that contains the one-dimensional subscripts
of the nonzero elements of Array_Expression. The length of the resulting vector is
equal to the number of nonzero elements in Array_Expression. Frequently the result
of WHERE is used as a vector subscript to select elements of an array using given
criteria.

Note: When WHERE Returns –1

If all the elements of Array_Expression are zero, WHERE returns a scalar integer
with a value of –1. Attempting to use this result as an index into another array results
in a “subscripts out of bounds” error. In situations where this is possible, code similar
to the following can be used to avoid errors:

; Use Count to get the number of nonzero elements:
index = WHERE(array, count)

; Only subscript the array if it’s safe:
IF count NE 0 THEN result = array[index]

Syntax

Result = WHERE(Array_Expression [, Count] [, COMPLEMENT=variable]
[, /L64] [, NCOMPLEMENT=variable])

Return Value

Returns a longword vector containing the subscripts of non-zero array elements
matching the specified conditions.

Arguments

Array_Expression

The array to be searched. Both the real and imaginary parts of a complex number
must be zero for the number to be considered zero.

Count

A named variable that will receive the number of nonzero elements found in
Array_Expression. This value is returned as a longword integer.
IDL Reference Guide WHERE

2116
Note
The system variable !ERR is set to the number of nonzero elements. This effect is
for compatibility with previous versions of IDL and should not be used in new code.
Use the COUNT argument to return this value instead.

Keywords

COMPLEMENT

Set this keyword to a named variable that receives the subscripts of the zero elements
of Array_Expression. These are the subscripts that are not returned in Result.
Together, Result and COMPLEMENT specify every subscript in Array_Expression.
If there are no zero elements in Array_Expression, COMPLEMENT returns a scalar
integer with the value -1.

L64

By default, the result of WHERE is 32-bit integer when possible, and 64-bit integer if
the number of elements being processed requires it. Set L64 to force 64-bit integers to
be returned in all cases.

Note
Only 64-bit versions of IDL are capable of creating variables requiring a 64-bit
result. Check the value of !VERSION.MEMORY_BITS to see if your IDL is 64-bit
or not.

NCOMPLEMENT

Set this keyword to a named variable that receives the number of zero elements found
in Array_Expression. This value is the number of subscripts that will be returned via
the COMPLEMENT keyword if it is specified.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “Thread Pool
Keywords” for details.
WHERE IDL Reference Guide

 2117
Examples

Example 1

; Create a 10-element integer array where each element is
; set to the value of its subscript:
array = INDGEN(10)
PRINT, 'array = ', array

; Find the subscripts of all the elements in the array that have
; a value greater than 5:
B = WHERE(array GT 5, count, COMPLEMENT=B_C, NCOMPLEMENT=count_c)

; Print how many and which elements met the search criteria:
PRINT, 'Number of elements > 5: ', count
PRINT, 'Subscripts of elements > 5: ', B
PRINT, 'Number of elements <= 5: ', count_c
PRINT, 'Subscripts of elements <= 5: ', B_C

IDL prints:

array = 0 1 2 3 4 5 6 7 8 9
Number of elements > 5: 4
Subscripts of elements > 5: 6 7 8 9
Number of elements <= 5: 6
Subscripts of elements <= 5: 0 1 2 3 4 5

Example 2

The WHERE function behaves differently with different kinds of array expressions.
For instance, if a relational operator is used to compare an array, A, with a scalar, B,
then every element of A is searched for B. However, if a relational operator is used to
compare two arrays, C and D, then a comparison is made between each
corresponding element (i.e. Ci & Di, Ci+1 & Di+1, etc) of the two arrays. If the two
arrays have different lengths then a comparison is only made up to the number of
elements for the shorter array. The following example illustrates this behavior:

; Compare array, a, and scalar, b:
a = [1,2,3,4,5,5,4,3,2,1]
b = 5
PRINT, 'a = ', a
PRINT, 'b = ', b

result=WHERE(a EQ b)
PRINT,'Subscripts of a that equal b: ', result

; Now compare two arrays of different lengths:
c = [1,2,3,4,5,5,4,3,2,1]
IDL Reference Guide WHERE

2118
d = [0,2,4]
PRINT, 'c = ', c
PRINT, 'd = ', d

result=WHERE(c EQ d)
PRINT, 'Subscripts of c that equal d: ', result

IDL prints:

a = 1 2 3 4 5 5 4 3 2 1
b = 5
Subscripts of a that equal b: 4 5

c = 1 2 3 4 5 5 4 3 2 1
d = 0 2 4
Subscripts of c that equal d: 1

Note that WHERE found only one element in the array d that equals an element in
array c. This is because only the first three elements of c were searched, since d has
only three elements.

Version History

Introduced: Original

See Also

ARRAY_INDICES, UNIQ
WHERE IDL Reference Guide

 2119
WHILE...DO

The WHILE...DO statement performs its subject statement(s) as long as the
expression evaluates to true. The subject is never executed if the condition is initially
false.

Note
For information on using WHILE...DO and other IDL program control statements,
see Chapter 12, “Program Control” in the Building IDL Applications manual.

Syntax

WHILE expression DO statement

or

WHILE expression DO BEGIN

statements

ENDWHILE

Examples

i = 0
WHILE (i EQ 1) DO PRINT, i

Because the expression (which is false in this case) is evaluated before the subject
statement is executed, this code yields no output.

Version History

Introduced: Original
IDL Reference Guide WHILE...DO

2120
WIDGET_ACTIVEX

The WIDGET_ACTIVEX function is used to incorporate an ActiveX control into an
IDL widget hierarchy. IDL provides the same object method and property
manipulation facilities for ActiveX controls as it does for COM objects incorporated
using the IDLcomIDispatch object interface, but adds the ability to process events
generated by the ActiveX control using IDL’s widget event handling mechanisms.

Note
IDL can only incorporate ActiveX controls on Windows NT/2000/XP (and later)
platforms.

When you use the WIDGET_ACTIVEX routine, IDL automatically creates an
IDLcomActiveX object that encapsulates the ActiveX control. You can then call the
ActiveX control’s methods using IDL object syntax, as discussed in Chapter 5,
“Using ActiveX Controls in IDL” in the External Development Guide manual. You
should be familiar with the material in that chapter before attempting to incorporate
ActiveX controls in your IDL programs.

Note
If the COM object you want to use in your IDL application is not an ActiveX
control, use the IDLcomIDispatch object class.

Syntax

Result = WIDGET_ACTIVEX(Parent, COM_ID, [, /ALIGN_BOTTOM | ,
/ALIGN_CENTER | , /ALIGN_LEFT | , /ALIGN_RIGHT | , /ALIGN_TOP]
[, EVENT_FUNC=string] [, EVENT_PRO=string] [, FUNC_GET_VALUE=string]
[ID_TYPE=value] [, KILL_NOTIFY=string] [, /NO_COPY]
[, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string] [, SCR_XSIZE=width]
[, SCR_YSIZE=height] [, /SENSITIVE] [, UNAME=string] [, UNITS={0 | 1 | 2}]
[, UVALUE=value] [, XOFFSET=value] [, XSIZE=value] [, YOFFSET=value]
[, YSIZE=value])

Return Value

The returned value is the widget ID of the ActiveX widget. Note that the widget value
of the ActiveX widget is an object reference to the IDLcomActiveX object that
encapsulates the specified ActiveX control.
WIDGET_ACTIVEX IDL Reference Guide

 2121
Arguments

Parent

The widget ID of the parent widget of the new ActiveX control.

COM_ID

A string value specifying the class or program ID of the COM object to create. Note
that if you specify a COM program ID via this argument, you must also set the
ID_TYPE keyword.

Note
The class or program ID must follow the standard Microsoft naming convention.
See Chapter 5, “Using ActiveX Controls in IDL” in the External Development
Guide manual for more on class and program IDs, and their use with
WIDGET_ACTIVEX.

Keywords

ALIGN_BOTTOM

Set this keyword to align the new widget with the bottom of its parent base. To take
effect, the parent must be a ROW base.

ALIGN_CENTER

Set this keyword to align the new widget with the center of its parent base. To take
effect, the parent must be a ROW or COLUMN base. In ROW bases, the new widget
will be vertically centered. In COLUMN bases, the new widget will be horizontally
centered.

ALIGN_LEFT

Set this keyword to align the new widget with the left side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_RIGHT

Set this keyword to align the new widget with the right side of its parent base. To take
effect, the parent must be a COLUMN base.
IDL Reference Guide WIDGET_ACTIVEX

2122
ALIGN_TOP

Set this keyword to align the new widget with the top of its parent base. To take
effect, the parent must be a ROW base.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

ID_TYPE

The type of COM object ID specified by the COM_ID parameter (class or program).
If set to 0 (zero), the value is a class ID (the default). If set to 1 (one), the value is a
program ID.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
callback procedure. It can be removed by setting the routine to the null string ('').

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.
WIDGET_ACTIVEX IDL Reference Guide

 2123
NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_BASE or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
callback procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.
IDL Reference Guide WIDGET_ACTIVEX

2124
SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the widget with
the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.
WIDGET_ACTIVEX IDL Reference Guide

 2125
The user value for a widget can be accessed and modified at any time by using the
GET_UVALUE and SET_UVALUE keywords to the WIDGET_CONTROL
procedure.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget layout.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget layout.

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations.

Keywords to WIDGET_CONTROL

The GET_VALUE keyword to the WIDGET_CONTROL procedure is used to
retrieve an object reference to the IDLcomActiveX object that underlies the ActiveX
widget. The object reference returned in this manner can be used to call the ActiveX
control’s native methods.
IDL Reference Guide WIDGET_ACTIVEX

2126
Examples

For examples using WIDGET_ACTIVEX, see Chapter 5, “Using ActiveX Controls
in IDL” in the External Development Guide manual.

Version History

Introduced: 5.5
WIDGET_ACTIVEX IDL Reference Guide

 2127
WIDGET_BASE

The WIDGET_BASE function is used to create base widgets. Base widgets serve as
containers for other widgets.

Note
In most cases, you will want let IDL determine the placement of widgets within the
base widget. Do this by specifying either the COLUMN keyword or the ROW
keyword. See “Positioning Child Widgets Within a Base” in the following section
for details.

Exclusive And Non-Exclusive Bases

If the EXCLUSIVE or NONEXCLUSIVE keywords are specified, the base only
allows button widget children.

Positioning Child Widgets Within a Base

The standard base widget does not impose any placement constraints on its child
widgets. Children of a “bulletin board” base (a base that was created without setting
the COLUMN or ROW keywords) have an offset of (0,0) unless an offset is explicitly
specified via the XOFFSET or YOFFSET keywords. This means that if you do not
specify any of COLUMN, ROW, XOFFSET, or YOFFSET keywords, child widgets
will be placed one on top of the other in the upper left corner of the base.

However, laying out widgets using the XSIZE, YSIZE, XOFFSET, and YOFFSET
keywords can be both tedious and error-prone. Also, if you want your widget
application to display properly on different platforms, you should use the COLUMN
and ROW keywords to influence child widget layouts instead of explicitly formatting
your interfaces.

When the ROW or COLUMN keywords are specified, the base decides how to lay out
its children, and any XOFFSET and YOFFSET keywords specified for such children
are ignored.

Positioning Top-Level Bases

When locating a new top level window, some window managers ignore the program’s
positioning requests and either choose a position or allow the user to choose. In such
cases, the XOFFSET and YOFFSET keywords to WIDGET_BASE will not have an
effect. The window manager may provide a way to disable this positioning style. The
Motif window manager (mwm) can be told to honor positioning requests by placing
the following lines in your .Xdefaults file:
IDL Reference Guide WIDGET_BASE

2128
Mwm*clientAutoPlace: False
Mwm*interactivePlacement: False

Iconizing, Layering, and Destroying Groups of Top-Level Bases

Group membership (defined via the GROUP_LEADER keyword) controls the way
top-level base widgets are iconized, layered, and destroyed.

Note
A group can contain sub-groups. Group behavior affects all members of a group and
its sub-groups. For example, suppose we create three top-level base widgets with
the following group hierarchy:

base1 = WIDGET_BASE()
base2 = WIDGET_BASE(GROUP_LEADER=base1)
base3 = WIDGET_BASE(GROUP_LEADER=base2)

Effectively, two groups are created. One group has base2 as its leader and base3 as
its member. The other group has base1 as its leader and both base2 and base3 as
members. If base1 is iconized, both base2 and base3 are iconized as well. If
base2 is iconized, base3 is iconized but base1 is not.

Widgets behave slightly differently when displayed on different platforms, and
depending on whether they are floating or modal bases. The following rules apply to
groups of widgets within a group leader/member hierarchy. Widgets that do not
belong to the same group hierarchy cannot influence each other.

Iconization and Mapping

Bases and groups of bases can be iconized (or minimized) by clicking the system
minimize control. Bases and groups of bases can also be mapped (made visible) and
unmapped (made invisible).

Motif — Mapping or unmapping a group leader has no effect on the mapped state of
the group members. Iconifying or mapping a group member has no effect on the
group leader. Modal bases cannot be unmapped.

Bases and groups of bases can be iconized (or minimized) by clicking the system
minimize control. When a group leader is iconized, all members of the group are
iconized as well. Similarly, when a group leader is restored, all members of the group
are restored.

Windows — Mapping or unmapping a group leader has no effect on the mapped state
of the group members. Iconifying or mapping a group member has no effect on the
group leader. Modal bases cannot be unmapped.
WIDGET_BASE IDL Reference Guide

 2129
Bases and groups of bases can be iconized (or minimized) by clicking the system
minimize control. When a group leader is iconized, all members of the group are
iconized as well. Similarly, when a group leader is restored, all members of the group
are restored.

Layering

Layering is the process by which groups of widgets seem to share the same plane on
the display screen. Within a layer on the screen, widgets have a Z-order, or front-to-
back order, that defines which widgets appear to be on top of other widgets.

Motif — All elements on the screen—widgets, the IDLDE, other Motif
applications—share a single layer and have an arbitrary Z-order. There is no special
layering of IDL widgets.

Windows — All non-floating and non-modal widgets within a group hierarchy share
the same layer—that is, when one group member has the input focus, all members of
the group hierarchy are displayed in a layer that appears in front of all other groups or
applications. Within the layer, the widgets can have an arbitrary Z-order.

Widgets that are floating or modal always float above their group leaders.

Destruction

When a group leader widget is destroyed, either programmatically or by clicking on
the system “close” button, all members of the group and all sub-groups are destroyed
as well.

If a modal base is on the display, it must be dismissed before any widget can be
destroyed.

Syntax

Result = WIDGET_BASE([Parent] [, /ALIGN_BOTTOM | , /ALIGN_CENTER | ,
/ALIGN_LEFT | , /ALIGN_RIGHT | , /ALIGN_TOP] [, /MBAR | , /MODAL]
[, /BASE_ALIGN_BOTTOM | , /BASE_ALIGN_CENTER | ,
/BASE_ALIGN_LEFT | , /BASE_ALIGN_RIGHT | , /BASE_ALIGN_TOP]
[, /COLUMN | , /ROW] [, /CONTEXT_EVENTS] [, /CONTEXT_MENU]
[, EVENT_FUNC=string] [, EVENT_PRO=string] [, /EXCLUSIVE | ,
/NONEXCLUSIVE] [, /FLOATING] [, FRAME=width]
[, FUNC_GET_VALUE=string] [, /GRID_LAYOUT]
[, GROUP_LEADER=widget_id{must specify for modal dialogs}]
[, /KBRD_FOCUS_EVENTS] [, KILL_NOTIFY=string] [, /MAP{not for modal
bases}] [, /NO_COPY] [, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, SCR_XSIZE=width] [, SCR_YSIZE=height] [, /SCROLL{not for modal bases}]
IDL Reference Guide WIDGET_BASE

2130
[, /SENSITIVE] [, SPACE=value{ignored if exclusive or nonexclusive}]
[, TITLE=string] [, TLB_FRAME_ATTR=value{top-level bases only}]
[, /TLB_ICONIFY_EVENTS{top-level bases only}]
[, /TLB_KILL_REQUEST_EVENTS{top-level bases only}]
[, /TLB_MOVE_EVENTS{top-level bases only}] [, /TLB_SIZE_EVENTS{top-
level bases only}] [, /TOOLBAR] [, /TRACKING_EVENTS] [, UNAME=string]
[, UNITS={0 | 1 | 2}] [, UVALUE=value] [, XOFFSET=value]
[, XPAD=value{ignored if exclusive or nonexclusive}] [, XSIZE=value]
[, X_SCROLL_SIZE=value] [, YOFFSET=value] [, YPAD=value{ignored if
exclusive or nonexclusive}] [, YSIZE=value] [, Y_SCROLL_SIZE=value])

X Windows Keywords: [, DISPLAY_NAME=string]
[, RESOURCE_NAME=string] [, RNAME_MBAR=string]

Return Value

The returned value of this function is the widget ID of the newly-created base.

Arguments

Parent

The widget ID of the parent widget. To create a top-level base, omit the Parent
argument.

Keywords

ALIGN_BOTTOM

Set this keyword to align the new widget with the bottom of its parent base. To take
effect, the parent must be a ROW base.

ALIGN_CENTER

Set this keyword to align the new widget with the center of its parent base. To take
effect, the parent must be a ROW or COLUMN base. In ROW bases, the new widget
will be vertically centered. In COLUMN bases, the new widget will be horizontally
centered.

ALIGN_LEFT

Set this keyword to align the new widget with the left side of its parent base. To take
effect, the parent must be a COLUMN base.
WIDGET_BASE IDL Reference Guide

 2131
ALIGN_RIGHT

Set this keyword to align the new widget with the right side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_TOP

Set this keyword to align the new widget with the top of its parent base. To take
effect, the parent must be a ROW base.

Warning
You cannot specify both an APP_MBAR and an MBAR for the same top-level base
widget. Doing so will cause an error.

To apply actions triggered by menu items to widgets other than the base that includes
the menubar, use the KBRD_FOCUS_EVENTS keyword to keep track of which
widget has (or last had) the keyboard focus.

BASE_ALIGN_BOTTOM

Set this keyword to make all children of the new base align themselves with the
bottom of the base by default. To take effect, you must also set the ROW keyword for
the new base. The default can be overridden for individual child widgets by setting a
different ALIGN_XXX keyword when the child widget is created.

BASE_ALIGN_CENTER

Set this keyword to make all children of the new base align themselves with the
center of the base by default. To take effect, you must also set the COLUMN or ROW
keyword for the new base. The default can be overridden for individual child widgets
by setting a different ALIGN_XXX keyword when the child widget is created. In
ROW bases, child widgets will be vertically centered. In COLUMN bases, child
widgets will be horizontally centered.

BASE_ALIGN_LEFT

Set this keyword to make all children of the new base align themselves with the left
side of the base by default. To take effect, you must also set the COLUMN keyword
for the new base. The default can be overridden for individual child widgets by
setting a different ALIGN_XXX keyword when the child widget is created.
IDL Reference Guide WIDGET_BASE

2132
BASE_ALIGN_RIGHT

Set this keyword to make all children of the new base align themselves with the right
side of the base by default. To take effect, you must also set the COLUMN keyword
for the new base. The default can be overridden for individual child widgets by
setting a different ALIGN_XXX keyword when the child widget is created.

BASE_ALIGN_TOP

Set this keyword to make all children of the new base align themselves with the top of
the base by default. To take effect, you must also set the ROW keyword for the new
base. The default can be overridden for individual child widgets by setting a different
ALIGN_XXX keyword when the child widget is created.

COLUMN

If this keyword is included, the base lays out its children in columns. The value of this
keyword specifies the number of columns to be used. The number of child widgets in
each column is calculated by dividing the number of child widgets created by the
number of columns specified. When one column is filled, a new one is started.

Specifying both the COLUMN and ROW keywords causes an error.

Column Width

The width of each column is determined by the width of the widest widget in that
column. If the GRID_LAYOUT keyword is set, all columns are as wide as the widest
widget in the base.

Horizontal Size of Widgets

If any of the BASE_ALIGN_* keywords to WIDGET_BASE is set, each widget has
its “natural” width, determined either by the value of the widget or by the XSIZE
keyword. Similarly, if any of the child widgets specifies one of the ALIGN_*
keywords, that widget will have its “natural” width. If none of the BASE_ALIGN_*
or (ALIGN_*) keywords are set, all widgets in the base are as wide as their column.

Vertical Placement

Child widgets are placed vertically one below the other, with no extra space. If the
GRID_LAYOUT keyword is set, each row is as high as its tallest member.

CONTEXT_EVENTS

Set this keyword to cause context menu events (or simply context events) to be issued
when the user clicks the right mouse button over the widget. Set the keyword to 0
WIDGET_BASE IDL Reference Guide

 2133
(zero) to disable such events. Context events are intended for use with context-
sensitive menus (also known as pop-up or shortcut menus); pass the context event ID
to the WIDGET_DISPLAYCONTEXTMENU procedure within your widget
program’s event handler to display the context menu.

For more on detecting and handling context menu events, see“Context-Sensitive
Menus” in Chapter 27 of the Building IDL Applications manual.

CONTEXT_MENU

Set this keyword to create a base widget that can be used as the base for a context-
sensitive menu (also known as a pop-up or shortcut menu). A context menu base must
have as its parent one of the following types of widgets: WIDGET_BASE,
WIDGET_DRAW, WIDGET_TEXT, WIDGET_LIST.

For more on creating context menus, see “Context-Sensitive Menus” in Chapter 27 of
the Building IDL Applications manual.

DISPLAY_NAME

Set this keyword equal to a string that specifies the name of the X Windows display
on which the base should be displayed. This keyword has no effect on Microsoft
Windows platforms.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

Note
If you are using XMANAGER to manage events for your widget application, you
should not specify an event processing routine for the top-level base of the
application using this keyword. Instead, specify the event processing routine using
the EVENT_HANDLER keyword to XMANAGER.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.
IDL Reference Guide WIDGET_BASE

2134
Note
If you are using XMANAGER to manage events for your widget application, you
should not specify an event processing routine for the top-level base of the
application using this keyword. Instead, specify the event processing routine using
the EVENT_HANDLER keyword to XMANAGER.

EXCLUSIVE

Set this keyword to specify that the base can have only button-widget children and
that only one button can be set at a time. These buttons, unlike normal button widgets,
have two states—set and unset.

When one exclusive button is pressed, any other exclusive buttons (in the same base)
that are currently set are automatically released. Hence, only one button can ever be
set at one time.

This keyword can be used to create exclusive button menus. See the CW_BGROUP
and CW_PDMENU functions for high-level menu-creation utilities.

Note
If this keyword is set, the XOFFSET and YOFFSET keywords are ignored for any
widgets in this base. Exclusive bases are always laid out in columns or rows. If
neither the COLUMN nor ROW keyword is specified for an exclusive base, the
base defaults to COLUMN layout.

FLOATING

Set this keyword—along with the GROUP_LEADER keyword—to create a
“floating” top-level base widget. If the windowing system provides Z-order control,
floating base widgets appear above the base specified as their group leader. If the
windowing system does not provide Z-order control, the FLOATING keyword has no
effect.

The iconizing, layering, and destruction behavior of floating bases and their group
leaders is discussed in “Iconizing, Layering, and Destroying Groups of Top-Level
Bases” on page 2128.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the widget.
Note that this keyword is only a hint to the toolkit, and may be ignored in some
instances.
WIDGET_BASE IDL Reference Guide

 2135
FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

GRID_LAYOUT

Set this keyword to force the base to have a grid layout, in which all rows have the
same height, and all columns have the same width. The row heights and column
widths are taken from the largest child widget.

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. Widget application hierarchies are defined by group membership
relationships between top-level widget bases. When a group leader is killed, for any
reason, all widgets in the group are also destroyed. Iconizing and layering behavior is
discussed in “Iconizing, Layering, and Destroying Groups of Top-Level Bases” on
page 2128.

Note
If you specify a floating base (created with the FLOATING keyword) as a group
leader, all member bases must also have either the FLOATING or MODAL
keywords set. If you specify a modal base (created with the MODAL keyword) as a
group leader, all member bases must have the MODAL keyword set as well.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. It is not possible to
remove a widget from an existing group.

KBRD_FOCUS_EVENTS

Set this keyword to make the base return keyboard focus events whenever the
keyboard focus of the base changes. See the “Events Returned by Base Widgets”
section below for more information.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
IDL Reference Guide WIDGET_BASE

2136
The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

Note
A procedure specified via the CLEANUP keyword to XMANAGER will override a
procedure specified for your application’s top-level base with WIDGET_BASE,
KILL_NOTIFY.

MAP

Once a widget hierarchy has been realized, it can be mapped (visible) or unmapped
(invisible). This keyword specifies the initial map state for the given base and its
descendants. Specifying a non-zero value indicates that the base should be mapped
when realized (the default). A zero value indicates that the base should be unmapped
initially.

After the base is realized, its map state can be altered using the MAP keyword to the
WIDGET_CONTROL procedure.

Note
Modal bases cannot be mapped and unmapped.

Warning
Under Microsoft Windows, when a hidden base is realized, then mapped, a
Windows resize message is sent by the windowing system. This “extra” resize event
is generated before any manipulation of the base widget by the user.

MBAR

Set this keyword to a named variable to cause a menubar to be placed at the top of the
base (the base must be a top-level base). The menubar is itself a special kind of base
widget that can only have buttons as children. Upon return, the named variable
contains the widget ID of the new menubar base. This widget ID can then be used to
fill the menubar with pulldown menus. For example, the following widget creation
commands first create a base with a menubar, then populate the menubar with a
simple pulldown menu (CW_PDMENU could also have been used to construct the
pulldown menu):

base = WIDGET_BASE(TITLE = 'Example', MBAR=bar)
file_menu = WIDGET_BUTTON(bar, VALUE='File', /MENU)
WIDGET_BASE IDL Reference Guide

 2137
file_bttn1=WIDGET_BUTTON(file_menu, VALUE='Item 1',$
UVALUE='FILE1')

file_bttn2=WIDGET_BUTTON(file_menu, VALUE='Item 2',$
UVALUE='FILE2')

Note that to set X Window System resources for menubars created with this keyword,
you must use the RNAME_MBAR keyword rather than the RESOURCE_NAME
keyword.

If you use CW_PDMENU to create a menu for the menubar, be sure to set the MBAR
keyword to that function as well.

Note also that the size returned by the GEOMETRY keyword to WIDGET_INFO
does not include the size of the menubar.

Warning
You cannot specify both the MBAR and MODAL keywords for the same widget.
Doing so will cause an error.

To apply actions triggered by menu items to widgets other than the base that includes
the menubar, use the KBRD_FOCUS_EVENTS keyword to keep track of which
widget has (or last had) the keyboard focus.

MODAL

Set this keyword to create a modal dialog. Modal dialogs can have default and cancel
buttons associated with them. Default buttons are highlighted by the window system
and respond to a press on the “Return” or “Enter” keys as if they had been clicked on.
Cancel buttons respond to a press on the “Escape” key as if they had been clicked on.
See the DEFAULT_BUTTON and CANCEL_BUTTON keywords to
WIDGET_CONTROL for details.

Note
Modal dialogs must have a group leader. Specify the group leader for a modal top-
level base via the GROUP_LEADER keyword.

Modal dialogs cannot be scrollable, nor can they support menubars. Setting the
SCROLL, MBAR, or APP_MBAR keywords in conjunction with the MODAL
keyword will cause an error. Modal dialogs cannot be mapped or unmapped. Setting
the MAP keyword on a modal base will cause an error.
IDL Reference Guide WIDGET_BASE

2138
Note
On Windows platforms, the group leader of a modal base must be realized before
the modal base itself can be realized. If the group leader has not been realized, it
will be realized automatically.

The iconizing, layering, and destruction behavior of modal bases and their group
leaders is discussed in “Iconizing, Layering, and Destroying Groups of Top-Level
Bases” on page 2128.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_BASE or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NONEXCLUSIVE

Set this keyword to specify that the base can only have button widget children. These
buttons, unlike normal button widgets, have two states—set and unset. Non-exclusive
bases allow any number of the toggle buttons to be set at one time.

Note
If this keyword is set, the XOFFSET and YOFFSET keywords are ignored for any
widgets in this base. Non-exclusive bases are always laid out in columns or rows. If
neither the COLUMN nor ROW keyword is specified for a non-exclusive base, the
base defaults to COLUMN layout.
WIDGET_BASE IDL Reference Guide

 2139
NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
Once defined, this name can be used in the user’s .Xdefaults file to customize
widget resources not directly supported via the IDL widget routines. This keyword is
accepted by all widget creation routines. This keyword only works with the “X”
device and is ignored on Microsoft Windows platforms.

RESOURCE_NAME allows unrestricted access to the underlying Motif widgets
within the following limitations:

• Users must have the appropriate resources defined in their .Xdefaults or
application default resource file, or IDL will not see the definitions and they
will not take effect.

• Motif resources are documented in the OSF/Motif Programmer’s Reference
Manual. To use them with RESOURCE_NAME, the IDL programmer must
determine the type of widget being used by IDL, and then look up the
resources that apply to them. Hence, RESOURCE_NAME requires some
programmer-level familiarity with Motif.

• Only resources that are not set within IDL can be modified using this
mechanism. Although it is not an error to set resources also set by IDL, the
IDL settings will silently override user settings. RSI does not document the
resources used by IDL since the actual resources used may differ from release
to release as the IDL widgets evolve. Therefore, you should set only those
resources that are obviously not being set by IDL. Among the resources that
are not being set by IDL are those that control colors, menu mnemonics, and
accelerator keys.
IDL Reference Guide WIDGET_BASE

2140
Example

The sample code below produces a pulldown menu named “Menu” with 2 entries
named “Item 1” and “Item 2”.

Using the RESOURCE_NAME keyword in conjunction with X resource definitions,
we can alter “Item 1” in several ways not possible through the standard IDL widgets
interface. We’ll give Item 1 a red background color. We’ll also assign “I” as the
keyboard mnemonic. Note that Motif automatically underlines the “I” in the title to
indicate this. We’ll also select Meta-F4 as the keyboard accelerator for selecting
“Item 1”. If Meta-F4 is pressed while the pointer is anywhere over this application,
the effect will be as if the menu was pulled down and “Item 1” was selected with the
mouse.

; Simple event handler:
PRO test_event, ev

HELP, /STRUCTURE, ev
END

; Simple widget creation routine:
PRO test

; The base gets the resource name "test":
a = WIDGET_BASE(RESOURCE_NAME = 'test')
b = WIDGET_BUTTON(a, VALUE='Menu', /MENU)

; Assign the Item 1 button the resource name "item1":
c = WIDGET_BUTTON(b, VALUE='Item 1', $

RESOURCE_NAME='item1')
c = WIDGET_BUTTON(b, VALUE='Item 2')
WIDGET_CONTROL, /REALIZE, a
XMANAGER, 'test', a

END

Note that we gave the overall application the resource name “test”, and the “Item 1”
button the resource name “item1”. Now we can use these names in the following
.Xdefaults file entries:

Idl*test*item1*mnemonic: I
Idl*test*item1*accelerator: Meta<Key>F4
Idl*test*item1*acceleratorText: Meta-F4
Idl*test*item1*background: red

Note on Specifying Color Resources

If you wish to specify unique colors for your widgets, it is generally a good idea to
use a color name (“red” or “lightblue”, for example) rather than specifying an exact
color match with a color string (such as “#b1b122222020”). If IDL is not able to
WIDGET_BASE IDL Reference Guide

 2141
allocate an exact color, the entire operation may fail. Specifying a named color
implies “closest color match,” an operation that rarely fails.

If you need an exact color match and IDL fails to allocate the color, try modifying the
Idl.colors resource in the $IDL_DIR/resource/X11/lib/app-
defaults/Idl file.

RNAME_MBAR

A string containing an X Window System resource name to be applied to the
menubar created by the MBAR keyword. This keyword is identical to the
RESOURCE_NAME keyword except that the resource it specifies applies only to the
menubar.

ROW

If this keyword is included, the base lays out its children in rows. The value of this
keyword specifies the number of rows to be used. The number of child widgets in
each row is calculated by dividing the number of child widgets created by the number
of rows specified. When one row is filled, a new one is started.

Specifying both the COLUMN and ROW keywords causes an error.

Row Height

The height of each row is determined by the height of the tallest widget in that row. If
the GRID_LAYOUT keyword is set, all rows are as tall as the tallest widget in the
base.

Vertical Size of Widgets

If any of the BASE_ALIGN_* keywords to WIDGET_BASE is set, each widget has
its “natural” height, determined either by the value of the widget or by the YSIZE
keyword. Similarly, if any of the child widgets specifies one of the ALIGN_*
keywords, that widget will have its “natural” height. If none of the BASE_ALIGN_*
or (ALIGN_*) keywords are set, all widgets in the base are as tall as their row.

Horizontal Placement

Child widgets are placed horizontally one next to the other, with no extra space. If the
GRID_LAYOUT keyword is set, each column is as wide as its widest member.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.
IDL Reference Guide WIDGET_BASE

2142
SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SCROLL

Set this keyword to give the widget scroll bars that allow viewing portions of the
widget contents that are not currently on the screen.

Warning
You cannot specify both the SCROLL and MODAL keywords for the same widget.
Doing so will cause an error.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

SPACE

The space, in units specified by the UNITS keyword (pixels are the default), between
children of a row or column major base. This keyword is ignored if either the
EXCLUSIVE or NONEXCLUSIVE keyword is present.

TITLE

A string containing the title to be used for the widget. Base widgets use the title only
if they are top-level widgets or if they are children of a tab widget. For top-level base
widgets, the title appears in the “window dressing” at the top of the base widget; the
appearance is platform-specific. For base widgets that have a tab widget as their
parent widget, the title is used as the text of the tab.
WIDGET_BASE IDL Reference Guide

 2143
Note that if the widget base is not wide enough to contain the specified title, the title
may appear truncated. If you must be able to see the full title, you have several
alternatives:

• Rearrange the widgets in the base so that the base becomes naturally wide
enough. This is the best solution.

• Don’t worry about this issue. If the user needs to see the entire label, they can
resize the window using the mouse.

• Create the base without using the COLUMN or ROW keywords. Instead, use
the XSIZE keyword to explicitly set a usable width. This is an undesirable
solution that can lead to strange-looking widget layouts.

For bases that are children of tab widgets, the title may be truncated depending on the
width of the largest base that is a child of the tab widget. See the description of the
MULTILINE keyword to WIDGET_TAB for additional details.

TLB_FRAME_ATTR

Set this keyword to one of the values shown in the table below to suppress certain
aspects of a top-level base’s window frame. This keyword applies only to top-level
bases. The settings are merely hints to the window system and may be ignored by
some window managers. Valid settings are:

This keyword is set bitwise, so multiple effects can be set by adding values together.
For example, to make a base that has no title bar (value 4) and cannot be moved
(value 16), set the TLB_FRAME_ATTR keyword to 20 (that is, 4+16).

Value Meaning

1 Base cannot be resized, minimized, or maximized.

2 Suppress display of system menu.

4 Suppress title bar.

8 Base cannot be closed.

16 Base cannot be moved.

Table 95: Valid Values for TLB_FRAME_ATTR Keyword
IDL Reference Guide WIDGET_BASE

2144
TLB_ICONIFY_EVENTS

Set this keyword when creating a top-level base to make that base return an event
when the base is iconified or restored by the user. See the “Events Returned by Base
Widgets” section below for more information.

TLB_KILL_REQUEST_EVENTS

Set this keyword, usable only with top-level bases, to send the top-level base a
WIDGET_KILL_REQUEST event if a user tries to destroy the widget using the
window manager (by default, widgets are simply destroyed). See the “Events
Returned by Base Widgets” section below for more information.

Use this keyword to perform complex actions before allowing a widget application to
exit. Note that widgets that have this keyword set are responsible for killing
themselves after receiving a WIDGET_KILL_REQUEST event—they cannot be
destroyed using the usual window system controls.

Use a call to TAG_NAMES with the STRUCTURE_NAME keyword set to
differentiate a WIDGET_KILL_REQUEST event from other types of widget events.
For example:

IF TAG_NAMES(event, /STRUCTURE_NAME) EQ $
'WIDGET_KILL_REQUEST' THEN ...

TLB_MOVE_EVENTS

Set this keyword when creating a top-level base to make that base return an event
when the base is moved on the screen by the user. See the “Events Returned by Base
Widgets” section below for more information.

TLB_SIZE_EVENTS

Set this keyword, when creating a top-level base, to make that base return an event
when the base is resized by the user. See the “Events Returned by Base Widgets”
section below for more information.

TOOLBAR

Set this keyword to indicate that the base is used to hold bitmap buttons that make up
a toolbar.

Note
Setting this keyword does not cause any changes in behavior; its only affect is to
slightly alter the appearance of the bitmap buttons on the base for cosmetic reasons.
WIDGET_BASE IDL Reference Guide

 2145
Note
On Motif platforms, if bitmap buttons are on a toolbar base that is also
EXCLUSIVE or NONEXCLUSIVE, they will not have a separate “toggle”
indicator, they will be grouped closely together, and will have a two-pixel shadow
border.

Note
This keyword has no effect on Windows platforms.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget whenever
the mouse pointer enters or leaves the region covered by that widget. Widget tracking
events are returned as structures with the following definition:

{ WIDGET_TRACKING, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }

ID, TOP, and HANDLER are the standard fields found in every widget event.
ENTER is 1 if the tracking event is an entry event, and 0 if it is an exit event.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.
IDL Reference Guide WIDGET_BASE

2146
If UVALUE is not present, the widget’s initial user value is undefined.

The user value for a widget can be accessed and modified at any time by using the
GET_UVALUE and SET_UVALUE keywords to the WIDGET_CONTROL
procedure.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget layout.

XPAD

The horizontal space, in units specified by the UNITS keyword (pixels are the
default), between child widgets and the edges of a row or column major base. The
default value of XPAD is platform dependent. This keyword is ignored if either the
EXCLUSIVE or NONEXCLUSIVE keyword is present.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations.

X_SCROLL_SIZE

The XSIZE keyword always specifies the width of a widget. When the SCROLL
keyword is specified, this size is not necessarily the same as the width of the visible
area. The X_SCROLL_SIZE keyword allows you to set the width of the scrolling
viewport independently of the actual width of the widget.

Use of the X_SCROLL_SIZE keyword implies SCROLL. This means that scroll bars
will be added in both the horizontal and vertical directions when X_SCROLL_SIZE
is specified. Because the default size of the scrolling viewport may differ between
platforms, it is best to specify Y_SCROLL_SIZE when specifying
X_SCROLL_SIZE.
WIDGET_BASE IDL Reference Guide

 2147
YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget layout.

YPAD

The vertical space, in units specified by the UNITS keyword (pixels are the default),
between child widgets and the edges of a row or column major base. The default
value of YPAD is platform-dependent. This keyword is ignored if either the
EXCLUSIVE or NONEXCLUSIVE keyword is present.

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations.

Y_SCROLL_SIZE

The YSIZE keyword always specifies the height of a widget. When the SCROLL
keyword is specified, this size is not necessarily the same as the height of the visible
area. The Y_SCROLL_SIZE keyword allows you to set the height of the scrolling
viewport independently of the actual height of the widget.

Use of the Y_SCROLL_SIZE keyword implies SCROLL. This means that scroll bars
will be added in both the horizontal and vertical directions when Y_SCROLL_SIZE
is specified. Because the default size of the scrolling viewport may differ between
platforms, it is best to specify X_SCROLL_SIZE when specifying
Y_SCROLL_SIZE.

Obsolete Keywords

The following keywords are obsolete:

• APP_MBAR

For information on obsolete keywords, See Appendix I, “Obsolete Features”.
IDL Reference Guide WIDGET_BASE

2148
Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL procedure affect the behavior of
base widgets. In addition to those keywords that affect all widgets, the following are
particularly useful: CANCEL_BUTTON, CONTEXT_EVENTS,
DEFAULT_BUTTON, KBRD_FOCUS_EVENTS, TLB_ICONIFY_EVENTS,
TLB_MOVE_EVENTS, TLB_SIZE_EVENTS.

Keywords to WIDGET_INFO

A number of keywords to the WIDGET_INFO function return information that
applies specifically to base widgets. In addition to those keywords that apply to all
widgets, the following are particularly useful: CONTEXT_EVENTS,
KBRD_FOCUS_EVENTS, MODAL, TLB_ICONIFY_EVENTS,
TLB_KILL_REQUEST_EVENTS, TLB_MOVE_EVENTS, TLB_SIZE_EVENTS.

Events Returned by Base Widgets

Resize Events

Top-level widget bases return the following event structure only when they are
resized by the user and the base was created with the TLB_SIZE_EVENTS keyword
set:

{ WIDGET_BASE, ID:0L, TOP:0L, HANDLER:0L, X:0L, Y:0L }

ID is the widget ID of the base generating the event. TOP is the widget ID of the top
level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. The X and Y fields return the new width of the
base, not including any frame provided by the window manager.

Move Events

Top-level widget bases return the following event structure when the base is moved
and the base was created with the TLB_MOVE_EVENTS keyword set:

{ WIDGET_TLB_MOVE, ID:0L, TOP:0L, HANDLER:0L, X:0L, Y:0L }

ID is the widget ID of the base generating the event. TOP is the widget ID of the top
level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. X and Y are the new location of the top left
corner of the base.
WIDGET_BASE IDL Reference Guide

 2149
Note
On Windows, move events are generated while dragging. On UNIX, move events
are generated only on the mouse-up.

Note
If both TLB_SIZE_EVENTS and TLB_MOVE_EVENTS are enabled, a user resize
operation that causes the top left corner of the base to move will generate both a
move event and a resize event.

Iconify Events

Top-level widget bases return the following event structure when the base is iconified
or restored and the base was created with the TLB_ICONIFY_EVENTS keyword set:

{ WIDGET_TLB_ICONIFY, ID:0L, TOP:0L, HANDLER:0L, ICONIFIED:0 }

ID is the widget ID of the base generating the event. TOP is the widget ID of the top
level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. ICONIFIED is 1 (one) if the user iconified the
base and 0 (zero) if the user restored the base.

Keyboard Focus Events

Widget bases return the following event structure when the keyboard focus changes
and the base was created with the KBRD_FOCUS_EVENTS keyword set:

{ WIDGET_KBRD_FOCUS, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }

ID is the widget ID of the base generating the event. TOP is the widget ID of the top
level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. The ENTER field returns 1 (one) if the base is
gaining the keyboard focus, or 0 (zero) if the base is losing the keyboard focus.

Kill Request Events

Top-level widget bases return the following event structure only when a user tries to
destroy the widget using the window manager and the base was created with the
TLB_KILL_REQUEST_EVENTS keyword set:

{ WIDGET_KILL_REQUEST, ID:0L, TOP:0L, HANDLER:0L }

ID is the widget ID of the base generating the event. TOP is the widget ID of the top
level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine.
IDL Reference Guide WIDGET_BASE

2150
Context Menu Events

Base widgets return the following event structure when the user clicks the right
mouse button and the base widget was created with the CONTEXT_EVENTS
keyword set:

{WIDGET_CONTEXT, ID:0L, TOP:0L, HANDLER:0L, X:0L, Y:0L}

The first three fields are the standard fields found in every widget event. The X and Y
fields give the device coordinates at which the event occurred, measured from the
upper left corner of the base widget.

Version History

Introduced: Pre 4.0

TLB_ICONIFY_EVENTS, TLB_MOVE_EVENTS, TOOLBAR keywords; new
event structures for inconify and move events: 5.6

See Also

Chapter 25, “Widgets” in the Building IDL Applications manual.
WIDGET_BASE IDL Reference Guide

 2151
WIDGET_BUTTON

The WIDGET_BUTTON function creates button widgets.

Exclusive And Non-Exclusive Bases

Buttons placed into exclusive or non-exclusive bases (created via the EXCLUSIVE
or NONEXCLUSIVE keywords to WIDGET_BASE function) are created as two-
state “toggle” buttons, which are controlled by such bases.

Bitmap Button Labels

Widget buttons can have either a text label (specified as a string value to the VALUE
keyword) or a graphic symbol in the form of a bitmap. Bitmap labels are specified in
one of the following ways:

1. By setting the VALUE keyword equal to a string containing the name of an
image file in BMP format, and setting the BITMAP keyword:

button=WIDGET_BUTTON(base, VALUE='mybitmap.bmp', /BITMAP)

For 16- and 256-color bitmap files, IDL uses the color of the pixel in the lower
left corner as the transparent color. All pixels of this color become transparent,
allowing the button color to show through.

To modify the bitmap after creation, use the /BITMAP keyword with
WIDGET_CONTROL:

WIDGET_CONTROL, button, SET_VALUE='mybitmap2.bmp', /BITMAP

2. By setting the VALUE keyword equal to an n x m bitmap byte array in which
each bit represents a pixel with a value of either zero or one. (Arrays of this
type can be produced using the CVTTOBM function.) This method creates a
black-and-white bitmap label:

button=WIDGET_BUTTON(base, VALUE=bw_arr)

To modify the bitmap after creation, simply set a new value using
WIDGET_CONTROL:

WIDGET_CONTROL, button, SET_VALUE=bw_array2

3. By setting the VALUE keyword equal to an n x m x 3 byte array that represents
a 24-bit color image, interleaved by plane, with the planes in the order red,
green, blue. This method creates a color bitmap label:

button=WIDGET_BUTTON(base, VALUE=color_array)
IDL Reference Guide WIDGET_BUTTON

2152
To modify the bitmap after creation, simply set a new value using
WIDGET_CONTROL:

WIDGET_CONTROL, button, SET_VALUE=color_array2

See “Using Button Widgets” in Chapter 27 of the Building IDL Applications
manual for additional details on creating image files and arrays for use as
button bitmaps.

Syntax

Result = WIDGET_BUTTON(Parent [, /ALIGN_CENTER | , /ALIGN_LEFT | ,
/ALIGN_RIGHT] [, /BITMAP] [, /CHECKED_MENU] [, /DYNAMIC_RESIZE]
[, EVENT_FUNC=string] [, EVENT_PRO=string] [, FONT=string]
[, FRAME=width] [, FUNC_GET_VALUE=string]
[, GROUP_LEADER=widget_id] [, /HELP] [, KILL_NOTIFY=string] [, /MENU]
[, /NO_COPY] [, /NO_RELEASE] [, NOTIFY_REALIZE=string]
[, PRO_SET_VALUE=string] [, /PUSHBUTTON_EVENTS] [, SCR_XSIZE=width]
[, SCR_YSIZE=height] [, /SENSITIVE] [, /SEPARATOR] [, TOOLTIP=string]
[, /TRACKING_EVENTS] [, UNAME=string] [, UNITS={0 | 1 | 2}]
[, UVALUE=value] [, VALUE=value] [, X_BITMAP_EXTRA=bits]
[, XOFFSET=value] [, XSIZE=value] [, YOFFSET=value] [, YSIZE=value])

X Windows Keywords: [, RESOURCE_NAME=string]

Return Value

The returned value of this function is the widget ID of the newly-created button.

Arguments

Parent

The widget ID of the parent for the new button widget.

Keywords

ALIGN_CENTER

Set this keyword to center justify the button’s text label.

ALIGN_LEFT

Set this keyword to left justify the button’s text label.
WIDGET_BUTTON IDL Reference Guide

 2153
ALIGN_RIGHT

Set this keyword to right justify the button’s text label.

BITMAP

Set this keyword to specify that the bitmap specified with the VALUE keyword is a
color bitmap. The value of a widget button can be a bitmap as described in “Bitmap
Button Labels” on page 2151. If you specify a color bitmap with the VALUE
keyword, you must also set the /BITMAP keyword.

Note
The use of bitmap values for menu buttons may cause unexpected behavior and is
not supported.

CHECKED_MENU

Set this keyword on a menu entry button to enable the ability to place a check
(Windows) or selection box (Motif) next to the menu entry. The parent widget of the
button must be either a button widget created with the MENU keyword or a base
widget created with the CONTEXT_MENU keyword.

On Windows systems, a menu item that has the checked menu feature enabled but
which is unselected appears just like a “normal” menu item. On Motif systems, a
menu item that has the checked menu feature enabled always displays a selection
box, even if the box is not selected.

Note
Setting this keyword does not initially “select” the menu item; selection marks are
displayed and removed via the SET_BUTTON keyword to WIDGET_CONTROL.

DYNAMIC_RESIZE

Set this keyword to create a widget that resizes itself to fit its new value whenever its
value is changed. Note that this keyword does not take effect when used with the
SCR_XSIZE, SCR_YSIZE, XSIZE, or YSIZE keywords. If one of these keywords is
also set, the widget will be sized as specified by the sizing keyword and will never
resize itself dynamically.
IDL Reference Guide WIDGET_BUTTON

2154
EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified is a “device font”
(an X Windows font on Motif systems; a TrueType or PostScript font on Windows
systems). See “About Device Fonts” on page 3962 for details on specifying names for
device fonts. If this keyword is omitted, the default font is used.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts; in
general, the system default font is the font appropriate for the version of Windows
in question.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the widget.
Note that this keyword is only a “hint” to the toolkit, and may be ignored in some
instances.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the group
are also destroyed.
WIDGET_BUTTON IDL Reference Guide

 2155
A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. It is not possible to
remove a widget from an existing group.

HELP

Set this keyword to tell the widget toolkit that this button is a “help” button for a
menubar and should be given that appearance. For example, Motif specifies that the
help menubar item is displayed on the far right of the menubar. This keyword is
ignored in all other contexts and may be ignored by window managers that have no
such special appearance defined.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

MENU

The presence of this keyword indicates that the button will be used to activate a pull-
down menu. Such buttons can have button children that are then placed into a pull-
down menu.

Under Motif, if the value specified for MENU is greater than 1, the button label is
enclosed in a box to indicate that this button is a pull-down menu. See the
CW_PDMENU function for a high-level pull-down menu creation utility.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
IDL Reference Guide WIDGET_BUTTON

2156
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_BUTTON or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NO_RELEASE

Set this keyword to make exclusive and non-exclusive buttons generate only select
events. This keyword has no effect on regular buttons.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

PUSHBUTTON_EVENTS

Set this keyword to cause separate button events to be issued for the widget when the
left mouse button is pressed and released, or when the spacebar is pressed and
released.

Note
This keyword has no effect on exclusive or non-exclusive buttons.

When this keyword is not set and the button is selected, pressing and releasing either
the left mouse button or the spacebar generates a single button event, with the
SELECT field set equal to 1. When this keyword is set:

• Pressing the left mouse button generates a button event with the SELECT field
set equal to 1.

• Releasing the left mouse button generates a button event with the SELECT
field set equal to 0.
WIDGET_BUTTON IDL Reference Guide

 2157
• Pressing the spacebar generates a button event with the SELECT field set equal
to 1 immediately followed by a second button event with the SELECT field set
equal to 0.

• Pressing and holding the spacebar generates a series of button events, with the
value of the SELECT field alternating between 1 and 0. The rate at which
events are generated is governed by the key-repeat settings of the operating
system.

For the structure of button events, see “Events Returned by Button Widgets” on
page 2161.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
See “RESOURCE_NAME” on page 2139 for a complete discussion of this keyword.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.
IDL Reference Guide WIDGET_BUTTON

2158
SEPARATOR

Set this keyword to tell the widget toolkit that this button is part of a pulldown menu
pane and that a separator line should be added directly above this entry. This keyword
is ignored in all other contexts.

TOOLTIP

Set this keyword to a string that will be displayed when the cursor hovers over the
widget. For UNIX platforms, this string must be non-zero in length.

Note
Tooltips cannot be created for menu sub-items. The topmost button on a menu can,
however, have a tooltip.

Note
If your application uses hardware rendering and a RETAIN setting of either zero or
one, tooltips will cause draw widgets to generate expose events if the tooltip
obscures the drawable area. This is true even if the tooltip is associated with another
widget.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget whenever
the mouse pointer enters or leaves the region covered by that widget. For the structure
of tracking events, see “TRACKING_EVENTS” on page 2145 in the documentation
for WIDGET_BASE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.
WIDGET_BUTTON IDL Reference Guide

 2159
UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a widget button is the label for
that button. You can set VALUE to any of the following:

• a string value, which displays as text;

• an n x m byte array, which displays as a black-and-white bitmap image;

• an n x m x 3 byte array, which displays as a 24-bit color bitmap image;

• if the BITMAP keyword is also specified, the name of a bitmap image file that
displays as a color bitmap image of the same depth as the image in the file.

See “Bitmap Button Labels” on page 2151 for additional details on using bitmap
images as button labels.

Note
Under Microsoft Windows, including the ampersand character (&) in the value of a
button widget causes the window manager to place an underline under the character
following the ampersand. (This is a feature of Microsoft Windows, and is generally
used to indicate which character is used as a keyboard accelerator for the button.) If
you are designing an application that will run on different platforms, you should
avoid the use of the ampersand in button value strings.

X_BITMAP_EXTRA

When creating a bitmap button that is not of a “byte-aligned” size (i.e., a dimension is
not a multiple of 8), this keyword specifies how many bits of the supplied bitmap
must be ignored (within the end byte). For example, to create a 10 by 8 bitmap, you
need to supply a 2 by 8 array of bytes and ignore the bottom 6 bits. Therefore, you
would specify X_BITMAP_EXTRA = 6.
IDL Reference Guide WIDGET_BUTTON

2160
XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations.

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL procedure affect the behavior of
button widgets. In addition to those keywords that affect all widgets, the following
are particularly useful: DYNAMIC_RESIZE, DYNAMIC_RESIZE, GET_VALUE,
INPUT_FOCUS, PUSHBUTTON_EVENTS, SET_BUTTON, SET_VALUE,
TOOLTIP, X_BITMAP_EXTRA.
WIDGET_BUTTON IDL Reference Guide

 2161
Keywords to WIDGET_INFO

Some keywords to the WIDGET_INFO function return information that applies
specifically to button widgets. In addition to those keywords that apply to all widgets,
the following are particularly useful: BUTTON_SET, DYNAMIC_RESIZE,
PUSHBUTTON_EVENTS, TOOLTIP.

Events Returned by Button Widgets

Pressing the mouse button while the mouse cursor is over a button widget causes the
widget to generate an event. The event structure returned by the WIDGET_EVENT
function is defined by the following statement:

{WIDGET_BUTTON, ID:0L, TOP:0L, HANDLER:0L, SELECT:0}

ID is the widget id of the button generating the event. TOP is the widget ID of the top
level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. SELECT is set to 1 if the button was set, and 0 if
released. Unless the PUSHBUTTON_EVENTS keyword is set, normal buttons do
not generate events when released, so SELECT will always be 1. Toggle buttons
(children of either an exclusive or non-exclusive base) always return separate events
for the set and release actions.

Version History

Introduced: Pre 4.0

CHECKED_MENU and TOOLTIP keywords added: 5.6

PUSHBUTTON_EVENTS keyword added: 6.0

See Also

CW_BGROUP, CW_PDMENU
IDL Reference Guide WIDGET_BUTTON

2162
WIDGET_COMBOBOX

The WIDGET_COMBOBOX function creates combobox widgets, which are similar
to droplist widgets. The main difference between the combobox widget and the
droplist widget is that the combobox widget can be created in such a way that the text
field is editable, allowing the user to enter a value that is not on the list.

A combobox widget displays a text field and an arrow button. If the combobox is not
editable, selecting either the text field or the button reveals a list of options from
which to choose. When the user selects a new option from the list, the list disappears
and the text field displays the currently-selected option. This action generates an
event containing the index of the selected item, which ranges from zero to the number
of elements in the list minus one.

If the combobox is editable, text can be entered in the text box without causing the
list to drop down. This action causes an event in which the index field is set to -1,
allowing you to distinguish this event from list selections.

The text of the current selection is returned in the STR field of the
WIDGET_COMBOBOX event structure. See “Widget Events Returned by
Combobox Widgets” on page 2169 for details.

Note
WIDGET_COMBOBOX is not currently available on Compaq True64 UNIX
platforms due to that platform’s lack of support for the necessary Motif libraries.

Syntax

Result = WIDGET_COMBOBOX(Parent [, /DYNAMIC_RESIZE] [, /EDITABLE]
[, EVENT_FUNC=string] [, EVENT_PRO=string] [, FONT=string]
[, FRAME=value] [, FUNC_GET_VALUE=string]
[, GROUP_LEADER=widget_id] [, KILL_NOTIFY=string] [, /NO_COPY]
[, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, RESOURCE_NAME=string] [, SCR_XSIZE=width] [, SCR_YSIZE=height]
[, /SENSITIVE] [, /TRACKING_EVENTS] [, UNAME=string] [, UNITS={0 | 1 |
2}] [, UVALUE=value] [, VALUE=value] [, XOFFSET=value] [, XSIZE=value]
[, YOFFSET=value] [, YSIZE=value])

Return Value

The returned value of this function is the widget ID of the newly-created combobox
widget.
WIDGET_COMBOBOX IDL Reference Guide

 2163
Arguments

Parent

The widget ID of the parent widget for the new combobox widget.

Keywords

DYNAMIC_RESIZE

Set this keyword to create a widget that resizes itself to fit its new value whenever its
value is changed.

Note
This keyword does not take effect when used with the SCR_XSIZE, SCR_YSIZE,
XSIZE, or YSIZE keywords. If one of these keywords is also set, the widget will be
sized as specified by the sizing keyword and will never resize itself dynamically.

EDITABLE

Set this keyword to create an editable combobox. If the combobox is editable, users
can enter or modify in the text field. Changes in the combobox text field will cause
combobox events with the INDEX field of the event structure set to -1. The current
text will be ‘ in the STR field of the event structure.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified is a device font (an
X Windows font on Motif systems; a TrueType or PostScript font on Windows
systems). See “About Device Fonts” on page 3962 in the IDL Reference Guide for
IDL Reference Guide WIDGET_COMBOBOX

2164
details on specifying names for device fonts. If this keyword is omitted, the default
font is used.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts; in
general, the system default font is the font appropriate for the version of Windows
in question.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the widget.

Note
This keyword is only a hint to the toolkit, and may be ignored in some instances.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

GROUP_LEADER

The widget ID of an existing widget that serves as group leader for the newly-created
widget. When a group leader is killed, for any reason, all widgets in the group are
also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. You cannot remove a
widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
callback procedure. This callback procedure can be removed by setting the routine
name to the null string ('').

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
WIDGET_COMBOBOX IDL Reference Guide

 2165
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique works
well for small data, it can have a significant memory cost when the data being copied
is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copying the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. Upon a set operation (using the UVALUE keyword to
WIDGET_COMBOBOX or the SET_UVALUE keyword to WIDGET_CONTROL),
the variable passed as value becomes undefined. Upon a get operation
(GET_UVALUE keyword to WIDGET_CONTROL), the user value of the widget in
question becomes undefined.

NOTIFY_REALIZE

Set this keyword to a string containing the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single callback
procedure. This callback procedure can be removed by setting the routine name to the
null string (''). The callback routine is called with the widget ID as its only
argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
See “RESOURCE_NAME” on page 2139 in the IDL Reference Guide for a complete
discussion of this keyword.
IDL Reference Guide WIDGET_COMBOBOX

2166
SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.

Note
Some widgets do not change their appearance when they are made insensitive, but
they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget whenever
the mouse pointer enters or leaves the region covered by that widget. For the structure
of tracking events, see “TRACKING_EVENTS” on page 2145 in the documentation
for WIDGET_BASE.

UNAME

Set this keyword to a string, which is used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.
WIDGET_COMBOBOX IDL Reference Guide

 2167
To query the widget hierarchy, use the WIDGET_INFO with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE

The user value to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a combobox widget is a scalar
string or array of strings that contains the text of the list items (one list item per array
element). Combobox widgets are sized based on the length (in characters) of the
longest item specified in the array of values for the VALUE keyword.

Note
Null strings are not allowed in the combobox widget item list.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. You should avoid using this style of widget
programming.
IDL Reference Guide WIDGET_COMBOBOX

2168
XSIZE

The desired width of the combobox widget area, in units specified by the UNITS
keyword (pixels are the default). Most widgets attempt to size themselves to fit the
situation. However, if the desired effect is not produced, use this keyword to override
it. This keyword does not control the size of the combobox button or of the dropped
list. Instead, it controls the size around the combobox button and, as such, is not
particularly useful.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. You should avoid using this style of widget
programming.

YSIZE

The desired height of the widget, in units specified by the UNITS keyword (pixels are
the default). Most widgets attempt to size themselves to fit the situation. However, if
the desired effect is not produced, use this keyword to override it. This keyword does
not control the size of the combobox button or of the dropped list. Instead, it controls
the size around the combobox button and, as such, is not particularly useful.

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL affect the behavior of combobox
widgets. In addition to those keywords that affect all widgets, the following keywords
are particularly useful: COMBOBOX_ADDITEM, COMBOBOX_DELETEITEM,
COMBOBOX_INDEX, DYNAMIC_RESIZE, GET_VALUE,
SET_COMBOBOX_SELECT, SET_VALUE.

Keywords to WIDGET_INFO

A number of keywords to the WIDGET_INFO return information that applies
specifically to combobox widgets. In addition to those keywords that apply to all
widgets, the following keywords are particularly useful: COMBOBOX_GETTEXT,
COMBOBOX_NUMBER, DYNAMIC_RESIZE.
WIDGET_COMBOBOX IDL Reference Guide

 2169
Widget Events Returned by Combobox Widgets

Pressing the mouse button while the mouse pointer is over an element of a combobox
widget causes the widget to change the text field on the combobox and to generate an
event. The event structure returned by the WIDGET_EVENT function is defined by
the following statement:

{WIDGET_COMBOBOX, ID:0L, TOP:0L, HANDLER:0L, INDEX:0L, STR:""}

The first three fields are the standard fields found in every widget event. INDEX
returns the index of the selected item. This can be used to index the array of names
originally used to set the widget’s value. If the event was caused by text changes in an
editable combobox, the INDEX field will be set to -1. If you are using an editable
combobox, it is important to check for the value of -1 prior to using the value of the
INDEX field as an index into the array if items. The text of the current selection is
returned in the STR field, which may eliminate the need to use the index field in
many cases.

Note
Platform-specific UI toolkits behave differently if a combobox widget has only a
single element. On some platforms, selecting that element again does not generate
an event. Events are always generated if the list contains multiple items.

Version History

Introduced: 5.6

See Also

CW_PDMENU, WIDGET_BUTTON, WIDGET_DROPLIST, WIDGET_LIST
IDL Reference Guide WIDGET_COMBOBOX

2170
WIDGET_CONTROL

The WIDGET_CONTROL procedure is used to realize, manage, and destroy widget
hierarchies. It is often used to change the default behavior or appearance of
previously-realized widgets.

Syntax

WIDGET_CONTROL [, Widget_ID]

Keywords that apply to all widgets: [, BAD_ID=variable] [, /CLEAR_EVENTS]
[, DEFAULT_FONT=string{do not specify Widget_ID}] [, /DELAY_DESTROY{do
not specify Widget_ID}] [, /DESTROY] [, EVENT_FUNC=string]
[, EVENT_PRO=string] [, FUNC_GET_VALUE=string]
[, GET_UVALUE=variable] [, GROUP_LEADER=widget_id] [, /HOURGLASS{do
not specify Widget_ID}] [, KILL_NOTIFY=string] [, /MAP] [, /NO_COPY]
[, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string] [, /REALIZE]
[, /RESET{do not specify Widget_ID}] [, SCR_XSIZE=width]
[, SCR_YSIZE=height] [, SEND_EVENT=structure] [, /SENSITIVE]
[, SET_UNAME=string] [, SET_UVALUE=value] [, /SHOW] [, TIMER=value]
[, TLB_GET_OFFSET=variable] [, TLB_GET_SIZE=variable]
[, /TLB_KILL_REQUEST_EVENTS] [, TLB_SET_TITLE=string]
[, TLB_SET_XOFFSET=value] [, TLB_SET_YOFFSET=value]
[, /TRACKING_EVENTS] [, UNITS={0 | 1 | 2}] [, /UPDATE] [, XOFFSET=value]
[, XSIZE=value] [, YOFFSET=value] [, YSIZE=value]

Keywords that apply to widgets created with WIDGET_ACTIVEX:
[, GET_VALUE=value]

Keywords that apply to widgets created with WIDGET_BASE:
[, BASE_SET_TITLE=string] [, CANCEL_BUTTON=widget_id{for modal bases}]
[, /CONTEXT_EVENTS] [, DEFAULT_BUTTON=widget_id{for modal bases}]
[, /ICONIFY] [, /KBRD_FOCUS_EVENTS] [, /TLB_ICONIFY_EVENTS]
[, /TLB_KILL_REQUEST_EVENTS] [, /TLB_MOVE_EVENTS]
[, /TLB_SIZE_EVENTS]

Keywords that apply to widgets created with WIDGET_BUTTON: [, /BITMAP]
[, /DYNAMIC_RESIZE] [, GET_VALUE=value] [, /INPUT_FOCUS]
[, /PUSHBUTTON_EVENTS] [, /SET_BUTTON] [, SET_VALUE=value]
[, TOOLTIP=string] [, X_BITMAP_EXTRA=bits]
WIDGET_CONTROL IDL Reference Guide

 2171
Keywords that apply to widgets created with WIDGET_COMBOBOX:
[, COMBOBOX_ADDITEM=string] [, COMBOBOX_DELETEITEM=integer]
[, COMBOBOX_INDEX=integer] [, ./DYNAMIC_RESIZE]
[, GET_VALUE=value] [, SET_COMBOBOX_SELECT=integer]
[, SET_VALUE=value]

Keywords that apply to widgets created with WIDGET_DRAW:
[, /DRAW_BUTTON_EVENTS] [, /DRAW_EXPOSE_EVENTS]
[, DRAW_KEYBOARD_EVENTS={0 | 1 | 2}] [, /DRAW_MOTION_EVENTS]
[, /DRAW_VIEWPORT_EVENTS] [, DRAW_XSIZE=integer]
[, DRAW_YSIZE=integer] [, GET_DRAW_VIEW=variable]
[, GET_UVALUE=variable] [, GET_VALUE=variable] [, /INPUT_FOCUS]
[, SET_DRAW_VIEW=[x, y]] [, TOOLTIP=string]

Keywords that apply to widgets created with WIDGET_DROPLIST:
[, /DYNAMIC_RESIZE] [, GET_VALUE=variable]
[, SET_DROPLIST_SELECT=integer] [, SET_VALUE=value]

Keywords that apply to widgets created with WIDGET_LABEL:
[, /DYNAMIC_RESIZE] [, GET_VALUE=value] [, SET_VALUE=value]

Keywords that apply to widgets created with WIDGET_LIST:
[, /CONTEXT_EVENTS] [, SET_LIST_SELECT=value]
[, SET_LIST_TOP=integer] [, SET_VALUE=value]

Keywords that apply to widgets created with WIDGET_PROPERTYSHEET:
[, REFRESH_PROPERTY=string, array of strings, or integer]

Keywords that apply to widgets created with WIDGET_SLIDER:
[, GET_VALUE=value] [, SET_SLIDER_MAX=value]
[, SET_SLIDER_MIN=value] [, SET_VALUE=value]

Keywords that apply to widgets created with WIDGET_TAB:
[, SET_TAB_CURRENT=index] [, SET_TAB_MULTILINE=value]

Keywords that apply to widgets created with WIDGET_TABLE:
[, ALIGNMENT={0 | 1 | 2}] [, /ALL_TABLE_EVENTS] [, AM_PM=[string,
string]] [, COLUMN_LABELS=string_array] [, COLUMN_WIDTHS=array]
[, DAYS_OF_WEEK=string_array{7 names}] [, /DELETE_COLUMNS{not for
row_major mode}] [, /DELETE_ROWS{not for column_major mode}]
[, /EDITABLE] [, EDIT_CELL=[integer, integer]] [, FORMAT=value]
[, GET_VALUE=variable] [, INSERT_COLUMNS=value]
[, INSERT_ROWS=value] [, /KBRD_FOCUS_EVENTS]
[, MONTHS=string_array{12 names}] [, ROW_LABELS=string_array]
[, ROW_HEIGHTS=array] [, SET_TABLE_SELECT=[left, top, right, bottom]]
[, SET_TABLE_VIEW=[integer, integer]] [, SET_TEXT_SELECT=[integer,
IDL Reference Guide WIDGET_CONTROL

2172
integer]] [, SET_VALUE=value] [, /TABLE_BLANK=cells]
[, /TABLE_DISJOINT_SELECTION] [, TABLE_XSIZE=columns]
[, TABLE_YSIZE=rows] [, /USE_TABLE_SELECT | ,
USE_TABLE_SELECT=[left, top, right, bottom]] [, /USE_TEXT_SELECT]

Keywords that apply to widgets created with WIDGET_TEXT:
[, /ALL_TEXT_EVENTS] [, /APPEND] [, /CONTEXT_EVENTS] [, /EDITABLE]
[, GET_VALUE=variable] [, /INPUT_FOCUS] [, /KBRD_FOCUS_EVENTS]
[, /NO_NEWLINE] [, SET_TEXT_SELECT=[integer, integer]]
[, SET_TEXT_TOP_LINE=line_number] [, SET_VALUE=value]
[, /USE_TEXT_SELECT]

Keywords that apply to widgets created with WIDGET_TREE:
[, SET_TREE_BITMAP=array] [, /SET_TREE_EXPANDED]
[, SET_TREE_SELECT={0 | 1 | widget ID | array of widget IDs}]
[, /SET_TREE_VISIBLE]

Arguments

Widget_ID

The widget ID of the widget to be manipulated. This argument is required by all
operations, unless the description of the specific keyword states otherwise. Note that
if Widget_ID is not provided for a keyword that needs it, that keyword is quietly
ignored.

Keywords

Not all keywords to WIDGET_CONTROL apply to all combinations of widgets. In
the following list, descriptions of keywords that affect only certain types of widgets
include a list of the widgets for which the keyword is useful.

ALIGNMENT

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword equal to a scalar, 2-D array, or 1-D array specifying the alignment of
the contents of each cell. An alignment of 0 (the default) aligns the left edge of the
text with the left edge of the cell. An alignment of 2 right-justifies the text, while 1
results in text centered within the cell.

If the USE_TABLE_SELECT keyword is not set:
WIDGET_CONTROL IDL Reference Guide

 2173
• If ALIGNMENT is set equal to a scalar, all table cells are aligned as specified.
If ALIGNMENT is set equal to a 2-D array, the alignment of each table cell is
governed by the corresponding element of the array.

If the USE_TABLE_SELECT keyword is set:

• In standard selection mode, if ALIGNMENT is set equal to a scalar, all cells in
the selection are aligned as specified. If ALIGNMENT is set equal to a 2-D
array, the alignment of each selected cell is governed by the corresponding
element of the array.

• In disjoint selection mode, if ALIGNMENT is set equal to a scalar, all cells in
the selection are aligned as specified. If ALIGNMENT is set equal to a 1-D
array, the alignment of each selected cell is governed by the corresponding
element of the array.

ALL_TABLE_EVENTS

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to cause to the table widget to generate events whenever the user
changes the contents of a table cell.

Note
If the EDITABLE keyword is set, an insert character event (TYPE=0) is generated
when the user presses the RETURN or ENTER key in the text widget, even if the
ALL_EVENTS keyword is not set. End-of-line events such as these could be used
by the programmer as an indication to check the cell value or to set the currently
selected cell to the next cell. See the table below for details on the interaction
between ALL_TABLE_EVENTS and EDITABLE.

Keywords Effects

ALL_TABLE_EVENTS EDITABLE Input changes
widget contents?

Type of events
generated

Not set Not set No None

Not set Set Yes End-of-line
insertion

Table 96: Effects of using the ALL_TABLE_EVENTS and EDITABLE keywords
IDL Reference Guide WIDGET_CONTROL

2174
ALL_TEXT_EVENTS

This keyword applies to widgets created with the WIDGET_TEXT function.

Set this keyword to cause to the text widget to generate events whenever the user
changes the contents of the text area.

Note
If the EDITABLE keyword is set, an insert character event (TYPE=0) is generated
when the user presses the RETURN or ENTER key in the text widget, even if the
ALL_EVENTS keyword is not set. See the table below for details on the interaction
between ALL_TEXT_EVENTS and EDITABLE.

AM_PM

This keyword applies to widgets created with the WIDGET_TABLE function.

Set Not set No All events

Set Set Yes All events

Keywords Effects

ALL_TEXT_EVENTS EDITABLE
Input changes

widget contents?
Type of events

generated

Not set Not set No None

Not set Set Yes End-of-line
insertion

Set Not set No All events

Set Set Yes All events

Table 97: Effects of using the ALL_TEXT_EVENTS and EDITABLE keywords

Keywords Effects

ALL_TABLE_EVENTS EDITABLE Input changes
widget contents?

Type of events
generated

Table 96: Effects of using the ALL_TABLE_EVENTS and EDITABLE keywords
WIDGET_CONTROL IDL Reference Guide

 2175
Supplies a string array of 2 names to be used for the names of the AM and PM string
when processing explicitly formatted dates (CAPA, CApA, and CapA format codes)
with the FORMAT keyword.

APPEND

This keyword applies to widgets created with the WIDGET_TEXT function.

When using the SET_VALUE keyword to set the contents of a text widget (as created
with the WIDGET_TEXT procedure), setting this keyword indicates that the supplied
text should be appended to the existing contents of the text widget rather than replace
it.

BAD_ID

This keyword applies to all widgets.

If Widget_ID is not a valid widget identifier, this WIDGET_CONTROL normally
issues an error and causes program execution to stop. However, if BAD_ID is present
and specifies a named variable, the invalid ID is stored into the variable, and this
routine quietly returns. If no error occurs, a zero is stored.

BASE_SET_TITLE

This keyword applies to widgets created with the WIDGET_BASE function.

Set this keyword to a scalar string to change the title of the specified base widget. If
the parent of the base widget is a tab widget, the title of the corresponding tab in the
tab widget is changed to the provided string. If the parent is not a tab control, this
keyword behaves like the keyword TLB_SET_TITLE.

CANCEL_BUTTON

This keyword applies to widgets created with the WIDGET_BASE function using the
MODAL keyword.

Set this keyword equal to the widget ID of a button widget that will be the cancel
button on a modal base widget.

On Motif and Windows platforms, selecting Close from the system menu (generally
located at the upper left of the base widget) generates a button event for the Cancel
button.

CLEAR_EVENTS

This keyword applies to all widgets.
IDL Reference Guide WIDGET_CONTROL

2176
If set, any events generated by the widget hierarchy rooted at Widget_ID which have
arrived but have not been processed (via the WIDGET_EVENT procedure) are
discarded.

COLUMN_LABELS

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword equal to an array of strings to be used as labels for the columns of
the table. If no label is specified for a column, it receives the default label “n” where n
is the column number. If this keyword is set to the empty string (''), all column labels
are set to be empty.

COLUMN_WIDTHS

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword equal to a one-dimensional array of widths for the columns of the
table widget. The widths are given in the units specified with the UNITS keyword. If
no width is specified for a column, that column is set to the default size, which varies
by platform. If COLUMN_WIDTHS is set to a scalar value, all of the column widths
are set to that value.

If the USE_TABLE_SELECT keyword is set (in either standard or disjoint selection
mode), the indices of the elements of an array specified as the value of the
COLUMN_WIDTHS keyword are interpreted as indices into the list of selected
columns. For example, if the table is in disjoint selection mode, the current selection
includes cells from columns 0, 1, 2, 5, 6, and 7, USE_TABLE_SELECT is set equal
to one, and the COLUMN_WIDTHS keyword is set equal to a four-element array
[20, 35, 30, 35], the widths of columns 0, 1, 2, and 5 would be modified.
Similarly, if the table is in standard selection mode and the USE_TABLE_SELECT
keyword is set equal to the array [0, 1, 0, 0], and the COLUMN_WIDTHS
keyword is set equal to a four-element array [20, 35, 30, 35], only the width of
the first column would be altered.

COMBOBOX_ADDITEM

This keyword applies to widgets created with the WIDGET_COMBOBOX function.

Set this keyword to a non-null string that specifies a new item to add to the list of the
combobox. By default, the item will be added to the end of the list. The item can be
added to a specified position in the list by setting the COMBOBOX_INDEX keyword
in the same call to WIDGET_CONTROL.
WIDGET_CONTROL IDL Reference Guide

 2177
COMBOBOX_DELETEITEM

This keyword applies to widgets created with the WIDGET_COMBOBOX function.

Set this keyword to an integer that specifies the zero-based index of the combobox
element to be deleted from the list. If the specified element is outside the range of
existing elements, no element is deleted.

COMBOBOX_INDEX

This keyword applies to widgets created with the WIDGET_COMBOBOX function.

Set this keyword to an integer that specifies the zero-based index of the position at
which a new item will be added to the list when using the COMBOBOX_ADDITEM
keyword. The value -1 is a special case that indicates the item should be added to the
end of the list. Note that this special case is provided for convenience, and that an
item can also be added to the end of the list by omitting the COMBOBOX_INDEX
keyword entirely. If the supplied index is not -1, and is outside the range of zero to the
length of the existing list, the item is not added to the list.

Note
You can retrieve the length of the existing list using the COMBOBOX_NUMBER
keyword to WIDGET_INFO function.

CONTEXT_EVENTS

This keyword applies to widgets created with the WIDGET_BASE function,
WIDGET_LIST, and WIDGET_TEXT function.

Set this keyword to cause context menu events (or simply context events) to be issued
when the user clicks the right mouse button over the widget. Set the keyword to 0
(zero) to disable such events. Context events are intended for use with context-
sensitive menus (also known as pop-up or shortcut menus); pass the context event ID
to the WIDGET_DISPLAYCONTEXTMENU procedure within your widget
program’s event handler to display the context menu.

Note
You can also capture right mouse button events generated within draw widgets. See
the BUTTON_EVENTS keyword to WIDGET_DRAW function for details.

For more on detecting and handling context menu events, see “Context-Sensitive
Menus” in Chapter 27 of the Building IDL Applications manual.
IDL Reference Guide WIDGET_CONTROL

2178
DAYS_OF_WEEK

This keyword applies to widgets created with the WIDGET_TABLE function.

Supplies a string array of 7 names to be used for the names of the days of the week
when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the FORMAT keyword.

DEFAULT_BUTTON

This keyword applies to widgets created with the WIDGET_BASE function using the
MODAL keyword.

Set this keyword equal to the widget ID of a button widget that will be the default
button on a modal base widget. The default button is highlighted by the window
system.

DEFAULT_FONT

This keyword applies to all widgets. Do not specify a Widget ID when using this
keyword.

A string containing the name of the default font to be used.

If the font to be used for a given widget is not explicitly specified (via the FONT
keyword to the widget creation function), a default supplied by the window system or
server is used. Use this keyword to change the default. See “About Device Fonts” on
page 3962 for details on specifying names for device fonts. If this keyword is
omitted, the default font is used.

Note
On Microsoft Windows platforms, IDL uses the system default font. Different
versions of Windows use different system default fonts; in general, the system
default font is the font appropriate for the version of Windows in question.

DELAY_DESTROY

This keyword applies to all widgets. Do not specify a Widget ID when using this
keyword.

Normally, when the user destroys a widget hierarchy using the window manager, it is
immediately removed. This can cause problems for applications that use the
background task facility provided by the XMANAGER procedure if the hierarchy is
destroyed while a background task is using it.
WIDGET_CONTROL IDL Reference Guide

 2179
If DELAY_DESTROY is set, attempts to destroy the hierarchy are delayed until the
next attempt to obtain an event for it. Setting DELAY_DESTROY to zero restores the
default behavior.

XMANAGER uses this keyword automatically when managing background tasks. It
is not expected that applications will need to use it directly.

DELETE_COLUMNS

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to delete columns that contain selected cells. If a selection is
specified via the USE_TABLE_SELECT keyword (in either standard or disjoint
mode), the columns that contain cells specified in the selection array are deleted. If
the USE_TABLE_SELECT keyword is either absent or set equal to 1, the columns
that contain selected cells are deleted.

Warning
You cannot delete columns from a table which displays structure data in
/ROW_MAJOR mode (the default).

DELETE_ROWS

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to delete rows that contain selected cells. If a selection is specified
via the USE_TABLE_SELECT keyword (in either standard or disjoint mode), the
rows that contain cells specified in the selection array are deleted. If the
USE_TABLE_SELECT keyword is either absent or set equal to 1, the columns that
contain selected cells are deleted.

Warning
You cannot delete rows from a table which displays structure data in
/COLUMN_MAJOR mode.

DESTROY

This keyword applies to all widgets.

Set this keyword to destroy the widget and any child widgets in its hierarchy. Any
further attempts to use the IDs for these widgets will cause an error.

DRAW_BUTTON_EVENTS

This keyword applies to widgets created with the WIDGET_DRAW function.
IDL Reference Guide WIDGET_CONTROL

2180
Set this keyword to enable button press events for draw widgets. Setting a zero value
disables such events.

Note
You can use button events generated by draw widgets to simulate the functionality
of the CONTEXT_EVENTS keyword to WIDGET_BASE, WIDGET_LIST, and
WIDGET_TEXT. See the BUTTON_EVENTS keyword to WIDGET_DRAW for
details.

DRAW_EXPOSE_EVENTS

This keyword applies to widgets created with the WIDGET_DRAW function.

Set this keyword to enable viewport expose events for draw widgets. Setting a zero
value disables such events.

Note
You must explicitly disable backing store (by setting the RETAIN keyword to
WIDGET_DRAW equal to zero) in order to generate expose events.

DRAW_KEYBOARD_EVENTS

This keyword applies to widgets created with WIDGET_DRAW.

Set this keyword equal to 1 (one) or 2 to make the draw widget generate an event
when it has the keyboard focus and a key is pressed or released. (The method by
which a widget receives the keyboard focus is dependent on the window manager in
use.) The value of the key pressed is reported in either the CH or the KEY field of the
event structure, depending on the type of key pressed. See “Widget Events Returned
by Draw Widgets” on page 2224 for details.

• If this keyword is set equal to 1, the draw widget will generate an event when a
“normal” key is pressed. “Normal” keys include all keys except function keys
and the modifier keys: SHIFT, CONTROL, CAPS LOCK, and ALT. If a modifier
key is pressed at the same time as a normal key, the value of the modifier key is
reported in the MODIFIERS field of the event structure.

• If this keyword is set equal to 2, the draw widget will generate an event when
either a normal key or a modifier key is pressed. Values for modifier keys are
reported in the KEY field of the event structure, and the MODIFIERS field
contains zero.
WIDGET_CONTROL IDL Reference Guide

 2181
Note
Keyboard events are never generated for function keys.

DRAW_MOTION_EVENTS

This keyword applies to widgets created with the WIDGET_DRAW function.

Set this keyword to enable motion events for draw widgets. Setting a zero value
disables such events.

DRAW_VIEWPORT_EVENTS

This keyword applies to widgets created with the WIDGET_DRAW function.

Set this keyword to enable viewport motion events for draw widgets. Setting a zero
value disables such events.

DRAW_XSIZE

This keyword applies to widgets created with the WIDGET_DRAW function.

Set this keyword to an integer that specifies the new horizontal size for the graphics
region (the virtual size) of a draw widget in units specified by the UNITS keyword
(pixels are the default). For non-scrollable draw widgets, setting this keyword is the
same as setting SCR_XSIZE or XSIZE. However, for scrolling draw widgets
DRAW_XSIZE is the only way to change the width of the drawable area (XSIZE sets
the viewport size).

DRAW_YSIZE

This keyword applies to widgets created with the WIDGET_DRAW function.

Set this keyword to an integer that specifies the new vertical size for the graphics
region (the virtual size) of a draw widget in units specified by the UNITS keyword
(pixels are the default). For non-scrollable draw widgets, setting this keyword is the
same as setting SCR_YSIZE or YSIZE. However, for scrolling draw widgets
DRAW_YSIZE is the only way to change the height of the drawable area (YSIZE
sets the viewport size).

DYNAMIC_RESIZE

This keyword applies to widgets created with the WIDGET_BUTTON,
WIDGET_COMBOBOX, WIDGET_DROPLIST, and WIDGET_LABEL functions.

Set this keyword to activate (if set to 1) or deactivate (if set to 0) dynamic resizing of
the specified WIDGET_BUTTON, WIDGET_LABEL, or WIDGET_DROPLIST
IDL Reference Guide WIDGET_CONTROL

2182
widget (see the documentation for the DYNAMIC_RESIZE keyword to those
procedures for more information about dynamic widget resizing).

EDITABLE

This keyword applies to widgets created with the WIDGET_TABLE and
WIDGET_TEXT functions.

Set this keyword to allow direct user editing of the contents of a text or table widget.
Normally, the text in text and table widgets is read-only. See the descriptions of the
ALL_TABLE_EVENTS and ALL_TEXT_EVENTS keywords for additional details.

EDIT_CELL

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword equal to a two-element integer array containing the y (row) and
x (column) coordinates of a table cell to put that cell into edit mode. For example, to
put the top cell in the third column (x index=2) into edit mode, use the following
commands:

row=0
col=2
WIDGET_CONTROL, table, EDIT_CELL=[row, col]

where table is the Widget ID of the table widget.

EVENT_FUNC

This keyword applies to all widgets.

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy given by
Widget_ID.

This keyword overwrites any event routine supplied by previous uses of the
EVENT_FUNC or EVENT_PRO keywords. To specify no event routine, set this
keyword to a null string ('').

EVENT_PRO

This keyword applies to all widgets.

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy given by
Widget_ID.
WIDGET_CONTROL IDL Reference Guide

 2183
This keyword overwrites any event routine supplied by previous uses of the
EVENT_FUNC or EVENT_PRO keywords. To specify no event routine, set this
keyword to a null string ('').

FORMAT

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword equal to a single string or a one- or two-dimensional array of strings
that specify the format of data displayed within table cells. The string(s) are of the
same form as used by the FORMAT keyword to the PRINT procedure, and the
default format is the same as that used by the PRINT/PRINTF procedures.

If the USE_TABLE_SELECT keyword is set equal to one, the format is changed only
for the currently selected cells. If USE_TABLE_SELECT is set equal to an array, the
format is changed for the specified cells.

• In standard selection mode, FORMAT can be set either to a single string or to a
two-dimensional array of strings of the same size as the selected area.

• In disjoint selection mode, FORMAT can be set either to a single string or to a
one-dimensional array of strings with the same number of elements as the
selected area.

FUNC_GET_VALUE

This keyword applies to all widgets.

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. The
function specified by FUNC_GET_VALUE is called with the widget ID as an
argument. The function specified by FUNC_GET_VALUE should return a value for a
widget. Using this technique allows you to change the value that should be returned
for a widget. Compound widgets use this ability to define their values transparently to
the user.

GET_DRAW_VIEW

This keyword applies to widgets created with the WIDGET_DRAW function.

Specifies a named variable which will be assigned the current position of a draw
widget viewport. The position is returned as a 2-element integer array giving the X
and Y position relative to the lower left corner of the graphics area.

GET_UVALUE

This keyword applies to all widgets.
IDL Reference Guide WIDGET_CONTROL

2184
Set this keyword to a named variable to contain the current user value of the widget.

Each widget can contain a user set value of any data type and organization. This value
is not used by the widget in any way, and exists entirely for the convenience of the
IDL programmer. This keyword allows you to obtain the current user value.

The user value of a widget can be set with the SET_UVALUE keyword to this
routine, or with the UVALUE keyword to the routine that created it.

To improve the efficiency of the data transfer, consider using the NO_COPY keyword
(described below) with GET_UVALUE.

GET_VALUE

This keyword applies to widgets created with the WIDGET_ACTIVEX,
WIDGET_BUTTON, WIDGET_COMBOBOX, WIDGET_DRAW,
WIDGET_DROPLIST, WIDGET_LABEL, WIDGET_SLIDER, WIDGET_TABLE,
and WIDGET_TEXT functions.

Note
If you would like information about the values returned for a specific compound
widget—beginning with the prefix “CW_”—please refer to the description of the
compound widget, which may also include a section titled, “Keywords to
WIDGET_CONTROL and WIDGET_INFO”. Compound widgets are described in
the Reference Guide.

Set this keyword to a named variable to contain the current value of the widget. The
type of value returned depends on the widget type:

• ActiveX: An object reference to the IDLcomActiveX object that underlies the
ActiveX widget. See Chapter 5, “Using ActiveX Controls in IDL” in the
External Development Guide manual for details.

• Button: If the button label is text, it is returned as a string. Attempts to obtain
the value of a button with a bitmap label is an error.

• Combobox: The contents of the list of the combobox widget are returned as a
string or string array.

• Draw: The value of a draw widget depends on whether the draw widget uses
IDL Direct Graphics or IDL Object Graphics. (The type of graphics used is
specified by the GRAPHICS_LEVEL keyword to WIDGET_DRAW.) The two
possibilities are:

A. By default, draw widgets use IDL Direct Graphics. In this case, the value
of a draw widget is the IDL window ID for the drawing area. This ID is
WIDGET_CONTROL IDL Reference Guide

 2185
used with procedures such as WSET, WSHOW, etc., to direct graphics to
the widget. The window ID is assigned to drawing area widgets at the time
they are realized. If the widget has not yet been realized, a value of -1 is
returned.

B. If the draw widget uses IDL Object Graphics (that is, if the
GRAPHICS_LEVEL keyword to WIDGET_DRAW is set equal to 2), the
value of the draw widget is the object reference of the window object used
in the draw widget.

• Droplist: The contents of the droplist widget’s list are returned as a string or
string array.

• Label: The label text is returned as a string.

• Property Sheet: Retrieves the component object(s) that the property sheet is
associated with. Use the GET_VALUE keyword to WIDGET_CONTROL.

• Slider: The current value of the slider is returned as an integer.

• Table: Normally, the data for the whole table are returned as a two dimensional
array or a vector of structures.

If the USE_TABLE_SELECT keyword is set, the value returned is a subset of
the whole data.

• If the table is in standard selection mode and the table data is of a single
type, the value returned is a two dimensional array. If the table contains
structure data, the value returned is a vector of (possibly anonymous)
structures.

• If the table is in disjoint selection mode and the table data is a single type,
the value returned is a one-dimensional array of values. If the table
contains structure data, the value returned is a single structure in which
each field corresponds to a selected cell. In either case, use the
TABLE_SELECT keyword to WIDGET_INFO to get the row and column
indices of the disjoint values.

If the USE_TEXT_SELECT keyword is set, the value returned is a string
corresponding to the currently-selected text in the currently-selected cell.

• Text: The current contents of the text widget are returned as a string array. If
the USE_TEXT_SELECT keyword is also specified, only the contents of the
current selection are returned.

• Widget types not listed above do not return a value. Attempting to retrieve the
value of such a widget causes an error.
IDL Reference Guide WIDGET_CONTROL

2186
The value of a widget can be set with the SET_VALUE keyword to this routine, or
with the VALUE keyword to the routine that created it.

GROUP_LEADER

This keyword applies to all widgets.

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the group
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. It is not possible to
remove a widget from an existing group.

HOURGLASS

This keyword applies to all widgets. Do not specify a Widget ID when using this
keyword.

Set this keyword to turn on an “hourglass-shaped” cursor for all IDL widgets and
graphics windows. The hourglass remains in place until the WIDGET_EVENT
function attempts to process the next event. Then the previous cursor is reinstated. If
an application starts a time-intensive calculation inside an event-handling routine, the
hourglass cursor should be used to indicate that the system is not currently
responding to events.

ICONIFY

This keyword applies to all widgets.

Set this keyword to a non-zero value to cause the specified widget to become
iconified. Set this keyword to zero to open an iconified widget.

INPUT_FOCUS

This keyword applies to widgets created with the WIDGET_BUTTON,
WIDGET_DRAW, and WIDGET_TEXT functions.

If Widget_ID is a text widget, you can set this keyword to cause the widget to receive
the keyboard focus. If Widget_ID is a button widget, set this keyword to position the
mouse pointer over the button (on Motif), or set the focus to the button so that it can
be “pushed” with the spacebar (on Windows). This keyword has no effect for other
widget types.
WIDGET_CONTROL IDL Reference Guide

 2187
Note
You cannot assign the input focus to an unrealized widget.

INSERT_COLUMNS

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to the number of columns to be added to the right of the rightmost
column of the table. If the USE_TABLE_SELECT keyword is set equal to one, the
columns are inserted to the left of the current selection. If USE_TABLE_SELECT is
set equal to an array, the columns are inserted to the left of the specified selection.

Warning
You cannot insert columns into a table which displays structure data in
/ROW_MAJOR (default) mode because it would change the structure.

INSERT_ROWS

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to the number of rows to be added below the bottommost row of the
table. If the USE_TABLE_SELECT keyword is set equal to one, the rows are
inserted above the current selection. If USE_TABLE_SELECT is set equal to an
array, the rows are inserted above the specified selection.

Warning
You cannot insert rows into a table which displays structure data in
/COLUMN_MAJOR mode because it would change the structure.

KBRD_FOCUS_EVENTS

This keyword applies to widgets created with the WIDGET_BASE,
WIDGET_TABLE, and WIDGET_TEXT functions.

Set this keyword to cause widget keyboard focus events to be issued for the widget
whenever the keyboard focus of that widget changes. See the
KBRD_FOCUS_EVENTS keywords to WIDGET_BASE, WIDGET_TABLE, and
WIDGET_TEXT for details.

KILL_NOTIFY

This keyword applies to all widgets.
IDL Reference Guide WIDGET_CONTROL

2188
Use this keyword to change or remove a previously-specified callback procedure for
Widget_ID. A previously-defined callback can be removed by setting this keyword to
the null string ('').

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

For a top-level base widget in a widget application, the CLEANUP keyword to
XMANAGER can also be used to specify a procedure that will be called when the
base widget dies. Note that the last call to any of:

• WIDGET_BASE, KILL_NOTIFY

• XMANAGER, CLEANUP

• WIDGET_CONTROL, KILL_NOTIFY

determines the procedure that is executed when the specified top-level base widget
dies. Calling XMANAGER with the CLEANUP keyword overrides any previous
setting of KILL_NOTIFY. Similarly, calling WIDGET_CONTROL with
KILL_NOTIFY overrides any previous setting of CLEANUP.

MANAGED

This keyword applies to all widgets.

This keyword is used by the XMANAGER procedure to mark those widgets that it is
currently managing. User applications should not use this keyword directly.

MAP

This keyword applies to all widgets.

Set this keyword to zero to unmap the widget hierarchy rooted at the widget specified
by Widget_ID. The hierarchy disappears from the screen, but still exists.

The mapping operation applies only to base widgets. If the specified widget is not a
base, IDL searches upward in the widget hierarchy until it finds the closest base
widget. The map operation is applied to that base.

Set MAP to a nonzero value to re-map the widget hierarchy and make it visible.
Normally, the widget is automatically mapped when it is realized, so use of the MAP
keyword is not required.
WIDGET_CONTROL IDL Reference Guide

 2189
MONTHS

This keyword applies to widgets created with the WIDGET_TABLE function.

Supplies a string array of 12 names to be used for the names of the months when
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) with
the FORMAT keyword.

NO_COPY

This keyword applies to all widgets.

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the SET_UVALUE keyword to
WIDGET_CONTROL), the variable passed as value becomes undefined. On a “get”
operation (GET_UVALUE keyword to WIDGET_CONTROL), the user value of the
widget in question becomes undefined.

Note
The NO_COPY keyword increases efficiency when sending event structures using
the SEND_EVENT keyword to WIDGET_CONTROL.

NO_NEWLINE

This keyword applies to widgets created with the WIDGET_TEXT function.

When setting the value of a multi-line text widget, newline characters are
automatically appended to the end of each line of text. The NO_NEWLINE keyword
suppresses this action.

NOTIFY_REALIZE

This keyword applies to all widgets.

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
IDL Reference Guide WIDGET_CONTROL

2190
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. A previously-set callback routine can be removed by setting
this keyword to the null string (''). The callback routine is called with the widget ID
as its only argument.

PRO_SET_VALUE

This keyword applies to all widgets.

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. The
procedure specified by PRO_SET_VALUE is called with 2 arguments— a widget ID
and a value. Using this technique allows you to designate a routine that sets the value
for a widget. Compound widgets use this ability to define their values transparently to
the user.

PUSHBUTTON_EVENTS

This keyword applies to widgets created with the WIDGET_BUTTON function.

Set this keyword to a non-zero value to enable pushbutton events for the widget specified
by Widget_ID. Set the keyword to 0 to disable pushbutton events for the specified widget.
For a description of pushbutton events, see “PUSHBUTTON_EVENTS” on page 2156 in
the documentation for WIDGET_BUTTON.

REALIZE

This keyword applies to all widgets.

If set, the widget hierarchy is realized. Until the realization step, the widget hierarchy
exists only within IDL. Realization is the step of actually creating the widgets on the
screen (and mapping them if necessary).

When a previously-realized widget gets a new child widget, the new child is
automatically realized.

Tip
Under Microsoft Windows, when a hidden base is realized, then mapped, a
Windows resize message is sent by the windowing system. This “extra” resize event
is generated before any manipulation of the base widget by the user.

REFRESH _PROPERTY

This keyword applies to widgets created with the WIDGET_PROPERTYSHEET
function. Set this keyword to a property identifier or array of property identifiers to
WIDGET_CONTROL IDL Reference Guide

 2191
have just those properties synchronized with their values in the component(s). Recall
that property identifiers are strings that uniquely determine a property. The keyword
can also be set to a numeric value—non-zero values refresh all properties. The
REFRESH_PROPERTY keyword also updates with respect to a property's sensitivity
and visibility.

When all properties need synchronizing, it is more efficient to use
/REFRESH_PROPERTY than WIDGET_CONTROL’s SET_VALUE keyword to
reload the property sheet.

RESET

This keyword applies to all widgets. Do not specify a Widget ID when using this
keyword. Set the RESET keyword to destroy every currently active widget. This
keyword should be used with caution.

ROW_LABELS

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword equal to an array of strings to be used as labels for the rows of the
table. If no label is specified for a row, it receives the default label “n” where n is the
row number. If this keyword is set to the empty string (''), all row labels are set to be
empty.

ROW_HEIGHTS

This keyword applies to widgets created with the WIDGET_TABLE function.

Note
This keyword is not supported under Microsoft Windows.

Set this keyword equal to a one-dimensional array of heights for the rows of the table
widget. The heights are given in the units specified with the UNITS keyword. If no
height is specified for a row, that row is set to the default size, which varies by
platform. If ROW_HEIGHTS is set to a scalar value, all of the row heights are set to
that value.

If the USE_TABLE_SELECT keyword is set (in either standard or disjoint selection
mode), the indices of the elements of the specified array are interpreted as indices
into the list of selected columns. For example, if the table is in disjoint selection
mode, the current selection includes cells from rows 0, 1, 2, 5, 6, and 7,
USE_TABLE_SELECT is set equal to one, and the ROW_HEIGHTS keyword is set
equal to a four-element array [20, 35, 30, 35], the height of rows 0, 1, 2, and 5
would be modified. Similarly, if the table is in standard selection mode and the
IDL Reference Guide WIDGET_CONTROL

2192
USE_TABLE_SELECT keyword is set equal to the array [0, 1, 0, 0], and the
ROW_HEIGHTS keyword is set equal to a four-element array [20, 35, 30, 35],
only the height of the first row would be altered.

SCR_XSIZE

This keyword applies to all widgets.

Set this keyword to an integer value that represents the widget’s new horizontal size,
in units specified by the UNITS keyword (pixels are the default). Attempting to
change the size of a widget that is part of a menubar or pulldown menu causes an
error. This keyword is useful for resizing table, text, list, and scrolling widgets. Note
that [XY]SIZE sets client area and SCR_[XY]SIZE sets total area (title bar, borders,
menu, client area).

SCR_YSIZE

This keyword applies to all widgets.

Set this keyword to an integer value that represents the widget’s new vertical size, in
units specified by the UNITS keyword (pixels are the default). Attempting to change
the size of a widget that is part of a menubar or pulldown menu causes an error. This
keyword is useful for resizing table, text, list, and scrolling widgets. Note that
[XY]SIZE sets client area and SCR_[XY]SIZE sets total area (title bar, borders,
menu, client area).

SEND_EVENT

This keyword applies to all widgets.

Set this keyword to a structure containing a valid widget event to be sent to the
specified widget. The value of SEND_EVENT must be a structure and the first three
fields must be ID, TOP, and HANDLER (all of LONG type). Additional fields can be
of any type.

To improve the efficiency of the data transfer, consider using the NO_COPY keyword
with SEND_EVENT.

SENSITIVE

Set this keyword to control the sensitivity state of a widget after creation. This
keyword applies to all widgets. Use the SENSITIVE keyword with the widget
creation function to control the initial sensitivity state.

When a widget is sensitive, it has normal appearance and can receive user input. For
instance, a sensitive button widget can be activated by moving the mouse cursor over
WIDGET_CONTROL IDL Reference Guide

 2193
it and pressing a mouse button. When a widget is insensitive, it indicates the fact by
changing its appearance, and ignores any input directed at it. If SENSITIVE is zero,
the widget hierarchy becomes insensitive. If nonzero, it becomes sensitive.

Sensitivity can be used to control when a user is allowed to manipulate a widget. It
should be noted that some widgets do not change their appearance when they are
made insensitive, and simply cease generating events.

SET_BUTTON

This keyword applies to widgets created with the WIDGET_BUTTON function.

This keyword changes the current state of toggle buttons. If set equal to zero, every
toggle button in the hierarchy specified by Widget_ID is set to the unselected state. If
set to a nonzero value, the action depends on the type of base holding the buttons:

• For a non-exclusive base:

• If a single button is specified by Widget_ID, that button is set to the
selected state, leaving the state of other buttons in the base unchanged.

• If the base itself is specified by Widget_ID, all buttons are set to the
selected state.

• For an exclusive base:

• If a single button is specified by Widget_ID, that button is set to the
selected state, and all other buttons in the base are set to the unselected
state.

• If the base itself is specified by Widget_ID, IDL generates an error, since
an exclusive base can contain at most one selected button.

If the specified Widget_ID is a button widget that was created using the
CHECKED_MENU keyword, the checked state of the menu item is modified. If the
keyword value is nonzero, the menu button is placed in a checked state. If the
keyword value is zero, the button is placed in a un-checked state.

SET_COMBOBOX_SELECT

This keyword applies to widgets created with the WIDGET_COMBOBOX function.

Set this keyword to an integer that specifies the zero-based index of the combobox list
element to be displayed. If the specified element is outside the range of existing
elements, the selection remains unchanged.
IDL Reference Guide WIDGET_CONTROL

2194
SET_DRAW_VIEW

This keyword applies to widgets created with the WIDGET_DRAW function.

A scrollable draw widget provides a large graphics area which is viewed through a
smaller viewport. This keyword allows changing the current position of the viewport.
The desired position is specified as a 2-element integer array giving the X and Y
position in units specified by the UNITS keyword (pixels are the default) relative to
the lower left corner of the graphics area. For example, to position the viewport to the
lower left corner of the image:

WIDGET_CONTROL, widget, SET_DRAW_VIEW=[0, 0]

SET_DROPLIST_SELECT

This keyword applies to widgets created with the WIDGET_DROPLIST function.

Set this keyword to an integer that specifies the droplist element to be current (i.e., the
element that is displayed on the droplist button). Positions start at zero. If the
specified element is outside the possible range, no new selection is set.

SET_LIST_SELECT

This keyword applies to widgets created with the WIDGET_LIST function.

Set this keyword to an integer scalar or vector that specifies the list element or
elements to be highlighted. The previous selection (if there is a selection) is cleared.
Positions start at zero. If the specified element is outside the possible range, no new
selection in set. Note that the MULTIPLE keyword to WIDGET_LIST must have
been set in more than a single list element is specified.

If the selected position is not currently on the screen, the list widget automatically
move the current scrolling viewport to make it visible. The resulting topmost visible
element is toolkit specific. If you wish to ensure a certain element is at the top of the
list, use the SET_LIST_TOP keyword (described below) to explicitly set the
viewport.

SET_LIST_TOP

This keyword applies to widgets created with the WIDGET_LIST function.

Set this keyword to an integer that specifies the element of the list widget to the
positioned at the top of the scrolling list. If the specified element is outside the range
of list elements, nothing happens.
WIDGET_CONTROL IDL Reference Guide

 2195
SET_SLIDER_MAX

This keyword applies to widgets created with the WIDGET_SLIDER function.

Set this keyword to a new maximum value for the specified slider widget.

Note
This keyword does not apply to floating-point sliders created with the
CW_FSLIDER function.

SET_SLIDER_MIN

This keyword applies to widgets created with the WIDGET_SLIDER function.

Set this keyword to a new minimum value for the specified slider widget.

Note
This keyword does not apply to floating-point sliders created with the
CW_FSLIDER function.

SET_TAB_CURRENT

This keyword applies to widgets created with the WIDGET_TAB function.

Set this keyword equal to the zero-based index of the tab to be set as the current
(visible) tab. If the index value is invalid, the value is quietly ignored.

SET_TAB_MULTILINE

This keyword applies to widgets created with the WIDGET_TAB function.

This keyword controls how tabs appear on the tab widget when all of the tabs do not
fit on the widget in a single row. This keyword behaves differently on Windows and
UNIX systems.

Windows

Set this keyword to cause tabs to be organized in a multi-line display when the width
of the tabs exceeds the width of the largest child base widget. If possible, IDL will
create tabs that display the full tab text.

If MULTILINE=0 and LOCATION=0 or 1, tabs that exceed the width of the largest
child base widget are shown with scroll buttons, allowing the user to scroll through
the tabs while the base widget stays immobile.
IDL Reference Guide WIDGET_CONTROL

2196
If LOCATION=1 or 2, a multiline display is always used if the tabs exceed the height
of the largest child base widget.

Note
The width or height of the tab widget is based on the width or height of the largest
base widget that is a child of the tab widget. The text of the tabs (the titles of the tab
widget’s child base widgets) may be truncated even if the MULTILINE keyword is
set.

UNIX

Set this keyword equal to an integer that specifies the maximum number of tabs to
display per row in the tab widget. If this keyword is not specified (or is explicitly set
equal to zero) all tabs are placed in a single row.

Note
The width or height of the tab widget is based on the width or height of the largest
base widget that is a child of the tab widget. The text of the tabs (the titles of the tab
widget’s child base widgets) is never truncated in order to make the tabs fit the
space available. (Tab text may be truncated if the text of a single tab exceeds the
space available, however.) This means that if MULTILINE is set to any value other
than one, some tabs may not be displayed.

SET_TABLE_SELECT

This keyword applies to widgets created with the WIDGET_TABLE function.

• In standard selection mode, specify a four-element array, of the form
[left, top, right, bottom] specifying the of cells to act upon.

• In disjoint selection mode, specify a 2 x n element array of column/row pairs
specifying the cells to act upon.

Specifications for cell locations are zero-based (that is, the first data column is
column number zero). The value -1 is used to refer to the title row or title column.

See “USE_TABLE_SELECT” on page 2206 for details on the selection modes.

Note
To remove a table selection programmatically, set this keyword to either
[-1, -1, -1, -1] (in standard selection mode) or [[-1, -1]] (in disjoint
selection mode).
WIDGET_CONTROL IDL Reference Guide

 2197
If the selected position is not currently on the screen, the table widget automatically
moves the current scrolling viewport to make a portion of it visible. The resulting top-
left visible cell is toolkit specific. If you wish to ensure a certain element is at the top
of the list, use the SET_TABLE_VIEW keyword to explicitly set the viewport.

SET_TABLE_VIEW

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to a two-element array of zero-based cell indices that specifies the
cell of the table widget to the positioned at the top-left of the widget. If the specified
cell is outside the range of valid cells, nothing happens.

SET_TEXT_SELECT

This keyword applies to widgets created with the WIDGET_TABLE and
WIDGET_TEXT functions.

Use this keyword to clear any current selection in the specified table cell or text
widget, and either set a new selection, or simply set the text insertion point. To set a
selection, specify a two-element integer array containing the starting position and the
length of the selection. For example, to set a selection covering characters 3 though
23:

WIDGET_CONTROL, widgetID, SET_TEXT_SELECT=[3, 20]

To move the text insertion point without setting a selection, omit the second element,
or set it to zero.

SET_TEXT_TOP_LINE

This keyword applies to widgets created with the WIDGET_TEXT function.

Set this keyword to the zero-based line number of the line to be positioned on the
topmost visible line in the text widget’s viewport. No horizontal scrolling is
performed. Note that this is a line number, not a character offset.

SET_TREE_BITMAP

This keyword applies to widgets created with the WIDGET_TREE function.

Set this keyword equal to a 16x16x3 array representing an RGB image that will be
displayed next to the node in the tree widget.

Set this keyword equal to zero to revert to the appropriate default system bitmap.
IDL Reference Guide WIDGET_CONTROL

2198
SET_TREE_EXPANDED

This keyword applies to widgets created with the WIDGET_TREE function.

Set this keyword equal to a nonzero value to expand the specified tree widget folder.
Set this keyword equal to zero to collapse the specified tree widget folder.

SET_TREE_SELECT

This keyword applies to widgets created with the WIDGET_TREE function.

This keyword has two modes of operation, depending on the widget ID passed to
WIDGET_CONTROL:

• If the specified widget ID is for the root node of the tree widget (the tree
widget whose Parent is a base widget):

• If the tree widget is in multiple-selection mode and SET_TREE_SELECT
is set to an array of widget IDs corresponding to tree widgets that are
nodes in the tree, those nodes are selected.

• If the tree widget is not in multiple-selection mode and
SET_TREE_SELECT is set to a single widget ID corresponding to a tree
widget that is a node in the tree, that node is selected.

• If the keyword is set to zero, all selections in the tree widget are cleared.

• If the specified widget ID is a tree widget that is a node in a tree:

• If the keyword is set to a nonzero value, the specified node is selected.

• If the keyword is set to zero, the specified node is deselected.

Note
If the tree widget is in multiple-selection mode, the selection changes made to the
tree widget via this keyword are additive — that is, the current selections are
retained and any additional nodes specified by SET_TREE_SELECT are also
selected.

SET_TREE_VISIBLE

This keyword applies to widgets created with the WIDGET_TREE function and
whose parent widget was also created using the WIDGET_TREE function (that is,
tree widgets that are nodes of another tree).

Set this keyword to make the specified tree node visible to the user. Setting this
keyword has two possible effects:
WIDGET_CONTROL IDL Reference Guide

 2199
1. If the specified node is inside a collapsed folder, the folder and all folders
above it are expanded to reveal the node.

2. If the specified node is in a portion of the tree that is not currently visible
because the tree has scrolled within the parent base widget, the tree view
scrolls so that the selected node is at the top of the base widget.

Note
Use of this keyword does not affect the tree widget selection state.

SET_UNAME

This keyword applies to all widgets.

Set this keyword to a string that can be used to identify the widget. You can associate
a name with each widget in a specific hierarchy, and then use that name to query the
widget hierarchy and get the correct widget ID. You can set the name at creation time,
using the UNAME keyword with the creation function.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

SET_UVALUE

This keyword applies to all widgets.

Each widget can contain a user-set value. This value is not used by IDL in any way,
and exists entirely for the convenience of the IDL programmer. This keyword allows
you to set this value.

To improve the efficiency of the data transfer, consider using the NO_COPY keyword
with SET_UVALUE.

SET_VALUE

This keyword applies to widgets created with the WIDGET_BUTTON,
WIDGET_COMBOBOX, WIDGET_DROPLIST, WIDGET_LABEL,
WIDGET_LIST, WIDGET_SLIDER, WIDGET_TABLE, and WIDGET_TEXT
functions.

Sets the value of the specified widget. The meaning of the value differs between
widget types:
IDL Reference Guide WIDGET_CONTROL

2200
• Button: The label to be used for the button. This value can be either a scalar
string, or a 2D byte array containing a bitmap.

• Combobox: The contents of the combobox widget (string or string array).

• Droplist: The contents of the droplist widget (string or string array).

• Label: The text to be displayed by the label widget.

• List: The contents of the list widget (string or string array).

• Property Sheet: Associates one or more component objects with a property
sheet. Any existing associations are lost and the property sheet is reloaded
with the new list of properties. Use the SET_VALUE keyword to
WIDGET_CONTROL. Use the return value of OBJ_NEW() to clear out a
property sheet.

• Slider: The current position of the slider (integer).

• Table: Normally, the data for the whole table is changed to the specified data,
which must be of the form of a two dimensional array or a vector of structures.
In this form, the table is resized to fit the given data (unless the
TABLE_XSIZE or TABLE_YSIZE keywords are given).

If the USE_TABLE_SELECT keyword is set, the value given is treated as a
subset of the whole data, and only the given range of cells are updated. Used in
this form, the type of data stored in the table cannot be changed. The data
passed in is converted, as appropriate, to the type of the selected cells. If less
data is passed in than fits in the current selection, the cells outside the range of
data (but inside the selection) are left unchanged. If more data is passed in than
fits in the current selection, the extra data is ignored.

• If the table is in standard selection mode, the data should be a two-
dimensional array of values for a single-type table, or a vector of structures
for a table that contains structure data.

• If the table is in disjoint selection mode, the data should be a one-
dimensional array of values for a single-type table, or a single structure
with each field corresponding to a cell for a table that contains structure
data.

If the USE_TEXT_SELECT keyword is present, the value must be a string,
which replaces the currently-selected text in the currently-selected cell.

• Text: The text to be displayed. If the APPEND keyword is also specified, the
text is appended to the current contents instead of instead of completely
replacing it (string or string array). If the USE_TEXT_SELECT keyword is
WIDGET_CONTROL IDL Reference Guide

 2201
specified, the new string replaces only the currently-selected text in the text
widget.

• Widget types not listed above do not allow the setting of a value. Attempting to
set the value of such a widget causes an error.

The value of a widget can also be set with the VALUE keyword to the routine that
created it.

SHOW

This keyword applies to all widgets.

Controls the visibility of a widget hierarchy. If set to zero, the hierarchy containing
Widget_ID is pushed behind any other windows on the screen. If nonzero, the
hierarchy is pulled in front.

TABLE_BLANK

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword equal to a nonzero value to cause the specified cells to be blank. Set
this keyword equal to zero to cause the specified cells to display values as usual.

Note
Hiding cell contents using this keyword is a display-only operation. The cell
contents are not actually removed from the table, they are simply hidden from view.
Any operation that evaluates or changes the value of a cell will operate in the same
way on a cell whose contents are hidden as it will on a cell whose contents are
visible.

If the USE_TABLE_SELECT keyword is set equal to one, the currently selected cells
are blanked or restored. If USE_TABLE_SELECT is set equal to an array, the
specified cells are blanked or restored. If USE_TABLE_SELECT is not set, the entire
table is hidden or displayed.

TABLE_DISJOINT_SELECTION

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to enable the ability to select multiple rectangular regions of cells.

TABLE_XSIZE

This keyword applies to widgets created with the WIDGET_TABLE function.
IDL Reference Guide WIDGET_CONTROL

2202
Set this keyword equal to the number of data columns in the table widget. Note that if
the table widget was created with row titles enabled (that is, if the NO_HEADERS
keyword to WIDGET_TABLE was not set), the table will contain one column more
than the number specified by TABLE_XSIZE.

If the table is made smaller as a result of the application of the TABLE_XSIZE
keyword, the data outside the new range persists, but the number of columns and/or
rows changes as expected. If the table is made larger, the data type of the cells in the
new columns is set according to the following rules:

1. If the table was not created with either the ROW_MAJOR or COLUMN_MAJOR
keywords set (if the table is an array rather than a vector of structures), the new
cells have the same type as all the original cells.

2. If the SET_VALUE keyword is given, the types of all columns are set
according to the new structure.

3. If the table was created with the ROW_MAJOR keyword set, and the
SET_VALUE keyword is not specified, the cells in the new columns inherit
their type from the cells to their left.

4. ²If the table was created with the COLUMN_MAJOR keyword set, and the
SET_VALUE keyword is not specified, any new columns default to type INT.

TABLE_YSIZE

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword equal to the number of data rows in the table widget. Note that if the
table widget was created with column titles enabled (that is, if the NO_HEADERS
keyword to WIDGET_TABLE was not set), the table will contain one row more than
the number specified by TABLE_YSIZE.

If the table is made smaller as a result of the application of the TABLE_YSIZE
keyword, the data outside the new range persists, but the number of columns and/or
rows changes as expected. If the table is made larger, the data type of the cells in the
new rows is set according to the following rules:

1. If the table was not created with either the ROW_MAJOR or COLUMN_MAJOR
keywords set (if the table is an array rather than a vector of structures), the new
cells have the same type as all the original cells.

2. If the SET_VALUE keyword is given, the types of all rows are set according to
the new structure.
WIDGET_CONTROL IDL Reference Guide

 2203
3. If the table was created with the COLUMN_MAJOR keyword set, and the
SET_VALUE keyword is not specified, the cells in the new rows inherit their
type from the cells above.

4. If the table was created with the ROW_MAJOR keyword set, and the
SET_VALUE keyword is not specified, any new rows default to type INT.

TIMER

This keyword applies to all widgets.

If this keyword is present, a WIDGET_TIMER event is generated. Set this keyword
to a floating-point value that represents the number of seconds before the timer event
arrives. Note that this event is identical to any other widget event except that it
contains only the 3 standard event tags. These event structures are defined as:

{ WIDGET_TIMER, ID:0L, TOP:0L, HANDLER:0L }

It is left to the caller to tell the difference between standard widget events and timer
events. The standard way to do this is to use a widget that doesn’t normally generate
events (e.g., a base or label). Alternately, the TAG_NAMES function can be called
with the STRUCTURE_NAME keyword to differentiate a WIDGET_TIMER event
from other types of events. For example:

IF TAG_NAMES(event, /STRUCTURE_NAME) EQ $
'WIDGET_TIMER' THEN ...

Using the TIMER keyword is more efficient than the background task functionality
found in the XMANAGER procedure because it doesn’t “poll” like the original
background task code. RSI will eventually eliminate the background task
functionality from XMANAGER. We encourage all users to modify their code to use
the TIMER keyword instead.

TLB_GET_OFFSET

This keyword applies to all widgets.

Set this keyword to a named variable in which the offset of the top-level base of the
specified widget is returned, in units specified by the UNITS keyword (pixels are the
default). The offset is measured in device coordinates relative to the upper-left corner
of the screen.

TLB_GET_SIZE

This keyword applies to all widgets.

Set this keyword to a named variable in which the size of the top-level base of the
specified widget is returned, in units specified by the UNITS keyword (pixels are the
IDL Reference Guide WIDGET_CONTROL

2204
default). The size is returned as a two-element vector that contains the horizontal and
vertical size of the base in device coordinates.

TLB_ICONIFY_EVENTS

This keyword applies to widgets created with the WIDGET_BASE function.

Set this keyword to make the top-level base return an event when the base is iconified
or restored by the user.

TLB_KILL_REQUEST_EVENTS

This keyword applies to widgets created with the WIDGET_BASE function.

Use this keyword to set or clear kill request events for the specified top-level base.
For more information on these events see “TLB_KILL_REQUEST_EVENTS” on
page 2144.

TLB_MOVE_EVENTS

This keyword applies to widgets created with the WIDGET_BASE function.

Set this keyword to make the top-level base return an event when the base is moved
by the user. Note that if TLB_SIZE_EVENTS are also enabled, a user resize
operation that causes the top left corner of the base widget to move will generate both
a move event and a resize event.

TLB_SET_TITLE

This keyword applies to all widgets.

Set this keyword to a scalar string to change the title of the specified top-level base
after it has been created.

TLB_SET_XOFFSET

This keyword applies to all widgets.

Use this keyword to set the horizontal position of the top level base of the specified
widget. The offset is measured from the upper-left corner of the screen to the upper-
left corner of the base, in units specified by the UNITS keyword (pixels are the
default).

TLB_SET_YOFFSET

This keyword applies to all widgets.
WIDGET_CONTROL IDL Reference Guide

 2205
Use this keyword to set the vertical position of the top-level base of the specified
widget. The offset is measured from the upper-left corner of the screen to the upper-
left corner of the base, in units specified by the UNITS keyword (pixels are the
default).

TLB_SIZE_EVENTS

This keyword applies to widgets created with the WIDGET_BASE function.

Set this keyword to make the top-level base return an event when the base is resized
by the user. Note that if TLB_MOVE_EVENTS are also enabled, a user resize
operation that causes the top left corner of the base widget to move will generate both
a move event and a resize event.

TOOLTIP

This keyword applies to widgets created with the WIDGET_BUTTON and
WIDGET_DRAW functions.

Set this keyword to a string that will be displayed when the cursor hovers over the
specified widget. For UNIX platforms, this string must be non-zero in length, which
means that a tooltip can be modified but not be removed on UNIX versions of IDL.

Note
Tooltips cannot be created for menu sub-items. The topmost button on a menu can,
however, have a tooltip.

Note
If your application uses hardware rendering and a RETAIN setting of either zero or
one, tooltips will cause draw widgets to generate expose events if the tooltip
obscures the drawable area. This is true even if the tooltip is associated with another
widget.

TRACKING_EVENTS

This keyword applies to all widgets.

Set this keyword to a non-zero value to enable tracking events for the widget
specified by Widget_ID. Set the keyword to 0 to disable tracking events for the
specified widget. For a description of tracking events, see “TRACKING_EVENTS”
on page 2145 in the documentation for WIDGET_BASE.

UNITS

This keyword applies to all widgets.
IDL Reference Guide WIDGET_CONTROL

2206
Use this keyword to specify the unit of measurement used for most widget sizing
operations. Set UNITS equal to 0 to specify that all measurements are in pixels (this
is the default), to 1 to specify that all measurements are in inches, or to 2 to specify
that all measurements are in centimeters.

Note
This keyword does not affect all sizing operations. Specifically, the value of UNITS
is ignored when setting the XSIZE or YSIZE keywords to WIDGET_LIST,
WIDGET_TABLE, or WIDGET_TEXT functions.

UPDATE

This keyword applies to all widgets.

Use this keyword to enable (if set to 1) or disable (if set to 0) screen updates for the
widget hierarchy to which the specified widget belongs. This keyword is useful for
preventing unwanted intermediate screen updates when changing the values of many
widgets at once or when adding several widgets to a previously-realized widget
hierarchy. When first realized, widget hierarchies are set to update.

Note
Do not attempt to resize a widget on the Windows platform while UPDATE is
turned off. Doing so may prevent IDL from updating the screen properly when
UPDATE is turned back on.

USE_TABLE_SELECT

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to modify the behavior of the ALIGNMENT, COLUMN_WIDTHS,
DELETE_COLUMNS, DELETE_ROWS, FORMAT, GET_VALUE,
INSERT_COLUMNS, INSERT_ROWS, ROW_HEIGHTS, SET_VALUE, and
TABLE_BLANK keywords. If USE_TABLE_SELECT is set, these other keywords
only apply to the currently-selected cells. Normally, these keywords apply to the
entire contents of a table widget.

Note
If either the title row or the title column of the table is selected, this keyword only
modifies the behavior of the ROW_HEIGHTS or COLUMN_WIDTHS keywords.
WIDGET_CONTROL IDL Reference Guide

 2207
Warning
The Microsoft Windows platform does not support the ROW_HEIGHTS keyword.
Selecting the title row of a table via USE_TABLE_SELECT has no effect.

Selection Modes

The table widget supports two selection modes:

• In standard selection mode, only a single selection can be created at a given
time. Creating a new selection causes the existing selection to disappear.

• In disjoint selection mode, multiple selections can be created at one time.
Creating a new selection does not cause the existing selection(s) to disappear.
A table can be created in disjoint selection mode using either the
DISJOINT_SELECTION keyword to WIDGET_TABLE or the
TABLE_DISJOINT_SELECTION keyword to WIDGET_CONTROL.

The keywords listed above to generate different output or expect different input based
on the selection mode. See the description of each keyword for details. For more
information on table selection modes, see “Selection Modes” in Chapter 27 of the
Building IDL Applications manual

Specifying Selections Programmatically

In many cases, your code will use a selection created by the user manually, with the
mouse. You can also create selections programmatically, by setting
USE_TABLE_SELECT equal to an array.

• In standard selection mode, specify a four-element array, of the form
[left, top, right, bottom] specifying the of cells to act upon.

• In disjoint selection mode, specify a 2 x n element array of column/row pairs
specifying the cells to act upon.

Specifications for cell locations are zero-based (that is, the first data column is
column number zero). The value -1 is used to refer to the title row or title column.

Note
Setting USE_TABLE_SELECT equal to an array does not change the current table
selection. Operations affect the specified cells without changing the current
selection.

is equivalent to first calling WIDGET_CONTROL and setting the
SET_TABLE_SELECT keyword equal to an array, and then calling
WIDGET_CONTROL with USE_TABLE_SELECT set equal to one.
IDL Reference Guide WIDGET_CONTROL

2208
Example

To change the column widths of the title column and the first five data columns of a
table widget named wTable, leaving the widths of the other columns unchanged:

WIDGET_CONTROL, wTable, USE_TABLE_SELECT=[-1,0,4,0], $
COLUMN_WIDTHS=50

For additional examples, see “Using Table Widgets” in Chapter 27 of the Building
IDL Applications manual.

USE_TEXT_SELECT

This keyword applies to widgets created with the WIDGET_TABLE and
WIDGET_TEXT functions.

Set this keyword to modify the behavior of the GET_VALUE and SET_VALUE
keywords. If USE_TEXT_SELECT is set, GET_VALUE and SET_VALUE apply
only to the current text selection. Normally, these keywords apply to the entire
contents of a text widget.

X_BITMAP_EXTRA

This keyword applies to widgets created with the WIDGET_BUTTON function.

When the value of a button widget is a bitmap, the usual width is taken to be 8 times
the number of columns in the source byte array. This keyword can be used to indicate
the number of bits in the last byte of each row that should be ignored. The value can
range between 0 and 7.

XOFFSET

This keyword applies to all widgets.

Set this keyword to an integer value that specifies the widget’s new horizontal offset,
in units specified by the UNITS keyword (pixels are the default). Attempting to
change the offset of a widget that is the child of a ROW or COLUMN base or a
widget that is part of a menubar or pulldown menu causes an error.

XSIZE

This keyword applies to all widgets.

Set this keyword to an integer or floating-point value that represents the widget’s new
horizontal size.

• Text and List widgets: Size is specified in characters. The UNITS keyword is
ignored.
WIDGET_CONTROL IDL Reference Guide

 2209
• Table widgets: Size is specified in columns. The width of the row labels is
automatically added to this value. The UNITS keyword is ignored.

• All other widgets: If the UNITS keyword is present, size is in the units
specified. If the UNITS keyword is not present, the size is specified in pixels.

Note that [XY]SIZE sets client area and SCR_[XY]SIZE sets total area (title bar,
borders, menu, client area). For scrollable widgets (e.g., scrolling bases and scrolling
draw widgets), this keyword adjusts the viewport size. Use the DRAW_XSIZE
keyword to change the width of the drawing area in scrolling draw widgets.
Attempting to resize a widget that is part of a menubar or pulldown menu causes an
error.

YOFFSET

This keyword applies to all widgets.

Set this keyword to an integer value that specifies the widget’s new vertical offset, in
units specified by the UNITS keyword (pixels are the default). Attempting to change
the offset of a widget that is the child of a ROW or COLUMN base or a widget that is
part of a menubar or pulldown menu causes an error.

YSIZE

This keyword applies to all widgets.

Set this keyword to an integer or floating-point value that represents the widget’s new
vertical size

• Text and List widgets: Size is specified in lines. The UNITS keyword is
ignored.

• Table widgets: Size is specified in rows. The height of the column labels is
automatically added to this value. The UNITS keyword is ignored.

• All other widgets: If the UNITS keyword is present, size is in the units
specified. If the UNITS keyword is not present, the size is specified in pixels.

Note that [XY]SIZE sets client area and SCR_[XY]SIZE sets total area (title bar,
borders, menu, client area). For scrollable widgets (e.g., scrolling bases and scrolling
draw and table widgets), this keyword adjusts the viewport size. Use the
DRAW_YSIZE keyword to change the height of the drawing area in scrolling draw
widgets. Attempting to resize a widget that is part of a menubar or pulldown menu
causes an error.
IDL Reference Guide WIDGET_CONTROL

2210
Version History

Introduced: Pre 4.0

COMBOBOX_ADDITEM, COMBOBOX_DELETEITEM, COMBOBOX_INDEX,
DRAW_KEYBOARD_EVENTS, SET_BUTTON, SET_COMBOBOX_SELECT,
SET_TAB_CURRENT, SET_TAB_MULTILINE, SET_TREE_BITMAP,
SET_TREE_EXPANDED, SET_TREE_SELECT, SET_TREE_VISIBLE,
TABLE_BLANK, TABLE_DISJOINT_SELECTION, TLB_ICONIFY_EVENTS,
TLB_MOVE_EVENTS, TLB_SIZE_EVENTS, TOOLTIP keywords added: 5.6

PUSHBUTTON_EVENTS keyword added: 6.0

See Also

Chapter 27, “Widget Application Techniques” in the Building IDL Applications
manual.
WIDGET_CONTROL IDL Reference Guide

 2211
WIDGET_DISPLAYCONTEXTMENU

The WIDGET_DISPLAYCONTEXTMENU procedure displays a context-sensitive
menu (also known as a pop-up or shortcut menu). Context-sensitive menus appear
when the user clicks the right mouse button over a widget for which a context menu is
defined. Because the widget programmer must explicitly detect the right-mouse
button click and call WIDGET_DISPLAYCONTEXTMENU to display the context
menu, a widget can have any number of associated context menus, which can be
displayed under different circumstances.

Context menus are created by placing one or more button widgets on a base widget
constructed with the CONTEXT_MENU keyword set. The context menu’s base
widget must have as its parent a base, draw, list, or text widget; in the case of all but
draw widgets, the parent widget must be configured to generate context menu events
via the CONTEXT_EVENTS keyword. Draw widgets that support context menus
must have the BUTTON_EVENTS keyword set.

The widget application’s event handler routine must detect the presence of a context
menu event (base, list, and text widgets) or the right mouse-button event (draw and
property sheet widgets) and call WIDGET_DISPLAYCONTEXTMENU to display
the context menu. Events generated when the user clicks on the context menu’s
buttons are handled in the normal way. If the user clicks outside the context menu, it
is dismissed and no event is generated.

Syntax

WIDGET_DISPLAYCONTEXTMENU, Parent, X, Y, ContextBase_ID

Arguments

Parent

The widget ID of the parent widget of the context menu widget.

Note
The parent widget must be either a base, list, or text widget with the
CONTEXT_EVENTS keyword set or a draw widget with the BUTTON_EVENTS
keyword set. In most cases the parent widget can be identified via the ID field of the
WIDGET_CONTEXT or WIDGET_DRAW event structure.
IDL Reference Guide WIDGET_DISPLAYCONTEXTMENU

2212
X

The x location, relative to the parent widget, at which the menu should be displayed.
(In most cases this will be the x location of the user’s right mouse-button click, as
reported in the X field of the WIDGET_CONTEXT or WIDGET_DRAW event
structure.)

Y

The y location, relative to the parent widget, at which the menu should be displayed.
(In most cases this will be the y location of the user’s right mouse-button click, as
reported in the Y field of the WIDGET_CONTEXT or WIDGET_DRAW event
structure.)

ContextBase_ID

The widget ID of the context menu base widget that contains the context menu to be
displayed. Use the CONTEXT_MENU keyword to WIDGET_BASE to create a
context menu base.

Note
The context menu base must be a child of the widget specified by the Parent
argument.

Keywords

None.

Examples

For examples using WIDGET_DISPLAYCONTEXTMENU, see “Context-Sensitive
Menus” in Chapter 27 of the Building IDL Applications manual.

Version History

Introduced: 5.5
WIDGET_DISPLAYCONTEXTMENU IDL Reference Guide

 2213
WIDGET_DRAW

The WIDGET_DRAW function is used to create draw widgets. Draw widgets are
rectangular areas that IDL treats as standard graphics windows. Draw widgets can use
either IDL Direct graphics or IDL Object graphics, depending on the value of the
GRAPHICS_LEVEL keyword. Any graphical output that can be produced by IDL
can be directed to a draw widget. Draw widgets can have optional scroll bars to allow
viewing a larger graphics area than could otherwise be displayed in the widget’s
visible area.

The returned value of this function is the widget ID of the newly-created draw
widget.

Note
On some systems, when backing store is provided by the window system
(RETAIN=1), reading data from a window using TVRD() may cause unexpected
results. For example, data may be improperly read from the window even when the
image displayed on screen is correct. Having IDL provide the backing store
(RETAIN=2) ensures that the window contents will be read properly.

For a more detailed discussion of the draw widget, along with examples, see “Using
Draw Widgets” in Chapter 27 of the Building IDL Applications manual.

Syntax

Result = WIDGET_DRAW(Parent [, /APP_SCROLL] [, /BUTTON_EVENTS]
[, /COLOR_MODEL] [, COLORS=integer] [, EVENT_FUNC=string]
[, EVENT_PRO=string] [, /EXPOSE_EVENTS] [, FRAME=width]
[, FUNC_GET_VALUE=string] [, GRAPHICS_LEVEL=2]
[, GROUP_LEADER=widget_id] [, KEYBOARD_EVENTS={1 | 2}]
[, KILL_NOTIFY=string] [, /MOTION_EVENTS] [, /NO_COPY]
[, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string] [, RENDERER={0 |
1}] [, RESOURCE_NAME=string] [, RETAIN={0 | 1 | 2}] [, SCR_XSIZE=width]
[, SCR_YSIZE=height] [, /SCROLL] [, /SENSITIVE] [, TOOLTIP=string]
[, /TRACKING_EVENTS] [, UNAME=string] [, UNITS={0 | 1 | 2}]
[, UVALUE=value] [, VALUE=value] [, /VIEWPORT_EVENTS]
[, XOFFSET=value] [, XSIZE=value] [, X_SCROLL_SIZE=width]
[, YOFFSET=value] [, YSIZE=value] [, Y_SCROLL_SIZE=height])
IDL Reference Guide WIDGET_DRAW

2214
Arguments

Parent

The widget ID of the parent widget of the new draw widget.

Keywords

APP_SCROLL

Set this keyword to create a scrollable draw widget with horizontal and vertical
scrollbars that allow the user to view portions of the widget contents that are not
currently on the screen.

The drawable area of a draw widget created with the APP_SCROLL keyword is the
same size as the viewable area (the viewport). This is useful for displaying very large
images, because the memory used by a draw widget is directly related to the size of
the drawable area. A draw widget created with the APP_SCROLL keyword also has
the concept of a virtual drawable area, which is the size of the entire image. The fact
that only a portion of the entire image is held in memory means that you must capture
events generated when the user adjusts the scroll bars and display the correct portion
of the image in your event-handling code.

Note
If the image you are displaying is relatively small or memory is not a concern,
consider using the SCROLL keyword rather than APP_SCROLL. With SCROLL,
the drawable area is the size of the entire image; this allows IDL to display the
appropriate portions of the image automatically when the user adjusts the scroll
bars. See “SCROLL” on page 2220 and “Scrolling Draw Widgets” in Chapter 27 of
the Building IDL Applications manual for details.

Specify the size of the viewport using the X_SCROLL_SIZE and Y_SCROLL_SIZE
keywords, and the size of the virtual drawable area using the XSIZE and YSIZE
keywords. If APP_SCROLL is set, the application generates viewport events even if
the VIEWPORT_EVENTS keyword is not set.

If the drawable area uses Direct Graphics (that is, if GRAPHICS_LEVEL is not set
equal to 2), system backing store is used by default and the viewport is automatically
restored after it has been obscured. If you prefer to manually restore the viewport in
an event-handling routine, set RETAIN=0 and EXPOSE_EVENTS=1; this allows
you to redraw the virtual canvas when your application receives expose events.
WIDGET_DRAW IDL Reference Guide

 2215
If the drawable area uses Object Graphics (that is, if the GRAPHICS_LEVEL
keyword is set equal to 2), the application will not automatically restore the viewport,
and will generate expose events as if RETAIN=0 and EXPOSE_EVENTS=1 had
been set.

BUTTON_EVENTS

Set this keyword to make the draw widget generate events when the mouse buttons
are pressed or released (and the mouse pointer is in the draw widget). Normally, draw
widgets do not generate events.

You can use the event structure generated when the BUTTON_EVENTS keyword is
set to emulate the functionality of the CONTEXT_EVENTS keyword to
WIDGET_BASE, WIDGET_LIST, and WIDGET_TEXT. To determine whether the
user clicked the right mouse button, use the test:

IF (event.release EQ 4)

where event holds the widget event structure.

For more on detecting and handling context menu events, see “Context-Sensitive
Menus” in Chapter 27 of the Building IDL Applications manual.

COLOR_MODEL

Set this keyword equal to 1 (one) to cause the draw widget’s associated
IDLgrWindow object to use indexed color. If the COLOR_MODEL keyword is not
set, or is set to a value other than one, the draw widget will use RGB color.

This keyword is only valid when the draw widget uses IDL Object Graphics. (The graphics
type used by a draw widget is determined by setting the GRAPHICS_LEVEL keyword to
WIDGET_DRAW.)

COLORS

The maximum number of color table indices to be used. This parameter has effect
only if it is supplied when the first IDL graphics window is created.

If COLORS is not specified when the first window is created, all or most of the
available color indices are allocated, depending upon the window system in use.

To use monochrome windows on a color display, set COLORS equal to 2 when
creating the first window. One color table is maintained for all IDL windows. A
negative value for COLORS specifies that all but the given number of colors from the
shared color table should be used.
IDL Reference Guide WIDGET_DRAW

2216
EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EXPOSE_EVENTS

Set this keyword to make the draw widget generate event when the visibility of the
draw widget changes. This may occur when the widget is hidden behind something
else on the screen, brought to the foreground, or when the scroll bars are moved.
Normally, draw widgets do not generate events.

If this keyword is set, expose events will be generated only when IDL is unable to
restore the contents of the window itself. After the initial draw, expose events are not
issued when GRAPHICS_LEVEL=2 and the software renderer is being used
(RENDERER=1). In such cases, expose events are not issued because IDL can
internally refresh the window itself. On platforms for which OpenGL support is not
offered, the software renderer is always being used, and therefore, expose events are
not issued after the initial draw.

Note
When using hardware rendering, you must explicitly disable backing store (by
setting RETAIN=0) in order to generate expose events. Additional expose events
may be generated if both EXPOSE_EVENTS and RETAIN=1 are turned on.

Warning
Large numbers of events may be generated when EXPOSE_EVENTS is specified.
You may wish to compress the events (perhaps using a timer) and only act on a
subset.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the widget.
Note that this keyword is only a hint to the toolkit, and may be ignored in some
instances.
WIDGET_DRAW IDL Reference Guide

 2217
FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

GRAPHICS_LEVEL

Set this keyword equal to 2 (two) to use IDL Object Graphics in the draw widget. If
the GRAPHICS_LEVEL keyword is not set, or is set to a value other than two, the
draw widget will use IDL Direct Graphics.

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the group
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. It is not possible to
remove a widget from an existing group.

KEYBOARD_EVENTS

Set this keyword equal to 1 (one) or 2 to make the draw widget generate an event
when it has the keyboard focus and a key is pressed or released. (The method by
which a widget receives the keyboard focus is dependent on the window manager in
use.) The value of the key pressed is reported in either the CH or the KEY field of the
event structure, depending on the type of key pressed. See “Widget Events Returned
by Draw Widgets” on page 2224 for details.

• If this keyword is set equal to 1, the draw widget will generate an event when a
“normal” key is pressed. “Normal” keys include all keys except function keys
and the modifier keys: SHIFT, CONTROL, CAPS LOCK, and ALT. If a modifier
key is pressed at the same time as a normal key, the value of the modifier key is
reported in the MODIFIERS field of the event structure.

• If this keyword is set equal to 2, the draw widget will generate an event when
either a normal key or a modifier key is pressed. Values for modifier keys are
reported in the KEY field of the event structure, and the MODIFIERS field
contains zero.
IDL Reference Guide WIDGET_DRAW

2218
Note
Keyboard events are never generated for function keys.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

MOTION_EVENTS

Set this keyword to make the draw widget generate events when the mouse cursor
moves across the widget. Normally, draw widgets do not generate events.

Draw widgets that return motion events can generate a large number of events that
can result in poor performance on slower machines.

Note that it is possible to generate motion events with coordinates outside the draw
widget. If you position the mouse cursor inside the draw widget, press the mouse
button, and drag the cursor out of the draw widget, the X and Y fields of the widget
event will specify coordinates outside the draw widget.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_DRAW or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVALUE
WIDGET_DRAW IDL Reference Guide

 2219
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

RENDERER

Set this keyword to an integer value indicating which graphics renderer to use when
drawing objects within the window. Valid values are:

• 0 = Platform native OpenGL

• 1 = IDL’s software implementation

By default, your platform’s native OpenGL implementation is used. If your platform
does not have a native OpenGL implementation, IDL’s software implementation is
used regardless of the value of this property. See “Hardware vs. Software Rendering”
in Chapter 34 of the Using IDL manual for details. Your choice of renderer may also
affect the maximum size of a draw widget. See “IDLgrWindow” on page 3705 for
details.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
See “RESOURCE_NAME” on page 2139 for a complete discussion of this keyword.

RETAIN

Set this keyword to 0, 1, or 2 to specify how backing store should be handled for the
draw widget. RETAIN=0 specifies no backing store. RETAIN=1 requests that the
server or window system provide backing store. RETAIN=2 specifies that IDL
provide backing store directly. See “Backing Store” on page 2228 for details on the
IDL Reference Guide WIDGET_DRAW

2220
use of RETAIN with Direct Graphics. For more information on the use of RETAIN
with Object Graphics, see “IDLgrWindow::Init” on page 3729.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SCROLL

Set this keyword to create a scrollable draw widget with horizontal and vertical
scrollbars that allow the user to view portions of the widget contents that are not
currently on the screen.

Specify the size of the viewport using the X_SCROLL_SIZE and Y_SCROLL_SIZE
keywords, and the size of the entire drawable area using the XSIZE and YSIZE
keywords.

Note
While the viewport of a draw widget created with the SCROLL keyword may be
smaller than the entire image, the drawable area itself is the same size as the image,
and uses memory commensurately. If you want to display a portion of a very large
image, consider using the APP_SCROLL keyword rather than SCROLL. The
drawable area of a draw widget created with APP_SCROLL is the same size as the
viewport. This saves memory when the displayed image is large, but requires extra
work on the programmer’s part to handle viewport events and display the
appropriate portion of the image. See “APP_SCROLL” on page 2214 and
“Scrolling Draw Widgets” in Chapter 27 of the Building IDL Applications manual
for details.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
WIDGET_DRAW IDL Reference Guide

 2221
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

TOOLTIP

Set this keyword to a string that will be displayed when the cursor hovers over the
widget. For UNIX platforms, this string must be non-zero in length.

Note
If your application uses hardware rendering and a RETAIN setting of either zero or
one, tooltips will cause draw widgets to generate expose events if the tooltip
obscures the drawable area. This is true even if the tooltip is associated with another
widget.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget whenever
the mouse pointer enters or leaves the region covered by that widget. For the structure
of tracking events, see “TRACKING_EVENTS” on page 2145 in the documentation
for WIDGET_BASE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.
IDL Reference Guide WIDGET_DRAW

2222
UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a draw widget is the IDL window
number for use with Direct Graphics routines, such as WSET. For Object Graphics
routines, it is the draw window object reference. This value cannot be set or modified
by the user.

To obtain the window number for a newly-created draw widget, use the
GET_VALUE keyword to WIDGET_CONTROL after the draw widget has been
realized. Draw widgets do not have a window number assigned to them until they are
realized. For example, to return the window number of a draw widget in the variable
win_num, use the command:

WIDGET_CONTROL, my_drawwidget, GET_VALUE = win_num

where my_drawwidget is the widget ID of the desired draw widget.

When using Object Graphics for the widget draw, the following command returns an
object reference to the draw window:

WIDGET_CONTROL, my_drawwidget, GET_VALUE = oWindow

where oWindow is a window object.

VIEWPORT_EVENTS

Set this keyword to enable viewport motion events for draw widgets.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget layout.
WIDGET_DRAW IDL Reference Guide

 2223
XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations. By default, draw widgets
are 100 pixels wide by 100 pixels high.

X_SCROLL_SIZE

The XSIZE keyword always specifies the width of a widget. When the SCROLL
keyword is specified, this size is not necessarily the same as the width of the visible
area. The X_SCROLL_SIZE keyword allows you to set the width of the scrolling
viewport independently of the actual width of the widget.

Use of the X_SCROLL_SIZE keyword implies SCROLL.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget layout.

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
hint to the toolkit and may be ignored in some situations. By default, draw widgets
are 100 pixels wide by 100 pixels high.

Y_SCROLL_SIZE

The YSIZE keyword always specifies the height of a widget. When the SCROLL
keyword is specified, this size is not necessarily the same as the height of the visible
area. The Y_SCROLL_SIZE keyword allows you to set the height of the scrolling
viewport independently of the actual height of the widget.

Use of the Y_SCROLL_SIZE keyword implies SCROLL.
IDL Reference Guide WIDGET_DRAW

2224
Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL procedure affect the behavior of
draw widgets. In addition to those keywords that affect all widgets, the following are
particularly useful: DRAW_BUTTON_EVENTS, DRAW_EXPOSE_EVENTS,
DRAW_KEYBOARD_EVENTS, DRAW_MOTION_EVENTS,
DRAW_VIEWPORT_EVENTS, DRAW_XSIZE, DRAW_YSIZE,
GET_DRAW_VIEW, GET_VALUE, INPUT_FOCUS, SET_DRAW_VIEW,
TOOLTIP.

Keywords to WIDGET_INFO

A number of keywords to the WIDGET_INFO function return information that
applies specifically to draw widgets. In addition to those keywords that apply to all
widgets, the following are particularly useful: DRAW_BUTTON_EVENTS,
DRAW_EXPOSE_EVENTS, DRAW_KEYBOARD_EVENTS,
DRAW_MOTION_EVENTS, DRAW_VIEWPORT_EVENTS, TOOLTIP.

Widget Events Returned by Draw Widgets

By default, draw widgets do not generate events. If the BUTTON_EVENTS keyword
is set when the widget is created, pressing or releasing any mouse button while the
mouse cursor is over the draw widget causes events to be generated. Specifying the
MOTION_EVENTS keyword causes events to be generated continuously as the
mouse cursor moves across the draw widget. Specifying the EXPOSE_EVENTS
keyword causes events to be generated whenever the visibility of any portion of the
draw window (or viewport) changes. Specifying the KEYBOARD_EVENTS
keyword causes events to be generated when the draw widget has keyboard focus and
a keyboard key is pressed.

The event structure returned by the WIDGET_EVENT function is defined by the
following statement:

{WIDGET_DRAW, ID:0L, TOP:0L, HANDLER:0L, TYPE: 0, X:0L, Y:0L,
PRESS:0B, RELEASE:0B, CLICKS:0, MODIFIERS:0L, CH:0, KEY:0L }

Note
If you defined your own {WIDGET_DRAW} structures prior to the IDL 5.3 release
before the structure was defined by an internal call, the MODIFIERS field will
break the existing user code.
WIDGET_DRAW IDL Reference Guide

 2225
Note
If you defined your own {WIDGET_DRAW} structures prior to the IDL 5.6 release
before the structure was defined by an internal call, the CH and KEY fields will
break the existing user code.

ID, TOP, and HANDLER are the three standard fields found in every widget event.
TYPE returns a value that describes the type of draw widget interaction that
generated an event. The values for TYPE are shown in the table below.

The X and Y fields give the device coordinates at which the event occurred, measured
from the lower left corner of the drawing area.

For button and “viewport moved” events (that is, when the TYPE field contains 0, 1,
or 3), PRESS and RELEASE are bitmasks that represent which of the left, center, or
right mouse button was pressed:

Value Meaning

0 Button Press

1 Button Release

2 Motion

3 Viewport Moved (Scrollbars)

4 Visibility Changed (Exposed)

5 Key Press (ASCII character value reported in CH field)

6 Key Press (Non-ASCII key value reported in KEY field)

Table 98: Values for the TYPE field

Bitmask Mouse Button

1 Left

2 Middle

4 Right

Table 99: Bitmask for the PRESS and RELEASE
Fields during Button Events
IDL Reference Guide WIDGET_DRAW

2226
For motion events, both PRESS and RELEASE are zero. For keyboard events,
PRESS contains 1 (one) if the key is down and 0 (zero) if it is up; RELEASE contains
0 (zero) if the key is down and 1 (one) if it is up.

Note
IDL obtains information about which mouse button was pressed from the operating
system, not from the mouse hardware itself. This means that if the operating system
or some extension thereof remaps the mouse buttons, IDL may receive information
that one button was pressed even if a different physical button was pressed. For
example, if a user remaps the mouse buttons to reverse left and right, and then
presses the right physical mouse button, the widget event structure will reflect a left
mouse button press.

The CLICKS field is set to either 1 or 2 if the if the event is a button press event. If the
time interval between two button-press events is less than the time interval for a
double-click event for the platform, the CLICKS field returns 2. If the time interval
between button-press events is greater than the time interval for a double-click event
for the platform, the CLICKS field returns 1. This means that if you are writing a
widget application that requires the user to double-click on a draw widget, you will
need to handle two events. The CLICKS field will return a 1 on the first click and a 2
on the second click. If the event is not a button press event, the CLICKS field
contains a 0.

The MODIFIERS field is valid for button press, button release, motion, and “normal”
keyboard events. It is a bitmask which returns the current state of several keyboard
modifier keys at the time the event was generated. If a bit is zero, the key is up. If the
bit is set, the key is depressed.

Note
“Normal” keyboard events are generated when the KEYBOARD_EVENTS
keyword is set equal to one. If KEYBOARD_EVENTS is set equal to two, the
keypress event for a modifier key contains zero in the MODIFIERS field and the key
value is reported in the KEY field; see below.
WIDGET_DRAW IDL Reference Guide

 2227
The value in the MODIFIERS field is generated by OR-ing the following values
together if a key is depressed.

Note
Under UNIX, the Alt key is the currently mapped MOD1 key.

Keyboard events are generated with the value of the TYPE field equal to 5 or 6. If the
event was generated by an ASCII keyboard character, the TYPE field will be set to 5
and the ASCII value of the key will be returned in the CH field. (Note that ASCII
values can be converted to the string representing the character using the IDL
STRING routine.) If the event was generated due to a non-ASCII keyboard character,
the type of the event will be set to 6 and a numeric value representing the key will be
returned in the KEY field. The following table lists the possible values of the KEY
field.

Note that for the key values reported in the KEY field for the SHIFT, CONTROL, CAPS
LOCK, and ALT keys are not the same as those reported in the MODIFIER field bit
mask, since the KEY field is not a bitmask.

Bitmask Modifier Key

1 Shift

2 Control

4 Caps Lock

8 Alt (See Note following this table.)

Table 100: Bitmask for the MODIFIERS Field

Key Field Value Keyboard Key

1 Shift

2 Control

3 Caps Lock

4 Alt

5 Left

Table 101: Modifier key values reported in the KEY field.
IDL Reference Guide WIDGET_DRAW

2228
Note on using CURSOR

Note that the CURSOR procedure is only for use with IDL graphics windows. It
should not be used with draw widgets. To obtain the cursor position and button state
information from a draw widget, examine the X, Y, PRESS, and RELEASE fields in
the structures returned by the draw widget in response to cursor events.

Backing Store

Draw widgets with scroll bars rely on backing store to repaint the visible area of the
window as it is moved. Their performance is best on systems that provide backing
store. However, if your system does not automatically provide backing store, you can
make IDL supply it with the statement:

DEVICE, RETAIN=2

or by using the RETAIN keyword to WIDGET_DRAW.

Note
If you are using graphics acceleration, you may wish to turn off backing store
entirely and enable expose events (via the EXPOSE_EVENTS keyword) and
redraw the draw widget’s contents manually. However, because the number of
events generated may be quite high, you may wish to enable a timer as well and
only redraw the draw widget periodically.

6 Right

7 Up

8 Down

9 Page Up

10 Page Down

11 Home

12 End

Key Field Value Keyboard Key

Table 101: Modifier key values reported in the KEY field. (Continued)
WIDGET_DRAW IDL Reference Guide

 2229
Version History

Introduced: Pre 4.0

KEYBOARD_EVENTS, TOOLTIP keywords added: 5.6

See Also

SLIDE_IMAGE, WINDOW
IDL Reference Guide WIDGET_DRAW

2230
WIDGET_DROPLIST

The WIDGET_DROPLIST function creates “droplist” widgets. A droplist widget
displays a text field and an arrow button. Selecting either the text field or the button
reveals a list of options from which to choose. When the user selects a new option
from the list, the list disappears and the text field displays the currently-selected
option. This action generates an event containing the index of the selected item,
which ranges from 0 to the number of elements in the list minus one.

Note
The WIDGET_COMBOBOX function creates a similar widget that optionally
allows users to edit the text displayed by the droplist. The combobox widget is
intended to replace the droplist widget; RSI recommends that new code use
WIDGET_COMBOBOX rather than WIDGET_DROPLIST.

Syntax

Result = WIDGET_DROPLIST(Parent [, /DYNAMIC_RESIZE]
[, EVENT_FUNC=string] [, EVENT_PRO=string] [, FONT=string]
[, FRAME=value] [, FUNC_GET_VALUE=string]
[, GROUP_LEADER=widget_id] [, KILL_NOTIFY=string] [, /NO_COPY]
[, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, RESOURCE_NAME=string] [, SCR_XSIZE=width] [, SCR_YSIZE=height]
[, /SENSITIVE] [, TITLE=string] [, /TRACKING_EVENTS] [, UNAME=string]
[, UNITS={0 | 1 | 2}] [, UVALUE=value] [, VALUE=value] [, XOFFSET=value]
[, XSIZE=value] [, YOFFSET=value] [, YSIZE=value])

Return Value

The returned value of this function is the widget ID of the newly-created droplist
widget.

Arguments

Parent

The widget ID of the parent widget for the new droplist widget.
WIDGET_DROPLIST IDL Reference Guide

 2231
Keywords

DYNAMIC_RESIZE

Set this keyword to create a widget that resizes itself to fit its new value whenever its
value is changed. Note that this keyword does not take effect when used with the
SCR_XSIZE, SCR_YSIZE, XSIZE, or YSIZE keywords. If one of these keywords is
also set, the widget will be sized as specified by the sizing keyword and will never
resize itself dynamically.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified is a “device font”
(an X Windows font on Motif systems; a TrueType or PostScript font on Windows
systems). See “About Device Fonts” on page 3962 for details on specifying names for
device fonts. If this keyword is omitted, the default font is used.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts; in
general, the system default font is the font appropriate for the version of Windows
in question.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the widget.
Note that this keyword is only a hint to the toolkit, and may be ignored in some
instances.
IDL Reference Guide WIDGET_DROPLIST

2232
FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the group
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. It is not possible to
remove a widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_DROPLIST or the SET_UVALUE keyword to WIDGET_CONTROL),
the variable passed as value becomes undefined. On a “get” operation
WIDGET_DROPLIST IDL Reference Guide

 2233
(GET_UVALUE keyword to WIDGET_CONTROL), the user value of the widget in
question becomes undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
See “RESOURCE_NAME” on page 2139 for a complete discussion of this keyword.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.
IDL Reference Guide WIDGET_DROPLIST

2234
Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

TITLE

Set this keyword to a string to be used as the title for the droplist widget.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget whenever
the mouse pointer enters or leaves the region covered by that widget. For the structure
of tracking events, see “TRACKING_EVENTS” on page 2145 in the documentation
for WIDGET_BASE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.
WIDGET_DROPLIST IDL Reference Guide

 2235
VALUE

The initial value setting of the widget. The value of a droplist widget is a scalar string
or array of strings that contains the text of the list items—one list item per array
element. List widgets are sized based on the length (in characters) of the longest item
specified in the array of values for the VALUE keyword.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

XSIZE

The desired width of the droplist widget area, in units specified by the UNITS
keyword (pixels are the default). Most widgets attempt to size themselves to fit the
situation. However, if the desired effect is not produced, use this keyword to override
it. This keyword does not control the size of the droplist button or of the dropped list.
Instead, it controls the size “around” the droplist button and, as such, is not
particularly useful.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

YSIZE

The desired height of the widget, in units specified by the UNITS keyword (pixels are
the default). Most widgets attempt to size themselves to fit the situation. However, if
the desired effect is not produced, use this keyword to override it. This keyword does
not control the size of the droplist button or of the dropped list. Instead, it controls the
size “around” the droplist button and, as such, is not particularly useful.
IDL Reference Guide WIDGET_DROPLIST

2236
Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL procedure affect the behavior of
droplist widgets. In addition to those keywords that affect all widgets, the following
are particularly useful: DYNAMIC_RESIZE, GET_VALUE,
SET_DROPLIST_SELECT, SET_VALUE.

Keywords to WIDGET_INFO

A number of keywords to the WIDGET_INFO function return information that
applies specifically to droplist widgets. In addition to those keywords that apply to all
widgets, the following are particularly useful: DROPLIST_NUMBER,
DROPLIST_SELECT, DYNAMIC_RESIZE.

Widget Events Returned by Droplist Widgets

Pressing the mouse button while the mouse cursor is over an element of a droplist
widget causes the widget to change the label on the droplist button and to generate an
event. The event structure returned by the WIDGET_EVENT function is defined by
the following statement:

{ WIDGET_DROPLIST, ID:0L, TOP:0L, HANDLER:0L, INDEX:0L }

The first three fields are the standard fields found in every widget event. INDEX
returns the index of the selected item. This can be used to index the array of names
originally used to set the widget’s value.

Note
Platform-specific UI toolkits behave differently if a droplist widget has only a
single element. On some platforms, selecting that element again does not generate
an event. Events are always generated if the list contains multiple items.

Version History

Introduced: 4.0

See Also

CW_PDMENU, WIDGET_BUTTON, WIDGET_COMBOBOX, WIDGET_LIST
WIDGET_DROPLIST IDL Reference Guide

 2237
WIDGET_EVENT

The WIDGET_EVENT function returns events for the widget hierarchy rooted at
Widget_ID. Widgets communicate information by generating events. Events are
generated when a button is pressed, a slider position is changed, and so forth.

Note
Widget applications should use the XMANAGER procedure in preference to calling
WIDGET_EVENT directly. See “Widget Event Processing” in Chapter 26 of the
Building IDL Applications manual.

Event Processing

Events for a given widget are processed in the order that they are generated. The
event processing performed by WIDGET_EVENT consists of the following steps,
applied iteratively:

1. Wait for an event from one of the specified widgets to arrive.

2. Starting with the widget that generated the event, move up the widget
hierarchy looking for a widget that has an associated event-handling procedure
or function. Event-handling routines are associated with a widget via the
EVENT_PRO and EVENT_FUNC keywords to the widget creation functions
or the WIDGET_CONTROL procedure.

3. If an event-handling procedure is found, it is called with the event as its
argument. The HANDLER field of the event is set to the widget ID of the widget
associated with the handling procedure. When the procedure returns,
WIDGET_EVENT returns to the first step above and starts searching for
events. Hence, event-handling procedures are said to “swallow” events.

4. If an event-handling function is found, it is called with the event as its
argument. The HANDLER field of the event is set to the widget ID of the widget
associated with the handling function.

When the function returns, its value is examined. If the value is not a structure,
it is discarded and WIDGET_EVENT returns to the first step. This behavior
allows event-handling functions to selectively act like event-handling
procedures and “swallow” events.

If the returned value is a structure, it is checked to ensure that it has the
standard first three fields: ID, TOP, and HANDLER. If any of these fields is
missing, IDL issues an error. Otherwise, the returned value replaces the event
found in the first step and WIDGET_EVENT continues moving up the widget
IDL Reference Guide WIDGET_EVENT

2238
hierarchy looking for another event handler routine, as described in step 2,
above.

In situations where an event structure is returned, event functions are said to
“rewrite” events. This ability to rewrite events is the basis of compound
widgets, which combine several widgets to give the appearance of a single,
more complicated widget. Compound widgets are an important widget
programming concept. For more information, see “Compound Widgets” in
Chapter 26 of the Building IDL Applications manual.

5. If an event reaches the top of a widget hierarchy without being swallowed by
an event handler, it is returned as the value of WIDGET_EVENT.

6. If WIDGET_EVENT was called without an argument, and there are no
widgets left on the screen that are being managed (as specified via the
MANAGED keyword to the WIDGET_CONTROL procedure) and could
generate events, WIDGET_EVENT ends the search and returns an empty event
(a standard widget event structure with the top three fields set to zero).

Note
Do not interrupt the event loop by placing a STOP or EXIT command in the event-
handler or other callback routine. The presence of either command will cause the
widget routine to exit with an error.

Syntax

Result = WIDGET_EVENT([Widget_ID]) [, BAD_ID=variable] [, /NOWAIT]
[, /SAVE_HOURGLASS]

UNIX Keywords: [, /YIELD_TO_TTY]

Return Value

A widget event is returned in a structure. The exact contents of this structure vary
depending upon the type of widget involved. The first three elements of this structure,
however, are always the same.

{ WIDGET, ID:0L, TOP:0L, HANDLER:0L, ... }
WIDGET_EVENT IDL Reference Guide

 2239
Any other elements vary from widget type to type. The three fixed elements are:

Arguments

Widget_ID

Widget_ID specifies the widget hierarchy for which events are desired. The first
available event for the specified widget or any of its children is returned. If this
argument is not specified, WIDGET_EVENT processes events for all existing
widgets.

Widget_ID can also be an array of widget identifiers, in which case all of the specified
widget hierarchies are searched.

Note
Attempting to obtain events for a widget hierarchy which is not producing events
will hang IDL, unless the NOWAIT keyword is used.

Keywords

BAD_ID

If one of the values supplied via Widget_ID is not a valid widget identifier, this
function normally issues an error and causes program execution to stop. However, if
BAD_ID is present and specifies a named variable, the invalid ID is stored into the
variable, and this routine quietly returns. If no error occurs, a zero is stored.

Value Meaning

ID The widget ID of the widget that generated the event.

TOP The widget ID of the top level base for the widget hierarchy
containing ID.

HANDLER When an event is passed as the argument to an event handling
procedure or function, as discussed in the previous section,
this field contains the identifier of the widget associated with
the handler routine. When an event is returned from
WIDGET_EVENT, this value is always zero to indicate that
no handler routine was found.

Table 102: Common Event Structure Fields
IDL Reference Guide WIDGET_EVENT

2240
This keyword can be used to handle the situation in which IDL is waiting within
WIDGET_EVENT when the user kills the widget hierarchy.

This keyword has meaning only if Widget_ID is explicitly specified.

NOWAIT

When no events are currently available for the specified widget hierarchy,
WIDGET_EVENT normally waits until one is available and then returns it. However,
if NOWAIT is set and no events are present, it immediately returns. In this case, the
ID field of the returned structure will be zero.

SAVE_HOURGLASS

Set this keyword to prevent the hourglass cursor from being cleared by
WIDGET_EVENT. This keyword can be of use if a program has to poll a widget
periodically during a long computation.

YIELD_TO_TTY (UNIX Only)

Unless the NOWAIT keyword is specified, WIDGET_EVENT does not return until
the asked for event is available. If the user should enter a line of input from the
keyboard, it cannot be processed until WIDGET_EVENT returns. If the
YIELD_TO_TTY keyword is specified and the user enters a line of input,
WIDGET_EVENT returns immediately. In this case, the ID field of the returned
structure will be zero.

Note
This keyword is supported under UNIX only, and there are no plans to extend it to
other operating systems. Do not use it if you intend to use non-UNIX systems.

Version History

Introduced: Pre 4.0

See Also

XMANAGER
WIDGET_EVENT IDL Reference Guide

 2241
WIDGET_INFO

The WIDGET_INFO function is used to obtain information about the widget
subsystem and individual widgets. The specific area for which information is desired
is selected by setting the appropriate keyword.

Syntax

Result = WIDGET_INFO([Widget_ID])

Keywords that apply to all widgets: [, /ACTIVE] [, /CHILD] [, /EVENT_FUNC]
[, /EVENT_PRO] [, FIND_BY_UNAME=string] [, /FONTNAME]
[, /GEOMETRY] [, /KBRD_FOCUS_EVENTS] [, /MANAGED] [, /MAP]
[, /NAME] [, /PARENT] [, /REALIZED] [, /SENSITIVE] [, /SIBLING]
[, /SYSTEM_COLORS] [, /TRACKING_EVENTS] [, /TYPE] [, UNITS={0 | 1 | 2}]
[, /UNAME] [, /UPDATE] [, /VALID_ID] [, /VERSION] [, /VISIBLE]

Keywords that apply to widgets created with WIDGET_BASE:
[, /CONTEXT_EVENTS] [, /MODAL] [, /TLB_ICONIFY_EVENTS]
[, /TLB_KILL_REQUEST_EVENTS] [, /TLB_MOVE_EVENTS]
[, /TLB_SIZE_EVENTS]

Keywords that apply to widgets created with WIDGET_BUTTON:
[, /BUTTON_SET] [, /DYNAMIC_RESIZE] [, /PUSHBUTTON_EVENTS]
[, /TOOLTIP]

Keywords that apply to widgets created with WIDGET_COMBOBOX:
[, /COMBOBOX_GETTEXT] [, /COMBOBOX_NUMBER]
[, /DYNAMIC_RESIZE]

Keywords that apply to widgets created with WIDGET_DRAW:
[, /DRAW_BUTTON_EVENTS] [, /DRAW_EXPOSE_EVENTS]
[, DRAW_KEYBOARD_EVENTS={0 | 1 | 2}] [, /DRAW_MOTION_EVENTS]
[, /DRAW_VIEWPORT_EVENTS] [, /TOOLTIP]

Keywords that apply to widgets created with WIDGET_DROPLIST:
[, /DROPLIST_NUMBER] [, /DROPLIST_SELECT] [, /DYNAMIC_RESIZE]

Keywords that apply to widgets created with WIDGET_LABEL:
[, /DYNAMIC_RESIZE]

Keywords that apply to widgets created with WIDGET_LIST:
[, /CONTEXT_EVENTS] [, /LIST_MULTIPLE] [, /LIST_NUMBER]
[, /LIST_NUM_VISIBLE] [, /LIST_SELECT] [, /LIST_TOP]
IDL Reference Guide WIDGET_INFO

2242
Keywords that apply to widgets created with WIDGET_PROPERTYSHEET:
[, COMPONENT=objref] [, /PROPERTY_VALID] [, /PROPERTY_VALUE]

Keywords that apply to widgets created with WIDGET_SLIDER:
[, /SLIDER_MIN_MAX]

Keywords that apply to widgets created with WIDGET_TAB:
[, /TAB_CURRENT] [, /TAB_MULTILINE] [, /TAB_NUMBER]

Keywords that apply to widgets created with WIDGET_TABLE:
[, /COLUMN_WIDTHS] [, /ROW_HEIGHTS{not supported in Windows}]
[, /TABLE_ALL_EVENTS] [, /TABLE_DISJOINT_SELECTION]
[, /TABLE_EDITABLE] [, /TABLE_EDIT_CELL] [, /TABLE_SELECT]
[, /TABLE_VIEW] [, /USE_TABLE_SELECT]

Keywords that apply to widgets created with WIDGET_TEXT:
[, /CONTEXT_EVENTS] [, /TEXT_ALL_EVENTS] [, /TEXT_EDITABLE]
[, /TEXT_NUMBER] [, TEXT_OFFSET_TO_XY=integer] [, /TEXT_SELECT]
[, /TEXT_TOP_LINE] [, TEXT_XY_TO_OFFSET=[column, line]]

Keywords that apply to widgets created with WIDGET_TREE:
[, /TREE_EXPANDED] [, /TREE_ROOT] [, /TREE_SELECT]

Return Value

Returns the specified information for the given widget ID. If the SYSTEM_COLORS
keyword is specified, a structure is returned. See “The
WIDGET_SYSTEM_COLORS Structure” on page 2259 for details.

Arguments

Widget_ID

Usually this argument should be the widget ID of the widget for which information is
desired. If the ACTIVE or VERSION keywords are specified, this argument is not
required.

Widget_ID can also be an array of widget identifiers, in which case the result is an
array with the same structure in which information on all the specified widgets is
returned.
WIDGET_INFO IDL Reference Guide

 2243
Keywords

Not all keywords to WIDGET_INFO apply to all combinations of widgets. In the
following list, descriptions of keywords that affect only certain types of widgets
include a list of the widgets for which the keyword is useful.

ACTIVE

This keyword applies to all widgets.

Set this keyword to return 1 if there is at least one realized, managed, top-level widget
on the screen. Otherwise, 0 is returned.

BUTTON_SET

This keyword applies to widgets created with the WIDGET_BUTTON function.

Set this keyword to return the “set” state of a widget button. If the button is currently
set, 1 (one) is returned. If the button is currently not set, 0 (zero) is returned. This
keyword is intended for use with exclusive, non-exclusive and checked menu buttons.

CHILD

This keyword applies to all widgets.

Set this keyword to return the widget ID of the first child of the widget specified by
Widget_ID. If the widget has no children, 0 is returned.

COLUMN_WIDTHS

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to return an array of long integers giving the width of each column
in the table. If USE_TABLE_SELECT is set equal to one, only the column widths for
columns that contain currently-selected cells are returned. If USE_TABLE_SELECT
is set equal to an array, only the column widths for columns that contain specified
cells are returned.

COMBOBOX_GETTEXT

This keyword applies to widgets created with the WIDGET_COMBOBOX function.

Set this keyword to return the current text from the text box of the specified
combobox widget. Note that when using an editable combobox, the text displayed in
the text box may not be an item from the list of values in the combobox list. To obtain
IDL Reference Guide WIDGET_INFO

2244
the index of the selected item, inspect the INDEX field of the event structure returned
by the combobox widget.

COMBOBOX_NUMBER

This keyword applies to widgets created with the WIDGET_COMBOBOX function.

Set this keyword to return the number of elements currently contained in the list of
the specified combobox widget.

COMPONENT

This keyword applies to widgets created with the WIDGET_PROPERTYSHEET
function. Set this keyword to an object reference to indicate which object to query.
This is most useful when the property sheet references multiple objects. If this
keyword is not specified, the first (possibly only) object is queried.

CONTEXT_EVENTS

This keyword applies to widgets created with the WIDGET_BASE, WIDGET_LIST,
or WIDGET_TEXT functions.

Set this keyword to return 1 (one) if the widget specified by Widget_ID is configured
to generate context events (that is, the widget was created with the
CONTEXT_EVENTS keyword). Otherwise, 0 (zero) is returned.

DRAW_BUTTON_EVENTS

This keyword applies to widgets created with the WIDGET_DRAW function.

Set this keyword to return 1 if Widget_ID is a draw widget with the
BUTTON_EVENTS attribute set. Otherwise, 0 is returned.

DRAW_EXPOSE_EVENTS

This keyword applies to widgets created with the WIDGET_DRAW function.

Set this keyword to return 1 if Widget_ID is a draw widget with the
EXPOSE_EVENTS attribute set. Otherwise, 0 is returned.

DRAW_KEYBOARD_EVENTS

This keyword applies to widgets created with the WIDGET_DRAW function.

Set this keyword to return an integer specifying the type of keyboard events currently
generated by the draw widget specified by Widget_ID. Possible values are:

• 0: No keyboard events are generated
WIDGET_INFO IDL Reference Guide

 2245
• 1: Keyboard events are generated for “normal” keys (all keys except function
keys and modifier keys: SHIFT, CONTROL, CAPS LOCK, and ALT).

• 2: Keyboard events are generated for “normal” keys and modifier keys.

Note
Keyboard events are never generated for function keys.

DRAW_MOTION_EVENTS

This keyword applies to widgets created with the WIDGET_DRAW function.

Set this keyword to return 1 if Widget_ID is a draw widget with the
MOTION_EVENTS attribute set. Otherwise, 0 is returned.

DRAW_VIEWPORT_EVENTS

This keyword applies to widgets created with the WIDGET_DRAW function.

Set this keyword to return 1 if Widget_ID is a draw widget with the
VIEWPORT_EVENTS attribute set. Otherwise, 0 is returned.

DROPLIST_NUMBER

This keyword applies to widgets created with the WIDGET_DROPLIST function.

Set this keyword to return the number of elements currently contained in the specified
droplist widget.

DROPLIST_SELECT

This keyword applies to widgets created with the WIDGET_DROPLIST function.

Set this keyword to return the zero-based number of the currently-selected element
(i.e., the currently-displayed element) in the specified droplist widget.

DYNAMIC_RESIZE

This keyword applies to widgets created with the WIDGET_BUTTON,
WIDGET_COMBOBOX, WIDGET_DROPLIST, and WIDGET_LABEL functions.

Set this keyword to return a True value (1) if the widget specified by Widget_ID is a
button, droplist, or label widget that has had its DYNAMIC_RESIZE attribute set.
Otherwise, False (0) is returned.
IDL Reference Guide WIDGET_INFO

2246
EVENT_FUNC

This keyword applies to all widgets.

Set this keyword to return a string containing the name of the event handler function
associated with Widget_ID. A null string is returned if no event handler function
exists.

EVENT_PRO

This keyword applies to all widgets.

Set this keyword to return a string containing the name of the event handler procedure
associated with Widget_ID. A null string is returned if no event handler procedure
exists.

FIND_BY_UNAME

This keyword applies to all widgets.

Set this keyword to a UNAME value that will be searched for in the widget hierarchy,
and if a widget with the given UNAME is in the hierarchy, its ID is returned. The
search starts in the hierarchy with the given widget ID and travels down, and this
keyword returns the widget ID of the first widget that has the specified UNAME
value.

If a widget is not found, 0 is returned.

FONTNAME

This keyword applies to all widgets.

Set this keyword to return a string containing the name of the font being used by the
specified widget. The returned name can then be used when creating other widgets or
with the SET_FONT keyword to the DEVICE procedure. If fonts are not supported
by the specified widget, an empty string is returned.

Note that you can use this keyword to retrieve the name of the default font used by
one type of widget and use the same font in other contexts. For example, the
following code retrieves the default font used for buttons and writes into the drawable
area of a draw widget using the same font:

wBase = WIDGET_BASE(/ROW)
wButton = WIDGET_BUTTON(wBase, VALUE="Button")
wDraw = WIDGET_DRAW(wBase, XSIZE=200, YSIZE=100)
WIDGET_CONTROL, wBase, /REALIZE
strFont = WIDGET_INFO(wButton, /FONTNAME)
DEVICE, SET_FONT=strFont
WIDGET_INFO IDL Reference Guide

 2247
WIDGET_CONTROL, wDraw, GET_VALUE=iWindow
WSET, iWindow
XYOUTS, 100, 50, 'Same Font as Button', FONT=0, /DEVICE, $

ALIGNMENT=.5

This method allows you to synchronize the fonts in several widgets without knowing
in advance which font is in use.

The format of the returned font name is platform dependent. See “About Device
Fonts” on page 3962 for additional details.

GEOMETRY

This keyword applies to all widgets.

Note
Some widgets have no geometry values of their own. For example, only the root
node of a tree widget hierarchy has associated geometry values. Similarly, buttons
created on a pop-up menu have no geometry. Widgets with no intrinsic geometry
values will return a WIDGET_GEOMETRY structure containing all zeroes.

Set this keyword to return a WIDGET_GEOMETRY structure that describes the
offset and size information for the widget specified by Widget_ID. This structure has
the following definition:

{ WIDGET_GEOMETRY,
XOFFSET:0.0,
YOFFSET:0.0,
XSIZE:0.0,
YSIZE:0.0,
SCR_XSIZE:0.0,
SCR_YSIZE:0.0,
DRAW_XSIZE:0.0,
DRAW_YSIZE:0.0,
MARGIN:0.0,
XPAD:0.0,
YPAD:0.0,
SPACE:0.0 }

With the exception of MARGIN, all of the structure’s fields correspond to the
keywords of the same name to the various widget routines. MARGIN is the width of
any frame added to the widget, in units specified by the UNITS keyword (pixels are
the default). Therefore, the actual width of any widget is:

SCR_XSIZE + (2* MARGIN)

The actual height of any widget is:

SCR_YSIZE + (2 * MARGIN)
IDL Reference Guide WIDGET_INFO

2248
Note
Different window managers may use different window dressing (borders, margins,
scrollbars, etc.). As a result, running a given segment of widget code on different
platforms may yield different geometry.

KBRD_FOCUS_EVENTS

This keyword applies to all widgets.

Set this keyword to return the keyboard focus events status of the widget specified by
Widget ID. WIDGET_INFO returns 1 (one) if keyboard focus events are currently
enabled for the widget, or 0 (zero) if they are not. Only base, table, and text widgets
can generate keyboard focus events.

LIST_MULTIPLE

This keyword applies to widgets created with the WIDGET_LIST function.

Set this keyword equal to a named variable that will contain a non-zero value if the
list widget supports multiple item selections. See the MULTIPLE keyword to
WIDGET_LIST for more on multiple item selections.

LIST_NUMBER

This keyword applies to widgets created with the WIDGET_LIST function.

Set this keyword to return the number of elements currently contained in the specified
list widget.

LIST_NUM_VISIBLE

This keyword applies to widgets created with the WIDGET_LIST function.

Set this keyword to return the number of elements that can be visible in the scrolling
viewport of the specified list widget. Note that this value can be larger than the total
number of elements actually in the list.

LIST_SELECT

This keyword applies to widgets created with the WIDGET_LIST function.

Set this keyword to return the index or indices of the currently-selected (highlighted)
element or elements in the specified list widget. Note that this offset is zero-based. If
no element is currently selected, -1 is returned.
WIDGET_INFO IDL Reference Guide

 2249
LIST_TOP

This keyword applies to widgets created with the WIDGET_LIST function.

Set this keyword to return the zero-based offset of the topmost element currently
visible in the specified list widget.

MANAGED

This keyword applies to all widgets.

Set this keyword to return 1 if the specified widget is managed, or 0 otherwise. If no
widget ID is specified in the call to WIDGET_INFO, the return value will be an array
containing the widget IDs of all currently-managed widgets.

MAP

This keyword applies to all widgets.

Set this keyword to return True (1) if the widget specified by Widget_ID is mapped
(visible), or False (0) otherwise. Note that when a base widget is unmapped, all of its
children are unmapped. If WIDGET_INFO reports that a particular widget is
unmapped, it may be because a parent in the widget hierarchy has been unmapped.

MODAL

This keyword applies to widgets created with the WIDGET_BASE function and the
MODAL keyword.

If this keyword is set, WIDGET_INFO will return True (1) if the base widget
specified by Widget_ID is a modal base widget, or False (0) otherwise.

NAME

This keyword applies to all widgets.

Set this keyword to return the widget type name of the widget specified by
Widget_ID. The returned value will be one of the following strings: “BASE”,
“BUTTON”, “COMBOBOX”, “DRAW”, “DROPLIST”, “LABEL”, “LIST”,
“PROPERTYSHEET”, “SLIDER”, “TAB”, “TABLE”, “TEXT”, or “TREE”. Set the
TYPE keyword to return the widget’s type code.

PARENT

This keyword applies to all widgets.
IDL Reference Guide WIDGET_INFO

2250
Set this keyword to return the widget ID of the parent of the widget specified by
Widget_ID. If the widget is a top-level base (i.e., it has no parent), 0 is returned.

PROPERTY_VALID

This keyword applies to widgets created with the WIDGET_PROPERTYSHEET
function. Set this keyword to a string to determine if the string identifies a property.
Valid identifiers return 1 and invalid strings return 0. Comparisons are case
insensitive.

Operations are performed on properties through unique identifiers. This operation is
not required when processing a change event because the identifier returned in the
event structure can be assumed to be correct.

PROPERTY_VALUE

This keyword applies to widgets created with the WIDGET_PROPERTYSHEET
function. Retrieves the value of an identified property from a property sheet and
returns it as a temporary IDL variable. Set this keyword to a string that is a valid
property identifier in order to return the value of the specified property. This value
can then be used to set the actual value of the component's property—the property
sheet does not automatically do this. When there are multiple components, use the
COMPONENT keyword to indicate which component should be queried. The match
is case insensitive. An invalid identifier throws an error.

This keyword is very often used in response to property sheet change events. This is
because the property sheet does not change the underlying component; it only
informs the widget program which of its own values have changed. The IDL
programmer can use PROPERTY_VALUE to retrieve the user's desired value (as
cached in the property sheet) and then apply it to the component. The following
snippet of code handles property sheet change events:

PRO prop_event, e

; get the value of e.component's property identified by
; e.identifier
value = WIDGET_INFO(e.id, $
COMPONENT = e.component, $
PROPERTY_VALUE = e.identifier)

; set the component's property's value
e.component -> SetPropertyByIdentifier, $

e.identifier, value

END
WIDGET_INFO IDL Reference Guide

 2251
PUSHBUTTON_EVENTS

This keyword applies to widgets created with the WIDGET_BUTTON function.

Set this keyword to return the pushbutton events status for the widget specified by
Widget_ID. WIDGET_INFO returns 1 if pushbutton events are currently enabled for
the widget, or 0 otherwise.

REALIZED

This keyword applies to all widgets.

Set this keyword to return 1 if the widget specified by Widget_ID has been realized. If
the widget has not been realized, 0 is returned.

ROW_HEIGHTS

This keyword applies to widgets created with the WIDGET_TABLE function.

Note
This keyword is not supported under Microsoft Windows.

Set this keyword to return an array of long integers giving the height of each row in
the table. If USE_TABLE_SELECT is set equal to one, only the row heights for rows
that contain currently-selected cells are returned. If USE_TABLE_SELECT is set
equal to an array, only the row heights for rows that contain specified cells are
returned.

SENSITIVE

This keyword applies to all widgets.

Set this keyword to return True (1) if the widget specified by Widget_ID is sensitive
(enabled), or False (0) otherwise. Note that when a base is made insensitive, all its
children are made insensitive. If WIDGET_INFO reports that a particular widget is
insensitive, it may be because a parent in the widget hierarchy has been made
insensitive.

SIBLING

This keyword applies to all widgets.

Set this keyword to return the widget ID of the first sibling of the widget specified by
Widget_ID. If the widget is the last sibling in the chain, 0 is returned.
IDL Reference Guide WIDGET_INFO

2252
SLIDER_MIN_MAX

This keyword applies to widgets created with the WIDGET_SLIDER function.

Set this keyword to return the current minimum and maximum values of the specified
slider as a two-element integer array. Element 0 is the minimum value and element 1
is the maximum value.

SYSTEM_COLORS

This keyword applies to all widgets.

Set this keyword and supply the widget ID of any widget to cause WIDGET_INFO to
return an IDL structure that contains RGB values used for 25 IDL display elements.

For more detailed information on the WIDGET_SYSTEM_COLORS structure fields
and their meaning see the “The WIDGET_SYSTEM_COLORS Structure” on
page 2259.

TAB_CURRENT

This keyword applies to widgets created with the WIDGET_TAB function.

Set this keyword to return the zero-based index of the current tab in the tab widget.

TAB_MULTILINE

This keyword applies to widgets created with the WIDGET_TAB function.

Set this keyword to return the current setting of the multi-line mode for the tab
widget.

TAB_NUMBER

This keyword applies to widgets created with the WIDGET_TAB function.

Set this keyword to return the number of tabs contained in the tab widget.

TABLE_ALL_EVENTS

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to return 1 (one) if Widget_ID is a table widget with the
ALL_EVENTS attribute set. Otherwise, 0 (zero) is returned.

TABLE_DISJOINT_SELECTION

This keyword applies to widgets created with the WIDGET_TABLE function.
WIDGET_INFO IDL Reference Guide

 2253
Set this keyword to return 1 (one) if the widget specified by Widget_ID has disjoint
selection enabled. Otherwise, 0 (zero) is returned.

TABLE_EDITABLE

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to return 1 (one) if Widget_ID is a table widget that allows user
editing of its contents. Otherwise, 0 (zero) is returned.

TABLE_EDIT_CELL

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to return a two-element integer array containing the row and column
coordinates of the currently editable cell. If none of the cells in the table widget is
currently editable, the array [-1, -1] is returned.

TABLE_SELECT

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to return the currently-selected (highlighted) cells in the specified
table widget.

• In standard selection mode, this keyword returns an array of the form
[left, top, right, bottom] containing the zero-based indices of the columns
and rows that define the selection.

• In disjoint selection mode (enabled by setting the DISJOINT_SELECTION
keyword to WIDGET_TABLE), this keyword returns a 2 x n array of
column/row pairs containing the zero-based indices the selected cells.

TABLE_VIEW

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to return a two-element array of the form [left, top] containing the
zero-based offsets of the top-left cell currently visible in the specified table widget.

TEXT_ALL_EVENTS

This keyword applies to widgets created with the WIDGET_TEXT function.

Set this keyword to return 1 if Widget_ID is a text widget with the ALL_EVENTS
attribute set. Otherwise, 0 is returned.
IDL Reference Guide WIDGET_INFO

2254
TEXT_EDITABLE

This keyword applies to widgets created with the WIDGET_TEXT function.

Set this keyword to return 1 if Widget_ID is a text widget that allows user editing of
its contents. Otherwise, 0 is returned.

TEXT_NUMBER

This keyword applies to widgets created with the WIDGET_TEXT function.

Set this keyword to return the number of characters currently contained in the
specified text widget, including end-of-line characters.

Note
On Windows platforms, Carriage Return/Line Feed pairs count as a single
character.

TEXT_OFFSET_TO_XY

This keyword applies to widgets created with the WIDGET_TEXT function.

Use this keyword to translate a text widget character offset into column and line form.
The value of this keyword should be set to the character offset (an integer) to be
translated. WIDGET_INFO returns a two-element integer array giving the column
(element 0) and line (element 1) corresponding to the offset. If the offset specified is
out of range, the array [-1,-1] is returned.

TEXT_SELECT

This keyword applies to widgets created with the WIDGET_TEXT function.

Set this keyword to return the starting character offset and length (in characters) of
the selected (highlighted) text in the specified text widget. WIDGET_INFO returns a
two-element integer array containing the starting position of the highlighted text as an
offset from character zero of the text in the widget (element 0), and length of the
current selection (element 1).

TEXT_TOP_LINE

This keyword applies to widgets created with the WIDGET_TEXT function.

Set this keyword to return the zero-based line number of the line currently at the top
of a text widget’s display viewport. Note that this value is different from the zero-
based character offset of the characters in the line. The character offset can be
calculated from the line offset via the TEXT_XY_TO_OFFSET keyword.
WIDGET_INFO IDL Reference Guide

 2255
TEXT_XY_TO_OFFSET

This keyword applies to widgets created with the WIDGET_TEXT function.

Use this keyword to translate a text widget position given in line and column form
into a character offset. The value of this keyword should be set to a two-element
integer array specifying the column (element 0) and line (element 1) position.
WIDGET_INFO returns the character offset (as a longword integer) corresponding to
the position. If the position specified is out of range, -1 is returned.

TLB_ICONIFY_EVENTS

This keyword applies to widgets created with the WIDGET_BASE function.

Set this keyword to return 1 if the top-level base widget specified by Widget_ID is set
to return iconify events. Otherwise, 0 is returned.

TLB_KILL_REQUEST_EVENTS

This keyword applies to widgets created with the WIDGET_BASE function.

Set this keyword to return 1 if the top-level base widget specified by Widget_ID is set
to return kill request events. Otherwise, 0 is returned.

TLB_MOVE_EVENTS

This keyword applies to widgets created with the WIDGET_BASE function.

Set this keyword to return 1 if the top-level base widget specified by Widget_ID is set
to return move events. Otherwise, 0 is returned.

TLB_SIZE_EVENTS

This keyword applies to widgets created with the WIDGET_BASE function.

Set this keyword to return 1 if the top-level base widget specified by Widget_ID is set
to return resize events. Otherwise, 0 is returned.

TOOLTIP

This keyword applies to widgets created with the WIDGET_BUTTON and
WIDGET_DRAW functions.

Set this keyword to have the WIDGET_INFO function return the text of the tooltip of
the widget. If the widget does not have a tooltip, a null string will be returned.
IDL Reference Guide WIDGET_INFO

2256
TRACKING_EVENTS

This keyword applies to all widgets.

Set this keyword to return the tracking events status for the widget specified by
Widget_ID. WIDGET_INFO returns 1 if tracking events are currently enabled for the
widget. Otherwise, 0 is returned.

TREE_EXPANDED

This keyword applies to widgets created with the WIDGET_TREE function.

Set this keyword to return 1 (one) if the specified tree widget node is a folder that is
expanded, or 0 (zero) if the specified node is a folder that is collapsed.

Note
Only tree widget nodes created with the FOLDER keyword can be expanded or
collapsed. This keyword will always return 0 (zero) if the specified tree widget node
is not a folder.

TREE_ROOT

This keyword applies to widgets created with the WIDGET_TREE function.

Set this keyword to return the widget ID of the root node of the tree widget hierarchy
of which Widget ID is a part. The root node is the tree widget whose parent is a base
widget.

TREE_SELECT

This keyword applies to widgets created with the WIDGET_TREE function.

Set this keyword to return information about the nodes selected in the specified tree
widget. This keyword has two modes of operation, depending on the widget ID
passed to WIDGET_INFO:

• If the specified widget ID is for the root node of the tree widget (the tree
widget whose Parent is a base widget), this keyword returns either the widget
ID of the selected node or (if multiple nodes are selected) an array of widget
IDs of the selected nodes. If no nodes are selected, -1 is returned.

• If the specified widget ID is a tree widget that is a node in a tree, this keyword
returns 1 (one) if the node is selected or 0 (zero) if it is not selected.
WIDGET_INFO IDL Reference Guide

 2257
TYPE

This keyword applies to all widgets.

Set this keyword to return the type code of the specified Widget_ID. Possible values
are given the following table. Note that you can set the NAME keyword to return
string names instead.

UNAME

This keyword applies to all widgets.

Set this keyword to have the WIDGET_INFO function return the user name of the
widget.

UNITS

This keyword applies to all widgets.

Use this keyword to specify the unit of measurement used when returning dimensions
for most widget types. Set UNITS equal to 0 (zero) to specify that all measurements

Value Type

0 Base

1 Button

2 Slider

3 Text

4 Draw

5 Label

6 List

8 Droplist

9 Table

10 Tab

11 Tree

12 Combobox

Table 103: Widget Type Codes
IDL Reference Guide WIDGET_INFO

2258
are in pixels (this is the default), to 1 (one) to specify that all measurements are in
inches, or to 2 (two) to specify that all measurements are in centimeters.

Note
This keyword does not affect all sizing operations. Specifically, the value of UNITS
is ignored when retrieving the XSIZE or YSIZE of a WIDGET_LIST,
WIDGET_TABLE, or WIDGET_TEXT functions.

UPDATE

This keyword applies to all widgets.

Set this keyword to return 1 if the widget hierarchy that contains Widget_ID is set to
display updates. Otherwise, 0 is returned. See “UPDATE” on page 2206.

USE_TABLE_SELECT

This keyword applies to widgets created with the WIDGET_TABLE function.

Set this keyword to modify the behavior of the COLUMN_WIDTHS and
ROW_HEIGHTS keywords. If USE_TABLE_SELECT is set, the
COLUMN_WIDTHS and ROW_HEIGHTS keywords only apply to the currently-
selected cells. Normally, these keywords apply to the entire contents of a table
widget.

The USE_TABLE_SELECT keyword can also be specified as a four-element array,
of the form [left, top, right, bottom], giving the group of cells to act on. In this usage,
the value -1 is used to refer to the row or column titles.

VALID_ID

This keyword applies to all widgets.

Set this keyword to return 1 if Widget_ID represents a currently-valid widget.
Otherwise, 0 is returned.

VERSION

This keyword applies to all widgets.

Set this keyword to return a structure that gives information about the widget
implementation. This structure has the following definition:

{ WIDGET_VERSION, STYLE:'', TOOLKIT:'', RELEASE:'' }

STYLE is the style of widget toolkit used. TOOLKIT is the implementation of the
toolkit. RELEASE is the version level of the toolkit. This field can be used to
WIDGET_INFO IDL Reference Guide

 2259
distinguish between different releases of a given toolkit, such as Motif 1.0 and Motif
1.1.

VISIBLE

This keyword applies to all widgets.

Set this keyword to return True (1) if the widget specified by Widget_ID is visible, or
False (0) otherwise. A widget is visible if:

• it has been realized,

• it and all of its ancestors are mapped.

Note
The value returned by WIDGET_INFO when this keyword is set is not affected if
the widget is minimized or obscured by another window. Widgets that are visible in
the sense of this keyword may not be immediately apparent to a person viewing a
particular display device.

The WIDGET_SYSTEM_COLORS Structure

When the SYSTEM_COLORS keyword is specified in a call to WIDGET_INFO,
IDL returns a WIDGET_SYSTEM_COLORS structure. This allows application
developers to determine what colors are used in IDL application widgets, so they can
design widgets for their application with the same look and feel as the supplied IDL
widgets.

The WIDGET_SYSTEM_COLORS structure consists of 25 fields, each containing a
three-element vector corresponding to the Red, Green, and Blue color values used for
various widget elements. The vector elements are integers ranging between 0 and 255
if a color value is available (vector elements contain –1 if the color value is
unavailable). The field names and meaning on the Windows and UNIX operating
systems are shown in the following table.

Field Names Windows Platform UNIX Platform

DARK_SHADOW_3D Dark shadow color for
3D display elements.

N/A

Table 104: WIDGET_SYSTEM_COLORS Structure Fields
IDL Reference Guide WIDGET_INFO

2260
FACE_3D Face color for 3D
display elements and
dialog boxes.

Base background
color for all widgets.

LIGHT_EDGE_3D Highlight color for 3D
edges that face the light
source.

Color of top and left
edges of 3D widgets.

LIGHT_3D Light color for 3D
display elements.

Color of highlight
rectangle around
widgets with the
keyboard focus.

SHADOW_3D Color for 3D edges that
face away from the light
source.

Color of bottom and
right edges of 3D
widgets.

ACTIVE_BORDER Active window’s border
color.

Push button
background color
when button is armed.

ACTIVE_CAPTION Active window’s
caption color.

N/A

APP_WORKSPACE Background color of
MDI applications.

N/A

DESKTOP Desktop color. N/A

BUTTON_TEXT Text color on push
buttons.

Widget text color.

CAPTION_TEXT Color of text in caption,
size box, and scroll bar
arrow box.

Widget text color.

GRAY_TEXT Color of disabled text. N/A

HIGHLIGHT Color of item(s)
selected in a widget.

Toggle button fill
color.

Field Names Windows Platform UNIX Platform

Table 104: WIDGET_SYSTEM_COLORS Structure Fields (Continued)
WIDGET_INFO IDL Reference Guide

 2261
Version History

Introduced: Pre 4.0

BUTTON_SET, COMBOBOX_GETTEXT, COMBOBOX_NUMBER,
FONTNAME, MAP, SENSITIVE, TAB_CURRENT, TAB_MULTILINE,
TAB_NUMBER, TABLE_DISJOINT_SELECTION, TLB_ICONIFY_EVENTS,
TLB_MOVE_EVENTS, TLB_SIZE_EVENTS, TOOLTIP, TREE_EXPANDED,
TREE_ROOT, TREE_SELECT, and VISIBLE keywords added: 5.6

PUSHBUTTON_EVENTS keyword added: 6.0

HIGHLIGHT_TEXT Color of text of item(s)
selected in a widget.

N/A

INACTIVE_BORDER Inactive window’s
border color.

N/A

INACTIVE_CAPTION Inactive window’s
caption color.

N/A

INACTIVE_CAPTION_TEXT Inactive window’s
caption text color.

N/A

TOOLTIP_BK Background color for
tooltip controls.

N/A

TOOLTIP_TEXT Text color for tooltip
controls.

N/A

MENU Menu background color. N/A

MENU_TEXT Menu text color. N/A

SCROLLBAR Color of scroll bar
“gray” area.

Color of scroll bar
“gray” area.

WINDOW_BK Window background
color.

Base background
color for all widgets.

WINDOW_FRAME Window frame color. Widget border color.

WINDOW_TEXT Text color in windows. Widget text color.

Field Names Windows Platform UNIX Platform

Table 104: WIDGET_SYSTEM_COLORS Structure Fields (Continued)
IDL Reference Guide WIDGET_INFO

2262
See Also

Chapter 26, “Creating Widget Applications” in the Building IDL Applications
manual.
WIDGET_INFO IDL Reference Guide

 2263
WIDGET_LABEL

The WIDGET_LABEL function is used to create label widgets.

Syntax

Result = WIDGET_LABEL(Parent [, /ALIGN_CENTER | , /ALIGN_LEFT | ,
/ALIGN_RIGHT] [, /DYNAMIC_RESIZE] [, FONT=string] [, FRAME=width]
[, FUNC_GET_VALUE=string] [, GROUP_LEADER=widget_id]
[, KILL_NOTIFY=string] [, /NO_COPY] [, NOTIFY_REALIZE=string]
[, PRO_SET_VALUE=string] [, RESOURCE_NAME=string]
[, SCR_XSIZE=width] [, SCR_YSIZE=height] [, /SENSITIVE]
[, /SUNKEN_FRAME] [, /TRACKING_EVENTS] [, UNAME=string] [, UNITS={0
| 1 | 2}] [, UVALUE=value] [, VALUE=value] [, XOFFSET=value] [, XSIZE=value]
[, YOFFSET=value] [, YSIZE=value])

Return Value

The returned value of this function is the widget ID of the newly-created label widget.

Arguments

Parent

The widget ID of the parent widget for the new label widget.

Keywords

ALIGN_CENTER

Set this keyword to center justify the label text.

ALIGN_LEFT

Set this keyword to left justify the label text.

ALIGN_RIGHT

Set this keyword to right justify the label text.
IDL Reference Guide WIDGET_LABEL

2264
DYNAMIC_RESIZE

Set this keyword to create a widget that resizes itself to fit its new value whenever its
value is changed. Note that this keyword cannot be used with the SCR_XSIZE,
SCR_YSIZE, XSIZE, or YSIZE keywords. If one of these keywords is also set, the
widget will be sized as specified by the sizing keyword and will never resize itself
dynamically.

FONT

The name of the font to be used by the widget. The font specified is a “device font”
(an X Windows font on Motif systems; a TrueType or PostScript font on Windows
systems). See “About Device Fonts” on page 3962 for details on specifying names for
device fonts. If this keyword is omitted, the default font is used.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts; in
general, the system default font is the font appropriate for the version of Windows
in question.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the widget.
Note that this keyword is only a “hint” to the toolkit, and may be ignored in some
instances.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the group
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. It is not possible to
remove a widget from an existing group.
WIDGET_LABEL IDL Reference Guide

 2265
KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_LABEL or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.
IDL Reference Guide WIDGET_LABEL

2266
RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
See “RESOURCE_NAME” on page 2139 for a complete discussion of this keyword.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

SUNKEN_FRAME

Set this keyword to create a three dimensional, bevelled border around the label
widget. The resulting frame gives the label a “sunken” appearance, similar to what is
often seen in application status bars.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget whenever
the mouse pointer enters or leaves the region covered by that widget. For the structure
of tracking events, see “TRACKING_EVENTS” on page 2145 in the documentation
for WIDGET_BASE.
WIDGET_LABEL IDL Reference Guide

 2267
UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a widget label is a string
containing the text for the label.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.
IDL Reference Guide WIDGET_LABEL

2268
XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations.

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL procedure affect the behavior of
label widgets. In addition to those keywords that affect all widgets, the following are
particularly useful: DYNAMIC_RESIZE, GET_VALUE, SET_VALUE.

Keywords to WIDGET_INFO

Some keywords to the WIDGET_INFO function return information that applies
specifically to label widgets. In addition to those keywords that apply to all widgets,
the following are particularly useful: DYNAMIC_RESIZE.

Widget Events Returned by Label Widgets

Label widgets do not return an event structure.
WIDGET_LABEL IDL Reference Guide

 2269
Version History

Introduced: Pre 4.0

SUNKEN_FRAME keyword added: 5.6

See Also

CW_FIELD, WIDGET_TEXT
IDL Reference Guide WIDGET_LABEL

2270
WIDGET_LIST

The WIDGET_LIST function is used to create list widgets. A list widget offers the
user a list of text elements from which to choose. The user can select an item by
pointing at it with the mouse cursor and pressing a button. This action generates an
event containing the index of the selected item, which ranges from 0 to the number of
elements in the list minus one.

The returned value of this function is the widget ID of the newly-created list widget.

Syntax

Result = WIDGET_LIST(Parent [, /CONTEXT_EVENTS]
[, EVENT_FUNC=string] [, EVENT_PRO=string] [, FONT=string]
[, FRAME=width] [, FUNC_GET_VALUE=string]
[, GROUP_LEADER=widget_id] [, KILL_NOTIFY=string] [, /MULTIPLE]
[, /NO_COPY] [, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, RESOURCE_NAME=string] [, SCR_XSIZE=width] [, SCR_YSIZE=height]
[, /SENSITIVE] [, /TRACKING_EVENTS] [, UNAME=string] [, UNITS={0 | 1 |
2}] [, UVALUE=value] [, VALUE=value] [, XOFFSET=value] [, XSIZE=value]
[, YOFFSET=value] [, YSIZE=value])

Return Value

The returned value of this function is the widget ID of the newly-created list widget.

Arguments

Parent

The widget ID of the parent widget for the new list widget.

Keywords

CONTEXT_EVENTS

Set this keyword to cause context menu events (or simply context events) to be issued
when the user clicks the right mouse button over the widget. Set the keyword to 0
(zero) to disable such events. Context events are intended for use with context-
sensitive menus (also known as pop-up or shortcut menus); pass the context event ID
WIDGET_LIST IDL Reference Guide

 2271
to the WIDGET_DISPLAYCONTEXTMENU procedure within your widget
program’s event handler to display the context menu.

For more on detecting and handling context menu events, see “Context-Sensitive
Menus” in Chapter 27 of the Building IDL Applications manual.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified is a “device font”
(an X Windows font on Motif systems; a TrueType or PostScript font on Windows
systems). See “About Device Fonts” on page 3962 for details on specifying names for
device fonts. If this keyword is omitted, the default font is used.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts; in
general, the system default font is the font appropriate for the version of Windows
in question.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the widget.
Note that this keyword is only a “hint” to the toolkit, and may be ignored in some
instances.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.
IDL Reference Guide WIDGET_LIST

2272
GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the group
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. It is not possible to
remove a widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

MULTIPLE

Set this keyword to allow the user to select more than one item from the list in a
single operation. Multiple selections are handled using the platform’s native
mechanism:

Motif

Holding down the Shift key and clicking an item selects the range from the previously
selected item to the new item. Holding down the mouse button when selecting items
also selects a range. Holding down the Control key and clicking an item toggles that
item between the selected and unselected state.

Windows

Holding down the Shift key and clicking an item selects the range from the previously
selected item to the new item. Holding down the Control key and clicking an item
toggles that item between the selected and unselected state.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
WIDGET_LIST IDL Reference Guide

 2273
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_LIST or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
See “RESOURCE_NAME” on page 2139 for a complete discussion of this keyword.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.
IDL Reference Guide WIDGET_LIST

2274
SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget whenever
the mouse pointer enters or leaves the region covered by that widget. For the structure
of tracking events, see “TRACKING_EVENTS” on page 2145 in the documentation
for WIDGET_BASE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.
WIDGET_LIST IDL Reference Guide

 2275
Note
This keyword does not affect all sizing operations. Specifically, the value of UNITS
is ignored when setting the XSIZE or YSIZE keywords to WIDGET_LIST.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a list widget is a scalar string or
array of strings that contains the text of the list items—one list item per array
element. List widgets are sized based on the length (in characters) of the longest item
specified in the array of values for the VALUE keyword.

Note that the value of a list widget can only be set. It cannot be retrieved using
WIDGET_CONTROL.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

XSIZE

The desired width of the widget, in characters. Most widgets attempt to size
themselves to fit the situation. However, if the desired effect is not produced, use this
keyword to override it. Note that the final size of the widget may be adjusted to
include space for scrollbars (which are not always visible), so your widget may be
slightly larger than specified.
IDL Reference Guide WIDGET_LIST

2276
YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

YSIZE

The desired height of the widget, in number of list items visible. Most widgets
attempt to size themselves to fit the situation. However, if the desired effect is not
produced, use this keyword to override it. Note that the final size of the widget may
be adjusted to include space for scrollbars (which are not always visible), so your
widget may be slightly larger than specified.

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL procedure affect the behavior of
list widgets. In addition to those keywords that affect all widgets, the following are
particularly useful: CONTEXT_EVENTS, SET_LIST_SELECT, SET_LIST_TOP,
SET_VALUE.

Keywords to WIDGET_INFO

A number of keywords to the WIDGET_INFO function return information that
applies specifically to list widgets. In addition to those keywords that apply to all
widgets, the following are particularly useful: CONTEXT_EVENTS,
LIST_MULTIPLE, LIST_NUMBER, LIST_NUM_VISIBLE, LIST_SELECT,
LIST_TOP.

Widget Events Returned by List Widgets

Pressing the mouse button while the mouse cursor is over an element of a list widget
causes the widget to highlight the appearance of that element and to generate an
event. The appearance of any previously selected element is restored to normal at the
same time. The event structure returned by the WIDGET_EVENT function is defined
by the following statement:

{WIDGET_LIST, ID:0L, TOP:0L, HANDLER:0L, INDEX:0L, CLICKS:0L}
WIDGET_LIST IDL Reference Guide

 2277
The first three fields are the standard fields found in every widget event. INDEX
returns the index of the selected item. This index can be used to subscript the array of
names originally used to set the widget’s value. The CLICKS field returns either 1 or
2, depending upon how the list item was selected. If the list item is double-clicked,
CLICKS is set to 2.

Note
If you are writing a widget application that requires the user to double-click on a list
widget, you will need to handle two events. The CLICKS field will return a 1 on the
first click and a 2 on the second click.

Context Menu Events

List widgets return the following event structure when the user clicks the right mouse
button and the list widget was created with the CONTEXT_EVENTS keyword set:

{WIDGET_CONTEXT, ID:0L, TOP:0L, HANDLER:0L, X:0L, Y:0L}

The first three fields are the standard fields found in every widget event. The X and Y
fields give the device coordinates at which the event occurred, measured from the
upper left corner of the list widget.

Version History

Introduced: Pre 4.0

See Also

CW_BGROUP, WIDGET_COMBOBOX, WIDGET_DROPLIST
IDL Reference Guide WIDGET_LIST

2278
WIDGET_PROPERTYSHEET

The WIDGET_PROPERTYSHEET function creates a property sheet widget, which
exposes the properties of an IDL object subclassed from the IDLitComponent class
in a graphical interface. The property sheet widget must be a child of a base or tab
widget, and it cannot be the parent of any other widget.

The property sheet widget exposes the properties of an IDL object that subclasses
from the IDLitComponent class, which was designed for use by the IDL iTools
system. As a result, all IDLit* objects subclass from IDLitComponent, so properties
of object classes written for the IDL iTools system can be displayed in a property
sheet. In addition, all IDLgr* objects subclass from IDLitComponent, which means
that properties of standard IDL graphics objects can be displayed in a property sheet
even if the rest of the iTools framework is not in use.

In order to be shown in a property sheet, object properties must be registered and
visible. In addition, in order for property values shown in a property sheet to be
editable by the user, the property must be sensitive. For information on registering
properties, see “Registering Properties” in Chapter 4 of the iTool Developer’s Guide
manual. For information on making properties visible and sensitive, see “Property
Attributes” in Chapter 4 of the iTool Developer’s Guide manual.

Syntax

Result = WIDGET_PROPERTYSHEET(Parent [, /ALIGN_BOTTOM
|, /ALIGN_CENTER |, /ALIGN_LEFT |, /ALIGN_RIGHT |, /ALIGN_TOP]
[, /CONTEXT_EVENTS] [, EVENT_FUNC=string] [, EVENT_PRO=string]
[, FONT=string] [, FUNC_GET_VALUE=string] [, KILL_NOTIFY=string]
[, /NO_COPY] [, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, SCR_XSIZE=width] [, SCR_YSIZE=height] [, /SENSITIVE]
[, /TRACKING_EVENTS] [, UNAME=string] [,UNITS={0 | 1 | 2}]
[, UVALUE=value] [, VALUE=value] [, XOFFSET=value] [, XSIZE=value]
[, YOFFSET=value] [, YSIZE=value])

Return Value

The returned value of this function is the widget ID of the newly-created property
sheet widget.
WIDGET_PROPERTYSHEET IDL Reference Guide

 2279
Arguments

Parent

The widget ID of the parent for the new property sheet widget. Parent must be a base
or tab widget.

Keywords

ALIGN_BOTTOM

Set this keyword to align the new widget with the bottom of its parent base. To take
effect, the parent must be a ROW base.

ALIGN_CENTER

Set this keyword to align the new widget with the center of its parent base. To take
effect, the parent must be a ROW or COLUMN base. In ROW bases, the new widget
will be vertically centered. In COLUMN bases, the new widget will be horizontally
centered.

ALIGN_LEFT

Set this keyword to align the new widget with the left side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_RIGHT

Set this keyword to align the new widget with the right side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_TOP

Set this keyword to align the new widget with the top of its parent base. To take
effect, the parent must be a ROW base.

CONTEXT_EVENTS

Set this keyword to cause context menu events (or simply context events) to be issued
when the user clicks the right mouse button over the widget. Set the keyword to 0
(zero) to disable such events. Context events are intended for use with context-
sensitive menus (also known as pop-up or shortcut menus); pass the context event ID
to the WIDGET_DISPLAYCONTEXTMENU procedure within your widget
program’s event handler to display the context menu.
IDL Reference Guide WIDGET_PROPERTYSHEET

2280
For more on detecting and handling context menu events, see “Context-Sensitive
Menus” in Chapter 26 of the Building IDL Applications manual.

Note
With regard to /CONTEXT_EVENTS, the Motif and Windows version of the
property sheet differ very slightly. In the Motif version, individually desensitized
cells cannot generate context events, though their row label can.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified is a device font (an
X Windows font on Motif systems; a TrueType or PostScript font on Windows
systems). See “About Device Fonts” in Appendix I of the IDL Reference Guide
manual for details on specifying names for device fonts. If this keyword is omitted,
the default font is used.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts; in
general, the system default font is the font appropriate for the version of Windows
in question.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.
WIDGET_PROPERTYSHEET IDL Reference Guide

 2281
KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

Note
A procedure specified via the CLEANUP keyword to XMANAGER will override a
procedure specified for your application’s top-level base with WIDGET_BASE,
KILL_NOTIFY.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. During a set operation (using the UVALUE keyword to
WIDGET_BASE or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. During a get operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
callback procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.
IDL Reference Guide WIDGET_PROPERTYSHEET

2282
PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently

SCR_XSIZE

Set this keyword to the desired screen width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired screen height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.

Note
Some widgets do not change their appearance when they are made insensitive, but
they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget whenever
the mouse pointer enters or leaves the region covered by that widget. For the structure
of tracking events, see “TRACKING_EVENTS” in the IDL Reference Guide manual
in the documentation for WIDGET_BASE.
WIDGET_PROPERTYSHEET IDL Reference Guide

 2283
UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE

The user value to be assigned to the widget. Each widget can contain a user-specified
value of any data type and organization. This value is not used by the widget in any
way, but exists entirely for the convenience of the IDL programmer. This keyword
allows you to set this value when the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

The user value for a widget can be accessed and modified at any time by using the
GET_UVALUE and SET_UVALUE keywords to the WIDGET_CONTROL
procedure.

VALUE

Set this keyword to the object reference or array of object references to objects that
subclass from the IDLitComponent class. Registered properties of the specified
objects will be displayed in the property sheet.

If a single object reference is supplied, the property sheet will have a single column
containing the object’s properties. If an array of object references is supplied, the
property sheet will have multiple columns.

Note
Due to limitations of the user interface controls that underlie the property sheet
widget, a property sheet can display properties for at most 100 component objects.
IDL Reference Guide WIDGET_PROPERTYSHEET

2284
Note
All object references must be to objects of the same type.

If no object references are supplied, the property sheet will initially be empty. Object
references can be loaded into an existing property sheet using the SET_VALUE
keyword to WIDGET_CONTROL.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a bulletin board base widget. Note that it is best to avoid using this
style of widget layout.

XSIZE

The desired width, in average character widths, for the widget's font, not including a
possible vertical scrollbar and any frame thickness. If neither XSIZE nor
SCR_XSIZE is specified, then the property sheet widget will use a default width.
This default width is computed by adding the room needed for the property names to
the width of a color cell.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a bulletin board base widget. Note that it is best to avoid using this
style of widget layout.

YSIZE

The desired height of the widget, in number of visible properties. The ultimate height
of the property sheet in pixels will include the heights of the column header, the
possible horizontal scrollbar, and any frame. If neither YSIZE nor SCR_YSIZE is
specified, the property sheet will use a default height. This default is based on the
number of rows: 10, or the number of visible properties, whichever is less.
WIDGET_PROPERTYSHEET IDL Reference Guide

 2285
Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL affect the behavior of property
sheet widgets. In addition to those keywords that affect all widgets, the following
keyword is particularly useful: REFRESH _PROPERTY.

Keywords to WIDGET_INFO

Some keywords to WIDGET_INFO return information that applies specifically to
property sheet widgets. In addition to those keywords that apply to all widgets, the
following keywords are particularly useful: COMPONENT, PROPERTY_VALID,
PROPERTY_VALUE.

Widget Events Returned by Property Sheet Widgets

Several variations of the property sheet widget event structure depend upon the
specific event being reported. All of these structures contain the standard three fields
(ID, TOP, and HANDLER) as well as an integer TYPE field that indicates which type
of structure has been returned or which type of event was generated. Programs should
always check the type field before referencing fields that are not present in all
property sheet event structures. The different property sheet widget event structures
are described below.

Change Event (TYPE=0)

This event is generated whenever the user enters a new value for a property. It is also
used to signal that a user-defined property needs to be changed. The following
statement defines the event structure returned by the WIDGET_EVENT function:

{WIDGET_PROPSHEET_CHANGE, ID:0L, TOP:0L, HANDLER:0L, TYPE:0L,
COMPONENT:OBJREF, IDENTIFIER:"", PROPTYPE:0L, SET_DEFINED: OL}

The COMPONENT field contains an object reference to the object associated with
the property sheet. When multiple objects are associated with the property sheet, this
field indicates which object is to change.

The IDENTIFIER field specifies the value of the property’s identifier attribute. This
identifier is unique among all of the component’s properties.
IDL Reference Guide WIDGET_PROPERTYSHEET

2286
The PROPTYPE field indicates the type of the property (integer, string, etc.). The
integer values for these types are:

• 0 = USERDEF

• 1 = BOOLEAN

• 2 = INTEGER

• 3 = FLOAT

• 4 = STRING

• 5 = COLOR

• 6 = LINESTYLE

• 7 = SYMBOL

• 8 = THICKNESS

• 9 = ENUMLIST

The SET_DEFINED field indicates whether or not an undefined property is having
its value set. In most circumstances, along with its new value, the property should
have its UNDEFINED attribute set to zero. If a property is never marked as
undefined, this field can be ignored.

Select Event (TYPE=1)

The select event is generated whenever the current row or column in the property
sheet changes. Navigation between cells is performed by clicking on a cell. When the
property sheet is realized, no cell is selected.

The following statement defines the event structure returned by the
WIDGET_EVENT function:

{WIDGET_PROPSHEET_SELECT, ID:0L, TOP:0L, HANDLER:0L, TYPE:0L,
COMPONENT:OBJREF, IDENTIFIER:""}

The COMPONENT field is an object reference to the object associated with the
property sheet.

The IDENTIFIER field specifies the value of the property’s identifier attribute. This
identifier is unique among all properties of the component.
WIDGET_PROPERTYSHEET IDL Reference Guide

 2287
Example

Enter the following program in the IDL Editor:

; ExSinglePropSheet
;
; Creates a base with a property sheet. Only the
; default properties are visible. The property sheet’s
; event handler sets values and reveals selection
; changes.

PRO PropertyEvent, event

IF (event.type EQ 0) THEN BEGIN ; Value changed.

; Get the value of the property identified by
; event.identifier.
value = WIDGET_INFO(event.id, COMPONENT = event.component, $

PROPERTY_VALUE = event.identifier)

; Set the component’s property value.
event.component -> SetPropertyByIdentifier, event.identifier, $

value

PRINT, 'Changed: ', event.identifier, ': ', value

ENDIF ELSE BEGIN ; Selection changed.

PRINT, 'Selected: ' + event.identifier

ENDELSE

END

PRO ExSinglePropSheet_event, event

prop = WIDGET_INFO(event.top, $
FIND_BY_UNAME = 'PropSheet')

WIDGET_CONTROL, prop, XSIZE = event.x, YSIZE = event.y

END

PRO CleanupEvent, baseID

WIDGET_CONTROL, baseID, GET_UVALUE = oComp
OBJ_DESTROY, oComp

END
IDL Reference Guide WIDGET_PROPERTYSHEET

2288
PRO ExSinglePropSheet

; Create and initialize the component.
oComp = OBJ_NEW('IDLitVisAxis')

; Create a base and property sheet.
base = WIDGET_BASE(/TLB_SIZE_EVENT, $

TITLE = 'Single Property Sheet Example', $
KILL_NOTIFY = 'CleanupEvent')

prop = WIDGET_PROPERTYSHEET(base, VALUE = oComp, $
EVENT_PRO = 'PropertyEvent', UNAME = 'PropSheet')

; Activate the widgets.
WIDGET_CONTROL, base, SET_UVALUE = oComp, /REALIZE

XMANAGER, 'ExSinglePropSheet', base, /NO_BLOCK

END

Save this program as ExSinglePropSheet.pro, then compile and run the
program. A property sheet entitled Single Property Sheet Example is displayed:

Figure 30: Single Property Sheet Example
WIDGET_PROPERTYSHEET IDL Reference Guide

 2289
For examples of the types of settings possible from the property sheet:

• Click the Hide setting box, click the drop-down button, and select Hide from
the list.

• Click the Major tick length setting box, click the drop-down button, and move
the slider to select a new value.

• Click the Text color setting box, click the drop-down button, and select a new
color from the color selector.

Version History

Introduced: 6.0
IDL Reference Guide WIDGET_PROPERTYSHEET

2290
WIDGET_SLIDER

The WIDGET_SLIDER function is used to create slider widgets. Slider widgets are
used to indicate an integer value from a range of possible values. They consist of a
rectangular region which represents the possible range of values. Inside this region is
a sliding pointer that displays the current value. This pointer can be manipulated by
the user via the mouse, or from within IDL via the WIDGET_CONTROL procedure.

To indicated floating-point values, see CW_FSLIDER.

Syntax

Result = WIDGET_SLIDER(Parent [, /DRAG] [, EVENT_FUNC=string]
[, EVENT_PRO=string] [, FONT=string] [, FRAME=width]
[, FUNC_GET_VALUE=string] [, GROUP_LEADER=widget_id]
[, KILL_NOTIFY=string] [, MAXIMUM=value] [, MINIMUM=value]
[, /NO_COPY] [, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, RESOURCE_NAME=string] [, SCR_XSIZE=width] [, SCR_YSIZE=height]
[, SCROLL=units] [, /SENSITIVE] [, /SUPPRESS_VALUE]
[, /TRACKING_EVENTS] [, TITLE=string] [, UNAME=string] [, UNITS={0 | 1 |
2}] [, UVALUE=value] [, VALUE=value] [, /VERTICAL] [, XOFFSET=value]
[, XSIZE=value] [, YOFFSET=value] [, YSIZE=value])

Return Value

The returned value of this function is the widget ID of the newly-created slider
widget.

Arguments

Parent

The widget ID of the parent for the new slider widget.

Keywords

DRAG

Set this keyword to cause events to be generated continuously while the slider is
being dragged by the user. Normally, slider widgets generate position events only
when the slider comes to rest at its final position and the mouse button is released.
WIDGET_SLIDER IDL Reference Guide

 2291
Note
Under Microsoft Windows, this keyword has no effect. IDL sliders only generate
events when the mouse button is released.

When a slider widget is set to return drag events, a large number of events can be
generated. On slower machines, poor performance can result. Therefore, this option
should only be used when detailed or truly interactive control is required.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified is a “device font”
(an X Windows font on Motif systems; a TrueType or PostScript font on Windows
systems). See “About Device Fonts” on page 3962 for details on specifying names for
device fonts. If this keyword is omitted, the default font is used.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the widget.
Note that this keyword is only a “hint” to the toolkit, and may be ignored in some
instances.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
IDL Reference Guide WIDGET_SLIDER

2292
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the group
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. It is not possible to
remove a widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

MAXIMUM

The maximum value of the range encompassed by the slider. If this keyword is not
supplied, a default of 100 is used.

MINIMUM

The minimum value of the range encompassed by the slider. If this keyword is not
supplied, a default of 0 is used.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
WIDGET_SLIDER IDL Reference Guide

 2293
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_SLIDER or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
See “RESOURCE_NAME” on page 2139 for a complete discussion of this keyword.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SCROLL

Set the SCROLL keyword to an integer value specifying the number of integer units
the scroll bar should move when the user clicks the left mouse button inside the slider
area (Motif) or on the slider arrows (Windows), but not on the slider itself. The
IDL Reference Guide WIDGET_SLIDER

2294
default on both platforms is 0.1 x (MAXIMUM - MINIMUM), which is 10% of the
slider range.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

SUPPRESS_VALUE

Set this keyword to inhibit the display of the current slider value.

Sliders work only with integer units. This keyword can be used to suppress the actual
value of a slider so that a program can present the user with a slider that seems to
work in other units (such as floating-point) or with a non-linear scale.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget whenever
the mouse pointer enters or leaves the region covered by that widget. For the structure
of tracking events, see “TRACKING_EVENTS” on page 2145 in the documentation
for WIDGET_BASE.

TITLE

A string containing the title to be used for the slider widget.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
WIDGET_SLIDER IDL Reference Guide

 2295
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a widget slider is the current
position of the slider.

VERTICAL

Set this keyword to create a vertical slider. If this keyword is omitted, the slider is
horizontal.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
IDL Reference Guide WIDGET_SLIDER

2296
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations.

Note
Setting XSIZE for a vertical slider (created with the VERTICAL keyword) does not
change the visible width of the slider itself, but does change the amount of
horizontal space occupied by the widget within its parent base.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations.

Note
Setting YSIZE for a horizontal slider does not change the visible height of the slider
itself, but does change the amount of vertical space occupied by the widget within
its parent base.

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL procedure affect the behavior of
slider widgets. In addition to those keywords that affect all widgets, the following are
particularly useful: GET_VALUE, SET_SLIDER_MAX, SET_SLIDER_MIN,
SET_VALUE.
WIDGET_SLIDER IDL Reference Guide

 2297
Keywords to WIDGET_INFO

Some keywords to the WIDGET_INFO function return information that applies
specifically to slider widgets. In addition to those keywords that apply to all widgets,
the following are particularly useful: SLIDER_MIN_MAX.

Widget Events Returned by Slider Widgets

Slider widgets generate events when the mouse is used to change their value. The
event structure returned by the WIDGET_EVENT function is defined by the
following statement:

{WIDGET_SLIDER, ID:0L, TOP:0L, HANDLER:0L, VALUE:0L, DRAG:0}

ID is the widget ID of the button generating the event. TOP is the widget ID of the top
level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. VALUE returns the new value of the slider.
DRAG returns integer 1 if the slider event was generated as part of a drag operation,
or zero if the event was generated when the user had finished positioning the slider.
Note that the slider widget only generates events during the drag operation if the
DRAG keyword is set. When the DRAG keyword is set, the DRAG field can be used
to avoid computationally expensive operations until the user releases the slider.

Known Implementation Problems

Under Motif 1.0, vertical sliders with a title organized in row bases get horizontally
truncated and the slider doesn’t show (the title does). Use the XSIZE keyword to
work around this.

Version History

Introduced: Pre 4.0

See Also

CW_FSLIDER
IDL Reference Guide WIDGET_SLIDER

2298
WIDGET_TAB

The WIDGET_TAB function is used to create a tab widget. Tab widgets present a
display area on which different pages (base widgets and their children) can be
displayed by selecting the appropriate tab. The titles of the tabs are supplied as the
values of the TITLE keyword for each of the tag widget’s child base widgets.

For a more detailed discussion of the tab widget, along with examples, see “Using
Tab Widgets” in Chapter 27 of the Building IDL Applications manual.

Syntax

Result = WIDGET_TAB(Parent [, /ALIGN_BOTTOM | , /ALIGN_CENTER | ,
/ALIGN_LEFT | , /ALIGN_RIGHT | , /ALIGN_TOP] [, EVENT_FUNC=string]
[, EVENT_PRO=string] [, FUNC_GET_VALUE=string]
[, GROUP_LEADER=widget_id] [, KILL_NOTIFY=string]
[, LOCATION={0 | 1 | 2 | 3}] [, MULTILINE=0 | 1 (Windows) or num tabs per row
(Motif)] [, /NO_COPY] [, NOTIFY_REALIZE=string]
[, PRO_SET_VALUE=string] [, SCR_XSIZE=width] [, SCR_YSIZE=height]
[, /SENSITIVE] [, /TRACKING_EVENTS] [, UNAME=string] [, UNITS={0 | 1 |
2}] [, UVALUE=value] [, XOFFSET=value] [, XSIZE=value] [, YOFFSET=value]
[, YSIZE=value])

Return Value

The returned value of this function is the widget ID of the newly-created tab widget.

Arguments

Parent

The widget ID of the parent for the new tab widget.

Note
Only base widgets can be the parent of a tab widget.
WIDGET_TAB IDL Reference Guide

 2299
Keywords

ALIGN_BOTTOM

Set this keyword to align the new widget with the bottom of its parent base. To take
effect, the parent must be a ROW base.

ALIGN_CENTER

Set this keyword to align the new widget with the center of its parent base. To take
effect, the parent must be a ROW or COLUMN base. In ROW bases, the new widget
will be vertically centered. In COLUMN bases, the new widget will be horizontally
centered.

ALIGN_LEFT

Set this keyword to align the new widget with the left side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_RIGHT

Set this keyword to align the new widget with the right side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_TOP

Set this keyword to align the new widget with the top of its parent base. To take
effect, the parent must be a ROW base.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
IDL Reference Guide WIDGET_TAB

2300
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

GROUP_LEADER

The widget ID of an existing widget that serves as group leader for the newly-created
widget. When a group leader is killed, for any reason, all widgets in the group are
also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. You cannot remove a
widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
callback procedure. This callback procedure can be removed by setting the routine
name to the null string (''). Note that the procedure specified is used only if you are
not using the XMANAGER procedure to manage your widgets.

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

LOCATION

Set this keyword equal to an integer that specifies which edge of the tab widget will
contain the tabs. The possible values are:

Value Description

0 The tabs are placed along the top of the widget, which is the
default behavior.

1 The tabs are placed along the bottom of the widget.

Table 105: LOCATION Keyword Values
WIDGET_TAB IDL Reference Guide

 2301
MULTILINE

This keyword controls how tabs appear on the tab widget when all of the tabs do not
fit on the widget in a single row. This keyword behaves differently on Windows and
Motif systems.

Windows

Set this keyword to cause tabs to be organized in a multiline display when the width
of the tabs exceeds the width of the largest child base widget. If possible, IDL will
create tabs that display the full tab text.

If MULTILINE = 0 and LOCATION = 0 or 1, tabs that exceed the width of the largest
child base widget are shown with scroll buttons, allowing the user to scroll through
the tabs while the base widget stays immobile.

If LOCATION = 1 or 2, a multiline display is always used if the tabs exceed the
height of the largest child base widget.

Note
The width or height of the tab widget is based on the width or height of the largest
base widget that is a child of the tab widget. The text of the tabs (the titles of the tab
widget’s child base widgets) may be truncated even if the MULTILINE keyword is
set.

Motif

Set this keyword equal to an integer that specifies the maximum number of tabs to
display per row in the tab widget. If this keyword is not specified (or is explicitly set
equal to zero) all tabs are placed in a single row.

2 The tabs are placed along the left edge of the widget. The text
label for each tab is displayed vertically. On Windows
platforms, setting the keyword to this value implies the
MULTILINE keyword.

3 The tabs are placed along the right edge of the widget. The
text label for each tab is displayed vertically. On Windows
platforms, setting the keyword to this value implies the
MULTILINE keyword.

Value Description

Table 105: LOCATION Keyword Values (Continued)
IDL Reference Guide WIDGET_TAB

2302
Note
The width or height of the tab widget is based on the width or height of the largest
base widget that is a child of the tab widget. The text of the tabs (the titles of the tab
widget’s child base widgets) is never truncated in order to make the tabs fit the
space available. However, tab text may be truncated if the text of a single tab
exceeds the space available. If MULTILINE is set to any value other than one, some
tabs may not be displayed.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copying the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. Upon a set operation (using the UVALUE keyword to
WIDGET_TAB or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. Upon a get operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NOTIFY_REALIZE

Set this keyword to a string containing the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single callback
procedure. This callback procedure can be removed by setting the routine name to the
null string (''). The callback routine is called with the widget ID as its only
argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.
WIDGET_TAB IDL Reference Guide

 2303
SCR_XSIZE

Set this keyword to the desired screen width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired screen height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.

Note
Some widgets do not change their appearance when they are made insensitive, but
they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget whenever
the mouse pointer enters or leaves the region covered by that widget. For the structure
of tracking events, see “TRACKING_EVENTS” on page 2145 in the documentation
for WIDGET_BASE.

UNAME

Set this keyword to a string, which is used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.
IDL Reference Guide WIDGET_TAB

2304
To query the widget hierarchy, use the WIDGET_INFO with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (which is
the default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE

The user value to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. You should avoid using this style of widget
programming.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
hint to the toolkit and may be ignored in some situations.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.
WIDGET_TAB IDL Reference Guide

 2305
Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. You should avoid using this style of widget
programming.

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
hint to the toolkit and may be ignored in some situations.

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL affect the behavior of tab
widgets. In addition to those keywords that affect all widgets, the following keywords
are particularly useful: BASE_SET_TITLE, SET_TAB_CURRENT,
SET_TAB_MULTILINE.

Keywords to WIDGET_INFO

Some keywords to the WIDGET_INFO return information that applies specifically to
tab widgets. In addition to those keywords that apply to all widgets, the following
keywords are particularly useful: TAB_CURRENT, TAB_MULTILINE,
TAB_NUMBER.

Widget Events Returned by Tab Widgets

Tab widgets generate events when a new tab is selected. The event structure returned
by the WIDGET_EVENT function is defined by the following statement:

{WIDGET_TAB, ID:0L, TOP:0L, HANDLER:0L, TAB:0L}

ID is the widget ID of the button generating the event. TOP is the widget ID of the top
level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. TAB returns the zero-based index of the tab
selected.

Version History

Introduced: 5.6
IDL Reference Guide WIDGET_TAB

2306
See Also

“Using Tab Widgets” in Chapter 27 of the Building IDL Applications manual
WIDGET_TAB IDL Reference Guide

 2307
WIDGET_TABLE

The WIDGET_TABLE function creates table widgets. Table widgets display two-
dimensional data and allow in-place data editing. They can have one or more rows
and columns, and automatically create scroll bars when viewing more data than can
otherwise be displayed on the screen.

For a more detailed discussion of the table widget, along with examples, see “Using
Table Widgets” in Chapter 27 of the Building IDL Applications manual.

Note on Table Sizing

Table widgets are sized according to the value of the following pairs of keywords to
WIDGET_TABLE, in order of precedence: SCR_XSIZE/SCR_YSIZE,
XSIZE/YSIZE, X_SCROLL_SIZE/Y_SCROLL_SIZE, VALUE. If either dimension
remains unspecified by one of the above keywords, the default value of six (columns
or rows) is used when the table is created. If the width or height specified is less than
the size of the table, scroll bars are added automatically.

Syntax

Result = WIDGET_TABLE(Parent [, ALIGNMENT={0 | 1 | 2}] [, /ALL_EVENTS]
[, AM_PM=[string, string]] [, COLUMN_LABELS=string_array]
[, /COLUMN_MAJOR | , /ROW_MAJOR] [, COLUMN_WIDTHS=array]
[, DAYS_OF_WEEK=string_array{7 names}] [, /DISJOINT_SELECTION]
[, /EDITABLE] [, EVENT_FUNC=string] [, EVENT_PRO=string] [, FONT=string]
[, FORMAT=value] [, FRAME=width] [, FUNC_GET_VALUE=string]
[, GROUP_LEADER=widget_id] [, /KBRD_FOCUS_EVENTS]
[, KILL_NOTIFY=string] [, MONTHS=string_array{12 names}] [, /NO_COPY]
[, /NO_HEADERS] [, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, /RESIZEABLE_COLUMNS] [, /RESIZEABLE_ROWS{not supported in
Windows}] [, RESOURCE_NAME=string] [, ROW_HEIGHTS=array{not
supported in Windows}] [, ROW_LABELS=string_array] [, SCR_XSIZE=width]
[, SCR_YSIZE=height] [, /SCROLL] [, /SENSITIVE] [, /TRACKING_EVENTS]
[, UNAME=string] [, UNITS={0 | 1 | 2}] [, UVALUE=value] [, VALUE=value]
[, XOFFSET=value] [, XSIZE=value] [, X_SCROLL_SIZE=width]
[, YOFFSET=value] [, YSIZE=value] [, Y_SCROLL_SIZE=height])

Return Value

The returned value of this function is the widget ID of the newly-created table widget.
IDL Reference Guide WIDGET_TABLE

2308
Arguments

Parent

The widget ID of the parent widget for the new table widget.

Keywords

ALIGNMENT

Set this keyword equal to a scalar or 2-D array specifying the alignment of the text
within each cell. An alignment of 0 (the default) aligns the left edge of the text with
the left edge of the cell. An alignment of 2 right-justifies the text, while 1 results in
text centered within the cell. If ALIGNMENT is set equal to a scalar, all table cells
are aligned as specified. If ALIGNMENT is set equal to a 2-D array, the alignment of
each table cell is governed by the corresponding element of the array.

ALL_EVENTS

Set this keyword to cause to the text widget to generate events whenever the user
changes the contents of a table cell.

Note
If the EDITABLE keyword is set, an insert character event (TYPE=0) is generated
when the user presses the RETURN or ENTER key in the text widget, even if the
ALL_EVENTS keyword is not set. See the table below for details on the interaction
between ALL_EVENTS and EDITABLE.

Keywords Effects

ALL_EVENTS EDITABLE Input changes
widget contents?

Type of events
generated.

Not set Not set No None

Not set Set Yes End-of-line insertion

Set Not set No All events

Set Set Yes All events

Table 106: Effects of using the ALL_EVENTS and EDITABLE keywords
WIDGET_TABLE IDL Reference Guide

 2309
AM_PM

Supplies a string array of 2 names to be used for the names of the AM and PM string
when processing explicitly formatted dates (CAPA, CApA, and CapA format codes)
with the FORMAT keyword.

COLUMN_LABELS

Set this keyword equal to an array of strings used as labels for the columns of the
table widget. The default labels are of the form “Column n”, where n is the column
number. If this keyword is set to the empty string (''), all column labels are set to be
empty.

COLUMN_MAJOR

This keyword is only valid if the table data is organized as a vector of structures
rather than a two-dimensional array. See the VALUE keyword for details.

Set this keyword to specify that the data should be read into the table as if each
element of the vector is a structure containing one column’s data. Note that the
structures must all be of the same type, and must have one field for each row in the
table. If this keyword is not set, the table widget behaves as if the ROW_MAJOR
keyword were set.

COLUMN_WIDTHS

Set this keyword equal to an array of widths for the columns of the table widget. The
widths are given in any of the units as specified with the UNITS keyword. If no width
is specified for a column, that column is set to the default size, which varies by
platform. If COLUMN_WIDTHS is set to a scalar value, all columns are set to that
width.

DAYS_OF_WEEK

Supplies a string array of 7 names to be used for the names of the days of the week
when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the FORMAT keyword.

DISJOINT_SELECTION

Set this keyword to enable the ability to select multiple rectangular regions of cells.
The regions can be overlapping, touching, or entirely distinct.

Setting this keyword changes the data structures returned by the TABLE_SELECT
keyword to WIDGET_INFO and the GET_VALUE keyword to WIDGET_CONTROL.
IDL Reference Guide WIDGET_TABLE

2310
Similarly, the data structures you supply via the SET_TABLE_SELECT and
SET_VALUE keywords to WIDGET_CONTROL are different in disjoint mode.

See “Selection Modes” in Chapter 27 of the Building IDL Applications manual for
additional details.

EDITABLE

Set this keyword to allow direct user editing of the text widget contents. Normally,
the text in text widgets is read-only. See ALL_EVENTS for a description of how
EDITABLE interacts with the ALL_EVENTS keyword.

Note
The method by which text widgets are placed into edit mode is dependent upon the
windowing system. See “Edit Mode” in the Building IDL Applications manual

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified is a “device font”
(an X Windows font on Motif systems; a TrueType or PostScript font on Windows
systems). See “About Device Fonts” on page 3962 for details on specifying names for
device fonts. If this keyword is omitted, the default font is used.

A single font is shared by the row and column labels and by all of the cells in the
widget.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts; in
general, the system default font is the font appropriate for the version of Windows
in question.
WIDGET_TABLE IDL Reference Guide

 2311
FORMAT

Set this keyword equal to a single string or array of strings that specify the format of
data displayed within table cells. The string(s) are of the same form as used by the
FORMAT keyword to the PRINT procedure, and the default format is the same as
that used by the PRINT procedure.

Warning
If the format specified is incompatible with the data displayed in a table cell, an
error message is generated. Since the error is generated for each cell displayed, the
number of messages printed is potentially large, and can slow execution
significantly. Note also that each time a new cell is displayed (when scroll bars are
repositioned, for example), a new error is generated for each cell displayed.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the widget.
Note that this keyword is only a “hint” to the toolkit, and may be ignored in some
instances.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the group
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. It is not possible to
remove a widget from an existing group.

KBRD_FOCUS_EVENTS

Set this keyword to make the base return keyboard focus events whenever the
keyboard focus of the base changes. See “Widget Events Returned by Table Widgets”
on page 2318 for more information.
IDL Reference Guide WIDGET_TABLE

2312
KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

MONTHS

Supplies a string array of 12 names to be used for the names of the months when
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) with
the FORMAT keyword.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_TABLE or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NO_HEADERS

Set this keyword to disable the display of the table widget’s header area (where row
and column labels are normally displayed).

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
WIDGET_TABLE IDL Reference Guide

 2313
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

RESIZEABLE_COLUMNS

Set this keyword to allow the user to change the size of columns using the mouse.
Note that if the NO_HEADERS keyword was set, the columns cannot be resized
interactively.

RESIZEABLE_ROWS

Set this keyword to allow the user to change the size of rows using the mouse. Note
that if the NO_HEADERS keyword was set, the rows cannot be resized interactively.

Under Microsoft Windows, the row size cannot be changed.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
See “RESOURCE_NAME” on page 2139 for a complete discussion of this keyword.

ROW_HEIGHTS

Set this keyword equal to an array of heights for the rows of the table widget. The
heights are given in any of the units as specified with the UNITS keyword. If no
height is specified for a row, that row is set to the default size, which varies by
platform. If ROW_HEIGHTS is set to a scalar value, all of the row heights are set to
that value.

Note
This keyword is not supported under Microsoft Windows.

ROW_LABELS

Set this keyword equal to an array of strings to be used as labels for the rows of the
table. If no label is specified for a row, it receives the default label “Row n”, where n
IDL Reference Guide WIDGET_TABLE

2314
is the row number. If this keyword is set to the empty string (''), all row labels are set
to be empty.

ROW_MAJOR

This keyword is only valid if the table data is organized as a vector of structures
rather than a two-dimensional array. See the VALUE keyword for details.

Set this keyword to specify that the data should be read into the table as if each
element of the vector is a structure containing one row’s data. Note that the structures
must all be of the same type, and must have one field for each column in the table.
This is the default behavior if neither the COLUMN_MAJOR or ROW_MAJOR
keyword is set.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). Note that the screen width of the widget
includes the width of scroll bars, if any are present. Setting SCR_XSIZE overrides
values set for the XSIZE or X_SCROLL_SIZE keywords. See “Note on Table
Sizing” on page 2307.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). Note that the screen height of the widget
includes the height of scroll bars, if any are present. Setting SCR_YSIZE overrides
values set for the YSIZE or Y_SCROLL_SIZE keywords. See “Note on Table
Sizing” on page 2307.

SCROLL

Set this keyword to give the widget scroll bars that allow viewing portions of the
widget contents that are not currently on the screen. See “Note on Table Sizing” on
page 2307

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.
WIDGET_TABLE IDL Reference Guide

 2315
Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget whenever
the mouse pointer enters or leaves the region covered by that widget. For the structure
of tracking events, see “TRACKING_EVENTS” on page 2145 in the documentation
for WIDGET_BASE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

Note
This keyword does not affect all sizing operations. Specifically, the value of UNITS
is ignored when setting the XSIZE or YSIZE keywords.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget's initial user value is undefined.
IDL Reference Guide WIDGET_TABLE

2316
VALUE

The initial value setting of the widget. The value of a table widget is either a two-
dimensional array or a vector of structures.

If the value is specified as a two-dimensional array, all data must be of the same data
type.

If the value is specified as a vector of structures, it can be displayed either in column-
major or row-major format by setting either the COLUMN_MAJOR keyword or the
ROW_MAJOR keyword. All of the structures must be of the same type, and must
contain one field for each row (if COLUMN_MAJOR is set) or column (if
ROW_MAJOR is set) in the table. If neither keyword is set, the data is displayed in
row major format.

Note
If the VALUE keyword is not specified, the data in the created table will be of type
STRING.

If none of [XY]SIZE, SCR_[XY]SIZE, or [XY]_SCROLL_SIZE is present, the size
of the table is determined by the size of the array or vector of structures specified by
VALUE. See “Note on Table Sizing” on page 2307.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

XSIZE

The width of the widget in columns. If row labels are present, one column is
automatically added to this value. See “Note on Table Sizing” on page 2307.

X_SCROLL_SIZE

The XSIZE keyword always specifies the width of a widget, in columns. When the
SCROLL keyword is specified, this size is not necessarily the same as the width of
the visible area. The X_SCROLL_SIZE keyword allows you to set the width of the
WIDGET_TABLE IDL Reference Guide

 2317
scrolling viewport independently of the actual width of the widget. See “Note on
Table Sizing” on page 2307.

Use of the X_SCROLL_SIZE keyword implies SCROLL. This means that scroll bars
will be added in both the horizontal and vertical directions when X_SCROLL_SIZE
is specified. Because the default size of the scrolling viewport may differ between
platforms, it is best to specify Y_SCROLL_SIZE when specifying
X_SCROLL_SIZE.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

YSIZE

The height of the widget in rows. If column labels are present, one row is
automatically added to this value. See “Note on Table Sizing” on page 2307.

Y_SCROLL_SIZE

The YSIZE keyword always specifies the height of a widget. in rows. When the
SCROLL keyword is specified, this size is not necessarily the same as the height of
the visible area. The Y_SCROLL_SIZE keyword allows you to set the height of the
scrolling viewport independently of the actual width of the widget. See “Note on
Table Sizing” on page 2307.

Use of the Y_SCROLL_SIZE keyword implies SCROLL. This means that scroll bars
will be added in both the horizontal and vertical directions when Y_SCROLL_SIZE
is specified. Because the default size of the scrolling viewport may differ between
platforms, it is best to specify X_SCROLL_SIZE when specifying
Y_SCROLL_SIZE.

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL procedure affect the behavior of
table widgets. In addition to those keywords that affect all widgets, the following are
particularly useful: ALIGNMENT, ALL_TABLE_EVENTS, COLUMN_LABELS,
IDL Reference Guide WIDGET_TABLE

2318
COLUMN_WIDTHS, DELETE_COLUMNS, DELETE_ROWS, EDITABLE,
EDIT_CELL, FORMAT, GET_VALUE, INSERT_COLUMNS, INSERT_ROWS,
KBRD_FOCUS_EVENTS, ROW_LABELS, ROW_HEIGHTS,
SET_TABLE_SELECT, SET_TABLE_VIEW, SET_TEXT_SELECT,
SET_VALUE, TABLE_BLANK, TABLE_DISJOINT_SELECTION,
TABLE_XSIZE, TABLE_YSIZE, USE_TABLE_SELECT, USE_TEXT_SELECT.

Keywords to WIDGET_INFO

A number of keywords to the WIDGET_INFO function return information that
applies specifically to table widgets. In addition to those keywords that apply to all
widgets, the following are particularly useful: COLUMN_WIDTHS,
KBRD_FOCUS_EVENTS, ROW_HEIGHTS, TABLE_ALL_EVENTS,
TABLE_DISJOINT_SELECTION, TABLE_EDITABLE, TABLE_EDIT_CELL,
TABLE_SELECT, TABLE_VIEW, USE_TABLE_SELECT.

Widget Events Returned by Table Widgets

There are several variations of the table widget event structure depending on the
specific event being reported. All of these structures contain the standard three fields
(ID, TOP, and HANDLER) as well as an integer TYPE field that indicates which type
of structure has been returned. Programs should always check the field type before
referencing fields that are not present in all table event structures. The different table
widget event structures are described below.

Insert Single Character (TYPE = 0)

This is the type of structure returned when a single character is typed into a cell of a
table widget by a user.

{WIDGET_TABLE_CH, ID:0L, TOP:0L, HANDLER:0L, TYPE:0, OFFSET:0L,
CH:0B, X:0L, Y:0L }

OFFSET is the (zero-based) insertion position that will result after the character is
inserted. CH is the ASCII value of the character. X and Y give the zero-based address
of the cell within the table.

Insert Multiple Characters (TYPE = 1)

This is the type of structure returned when multiple characters are pasted into a cell
by the window system.

{WIDGET_TABLE_STR, ID:0L, TOP:0L, HANDLER:0L, TYPE:1, OFFSET:0L,
STR:'', X:0L, Y:0L}
WIDGET_TABLE IDL Reference Guide

 2319
OFFSET is the (zero-based) insertion position that will result after the text is inserted.
STR is the string to be inserted. X and Y give the zero-based address of the cell
within the table.

Delete Text (TYPE = 2)

This is the type of structure returned when any amount of text is deleted from a cell of
a table widget.

{WIDGET_TABLE_DEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:2, OFFSET:0L,
LENGTH:0L, X:0L, Y:0L}

OFFSET is the (zero-based) character position of the first character deleted. It is also
the insertion position that will result when the next character is inserted. LENGTH
gives the number of characters involved. X and Y give the zero-based address of the
cell within the table.

Text Selection (TYPE = 3)

This is the type of structure returned when an area of text is selected (highlighted) by
the user.

{WIDGET_TABLE_TEXT_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:3,
OFFSET:0L, LENGTH:0L, X:0L, Y:0L}

The event announces a change in the insertion point. OFFSET is the (zero-based)
character position of the first character to be selected. LENGTH gives the number of
characters involved. A LENGTH of zero indicates that the widget has no selection,
and that the insertion position is given by OFFSET. X and Y give the zero-based
address of the cell within the table.

Note
Text insertion, text deletion, or any change in the current insertion point causes any
current selection to be lost. In such cases, the loss of selection is implied by the text
event reporting the insert/delete/movement and a separate zero length selection
event is not sent.

Cell Selection (TYPE = 4)

This is the type of structure returned when range of cells is selected (highlighted) or
deselected by the user.

{WIDGET_TABLE_CELL_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:4,
SEL_LEFT:0L, SEL_TOP:0L, SEL_RIGHT:0L, SEL_BOTTOM:0L}
IDL Reference Guide WIDGET_TABLE

2320
The event announces a change in the currently selected cells. The range of cells
selected is given by the zero-based indices into the table specified by the SEL_LEFT,
SEL_TOP, SEL_RIGHT, and SEL_BOTTOM fields.

Note
If the table is in disjoint selection mode, selecting an additional region will result in
a new WIDGET_TABLE_CELL_SEL event that reflects only the newly-selected
cells. Use WIDGET_INFO, /TABLE_SELECT to obtain the entire selected region
in disjoint selection mode.

When cells are deselected (either by changing the selection or by clicking in the
upper left corner of the table) an event is generated in which the SEL_LEFT,
SEL_TOP, SEL_RIGHT, and SEL_BOTTOM fields contain the value -1. This means
that two WIDGET_TABLE_CELL_SEL events are generated when an existing
selection is changed to a new selection. If your code pays attention to
WIDGET_TABLE_CELL_SEL events, be sure to differentiate between select and
deselect events.

Note
If the table is in disjoint selection mode and a new cell range is selected starting on
a previously-selected cell, the previously selected cells are deselected but a
WIDGET_TABLE_CELL_DESEL event is generated for the deselection rather
than a WIDGET_TABLE_CELL_SEL event. See “Cell Deselection (Disjoint
Mode) (TYPE = 9)” on page 2321 for details.

Row Height Changed (TYPE = 6)

This is the type of structure returned when a row height is changed by the user.

{WIDGET_TABLE_ROW_HEIGHT, ID:0L, TOP:0L, HANDLER:0L, TYPE:6,
ROW:0L, HEIGHT:0L}

The event announces that the height of the given row has been changed by the user.
The ROW field contains the zero-based row number, and the HEIGHT field contains
the new height.

Column Width Changed (TYPE = 7)

This is the type of structure returned when a column width is changed by the user.

{WIDGET_TABLE_COL_WIDTH, ID:0L, TOP:0L, HANDLER:0L, TYPE:7,
COL:0L, WIDTH:0L}
WIDGET_TABLE IDL Reference Guide

 2321
The event announces that the width of the given column has been changed by the
user. The COL field contains the zero-based column number, and the WIDTH field
contains the new width.

Invalid Data (TYPE = 8)

This is the type of structure returned when the text entered by the user does not pass
validation, and the user has finished editing the field (by hitting TAB or ENTER).

{WIDGET_TABLE_INVALID_ENTRY, ID:0L, TOP:0L, HANDLER:0L, TYPE:8,
STR:'', X:0L, Y:0L}

When this event is generated, the cell’s data is left unchanged. The invalid contents
entered by the user is given as a text string in the STR field. The cell location is given
by the X and Y fields.

Cell Deselection (Disjoint Mode) (TYPE = 9)

This is the type of structure returned when selected cells are de-selected by the user
and the table is in disjoint selection mode. It is identical to the (TYPE = 4)
WIDGET_TABLE_CELL_SEL event structure except for the name and type value.

This event occurs when the user holds down the control key when starting a selection
and the cell used to start the selection was already selected. In contrast, if the user
starts a selection with the control key down but starts on a cell that was not selected,
the normal WIDGET_TABLE_CELL_SEL is generated.

{WIDGET_TABLE_CELL_DESEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:9,
SEL_LEFT:0L, SEL_TOP:0L, SEL_RIGHT:0L, SEL_BOTTOM:0L}

The range of cells selected is given by the zero-based indices into the table specified
by the SEL_LEFT, SEL_TOP, SEL_RIGHT, and SEL_BOTTOM fields.

Keyboard Focus Events

Table widgets return the following event structure when the keyboard focus changes
and the base was created with the KBRD_FOCUS_EVENTS keyword set:

{ WIDGET_KBRD_FOCUS, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }

ID is the widget ID of the table widget generating the event. TOP is the widget ID of
the top level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. The ENTER field returns 1 (one) if the table
widget is gaining the keyboard focus, or 0 (zero) if the table widget is losing the
keyboard focus.
IDL Reference Guide WIDGET_TABLE

2322
Version History

Introduced: 5.0

DISJOINT_SELECTION keyword, Cell deselection (type 9) event added: 5.6

See Also

WIDGET_CONTROL
WIDGET_TABLE IDL Reference Guide

 2323
WIDGET_TEXT

The WIDGET_TEXT function creates text widgets. Text widgets display text and
optionally get textual input from the user. They can have 1 or more lines, and can
optionally contain scroll bars to allow viewing more text than can otherwise be
displayed on the screen.

Syntax

Result = WIDGET_TEXT(Parent [, /ALL_EVENTS] [, /CONTEXT_EVENTS]
[, /EDITABLE] [, EVENT_FUNC=string] [, EVENT_PRO=string] [, FONT=string]
[, FRAME=width] [, FUNC_GET_VALUE=string]
[, GROUP_LEADER=widget_id] [, /KBRD_FOCUS_EVENTS]
[, KILL_NOTIFY=string] [, /NO_COPY] [, /NO_NEWLINE]
[, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, RESOURCE_NAME=string] [, SCR_XSIZE=width] [, SCR_YSIZE=height]
[, /SCROLL] [, /SENSITIVE] [, /TRACKING_EVENTS] [, UNAME=string]
[, UNITS={0 | 1 | 2}] [, UVALUE=value] [, VALUE=value] [, /WRAP]
[, XOFFSET=value] [, XSIZE=value] [, YOFFSET=value] [, YSIZE=value])

Return Value

The returned value of this function is the widget ID of the newly-created text widget.

Arguments

Parent

The widget ID of the parent widget for the new text widget.

Keywords

ALL_EVENTS

Set this keyword to cause to the text widget to generate events whenever the user
changes the contents of the text area.

If the EDITABLE keyword is set, an insert character event (TYPE=0) is generated
when the user presses the RETURN or ENTER key in the text widget, even if the
ALL_EVENTS keyword is not set. See the table below for details on the interaction
between ALL_EVENTS and EDITABLE.
IDL Reference Guide WIDGET_TEXT

2324
CONTEXT_EVENTS

Set this keyword to cause context menu events (or simply context events) to be issued
when the user clicks the right mouse button over the widget. Set the keyword to 0
(zero) to disable such events. Context events are intended for use with context-
sensitive menus (also known as pop-up or shortcut menus); pass the context event ID
to the WIDGET_DISPLAYCONTEXTMENU procedure within your widget
program’s event handler to display the context menu.

For more on detecting and handling context menu events, see “Context-Sensitive
Menus” in Chapter 27 of the Building IDL Applications manual.

EDITABLE

Set this keyword to allow direct user editing of the text widget contents. Normally,
the text in text widgets is read-only. See ALL_EVENTS for a description of how
EDITABLE interacts with the ALL_EVENTS keyword.

See “ALL_TEXT_EVENTS” on page 2174 for a description of how EDITABLE
interacts with the ALL_TEXT_EVENTS keyword.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

Keywords Effects

ALL_EVENTS EDITABLE Input changes
widget contents?

Type of events
generated.

Not set Not set No None

Not set Set Yes End-of-line insertion

Set Not set No All events

Set Set Yes All events

Table 107: Effects of using the ALL_EVENTS and EDITABLE keywords
WIDGET_TEXT IDL Reference Guide

 2325
EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified is a “device font”
(an X Windows font on Motif systems; a TrueType or PostScript font on Windows
systems). See “About Device Fonts” on page 3962 for details on specifying names for
device fonts. If this keyword is omitted, the default font is used.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts.

FRAME

The value of this keyword specifies the width of a frame in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the widget.

Note
This keyword is only a “hint” to the toolkit, and may be ignored in some instances.
Under Microsoft Windows, text widgets always have frames.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

GROUP_LEADER

The widget ID of an existing widget that serves as “group leader” for the newly-
created widget. When a group leader is killed, for any reason, all widgets in the group
are also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. It is not possible to
remove a widget from an existing group.
IDL Reference Guide WIDGET_TEXT

2326
KBRD_FOCUS_EVENTS

Set this keyword to make the base return keyboard focus events whenever the
keyboard focus of the base changes. See “Widget Events Returned by Text Widgets”
on page 2330 for more information.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_TEXT or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NO_NEWLINE

Normally, when setting the value of a multi-line text widget, newline characters are
automatically appended to the end of each line of text. Set this keyword to suppress
this action.
WIDGET_TEXT IDL Reference Guide

 2327
NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
See “RESOURCE_NAME” on page 2139 for a complete discussion of this keyword.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SCROLL

Set this keyword to give the widget scroll bars that allow viewing portions of the
widget contents that are not currently on the screen.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
IDL Reference Guide WIDGET_TEXT

2328
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget whenever
the mouse pointer enters or leaves the region covered by that widget. For the structure
of tracking events, see “TRACKING_EVENTS” on page 2145 in the documentation
for WIDGET_BASE.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

Note
This keyword does not affect all sizing operations. Specifically, the value of UNITS
is ignored when setting the XSIZE or YSIZE keywords to WIDGET_TEXT.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
WIDGET_TEXT IDL Reference Guide

 2329
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

The initial value setting of the widget. The value of a text widget is the current text
displayed by the widget.

VALUE can be either a string or an array of strings. Note that variables returned by
the GET_VALUE keyword to WIDGET_CONTROL are always string arrays, even if
a scalar string is specified in the call to WIDGET_TEXT.

WRAP

Set this keyword to indicate that scrolling or multi-line text widgets should
automatically break lines between words to keep the text from extending past the
right edge of the text display area. Note that carriage returns are not automatically
entered when lines wrap; the value of the text widget will remain a single-element
array unless you explicitly enter a carriage return.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

XSIZE

The width of the widget in characters. Note that the physical width of the text widget
depends on both the value of XSIZE and on the size of the font used. The default
value of XSIZE varies according to your windowing system. On Windows, the
default size is roughly 20 characters. On Motif, the default size depends on the width
of the text widget.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.
IDL Reference Guide WIDGET_TEXT

2330
Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget programming.

YSIZE

The height of the widget in text lines. Note that the physical height of the text widget
depends on both the value of YSIZE and on the size of the font used. The default
value of YSIZE is one line.

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL procedure affect the behavior of
text widgets. In addition to those keywords that affect all widgets, the following are
particularly useful: ALL_TEXT_EVENTS, APPEND, CONTEXT_EVENTS,
EDITABLE, GET_VALUE, KBRD_FOCUS_EVENTS, INPUT_FOCUS,
NO_NEWLINE, SET_TEXT_SELECT, SET_TEXT_TOP_LINE, SET_VALUE,
USE_TEXT_SELECT.

Keywords to WIDGET_INFO

A number of keywords to the WIDGET_INFO function return information that
applies specifically to text widgets. In addition to those keywords that apply to all
widgets, the following are particularly useful: CONTEXT_EVENTS,
KBRD_FOCUS_EVENTS, TEXT_ALL_EVENTS, TEXT_EDITABLE,
TEXT_NUMBER, TEXT_OFFSET_TO_XY, TEXT_SELECT, TEXT_TOP_LINE,
TEXT_XY_TO_OFFSET.

Widget Events Returned by Text Widgets

There are several variations of the text widget event structure depending on the
specific event being reported. All of these structures contain the standard three fields
(ID, TOP, and HANDLER) as well as an integer TYPE field that indicates which type
of structure has been returned. Programs should always check the type field before
referencing fields that are not present in all text event structures. The different text
widget event structures are described below.

Insert Single Character (TYPE = 0)

This is the type of structure returned when a single character is typed or pasted into a
text widget by a user.
WIDGET_TEXT IDL Reference Guide

 2331
{ WIDGET_TEXT_CH, ID:0L, TOP:0L, HANDLER:0L, TYPE:0, OFFSET:0L,
CH:0B }

OFFSET is the (zero-based) insertion position that will result after the character is
inserted. CH is the ASCII value of the character.

Insert Multiple Characters (TYPE = 1)

This is the type of structure returned when multiple characters are pasted into a text
widget by the window system.

{ WIDGET_TEXT_STR, ID:0L, TOP:0L, HANDLER:0L, TYPE:1, OFFSET:0L,
STR:'' }

OFFSET is the (zero-based) insertion position that will result after the text is inserted.
STR is the string to be inserted.

Delete Text (TYPE = 2)

This is the type of structure returned when any amount of text is deleted from a text
widget.

{ WIDGET_TEXT_DEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:2, OFFSET:0L,
LENGTH:0L }

OFFSET is the (zero-based) character position of the first character to be deleted. It is
also the insertion position that will result when the characters have been deleted.
LENGTH gives the number of characters involved. A LENGTH of zero indicates that
no characters were deleted.

Selection (TYPE = 3)

This is the type of structure returned when an area of text is selected (highlighted) by
the user.

{ WIDGET_TEXT_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:3, OFFSET:0L,
LENGTH:0L }

The event announces a change in the insertion point. OFFSET is the (zero-based)
character position of the first character to be selected. LENGTH gives the number of
characters involved. A LENGTH of zero indicates that no characters are selected, and
the new insertion position is given by OFFSET.

Note that text insertion, text deletion, or any change in the current insertion point
causes any current selection to be lost. In such cases, the loss of selection is implied
by the text event reporting the insert/delete/movement and a separate zero length
selection event is not sent.
IDL Reference Guide WIDGET_TEXT

2332
Keyboard Focus Events

Text widgets return the following event structure when the keyboard focus changes
and the base was created with the KBRD_FOCUS_EVENTS keyword set:

{ WIDGET_KBRD_FOCUS, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }

The first three fields are the standard fields found in every widget event. The ENTER
field returns 1 (one) if the text widget is gaining the keyboard focus, or 0 (zero) if the
text widget is losing the keyboard focus.

Context Menu Events

Text widgets return the following event structure when the user clicks the right mouse
button and the text widget was created with the CONTEXT_EVENTS keyword set:

{WIDGET_CONTEXT, ID:0L, TOP:0L, HANDLER:0L, X:0L, Y:0L}

The first three fields are the standard fields found in every widget event. The X and Y
fields give the device coordinates at which the event occurred, measured from the
upper left corner of the text widget.

Version History

Introduced: Pre 4.0

See Also

CW_FIELD, XDISPLAYFILE
WIDGET_TEXT IDL Reference Guide

 2333
WIDGET_TREE

The WIDGET_TREE function is used to create and populate a tree widget. The tree
widget presents a hierarchical view that can be used to organize a wide variety of data
structures and information.

The WIDGET_TREE function performs two separate tasks: creating the tree widget
and populating the tree widget with nodes (branches and leaves).

For a more detailed discussion of the tree widget, along with examples, see “Using
Tree Widgets” in Chapter 27 of the Building IDL Applications manual.

Syntax

Result = WIDGET_TREE(Parent [, /ALIGN_BOTTOM | , /ALIGN_CENTER |
, /ALIGN_LEFT | , /ALIGN_RIGHT | , /ALIGN_TOP] [, BITMAP=array]
[, /CONTEXT_EVENTS] [, EVENT_FUNC=string] [, EVENT_PRO=string]
[, /EXPANDED] [, /FOLDER] [, FUNC_GET_VALUE=string]
[, GROUP_LEADER=widget_id] [, KILL_NOTIFY=string] [, /MULTIPLE]
[, /NO_COPY] [, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, SCR_XSIZE=width] [, SCR_YSIZE=height] [, /SENSITIVE]
[, /TRACKING_EVENTS] [, /TOP] [, UNAME=string] [, UNITS={0 | 1 | 2}]
[, UVALUE=value] [, VALUE=string] [, XOFFSET=value] [, XSIZE=value]
[, YOFFSET=value] [, YSIZE=value])

Return Value

The returned value of this function is the widget ID of the newly-created tree widget.

Arguments

Parent

The widget ID of the parent for the new tree widget. Parent can be either a base
widget or a tree widget.

• If Parent is a base widget, WIDGET_TREE will create a tree widget that
contains no other tree widgets. This type of tree widget is referred to as a root
node.

• If Parent is a tree widget, WIDGET_TREE will create a new tree widget
(called a node) in the specified tree widget.
IDL Reference Guide WIDGET_TREE

2334
Note
With the exception of the first tree widget created (the root node, whose
Parent is a base widget), a tree widget (or node) must be created with the
FOLDER keyword in order to serve as the Parent for other tree widgets.

Keywords

ALIGN_BOTTOM

Set this keyword to align the new widget with the bottom of its parent base. To take
effect, the parent must be a ROW base.

ALIGN_CENTER

Set this keyword to align the new widget with the center of its parent base. To take
effect, the parent must be a ROW or COLUMN base. In ROW bases, the new widget
will be vertically centered. In COLUMN bases, the new widget will be horizontally
centered.

ALIGN_LEFT

Set this keyword to align the new widget with the left side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_RIGHT

Set this keyword to align the new widget with the right side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_TOP

Set this keyword to align the new widget with the top of its parent base. To take
effect, the parent must be a ROW base.

BITMAP

Set this keyword equal to a 16x16x3 array representing an RGB image that will be
displayed next to the node in the tree widget.

CONTEXT_EVENTS

Set this keyword to cause context menu events (or simply context events) to be issued
when the user clicks the right mouse button over the widget. Set the keyword to 0
(zero) to disable such events. Context events are intended for use with context-
WIDGET_TREE IDL Reference Guide

 2335
sensitive menus (also known as pop-up or shortcut menus); pass the context event ID
to the WIDGET_DISPLAYCONTEXTMENU within your widget program’s event
handler to display the context menu.

For more on detecting and handling context menu events, see “Context-Sensitive
Menus” in Chapter 27 of the Building IDL Applications manual.

This keyword is only valid if the Parent of the tree widget is a base widget.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EXPANDED

If the tree node being created is a folder (specified by the FOLDER keyword), set this
keyword to cause the folder to be initially displayed expanded, showing all of its
immediate child entries. By default, folders are initially displayed collapsed.

This keyword is only valid if the Parent of the tree widget is another tree widget.

FOLDER

Set this keyword to cause the tree node being created to act as a folder (that is, as a
branch of the tree rather than a leaf).

Note
With the exception of the root node (the tree widget whose Parent widget is a base
widget), only tree nodes that have the FOLDER keyword set can act as the parent
for other tree widgets.

This keyword is only valid if the Parent of the tree widget is another tree widget.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
IDL Reference Guide WIDGET_TREE

2336
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

GROUP_LEADER

The widget ID of an existing widget that serves as group leader for the newly-created
widget. When a group leader is killed, for any reason, all widgets in the group are
also destroyed.

A given widget can be in more than one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to a widget. You cannot remove a
widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
callback procedure. This callback procedure can be removed by setting the routine
name to the null string (''). Note that the procedure specified is used only if you are
not using the XMANAGER procedure to manage your widgets.

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

MULTIPLE

Set this keyword to enable multiple selection operations in the tree widget. If enabled,
multiple elements in the tree widget can be selected at one time by holding down the
Control or Shift key while clicking the left mouse button.

This keyword is only valid if the Parent of the tree widget is a base widget.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique works
well for small data, it can have a significant memory cost when the data being copied
is large.
WIDGET_TREE IDL Reference Guide

 2337
If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copying the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. Upon a set operation (using the UVALUE keyword to
WIDGET_TAB or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. Upon a get operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NOTIFY_REALIZE

Set this keyword to a string containing the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
callback procedure. This callback procedure can be removed by setting the routine
name to the null string (''). The callback routine is called with the widget ID as its
only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

SCR_XSIZE

Set this keyword to the desired screen width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired screen height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.
IDL Reference Guide WIDGET_TREE

2338
If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.

Note
Some widgets do not change their appearance when they are made insensitive, but
they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget whenever
the mouse pointer enters or leaves the region covered by that widget. For the structure
of tracking events, see “TRACKING_EVENTS” on page 2145 in the documentation
for WIDGET_BASE.

TOP

Set this keyword to cause the tree node being created to be inserted as the parent
node’s top entry. By default, new nodes are inserted as the parent node’s bottom entry.

This keyword is only valid if the Parent of the tree widget is another tree widget.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (which is
the default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.
WIDGET_TREE IDL Reference Guide

 2339
UVALUE

The user value to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

VALUE

Set this keyword equal to a string containing the text that will be displayed next to the
tree node. If this keyword is not set, the default value Tree is used.

This keyword is only valid if the Parent of the tree widget is another tree widget.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. You should avoid using this style of widget
programming.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
hint to the toolkit and may be ignored in some situations.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. You should avoid using this style of widget
programming.
IDL Reference Guide WIDGET_TREE

2340
YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
hint to the toolkit and may be ignored in some situations.

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL affect the behavior of tree
widgets. In addition to those keywords that affect all widgets, the following keywords
are particularly useful: SET_TREE_BITMAP, SET_TREE_EXPANDED,
SET_TREE_SELECT, SET_TREE_VISIBLE.

Keywords to WIDGET_INFO

Some keywords to the WIDGET_INFO return information that applies specifically to
tree widgets. In addition to those keywords that apply to all widgets, the following
keywords are particularly useful: TREE_EXPANDED, TREE_SELECT, and
TREE_ROOT.

Widget Events Returned by Tree Widgets

Several variations of the tree widget event structure depend upon the specific event
being reported. All of these structures contain the standard three fields (ID, TOP, and
HANDLER) as well as an integer TYPE field that indicates which type of structure
has been returned. Programs should always check the type field before referencing
fields that are not present in all tree event structures. The different tree widget event
structures are described below.

Select (TYPE = 0)

This structure is returned when the currently selected node in the tree widget
changes:

{WIDGET_TREE_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:0, CLICKS:0L}

The CLICKS field indicates the number of mouse-button clicks that occurred when
the event took place. This field contains 1 (one) when the item is selected, or 2 when
the user double-clicks on the item.

Expand (TYPE = 1)

This structure is returned when a folder in the tree widget expands or collapses:
WIDGET_TREE IDL Reference Guide

 2341
{WIDGET_TREE_EXPAND, ID:0L, TOP:0L, HANDLER:0L, TYPE:1, EXPAND:0L}

The EXPAND field contains 1 (one) if the folder expanded or 0 (zero) if the folder
collapsed.

Context Menu Events

Tree widgets return the following event structure when the user clicks the right mouse
button and the tree widget was created with the CONTEXT_EVENTS keyword set:

{WIDGET_CONTEXT, ID:0L, TOP:0L, HANDLER:0L, X:0L, Y:0L}

The first three fields are the standard fields found in every widget event. The X and Y
fields give the device coordinates at which the event occurred, and are measured from
the upper left corner of the tree widget.

Version History

Introduced: 5.6

See Also

“Using Tree Widgets” in Chapter 27 of the Building IDL Applications manual
IDL Reference Guide WIDGET_TREE

2342
WINDOW

The WINDOW procedure creates a window for the display of graphics or text. It is
only necessary to use WINDOW if more than one simultaneous window or a special
size window is desired because a window is created automatically the first time any
display procedure attempts to access the window system. The newly-created window
becomes the current window, and the system variable !D.WINDOW is set to that
window’s window index. (See the description of the WSET procedure for a
discussion of the current IDL window.)

The behavior of WINDOW varies slightly depending on the window system in effect.
See the discussion of IDL graphics devices in Appendix A, “IDL Graphics Devices”
for additional details.

Syntax

WINDOW [, Window_Index] [, COLORS=value] [, /FREE] [, /PIXMAP]
[, RETAIN={0 | 1 | 2}] [, TITLE=string] [, XPOS=value] [, YPOS=value]
[, XSIZE=pixels] [, YSIZE=pixels]

Arguments

Window_Index

The window index for the newly-created window. A window index is an integer value
between 0 and 31 that is used to refer to the window. If this parameter is omitted,
window index 0 is used. If the value of Window_Index specifies an existing window,
the existing window is deleted and a new one is created. If you need to create more
than 32 windows, use the FREE keyword described below.

Keywords

COLORS

Note
This keyword is ignored under Microsoft Windows.

The maximum number of color table indices to be used when drawing. This keyword
has an effect only if supplied when the first window is created. If COLORS is not
present when the first window is created, all or most of the available color indices are
allocated depending upon the window system in use.
WINDOW IDL Reference Guide

 2343
To use monochrome windows on a color display in X Windows, use COLORS = 2
when creating the first window. One color table is maintained for all windows. A
negative value for COLORS specifies that all but the given number of colors from the
shared color table should be allocated.

Although this keyword is ignored under Microsoft Windows, we could use the
following code to use a monochrome window on all platforms:

WINDOW, COLORS=2 ; ignored on Windows
white=!D.N_COLORS-1
PLOT, FINDGEN(20), COLOR=white

FREE

Set this keyword to create a window using the smallest unused window index above
32. If this keyword is present, the Window_Index argument can be omitted. The
default position of the new window is opposite that of the current window. Using the
FREE keyword allows the creation of a large number of windows. The system
variable !D.WINDOW is set to the index of the newly-created window.

PIXMAP

Set the PIXMAP keyword to specify that the window being created is actually an
invisible portion of the display memory called a pixmap.

RETAIN

Set this keyword to 0, 1, or 2 to specify how backing store should be handled for the
window:

• 0 = no backing store

• 1 = requests that the server or window system provide backing store

• 2 = specifies that IDL provide backing store directly

See “Backing Store” on page 3824 for details.

TITLE

A scalar string that contains the window’s label. If not specified, the window is given
a label of the form “IDL n”, where n is the index number of the window. For example,
to create a window with the label “IDL Graphics”, enter:

WINDOW, TITLE='IDL Graphics'
IDL Reference Guide WINDOW

2344
XPOS

The X position of the window, specified in device coordinates. On Motif platforms,
XPOS specifies the X position of the lower left corner and is measured from the
lower left corner of the screen. On Windows platforms, XPOS specifies the X
position of the upper left corner and is measured from the upper left corner of the
screen. That is, specifying

WINDOW, XPOS = 0, YPOS = 0

will create a window in the lower left corner on Motif machines and in the upper left
corner on Windows machines.

If no position is specified, the position of the window is determined from the value of
Window Index using the following rules:

• Window 0 is placed in the upper right hand corner.

• Even numbered windows are placed on the top half of the screen and odd
numbered windows are placed on the bottom half.

• Windows 0,1,4,5,8, and 9 are placed on the right side of the screen and
windows 2,3,6, and 7 are placed on the left.

Note
The order of precedence (highest to lowest) for positioning windows is:
XPOS/YPOS keywords to WINDOW, Tile/Cascade IDE graphics (user system)
preferences, optional index argument to WINDOW. Also realize that setting
LOCATION is only a request to the Window manager and may not always be
honored due to system peculiarities.

YPOS

The Y position of the window, specified in device coordinates. See the description of
XPOS for details.

XSIZE

The width of the window in pixels.

YSIZE

The height of the window in pixels.
WINDOW IDL Reference Guide

 2345
Examples

Create graphics window number 0 with a size of 400 by 400 pixels and a title that
reads “Square Window” by entering:

WINDOW, 0, XSIZE=400, YSIZE=400, TITLE='Square Window'

Version History

Introduced: Original

See Also

WDELETE, WSET, WSHOW
IDL Reference Guide WINDOW

2346
WRITE_BMP

The WRITE_BMP procedure writes an image and its color table vectors to a
Microsoft Windows Version 3 device independent bitmap file (.BMP).

WRITE_BMP does not handle 1-bit-deep images or compressed images, and is not
fast for 4-bit images. The algorithm works best on images where the number of bytes
in each scan-line is evenly divisible by 4.

This routine is written in the IDL language. Its source code can be found in the file
write_bmp.pro in the lib subdirectory of the IDL distribution.

Syntax

WRITE_BMP, Filename, Image[, R, G, B] [, /FOUR_BIT] [, IHDR=structure]
[, HEADER_DEFINE=h{define h before call}] [, /RGB]

Arguments

Filename

A scalar string containing the full pathname of the bitmap file to write.

Image

The array to write into the new bitmap file. The array should be scaled into a range of
bytes for 8- and 24-bit deep images. Scale to 0-15 for 4-bit deep images. If the image
has 3 dimensions and the first dimension is 3, a 24-bit deep bitmap file is created.

Note
For 24-bit images, color interleaving is blue, green, red: Image[0, i, j] = blue,
Image[1, i, j] = green, Image[2, i, j] = red.

R, G, B

Color tables. If omitted, the colors loaded in the COLORS common block are used.
WRITE_BMP IDL Reference Guide

 2347
Keywords

FOUR_BIT

Set this keyword to write as a 4-bit device independent bitmap. If omitted or zero, an
8-bit deep bitmap is written.

IHDR

Set this keyword to a BITMAPINFOHEADER structure containing the file header
fields that are not obtained from the image itself. The fields in this structure that can
be set are: bi{XY}PelsPerMeter, biClrUsed, and biClrImportant.

HEADER_DEFINE

If this keyword is set, WRITE_BMP returns an empty BITMAPINFOHEADER
structure, containing zeros. No other actions are performed. This structure may be
then modified with the pertinent fields and passed in via the IHDR keyword
parameter. See the Microsoft Windows Programmers Reference Guide for a
description of each field in the structure.

Note: this parameter must be defined before the call. For example:

H = 0
WRITE_BMP, HEADER_DEFINE = H

RGB

Set this keyword to reverse the color interleaving for 24-bit images to red, green,
blue: Image[0, i, j] = red, Image[1, i, j] = green, Image[2, i, j] = blue. By default, 24-
bit images are written with color interleaving of blue, green, red.

Examples

The following command captures the contents of the current IDL graphics window
and saves it to a Microsoft Windows Bitmap file with the name test.bmp. Note that
this works only on a PseudoColor (8-bit) display:

WRITE_BMP, 'test.bmp', TVRD()

The following commands scale an image to 0-15, and then write a 4-bit BMP file,
using a grayscale color table:

; Create a ramp from 0 to 255:
r = BYTSCL(INDGEN(16))

WRITE_BMP, 'test.bmp', BYTSCL(Image, MAX=15), r, r, r, /FOUR
IDL Reference Guide WRITE_BMP

2348
Version History

Introduced: Pre 4.0

See Also

READ_BMP, QUERY_* Routines
WRITE_BMP IDL Reference Guide

 2349
WRITE_IMAGE

The WRITE_IMAGE procedure writes an image and its color table vectors, if any, to
a file of a specified type. WRITE_IMAGE can write most types of image files
supported by IDL.

Syntax

WRITE_IMAGE, Filename, Format, Data [, Red, Green, Blue] [, /APPEND]

Arguments

Filename

A scalar string containing the name of the file to write.

Format

A scalar string containing the name of the file format to write. The following are the
supported formats:

• BMP

• JPEG

• PNG

• PPM

• SRF

• TIFF

Data

An IDL variable containing the image data to write to the file.

Red

An optional vector containing the red channel of the color table if a colortable exists.

Green

An optional vector containing the green channel of the color table if a colortable
exists.
IDL Reference Guide WRITE_IMAGE

2350
Blue

An optional vector containing the blue channel of the color table if a colortable exists.

Keywords

APPEND

Set this keyword to force the image to be appended to the file instead of overwriting
the file. APPEND may be used with image formats that supports multiple images per
file and is ignored for formats that support only a single image per file.

Version History

Introduced: 5.3
WRITE_IMAGE IDL Reference Guide

 2351
WRITE_JPEG

The WRITE_JPEG procedure writes compressed images to files. JPEG (Joint
Photographic Experts Group) is a standardized compression method for full-color
and gray-scale images. This procedure is based in part on the work of the
Independent JPEG Group.

As the Independent JPEG Group states, JPEG is intended for real-world scenes (such
as digitized photographs). Line art, such as drawings or IDL plots, and other
unrealistic images are not its strong suit. Note also that JPEG is a lossy compression
scheme. That is, the output image is not identical to the input image. Hence you
cannot use JPEG if you must have identical output bits. On typical images of real-
world scenes, however, very good compression levels can be obtained with no visible
change, and amazingly high compression levels are possible if you can tolerate a low-
quality image. You can trade off output image quality against compressed file size by
adjusting a compression parameter. Files are encoded in JFIF, the JPEG File
Interchange Format; however, such files are usually simply called JPEG files.

If you need to store images in a format that uses lossless compression, consider using
the WRITE_PNG procedure. This procedure writes a Portable Network Graphics
(PNG) file using lossless compression with either 8 or 16 data bits per channel. To
store 8-bit or 24-bit images without compression, consider using WRITE_BMP (for
Microsoft Bitmap format files) or WRITE_TIFF (to write Tagged Image Format
Files).

For a short technical introduction to the JPEG compression algorithm, see: Wallace,
Gregory K. “The JPEG Still Picture Compression Standard”, Communications of the
ACM, April 1991 (vol. 34, no. 4), pp. 30-44.

Note
All JPEG files consist of byte data. Input data is converted to bytes before being
written to a JPEG file.

Syntax

WRITE_JPEG [, Filename | , UNIT=lun] , Image [, /ORDER] [, /PROGRESSIVE]
[, QUALITY=value{0 to 100}] [, TRUE={1 | 2 | 3}]
IDL Reference Guide WRITE_JPEG

2352
Arguments

Filename

A string containing the name of file to be written in JFIF (JPEG) format. If this
parameter is not present, the UNIT keyword must be specified.

Image

A byte array of either two or three dimensions, containing the image to be written.
Grayscale images must have two dimensions. TrueColor images must have three
dimensions with the index of the dimension that contains the color specified with the
TRUE keyword.

Keywords

ORDER

JPEG/JFIF images are normally written in top-to-bottom order. If the image array is
in the standard IDL order (i.e., from bottom-to-top) set ORDER to 0, its default
value. If the image array is in top-to-bottom order, ORDER must be set to 1.

PROGRESSIVE

Set this keyword to write the image as a series of scans of increasing quality. When
used with a slow communications link, a decoder can generate a low-quality image
very quickly, and then improve its quality as more scans are received.

Warning
Not all JPEG applications can handle progressive JPEG files, and it is up the JPEG
reader to progressively display the JPEG image. For example, IDL’s READ_JPEG
routine ignores the progressive readout request and reads the entire image in at the
first reading.

QUALITY

This keyword specifies the quality index, in the range of 0 (terrible) to 100 (excellent)
for the JPEG file. The default value is 75, which corresponds to very good quality.
Lower values of QUALITY produce higher compression ratios and smaller files.
WRITE_JPEG IDL Reference Guide

 2353
TRUE

This keyword specifies the index, starting at 1, of the dimension over which the color
is interleaved. For example, for an image that is pixel interleaved and has dimensions
of (3, m, n), set TRUE to 1. Specify 2 for row-interleaved images (m, 3, n); and 3 for
band-interleaved images (m, n, 3). If TRUE is not set, the image is assumed to have
no interleaving (it is not a TrueColor image).

UNIT

This keyword designates the logical unit number of an already open file to receive the
output, allowing multiple JFIF images per file or the embedding of JFIF images in
other data files. If this keyword is used, Filename should not be specified.

Note
When opening a file intended for use with the UNIT keyword, if the filename does
not end in .jpg, or .jpeg, you must specify the STDIO keyword to OPEN in order
for the file to be compatible with WRITE_JPEG.

Examples

Write the image contained in the array A, using JPEG compression with a quality
index of 25. The image is stored in bottom-to-top order:

image = DIST(100)
WRITE_JPEG, 'test1.jpg', image, QUALITY=25

Write a TrueColor image to a JPEG file. The image is contained in the band-
interleaved array A with dimensions (m, n, 3). Assume it is stored in top-to-bottom
order:

WRITE_JPEG, 'test2.jpg', image, TRUE=3, /ORDER

Version History

Introduced: Pre 4.0

See Also

READ_JPEG, QUERY_* Routines
IDL Reference Guide WRITE_JPEG

2354
WRITE_NRIF

The WRITE_NRIF procedure writes an image and its color table vectors to an NCAR
Raster Interchange Format (NRIF) rasterfile.

WRITE_NRIF only writes 8- or 24-bit deep rasterfiles of types “Indexed Color” (8-
bit) and “Direct Color integrated” (24-bit). The color map is included only for 8-bit
files.

See the document “NCAR Raster Interchange Format and TAGS Raster Reference
Manual,” available from the Scientific Computing Division, National Center for
Atmospheric Research, Boulder, CO, 80307-3000, for information on the structure of
NRIF files.

This routine is written in the IDL language. Its source code can be found in the file
write_nrif.pro in the lib subdirectory of the IDL distribution.

Syntax

WRITE_NRIF, File, Image [, R, G, B]

Arguments

File

A scalar string containing the full path name of the NRIF file to write.

Image

The byte array to be written to the NRIF file. If Image has the dimensions (n,m), an 8-
bit NRIF file with color tables is created. If Image has the dimensions (3,n,m), a 24-
bit NRIF file is created, where each byte triple represents the red, green, and blue
intensities at (n,m) on a scale from 0 to 255. The NRIF image will be rendered from
bottom to top, in accordance with IDL standards.

R, G, B

The Red, Green, and Blue color vectors to be used as a color table with 8-bit images.
If color vectors are supplied, they are included in the output (8-bit images only). If R,
G, B values are not provided, the last color table established using LOADCT is
included. If no color table has been established, WRITE_NRIF calls LOADCT to
load the grayscale entry (table 0).
WRITE_NRIF IDL Reference Guide

 2355
Note
WRITE_NRIF does not recognize color vectors loaded directly using TVLCT, so if
a custom color table is desired and it is not convenient to use XPALETTE, include
the R, G, and B vectors that were used to create the color table.

Version History

Introduced: Pre 4.0
IDL Reference Guide WRITE_NRIF

2356
WRITE_PICT

The WRITE_PICT procedure writes an image and its color table vectors to a PICT
(version 2) format image file. The PICT format is used by Apple Macintosh
computers.

Note: WRITE_PICT only works with 8-bit displays

This routine is written in the IDL language. Its source code can be found in the file
write_pict.pro in the lib subdirectory of the IDL distribution.

Syntax

WRITE_PICT, Filename [, Image, R, G, B]

Arguments

Filename

A scalar string containing the full pathname of the PICT file to write.

Image

The byte array to be written to the PICT file. If Image is omitted, the entire current
graphics window is read into an array and written to the PICT file.

R, G, B

The Red, Green, and Blue color vectors to be written to the PICT file. If R, G, B
values are not provided, the last color table established using LOADCT is included. If
no color table has been established, WRITE_PICT calls LOADCT to load the
grayscale entry (table 0).

Examples

Create a pseudo screen dump from the current window. Note that this works only on a
PseudoColor (8-bit) display:

WRITE_PICT, 'test.pict', TVRD()

Version History

Introduced: Pre 4.0
WRITE_PICT IDL Reference Guide

 2357
See Also

READ_PICT, QUERY_* Routines
IDL Reference Guide WRITE_PICT

2358
WRITE_PNG

The WRITE_PNG procedure writes a 2-D or 3-D IDL variable into a Portable
Network Graphics (PNG) file. The data in the file is stored using lossless
compression with either 8 or 16 data bits per channel, based on the input IDL variable
type. 3-D IDL variables must have the number of channels as their leading dimension
(pixel interleaved). For BYTE format 2-D IDL variables, an optional palette may be
stored in the image file along with a list of pixel values which are to be considered
transparent by a reading program.

Note
IDL supports version 1.0.5 of the PNG Library.

Syntax

WRITE_PNG, Filename, Image[, R, G, B] [, /ORDER] [, /VERBOSE]
[, TRANSPARENT=array]

Arguments

Filename

A scalar string containing the full pathname of the PNG file to write.

Image

The array to write into the new PNG file. If Image is one of the integer data types, it is
converted to type unsigned integer (UINT) and written out at 16 data bits per channel.
All other data types are converted to bytes and written out at 8-bits per channel.

Note
If Image is two-dimensional (single-channel) and R, G, and B are provided, all input
data types (including integer) are converted to bytes and written out as 8-bit data.

R, G, B

For single-channel images, R, G, and B should contain the red, green, and blue color
vectors, respectively. For multi-channel images, these arguments are ignored.
WRITE_PNG IDL Reference Guide

 2359
Keywords

ORDER

Set this keyword to indicate that the rows of the image should be written from bottom
to top. The rows are written from top to bottom by default. ORDER provides
compatibility with PNG files written using versions of IDL prior to IDL 5.4, which
wrote PNG files from bottom to top.

VERBOSE

Produces additional diagnostic output during the write.

TRANSPARENT

Set this keyword to an array of pixel index values which are to be treated as
“transparent” for the purposes of image display. This keyword is valid only if Image
is a single-channel (color indexed) image and the R, G, B palette is provided.

Examples

Create an RGBA (16-bits/channel) and a Color Indexed (8-bits/channel) image with a
palette.

rgbdata = UINDGEN(4,320,240)
cidata = BYTSCL(DIST(256))
red = INDGEN(256)
green = INDGEN(256)
blue = INDGEN(256)
WRITE_PNG,'rgb_image.png',rgbdata
WRITE_PNG,'ci_image.png',cidata,red,green,blue

; Query and Read the data:
names = ['rgb_image.png','ci_image.png','unknown.png']
FOR i=0,N_ELEMENTS(names)-1 DO BEGIN

ok = QUERY_PNG(names[i],s)
IF (ok) THEN BEGIN

HELP,s,/STRUCTURE
IF (s.HAS_PALETTE) THEN BEGIN

img = READ_PNG(names[i],rpal,gpal,bpal)
HELP,img,rpal,gpal,bpal

ENDIF ELSE BEGIN
img = READ_PNG(names[i])
HELP,img

ENDELSE
ENDIF ELSE BEGIN
IDL Reference Guide WRITE_PNG

2360
PRINT,names[i],' is not a PNG file'
ENDELSE

ENDFOR

Version History

Introduced: 5.2

See Also

READ_PNG, QUERY_* Routines
WRITE_PNG IDL Reference Guide

 2361
WRITE_PPM

The WRITE_PPM procedure writes an image to a PPM (TrueColor) or PGM (gray
scale) file. This routine is written in the IDL language. Its source code can be found in
the file write_ppm.pro in the lib subdirectory of the IDL distribution.

Note
WRITE_PPM only writes 8-bit deep PGM/PPM files of the standard type. Images
should be ordered so that the first row is the top row.

PPM/PGM format is supported by the PBMPLUS toolkit for converting various
image formats to and from portable formats, and by the Netpbm package.

Syntax

WRITE_PPM, Filename, Image [, /ASCII]

Arguments

Filename

A scalar string specifying the full pathname of the PPM or PGM file to write.

Image

The 2D (gray scale) or 3D (TrueColor) array to be written to a file.

Keywords

ASCII

Set this keyword to force WRITE_PPM to use formatted ASCII input/output to write
the image data. The default is to use the far more efficient binary input/output
(RAWBITS) format.

Examples

image = DIST(100)
WRITE_PPM, 'file.ppm', image
IDL Reference Guide WRITE_PPM

2362
Version History

Introduced: 4.0

See Also

READ_PPM, QUERY_* Routines
WRITE_PPM IDL Reference Guide

 2363
WRITE_SPR

The WRITE_SPR procedure writes a row-indexed sparse array structure to a
specified file. Row-indexed sparse arrays are created using the SPRSIN function.

Syntax

WRITE_SPR, AS, Filename

Arguments

AS

A row-indexed sparse array created by SPRSIN.

Filename

The name of the file that will contain AS.

Keywords

None.

Examples

; Create an array:
A = [[3.,0., 1., 0., 0.],$

[0.,4., 0., 0., 0.],$
[0.,7., 5., 9., 0.],$
[0.,0., 0., 0., 2.],$
[0.,0., 0., 6., 5.]]

; Convert it to sparse storage format:
A = SPRSIN(A)

; Store it in the file sprs.as:
WRITE_SPR, A, 'sprs.as'

Version History

Introduced: Pre 4.0
IDL Reference Guide WRITE_SPR

2364
See Also

FULSTR, LINBCG, SPRSAB, SPRSAX, SPRSIN, READ_SPR
WRITE_SPR IDL Reference Guide

 2365
WRITE_SRF

The WRITE_SRF procedure writes an image and its color table vectors to a Sun
Raster File (SRF).

WRITE_SRF only writes 32-, 24-, and 8-bit-deep rasterfiles of type RT_STANDARD.
Use the UNIX command rasfilter8to1 to convert these files to 1-bit deep files.
See the file /usr/include/rasterfile.h for the structure of Sun rasterfiles.

This routine is written in the IDL language. Its source code can be found in the file
write_srf.pro in the lib subdirectory of the IDL distribution.

Syntax

WRITE_SRF, Filename [, Image, R, G, B] [, /ORDER] [, /WRITE_32]

Arguments

Filename

A scalar string containing the full pathname of the SRF to write.

Image

The array to be written to the SRF. If Image has dimensions (3,n,m), a 24-bit SRF is
written. If Image is omitted, the entire current graphics window is read into an array
and written to the SRF file. Image should be of byte type, and in top to bottom scan
line order.

R, G, B

The Red, Green, and Blue color vectors to be written to the file. If R, G, B values are
not provided, the last color table established using LOADCT is included. If no color
table has been established, WRITE_SRF calls LOADCT to load the grayscale entry
(table 0).

Keywords

ORDER

Set this keyword to write the image from the top down instead of from the bottom up.
This setting is only necessary when writing a file from the current IDL graphics
window; it is ignored when writing a file from a data array passed as a parameter.
IDL Reference Guide WRITE_SRF

2366
WRITE_32

Set this keyword to write a 32-bit file. If the input image is a TrueColor image,
dimensioned (3, n, m), it is normally written as a 24-bit raster file.

Examples

Create a pseudo screen dump from the current window:

WRITE_SRF, 'test.srf', TVRD()

Version History

Introduced: Original

See Also

READ_SRF, QUERY_* Routines
WRITE_SRF IDL Reference Guide

 2367
WRITE_SYLK

The WRITE_SYLK function writes the contents of an IDL variable to a SYLK
(Symbolic Link) format spreadsheet data file.

Note
This routine writes only numeric and string SYLK data. It cannot handle
spreadsheet and cell formatting information (cell width, text justification, font type,
date, time, monetary notations, etc.). A given SYLK data file cannot be appended
with data blocks through subsequent calls.

This routine is written in the IDL language. Its source code can be found in the file
write_sylk.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = WRITE_SYLK(File, Data [, STARTCOL=column] [, STARTROW=row])

Return Value

The function returns TRUE if the write operation was successful.

Arguments

File

A scalar string specifying the full path name of the SYLK file to write.

Data

A scalar, vector, or 2D array to be written to File.

Keywords

STARTCOL

Set this keyword to the first column of spreadsheet cells to write. If not specified, the
write operation begins with the first column found in the file (column 0).
IDL Reference Guide WRITE_SYLK

2368
STARTROW

Set this keyword to the first row of spreadsheet cells to write. If not specified, the
write operation begins with the first row of cells found in the file (row 0).

Examples

Suppose you wish to write the contents of a 2 by 2 floating-point array, data, to a
SYLK data file called “bar.slk” such that the matrix would appear with it’s upper left
data at the cell in the 10th row and the 20th column. Use the following command:

status = WRITE_SYLK('bar.slk', data, STARTROW = 9, STARTCOL = 19)

The IDL variable status will contain the value 1 if the operation was successful.

Version History

Introduced: 4.0

See Also

READ_SYLK
WRITE_SYLK IDL Reference Guide

 2369
WRITE_TIFF

The WRITE_TIFF procedure can write TIFF files with one or more channels, where
each channel can contain 1, 4, 8, 16, or 32-bit integer pixels, or floating-point values.

Syntax

WRITE_TIFF, Filename [, Image] [, /APPEND]
[, BITS_PER_SAMPLE={1 | 4 | 8}] [, RED=value] [, GREEN=value]
[, BLUE=value] [, COMPRESSION={0 | 2 | 3}] [, GEOTIFF=structure]
[, /LONG | , /SHORT | , /FLOAT] [, ORIENTATION=value]
[, PLANARCONFIG={1 | 2}] [, UNITS={1 | 2 | 3}] [, /VERBOSE]
[, XRESOL=pixels/inch] [, YRESOL=pixels/inch]

Arguments

Filename

A scalar string containing the full pathname of the TIFF to write.

Image

The array to be written to the TIFF. If Image has dimensions (k,n,m), a k-channel
TIFF is written. Image should be in top to bottom scan line order. By default, this
array is converted to byte format before being written (see the LONG, SHORT and
FLOAT keywords below). Note that many TIFF readers can read only one- or three-
channel images.

Note
The Image argument is optional if PLANARCONFIG is set to 2 and the RED,
GREEN, and BLUE keywords have been set to 2D arrays.

Note
Grayscale TIFF images are written out with the PhotometricInterpretation tag set to
BlackIsZero, implying that values of 0 should correspond to black. If you want
values of 0 to correspond to white, you should invert your pixel values before
calling WRITE_TIFF.
IDL Reference Guide WRITE_TIFF

2370
Order

This argument is obsolete. The Order argument has been replaced by the
ORIENTATION keyword. Code that uses the Order argument will continue to work as
before, but new code should use the ORIENTATION keyword instead.

Keywords

APPEND

Set this keyword to specify that the image should be added to the existing file,
creating a multi-image TIFF file.

BITS_PER_SAMPLE

Set this keyword to either 1, 4, or 8 to create a grayscale image file with the specified
number of bits per pixel. For 1-bit (bi-level) images, an output pixel is assigned the
value 1 (one) if the corresponding input pixel is nonzero. For 4-bit grayscale images,
the input pixel values must be in the range 0 through 15, or the image will be garbled.
The default is BITS_PER_SAMPLE=8. This keyword is ignored if an RGB image or
color palette is present, or if one of the FLOAT, LONG, or SHORT keywords is set.

COMPRESSION

Set this keyword to select the type of compression to be used:

• 0 = none (default)

• 2 = PackBits

• 3 = JPEG (ITIFF files)

Note
For COMPRESSION=3 (JPEG), all images are assumed to be in top-to-bottom
order, and the ORIENTATION keyword should not be specified. If your input
image is not in top-to-bottom order, you should use REVERSE(image, 2) to flip the
order before calling WRITE_TIFF.

FLOAT

Set this keyword to write the pixel components as floating-point entities (the default
is 8-bit).
WRITE_TIFF IDL Reference Guide

 2371
GEOTIFF

Set this keyword to an anonymous structure containing one field for each of the
GeoTIFF tags and keys to be written into the file. The GeoTIFF structure is formed
using fields named from the following table.

Anonymous Structure Field Name IDLDatatype

TAGS:

"MODELPIXELSCALETAG" DOUBLE[3]

"MODELTRANSFORMATIONTAG" DOUBLE[4,4]

"MODELTIEPOINTTAG" DOUBLE[6,*]

KEYS:

"GTMODELTYPEGEOKEY" INT

"GTRASTERTYPEGEOKEY" INT

"GTCITATIONGEOKEY" STRING

"GEOGRAPHICTYPEGEOKEY" INT

"GEOGCITATIONGEOKEY" STRING

"GEOGGEODETICDATUMGEOKEY" INT

"GEOGPRIMEMERIDIANGEOKEY" INT

"GEOGLINEARUNITSGEOKEY" INT

"GEOGLINEARUNITSIZEGEOKEY" DOUBLE

"GEOGANGULARUNITSGEOKEY" INT

"GEOGANGULARUNITSIZEGEOKEY" DOUBLE

"GEOGELLIPSOIDGEOKEY" INT

"GEOGSEMIMAJORAXISGEOKEY" DOUBLE

"GEOGSEMIMINORAXISGEOKEY" DOUBLE

"GEOGINVFLATTENINGGEOKEY" DOUBLE

"GEOGAZIMUTHUNITSGEOKEY" INT

Table 108: GEOTIFF Structures
IDL Reference Guide WRITE_TIFF

2372
"GEOGPRIMEMERIDIANLONGGEOKEY" DOUBLE

"PROJECTEDCSTYPEGEOKEY" INT

"PCSCITATIONGEOKEY" STRING

"PROJECTIONGEOKEY" INT

"PROJCOORDTRANSGEOKEY" INT

"PROJLINEARUNITSGEOKEY" INT

"PROJLINEARUNITSIZEGEOKEY" DOUBLE

"PROJSTDPARALLEL1GEOKEY" DOUBLE

"PROJSTDPARALLEL2GEOKEY" DOUBLE

"PROJNATORIGINLONGGEOKEY" DOUBLE

"PROJNATORIGINLATGEOKEY" DOUBLE

"PROJFALSEEASTINGGEOKEY" DOUBLE

"PROJFALSENORTHINGGEOKEY" DOUBLE

"PROJFALSEORIGINLONGGEOKEY" DOUBLE

"PROJFALSEORIGINLATGEOKEY" DOUBLE

"PROJFALSEORIGINEASTINGGEOKEY" DOUBLE

"PROJFALSEORIGINNORTHINGGEOKEY" DOUBLE

"PROJCENTERLONGGEOKEY" DOUBLE

"PROJCENTERLATGEOKEY" DOUBLE

"PROJCENTEREASTINGGEOKEY" DOUBLE

"PROJCENTERNORTHINGGEOKEY" DOUBLE

"PROJSCALEATNATORIGINGEOKEY" DOUBLE

"PROJSCALEATCENTERGEOKEY" DOUBLE

"PROJAZIMUTHANGLEGEOKEY" DOUBLE

Anonymous Structure Field Name IDLDatatype

Table 108: GEOTIFF Structures (Continued)
WRITE_TIFF IDL Reference Guide

 2373
Note
If a GeoTIFF key appears multiple times in a file, only the value for the first
instance of the key is returned.

LONG

Set this keyword to write the pixel components as unsigned 32-bit entities (the default
is 8-bit).

ORIENTATION

Set this keyword to an integer value to specify the orientation of the TIFF image. The
default is ORIENTATION=1.

Note
For COMPRESSION=3 (JPEG), all images are assumed to be in top-to-bottom
order, and this keyword should not be specified.

Possible values are:

"PROJSTRAIGHTVERTPOLELONGGEOKEY" DOUBLE

"VERTICALCSTYPEGEOKEY" INT

"VERTICALCITATIONGEOKEY" STRING

"VERTICALDATUMGEOKEY" INT

"VERTICALUNITSGEOKEY" INT

Value Description

0 Column 0 represents the left-hand side, and row 0 represents
the bottom (same as 4)

1 Column 0 represents the left-hand side, and row 0 represents
the top.

Table 109: ORIENTATION Keyword Values

Anonymous Structure Field Name IDLDatatype

Table 108: GEOTIFF Structures (Continued)
IDL Reference Guide WRITE_TIFF

2374
Warning
Not all TIFF readers honor the value of the ORIENTATION field. IDL writes the
value into the file, but some readers are known to ignore this value. In such cases,
we recommend that you convert the image to top-to-bottom order with the
REVERSE function and then set ORIENTATION to 1.

PLANARCONFIG

This keyword determines the order in which a multi-channel image is stored and
written. It has no effect with a single-channel image. Set this keyword to 2 to if the
Image parameter is interleaved by “plane”, or band, and its dimensions are (Columns,
Rows, Channels). The default value is 1, indicating that multi-channel images are
interleaved by color, also called channel, and its dimensions are (Channels, Columns,
Rows).

As a special case, this keyword may be set to 2 to write an RGB image that is
contained in three separate arrays (color planes), stored in the variables specified by
the RED, GREEN, and BLUE keywords. Otherwise, omit this parameter (or set it
to 1).

2 Column 0 represents the right-hand side, and row 0 represents
the top.

3 Column 0 represents the right-hand side, and row 0 represents
the bottom.

4 Column 0 represents the left-hand side, and row 0 represents
the bottom (same as 0)

5 Column 0 represents the top, and row 0 represents the left-
hand side.

6 Column 0 represents the top, and row 0 represents the right-
hand side.

7 Column 0 represents the bottom, and row 0 represents the
right-hand side.

8 Column 0 represents the bottom, and row 0 represents the left-
hand side.

Value Description

Table 109: ORIENTATION Keyword Values (Continued)
WRITE_TIFF IDL Reference Guide

 2375
Note
Many TIFF readers can read only one- or three-channel images.

RED, GREEN, BLUE

If you are writing a Palette color image, set these keywords equal to the color table
vectors, scaled from 0 to 255.

If you are writing an RGB interleaved image (i.e., if the PLANARCONFIG keyword
is set to 2), set these keywords to the names of the variables containing the three
image components.

SHORT

Set this keyword to write the pixel components as unsigned 16-bit entities (the default
is 8-bit).

UNITS

Set this keyword to one of the following values to specify the units used for the values
specified by the XRESOL and YRESOL keywords:

VERBOSE

Set this keyword to produce additional diagnostic output during the write.

XRESOL

Set this keyword to the horizontal resolution, in pixels per unit, where the unit is
specified by the value of the UNITS keyword (inches, by default). The default value
of XRESOL is 100. Note that while this value is stored in the TIFF file, it may be
interpreted by the TIFF reader in a variety of ways, or ignored.

Value Description

1 No units

2 Inches (the default)

3 Centimeters

Table 110: UNITS Keyword Values
IDL Reference Guide WRITE_TIFF

2376
YRESOL

Set this keyword to the vertical resolution, in pixels per unit, where the unit is
specified by the value of the UNITS keyword (inches, by default). The default value
of YRESOL is 100. Note that while this value is stored in the TIFF file, it may be
interpreted by the TIFF reader in a variety of ways, or ignored.

Examples

Example 1

Create a pseudo screen dump from the current window. Note that this works only on a
PseudoColor (8-bit) display:

WRITE_TIFF, 'test.tiff', TVRD()

Example 2

Write a three-channel image from three one-channel (two-dimensional) arrays,
contained in the variables Red, Green, and Blue:

WRITE_TIFF, 'test.tif', Red, Green, Blue, PLANARCONFIG=2

Example 3

Write and read a multi-image TIFF file. The first image is a 16-bit single channel image
stored using compression. The second image is an RGB image stored using 32-
bits/channel uncompressed.

; Write the image data:
data = FIX(DIST(256))
rgbdata = LONARR(3,320,240)
WRITE_TIFF,'multi.tif',data,COMPRESSION=1,/SHORT
WRITE_TIFF,'multi.tif',rgbdata,/LONG,/APPEND
; Read the image data back
ok = QUERY_TIFF('multi.tif',s)
IF (ok) THEN BEGIN

FOR i=0,s.NUM_IMAGES-1 DO BEGIN
imp = QUERY_TIFF('multi.tif',t,IMAGE_INDEX=i)
img = READ_TIFF('multi.tif',IMAGE_INDEX=i)
HELP,t,/STRUCTURE
HELP,img

ENDFOR
ENDIF
WRITE_TIFF IDL Reference Guide

 2377
Version History

Introduced: 5.0

ITIFF support added: 5.6

See Also

READ_TIFF, QUERY_* Routines
IDL Reference Guide WRITE_TIFF

2378
WRITE_WAV

The WRITE_WAV procedure writes the audio stream to the named .WAV file.

Syntax

WRITE_WAV, Filename, Data, Rate

Arguments

Filename

A scalar string containing the full pathname of the .WAV file to write.

Data

The array to write into the new .WAV file. The array can be a one- or two-
dimensional array. A two-dimensional array is written as a multi-channel audio
stream where the leading dimension of the IDL array is the number of channels. If the
input array is in BYTE format, the data is written as 8-bit samples, otherwise, the data
is written as signed 16-bit samples.

Rate

The sampling rate for the data array in samples per second.

Keywords

None.

Version History

Introduced: 5.3
WRITE_WAV IDL Reference Guide

 2379
WRITE_WAVE

The WRITE_WAVE procedure writes a three dimensional IDL array to a .wave or
.bwave file for use with the Wavefront Advanced Data Visualizer. Note that this
routine only writes one scalar field for each Wavefront file that it creates.

This routine is written in the IDL language. Its source code can be found in the file
write_wave.pro in the lib subdirectory of the IDL distribution.

Syntax

WRITE_WAVE, File, Array [, /BIN] [, DATANAME=string]
[, MESHNAME=string] [, /NOMESHDEF] [, /VECTOR]

Arguments

File

A scalar string containing the full path name of the Wavefront file to write.

Array

A 3D array to be written to the file.

Keywords

BIN

Set this keyword to create a binary file. By default, text files are created.

DATANAME

Set this keyword to the name of the data inside of the Wavefront file. If not specified,
the name used is “idldata”.

MESHNAME

Set this keyword to the name of the mesh used in the Wavefront file. If not specified,
the name used is “idlmesh”.

NOMESHDEF

Set this keyword to omit the mesh definition from the Wavefront file.
IDL Reference Guide WRITE_WAVE

2380
VECTOR

Set this keyword to write the variable as a vector. The data is written as an array of 3-
space vectors. The array may contain any number of dimensions but must have a
leading dimension of 3. If the leading array dimension is not 3, this keyword is
ignored.

Version History

Introduced: Pre 4.0

See Also

READ_WAVE
WRITE_WAVE IDL Reference Guide

 2381
WRITEU

The WRITEU procedure writes unformatted binary data from an expression into a
file. This procedure performs a direct transfer with no processing of any kind being
done to the data.

Syntax

WRITEU, Unit, Expr1 ..., Exprn [, TRANSFER_COUNT=variable]

Arguments

Unit

The IDL file unit to which the output is sent.

Expri

The expressions to be output. For non-string variables, the number of bytes implied
by the data type is output. When WRITEU is used with a variable of type string, IDL
outputs exactly the number of bytes contained in the existing string.

Keywords

TRANSFER_COUNT

Set this keyword to a named variable in which to return the number of elements
transferred by the output operation. Note that the number of elements is not the same
as the number of bytes (except in the case where the data type being transferred is
bytes). For example, transferring 256 floating-point numbers yields a transfer count
of 256, not 1024 (the number of bytes transferred).

This keyword is useful with files opened with the RAWIO keyword to the OPEN
routines. Normally, writing more data than an output device will accept causes an
error. Files opened with the RAWIO keyword will not generate such an error. Instead,
the programmer must keep track of the transfer count to judge the success or failure
of a WRITEU operation.

Obsolete Keywords

The following keywords are obsolete:

• REWRITE
IDL Reference Guide WRITEU

2382
For information on obsolete keywords, See Appendix I, “Obsolete Features”.

Examples

; Create some data to store in a file:
D = BYTSCL(DIST(200))
; Open a new file for writing as IDL file unit number 1:
OPENW, 1, 'newfile'
; Write the data in D to the file:
WRITEU, 1, D
; Close file unit 1:
CLOSE, 1

Version History

Introduced: Original

See Also

OPEN, READU, Chapter 10, “Files and Input/Output” in the Building IDL
Applications manual, and “Unformatted Input/Output with Structures” in Chapter 7
of the Building IDL Applications manual.
WRITEU IDL Reference Guide

 2383
WSET

The WSET procedure selects the current window. Most IDL graphics routines do not
explicitly require the IDL window to be specified. Instead, they use the window
known as the current window. The window index number of the current window is
contained in the read-only system variable !D.WINDOW. WSET only works with
devices that have windowing systems.

Syntax

WSET [, Window_Index]

Arguments

Window_Index

This argument specifies the window index of the window to be made current. If this
argument is not specified, a default of 0 is used.

If you set Window_Index equal to -1, IDL will try to locate an existing window to
make current, ignoring any managed draw widgets that may exist. If there is no
window to make current, WSET changes the value of the WINDOW field of the !D
system variable to -1, indicating that there are no current windows.

If there are no existing IDL windows, and you call WSET without the Window_Index
argument or with a Window_Index of 0, a new window with the index 0 is opened.
Calling WSET with a Window_Index for a window that does not exist, except for
window 0, results in a “Window is closed and unavailable” error message.

Keywords

None.

Examples

Create IDL windows 1 and 2 by entering:

WINDOW, 1 & WINDOW, 2

Set the current window to window 1 and display an image by entering:

WSET, 1 & TVSCL, DIST(100)
IDL Reference Guide WSET

2384
Set the current window to window 2 and display an image by entering:

WSET, 2 & TVSCL, DIST(100)

Version History

Introduced: Original

See Also

WDELETE, WINDOW, WSHOW
WSET IDL Reference Guide

 2385
WSHOW

The WSHOW procedure exposes or hides the designated window.

Syntax

WSHOW [, Window_Index [, Show]] [, /ICONIC]

Arguments

Window_Index

The window index of the window to be hidden or exposed. If this argument is not
specified, the current window is assumed. If this index is the window ID of a draw
widget, the widget base associated with that drawable is brought to the front of the
screen.

Show

Set Show to 0 to hide the window. Omit this argument or set it to 1 to expose the
window.

Keywords

ICONIC

Set this keyword to iconify the window. Set ICONIC to 0 to de-iconify the window.

Under windowing systems, iconification is the task of the window manager, and
client applications such as IDL have no direct control over it. The ICONIC keyword
serves as a hint to the window manager, which is free to iconify the window or ignore
the request as it sees fit.

Examples

To bring IDL window number 0 to the front, enter:

WSHOW, 0

Version History

Introduced: Original
IDL Reference Guide WSHOW

2386
See Also

WDELETE, WINDOW, WSET
WSHOW IDL Reference Guide

 2387
WTN

The WTN function returns a multi-dimensional discrete wavelet transform of the
input array A. The transform is based on a Daubechies wavelet filter.

WTN is based on the routine wtn described in section 13.10 of Numerical Recipes in
C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press, and is used by permission.

Syntax

Result = WTN(A, Coef [, /COLUMN] [, /DOUBLE] [, /INVERSE]
[, /OVERWRITE])

Return Value

Arguments

A

The input vector or array. The dimensions of A must all be powers of 2.

Coef

An integer that specifies the number of wavelet filter coefficients. The allowed values
are 4, 12, or 20. When Coef is 4, the daub4() function (see Numerical Recipes,
section 13.10) is used. When Coef is 12 or 20, pwt() is called, preceded by
pwtset() (see Numerical Recipes, section 13.10).

Keywords

COLUMN

Set this keyword if the input array A is in column-major format (composed of column
vectors) rather than in row-major format (composed of row vectors).

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
IDL Reference Guide WTN

2388
INVERSE

If the INVERSE keyword is set, the inverse transform is computed. By default, WTN
performs the forward wavelet transform.

OVERWRITE

Set the OVERWRITE keyword to perform the transform “in place.” The result
overwrites the original contents of the array.

Examples

This example demonstrates the use of IDL’s discrete wavelet transform and sparse
array storage format to compress and store an 8-bit gray-scale digital image. First, an
image selected from the people.dat data file is transformed into its wavelet
representation and written to a separate data file using the WRITEU procedure.

Next, the transformed image is converted, using the SPRSIN function, to row-
indexed sparse storage format retaining only elements with an absolute magnitude
greater than or equal to a specified threshold. The sparse image is written to a data
file using the WRITE_SPR procedure.

Finally, the transformed image is reconstructed from the storage file and displayed
alongside the original.

; Begin by choosing the number of wavelet coefficients to use and a
; threshold value:
coeffs = 12 & thres = 10.0

; Open the people.dat data file, read an image using associated
; variables, and close the file:
OPENR, 1, FILEPATH('people.dat', SUBDIR = ['examples','data'])
images = assoc(1, bytarr(192, 192))
image_1 = images[0]
close, 1

; Expand the image to the nearest power of two using cubic
; convolution, and transform the image into its wavelet
; representation using the WTN function:
pwr = 256
image_1 = CONGRID(image_1, pwr, pwr, /CUBIC)
wtn_image = WTN(image_1, coeffs)

; Write the image to a file using the WRITEU procedure and check
; the size of the file (in bytes) using the FSTAT function:
OPENW, 1, 'original.dat'
WRITEU, 1, wtn_image
WTN IDL Reference Guide

 2389
status = FSTAT(1)
CLOSE, 1
PRINT, 'Size of the file is ', status.size, ' bytes.'

; Now, we convert the wavelet representation of the image to a
; row-indexed sparse storage format using the SPRSIN function,
; write the data to a file using the WRITE_SPR procedure, and check
; the size of the "compressed" file:
sprs_image = SPRSIN(wtn_image, THRES = thres)
WRITE_SPR, sprs_image, 'sparse.dat'
OPENR, 1, 'sparse.dat'
status = FSTAT(1)
CLOSE, 1
PRINT, 'Size of the compressed file is ', status.size, ' bytes.'

; Determine the number of elements (as a percentage of total
; elements) whose absolute magnitude is less than the specified
; threshold. These elements are not retained in the row-indexed
; sparse storage format:
PRINT, 'Percentage of elements under threshold: ',$

100.*N_ELEMENTS(WHERE(ABS(wtn_image) LT thres, $
count)) / N_ELEMENTS(image_1)

; Next, read the row-indexed sparse data back from the file
; sparse.dat using the READ_SPR function and reconstruct the
; image from the non-zero data using the FULSTR function:
sprs_image = READ_SPR('sparse.dat')
wtn_image = FULSTR(sprs_image)

; Apply the inverse wavelet transform to the image:
image_2 = WTN(wtn_image, COEFFS, /INVERSE)

; Calculate and print the amount of data used in reconstruction of
; the image:
PRINT, 'The image on the right is reconstructed from:', $

100.0 - (100.* count/N_ELEMENTS(image_1)),$
'% of original image data.'

; Finally, display the original and reconstructed images side by
; side:
WINDOW, 1, XSIZE = pwr*2, YSIZE = pwr, $

TITLE = 'Wavelet Image Compression and File I/O'
TV, image_1, 0, 0
TV, image_2, pwr - 1, 0

IDL Output

Size of the file is 262144 bytes.
Size of the compressed file is 69600 bytes.
IDL Reference Guide WTN

2390
Percentage of elements under threshold: 87.0331
The image on the right is reconstructed from: 12.9669% of original
image data.

The sparse array contains only 13% of the elements contained in the original array.
The following figure is created from this example. The image on the left is the
original 256 by 256 image. The image on the right was compressed by the above
process and was reconstructed from 13% of the original data. The size of the
compressed image’s data file is 26.6% of the size of the original image’s data file.
Note that due to limitations in the printing process, differences between the images
may not be as evident as they would be on a high-resolution printer or monitor.

Version History

Introduced: 4.0

See Also

FFT

Figure 31: Original image (left) and image reconstructed
from 13% of the data (right).
WTN IDL Reference Guide

 2391
WV_* Routines

For information, see the Chapter 1, “Introduction to the IDL Wavelet Toolkit” in the
IDL Wavelet Toolkit manual.
IDL Reference Guide WV_* Routines

2392
XBM_EDIT

The XBM_EDIT procedure is a utility for creating and editing icons for use with IDL
widgets as bitmap labels for widget buttons.

The icons created with XBM_EDIT can be saved in two different file formats. IDL
“array definition files” are text files that can be inserted into IDL programs. “Bitmap
array files” are data files that can be read into IDL programs. Bitmap array files
should be used temporarily until the final icon design is determined and then they can
be saved as IDL array definitions for inclusion in the final widget code. This routine
does not check the file types of the files being read and assumes that they are of the
correct size and type for reading. XBM_EDIT maintains its state in a common block
so it is restricted to one working copy at a time.

This routine is written in the IDL language. Its source code can be found in the file
xbm_edit.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XBM_EDIT [, /BLOCK] [, FILENAME=string] [, GROUP=widget_id]
[, XSIZE=pixels] [, YSIZE=pixels]

Arguments

None.

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting BLOCK=1 will cause all
widget applications to block, not just this application. For more information, see the
documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XBM_EDIT
block, any earlier calls to XMANAGER must have been called with the
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.
XBM_EDIT IDL Reference Guide

 2393
FILENAME

Set this keyword to a scalar string that contains the filename to be used for the new
icon. If this argument is not specified, the name “idl.bm” is used. The filename can be
changed in XBM_EDIT by editing the “Filename” field before selecting a file option.

GROUP

The widget ID of the widget that calls XBM_EDIT. When this ID is specified, the
death of the caller results in the death of XBM_EDIT.

XSIZE

The number of pixels across the bitmap is in the horizontal direction. The default
value is 16 pixels.

YSIZE

The number of pixels across the bitmap is in the vertical direction. The default value
is 16 pixels.

Version History

Introduced: Pre 4.0

See Also

WIDGET_BUTTON
IDL Reference Guide XBM_EDIT

2394
XDISPLAYFILE

The XDISPLAYFILE procedure is a utility for displaying ASCII text files using a
widget interface.

This routine is written in the IDL language. Its source code can be found in the file
xdisplayfile.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XDISPLAYFILE, Filename [, /BLOCK] [, DONE_BUTTON=string]
[, /EDITABLE] [, FONT=string] [, GROUP=widget_id] [, HEIGHT=lines]
[, /MODAL] [, TEXT=string or string array] [, TITLE=string]
[, WIDTH=characters] [, WTEXT=variable]

Arguments

Filename

A scalar string that contains the filename of the file to display. Filename can include a
path to that file.

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting BLOCK=1 will cause all
widget applications to block, not just this application. For more information, see the
documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have
XDISPLAYFILE block, any earlier calls to XMANAGER must have been called
with the NO_BLOCK keyword. See the documentation for the NO_BLOCK
keyword to XMANAGER for an example.
XDISPLAYFILE IDL Reference Guide

 2395
DONE_BUTTON

Set this keyword to a string containing the text to use for the Done button label. If
omitted, the text “Done with <filename>” is used.

EDITABLE

Set this keyword to allow modifications to the text displayed in XDISPLAYFILE.
Setting this keyword also adds a “Save” button in addition to the Done button.

FONT

A string containing the name of the font to use. The font specified is a device font (an
X Windows font on Motif systems; a TrueType or PostScript font on Windows
systems). See “About Device Fonts” on page 3962 for details on specifying names for
device fonts. If this keyword is omitted, the default font is used.

GROUP

The widget ID of the widget that calls XDISPLAYFILE. If this keyword is specified,
the death of the group leader results in the death of XDISPLAYFILE.

HEIGHT

The number of text lines that the widget should display at one time. If this keyword is
not specified, 24 lines is the default.

MODAL

Set this keyword to create the XDISPLAYFILE dialog as a modal dialog. Setting the
MODAL keyword allows you to call XDISPLAYFILE from another modal dialog.

TEXT

A string or string array to be displayed in the widget instead of the contents of a file.
If this keyword is present, the Filename input argument is ignored (but is still
required). String arrays are displayed one element per line.

TITLE

A string to use as the widget title rather than the file name or “XDisplayFile”.

WIDTH

The width of the widget display in characters. If this keyword is not specified, 80
characters is the default.
IDL Reference Guide XDISPLAYFILE

2396
WTEXT

Set this keyword to a named variable that will contain the widget ID of the text
widget. This allows setting text selections and cursor positions programmatically. For
example, the following code opens the XDISPLAYFILE widget and selects the first
10 characters of the file displayed in the text widget:

XDISPLAYFILE, 'myfile.txt', /EDITABLE, WTEXT=w
WIDGET_CONTROL, w, SET_TEXT_SELECT=[0, 10]

Version History

Introduced: Pre 4.0

See Also

PRINT/PRINTF, XYOUTS
XDISPLAYFILE IDL Reference Guide

 2397
XDXF

The XDXF procedure is a utility for displaying and interactively manipulating DXF
objects.

Using XDXF

XDXF displays a resizeable top-level base with a menu and draw widget used to
display and manipulate the orientation of a DXF object.

XDXF also displays a dialog that contains block and layer information and allows the
user to turn on and off the display of individual layers.

Figure 32: The XDXF Utility

Figure 33: The XDXF Information Dialog
IDL Reference Guide XDXF

2398
The XDXF Toolbar

The XDXF toolbar contains the following buttons:

The XDXF Information Dialog

The XDXF Information dialog displays information about the blocks and layers
contained in the currently displayed object, and allows you to turn on and off the
display of each layer.

To show or hide layers in the DXF object, select the layer from the list of layers on
the left of the dialog, and click the Show or Hide button. Alternatively, you can click
in the “Vis” field for the desired layer. To show or hide all layers, click the Show All
or Hide All buttons.

If the View Block Outlines checkbox is selected, a green box will be displayed
around the currently selected block, if any.

Syntax

XDXF [, Filename] [, /BLOCK] [, GROUP=widget_id] [, SCALE=value] [, /TEST]
[keywords to XOBJVIEW]

Arguments

Filename

A string specifying the name of the DXF file to display. If this argument is not
specified, a file selection dialog is opened.

Reset: Resets rotation, scaling, and panning.

Rotate: Click the left mouse button on the object and drag to rotate.

Pan: Click the left mouse button on the object and drag to pan.

Zoom: Click the left mouse button on the object and drag to zoom in or out.

Select: Click on the object. The name of the selected object is displayed, if
the object has a name, otherwise its class is displayed.
XDXF IDL Reference Guide

 2399
Keywords

XDXF accepts the keywords to XOBJVIEW. (Note, however, that specifying the
XOBJVIEW keyword MODAL is interpreted by XDXF as a call to the BLOCK
keyword.) In addition, XDXF supports the following keywords:

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting the BLOCK keyword causes
all widget applications to block, not just this application. For more information, see
the documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XDXF
block, any earlier calls to XMANAGER must have been called with the
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

GROUP

The widget ID of the widget that calls XDXF. When this ID is specified, the death of
the caller results in the death of XDXF.

SCALE

Set this keyword to the zoom factor for the initial view. The default is 1/SQRT(3).
This default value provides the largest possible view of the object, while ensuring that
no portion of the object will be clipped by the XDXF window, regardless of the
object’s orientation.

TEST

If this keyword is set, the file heart.dxf in the IDL distribution is automatically
opened in XDXF.

Examples

Display the file heart.dxf, contained in the IDL distribution:

XDXF, FILEPATH('heart.dxf', $
SUBDIR=['examples', 'data'])
IDL Reference Guide XDXF

2400
Version History

Introduced: 5.4

See Also

IDLffDXF
XDXF IDL Reference Guide

 2401
XFONT

The XFONT function is a utility that creates a modal widget for selecting and
viewing an X Windows font.

Calling XFONT resets the current X Windows font.

Note
This routine is only available on UNIX platforms.

This routine is written in the IDL language. Its source code can be found in the file
xfont.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

Result = XFONT([, GROUP=widget_id] [, /PRESERVE_FONT_INFO])

Return Value

The function returns a string containing the name of the last selected font. If no font is
selected, or the “Cancel” button is clicked, a null string is returned.

Arguments

None.

Keywords

GROUP

The widget ID of the widget that calls XFONT. When this ID is specified, the death
of the caller results in the death of XFONT.

PRESERVE_FONT_INFO

Set this keyword to make XFONT save the server font directory in common blocks so
that subsequent calls to XFONT start-up much faster. If this keyword is not set, the
common block is cleaned.

Version History

Introduced: Pre 4.0
IDL Reference Guide XFONT

2402
See Also

EFONT, SHOWFONT
XFONT IDL Reference Guide

 2403
XINTERANIMATE

The XINTERANIMATE procedure is a utility for displaying an animated sequence
of images using off-screen pixmaps or memory buffers. The speed and direction of
the display can be adjusted using the widget interface.

MPEG animation files can be created either programmatically using keywords to
open and save a file, or interactively using the widget interface. Note that the MPEG
standard does not allow movies with odd numbers of pixels to be created.

Note
MPEG support in IDL requires a special license. For more information, contact
your RSI sales representative or technical support.

Note
Only a single copy of XINTERANIMATE can run at a time. If you need to run
multiple instances of the animation widget concurrently, use the CW_ANIMATE
compound widget.

This routine is written in the IDL language. Its source code can be found in the file
xinteranimate.pro in the lib/utilities subdirectory of the IDL distribution.

Using XINTERANIMATE

Displaying an animated series of images using XINTERANIMATE requires at least
three calls to the routine: one to initialize the animation widget, one to load images,
and one to display the images. When initialized using the SET keyword,
XINTERANIMATE creates an approximately square pixmap or memory buffer, large
enough to contain the requested number of frames of the requested size. Images are
loaded using the IMAGE and FRAME keywords. Finally, images are displayed by
copying them from the pixmap or memory buffer to the visible draw widget.

See CW_ANIMATE for a description of the widget interface controls used by
XINTERANIMATE.
IDL Reference Guide XINTERANIMATE

2404
Syntax

XINTERANIMATE [, Rate]

Keywords for initialization: [, SET=[sizex, sizey, nframes]] [, /BLOCK]
[, /CYCLE] [, GROUP=widget_id] [, /MODAL] [, MPEG_BITRATE=value]
[, MPEG_IFRAME_GAP=integer value] [, MPEG_MOTION_VEC_LENGTH={1 |
2 | 3}] [, /MPEG_OPEN, MPEG_FILENAME=string]
[MPEG_QUALITY=value{0 to 100}] [, /SHOWLOAD] [, /TRACK]
[, TITLE=string]

Keywords for loading images: [, FRAME=value{0 to (nframes-
1)}[, IMAGE=value]] [, /ORDER] [, WINDOW=[window_num [, x0, y0, sx, sy]]]

Keywords for running animations: [, /CLOSE] [, /KEEP_PIXMAPS]
[, /MPEG_CLOSE] [, XOFFSET=pixels] [, YOFFSET=pixels]

Arguments

Rate

A value between 0 and 100 that represents the speed of the animation as a percentage
of the maximum display rate. The fastest animation is with a value of 100 and the
slowest is with a value of 0. The default animation rate is 100. The animation must be
initialized using the SET keyword before calling XINTERANIMATE with a rate
value.

Keywords: Initialization

The following keywords are used to initialize the animation display. The SET
keyword must be provided. Other keywords described in this section are optional;
note that they work only when SET is specified.

SET

Set this keyword to a three-element vector [Sizex, Sizey, Nframes] to initialize
XINTERANIMATE. Sizex and Sizey represent the width and height of the images to
be displayed, in pixels. Nframes is the number of frames in the animation sequence.
Note that Nframes must be at least 2 frames.

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
XINTERANIMATE IDL Reference Guide

 2405
command line processing is available. Note that setting BLOCK=1 will cause all
widget applications to block, not just this application. For more information, see the
documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have
XINTERANIMATE block, any earlier calls to XMANAGER must have been called
with the NO_BLOCK keyword. See the documentation for the NO_BLOCK
keyword to XMANAGER for an example.

CYCLE

Normally, frames are displayed going either forward or backwards. If the CYCLE
keyword is set, the animation reverses direction after the last frame in either direction
is displayed.

GROUP

Set this keyword to the widget ID of the widget that calls XINTERANIMATE. When
GROUP is specified, the death of the calling widget results in the death of
XINTERANIMATE.

MODAL

Set this keyword to block processing of events from other widgets until the user quits
XINTERANIMATE. A group leader must be specified (via the GROUP keyword) for
the MODAL keyword to have any effect. By default, XINTERANIMATE does not
block event processing.

MPEG_BITRATE

Set this keyword to a double-precision value to specify the MPEG movie bit rate.
Higher bit rates will create higher quality MPEGs but will increase file size. The
following table describes the valid values:

MPEG Version Range

MPEG 1 0.1 to 104857200.0

MPEG 2 0.1 to 429496729200.0

Table 111: BITRATE Value Range
IDL Reference Guide XINTERANIMATE

2406
If you do not set this keyword, IDL computes the MPEG_BITRATE value based
upon the value you have specified for the MPEG_QUALITY keyword.

Note
Only use the MPEG_BITRATE keyword if changing the MPEG_QUALITY
keyword value does not produce the desired results. It is highly recommended to set
the MPEG_BITRATE to at least several times the frame rate to avoid unusable
MPEG files or file generation errors.

MPEG_FILENAME

Set this keyword equal to a string specifying the name of the MPEG file. If no file
name is specified, the default value (idl.mpg) is used.

MPEG_IFRAME_GAP

Set this keyword to a positive integer value that specifies the number of frames
between I frames to be created in the MPEG file. I frames are full-quality image
frames that may have a number of predicted or interpolated frames between them.

If you do not specify this keyword, IDL computes the MPEG_IFRAME_GAP value
based upon the value you have specified for the MPEG_QUALITY keyword.

Note
Only use the MPEG_IFRAME_GAP keyword if changing the MPEG_QUALITY
keyword value does not produce the desired results.

MPEG_MOTION_VEC_LENGTH

Set this keyword to an integer value specifying the length of the motion vectors to be
used to generate predictive frames. Valid values include:

• 1 = Small motion vectors.

• 2 = Medium motion vectors.

• 3 = Large motion vectors.

If you do not set this keyword, IDL computes the MPEG_MOTION_VEC_LENGTH
value based upon the value you have specified for the MPEG_QUALITY keyword.

Note
Only use the MPEG_MOTION_VEC_LENGTH keyword if changing the
MPEG_QUALITY value does not produce the desired results.
XINTERANIMATE IDL Reference Guide

 2407
MPEG_OPEN

Set this keyword to open an MPEG file.

MPEG_QUALITY

Set this keyword to an integer value between 0 (low quality) and 100 (high quality)
inclusive to specify the quality at which the MPEG stream is to be stored. Higher
quality values result in lower rates of time compression and less motion prediction
which provide higher quality MPEGs but with substantially larger file size. Lower
quality factors may result in longer MPEG generation times. The default is 50.

Note
Since MPEG uses JPEG (lossy) compression, the original picture quality can’t be
reproduced even when setting QUALITY to its highest setting.

SHOWLOAD

Set this keyword to display each frame and update the frame slider as frames are
loaded.

TRACK

Set this keyword to cause the frame slider to track the current frame when the
animation is in progress. The default is not to track.

TITLE

Use this keyword to specify a string to be used as the title of the animation widget. If
TITLE is not specified, the title is set to “XInterAnimate.”

Keywords: Loading Images

The following keywords are used to load images into the animation display. They
have no effect when initializing or running animations.

FRAME

Use this keyword to specify the frame number when loading frames. FRAME must
be set to a number in the range 0 to Nframes-1.
IDL Reference Guide XINTERANIMATE

2408
IMAGE

Use this keyword to specify a single image to be loaded at the animation position
specified by the FRAME keyword. (FRAME must also be specified.)

ORDER

Set this keyword to display images from the top down instead of the default bottom
up.

WINDOW

When this keyword is specified, an image is copied from an existing window to the
animation pixmap or memory buffer. (When using some windowing systems, using
this keyword is much faster than reading from the display and then calling
XINTERANIMATE with a 2-D array.)

The value of this parameter is either an IDL window number (in which case the entire
window is copied), or a vector containing the window index and the rectangular
bounds of the area to be copied. For example:

WINDOW = [Window_Number, X0, Y0, Sx, Sy]

Keywords: Running Animations

The following keywords are used when running the animation. They have no effect
when initializing the animation or loading images.

CLOSE

Set this keyword to delete the offscreen pixmaps or buffers and the animation widget
itself. This also takes place automatically when the user presses the “Done With
Animation” button or closes the window with the window manager.

KEEP_PIXMAPS

If this keyword is set, XINTERANIMATE will not destroy the animation pixmaps or
buffers when it is killed. Calling XINTERANIMATE again without going through
the SET and LOAD steps will play the same animation without the overhead of
creating the pixmaps.

MPEG_CLOSE

Set this keyword to close and save the MPEG file. This keyword has no effect if
MPEG_OPEN was not used during initialization.
XINTERANIMATE IDL Reference Guide

 2409
XOFFSET

Use this keyword to specify the horizontal offset, in pixels from the left of the frame,
of the image in the destination window.

YOFFSET

Use this keyword to specify the vertical offset, in pixels from the bottom of the frame,
of the image in the destination window.

Examples

Enter the following commands to open the file ABNORM.DAT (a series of images of a
human heart) and animate the images it contains using XINTERANIMATE.

OPENR, unit, FILEPATH('abnorm.dat', SUBDIR=['examples','data']), $
/GET_LUN

H = BYTARR(64, 64, 16)
READU, unit, H
CLOSE, unit

; Read the images into variable H:
H = REBIN(H, 128, 128, 16)

; Initialize XINTERANIMATE:
XINTERANIMATE, SET=[128, 128, 16], /SHOWLOAD

; Load the images into XINTERANIMATE:
FOR I=0,15 DO XINTERANIMATE, FRAME = I, IMAGE = H[*,*,I]

; Play the animation:
XINTERANIMATE, /KEEP_PIXMAPS

Note
Since the KEEP_PIXMAPS keyword was supplied, the same animation can be
replayed (after the animation widget has been destroyed) with the single command
XINTERANIMATE.

Version History

Introduced: Pre 4.0

See Also

CW_ANIMATE
IDL Reference Guide XINTERANIMATE

2410
XLOADCT

The XLOADCT procedure is a utility that provides a graphical widget interface to the
LOADCT procedure. XLOADCT displays the current colortable and shows a list of
available predefined color tables. Clicking on the name of a color table causes that
color table to be loaded in true color decomposed visual. Many other options, such as
Gamma correction, stretching, and transfer functions can also be applied to the
colortable.

This routine is written in the IDL language. Its source code can be found in the file
xloadct.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XLOADCT [, /BLOCK] [, BOTTOM=value] [, FILE=string] [, GROUP=widget_id]
[, /MODAL] [, NCOLORS=value] [, /SILENT]
[, UPDATECALLBACK=‘procedure_name’ [, UPDATECBDATA=value]]
[, /USE_CURENT]

Arguments

None.

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting BLOCK=1 will cause all
widget applications to block, not just this application. For more information, see the
documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XLOADCT
block, any earlier calls to XMANAGER must have been called with the
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.
XLOADCT IDL Reference Guide

 2411
BOTTOM

The first color index to use. XLOADCT will use color indices from BOTTOM to
BOTTOM+NCOLORS-1. The default is BOTTOM=0.

FILE

Set this keyword to a string representing the name of the file to be used instead of the
file colors1.tbl in the IDL directory.

GROUP

The widget ID of the widget that calls XLOADCT. When this ID is specified, a death
of the caller results in a death of XLOADCT.

MODAL

Set this keyword to block processing of events from other widgets until the user quits
XLOADCT. A group leader must be specified (via the GROUP keyword) for the
MODAL keyword to have any effect. By default, XLOADCT does not block event
processing.

NCOLORS

The number of colors to use. Use color indices from 0 to the smaller of
!D.TABLE_SIZE-1 and NCOLORS-1. The default is all available colors
(!D.TABLE_SIZE).

SILENT

Normally, no informational message is printed when a color map is loaded. If this
keyword is set to zero, the message is printed.

UPDATECALLBACK

Set this keyword to a string containing the name of a user-supplied procedure that
will be called when the color table is updated by XLOADCT. The procedure may
optionally accept a keyword called DATA, which will be automatically set to the
value specified by the optional UPDATECBDATA keyword.

UPDATECBDATA

Set this keyword to a value of any type. It will be passed via the DATA keyword to the
user-supplied procedure specified via the UPDATECALLBACK keyword, if any. If
IDL Reference Guide XLOADCT

2412
the UPDATECBDATA keyword is not set the value accepted by the DATA keyword
to the procedure specified by UPDATECALLBACK will be undefined.

USE_CURRENT

Set this keyword to use the current color tables, regardless of the contents of the
COLORS common block.

Version History

Introduced: Pre 4.0

See Also

LOADCT, XPALETTE, TVLCT
XLOADCT IDL Reference Guide

 2413
XMANAGER

The XMANAGER procedure provides the main event loop and management for
widgets created using IDL. Calling XMANAGER “registers” a widget program with
the XMANAGER event handler. XMANAGER takes control of event processing
until all widgets have been destroyed.

Beginning with IDL version 5.0, IDL supports an active command line that allows the
IDL command input line to continue accepting input while properly configured
widget applications are running. See “A Note About Blocking in XMANAGER” on
page 2417 for a more detailed explanation of the active command line.

This routine is written in the IDL language. Its source code can be found in the file
xmanager.pro in the lib subdirectory of the IDL distribution.

Warning
Although this routine is written in the IDL language, it may change in the future in
its internal implementation. For future upgradability, it is best not to modify or even
worry about what this routine does internally.

Syntax

XMANAGER [, Name, ID] [, /CATCH] [, CLEANUP=string]
[, EVENT_HANDLER=‘procedure_name’] [, GROUP_LEADER=widget_id]
[, /JUST_REG] [, /NO_BLOCK]

Arguments

Name

A string that contains the name of the routine that creates the widget (i.e., the name of
the widget creation routine that is calling XMANAGER).

Note
The Name argument is stored in a COMMON block for use by the XREGISTERED
routine. The stored name is case-sensitive.

ID

The widget ID of the top-level base that is the root of the widget hierarchy being to be
managed.
IDL Reference Guide XMANAGER

2414
Keywords

BACKGROUND

This keyword is obsolete and is included in XMANAGER for compatibility with
existing code only. Its functionality has been replaced by the TIMER keyword to the
WIDGET_CONTROL procedure.

CATCH

Set this keyword to cause XMANAGER to catch any errors, using the CATCH
procedure, when dispatching widget events. If the CATCH keyword is set equal to
zero, execution halts and IDL provides traceback information when an error is
detected. This keyword is set by default (errors are caught and processing continues).

Do not specify either the Name or ID argument to XMANAGER when specifying the
CATCH keyword (they are ignored). CATCH turns error catching on and off for all
applications managed by XMANAGER. When CATCH is specified, XMANAGER
changes its error-catching behavior and returns immediately, without taking any other
action.

Note
Beginning with IDL version 5.0, the default behavior of XMANAGER is to catch
errors and continue processing events. In versions of IDL prior to version 5.0,
XMANAGER halted when an error was detected. This change in default behavior
was necessary in order to allow multiple widget applications (all being managed by
XMANAGER) to coexist peacefully. When CATCH is set equal to zero, (the old
behavior), any error halts XMANAGER, and thus halts event processing for all
running widget applications.

Note also that CATCH is only effective if XMANAGER is blocking to dispatch
errors. If event dispatching for an active IDL command line is in use, the CATCH
keyword has no effect.

The CATCH=0 setting (errors are not caught and processing halts in XMANAGER
when an error is detected) is intended as a debugging aid. Finished programs should
not set CATCH=0.

CLEANUP

Set this keyword to a string that contains the name of the routine to be called when
the widget program dies. If this keyword is not specified, the routine (if any) specified
XMANAGER IDL Reference Guide

 2415
for the program’s top-level base by the KILL_NOTIFY keyword to WIDGET_BASE
or WIDGET_CONTROL is used.

The routine specified by CLEANUP becomes the KILL_NOTIFY routine for the
widget application, overriding any cleanup routines that have been set previously via
the KILL_NOTIFY keyword to WIDGET_BASE or WIDGET_CONTROL.

Note
Specifying a routine for the widget application’s top-level base via the
KILL_NOTIFY keyword to WIDGET_CONTROL after the call to XMANAGER
will override the value of the CLEANUP keyword.

The cleanup routine is called with the widget identifier as its only argument.

EVENT_HANDLER

Set this keyword to a string that contains the name of a routine to be called when a
widget event occurs in the widget program being registered. If this keyword is not
supplied, XMANAGER will construct a default name by adding the “_event” suffix
to the Name argument. See the example below for a more detailed explanation.

GROUP_LEADER

The widget ID of the group leader for the widget being processed. When the leader
dies either by the users actions or some other routine, all widgets that have that leader
will also die.

For example, a widget that views a help file for a demo widget would have that demo
widget as its leader. When the help widget is registered, it sets the keyword
GROUP_LEADER to the widget ID of the demo widget. If the demo widget were
destroyed, the help widget led by it would be killed by the XMANAGER.

JUST_REG

Set this keyword to indicate that XMANAGER should just register the widget and
return immediately. This keyword is useful if you want to register a group of related
top-level widgets before beginning event processing and one or more of the registered
widgets requests that XMANAGER block event processing. (Note that in this case a
later call to XMANAGER without the JUST_REG keyword is necessary to begin
blocking.)

(See “A Note About Blocking in XMANAGER” on page 2417 for further discussion
of the active command line.)
IDL Reference Guide XMANAGER

2416
Warning
JUST_REG is not the same as NO_BLOCK. See “JUST_REG vs. NO_BLOCK”
on page 2417 for additional details.

NO_BLOCK

Set this keyword to tell XMANAGER that the registering client does not require
XMANAGER to block if active command line event processing is available. If active
command line event processing is available and every current XMANAGER client
specifies NO_BLOCK, then XMANAGER will not block and the user will have
access to the command line while widget applications are running.

Note
NO_BLOCK is ignored by IDL Runtime. If a main procedure uses XMANAGER
with the NO_BLOCK keyword set, IDL Runtime defers subsequent processing of
the commands following the XMANAGER call until the widget associated with the
call to XMANAGER is destroyed.

It is important to understand the result of making nested calls to XMANAGER.
XMANAGER can only block event processing for one client at a time. In
applications involving multiple calls to XMANAGER (either directly or via calls to
other routines that call XMANAGER, such as XLOADCT), blocking occurs only for
the outermost call to XMANAGER, unless XMANAGER is told not to block in that
call. If an application contains two calls to XMANAGER, the second call cannot
block unless the first call sets the NO_BLOCK keyword. If an application contains a
call to XMANAGER, followed by a call to XLOADCT, XLOADCT will not block
unless the NO_BLOCK keyword was set in the call to XMANAGER (and the
BLOCK keyword to XLOADCT is set). Consider the following example:

PRO blocking_example_event, event
; The following call blocks only if the NO_BLOCK keyword to
; XMANAGER is set:
XLOADCT, /BLOCK

END

PRO blocking_example
base=WIDGET_BASE(/COLUMN)
button1=WIDGET_BUTTON(base,VALUE='Run XLOADCT')
WIDGET_CONTROL,base, /REALIZE
XMANAGER,'blocking_example', base, /NO_BLOCK

END

If the NO_BLOCK keyword to XMANAGER was not set in the above example,
XLOADCT would not block, even though the BLOCK keyword was set. Setting the
XMANAGER IDL Reference Guide

 2417
NO_BLOCK keyword to XMANAGER prevents XMANAGER from blocking,
thereby allowing the subsequent call to XMANAGER (via XLOADCT) to block.

Warning
NO_BLOCK is not the same as JUST_REG. See “JUST_REG vs. NO_BLOCK”
on page 2417 for additional details.

A Note About Blocking in XMANAGER

By default, IDL widget application blocking is enabled. Unless you take the
appropriate steps, widget applications will block all other processing from occurring
in IDL. Keeping the following issues in mind when writing widget applications will
give you the best chance to create applications that coexist with other applications
and the IDL command line.

Active Command Line

Beginning with IDL version 5.0, most versions of IDL’s command-processing front-
end are able to support an active command line while running properly constructed
widget applications. What this means is that—provided the widget application is
properly configured—the IDL command input line is available for input while a
widget application is running and widget events are being processed.

There are currently 3 separate IDL command-processing front-end implementations:

• Microsoft Windows IDLDE

• Motif IDLDE (UNIX)

• UNIX plain tty

Note that widget applications must be well-behaved with respect to blocking widget
event processing. Since in most cases XMANAGER is used to handle widget event
processing, this means that in order for the command line to remain active, all widget
applications must be run with the NO_BLOCK keyword to XMANAGER set. (Note
that since NO_BLOCK is not the default, it is quite likely that some application will
block.) If a single application runs in blocking mode, the command line will be
inaccessible until the blocking application exits. When a blocking application exits,
the IDL command line will once again become active.

JUST_REG vs. NO_BLOCK

Although their names imply a similar function, the JUST_REG and NO_BLOCK
keywords perform very different services. It is important to understand what they do
and how they differ.
IDL Reference Guide XMANAGER

2418
The JUST_REG keyword tells XMANAGER that it should simply register a client
and then return immediately. The result is that the client becomes known to
XMANAGER, and that future calls to XMANAGER will take this client into
account. Therefore, JUST_REG only controls how the registering call to
XMANAGER should behave. The client can still be registered as requiring
XMANAGER to block by setting NO_BLOCK=0. In this case, future calls to
XMANAGER will block.

Note
JUST_REG is useful in situations where you suspect blocking might occur—if the
active command line is not supported and you wish to keep it active before
beginning event processing, if no command line is available (as with IDL Runtime
applications), or if blocking will be requested at a later time. If no blocking will
occur or if the blocking behavior is useful, it is not necessary to use JUST_REG.

The NO_BLOCK keyword tells XMANAGER that the registered client does not
require XMANAGER to block if the command-processing front-end is able to
support active command line event processing. XMANAGER remembers this
attribute of the client until the client exits, even after the call to XMANAGER that
registered the client returns. NO_BLOCK is just a “vote” on how XMANAGER
should behave—the final decision is made by XMANAGER by considering the
NO_BLOCK attributes of all of its current clients as well as the ability of the
command-processing front-end in use to support the active command line.

Blocking vs. Non-blocking Applications

The issue of blocking in XMANAGER requires some explanation. IDL widget events
are not processed until the WIDGET_EVENT function is called to handle them.
Otherwise, they are queued by IDL indefinitely. Knowing how and when to call
WIDGET_EVENT is the primary service provided by XMANAGER.

There are two ways blocking is typically handled:

1. The first call to XMANAGER processes events by calling WIDGET_EVENT
as necessary until no managed widgets remain on the screen. This is referred to
as “blocking” because XMANAGER does not return to the caller until it is
done, and the IDL command line is not available.

2. XMANAGER does not block, and instead, the part of IDL that reads command
input also watches for widget events and calls WIDGET_EVENT as necessary
while also reading command input. This is referred to as “non-blocking” or
“active command line” mode.

XMANAGER will block unless the following conditions are met:
XMANAGER IDL Reference Guide

 2419
• All registered widget applications have the NO_BLOCK keyword to
XMANAGER set.

• No modal dialogs are displayed. (Modal dialogs always block until dismissed.)

In general, we suggest that new widget applications be written with XMANAGER
blocking disabled (that is, with the NO_BLOCK keyword set), unless the widget
application will be run on IDL Runtime.

Note
NO_BLOCK is ignored by IDL Runtime. If a main procedure uses XMANAGER
with the NO_BLOCK keyword set, IDL Runtime defers subsequent processing of
the commands following the XMANAGER call until the widget associated with the
call to XMANAGER is destroyed.

Since a widget application that does block event processing for itself will block event
processing for all other widget applications (and the IDL command line) as well, we
suggest that older widget applications be upgraded to take advantage of the new, non-
blocking behavior by adding the NO_BLOCK keyword to most calls to
XMANAGER.

Examples

The following code creates a widget named EXAMPLE that is just a base widget
with a “Done” button and registers it with the XMANAGER. Widgets being
registered with the XMANAGER must provide at least two routines. The first routine
creates the widget and registers it with the manager and the second routine processes
the events that occur within that widget. An example widget is supplied below that
uses only two routines. A number of other “Simple Widget Examples”, can be viewed
by entering WEXMASTER at the IDL prompt. These simple programs demonstrate
many aspects of widget programming.

The following lines of code would be saved in a single file, named example.pro:

; Begin the event handler routine for the EXAMPLE widget:
PRO example_event, ev

; The uservalue is retrieved from a widget when an event occurs:
WIDGET_CONTROL, ev.id, GET_UVALUE = uv

; If the event occurred in the Done button, kill the widget
; example:
if (uv eq 'DONE') THEN WIDGET_CONTROL, ev.top, /DESTROY
IDL Reference Guide XMANAGER

2420
; End of the event handler part:
END

; This is the routine that creates the widget and registers it with
; the XMANAGER:
PRO example

; Create the top-level base for the widget:
base = WIDGET_BASE(TITLE='Example')

; Create the Done button and set its uservalue to "DONE":
done = WIDGET_BUTTON(base, VALUE = 'Done', UVALUE = 'DONE')
; Realize the widget (i.e., display it on screen):
WIDGET_CONTROL, base, /REALIZE

; Register the widget with the XMANAGER, leaving the IDL command
; line active:
XMANAGER, 'example', base, /NO_BLOCK

; End of the widget creation part:
END

First the event handler routine is listed. The handler routine has the same name as the
main routine with the characters “_event” added. If you would like to use another
event handler name, you would need to pass its name to XMANAGER using the
EVENT_HANDLER keyword.

Notice that the event routine is listed before the main routine. If you include both the
event routine and the main routine in a single .pro file with the name of the main
routine (a common practice), this is necessary to ensure that the event routine is
compiled. If the event routine were placed after the main routine in the file, IDL
would compile and execute the main routine — and the compiler would exit —
before the event routine was compiled. Alternatively, you can save your event routine
in its own file with its own name (which in the above example would be
example_event.pro), and IDL will compile the routine when it is required.

Notice also the NO_BLOCK keyword to XMANAGER has been included. This
allows IDL to continue processing events and accepting input at the command prompt
while the example widget application is running.

Version History

Introduced: Pre 4.0
XMANAGER IDL Reference Guide

 2421
See Also

XMTOOL, XREGISTERED, Chapter 26, “Creating Widget Applications” in the
Building IDL Applications manual.
IDL Reference Guide XMANAGER

2422
XMNG_TMPL

The XMNG_TMPL procedure is a template for widgets that use the XMANAGER.
Use this template instead of writing your widget applications from “scratch”. This
template can be found in the file xmng_tmpl.pro in the lib subdirectory of the IDL
distribution.

The documentation header should be altered to reflect the actual implementation of
the XMNG_TMPL widget. Use a global search and replace to replace the word
XMNG_TMPL with the name of the routine you would like to use. All the comments
with a “***” in front of them should be read, decided upon and removed from the
final copy of your new widget routine.

Syntax

XMNG_TMPL [, /BLOCK] [, GROUP=widget_id]

Arguments

None.

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting BLOCK=1 will cause all
widget applications to block, not just this application. For more information, see the
documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have
XMNG_TMPL block, any earlier calls to XMANAGER must have been called with
the NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

GROUP

The widget ID of the widget that calls XMNG_TMPL. When this ID is specified, the
death of the caller results in the death of XMNG_TMPL.
XMNG_TMPL IDL Reference Guide

 2423
Version History

Introduced: Pre 4.0

See Also

CW_TMPL
IDL Reference Guide XMNG_TMPL

2424
XMTOOL

The XMTOOL procedure displays a tool for viewing widgets currently being
managed by the XMANAGER. Only one instance of the XMTOOL can run at one
time.

This routine is written in the IDL language. Its source code can be found in the file
xmtool.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XMTOOL [, /BLOCK] [, GROUP=widget_id]

Arguments

None.

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting BLOCK=1 will cause all
widget applications to block, not just this application. For more information, see the
documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XMTOOL
block, any earlier calls to XMANAGER must have been called with the
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

GROUP

The widget ID of the widget that calls XMTOOL. If the calling widget is destroyed,
the XMTOOL is also destroyed.

Version History

Introduced: Pre 4.0
XMTOOL IDL Reference Guide

 2425
See Also

XMANAGER
IDL Reference Guide XMTOOL

2426
XOBJVIEW

The XOBJVIEW procedure is a utility used to quickly and easily view and
manipulate IDL Object Graphics on screen. It displays given objects in an IDL
widget with toolbar buttons and menus providing functionality for manipulating,
printing, and exporting the resulting graphic. The mouse can be used to rotate, scale,
or translate the overall model shown in a view, or to select graphic objects in a view.

This routine is written in the IDL language. Its source code can be found in the file
xobjview.pro in the lib/utilities subdirectory of the IDL distribution.

Using XOBJVIEW

XOBJVIEW displays a resizeable top-level base with a menu, toolbar and draw
widget, as shown in the following figure:

The XOBJVIEW Toolbar

The XOBJVIEW toolbar contains the following buttons:

Figure 34: The XOBJVIEW widget

Reset: Resets rotation, scaling, and panning.
XOBJVIEW IDL Reference Guide

 2427
Syntax

XOBJVIEW, Obj [, BACKGROUND=[r, g, b]] [, /BLOCK] [, /DOUBLE_VIEW]
[, GROUP=widget_id] [, /JUST_REG] [, /MODAL] [, REFRESH=widget_id]
[, RENDERER={0 | 1}] [, SCALE=value] [, STATIONARY=objref(s)] [, /TEST]
[, TITLE=string] [, TLB=variable] [, XOFFSET=value] [, XSIZE=pixels]
[, YOFFSET=value] [, YSIZE=pixels]

Arguments

Obj

A reference to an atomic graphics object, an IDLgrModel, or an array of such
references. If Obj is an array, the array can contain a mixture of such references. Also,
if Obj is an array, all object references in the array must be unique (i.e. no two
references in the array can refer to the same object).

Obj is not destroyed when XOBJVIEW is quit or killed.

Keywords

BACKGROUND

Set this keyword to a three-element [r, g, b] color vector specifying the background
color of the XOBJVIEW window.

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting the BLOCK keyword causes

Rotate: Click the left mouse button on the object and drag to rotate.

Pan: Click the left mouse button on the object and drag to pan.

Zoom: Click the left mouse button on the object and drag to zoom in or out.

Select: Click on the object. The name of the selected object is displayed, if
the object has a name, otherwise its class is displayed.
IDL Reference Guide XOBJVIEW

2428
all widget applications to block, not just this application. For more information, see
the documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XOBJVIEW
block, any earlier calls to XMANAGER must have been called with the
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

DOUBLE_VIEW

Set this keyword to cause XOBJVIEW to set the DOUBLE property on the
IDLgrView that it uses to display graphical data.

GROUP

The widget ID of the widget that calls XOBJVIEW. When this ID is specified, the
death of the caller results in the death of XOBJVIEW.

JUST_REG

Set this keyword to indicate that the XOBJVIEW utility should just be registered and
return immediately. This is useful if you want to register XOBJVIEW before
beginning event processing and one or more widgets requests that XMANAGER
block event processing.

Note
If your application will be distributed for use with an IDL Runtime license, and it
allows users to control the contents of an XOBJVIEW window via a separate
interface registered with XMANAGER, you must set the JUST_REG keyword. See
“JUST_REG vs. NO_BLOCK” on page 2417 for additional details.

MODAL

Set this keyword to block processing of events from other widgets until the user quits
XOBJVIEW. The MODAL keyword does not require a group leader to be specified.
If no group leader is specified, and the MODAL keyword is set, XOBJVIEW
fabricates an invisible group leader for you.

Note
To be modal, XOBJVIEW does not require that its caller specify a group leader.
This is unlike other IDL widget procedures such as XLOADCT, which, to be
modal, do require that their caller specify a group leader. These other procedures
XOBJVIEW IDL Reference Guide

 2429
were implemented this way to encourage the caller to create a modal widget that
will be well-behaved with respect to layering and iconizing. (See “Iconizing,
Layering, and Destroying Groups of Top-Level Bases” on page 2128 for more
information.)

To provide a simple means of invoking XOBJVIEW as a modal widget in
applications that contain no other widgets, XOBJVIEW can be invoked as MODAL
without specifying a group leader, in which case XOBJVIEW fabricates an invisible
group leader for you. For applications that contain multiple widgets, however, it is
good programming practice to supply an appropriate group leader when invoking
XOBJVIEW, /MODAL. As with other IDL widget procedures with names prefixed
with “X”, specify the group leader via the GROUP keyword.

REFRESH

Set this keyword to the widget ID of the XOBJVIEW instance to be refreshed. To
retrieve the widget ID of an instance of XOBJVIEW, first call XOBJVIEW with the
TLB keyword. To refresh that instance of XOBJVIEW, call XOBVIEW again and set
REFRESH to the value retrieved by the TLB keyword in the earlier call to
XOBJVIEW. For example, in the initial call to XOBJVIEW, use the TLB keyword as
follows:

XOBJVIEW, myobj, TLB=tlb

If the properties of myobj are changed in your application or at the IDL command
line, refresh the view in XOBJVIEW by calling XOBJVIEW again with the
REFRESH keyword:

XOBJVIEW, REFRESH=tlb

For an example application demonstrating the use of the REFRESH keyword, see
“Example 3” on page 2433.

Note
Currently, the REFRESH keyword can only be used to refresh the object itself. All
other keywords and arguments to XOBJVIEW are ignored when REFRESH is
specified, therefore, properties such as the background color and scale are not
affected.

RENDERER

Set this keyword to an integer value indicating which graphics renderer to use when
drawing objects in the XOBJVIEW draw window. Valid values are:
IDL Reference Guide XOBJVIEW

2430
• 0 = Platform native OpenGL

• 1 = IDL’s software implementation

By default, your platform’s native OpenGL implementation is used. If your platform
does not have a native OpenGL implementation, IDL’s software implementation is
used regardless of the value of this property. See “Hardware vs. Software Rendering”
in Chapter 34 of the Using IDL manual for details. Your choice of renderer may also
affect the maximum size of the XOBJVIEW draw window. See “IDLgrWindow” on
page 3705 for details.

SCALE

Set this keyword to the zoom factor for the initial view. The default is 1/SQRT(3).
This default value provides the largest possible view of the object, while ensuring that
no portion of the object will be clipped by the XOBJVIEW window, regardless of the
object’s orientation.

STATIONARY

Set this keyword to a reference to an atomic graphics object, an IDLgrModel, or an
array of such references. If this keyword is an array, the array can contain a mixture
of such references. Also, if this keyword is an array, all object references in the array
must be unique (i.e., no two references in the array can refer to the same object).
Objects passed to XOBJVIEW via this keyword will not scale, rotate, or translate in
response to mouse events. Default stationary objects are two lights. These two lights
are replaced if one or more lights are supplied via this keyword. Objects specified via
this keyword are not destroyed by XOBJVIEW when XOBJVIEW is quit or killed.

For example, to change the default lights used by XOBJVIEW, you could specify
your own lights using the STATIONARY keyword as follows:

mylight1 = OBJ_NEW('IDLgrLight', TYPE=0, $
 COLOR=[255,0,0]) ; Ambient red
mylight2 = OBJ_NEW('IDLgrLight', TYPE=2, $
 COLOR=[255,0,0], LOCATION=[2,2,5]) ; Directional red

mymodel = OBJ_NEW('IDLgrModel')
mymodel -> Add, mylight1
mymodel -> Add, mylight2

XOBJVIEW, /TEST, STATIONARY=mymodel

TLB

Set this keyword to a named variable that upon return will contain the widget ID of
the top level base.
XOBJVIEW IDL Reference Guide

 2431
TEST

If set, the Obj argument is not required (and is ignored if provided). A blue sinusoidal
surface is displayed. This allows you to test code that uses XOBJVIEW without
having to create an object to display.

TITLE

Set this keyword to the string that appears in the XOBJVIEW title bar.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.

Specifying an offset relative to a row-major or column-major base widget does not
work because those widgets enforce their own layout policies. This keyword is
primarily of use relative to a plain base widget. Note that it is best to avoid using this
style of widget layout.

XSIZE

Set this keyword to the width of the drawable area in pixels. The default is 400.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row-major or column-major base widget does not
work because those widgets enforce their own layout policies. This keyword is
primarily of use relative to a plain base widget. Note that it is best to avoid using this
style of widget layout.

YSIZE

Set this keyword to the height of the drawable area in pixels. The default is 400.
IDL Reference Guide XOBJVIEW

2432
Examples

Example 1

This example displays a simple IDLgrSurface object using XOBJVIEW:

oSurf = OBJ_NEW('IDLgrSURFACE', DIST(20))
XOBJVIEW, oSurf

Example 2

This example displays an IDLgrModel object consisting of two separate objects:

; Create contour object:
oCont = OBJ_NEW('IDLgrContour', DIST(20), N_LEVELS=10)

; Create surface object:
oSurf = OBJ_NEW('IDLgrSurface', $
 DIST(20),INDGEN(20)+20, INDGEN(20)+20)

; Create model object:
oModel = OBJ_NEW('IDLgrModel')

; Add contour and surface objects to model:
oModel->Add, oCont
oModel->Add, oSurf

; View model:
XOBJVIEW, oModel
XOBJVIEW IDL Reference Guide

 2433
This code results in the following view in the XOBJVIEW widget:

Note that when you click the Select button, and then click on an object, the class of
that object appears next to the Select button. If the selected object has a non-null
NAME property associated with it, that string value will be displayed, otherwise the
name of the selected object’s class will be displayed.

If you want the class of the model to appear when you click over any object in the
model, you can set the SELECT_TARGET property of the model as follows:

oModel->SetProperty, /SELECT_TARGET

Also note that it is not necessary to create a model to view more than one object using
XOBJVIEW. We could view the oCont and oSurf objects created in the above
example by placing them in an array as follows:

XOBJVIEW, [oCont, oSurf]

Example 3

This example demonstrates how the REFRESH keyword can be used to refresh the
object displayed in an instance of XOBJVIEW.

PRO xobjview_refresh_event, event
WIDGET_CONTROL, event.id, GET_UVALUE=uval
WIDGET_CONTROL, event.top, GET_UVALUE=state

Figure 35: Using XOBJVIEW to view a model consisting of two objects
IDL Reference Guide XOBJVIEW

2434
CASE uval OF
'red': BEGIN

WIDGET_CONTROL, event.id, GET_VALUE=val
state.myobj -> GetProperty, COLOR=c
state.myobj -> SetProperty, COLOR=[val,c[1],c[2]]
XOBJVIEW, REFRESH=state.tlb
END

 'green': BEGIN
WIDGET_CONTROL, event.id, GET_VALUE=val
state.myobj -> GetProperty, COLOR=c
state.myobj -> SetProperty, COLOR=[c[0],val,c[2]]
XOBJVIEW, REFRESH=state.tlb
END

 'blue': BEGIN
WIDGET_CONTROL, event.id, GET_VALUE=val
state.myobj -> GetProperty, COLOR=c
state.myobj -> SetProperty, COLOR=[c[0],c[1],val]
XOBJVIEW, REFRESH=state.tlb
END

ENDCASE
END

PRO xobjview_refresh_cleanup, wID
WIDGET_CONTROL, wID, GET_UVALUE=state
OBJ_DESTROY, state.myobj

END

PRO xobjview_refresh
base = WIDGET_BASE(/COLUMN, TITLE='Adjust Object Color', $

XOFFSET=420, XSIZE=200)

myobj = OBJ_NEW('IDLgrSurface', $
BESELJ(SHIFT(DIST(40), 20, 20) / 2,0) * 20, $
COLOR=[255, 60, 60], STYLE=2, SHADING=1)

XOBJVIEW, myobj, TLB=tlb, GROUP=base, BACKGROUND=[0,0,0]

red = WIDGET_SLIDER(base, /DRAG, MIN=0, MAX=255, TITLE='Red', $
UVALUE='red', VALUE=255)

green = WIDGET_SLIDER(base, /DRAG, MIN=0, MAX=255, $
TITLE='Green', UVALUE='green', VALUE=60)

blue = WIDGET_SLIDER(base, /DRAG, MIN=0, MAX=255, $
TITLE='Blue', UVALUE='blue', VALUE=60)

WIDGET_CONTROL, base, /REALIZE

state = {myobj:myobj, tlb:tlb}
WIDGET_CONTROL, base, SET_UVALUE=state
XOBJVIEW IDL Reference Guide

 2435
XMANAGER, 'xobjview_refresh', base, /NO_BLOCK, $
CLEANUP='xobjview_refresh_cleanup'

END

Version History

Introduced: 5.3

See Also

XOBJVIEW_ROTATE, XOBJVIEW_WRITE_IMAGE
IDL Reference Guide XOBJVIEW

2436
XOBJVIEW_ROTATE

The XOBJVIEW_ROTATE procedure is used to programmatically rotate the object
currently displayed in XOBJVIEW. XOBJVIEW must be called prior to calling
XOBJVIEW_ROTATE. This procedure can be used to create animations of object
displays.

This routine is written in the IDL language. Its source code can be found in the file
xobjview_rotate.pro in the lib/utilities subdirectory of the IDL
distribution.

Syntax

XOBJVIEW_ROTATE, Axis, Angle [, /PREMULTIPLY]

Arguments

Axis

A 3-element vector of the form [x, y, z] describing the axis about which the model is
to be rotated.

Angle

The amount of rotation, measured in degrees.

Keywords

PREMULTIPLY

Set this keyword to cause the rotation matrix specified by Axis and Angle to be pre-
multiplied to the model’s transformation matrix. By default, the rotation matrix is
post-multiplied.

Examples

The following example creates an animation of the test object (a surface) currently
displayed in XOBJVIEW. It does this by rotating the surface through 360 degrees in
increments of 10 degrees using XOBJVIEW_ROTATE, and writing the display
image to a BMP file for each increment using XOBJVIEW_WRITE_IMAGE.
XOBJVIEW_ROTATE IDL Reference Guide

 2437
PRO RotateAndWriteObject

XOBJVIEW, /TEST
FOR i = 0, 359 DO BEGIN

XOBJVIEW_ROTATE, [0, 1, 0], 1, /PREMULTIPLY;
XOBJVIEW_WRITE_IMAGE, ’img’ + $
STRCOMPRESS(i, /REMOVE_ALL) + ’.bmp’, ’bmp’

ENDFOR

END

Version History

Introduced: 5.5

See Also

XOBJVIEW, XOBJVIEW_WRITE_IMAGE
IDL Reference Guide XOBJVIEW_ROTATE

2438
XOBJVIEW_WRITE_IMAGE

The XOBJVIEW_WRITE_IMAGE procedure is used to write the object currently
displayed in XOBJVIEW to an image file with the specified name and file format.
XOBJVIEW must be called prior to calling XOBJVIEW_WRITE_IMAGE.

This routine is written in the IDL language. Its source code can be found in the file
xobjview_write_image.pro in the lib/utilities subdirectory of the IDL
distribution.

Syntax

XOBJVIEW_WRITE_IMAGE, Filename, Format [, DIMENSIONS=[x, y]]

Arguments

Filename

A scalar string containing the name of the file to write.

Format

A scalar string containing the name of the file format to write. See WRITE_IMAGE
for a list of supported formats.

Keywords

DIMENSIONS

Set this keyword to a 2-element vector of the form [x, y] specifying the size of the
output image, in pixels. If this keyword is not specified, the image will be written
using the dimensions of the current XOBJVIEW draw widget.

Examples

See XOBJVIEW_ROTATE.

Version History

Introduced: 5.5
XOBJVIEW_WRITE_IMAGE IDL Reference Guide

 2439
See Also

XOBJVIEW, XOBJVIEW_ROTATE
IDL Reference Guide XOBJVIEW_WRITE_IMAGE

2440
XPALETTE

The XPALETTE procedure is a utility that displays a widget interface that allows
interactive creation and modification of colortables using the RGB, CMY, HSV, or
HLS color systems. Single colors can be defined or multiple color indices between
two endpoints can be interpolated.

This routine is written in the IDL language. Its source code can be found in the file
xpalette.pro in the lib/utilities subdirectory of the IDL distribution.

Using the XPALETTE Interface

Calling XPALETTE causes a graphical interface to appear. The elements of this
interface are described below.

Plots on Left Side of Interface

Three plots show the current red, green, and blue vectors.

Status Region

The center of the XPALETTE widget is a status region containing:

• The total number of colors.

• The current color index. XPALETTE allows changing one color at a time. This
color is known as the “current color” and is indicated in the color spectrum
display with a special marker.

• The current mark index. The mark is used to remember a color index. Click the
“Set Mark Button” to make the current color index the mark index.

• A sample of the current color. The special marker used in the color spectrum
display prevents the user from seeing the color of the current index, but it is
visible here.

Control Panel

A panel of 8 buttons control common XPALETTE functions:

• Done: Click this button to exit XPALETTE. The new color tables are saved in
the COLORS common block and loaded to the display.

• Predefined: Click this button to start XLOADCT, allowing selection of one of
the predefined color tables. Note that when you change the color map via
XLOADCT, XPALETTE is not always able to keep its display accurate. This
problem can be overcome by pressing the XPALETTE “Redraw” button after
changing the colortable via XLOADCT.
XPALETTE IDL Reference Guide

 2441
• Help: Click this button to display help information.

• Redraw: Click this button to redraws the display using the current state of the
color map.

• Set Mark: Click this button to set the value of the mark index to the current
color index.

• Switch Mark: Click this button to exchange the mark and the current index.

• Copy Current: Click this button to make every color lying between the
current index and the mark index (inclusive) the same color as the current
color.

• Interpolate: Click this button to smoothly interpolate colors between the
current index and the mark index.

Color System Control

This section of the interface allows you to select the color system used to modify
individual colors. The “Select Color System” pulldown menu lets you select from
four different systems—RGB, CMY, HSV, and HLS. Depending upon the current
system, 3 sliders below the pulldown menu allow you to alter the current color.

Right Side Color Spectrum Display

A display on the right side of the XPALETTE interface shows the current color map
as a series of squares. Color index 0 is at the upper left. The color index increases
monotonically by rows going left to right and top to bottom. The current color index
is indicated by a special marker symbol. There are 4 ways to change the current color:

• Click on any square in the color map display.

• Use the “By Index” slider to move to the desired color index.

• Use the “Row” Slider to move the marker vertically.

• Use the “Column” Slider to move the marker horizontally.

A Note about the Colors Used in the Interface

XPALETTE uses two colors from the current color table as drawing foreground and
background colors. These are used for the RGB plots on the left, and the current
index marker on the right. This means that if the user set these two colors to the same
value, the XPALETTE display could become unreadable (like writing on black paper
with black ink). XPALETTE minimizes this possibility by noting changes to the color
map and always using the brightest available color for the foreground color and the
darkest for the background. Thus, the only way to make XPALETTE’s display
IDL Reference Guide XPALETTE

2442
unreadable is to set the entire color map to a single color, which is highly unlikely.
The only side effect of this policy is that you may notice XPALETTE redrawing the
entire display after you’ve modified the current color. This simply means that the
change has made XPALETTE pick new drawing colors.

Syntax

XPALETTE [, /BLOCK] [, GROUP=widget_id]
[, UPDATECALLBACK=‘procedure_name’ [, UPDATECBDATA=value]]

Arguments

None.

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting BLOCK=1 will cause all
widget applications to block, not just this application. For more information, see the
documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XPALETTE
block, any earlier calls to XMANAGER must have been called with the
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

GROUP

The widget ID of the widget that calls XPALETTE. When this ID is specified, a death
of the caller results in a death of XPALETTE.

UPDATECALLBACK

Set this keyword to a string containing the name of a user-supplied procedure that
will be called when the color table is updated by XLOADCT. The procedure may
optionally accept a keyword called DATA, which will be automatically set to the
value specified by the optional UPDATECBDATA keyword.
XPALETTE IDL Reference Guide

 2443
UPDATECBDATA

Set this keyword to a value of any type. It will be passed via the DATA keyword to the
user-supplied procedure specified via the UPDATECALLBACK keyword, if any. If
the UPDATECBDATA keyword is not set the value accepted by the DATA keyword
to the procedure specified by UPDATECALLBACK will be undefined.

Version History

Introduced: Pre 4.0

See Also

LOADCT, MODIFYCT, XLOADCT, TVLCT
IDL Reference Guide XPALETTE

2444
XPCOLOR

The XPCOLOR procedure is a utility that allows you to adjust the value of the
current plotting color (foreground) using sliders, and store the desired color in the
global system variable, !P.COLOR.

When XPCOLOR is called from the IDL input command line, the Set Plot Color
dialog box appears. The dialog has two buttons (Done and Help) a single color
swatch window, three sliders, and a pulldown menu with the four color systems: red,
green, blue (RGB); cyan, magenta, yellow (CMY); hue, saturation, value (HSV); and
hue, lightness, and saturation (HLS).

When you have chosen the color system and adjusted the sliders to your liking, click
Done to store the color selected in the !P.COLOR system variable. Any plots
generated in IDL afterwards use the color selected as the plotting (foreground) color
until !P.COLOR is changed again.

Note
For a more flexible color editor, use the XPALETTE User Library routine.

This routine is written in the IDL language. Its source code can be found in the file
xpcolor.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XPCOLOR [, GROUP=widget_id]

Arguments

None.

Keywords

GROUP

Set this keyword to the group leader widget ID as passed to XMANAGER.

Version History

Introduced: 4.0
XPCOLOR IDL Reference Guide

 2445
XPLOT3D

The XPLOT3D procedure is a utility for creating and interactively manipulating 3-D
plots.

This routine is written in the IDL language. Its source code can be found in the file
xplot3d.pro in the lib/utilities subdirectory of the IDL distribution.

Using XPLOT3D

XPLOT3D displays a resizeable top-level base with a menu, toolbar and draw widget,
as shown in the following figure:

The XPLOT3D Toolbar

The XPLOT3D toolbar contains the following buttons:

Figure 36: The XPLOT3D Utility

Reset: Resets rotation, scaling, and panning.

Rotate: Click the left mouse button on the plot and drag to rotate.
IDL Reference Guide XPLOT3D

2446
Projecting Data onto Plot “Walls”

To turn on or off the projection of data onto the walls of the box enclosing the 3-D
plot, select All On, All Off, XY, YZ, or XZ from the View → 2D Projection menu.

Changing the Axis Type

The View → Axes menu allows you to select one of the following types of axes:

• Simple Axes — displays the X, Y, and Z axes as lines.

• Box Axes — displays the X, Y, and Z axes as planes.

• No Axes — turns off the display of axes.

Syntax

XPLOT3D, X, Y, Z [, /BLOCK] [, COLOR=[r,g,b]] [, /DOUBLE_VIEW]
[, GROUP=widget_id] [, LINESTYLE={0 | 1 | 2 | 3 | 4 | 5 | 6}] [, /MODAL]
[, NAME=string] [, /OVERPLOT] [, SYMBOL=objref(s)] [, /TEST]
[, THICK=points{1.0 to 10.0}] [, TITLE=string] [, XRANGE=[min, max]]
[, YRANGE=[min, max]] [, ZRANGE=[min, max]] [, XTITLE=string]
[, YTITLE=string] [, ZTITLE=string]

Arguments

X

A vector of X data values.

Y

A vector of Y data values.

Z

A vector of Z data values.

Zoom: Click the left mouse button on the plot and drag to zoom in or out.

Pan: Click the left mouse button on the plot and drag to pan.

Select: Click on a curve to display the curve name (if defined with the
NAME keyword) on the XPLOT3D toolbar. If no name was defined
for the curve, “IDLGRPOLYLINE” is displayed.
XPLOT3D IDL Reference Guide

 2447
Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting the BLOCK keyword causes
all widget applications to block, not just this application. For more information, see
the documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XPLOT3D
block, any earlier calls to XMANAGER must have been called with the
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

COLOR

Set this keyword to an [r, g, b] triplet specifying the color of the curve.

DOUBLE_VIEW

Set this keyword to cause XPLOT3D to set the DOUBLE property on the IDLgrView
that it uses to display the plot.

GROUP

Set this keyword to the widget ID of the widget that calls XPLOT3D. When this
keyword is specified, the death of the caller results in the death of XPLOT3D.

LINESTYLE

Set this keyword to a value indicating the line style that should be used to draw the
curve. The value can be either an integer value specifying a pre-defined line style, or
a 2-element vector specifying a stippling pattern.

To use a pre-defined line style, set the LINESTYLE keyword to one of the following
integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot
IDL Reference Guide XPLOT3D

2448
• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1s or 0s in the
bitmask should be repeated. (That is, if three consecutive 0s appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 ≤ repeat ≤ 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. The bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example, LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8 bits
off, 8 bits on, 8 bits off).

MODAL

Set this keyword to block processing of events from other widgets until the user quits
XPLOT3D. The MODAL keyword does not require a group leader to be specified. If
no group leader is specified, and the MODAL keyword is set, XPLOT3D fabricates
an invisible group leader for you.

Note
To be modal, XPLOT3D does not require that its caller specify a group leader. This
is unlike other IDL widget procedures such as XLOADCT, which, to be modal, do
require that their caller specify a group leader. These other procedures were
implemented this way to encourage the caller to create a modal widget that will be
well-behaved with respect to layering and iconizing. (See “Iconizing, Layering, and
Destroying Groups of Top-Level Bases” on page 2128 for more information.)

To provide a simple means of invoking XPLOT3D as a modal widget in
applications that contain no other widgets, XPLOT3D can be invoked as MODAL
without specifying a group leader, in which case XPLOT3D fabricates an invisible
group leader for you. For applications that contain multiple widgets, however, it is
good programming practice to supply an appropriate group leader when invoking
XPLOT3D, /MODAL. As with other IDL widget procedures with names prefixed
with “X”, specify the group leader via the GROUP keyword.

NAME

Set this keyword to a string specifying the name for the data curve being plotted. The
name is displayed on the XPLOT3D toolbar when the curve is selected with the
XPLOT3D IDL Reference Guide

 2449
mouse. (To select the curve with the mouse, XPLOT3D must be in select mode. You
can put XPLOT3D in select mode by clicking on the rightmost button on the
XPLOT3D toolbar.)

OVERPLOT

Set this keyword to draw the curve in the most recently created view. The TITLE,
[XYZ]TITLE, [XYZ]RANGE, and MODAL keywords are ignored if this keyword is
set.

SYMBOL

Set this keyword to a vector containing one or more instances of the IDLgrSymbol
object class to indicate the plotting symbols to be used at each vertex of the polyline.
If there are more vertices than elements in SYMBOL, the elements of the SYMBOL
vector are cyclically repeated. By default, no symbols are drawn. To remove symbols
from a polyline, set SYMBOL to a scalar.

TEST

If set, the X, Y, and Z arguments are not required (and are ignored if provided). A
sinusoidal curve is displayed instead. This allows you to test code that uses
XPLOT3D without having to specify plot data.

THICK

Set this keyword to a value between 1.0 and 10.0, specifying the line thickness to be
used to draw the polyline, in points. The default is 1.0 points.

TITLE

Set this keyword to a string to appear in the XPLOT3D title bar.

XRANGE

Set this keyword to a 2-element array of the form [min, max] specifying the X-axis
range.

YRANGE

Set this keyword to a 2-element array of the form [min, max] specifying the Y-axis
range.
IDL Reference Guide XPLOT3D

2450
ZRANGE

Set this keyword to a 2-element array of the form [min, max] specifying the Z-axis
range.

XTITLE

Set this keyword to a string specifying the title for the X axis of the plot.

YTITLE

Set this keyword to a string specifying the title for the Y axis of the plot.

ZTITLE

Set this keyword to a string specifying the title for the Z axis of the plot.

Examples

The following example displays two curves in XPLOT3D, using a custom plotting
symbol for one of the curves:

;Define plot data:
X = INDGEN(20)
Y1 = SIN(X/3.)
Y2 = COS(X/3.)
Z = X

;Display curve 1 in XPLOT3D:
XPLOT3D, X, Y1, Z, NAME='Curve1', THICK=2

;Define custom plotting symbols:
oOrb = OBJ_NEW('orb', COLOR=[0, 0, 255])
oOrb->Scale, .75, .1, .5
oSymbol = OBJ_NEW('IDLgrSymbol', oOrb)

;Overplot curve 2 in XPLOT3D:
XPLOT3D, X, Y2, Z, COLOR=[0,255,0], NAME='Curve2', $

SYMBOL=oSymbol, THICK=2, /OVERPLOT
XPLOT3D IDL Reference Guide

 2451
This code results in the following:

Version History

Introduced: 5.4

See Also

IPLOT

Figure 37: Two curves displayed in XPLOT3D
IDL Reference Guide XPLOT3D

2452
XREGISTERED

The XREGISTERED function returns the number of instances of the widget named
as its argument that are currently registered with the XMANAGER. The registered
widget is brought to the front of the desktop unless the NOSHOW keyword is set.

If the specified widget is not currently registered with XMANAGER,
XREGISTERED returns zero.

This routine is written in the IDL language. Its source code can be found in the file
xregistered.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = XREGISTERED(Name [, /NOSHOW])

Arguments

Name

A string containing the name of the widget in question.

Note
XREGISTERED checks for Name in a COMMON block created by XMANAGER.
The stored name is case-sensitive.

Keywords

NOSHOW

If the widget in question is registered, it is brought to the front of all the other
windows by default. Set this keyword to keep the widget from being brought to the
front.

Examples

Suppose that you have a widget program that registers itself with the XMANAGER
with the command:

XMANAGER, 'mywidget', base
XREGISTERED IDL Reference Guide

 2453
You could limit this widget to one instantiation by adding the following line as the
first line (after the procedure definition statement) of the widget creation routine:

IF (XREGISTERED('mywidget') NE 0) THEN RETURN

Version History

Introduced: Pre 4.0

See Also

XMANAGER
IDL Reference Guide XREGISTERED

2454
XROI

The XROI procedure is a utility for interactively defining regions of interest (ROIs),
and obtaining geometry and statistical data about these ROIs.

This routine is written in the IDL language. Its source code can be found in the file
xroi.pro in the lib/utilities subdirectory of the IDL distribution.

Note
See “Using XROI” on page 2460, for detailed information describing importing
images, modifying image and ROI colors, retrieving ROI information and growing
regions.

Syntax

XROI [, ImageData] [, R] [, G] [, B] [, /BLOCK]
[[, /FLOATING] , GROUP=widget_ID] [, /MODAL] [, REGIONS_IN=value]
[, REGIONS_OUT=value] [, REJECTED=variable] [, RENDERER={0 | 1}]
[, ROI_COLOR=[r, g, b] or variable] [, ROI_GEOMETRY=variable]
[, ROI_SELECT_COLOR=[r, g, b] or variable] [, STATISTICS=variable]
[, TITLE=string] [, TOOLS=string/string array {valid values are 'Translate-Scale',
'Rectangle', 'Ellipse', 'Freehand Draw', 'Polygon Draw', and 'Selection'}]
[, X_SCROLL_SIZE=value] [, Y_SCROLL_SIZE=value]

Arguments

ImageData

ImageData is both an input and output argument. It is an array representing an 8-bit
or 24-bit image to be displayed. ImageData can be any of the following:

• [m, n] — 8-bit image

• [3, m, n] — 24-bit image

• [m, 3, n] — 24-bit image

• [m, n, 3] — 24-bit image

If ImageData is not supplied, the user will be prompted for a file via
DIALOG_PICKFILE. On output, ImageData will be set to the current image data.
(The current image data can be different than the input image data if the user
imported an image via the File → Import Image menu item.)
XROI IDL Reference Guide

 2455
R, G, B

R, G, and B are arrays of bytes representing red, green, or blue color table values,
respectively. R, G, and B are both input and output arguments. On input, these values
are applied to the image if the image is 8-bit. To get the red, green, or blue color table
values for the image on output from XROI, specify a named variable for the
appropriate argument. (If the image is 24-bit, this argument will output a 256-element
byte array containing the values given at input, or BINDGEN(256) if the argument
was undefined on input.)

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting the BLOCK keyword causes
all widget applications to block, not just this application. For more information, see
the documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XROI block,
any earlier calls to XMANAGER must have been called with the NO_BLOCK
keyword. See the documentation for the NO_BLOCK keyword to XMANAGER for
an example.

FLOATING

Set this keyword, along with the GROUP keyword, to create a floating top-level base
widget. If the windowing system provides Z-order control, floating base widgets
appear above the base specified as their group leader. If the windowing system does
not provide Z-order control, the FLOATING keyword has no effect.

Note
Floating widgets must have a group leader. Setting this keyword without also
setting the GROUP keyword causes an error.

GROUP

Set this keyword to the widget ID of the widget that calls XROI. When this keyword
is specified, the death of the caller results in the death of XROI.
IDL Reference Guide XROI

2456
MODAL

Set this keyword to block other IDL widgets from receiving events while XROI is
active.

REGIONS_IN

Set this keyword to an array of IDLgrROI references. This allows you to open XROI
with previously defined regions of interest (see Example 3). This is also useful when
using a loop to open multiple images in XROI. By using the same named variable for
both the REGIONS_IN and REGIONS_OUT keywords, you can reuse the same
ROIs in multiple images (see Example 2). This keyword also accepts –1, or
OBJ_NEW() (Null object) to indicate that there are no ROIs to read in. This allows
you to assign the result of a previous REGIONS_OUT to REGIONS_IN without
worrying about the case where the previous REGIONS_OUT is undefined.

REGIONS_OUT

Set this keyword to a named variable that will contain an array of IDLgrROI
references. This keyword is assigned the null object reference if there are no ROIs
defined. By using the same named variable for both the REGIONS_IN and
REGIONS_OUT keywords, you can reuse the same ROIs in multiple images (see
Example 2).

Note
This keyword must be used in conjunction with the BLOCK keyword.

REJECTED

Set this keyword to a named variable that will contain those REGIONS_IN that are
not in REGIONS_OUT. The objects defined in the variable specified for REJECTED
can be destroyed with a call to OBJ_DESTROY, allowing you to perform cleanup on
objects that are not required (see Example 2). This keyword is assigned the null
object reference if no REGIONS_IN are rejected by the user.

Note
This keyword must be used in conjunction with the BLOCK keyword.

RENDERER

Set this keyword to an integer value to indicate which graphics renderer to use when
drawing objects within the window. Valid values are:
XROI IDL Reference Guide

 2457
• 0 = Platform native OpenGL

• 1 = IDL’s software implementation (the default)

ROI_COLOR

This keyword is both an input and an output parameter. Set this keyword to a
3-element byte array, [r, g, b], indicating the color of ROI outlines when they are not
selected. This color will be used by XROI unless and until the color is changed by the
user via the “Unselected Outline Color” portion of the “ROI Outline Colors” dialog
(which is accessed by selecting Edit → ROI Outline Colors). If this keyword is
assigned a named variable, that variable will be set to the current [r, g, b] value at the
time that XROI returns.

ROI_GEOMETRY

Set this keyword to a named variable that will contain an array of anonymous
structures, one for each ROI that is valid when this routine returns. The structures will
contain the following fields:

If there are no valid regions of interest when this routine returns, ROI_GEOMETRY
will be undefined.

Note
If there are no REGIONS_IN, XROI must either be modal or must block control
flow in order for ROI_GEOMETRY to be defined upon exit from XROI. Otherwise,
XROI will return before an ROI can be defined, and ROI_GEOMETRY will
therefore be undefined.

Note
This keyword must be used in conjunction with the BLOCK keyword.

Field Description

area The area of the region of interest, in square pixels.

centroid The coordinates (x, y, z) of the centroid of the region
of interest, in pixels.

perimeter The perimeter of the region of interest, in pixels.

Table 112: Fields of the structure returned by ROI_GEOMETRY
IDL Reference Guide XROI

2458
ROI_SELECT_COLOR

This keyword is both an input and an output parameter. Set this keyword to a
3-element byte array, [r, g, b], indicating the color of ROI outlines when they are
selected. This color will be used by XROI unless and until the color is changed by the
user via the “Selected Outline Color” portion of the “ROI Outline Colors” dialog
(which is accessed by selecting Edit → ROI Outline Colors). If this keyword is
assigned a named variable, that variable will be set to the current [r, g, b] value at the
time that XROI returns.

STATISTICS

Set this keyword to a named variable to receive an array of anonymous structures, one
for each ROI that is valid when this routine returns. The structures will contain the
following fields:

If ImageData is 24-bit, or if there are no valid regions of interest when the routine
exits, STATISTICS will be undefined.

Note
If there are no REGIONS_IN, XROI must either be modal or must block control
flow in order for STATISTICS to be defined upon exit from XROI. Otherwise,
XROI will return before an ROI can be defined, and STATISTICS will therefore be
undefined.

TITLE

Set this keyword to a string to appear in the XROI title bar.

Field Description

count Number of pixels in region.

minimum Minimum pixel value.

maximum Maximum pixel value.

mean Mean pixel value.

stddev Standard deviation of pixel values.

Table 113: Fields of the structure returned by STATISTICS
XROI IDL Reference Guide

 2459
TOOLS

Set this keyword a string or vector of strings from the following list to indicate which
ROI manipulation tools should be supported when XROI is run:

• 'Translate-Scale' — Translation and scaling of ROIs. Mouse down inside the
bounding box selects a region, mouse motion translates (repositions) the
region. Mouse down on a scale handle of the bounding box enables scaling
(stretching, enlarging and shrinking) of the region according to mouse motion.
Mouse up finishes the translation or scaling.

• 'Rectangle' — Rectangular ROI drawing. Mouse down positions one corner of
the rectangle, mouse motions creates the rectangle, positioning the rectangle’s
opposite corner, mouse up finishes the rectangular region.

• 'Ellipse' — Elliptical ROI drawing. Mouse down positions the center of the
ellipse, mouse motion positions the corner of the ellipse’s imaginary bounding
box, mouse up finishes the elliptical region.

• 'Freehand Draw' — Freehand ROI drawing. Mouse down begins a region,
mouse motion adds vertices to the region (following the path of the mouse),
mouse up finishes the region.

• 'Polygon Draw' — Polygon ROI drawing. Mouse down begins a region,
subsequent mouse clicks add vertices, double-click finishes the region.

• 'Selection' — ROI selection. Mouse down/up selects the nearest region. The
nearest vertex in that region is identified with a crosshair symbol.

If more than one string is specified, a series of bitmap buttons will appear at the top of
the XROI widget in the order specified (to the right of the fixed set of bitmap buttons
used for saving regions, displaying region information, copying to clipboard, and
flipping the image). If only one string is specified, no additional bitmap buttons will
appear, and the manipulation mode is implied by the given string. If this keyword is
not specified, bitmap buttons for all three manipulation tools are included on the
XROI toolbar.

X_SCROLL_SIZE

Set this keyword to the width of the scroll window. If this keyword is larger than the
image width then it will be set to the image width. The default is to use the image
width or the screen width, whichever is smaller.
IDL Reference Guide XROI

2460
Y_SCROLL_SIZE

Set this keyword to the height of the scroll window. If this keyword is larger than the
image height then it will be set to the image height. The default is to use the image
height or the screen height, whichever is smaller.

Using XROI

XROI displays a top-level base with a menu, toolbar and draw widget. After defining
an ROI, the ROI Information window appears, as shown in the following figure:

As you move the mouse over an image, the x and y pixel locations are shown in the
status line on the bottom of the XROI window. For 8-bit images, the data value (z) is
also shown. If an ROI is defined, the status line also indicates the mouse position
relative to the ROI using the text “Inside”, “Outside”, “On Edge,” or “On Vertex.”

The XROI Toolbar

The XROI toolbar contains the following buttons:

Figure 38: The XROI Utility

Save: Opens a file selection dialog for saving the currently defined
ROIs to a save file.
XROI IDL Reference Guide

 2461
Depending on the value of the TOOLS keyword, the XROI toolbar may also contain
the following buttons:

Info: Opens the ROI Information window.

Copy: Copies the contents of the display area to the clipboard.

Flip: Flips image vertically. Note that only the image is flipped;
any ROIs that have been defined do not move.

Translate/
Scale:

Click this button to translate or scale ROIs. Mouse down
inside the bounding box selects a region, mouse motion
translates (repositions) the region. Mouse down on a scale
handle of the bounding box enables scaling (stretching,
enlarging and shrinking) of the region according to mouse
motion. Mouse up finishes the translation or scaling.

Draw
Rectangle:

Click this button to draw rectangular ROIs. Mouse down
positions one corner of the rectangle, mouse motions creates
the rectangle, positioning the rectangle’s opposite corner,
mouse up finishes the rectangular region.

Draw
Ellipse:

Click this button to draw elliptical ROIs. Mouse down
positions the center of the ellipse, mouse motion positions
the corner of the ellipse’s imaginary bounding box, mouse
up finishes the elliptical region.

Draw
Freehand:

Click this button to draw freehand ROIs. Mouse down
begins a region, mouse motion adds vertices to the region
(following the path of the mouse), mouse up finishes the
region.

Draw
Polygon:

Click this button to draw polygon ROIs. Mouse down begins
a region, subsequent mouse clicks add vertices, double-click
finishes the region.

Select: Click this button to select an ROI region. Clicking the image
causes a cross hairs symbol to be drawn at the nearest vertex
of the selected ROI.
IDL Reference Guide XROI

2462
Importing an Image into XROI

To import an image into XROI, select File → Import Image. This opens a
DIALOG_READ_IMAGE dialog, which can be used to preview and select an image.

Changing the Image Color Table

To change the color table properties for the current image, select Edit → Image
Color Table. This opens the CW_PALETTE_EDITOR dialog, which is a compound
widget used to edit color palettes. See CW_PALETTE_EDITOR for more
information. This menu item is grayed out if the image does not have a color palette.

Changing the ROI Outline Colors

To change the outline colors for selected and unselected ROIs, select Edit → ROI
Outline Colors. This opens the ROI Outline Colors dialog, which consists of two
CW_RGBSLIDER widgets for interactively adjusting the ROI outline colors. The
left widget is used to define the color for the selected ROI, and the right widget is
used to define the color of unselected ROIs. You can select the RGB, CMY, HSV, or
HLS color system from the Color System drop-down list.

Viewing ROI Information

To view geometry and statistical data about the currently selected ROI, click the Info
button or select Edit → ROI Information. This opens the ROI Information dialog,
which displays area, perimeter, number of pixels, minimum and maximum pixel
values, mean, and standard deviation. Values for statistical information (minimum,
maximum, mean, and standard deviation) appear as “N/A” for 24-bit images.

Viewing a Histogram Plot for an ROI

To view a histogram for an ROI, use either the shortcut menu or the ROI Information
dialog.

To view an ROI’s histogram plot using the shortcut menu:

1. Position the cursor on the line defining the boundary of an ROI in the drawing
window and click the right mouse button. This selects the region and brings up
its shortcut menu.

2. Select the Plot Histogram menu option from the shortcut menu.

To view an ROI’s histogram plot using the ROI Information dialog:

1. Open the ROI Information dialog by clicking the Info button or selecting Edit
→ ROI Information.
XROI IDL Reference Guide

 2463
2. Select a region from the list and click the Histogram button on the ROI
Information dialog.

Either of the previous methods opens a LIVE_PLOT dialog showing the ROI’s
histogram that can be used to interactively control the plot properties.

Note
XROI’s histogram plot feature now supports RGB images.

Growing an ROI

Once a region has been created, it may be used as a source ROI for region growing.
Region growing is a process of generating one or more new ROIs based upon the
image pixel values that fall within the source ROI and the values of the neighboring
pixels. New pixels are added to the new grown region if those image pixel values fall
within a specified threshold.

Note
This option is an interactive implementation of the REGION_GROW function.

To create a new, grown region, do the following:

1. Within the draw area, click the right mouse button on the ROI that is to be
grown. This will select the region and bring up its shortcut menu.

2. Select Grow Region → By threshold or select Grow Region → By std. dev.
multiple from the shortcut menu to control how the region is grown.

The By threshold option grows the region to include all neighboring pixels
that fall within a specified threshold range. By default, the range is defined by
the minimum and maximum pixel values occurring within the original region.
To specify a different threshold range, see Using the Region Grow Properties
Dialog in the following section.

The By std. dev. multiple option grows a region to include all neighboring
pixels that fall within the range of:

Mean +/- StdDevMultiplier * StdDev

where Mean is the mean value of the pixel values within the source ROI,
StdDevMultiplier is a multiplier that is set using the Region Grow
Properties dialog (described below), and StdDev is the sample standard
deviation of the pixel values within the original region.
IDL Reference Guide XROI

2464
Using the Region Grow Properties Dialog

The Region Grow Properties dialog allows you to view and edit the properties
associated with a region growing process. To bring up the Region Grow Properties
dialog, do one of the following:

• Click the right mouse button on an ROI in the drawing window and select
Grow Region → Properties... shortcut menu option.

• Select Edit → Region Grow Properties... from the XROI menu bar.

This brings up the Region Grow Properties dialog, shown in the following figure.

Figure 39: XROI’s Region Grow Properties Dialog
XROI IDL Reference Guide

 2465
The Region Grow Properties dialog offers the following options:

Option Description

Pixel search
method:

Describes which pixels are searched when growing the
original ROI. The option are:

• 4-neighbor — Searches only the four neighboring
pixels that share a common edge with the current pixel.
This is the default.

• 8-neighbor — Searches all eight neighboring pixels,
including those that are located diagonally relative to
the original pixel and share a common corner.

Threshold range: Represents the minimum and maximum image pixel values
that are to be included in the grown region when using the
Grow Region → By threshold option (described in
“Growing an ROI” on page 2463). By default, the range of
pixel values used are those occurring in the ROI to be
grown.

To change the threshold values, uncheck Use source ROI
threshold and enter the minimum and maximum threshold
values in the Min: and Max: fields provided.

Standard deviation
multiplier:

Represents the factor by which the sample standard
deviation of the original ROI’s pixel values is multiplied.
This factor only applies when the Grow Region → By std.
dev. multiple option (described in “Growing an ROI” on
page 2463) is used.

Change the multiplier value by typing the value into the
Standard deviation multiplier field provided.

Table 114: Options of the Region Grow Properties Dialog
IDL Reference Guide XROI

2466
For RGB image,
use:

Determines the basis of region growing for an RGB (rather
than indexed) image. The image data values used when
growing a RGB region can be one of the following:

• Luminosity — Uses the luminosity values associated
with an RGB image. This is the default method.
Luminosity is computed as:

Luminosity = (0.3 * Red) + (0.59 * Green) + (0.11 *
Blue)

• Red Channel, Green Channel or Blue Channel —
Uses the ROI’s red, green or blue channel as a basis for
region growing. Click the channel’s associated button to
specify the channel to be used.

Note - For indexed images, the image data itself is always
used for region growing.

Acceptance criteria: Determines which contours of the grown region are
accepted as new regions, (which will also be displayed in
the draw area and in the ROI Information dialog list of
regions). The region growing process can result in a large
number of contours, some of which may be considered
insignificant. By default, no more than two regions (those
with the greatest geometrical area) are accepted. Modify the
acceptance criteria by altering the following values:

• Maximum number of regions: — Specifies the upper
limit of the number of regions to create when growing
an ROI.

• Minimum area per region: — Specifies that only
contours having a geometric area (computed in device
coordinates) of at least the value stated are accepted and
displayed.

• Accept all regions: — Select this option to accept all
generated contours, regardless of count or area.

Option Description

Table 114: Options of the Region Grow Properties Dialog (Continued)
XROI IDL Reference Guide

 2467
Deleting an ROI

An ROI can be deleted using either the shortcut menu or using the ROI Information
dialog.

To delete an ROI using the shortcut menu:

1. Click the right mouse button on the line defining the boundary of the ROI in
the drawing area that you wish to delete. This selects the region and bring up
the shortcut menu.

2. Select the Delete menu option from the shortcut menu.

To delete an ROI using the ROI Information dialog:

1. Click the Info button or select Edit → ROI Information. This opens the ROI
Information dialog.

2. In the ROI Information dialog, select the ROI you wish to delete from the list
of ROIs. You can also select an ROI by clicking the Select button on the XROI
toolbar, then clicking on an ROI on the image.

3. Click the Delete ROI button.

Examples

Example 1

This example opens a single image in XROI:

image = READ_PNG(FILEPATH('mineral.png', $
SUBDIR=['examples', 'data']))

XROI, image

Example 2

This example reads 3 images from the file mr_abdomen.dcm, and calls XROI for
each image. A single list of regions is maintained, saving the user from having to
redefine regions on each image:

;Read 3 images from mr_abdomen.dcm and open each one in XROI:
FOR i=0,2 DO BEGIN

image = READ_DICOM(FILEPATH('mr_abdomen.dcm',$
SUBDIR=['examples', 'data']), IMAGE_INDEX=i)

XROI, image, r, g, b, REGIONS_IN = regions, $
REGIONS_OUT = regions, $
ROI_SELECT_COLOR = roi_select_color, $
ROI_COLOR = roi_color, REJECTED = rejected, /BLOCK
IDL Reference Guide XROI

2468
OBJ_DESTROY, rejected
ENDFOR

OBJ_DESTROY, regions

Perform the following steps:

1. Draw an ROI on the first image, then close that XROI window. Note that the
next image contains the ROI defined in the first image. This is accomplished
by setting REGIONS_IN and REGIONS_OUT to the same named variable in
the FOR loop of the above code.

2. Draw another ROI on the second image.

3. Click the Select button and select the first ROI. Then click the Info button to
open the ROI Information window, and click the Delete ROI button.

4. Close the second XROI window. Note that the third image contains the ROI
defined in the second image, but not the ROI deleted on the second image. This
example sets the REJECTED keyword to a named variable, and calls
OBJ_DESTROY on that variable. Use of the REJECTED keyword is not
necessary to prevent deleted ROIs from appearing on subsequent images, but
allows you perform cleanup on objects that are no longer required.

Example 3

XROI’s File → Save ROIs option allows you to save selected regions of interest.
This example shows how to restore such a save file. Suppose you have a file named
mineralRoi.sav that contains regions of interest selected in the mineral.png
image file. You would need to complete the following steps to restore the file:

1. First, restore the file, mineralRoi.sav. Provide a value for the RESTORE
procedure’s RESTORED_OBJECTS keyword. Using the scenario stated
above, you could enter the following:

RESTORE, 'mineralRoi.sav', RESTORED_OBJECTS = myRoi

2. Pass the restored object data containing your regions of interest into XROI by
specifying myRoi as the value for REGIONS_IN as follows:

XROI, READ_PNG(FILEPATH('mineral.png', SUBDIRECTORY = $
['examples', 'data'])), REGIONS_IN = myRoi

This opens the previously selected regions of interest in the XROI utility.
XROI IDL Reference Guide

 2469
Version History

Introduced: 5.4

X_SCROLL_SIZE and Y_SCROLL_SIZE keywords added: 5.6

See Also

IIMAGE
IDL Reference Guide XROI

2470
XSQ_TEST

The XSQ_TEST function computes the Chi-square goodness-of-fit test between
observed frequencies and the expected frequencies of a theoretical distribution.

Expected frequencies of magnitude less than 5 are combined with adjacent elements
resulting in a reduction of cells used to formulate the chi-squared test statistic. If the
observed frequencies differ significantly from the expected frequencies, the Chi-
square test statistic will be large and the fit is poor. This situation requires the
rejection of the hypothesis that the given observed frequencies are an accurate
approximation to the expected frequency distribution.

This routine is written in the IDL language. Its source code can be found in the file
xsq_test.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = XSQ_TEST(Obfreq, Exfreq [, EXCELL=variable] [, OBCELL=variable]
[, RESIDUAL=variable])

Return Value

The result is a two-element vector containing the Chi-square test statistic X2 and the
one-tailed probability of obtaining a value of X2 or greater.

Arguments

Obfreq

An n-element integer, single-, or double-precision floating-point vector containing
observed frequencies.

Exfreq

An n-element integer, single-, or double-precision floating-point vector containing
expected frequencies.
XSQ_TEST IDL Reference Guide

 2471
Keywords

EXCELL

Set this keyword to a named variable that will contain a vector of expected
frequencies used to formulate the Chi-square test statistic. If each of the expected
frequencies contained in Exfreq, has a magnitude of 5 or greater, then this vector is
identical to Exfreq. If Exfreq contains elements of magnitude less than 5, adjacent
expected frequencies are combined. The identical combinations are performed on the
corresponding elements of Obfreq.

OBCELL

Set this keyword to a named variable that will contain a vector of observed
frequencies used to formulate the Chi-square test statistic. The elements of this vector
are often referred to as the “cells” of the observed frequencies. The length of this
vector is determined by the length of EXCELL described below.

RESIDUAL

Set this keyword to a named variable that will contain a vector of signed differences
between corresponding cells of observed frequencies and expected frequencies.

RESIDUAL[i] = OBCELL[i] - EXCELL[i].

The length of this vector is determined by the length of EXCELL described above.

Examples

; Define the vectors of observed and expected frequencies:
obfreq = [2, 1, 4, 15, 10, 5, 3]
exfreq = [0.5, 2.1, 5.9, 10.3, 10.7, 7.0, 3.5]

; Test the hypothesis that the given observed frequencies are an
; accurate approximation to the expected frequency distribution:
result = XSQ_TEST(obfreq, exfreq)
PRINT, result

IDL Output

3.05040 0.383920

Since the vector of expected frequencies contains elements of magnitude less than 5,
adjacent expected frequencies are combined resulting in fewer cells. The identical
combinations are performed on the corresponding elements of observed frequencies.
IDL Reference Guide XSQ_TEST

2472
The computed value of 0.383920 indicates that there is no reason to reject the
proposed hypothesis at the 0.05 significance level.

Version History

Introduced: 4.0

See Also

CTI_TEST
XSQ_TEST IDL Reference Guide

 2473
XSURFACE

The XSURFACE procedure is a utility that provides a graphical interface to the
SURFACE and SHADE_SURF commands. Different controls are provided to change
the viewing angle and other plot parameters. The command used to generate the
resulting surface plot is shown in a text window. Note that this procedure does not
accept SURFACE or SHADE_SURF keywords.

This routine is written in the IDL language. Its source code can be found in the file
xsurface.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XSURFACE, Data [, /BLOCK] [, GROUP=widget_id]

Arguments

Data

The two-dimensional array to display as a wire-mesh or shaded surface.

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting BLOCK=1 will cause all
widget applications to block, not just this application. For more information, see the
documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XSURFACE
block, any earlier calls to XMANAGER must have been called with the
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.
IDL Reference Guide XSURFACE

2474
GROUP

Set this keyword to the widget ID of the widget that calls XSURFACE. When
GROUP is specified, the death of the calling widget results in the death of
XSURFACE.

Examples

; Make a 2-D array:
z = DIST(30)

; Call XSURFACE. The XSURFACE widget appears:
XSURFACE, z

Version History

Introduced: Pre 4.0

See Also

ISURFACE, SHADE_SURF, SURFACE
XSURFACE IDL Reference Guide

 2475
XVAREDIT

The XVAREDIT procedure is a utility that provides a widget-based editor for any
IDL variable. Use the input fields to change desired values of the variable or array.
Click “Accept” to write the new values into the variable. Click “Cancel” to exit
XVAREDIT without saving changes.

This routine is written in the IDL language. Its source code can be found in the file
xvaredit.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XVAREDIT, Var [, NAME='variable_name'{ignored if variable is a structure}]
[, GROUP=widget_id] [, X_SCROLL_SIZE=columns] [, Y_SCROLL_SIZE=rows]

Arguments

Var

The variable to be edited. On output, this variable contains the edited value if the user
selects the “Accept” button, or the original value if the user selects the “Cancel”
button.

Keywords

NAME

The NAME of the variable. This keyword is overwritten with the structure name if
the variable is a structure.

GROUP

The widget ID of the widget that calls XVAREDIT. When this ID is specified, a death
of the caller results in a death of XVAREDIT.

X_SCROLL_SIZE

Set this keyword to the column width of the scrolling viewport. The default is 4.

Y_SCROLL_SIZE

Set this keyword to the row width of the scrolling viewport. The default is 4.
IDL Reference Guide XVAREDIT

2476
Version History

Introduced: Pre 4.0
XVAREDIT IDL Reference Guide

 2477
XVOLUME

The XVOLUME procedure is a utility for viewing and interactively manipulating
volumes and isosurfaces.

This routine is written in the IDL language. Its source code can be found in the file
xvolume.pro in the lib/utilities subdirectory of the IDL distribution.

Tip
The XVOLUME_ROTATE and XVOLUME_WRITE_IMAGE procedures, which
can be called only after a call to XVOLUME, can be used to easily create
animations of volumes and isosurfaces displayed in XVOLUME. See
XVOLUME_ROTATE for an example.

Using XVOLUME

XVOLUME displays a resizeable top-level base with a toolbar, a menu, a graphical
interface for controlling volume and isosurface properties, and a draw widget for
displaying and manipulating the volume, as shown in the following figure:

Figure 40: The XVOLUME Utility
IDL Reference Guide XVOLUME

2478
The XVOLUME Toolbar

The XVOLUME toolbar contains the following buttons.

Note
If you have the Auto-Render option selected, the Rotate, Zoom, and Pan features
may be more difficult to use. For the best performance while manipulating the
orientation of a volume using these features, uncheck the Auto-Render option.

The XVOLUME Interface

The XVOLUME interface provides the following elements for controlling the display
of image planes and contours, volumes, and isosurfaces:

Image Planes and Contours

Image planes and contours allow you to visualize the values associated with the
volume or isosurface at a specified X, Y, or Z plane.

• Image Planes — Select one of the following options from the drop-down list
for each dimension to control the display of image planes:

• Off: Turns off the image plane display.

• Opaque: Displays an opaque image plane at the location specified by the
corresponding plane slider.

• Transparent: Displays a transparent image plane at the location specified
by the corresponding plane slider. The transparency value of the plane is
taken from the volume at the current location of the image plane.

Reset: Resets rotation, scaling, and panning.

Rotate: Click the left mouse button on the volume and drag to rotate.

Zoom: Click the left mouse button on the volume and drag to zoom in or
out.

Pan: Click the left mouse button on the volume and drag to pan.

Select: Click in the draw widget to identify the selected item. A name
identifying the selected item is displayed next to the Select button.
XVOLUME IDL Reference Guide

 2479
• Contours — Check this option to display contours on the specified plane at
the location specified by corresponding the plane slider.

• Plane Sliders — Move these sliders to change the position of the plane in each
dimension.

Volume

• Color and Opacity: Click this button to change the color and/or opacity of the
current volume. This opens a CW_PALETTE_EDITOR dialog, which is a
compound widget used to edit color palettes. See CW_PALETTE_EDITOR
for more information.

• Auto-Render: Select this option to have rendering executed automatically
after each change you make to the volume. If Auto-Render is unchecked, you
must manually click the Render button to see changes you have made to the
volume. If Auto-Render is checked, the Render button will be grayed out.

• Render: Click on this button to execute rendering computations and display
the current volume. If Auto-Render is checked, this button will be grayed out.

Isosurface

An isosurface is a 3-D surface on which the data values are constant along the entire
surface. Use the following elements to control the appearance of the isosurface:

• Color: Click this button to change the color system and/or values for the
current isosurface. This opens a CW_RGBSLIDER dialog, which is a
compound widget that provides a drop-down list for selecting the RGB, CMY,
HSV, or HLS color system, and three sliders for adjusting the values associated
with each color system.

• Isosurface Off: Select this option to turn off the isosurface display.

• Opaque Isosurface: Select this option to display an opaque isosurface.

• Semi-transparent Isosurface: Select this option to display a semi-transparent
isosurface.

• Level: Use this slider to adjust the threshold value of the isosurface.

Syntax

XVOLUME, Vol, [, /BLOCK] [, GROUP=widget_id] [, /INTERPOLATE]
[, /MODAL] [, RENDERER={0 | 1}] [, /REPLACE] [, SCALE=value] [, /TEST]
[, XSIZE=pixels] [, YSIZE=pixels]
IDL Reference Guide XVOLUME

2480
Arguments

Vol

A 3-dimensional array of the form [x, y, z] that specifies a data volume.

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting the BLOCK keyword causes
all widget applications to block, not just this application. For more information, see
the documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XVOLUME
block, any earlier calls to XMANAGER must have been called with the
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

GROUP

Set this keyword to the widget ID of the widget that calls XVOLUME. When this
keyword is specified, the death of the caller results in the death of XVOLUME.

INTERPOLATE

Set this keyword to indicate that trilinear interpolation is to be used when rendering
the volume and the image planes. Setting this keyword improves the quality of
images produced, at the cost of more computing time, especially when the volume
has low resolution with respect to the size of the viewing plane. Nearest neighbor
sampling is used by default.

MODAL

Set this keyword to block processing of events from other widgets until the user quits
XVOLUME. The MODAL keyword does not require a group leader to be specified.
If no group leader is specified, and the MODAL keyword is set, XVOLUME
fabricates an invisible group leader for you.
XVOLUME IDL Reference Guide

 2481
Note
To be modal, XVOLUME does not require that its caller specify a group leader.
This is unlike other IDL widget procedures such as XLOADCT, which, to be
modal, do require that their caller specify a group leader. These other procedures
were implemented this way to encourage the caller to create a modal widget that
will be well-behaved with respect to layering and iconizing. (See “Iconizing,
Layering, and Destroying Groups of Top-Level Bases” on page 2128 for more
information.)

To provide a simple means of invoking XVOLUME as a modal widget in
applications that contain no other widgets, XVOLUME can be invoked as MODAL
without specifying a group leader, in which case XVOLUME fabricates an invisible
group leader for you. For applications that contain multiple widgets, however, it is
good programming practice to supply an appropriate group leader when invoking
XVOLUME, /MODAL. As with other IDL widget procedures with names prefixed
with “X”, specify the group leader via the GROUP keyword.

RENDERER

Set this keyword to an integer value indicating which graphics renderer to use when
drawing objects within the window. Valid values are:

• 0 = Platform native OpenGL (the default)

• 1 = IDL’s software implementation

REPLACE

If this keyword is set, and there is a current instance of XVOLUME running, the
volume displayed in XVOLUME is replaced with the volume specified by Vol. For
example, display volume1 using the command

XVOLUME, volume1

To replace volume1 with volume2, you would use the command

XVOLUME, volume2, /REPLACE

SCALE

Set this keyword to the zoom factor for the initial view. The default is 1/SQRT(3).
This default value provides the largest possible view of the volume, while ensuring
that no portion of the volume will be clipped by the XVOLUME window, regardless
of the volume’s orientation.
IDL Reference Guide XVOLUME

2482
When using the SCALE keyword for XVOLUME, you can scale with a 3-element
array of values [x, y, z].

TEST

If set, the Vol argument is not required (and is ignored if provided). A volume of
random numbers is displayed instead. This allows you to test code that uses
XVOLUME without having to specify volume data.

XSIZE

The width of the drawable area in pixels.

YSIZE

The height of the drawable area in pixels.

Examples

Create a volume and display using XVOLUME:

; Create a volume:
vol = BYTSCL(RANDOMU((SEED=0),5,5,5))
vol = CONGRID(vol, 30,30,30)

; Display volume:
XVOLUME, vol

Version History

Introduced: 5.4

See Also

IVOLUME, XVOLUME_ROTATE, XVOLUME_WRITE_IMAGE, IDLgrVolume,
INTERPOLATE, ISOSURFACE, SHADE_VOLUME, SLICER3, “Volume Objects”
in Chapter 32 of the Using IDL manual.
XVOLUME IDL Reference Guide

 2483
XVOLUME_ROTATE

The XVOLUME_ROTATE procedure is used to programmatically rotate the volume
currently displayed in XVOLUME. XVOLUME must be called prior to calling
XVOLUME_ROTATE. This procedure can be used to create animations of volumes
and isosurfaces.

This routine is written in the IDL language. Its source code can be found in the file
xvolume_rotate.pro in the lib/utilities subdirectory of the IDL
distribution.

Syntax

XVOLUME_ROTATE, Axis, Angle [, /PREMULTIPLY]

Arguments

Axis

A 3-element vector of the form [x, y, z] describing the axis about which the model is
to be rotated.

Angle

The amount of rotation, measured in degrees.

Keywords

PREMULTIPLY

Set this keyword to cause the rotation matrix specified by Axis and Angle to be pre-
multiplied to the model’s transformation matrix. By default, the rotation matrix is
post-multiplied.

Examples

The following example creates an animation of the volume currently displayed in
XVOLUME. It does this by rotating the volume through 360 degrees in increments of
10 degrees using XVOLUME_ROTATE, and writing the volume to a BMP file for
each increment using XVOLUME_WRITE_IMAGE. It then loops through the
images and uses TV to display each image.
IDL Reference Guide XVOLUME_ROTATE

2484
First, display a volume as follows:

; Create a volume:
vol = BYTSCL(RANDOMU((SEED=0),5,5,5))
vol = CONGRID(vol, 30,30,30)

; Display volume:
XVOLUME, vol

Now, use the XVOLUME interface to modify the orientation and appearance of the
volume or isosurface as desired. Once you have the volume or isosurface displayed
the way you want it, run the following program:

PRO spin_volume

inc = 10. ; degrees.
; Create images
FOR i=0,(360./inc)-2 DO BEGIN

XVOLUME_WRITE_IMAGE, $
'spin' + STRCOMPRESS(i, /REMOVE_ALL) + '.bmp', 'bmp'

XVOLUME_ROTATE, [0,0,1], inc, /PREMULTIPLY
ENDFOR
XVOLUME_ROTATE, [0,0,1], inc, /PREMULTIPLY

; Read images
img = READ_BMP('spin0.bmp')
siz = SIZE(img, /DIM)
arr = BYTARR(3, siz[1], siz[2], 360./inc-1)
FOR i=0,360./inc-2 DO BEGIN

img = READ_BMP($
'spin' + STRCOMPRESS(i, /REMOVE_ALL) + '.bmp', /RGB)

arr[0,0,0, i] = img
PRINT, i

ENDFOR

; Display animation
FOR i=0,2 DO BEGIN ; num rotations

FOR j=0,(360./inc)-2 DO BEGIN
TV, arr[*,*,*,j], /TRUE

ENDFOR
ENDFOR

TV, arr[*,*,*,0], /TRUE

END

Version History

Introduced: 5.4
XVOLUME_ROTATE IDL Reference Guide

 2485
See Also

XVOLUME, XVOLUME_WRITE_IMAGE
IDL Reference Guide XVOLUME_ROTATE

2486
XVOLUME_WRITE_IMAGE

The XVOLUME_WRITE_IMAGE procedure is used to write the volume currently
displayed in XVOLUME to an image file with the specified name and file format.
XVOLUME must be called prior to calling XVOLUME_WRITE_IMAGE.

This routine is written in the IDL language. Its source code can be found in the file
xvolume_write_image.pro in the lib/utilities subdirectory of the IDL
distribution.

Syntax

XVOLUME_WRITE_IMAGE, Filename, Format [, DIMENSIONS=[x, y]]

Arguments

Filename

A scalar string containing the name of the file to write.

Format

A scalar string containing the name of the file format to write. See QUERY_IMAGE
for a list of supported formats.

Keywords

DIMENSIONS

Set this keyword to a 2-element vector of the form [x, y] specifying the size of the
output image, in pixels. If this keyword is not specified, the image will be written
using the dimensions of the current XVOLUME draw widget.

Examples

See XVOLUME_ROTATE.

Version History

Introduced: 5.4
XVOLUME_WRITE_IMAGE IDL Reference Guide

 2487
See Also

XVOLUME, XVOLUME_ROTATE
IDL Reference Guide XVOLUME_WRITE_IMAGE

2488
XYOUTS

The XYOUTS procedure draws text on the currently-selected graphics device starting
at the designated coordinate.

Arguments X, Y, and String can be any combination of scalars or arrays. If the
arguments are arrays, multiple strings are output.

If the optional X and Y arguments are omitted, the text is positioned at the end of the
most recently output text string.

Important keywords that control the appearance and positioning of the text include:
ALIGNMENT, the justification of the text; CHARSIZE, the size of the text; FONT,
chooses between vector drawn and hardware fonts; COLOR, the color of the text; and
ORIENTATION, the angle between the baseline of the text and the horizontal. With
hardware fonts, most of the text attributes, (e.g., size and orientation), are
predetermined and not changeable.

Note
Specify the Z coordinate with the Z keyword when positioning text in three
dimensions.

Syntax

XYOUTS, [X, Y,] String [, ALIGNMENT=value{0.0 to 1.0}] [, CHARSIZE=value]
[, CHARTHICK=value] [, TEXT_AXES={0 | 1 | 2 | 3 | 4 | 5}] [, WIDTH=variable]

Graphics Keywords:[, CLIP=[X0, Y0, X1, Y1]] [, COLOR=value][, /DATA | ,
/DEVICE | , /NORMAL] [, FONT=integer]
[, ORIENTATION=ccw_degrees_from_horiz] [, /NOCLIP] [, /T3D] [, Z=value]

Arguments

X, Y

The horizontal and vertical coordinates used to position the string(s). X and Y are
normally interpreted in data coordinates. The DEVICE and NORMAL keywords can
be used to specify the coordinate units.

X and Y can be arrays of positions if String is an array.
XYOUTS IDL Reference Guide

 2489
String

The string(s) to be output. This argument can be a scalar string or an array of strings.
If this argument is not a string, it is converted prior to use using the default formatting
rules. If String is an array, X, Y, and the COLOR keyword can also be arrays so that
each string can have a separate location and color.

Keywords

ALIGNMENT

Specifies the alignment of the text baseline. An alignment of 0.0 (the default) aligns
the left edge of the text baseline with the given (x, y) coordinate. An alignment of 1.0
right-justifies the text, while 0.5 results in text centered over the point (x, y).

CHARSIZE

The overall character size for the annotation. A CHARSIZE of 1.0 is normal. Setting
CHARSIZE = -1 suppresses output of the text string. This keyword has no effect
when used with the hardware drawn fonts; for exceptions, see “Scaled Hardware
Fonts” on page 2490.

CHARTHICK

The line thickness of the vector drawn font characters. This keyword has no effect
when used with the hardware drawn fonts; for exceptions, see “Scaled Hardware
Fonts” on page 2490. The default value is 1.0.

TEXT_AXES

This keyword specifies the plane of vector drawn text when three-dimensional
plotting is enabled. By default, text is drawn in the plane of the XY axes. The
horizontal text direction is in the X plane, and the vertical text direction is in the Y
plane. Values for this keyword can range from 0 to 5, with the following effects: 0 for
XY, 1 for XZ, 2 for YZ, 3 for YX, 4 for ZX, and 5 for ZY. The notation ZY means
that the horizontal direction of the text lies in the Z plane, and the vertical direction of
the text is drawn in the Y plane.

WIDTH

Set this keyword to a named variable in which to return the width of the text string, in
normalized coordinate units.
IDL Reference Guide XYOUTS

2490
Graphics Keywords Accepted

See Appendix B, “Graphics Keywords” for the description of graphics and plotting
keywords not listed above. CLIP, COLOR, DATA, DEVICE, FONT, NOCLIP,
NORMAL, ORIENTATION, T3D, Z.

Examples

Print the string “This is text” at device coordinate position (100,100):

XYOUTS, 100, 100, 'This is text', /DEVICE

Print an array of strings with each element of the array printed at a different location.
Use larger text than in the previous example:

XYOUTS, [0, 200, 250], [200, 50, 100], $
['This', 'is', 'text'], CHARSIZE = 3, /DEVICE

Determine the text size for a window device before opening an on-screen window:

WINDOW, /FREE, /PIXMAP, XSIZE=myWinXSize, YSIZE=myWinYSize
XYOUTS, 'Check this out', WIDTH=w
WDELETE

myWinXSize and myWinYSize are chosen to match your onscreen window. Since we
can not know the characteristics of a given device (such as character size) until a
window has been opened, the PIXMAP keyword to WINDOW allows you to
compute appropriate dimensions for text with an invisible window before displaying
a window on your screen.

Scaled Hardware Fonts

One example of hardware fonts which can be scaled are PostScript fonts. If you are
using PostScript fonts, the keywords CHARTHICK and CHARSIZE will have an
effect on a call to XYOUTS. Of the devices we provide that support hardware fonts,
only the PostScript device uses scalable PostScript fonts for its “hardware” font
system. All other devices use a bitmapped font technology.

Scaling is related to whether or not a device supports Hershey formatting commands
when hardware fonts are used. Formatting requires the ability to scale the text on a
per-character basis (i.e. for subscripting). To see if a given device supports Hershey
formatting when hardware fonts are used, look at bit 12 of !D.FLAGS. You can also
use this indicator to determine whether or not the hardware fonts will be scaled.
XYOUTS IDL Reference Guide

 2491
Version History

Introduced: Original

See Also

ANNOTATE, PRINT/PRINTF
IDL Reference Guide XYOUTS

2492
ZOOM

The ZOOM procedure displays part of an image from the current window enlarged in
a new (“zoom”) window. The cursor is used to mark the center of the zoom area, and
different zoom factors can be specified interactively.

Note
ZOOM only works with color systems.

This routine is written in the IDL language. Its source code can be found in the file
zoom.pro in the lib subdirectory of the IDL distribution.

Using ZOOM

After calling ZOOM, place the mouse cursor over an image in an IDL graphics
window. Click the left mouse button to display a magnified version of the image in a
new window. The zoomed image is centered around the pixel selected in the original
window. Click the middle mouse button to display a menu of zoom factors. Click the
right mouse button to exit the procedure.

Using ZOOM with Draw Widgets

Note that the ZOOM procedure is only for use with IDL graphics windows. It should
not be used with draw widgets. To obtain a zooming effect in a draw widget, use the
CW_ZOOM function.

Syntax

ZOOM [, /CONTINUOUS] [, FACT=integer] [, /INTERP] [, /KEEP]
[, /NEW_WINDOW] [, XSIZE=value] [, YSIZE=value]
[, ZOOM_WINDOW=variable]

Arguments

None.

Keywords

CONTINUOUS

Set this keyword to make the zoom window track the mouse without requiring the
user to press the left mouse button. This feature only works well on fast computers.
ZOOM IDL Reference Guide

 2493
FACT

Use this keyword to specify the zoom factor, which must be an integer. The default
zoom factor is 4.

INTERP

Set this keyword to use bilinear interpolation. The default is to use pixel replication.

KEEP

Set this keyword to keep the zoom window after exiting the procedure.

NEW_WINDOW

Normally, if ZOOM is called with KEEP and then called again, it will use the same
window to display the new zoomed image. Set the NEW_WINDOW keyword to
force ZOOM to create a new window for this purpose.

XSIZE

Use this keyword to specify the X size of the zoom window. The default is 512.

YSIZE

Use this keyword to specify the Y size of the zoom window. The default is 512.

ZOOM_WINDOW

Set this keyword to a named variable that will contain the index of the zoom window.
KEEP must also be set. If KEEP is not set, ZOOM_WINDOW will contain the
integer -1.

Version History

Introduced: Original

See Also

CW_ZOOM, ZOOM_24
IDL Reference Guide ZOOM

2494
ZOOM_24

The ZOOM_24 procedure displays part of a 24-bit color image from the current
window expanded in a new (“zoom”) window, and provides information about cursor
location and color values in an auxiliary (“data”) window. The cursor is used to mark
the center of the zoom area, and different zoom factors can be specified interactively.

Note
ZOOM only works on 24-bit color systems.

This routine is written in the IDL language. Its source code can be found in the file
zoom_24.pro in the lib subdirectory of the IDL distribution.

Using ZOOM_24

After calling ZOOM_24, windows titled “Zoomed Image” (the zoom window) and
“Pixel Values” (the data window) appear on the screen. Place the mouse cursor over a
24-bit color image in an IDL graphics window and click the left mouse button to
display a magnified version of the image in the zoom window. The zoomed image is
centered around the pixel selected in the original window. Move the mouse cursor in
the zoom window to determine the coordinates (in the original image) and color
values of individual pixels.

With the cursor located in the zoom window, click the right mouse button to return to
selection mode, which allows you to either choose a new zoom center, change the
zoom factor, or exit the procedure. Move the cursor to the original image and click
the middle mouse button to display a menu of zoom factors, or click the right mouse
button to exit the procedure.

Using ZOOM_24 with Draw Widgets

Note that the ZOOM_24 procedure is only for use with IDL graphics windows. It
should not be used with draw widgets. To obtain a zooming effect in a draw widget,
use the CW_ZOOM function.

Syntax

ZOOM_24 [, FACT=integer] [, /RIGHT] [, XSIZE=value] [, YSIZE=value]

Arguments

None.
ZOOM_24 IDL Reference Guide

 2495
Keywords

FACT

Use this keyword to specify the zoom factor, which must be an integer. The default
zoom factor is 4.

RIGHT

Set this keyword to position the zoom and data windows to the right of the original
window.

XSIZE

Use this keyword to specify the X size of the zoom window. The default is 512.

YSIZE

Use this keyword to specify the Y size of the zoom window. The default is 512.

Version History

Introduced: Pre 4.0

See Also

CW_ZOOM, ZOOM
IDL Reference Guide ZOOM_24

2496
ZOOM_24 IDL Reference Guide

Part II: Object
Class and Method

Reference

Chapter 4:

IDL Object Class
Overview
This section describes IDL’s object class library.
Using the Class Reference 2500
Object Properties 2503
Registered Properties 2507
Undocumented Object Classes 2511
Analysis Object Classes 2513

File Format Object Classes 2561
Graphics Object Classes 3137
iTools Object Classes 2724
Miscellaneous Object Classes 3741
IDL Reference Guide 2499

2500
Using the Class Reference

IDL’s object class library is documented in this section. The page or pages describing
each class include references to any superclasses of the class, to the properties of the
class, and to the methods associated with the class. Class methods are documented
alphabetically following the description of the class itself.

A description of each method follows its name. Beneath the general description of the
method are a number of sections that describe the Syntax for the method, its
arguments (if any), its keywords (if any). These sections are described below.

Syntax

The Syntax section shows the proper syntax for calling the method.

Procedure Methods

IDL procedure methods have the syntax:

Obj -> Procedure_Name, Argument [, Optional_Arguments]

where Obj is a valid object reference, Procedure_Name is the name of the procedure
method, Argument is a required parameter, and Optional_Argument is an optional
parameter to the procedure method. The square brackets around optional arguments
are not used in the actual call to the procedure, they are simply used to denote the
optional nature of the arguments within this document.

Function Methods

IDL function methods have the syntax:

Result = Obj -> Function_Name(Argument [, Optional_Arguments])

where Obj is a valid object reference, Result is the returned value of the function
method, Function_Name is the name of the function method, Argument is a required
parameter, and Optional_Argument is an optional parameter. The square brackets
around optional arguments are not used in the actual call to the function, they are
simply used to denote the optional nature of the arguments within this document.

Note
All arguments and keywords to functions should be supplied within the parentheses
that follow the function’s name.
Using the Class Reference IDL Reference Guide

 2501
Arguments

The Arguments section describes each valid argument to the method.

Note
These arguments are positional parameters that must be supplied in the order
indicated by the method’s syntax.

Named Variables

Often, arguments that contain values upon return from the function or procedure
method (“output arguments”) are described as accepting “named variables.” A named
variable is simply a valid IDL variable name. This variable does not need to be
defined before being used as an output argument. Note, however that when an
argument calls for a named variable, only a named variable can be used—sending an
expression causes an error.

Keywords

The Keywords section describes each valid keyword argument to the method.

Note
Keyword arguments are formal parameters that can be supplied in any order.

Keyword arguments are supplied to IDL methods by including the keyword name
followed by an equal sign (“=”) and the value to which the keyword should be set.
Note that keywords can be abbreviated to their shortest unique length. For example,
the XSTYLE keyword can be abbreviated to XST.

Note
In the case of Init, GetProperty and SetProperty methods, keywords often
correspond to object properties. See “Object Properties” on page 2503 for
additional discussion.

Setting Keywords

When the documentation for a keyword says something similar to, “Set this keyword
to enable logarithmic plotting,” the keyword is simply a switch that turns an option
on and off. Usually, setting such keywords equal to 1 causes the option to be turned
on. Explicitly setting the keyword to zero (or not including the keyword) turns the
option off.
IDL Reference Guide Using the Class Reference

2502
There is a “shortcut” that can be used to set a keyword equal to 1 without the usual
syntax (i.e., KEYWORD=1). To “set” a keyword, simply preface it with a slash
character (“/”). For example, to create a surface object with a skirt around it, set the
SKIRT keyword to the SURFACE routine as follows:

mySurface = OBJ_NEW('IDLgrSurface', DIST(10), /SKIRT)

Creating Objects from the Class Library

To create an object from the IDL object class library, use the OBJ_NEW function.
See “OBJ_NEW” on page 1396. The Init method for each class describes the
arguments and keywords available when you are creating a new object.

For example, to create a new object from the IDLgrAxis class, use the following call
to OBJ_NEW along with the arguments and keywords accepted by the
IDLgrAxis::Init method:

myAxis = OBJ_NEW(IDLgrAxis, DIRECTION = 1, RANGE = [0.0, 40.0])
Using the Class Reference IDL Reference Guide

 2503
Object Properties

Some IDL objects have properties associated with them — things like color, line
style, size, and so on. Properties are set or changed by supplying property-value pairs
in a call to the object class’ Init or SetProperty method:

Obj -> OBJ_NEW('ObjectClass', PROPERTY = value, ...)

or

Obj -> SetProperty, PROPERTY = value, ...

where PROPERTY is the name of a property and value is the associated property
value.

Property values are retrieved by supplying property-value pairs in a call to the object
class’ GetProperty method:

Obj -> GetProperty, PROPERTY = variable, ...

where PROPERTY is the name of a property and variable is the name of an IDL
variable that will hold the associated property value.

Note
Property-value pairs behave in exactly the same way as Keyword-value pairs. This
means that you can set the value of a boolean property to 1 by preceding the name
of the property with a “/” character. The following are equivalent:

Obj -> SetProperty, PROPERTY = 1

Obj -> SetProperty, /PROPERTY

If you are familiar with IDL Direct Graphics, you will note that many of the
properties of IDL objects correspond to keywords to the Direct Graphics routines.
Unlike IDL Direct Graphics, the IDL Object Graphics system allows you to change
the value of an object’s properties without re-creating the entire object. Objects must
be redrawn, however, with a call to the destination object’s Draw method, for the
changes to become visible.

Properties and the Property Sheet Interface

In addition to being able to set and change object property values programmatically,
IDL provides a way for users to change property values via a graphical user interface.
The WIDGET_PROPERTYSHEET function creates a user interface that allows
users to select and change property values using the mouse and keyboard.
IDL Reference Guide Object Properties

2504
For an object property to be displayed in a property sheet, the property must be
registered. See “Registered Properties” on page 2507 for additional discussion.

Setting Properties at Initialization

Often, you will set an object’s properties when creating the object for the first time,
which is done by specifying any keywords to the object’s Init method directly in the
call of OBJ_NEW that creates the object. For example, suppose you are creating a
plot and wish to use a red line to draw the plot line. You could specify the COLOR
keyword to the IDLgrPlot::Init method directly in the call to OBJ_NEW:

myPlot = OBJ_NEW('IDLgrPlot', xdata, ydata, COLOR = [255, 0, 0])

In most cases, an object’s Init method cannot be called directly. Arguments to
OBJ_NEW are passed directly to the Init method when the object is created.

For some graphics objects, you can specify a keyword that has the same meaning as
an argument. In Object Graphics, the value of the keyword overrides the value set by
the argument. For example,

myPlot = OBJ_NEW('IDLgrPlot', xdata, ydata, DATAX = newXData)

The Plot object uses the data in newXData for the plot’s X data.

Setting Properties of Existing Objects

After you have created an object, you can also set its properties using the object’s
SetProperty method. For example, the following two statements duplicate the single
call to OBJ_NEW shown above:

myPlot = OBJ_NEW('IDLgrPlot', xdata, ydata)
myPlot -> SetProperty, COLOR = [255, 0, 0]

Note
Not all keywords available when the object is being initialized are necessarily
available via the SetProperty method. Keywords available when using an object’s
SetProperty method are noted with the word “Set” in the table included after the
text description of the property.

Retrieving Property Settings

You can retrieve the value of a particular property using an object’s GetProperty
method. The GetProperty method accepts a list of keyword-variable pairs and returns
Object Properties IDL Reference Guide

 2505
the value of the specified properties in the variables specified. For example, to return
the value of the COLOR property of the plot object in our example, use the statement:

myPlot -> GetProperty, COLOR = plotcolor

The value of the COLOR property is returned in the IDL variable plotcolor.

You can retrieve the values of all of the properties associated with a graphics object
by using the ALL keyword to the object’s GetProperty method. The following
statement:

myPlot -> GetProperty, ALL = allprops

returns an anonymous structure in the variable allprops; the structure contains the
values of all of the retrievable properties of the object.

Note
Not all keywords available when the object is being initialized are necessarily
available via the GetProperty method. Keywords available when using an object’s
GetProperty method are noted with the word “Get” in the table included after the
text description of the property.

About Object Property Descriptions

In the documentation for the IDL object class library, the description of each class is
followed by a section describing the properties of the class. Each property description
is followed by a table that looks like this:

where

• Property Type describes the property type associated with the property. If the
property is registered, the property type will be one of the types described in
“Registered Property Data Types” on page 2508. If the property is not
registered, this field will describe the generic IDL data type of the property
value.

• Name String is the default value of the Name property attribute. If the
property is registered, this is the value that appears in the left-hand column
when the property is displayed in a property sheet widget. If the property is not
registered, this field will contain the words not displayed.

Property Type Boolean

Name String Hide

Get: Yes Set: No Init: Yes Registered: Yes
IDL Reference Guide Object Properties

2506
• Get, Set, and Init describe whether the property can be specified as a keyword
to the GetProperty, SetProperty, and Init methods, respectively.

• Registered describes whether the property is registered for display in a
property sheet widget. See “Registered Properties” on page 2507 for details on
registered properties.
Object Properties IDL Reference Guide

 2507
Registered Properties

In order for an object property to be displayed in the WIDGET_PROPERTYSHEET
interface, which makes it possible for a user to interactively change the value of the
property using the mouse and keyboard, the following two conditions must be met:

• The property must belong to an object that subclasses from the
IDLitComponent class. IDLitComponent provides the infrastructure necessary
to display property sheets.

• The property must be registered. Properties that are not registered will never
be displayed in a property sheet. (Note that registered properties can also be
hidden, which prevents them from being displayed in a property sheet.)

Note
This section provides a brief overview of property registration. See Chapter 4,
“Property Management” in the iTool Developer’s Guide manual for a more in-depth
discussion.

Registering a Property

To register a property, use the RegisterProperty method of the IDLitComponent
class:

Obj -> IDLitComponent::RegisterProperty, PropertyIdentifier, $
[, TypeCode] [, ATTRIBUTE = value]

where PropertyIdentifier is a string that uniquely identifies the property, TypeCode is
an integer between 0 and 9 specifying the property data type, and ATTRIBUTE is a
property attribute.

Property identifier strings must obey certain rules; see “Property Identifiers” in
Chapter 4 of the iTool Developer’s Guide manual for details. Property type codes are
discussed in “Registered Property Data Types” on page 2508. Property attributes are
discussed in “Property Attributes” in Chapter 4 of the iTool Developer’s Guide
manual.

Registering All Available Properties

Some of the classes in the IDL object class library include a mechanism to register all
available properties in a single operation. If an object class has a
REGISTER_PROPERTIES property, then setting that property to 1 when creating the
object automatically registers all properties that can be registered. If a property
IDL Reference Guide Registered Properties

2508
contains a “Yes” in the Registered box of the property description table, it will be
registered automatically if the REGISTER_PROPERTIES property is set when the
object is created. (See “About Object Property Descriptions” on page 2505 for a
description of the property description table.)

Registered Property Data Types

Registered properties must be of one of the data types listed in Table 4-1.

Note
Properties of objects that are not registered (that is, properties that can not appear in
a property sheet) can be of any IDL data type.

Type
Code

Type Description

0 USERDEF User Defined properties can contain values of any IDL
type, but must also include a string value that will be
displayed in the property sheet. See “Property Data
Types” in Chapter 4 of the iTool Developer’s Guide
manual for additional discussion of User Defined property
types.

1 BOOLEAN Boolean properties contain either the integer 0 or the
integer 1.

2 INTEGER Integer properties contain an integer value. If a property of
integer data type has a VALID_RANGE attribute that
includes an increment value, the property is displayed in a
property sheet using a slider. If no increment value is
supplied, the property sheet allows the user to edit values
manually.

3 FLOAT Float properties contain a double-precision floating-point
value. If a property of float data type has a
VALID_RANGE attribute that includes an increment
value, the property is displayed in a property sheet using a
slider. If no increment value is supplied, the property sheet
allows the user to edit values manually.

4 STRING String properties contain a scalar string value

Table 4-1: iTools property data types.
Registered Properties IDL Reference Guide

 2509
5 COLOR Color properties contain an RGB color triple

6 LINESTYLE Linestyle properties contain an integer value between 0
and 6, corresponding to the following IDL line styles:

• 0 = Solid

• 1 = Dotted

• 2 = Dashed

• 3 = Dash Dot

• 4 = Dash Dot Dot

• 5 = Long Dashes

• 6 = No Line

See Appendix B, “Property Controls” in the iTool User’s
Guide manual for a visual example of the available line
styles.

7 SYMBOL Symbol properties contain an integer value between 0 and
8, corresponding to the following IDL symbol types:

• 0 = No symbol

• 1 = Plus sign

• 2 = Asterisk

• 3 = Period (Dot)

• 4 = Diamond

• 5 = Triangle

• 6 = Square

• 7 = X

• 8 = Arrow Head

See Appendix B, “Property Controls” in the iTool User’s
Guide manual for a visual example of the available
symbols.

Type
Code Type Description

Table 4-1: iTools property data types.
IDL Reference Guide Registered Properties

2510
8 THICKNESS Thickness properties contain an integer value between 1
and 10, corresponding to the thickness (in pixels) of the
line.

9 ENUMLIST Enumerated List properties contain an array of string
values defined when the property is registered. The
GetProperty method returns the zero-based index of the
selected item.

Type
Code Type Description

Table 4-1: iTools property data types.
Registered Properties IDL Reference Guide

 2511
Undocumented Object Classes

Some of IDL’s object classes are subclassed from more generic IDL objects. You
may see references to the generic IDL objects when using IDL’s HELP procedure to
get information on an object, or when you use the OBJ_ISA or OBJ_CLASS
functions. You may also notice that the generic objects are not documented in this
section. This is not an oversight.

We have chosen not to document the workings of the more generic objects from
which the IDL graphics objects are subclassed because we reserve the right to make
changes to their operation. We strongly recommend that you do not use the
undocumented object classes directly, or subclass your own object classes from them.
RSI does not guarantee that user-written code that uses undocumented features will
continue to function in future releases of IDL.
IDL Reference Guide Undocumented Object Classes

2512
Undocumented Object Classes IDL Reference Guide

Chapter 5:

Analysis Object
Classes
This chapterdescribes IDL’s built-in analysis class library.
IDLanROI . 2514 IDLanROIGroup 2542
2513

2514
IDLanROI

The IDLanROI object class represents a region of interest.

Note
The IDLan* naming convention is used for objects in the analysis domain.

Regions of interest are described as a set of vertices that may be connected to
generate a path or a polygon, or may be treated as separate points. This object may be
used as a source for analytical computations on regions. (For additional information
about display of ROIs in Object Graphics, refer to the IDLgrROI object class.)

Superclasses

None

Creation

See IDLanROI::Init.

Properties

Objects of this class have the following properties. See “IDLanROI Properties” on
page 2516 for details on individual properties.

• ALL

• BLOCK_SIZE

• DATA

• DOUBLE

• INTERIOR

• N_VERTS

• ROI_XRANGE

• ROI_YRANGE

• ROI_YRANGE

• ROI_ZRANGE

• TYPE
IDLanROI

 2515
In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

The IDLanROI class has the following methods.

• IDLanROI::AppendData

• IDLanROI::Cleanup

• IDLanROI::ComputeGeometry

• IDLanROI::ComputeMask

• IDLanROI::ContainsPoints

• IDLanROI::GetProperty

• IDLanROI::Init

• IDLanROI::RemoveData

• IDLanROI::ReplaceData

• IDLanROI::Rotate

• IDLanROI::Scale

• IDLanROI::SetProperty

• IDLanROI::Translate

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.3
IDLanROI

2516
IDLanROI Properties

IDLanROI objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLanROI::GetProperty. Properties with the word
“Yes” in the “Init” column of the property table can be retrieved via IDLanROI::Init.
Properties with the word “Yes” in the “Set” column in the property table can be set
via IDLanROI::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the properties associated with
the state of this object. State information about the object includes things like block
size, type, etc., but not vertex data.

Note
The fields in this structure may change in subsequent releases of IDL.

BLOCK_SIZE

The number of vertices to allocate per block as needed for the region. When
additional vertices are required, an additional block is allocated. The default is 100.

DATA

A 2 x n or a 3 x n array that defines the 2-D or 3-D vertex data, respectively. DATA is
equivalent to the optional arguments, X, Y, and Z. This property is stored as double

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLanROI

 2517
precision floating point values if the argument variable is of type DOUBLE or if the
DOUBLE property is non-zero. Otherwise it is stored as single precision floating
point.

DOUBLE

A non-zero value that indicates whether or not data should be stored in this object in
double precision floating point. Set this keyword to zero to indicate that the data
should be stored in single precision floating point, which is the default. The
DOUBLE property controls the precision used for storing the data in the
AppendData, Init, and ReplaceData methods via the X, Y, and Z arguments and in
SetProperty method via the DATA keyword. IDL converts any data already stored in
the object to the requested precision, if necessary. Note that this keyword does not
need to be set if any of the X, Y, or Z arguments or the DATA parameters are of type
DOUBLE. However, setting this keyword may be desirable if the data consists of
large integers that cannot be accurately represented in single precision floating point.
This property is also automatically set to one if any of the X, Y or Z arguments or the
DATA parameter is stored using a variable of type DOUBLE.

INTERIOR

A Boolean variable that marks this region as an interior region (i.e., a region treated
as a hole). By default, the region is treated as an exterior region.

Property Type Array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLanROI

2518
N_VERTS

An integer that contains the number of vertices currently being used by the region.

ROI_XRANGE

A two-element double-precision floating-point vector of the form [xmin, xmax] that
specifies the range of X data coordinates covered by the region.

ROI_YRANGE

A two-element double-precision floating-point vector of the form [ymin, ymax]
specifying the range of Y data coordinates covered by the region.

ROI_ZRANGE

A two-element double-precision floating-point vector of the form [zmin, zmax]
specifying the range of Z data coordinates covered by the region.

Property Type String

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLanROI

 2519
TYPE

An integer that indicates the type of the region. The TYPE keyword determines how
computational operations, such as mask generation, are performed. Valid values
include:

• 0 = points

• 1 = path

• 2 = closed polygon (the default)

Property Type Integer

Name String not displayed

Get: Yes Set: No Init: Yes Registered: No
IDLanROI

2520
IDLanROI::AppendData

The IDLanROI::AppendData procedure method appends vertices to the region.

Syntax

Obj -> [IDLanROI::]AppendData, X [, Y] [, Z] [, XRANGE=variable]
[, YRANGE=variable] [, ZRANGE=variable]

Arguments

X

A vector providing the X components of the vertices to be appended. If the Y and Z
arguments are not specified, X must be a two-dimensional array with the leading
dimensions either 2 or 3 ([2,*] or [3,*]), in which case, X[0,*] represents the X
values, X[1,*] represents the Y values, and X[2,*] represents the Z values. If the
DOUBLE property is non-zero, the data is converted to double precision and is
appended to the existing double precision data. Otherwise it is converted to single
precision floating point and appended to the existing single precision data.

Y

A vector providing the Y components of the vertices to be appended. If the DOUBLE
property is non-zero, the data is converted to double precision and is appended to the
existing double precision data. Otherwise it is converted to single precision floating
point and appended to the existing single precision data.

Z

A vector providing the Z components of the vertices to be appended. If the DOUBLE
property is non-zero, the data is converted to double precision and is appended to the
existing double precision data. Otherwise it is converted to single precision floating
point and appended to the existing single precision data.
IDLanROI

 2521
Keywords

XRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[xmin, xmax], representing the X range of the modification to the region. The reported
range accounts for the last vertex in the region before the append occurred, as well as
all vertices appended. This data is returned in double-precision floating-point.

YRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[ymin, ymax], representing the Y range of the modification to the region. The reported
range accounts for the last vertex in the region before the append occurred, as well as
all vertices appended. This data is returned in double-precision floating-point.

ZRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[zmin, zmax], representing the Z range of the modification to the region. The reported
range accounts for the last vertex in the region before the append occurred, as well as
all vertices appended. This data is returned in double-precision floating-point.

Version History

Introduced: 5.3
IDLanROI

2522
IDLanROI::Cleanup

The IDLanROI::Cleanup procedure method performs all cleanup for a region of
interest object.

Note
Cleanup methods are special life cycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you cannot
call the Cleanup method directly. There is one exception to this rule: If you write
your own subclass of this class, you can call the Cleanup method from within the
Cleanup method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLanROI::]Cleanup (In a subclass’ Cleanup method only)

Arguments

None.

Keywords

None.

Version History

Introduced: 5.3
IDLanROI

 2523
IDLanROI::ComputeGeometry

The IDLanROI::ComputeGeometry function method computes the geometrical
values for area, perimeter, and/or centroid of the region.

Syntax

Result = Obj -> [IDLanROI::]ComputeGeometry([, AREA=variable]
[, CENTROID=variable] [, PERIMETER=variable] [, SPATIAL_OFFSET=vector]
[, SPATIAL_SCALE=vector])

Return Value

Result

This function method returns a 1 for success, or a 0 for failure. Each computed value
is returned in the variable name assigned to each keyword.

Arguments

None.

Keywords

AREA

Set this keyword to a named variable that upon return contains a double-precision
floating-point value representing the area of the region. Interior regions (holes) return
a negative area.

Note that the computed area represents the geometric area described by the region’s
vertex data. A pixel-based area can be computed as follows:

1. Compute a mask for the region.

mask = oROI -> ComputeMask()

2. Call IMAGE_STATISTICS to count number of samples within the mask.

IMAGE_STATISTICS, myImage, MASK = mask, COUNT = nSamples

3. Compute pixel area.

pixelArea = nSamples * pixelXSize * pixelYSize
IDLanROI

2524
CENTROID

Set this keyword to a named variable that upon return contains a double-precision
floating-point vector [x,y,z] representing the centroid for the region. If the TYPE of
the region is 0 (points), the centroid is computed as the average of each of the vertices
in the region. If the TYPE of the region is 1 (path), the centroid is computed as the
weighted average of each of the midpoints of the lines in the region. Weights are
proportional to the length of the lines. If the TYPE of the region is 2 (polygon), the
centroid is computed as a weighted average of the centroids of the polygons making
up the ROI (interior centroids use negative weights). Weights are proportional to the
polygon area.

PERIMETER

Set this keyword to a named variable that upon return contains a double-precision
floating-point value representing the perimeter of the region.

SPATIAL_OFFSET

Set this keyword to a two or three-element vector, [tx, ty] or [tx, ty, tz], representing
the spatial calibration offset factors to be applied for the geometry calculations. The
value of SPATIAL_SCALE is applied before the spatial offset values are applied. The
default is [0.0, 0.0, 0.0]. IDL converts and maintains this value in double-precision
floating-point.

SPATIAL_SCALE

Set this keyword to a two or three-element vector, [sx, sy] or [sx, sy, sz], representing
the spatial calibration scaling factors to be applied for the geometry calculations. The
spatial calibration scale is applied first, then the value of SPATIAL_OFFSET is
applied. The default is [1.0, 1.0, 1.0]. IDL converts and maintains this value in
double-precision floating-point.

Version History

Introduced: 5.3
IDLanROI

 2525
IDLanROI::ComputeMask

The IDLanROI::ComputeMask function method prepares a two-dimensional mask
for the region.

Syntax

Result = Obj -> [IDLanROI::]ComputeMask([, INITIALIZE={ –1 | 0 | 1 }]
[, DIMENSIONS=[xdim, ydim]] | [, MASK_IN=array] [, LOCATION=[x, y [, z]]]
[, MASK_RULE={ 0 | 1 | 2 }] [, PIXEL_CENTER=[x, y]]
[, PLANE_NORMAL=[x, y, z]] [, PLANE_XAXIS=[x,y,z]] [, /RUN_LENGTH])

Return Value

Result

The return value is a two-dimensional array of bytes whose values range from 0 to
255. The mask is computed by applying the following formula to the current mask for
each mask point contained within the ROI:

Mout = MAX(MIN(255, (Mroi*Ext) + Min), 0)

where Mroi is 255 and Ext is 1 for points within an exterior region and –1 for points
within an interior region.

If the TYPE of the region is 0 (points), a single mask pixel is set for each region
vertex that falls within the bounds of the mask.

If the TYPE of the region is 1 (path), one-pixel-wide line segments are set within the
mask.

If the TYPE of the region is 2 (closed polygon), a mask pixel is set if that pixel is on
the plane of a region, and the pixel falls within the region (according to the
MASK_RULE).

Arguments

None.
IDLanROI

2526
Keywords

DIMENSIONS

Set this keyword to a two-element vector, [xdim, ydim], specifying the requested
dimensions of the returned mask. If MASK_IN is provided, the value of this keyword
is ignored and the dimensions of that mask are used. Otherwise, the default
dimensions are [100, 100].

INITIALIZE

Set this keyword to indicate how the mask should be initialized. Valid values include:

• –1 = The mask is not initialized. This option is useful when updating an
already existing mask. This is the default if the MASK_IN keyword is set.

• 0 = The mask is initialized so that each pixel is set to 0. This is the default if the
MASK_IN keyword is not set.

• 1 = The mask is initialized so that each pixel is set to 255.

LOCATION

Set this keyword to a vector of the form [X, Y[, Z]] specifying the location of the
origin of the mask. The default is [0, 0, 0]. IDL converts and maintains this value in
double-precision floating-point.

MASK_IN

Set this keyword to a two-dimensional array representing a mask that is already
allocated and to be updated for this region. If the variable specified by this keyword is
of type BYTE and is also specified as the function result, then this method updates
the mask data in-place without copying. If this keyword is not provided, a mask is
allocated by default to match the dimensions specified via the DIMENSIONS
keyword.
IDLanROI

 2527
MASK_RULE

Set this keyword to an integer specifying the rule used to determine whether a given
pixel should be set within the mask. Valid values include:

• 0 = Boundary only. All pixels falling on a region’s boundary are set.

• 1 = Interior only. All pixels falling within the region’s boundary, but not on the
boundary, are set.

• 2 = Boundary + Interior. All pixels falling on or within a region’s boundary are
set.

PIXEL_CENTER

Set this keyword to a 2-element vector, [x, y], to indicate where the lower-left mask
pixel is to centered relative to a Cartesian grid. The default value is [0.0, 0.0],
indicating that the lower-left pixel is centered at [0.0, 0.0].

PLANE_NORMAL

Set this keyword to a three-element vector, [x, y, z], specifying the normal vector for
the plane on which the mask is to be computed. The default is [0, 0, 1].

PLANE_XAXIS

Set this keyword to a three-element vector, [x, y, z], specifying the direction vector
along which each row of mask pixels is to be computed (starting at LOCATION). The
default is [1, 0, 0].

RUN_LENGTH

Set this keyword to a non-zero value to return a run-length encoded representation of
the mask, stored in a one-dimensional unsigned long array. When run-length
encoded, each element with an even subscript contains the length of the run, and the
following element contains the starting index of the run.

Version History

Introduced: 5.3

RUN_LENGTH keyword: 5.6
IDLanROI

2528
IDLanROI::ContainsPoints

The IDLanROI::ContainsPoints function method determines whether the given data
coordinates are contained within the closed polygon region.

Syntax

Result = Obj -> [IDLanROI::]ContainsPoints(X [, Y [, Z]])

Return Value

The return value is a vector of values, one per provided point, indicating whether that
point is contained. Valid values within this return vector include:

• 0 = Exterior. The point lies strictly out of bounds of the ROI.

• 1 = Interior. The point lies strictly inside the bounds of the ROI.

• 2 = On edge. The point lies on an edge of the ROI boundary.

• 3 = On vertex. The point matches a vertex of the ROI.

A point is considered to be exterior if:

• the point falls within the boundary of an interior region (hole).

• the point does not lie in the plane of the region.

• the region TYPE property is set to 0 (points) or 1 (path).

Arguments

X

A vector providing the X components of the points to be tested. If the Y and Z
arguments are not specified, X must be a two-dimensional array with the leading
dimension either 2 or 3 ([2,*] or [3,*]), in which case, X[0,*] represents the X values,
X[1,*] represents the Y values, and X[2,*] represents the Z values.

Y

A vector providing the Y components of the points to be tested.

Z

A scalar or vector providing the Z component(s) of the points to be tested. If not
provided, the Z components default to 0.0.
IDLanROI

 2529
Keywords

None.

Version History

Introduced: 5.3
IDLanROI

2530
IDLanROI::GetProperty

The IDLanROI::GetProperty procedure method retrieves the value of a property or
group of properties for the region.

Syntax

Obj -> [IDLanROI::]GetProperty [, ALL=variable] [, N_VERTS=variable]
[, ROI_XRANGE=variable] [, ROI_YRANGE=variable]
[, ROI_ZRANGE=variable]

Arguments

None.

Keywords

Any property listed under “IDLanROI Properties” on page 2516 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Version History

Introduced: 5.3
IDLanROI

 2531
IDLanROI::Init

The IDLanROI::Init function method initializes a region of interest object.

Note
Init methods are special life cycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLanROI' [, X [, Y [, Z]]] [, BLOCKSIZE{Get, Set}=vertices]
[, DATA{Get, Set}=array] [, /DOUBLE{Get, Set}] [, /INTERIOR{Get, Set}]
[, TYPE{Get}={ 0 | 1 | 2 }])

or

Result = Obj -> [IDLanROI::]Init([X [, Y [, Z]]]) (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

X

A vector providing the X components of the vertices for the region. If the Y and Z
arguments are not specified, X must be a two-dimensional array with the leading
dimension either 2 or 3 ([2,*] or [3,*]), in which case, X[0,*] represents the X values,
X[1,*] represents the Y values, and X[2,*] represents the Z values. The value for this
argument is double-precision floating-point if the DOUBLE keyword is set or the
inputted value is of type DOUBLE. Otherwise, it is converted to single-precision
floating-point.

Y

A vector providing the Y components of the vertices. The value for this argument is
double-precision floating-point if the DOUBLE keyword is set or the inputted value
is of type DOUBLE. Otherwise, it is converted to single-precision floating-point.
IDLanROI

2532
Z

A scalar or vector providing the Z component(s) of the vertices. If not provided, Z
values default to 0.0. The value for this argument is double-precision floating-point if
the DOUBLE keyword is set or the inputted value is of type DOUBLE. Otherwise, it
is converted to single-precision floating-point.

Keywords

Any property listed under “IDLanROI Properties” on page 2516 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

Version History

Introduced: 5.3
IDLanROI

 2533
IDLanROI::RemoveData

The IDLanROI::RemoveData procedure method removes vertices from the region.

Syntax

Obj -> [IDLanROI::]RemoveData[, COUNT=vertices] [, START=index]
[, XRANGE=variable] [, YRANGE=variable] [, ZRANGE=variable]

Arguments

None.

Keywords

COUNT

Set this keyword to the number of vertices to remove. The default is one vertex.

START

Set this keyword to an index (into the region’s current vertex list) where the removal
is to begin. By default, the final vertex is removed.

XRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[xmin, xmax], that represents the X range of the modification to the region. The
reported range accounts for the vertex just before the removal (if any), the vertex just
after the removal (if any), and the removed vertices. This data is returned in double-
precision floating-point.

YRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[ymin, ymax], that represents the Y range of the modification to the region. The
reported range accounts for the vertex just before the removal (if any), the vertex just
after the removal (if any), and the removed vertices. This data is returned in double-
precision floating-point.
IDLanROI

2534
ZRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[zmin, zmax], that represents the Z range of the modification to the region. The
reported range accounts for the vertex just before the removal (if any), the vertex just
after the removal (if any), and the removed vertices. This data is returned in double-
precision floating-point.

Version History

Introduced: 5.3
IDLanROI

 2535
IDLanROI::ReplaceData

The IDLanROI::ReplaceData procedure method replaces vertices in the region with
alternate values. The number of replacement values need not match the number of
values being replaced.

Syntax

Obj -> [IDLanROI::]ReplaceData, X[, Y[, Z]] [, START=index] [, FINISH=index]
[, XRANGE=variable] [, YRANGE=variable] [, ZRANGE=variable]

Arguments

X

A vector providing the X components of the new replacement vertices. If the Y and Z
arguments are not specified, X must be a two-dimensional array with the leading
dimensions either 2 or 3 ([2, *] or [3, *]), in which case, X[0, *] represents the X
values, X[1, *] represents the Y values, and X[2, *] represents the Z values. If the
DOUBLE property is non-zero, the data is converted to double precision and is
appended to the existing double precision data. Otherwise it is converted to single
precision floating point and appended to the existing single precision data.

Y

A vector providing the Y components of the new replacement vertices. If the
DOUBLE property is non-zero, the data is converted to double precision and is
appended to the existing double precision data. Otherwise it is converted to single
precision floating point and appended to the existing single precision data.

Z

A vector providing the Z components of the new replacement vertices. If the
DOUBLE property is non-zero, the data is converted to double precision and is
appended to the existing double precision data. Otherwise it is converted to single
precision floating point and appended to the existing single precision data.
IDLanROI

2536
Keywords

FINISH

Set this keyword to the index of the region’s current subregion vertex list where the
replacement ends. If the START keyword value is ≥ 0, the default FINISH is given by

FINISH = ((START + N_NEW – 1) MOD N_OLD)

where N_NEW is the number of replacement vertices provided via the [X, Y, Z]
arguments and N_OLD is the number of vertices (prior to replacement) in the current
subregion.

If the START keyword is not set or is negative, the default FINISH is given by

FINISH = N_OLD – 1

FINISH may be less than START in which case the vertices, including and following
START and the vertices preceding and including FINISH, are replaced with the new
values.

START

Set this keyword to an index of the region’s current subregion vertex list where the
replacement begins. If the FINISH keyword value is ≥ 0, the default START is given
by

START = ((FINISH – N_NEW + 1) MOD N_OLD)

where N_NEW is the number of replacement vertices provided via the [X, Y, Z]
arguments and N_OLD is the number of vertices (prior to replacement) in the current
subregion.

If the FINISH keyword is not set (or negative), the default START is clamped to 0
and is given by

N_OLD – N_NEW

XRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[xmin, xmax], representing the X range of the modification to the region. The reported
range accounts for the replaced vertices, the vertex just before the replacement (if
any), the vertex just after the replacement (if any), and the new replacement vertices.
This data is returned in double-precision floating-point.
IDLanROI

 2537
YRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[ymin, ymax], representing the Y range of the modification to the region. The reported
range accounts for the replaced vertices, the vertex just before the replacement (if
any), the vertex just after the replacement (if any), and the new replacement vertices.
This data is returned in double-precision floating-point.

ZRANGE

Set this keyword to a named variable that upon return contains a two-element vector,
[zmin, zmax], representing the Z range of the modification to the region. The reported
range accounts for the replaced vertices, the vertex just before the replacement (if
any), the vertex just after the replacement (if any), and the new replacement vertices.
This data is returned in double-precision floating-point.

Version History

Introduced: 5.3
IDLanROI

2538
IDLanROI::Rotate

The IDLanROI::Rotate procedure method modifies the vertices for the region by
applying a rotation.

Syntax

Obj -> [IDLanROI::]Rotate, Axis, Angle [, CENTER=[x, y[, z]]]

Arguments

Axis

A three-element vector of the form [x, y, z] describing the axis about which the region
is to be rotated.

Angle

The angle, measured in degrees, by which the rotation is to occur.

Keywords

CENTER

Set this keyword to a two or three-element vector of the form [x, y], or [x, y, z]
specifying the center of rotation. The default is [0, 0, 0]. IDL converts and applies this
data in double-precision floating-point.

Version History

Introduced: 5.3
IDLanROI

 2539
IDLanROI::Scale

The IDLanROI::Scale procedure method modifies the vertices for the region by
applying a scale.

Syntax

Obj -> [IDLanROI::]Scale, Sx[, Sy[, Sz]]

Arguments

Sx

The X scale factor. If the Sy and Sz arguments are not specified, Sx must be a two or
three-element vector, in which case Sx[0] represents the scale in X, Sx[1] represents
the scale in Y, Sx[2] represents the scale in Z. IDL converts and applies this data in
double-precision floating-point.

Sy

The Y scale factor. IDL converts and applies this data in double-precision floating-
point.

Sz

The Z scale factor. IDL converts and applies this data in double-precision floating-
point.

Keywords

None.

Version History

Introduced: 5.3
IDLanROI

2540
IDLanROI::SetProperty

The IDLanROI::SetProperty procedure method sets the value of a property or group
of properties for the region.

Syntax

Obj -> [IDLanROI::]SetProperty

Arguments

None.

Keywords

Any property listed under “IDLanROI Properties” on page 2516 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.3
IDLanROI

 2541
IDLanROI::Translate

The IDLanROI::Translate procedure method modifies the vertices for the region by
applying a translation.

Syntax

Obj -> [IDLanROI::]Translate, Tx[, Ty[, Tz]]

Arguments

Tx

The X translation factor. If the Ty and Tz arguments are not specified, Tx must be a
two or three-element vector, in which case Tx[0] represents translation in X, Tx[1]
represents translation in Y, Tx[2] represents translation in Z. IDL converts and applies
this data in double-precision floating-point.

Ty

The Y translation factor. IDL converts and applies this data in double-precision
floating-point.

Tz

The Z translation factor. IDL converts and applies this data in double-precision
floating-point.

Keywords

None.

Version History

Introduced: 5.3
IDLanROI

2542
IDLanROIGroup

The IDLanROIGroup object class is an analytical representation of a group of regions
of interest.

Superclasses

This class is a subclass of TrackBall.

Creation

See IDLanROIGroup::Init.

Properties

Objects of this class have the following properties. See “IDLanROIGroup Properties”
on page 2544 for details on individual properties.

• ALL

• ROIGROUP_XRANGE

• ROIGROUP_YRANGE

• ROIGROUP_ZRANGE

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

The IDLanROIGroup class has the following methods:

• IDLanROIGroup::Add

• IDLanROIGroup::Cleanup

• IDLanROIGroup::ComputeMask

• IDLanROIGroup::ComputeMesh

• IDLanROIGroup::ContainsPoints

• IDLanROIGroup::GetProperty

• IDLanROIGroup::Init

• IDLanROIGroup::Rotate
IDLanROIGroup

 2543
• IDLanROIGroup::Scale

• IDLanROIGroup::Translate

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.3
IDLanROIGroup

2544
IDLanROIGroup Properties

IDLanROIGroup objects have the following properties in addition to properties
inherited from any superclasses. Properties with the word “Yes” in the “Get” column
of the property table can be retrieved via “IDLanROIGroup::GetProperty” on
page 2555. Properties with the word “Yes” in the “Init” column of the property table
can be retrieved via “IDLanROIGroup::Init” on page 2556.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure with the values of all of the properties associated with the
state of this object.

Note
The fields in this structure may change in subsequent releases of IDL.

ROIGROUP_XRANGE

A two-element double-precision floating-point vector of the form [xmin, xmax]
specifying the range of X data coordinates covered by the region.

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLanROIGroup

 2545
ROIGROUP_YRANGE

A two-element double-precision floating-point vector of the form [ymin, ymax]
specifying the range of Y data coordinates covered by the region.

ROIGROUP_ZRANGE

A two-element double-precision floating-point vector of the form [zmin, zmax]
specifying the range of Z data coordinates covered by the region.

Property Type Vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLanROIGroup

2546
IDLanROIGroup::Add

The IDLanROIGroup::Add procedure method adds a region to the region group.
Only objects of the IDLanROI class may be added to the group. The regions in the
group must all be of the same type: all points, all paths, or all polygons.

Syntax

Obj -> [IDLanROIGroup::]Add, ROI

Arguments

ROI

A reference to an instance of the IDLanROI object class representing the region of
interest to be added to the group.

Keywords

Accepts all keywords accepted by the IDL_Container::Add method.

Version History

Introduced: 5.3
IDLanROIGroup

 2547
IDLanROIGroup::Cleanup

The IDLanROIGroup::Cleanup procedure method performs all cleanup for a region
of interest group object.

Note
Cleanup methods are special life cycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you cannot
call the Cleanup method directly. There is one exception to this rule: If you write
your own subclass of this class, you can call the Cleanup method from within the
Cleanup method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLanROIGroup::]Cleanup (In a subclass’ Cleanup method only.)

Arguments

None.

Keywords

None.

Version History

Introduced: 5.3
IDLanROIGroup

2548
IDLanROIGroup::ComputeMask

The IDLanROIGroup::ComputeMask function method prepares a two-dimensional
mask for this group of regions.

Syntax

Result = Obj -> [IDLanROIGroup::]ComputeMask([, INITIALIZE={ -1 | 0 | 1 }]
[, DIMENSIONS=[xdim, ydim]] | [, MASK_IN=array] [, LOCATION=[x, y [, z]]]
[, MASK_RULE={ 0 | 1 | 2 }] [, /RUN_LENGTH])

Return Value

Result

The return value is a two-dimensional array of bytes whose values range from 0 to
255. The mask is computed by applying the following formula to the current mask for
each mask point contained within the ROI:

Mout = MAX(MIN(0, (Mroi*Ext) + Min), 255)

where Mroi is 255 and Ext is 1 for points within an exterior region and –1 for points
within an interior region.

If the TYPE of the contained regions is 0 (points), a single mask pixel is set for each
region vertex that falls within the bounds of the mask.

If the TYPE of the contained regions is 1 (path), each pixel along the paths of the
regions is set if it falls within the mask.

If the TYPE of the region is 2 (closed polygon), a mask pixel is set if that pixel is on
the plane of a contained region, and the pixel falls within that region (according to the
MASK_RULE).

Arguments

None.

Keywords

DIMENSIONS

Set this keyword to a two-element vector, [xdim, ydim], specifying the requested
dimensions of the returned mask. If MASK_IN is provided, the value of this keyword
IDLanROIGroup

 2549
is ignored, and the dimensions of that mask are used. Otherwise, the default
dimensions are [100, 100].

INITIALIZE

Set this keyword to indicate how the mask should be initialized. Valid values include:

• –1 = The mask is not initialized; the default if the MASK_IN keyword is set.
This option is useful when updating an already existing mask.

• 0 = The mask is initialized with each pixel set to 0; the default if the
MASK_IN keyword is not set.

• 1 = The mask is initialized with each pixel set to 255.

LOCATION

Set this keyword to a vector of the form [X, Y[, Z]] specifying the location of the
origin of the mask. The default is [0, 0, 0].

MASK_IN

Set this keyword to a two-dimensional array representing a mask that is already
allocated and to be updated for this region. If the variable specified by this keyword is
of type BYTE and is also specified as the function result, then this method updates
the mask data in-place without copying. If this keyword is not provided, a mask is
allocated by default to match the dimensions specified via the DIMENSIONS
keyword.

MASK_RULE

Set this keyword to an integer specifying the rule used to determine whether a given
pixel should be set within the mask. Valid values include:

• 0 = Boundary Only. All pixels falling on a region’s boundary are set.

• 1 = Interior Only. All pixels falling within the region’s boundary, but not on the
boundary, are set.

• 2 = Boundary + Interior. All pixels falling on or within a region’s boundary are
set.

PLANE_NORMAL

Set this keyword to a three-element vector, [x, y, z], specifying the normal vector for
the plane on which the mask is to be computed. The default is [0, 0, 1].
IDLanROIGroup

2550
PLANE_XAXIS

Set this keyword to a three-element vector, [x, y, z], specifying the direction vector
along which each row of mask pixels is to be computed (starting at LOCATION). The
default is [1, 0, 0].

RUN_LENGTH

Set this keyword to a non-zero value to return a run-length encoded representation of
the mask, stored in a one-dimensional unsigned long array. When run-length
encoded, each element with an even subscript contains the length of the run, and the
following element contains the starting index of the run.

Version History

Introduced: 5.3

RUN_LENGTH keyword: 5.6
IDLanROIGroup

 2551
IDLanROIGroup::ComputeMesh

The IDLanROIGroup::ComputeMesh function method triangulates a surface mesh
with optional capping from the stack of regions contained within this group.

Note
The contained regions may be concave. However, this method will fail under the
following conditions:

• The region group contains fewer than two regions.
• The TYPE property of the contained regions is 0 (points) or 1 (path).
• Any of the contained regions are not simple
 (i.e., a region is self-intersecting).

• The region group contains interior regions (holes).
• More than one region lies on the same plane
(i.e., the region group contains branches).

Each region pair is normalized by perimeter and the triangulation is computed by
walking the contours in parallel, keeping the normalized progress along each contour
in sync. The returned triangulation minimizes the mesh surface area. Each vertex may
appear only once in the output, and the resulting polygon mesh is solid with outward
facing normals computed via the right-hand rule. If capping is requested, it is
computed using the IDLgrTessellator on the top and bottom regions, and/or the
regions on either side of an inter-slice gap.

Syntax

Result = Obj->[IDLanROIGroup::]ComputeMesh(Vertices, Conn
[, CAPPED={ 0 | 1 | 2}] [, SURFACE_AREA=variable])

Return Value

Result

The return value of this function method is the number of triangles generated if the
surface mesh triangulation is successful, or zero if unsuccessful.
IDLanROIGroup

2552
Arguments

Vertices

An output [3, n] array of vertices. If all regions in the group are defined with single
precision vertices (DOUBLE property is zero), then IDL returns a single precision
floating point array. Otherwise, if any of the regions in the group are defined with
double precision vertices (DOUBLE property is non-zero), then IDL returns a double
precision floating point array.

Conn

An output polygon mesh connectivity array.

Keywords

CAPPED

Set this keyword to a value to indicate whether flat caps are to be computed at the
top-most or bottom-most regions (as selected by a counter-clockwise rule), or at the
regions on either side of an inter-slice gap. The value of this keyword is a bit-wise OR
of the values shown below. For example, to cap the top-most and bottom-most
regions only, set the CAPPED keyword to 3. The default is 0 (no caps).

• 0 = no caps

• 1 = cap the top-most region

• 2 = cap the bottom-most region

SURFACE_AREA

Set this keyword to a named variable that upon return contains the overall surface
area of the computed triangulation. This value was minimized in the computation of
the triangulation. IDL returns this value in a double-precision floating-point variable.

Version History

Introduced: 5.3
IDLanROIGroup

 2553
IDLanROIGroup::ContainsPoints

The IDLanROIGroup::ContainsPoints function method determines whether the given
points (in data coordinates) are contained within this region group.

The regions within this group must have a TYPE of 2 (closed polygon) and must fall
on parallel planes for successful containment testing to occur.

For each point to be tested:

• If the point lies directly on one of the region planes, it is tested for containment
within each of the regions that fall on that plane.

• If the point lies between two of the region planes, it is projected onto the
nearest region plane, and tested for containment within each of the regions on
that plane.

• If the point lies above or below the stack of parallel region planes, the point
will be considered to be exterior to the region group.

On a given plane, a point will be considered to be exterior if either of the following
conditions are true:

• The point does not fall within any of the regions on that plane.

• The point falls within as many or more holes than non-hole regions on that
plane.

Syntax

Result = Obj -> [IDLanROIGroup::]ContainsPoints(X[, Y[, Z]])

Return Value

The return value is a vector of values, one per provided point, indicating whether that
point is contained. Valid values within this return vector include:

• 0 = Exterior. The point lies strictly outside the bounds of the ROI.

• 1 = Interior. The point lies strictly inside the bounds of the ROI.

• 2 = On Edge. The point lies on an edge of the ROI boundary.

• 3 = On Vertex. The point matches a vertex of the ROI.
IDLanROIGroup

2554
Arguments

X

A vector providing the X components of the points to be tested. If the Y and Z
arguments are not specified, X must be a two-dimensional array with the leading
dimension either 2 or 3 ([2,*] or [3,*]), in which case, X[0,*] represents the X values,
X[1,*] represents the Y values, and X[2,*] represents the Z values.

Y

A vector providing the Y components of the points to be tested.

Z

A scalar or vector providing the Z components of the points to be tested. If not
provided, the Z components default to 0.0.

Keywords

None.

Version History

Introduced: 5.3
IDLanROIGroup

 2555
IDLanROIGroup::GetProperty

The IDLanROIGroup::Get Property procedure method retrieves the value of a
property or group of properties for the region group.

Syntax

Obj -> [IDLanROIGroup::]GetProperty[, ALL=variable]
[, ROIGROUP_XRANGE=variable] [, ROIGROUP_YRANGE=variable]
[, ROIGROUP_ZRANGE=variable]

Arguments

None.

Keywords

Any property listed under “IDLanROIGroup Properties” on page 2544 that contains
the word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Version History

Introduced: 5.3
IDLanROIGroup

2556
IDLanROIGroup::Init

The IDLanROIGroup::Init function method initializes a region of interest group
object.

Note
Init methods are special life cycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLanROIGroup')

or

Result = Obj -> [IDLanROIGroup::]Init() (Only in a subclass’ Init method.)

Arguments

None.

Keywords

Any property listed under “IDLanROIGroup Properties” on page 2544 that contains
the word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

Version History

Introduced: 5.3
IDLanROIGroup

 2557
IDLanROIGroup::Rotate

The IDLanROIGroup::Rotate procedure method modifies the vertices for all regions
within the group by applying a rotation.

Syntax

Obj -> [IDLanROIGroup::]Rotate, Axis, Angle[, CENTER=[x, y[, z]]]

Arguments

Axis

A three-element vector of the form [x, y, z] describing the axis about which the region
group is to be rotated.

Angle

The angle, measured in degrees, by which to rotate the ROI group.

Keywords

CENTER

Set this keyword to a two or three-element vector of the form [x, y], or [x, y, z]
specifying the center of rotation. The default is [0, 0, 0]. IDL converts and applies this
data in double-precision floating-point.

Version History

Introduced: 5.3
IDLanROIGroup

2558
IDLanROIGroup::Scale

The IDLanROIGroup::Scale procedure method modifies the vertices for the region
by applying a scale.

Syntax

Obj -> [IDLanROIGroup::]Scale, Sx[, Sy[, Sz]]

Arguments

Sx

The X scale factor. If the Sy and Sz arguments are not specified, Sx must be a two or
three-element vector, in which case Sx[0] represents the scale in X, Sx[1] represents
the scale in Y, Sx[2] represents the scale in Z. IDL converts and applies this data in
double-precision floating-point.

Sy

The Y scale factor. IDL converts and applies this data in double-precision floating-
point.

Sz

The Z scale factor. IDL converts and applies this data in double-precision floating-
point.

Keywords

None.

Version History

Introduced: 5.3
IDLanROIGroup

 2559
IDLanROIGroup::Translate

The IDLanROIGroup::Translate procedure method modifies the vertices of all
regions within the group by applying a translation.

Syntax

Obj -> [IDLanROIGroup::]Translate, Tx[, Ty[, Tz]]

Arguments

Tx

The X translation factor. If the Ty and Tz arguments are not specified, Tx must be a
two or three-element vector, in which case Tx[0] represents translation in X, Tx[1]
represents translation in Y, Tx[2] represents translation in Z. IDL converts and applies
this data in double-precision floating-point.

Ty

The Y translation factor. IDL converts and applies this data in double-precision
floating-point.

Tz

The Z translation factor. IDL converts and applies this data in double-precision
floating-point.

Keywords

None.

Version History

Introduced: 5.3
IDLanROIGroup

2560
IDLanROIGroup

Chapter 6:

File Format Object
Classes
This chapter describes IDL’s built-in file format class library.
IDLffDICOM . 2562
IDLffDXF . 2595
IDLffLanguageCat 2624

IDLffMrSID . 2629
IDLffShape . 2642
IDLffXMLSAX 2680
IDL Reference Guide 2561

2562
IDLffDICOM

An IDLffDICOM object contains the data for one or more images embedded in a
DICOM Part 10 file. The API to the IDLffDICOM object provides accessor methods
to the basic data elements of a DICOM file, namely the group/element tag, value
representation, length, and data values. Additional methods deal with the file header
preamble, data dictionary description for individual elements, and embedded
sequences of elements. Most methods take a DICOM group/element tag as a
parameter. An alternative parameter to the DICOM tag in some methods is the
reference. A reference value is a LONG integer that is unique to each element in the
DICOM object. This value can be used to directly access a specific element and to
differentiate between elements in the DICOM file that have the same group/element
tag. Valid reference values are always positive.

See “IDL DICOM v3.0 Conformance Summary” on page 2564 for information
regarding IDL DICOM file reading support.

Superclasses

This class has no superclasses.

Creation

See “IDLffDICOM::Init” on page 2591.

Properties

Objects of this class have the following properties. See “IDLffDICOM Properties” on
page 2568 for details on individual properties.

• VERBOSE

Methods

This class has the following methods:

• IDLffDICOM::Cleanup

• IDLffDICOM::DumpElements

• IDLffDICOM::GetChildren

• IDLffDICOM::GetDescription
IDLffDICOM IDL Reference Guide

 2563
• IDLffDICOM::GetElement

• IDLffDICOM::GetGroup

• IDLffDICOM::GetLength

• IDLffDICOM::GetParent

• IDLffDICOM::GetPreamble

• IDLffDICOM::GetReference

• IDLffDICOM::GetValue

• IDLffDICOM::GetVR

• IDLffDICOM::Init

• IDLffDICOM::Read

• IDLffDICOM::Reset

Version History

Introduced: 5.2
IDL Reference Guide IDLffDICOM

2564
IDL DICOM v3.0 Conformance Summary

Introduction

This section is an abbreviated DICOM conformance statement for IDL, and specifies
the compliance of RSI IDL DICOM file reading support to the DICOM v3.0
standard. As described in the DICOM Standard PS 3.2 (Conformance), the purpose
of this document is to outline the level of conformance to the DICOM standard and to
enumerate the supported DICOM Service Classes, Information Objects, and
Communications Protocols supported by this implementation.

IDL does not contain or support any of the DICOM services such as Storage,
Query/Retrieve, Print, Verification, etc., so there will be no conformance claims
relating to these services and no mention of any Application Entities for these
services. Communications Protocol profiles will also be absent from this document
for the same reasons. The remainder of this document will describe how IDL handles
the various Information Objects it is capable of reading.

Reading of DICOM Part 10 files

IDL supports reading files that conform to the DICOM Standard PS 3.10 DICOM
File Format. This format provides a means to encapsulate in a file the Data Set
representing a SOP (Service Object Pair) Instance related to a DICOM IOD
(Information Object Definition). Files written to disk in this DICOM File Format will
be referred to as DICOM Part 10 files for the remainder of this document. Note that
IDL does NOT support the writing of files in this DICOM File Format, only reading.

Encapsulated Transfer Syntaxes Supported

IDL supports reading DICOM Part 10 files whose contents have been written using
the following Transfer Syntaxes. The Transfer Syntax UID is in the file’s DICOM
Tag field (0002,0010).

UID Value UID Name

1.2.840.10008.1.2 Implicit VR Little Endian: Default Transfer Syntax for
DICOM

1.2.840.10008.1.2.1 Explicit VR Little Endian

1.2.840.10008.1.2.2 Explicit VR Big Endian

Table 0-1: Encapsulated Transfer Syntaxes Supported
IDLffDICOM IDL Reference Guide

 2565
Encapsulated Transfer Syntaxes NOT Supported

IDL does NOT support reading DICOM Part 10 files whose contents have
compressed data that has been written using the following Transfer Syntaxes. IDL
will NOT be able to access the data element (DICOM Tag field (7FE0,0010)) of files
with these types of compressed data. The Transfer Syntax UID is in the file’s DICOM
Tag field (0002,0010).

UID Value UID Name

1.2.840.10008.1.2.4.50 JPEG Baseline (Process 1): Default Transfer Syntax for
Lossy JPEG 8 Bit Image Compression

1.2.840.10008.1.2.4.51 JPEG Extended (Process 2 & 4): Default Transfer Syntax
for Lossy JPEG 12 Bit Image Compression (Process 4
only)

1.2.840.10008.1.2.4.52 JPEG Extended (Process 3 & 5)

1.2.840.10008.1.2.4.53 JPEG Spectral Selection, Non-Hierarchical (Process 6 & 8)

1.2.840.10008.1.2.4.54 JPEG Spectral Selection, Non-Hierarchical (Process 7 & 9)

1.2.840.10008.1.2.4.55 JPEG Full Progression, Non-Hierarchical (Process 10 &
12)

1.2.840.10008.1.2.4.56 JPEG Full Progression, Non-Hierarchical (Process 11 &
13)

1.2.840.10008.1.2.4.57 JPEG Lossless, Non-Hierarchical (Process 14)

1.2.840.10008.1.2.4.58 JPEG Lossless, Non-Hierarchical (Process 15)

1.2.840.10008.1.2.4.59 JPEG Extended, Hierarchical (Process 16 & 18)

1.2.840.10008.1.2.4.60 JPEG Extended, Hierarchical (Process 17 & 19)

1.2.840.10008.1.2.4.61 JPEG Spectral Selection, Hierarchical (Process 20 & 22)

1.2.840.10008.1.2.4.62 JPEG Spectral Selection, Hierarchical (Process 21 & 23)

1.2.840.10008.1.2.4.63 JPEG Full Progression, Hierarchical (Process 24 & 26)

1.2.840.10008.1.2.4.64 JPEG Full Progression, Hierarchical (Process 25 & 27)

1.2.840.10008.1.2.4.65 JPEG Lossless, Hierarchical (Process 28)

Table 0-2: Encapsulated Transfer Syntaxes NOT Supported
IDL Reference Guide IDLffDICOM

2566
Encapsulated SOP Classes Supported

IDL supports reading DICOM Part 10 files whose contents encapsulate the data of
the following SOP Classes. The SOP Class UID is in the file’s DICOM Tag field
(0008,0016).

1.2.840.10008.1.2.4.66 JPEG Lossless, Hierarchical (Process 29)

1.2.840.10008.1.2.4.70 JPEG Lossless, Non-Hierarchical, First-Order Prediction
(Process 14 [Selection Value 1]): Default Transfer Syntax
for Lossless JPEG Image Compression

1.2.840.10008.1.2.5 RLE Lossless

UID Value UID Name

1.2.840.10008.5.1.4.1.1.1 CR Image Storage

1.2.840.10008.5.1.4.1.1.2 CT Image Storage

1.2.840.10008.5.1.4.1.1.4 MR Image Storage

1.2.840.10008.5.1.4.1.1.6.1 Ultrasound Image Storage

1.2.840.10008.5.1.4.1.1.7 Secondary Capture Image Storage

1.2.840.10008.5.1.4.1.1.12.1 X-Ray Angiographic Image Storage

1.2.840.10008.5.1.4.1.1.12.2 X-Ray Radiofluoroscopic Image Storage

1.2.840.10008.5.1.4.1.1.20 Nuclear Medicine Image Storage

1.2.840.10008.5.1.4.1.1.128 Positron Emission Tomography Image Storage

Table 0-3: Encapsulated SOP Classes Supported

UID Value UID Name

Table 0-2: Encapsulated Transfer Syntaxes NOT Supported (Continued)
IDLffDICOM IDL Reference Guide

 2567
Handling of odd length data elements

The DICOM Standard PS 3.5 (Data Structures and Encoding) specifies that the data
element values which make up a DICOM data stream must be padded to an even
length. The toolkit upon which IDL’s DICOM reading functionality is built strictly
enforces this specification. If IDL encounters an incorrectly formed odd length data
field while reading a DICOM Part 10 file it will report an error and stop the reading
process.

Handling of undefined VRs

The VR (Value Representation) of a data element describes the data type and format
of that data element's values. If IDL encounters an undefined VR while reading a
DICOM Part 10 file, it will set that data element's VR to be UN (unknown).

Handling of retired and private data elements

Certain data elements are no longer supported under the v3.0 of the DICOM standard
and are denoted as retired. Also, some DICOM implementations may require the
communication of information that cannot be contained in standard data elements,
and thus create private data elements to contain such information. Retired and private
data elements should pose no problem to IDL’s DICOM Part 10 file reading
capability. When IDL encounters a retired or private data element tag during reading
a DICOM Part 10 file, it will treat it just like any standard data element: read the data
value and allow it to be accessed via the IDLffDICOM::GetValue method.
IDL Reference Guide IDLffDICOM

2568
IDLffDICOM Properties

IDLffDICOM objects have the following properties. Properties with the word “Yes”
in the “Init” column of the property table can be set via IDLffDICOM::Init.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

VERBOSE

A Boolean value that indicates whether informational messages are printed to the
Output Log during the operational life of the object. If this value is true, the
informational messages are printed to the Output Log. Otherwise, the messages are
not printed.

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDLffDICOM IDL Reference Guide

 2569
IDLffDICOM::Cleanup

The IDLffDICOM::Cleanup procedure method destroys the IDLffDICOM object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: if you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLffDICOM::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Examples

; Create a DICOM object, read a DICOM file and dump its contents:
obj = OBJ_NEW('IDLffDICOM')
var = obj->Read(DIALOG_PICKFILE(FILTER="*"))
obj->DumpElements
OBJ_DESTROY, obj

; Executing this statement should produce an invalid object
; reference error since obj no longer exists:
obj->DumpElements

Version History

Introduced: 5.2
IDL Reference Guide IDLffDICOM

2570
IDLffDICOM::DumpElements

The IDLffDICOM::DumpElements procedure method dumps a description of the
DICOM data elements of the IDLffDICOM object to the screen or to a file.

Syntax

Obj -> [IDLffDICOM::]DumpElements [, Filename]

Arguments

Filename

A scalar string containing the full path and filename of the file to which to dump the
elements. The file is written as ASCII text.

Keywords

None

Examples

The columns output by DumpElements are the element reference, the (group,
element) tuple, the value representation, the description, the value length, and some
of the data values.

; Create a DICOM object, read a DICOM file and dump its contents:
obj = OBJ_NEW('IDLffDICOM')
var = obj->Read(DIALOG_PICKFILE(FILTER='*'))
obj->DumpElements

; Dump the contents of the current DICOM object to a file under
; Windows:
obj->DumpElements, 'c:\rsi\elements.dmp'

; Dump the contents of the current DICOM object to a file under
; UNIX:
obj->DumpElements, '/rsi/elements.dmp'

OBJ_DESTROY, obj

Version History

Introduced: 5.2
IDLffDICOM IDL Reference Guide

 2571
IDLffDICOM::GetChildren

The IDLffDICOM::GetChildren function method is used to find the member element
references of a DICOM sequence. It takes as an argument a scalar reference to a
DICOM element representing the parent of the sequence.

Syntax

Result = Obj -> [IDLffDICOM::]GetChildren(Reference)

Return Value

Returns an array of references to the elements of the object that are members of that
sequence. The scalar parent reference is possibly obtained by a previous call to
GetReference or any method that generates a reference list. Any member of a
sequence may also itself be the parent of another sequence. If the scalar reference
argument is not the parent of a sequence, the method returns -1.

Arguments

Reference

A scalar reference to a DICOM element that is known to be the parent of a DICOM
sequence.

Keywords

None

Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; Get a list of references to all elements that are sequences:
refs = obj->GetReference(VR='SQ')

; Cycle through the returned list and print out the immediate
; children references and descriptions of each sequence:
FOR i = 0, N_ELEMENTS(refs)-1 DO BEGIN

IF (refs[i] NE -1) THEN $
BEGIN

children = obj->GetChildren(refs[i])
IDL Reference Guide IDLffDICOM

2572
FOR j = 0, N_ELEMENTS(children)-1 DO $
BEGIN

PRINT,children[j]
PRINT,obj->GetDescription(REFERENCE=children[j])

ENDFOR
ENDIF

ENDFOR
OBJ_DESTROY,obj

Version History

Introduced: 5.2
IDLffDICOM IDL Reference Guide

 2573
IDLffDICOM::GetDescription

The IDLffDICOM::GetDescription function method takes optional DICOM group
and element arguments and returns an array of STRING descriptions.

Syntax

Result = Obj -> [IDLffDICOM::]GetDescription([Group [, Element]]
[, REFERENCE=list of element references])

Return Value

Returns an array of strings describing the field’s contents as per the data dictionary in
the DICOM specification PS 3.6. If no arguments or keywords are specified, the
returned array contains the descriptions for all elements in the object. The effect of
multiple keywords and parameters is to AND their results. If no DICOM elements
can be found matching the search criteria, -1 will be returned.

Arguments

Group

An optional argument representing the value for the DICOM group to search for, i.e.
‘0018’x. If this argument is omitted, then all of the DICOM array elements are
returned.

Element

An optional argument specified only if the Group argument has also been specified.
Set this argument to the value for the DICOM element for which to search, such as
‘0010’x. If this argument is omitted and the Group argument was specified, then all
elements of the specified Group are returned.

Keywords

REFERENCE

Set this keyword to a list of element reference values from which to return description
values.
IDL Reference Guide IDLffDICOM

2574
Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; Get the description of the patient name element:
arr = obj->GetDescription('0010'x,'0010'x)
PRINT, arr

; Get array of all of the descriptions from the patient info group:
arr = obj->GetDescription('0010'x)
FOR i = 0, N_ELEMENTS(arr)-1 DO BEGIN

PRINT, arr[i]
ENDFOR

OBJ_DESTROY, obj

Version History

Introduced: 5.2
IDLffDICOM IDL Reference Guide

 2575
IDLffDICOM::GetElement

The IDLffDICOM::GetElement function method takes optional DICOM group
and/or element arguments and returns an array of DICOM Element numbers for those
parameters.

Syntax

Result = Obj -> [IDLffDICOM::]GetElement([Group [, Element]]
[, REFERENCE=list of element references])

Return Value

Returns an array of integers representing the DICOM Element numbers for the
parameters of the Group and Element arguments. If no arguments or keywords are
specified, the returned array contains Element numbers for all elements in the object.
The effect of multiple keywords and parameters is to AND their results. If no
matching elements can be found, the function returns -1.

Arguments

Group

An optional argument representing the value for the DICOM group to search for, i.e.
‘0018’x. If this argument is omitted, then all of the DICOM array elements are
returned.

Element

An optional argument specified only if the Group argument has also been specified.
Set this argument to the value for the DICOM element to search for, such as ‘0010’x.
If this argument is omitted and the Group argument was specified, then all elements
of the specified Group are returned.

Keywords

REFERENCE

Set this keyword to a list of element reference values from which to return element
number values.
IDL Reference Guide IDLffDICOM

2576
Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; Get references to all elements with "patient" in the description:
refs = obj->GetReference(DESCRIPTION='patient')

; Get the element numbers of the elements containing "patient":
FOR i = 0, N_ELEMENTS(refs)-1 DO BEGIN

num = obj->GetElement(REFERENCE=refs[i])
PRINT,num

ENDFOR

; Get the element numbers from the Patient Info group, 0010:
elements = obj->GetElement('0010'x)
PRINT, elements

OBJ_DESTROY,obj

Version History

Introduced: 5.2
IDLffDICOM IDL Reference Guide

 2577
IDLffDICOM::GetGroup

The IDLffDICOM::GetGroup function method takes optional DICOM group and/or
element arguments and returns an array of DICOM Group numbers for those
parameters.

Syntax

Result = Obj -> [IDLffDICOM::]GetGroup([Group[, Element]]
[, REFERENCE=list of element references])

Return Value

Returns an array of integers representing the DICOM Group numbers for Group
parameters. If no arguments or keywords are specified, the returned array contains
Group numbers for all groups in the object. The effect of multiple keywords and
parameters is to AND their results. If no matching elements can be found, the
function returns -1.

Arguments

Group

An optional argument representing the value for the DICOM group for which to
search, such as ‘0018’x. If this argument is omitted, then all of the DICOM array
elements are returned.

Element

An optional argument specified only if the Group argument has also been specified.
Set this to the value for the DICOM element for which to search, such as ‘0010’x. If
this argument is omitted and the Group argument was specified, then all elements of
the specified Group are returned.

Keywords

REFERENCE

Set this keyword to a list of element references from which to return group number
values.
IDL Reference Guide IDLffDICOM

2578
Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; Get references to all elements with "patient" in the description:
refs = obj->GetReference(DESCRIPTION='patient')

; Get the group numbers of the elements containing "patient":
FOR i = 0, N_ELEMENTS(refs)-1 DO BEGIN

num = obj->GetGroup(REFERENCE=refs[i])
PRINT, num

ENDFOR

; Get the group numbers from the Patient Info group, 0010:
grp = obj->GetGroup('0010'x)
PRINT, grp

OBJ_DESTROY,obj

Version History

Introduced: 5.2
IDLffDICOM IDL Reference Guide

 2579
IDLffDICOM::GetLength

The IDLffDICOM::GetLength function method takes optional DICOM group and/or
element arguments and returns an array of LONGs.

Syntax

Result = Obj -> [IDLffDICOM::]GetLength([Group [, Element]]
[, REFERENCE=list of element references])

Return Value

Returns an array of longword integers. The length is the field length that explicitly
exists in the DICOM file, and represents the length of the element value in bytes. If
no arguments or keywords are specified, the returned array contains the lengths for all
elements in the object. The effect of multiple keywords and parameters is to AND
their results. If no matching elements can be found, the function returns -1.

Arguments

Group

An optional argument representing the value for the DICOM group for which to
search, such as ‘0018’x. If this argument is omitted, all DICOM array elements are
returned.

Element

An optional argument specified only if the Group argument has also been specified.
Set this to the value for the DICOM element for which to search, such as ‘0010’x. If
this argument is omitted and the Group argument was specified, then all elements of
the specified Group are returned.

Keywords

REFERENCE

Set this keyword to a list of element references from which to return length values.
IDL Reference Guide IDLffDICOM

2580
Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; Get the length of the patient name element:
arr = obj->GetLength('0010'x,'0010'x)
PRINT, arr

; Get an array of all of the lengths from the patient info group:
arr = obj->GetLength('0010'x)
PRINT, arr
OBJ_DESTROY, obj

Version History

Introduced: 5.2
IDLffDICOM IDL Reference Guide

 2581
IDLffDICOM::GetParent

The IDLffDICOM::GetParent function method is used to find the parent references of
a set of elements in a DICOM sequence.

Syntax

Result = Obj -> [IDLffDICOM::]GetParent(ReferenceList)

Return Value

Returns the parent references of a set of elements in a DICOM sequence. It takes as
an argument an array of references that represent DICOM elements. If no members of
the ReferenceList are members of a sequence, a -1 is returned, and for each member
of the ReferenceList which is not a member of a sequence, a -1 is returned.

Arguments

ReferenceList

An array of references to DICOM elements that are known to be members of a
DICOM sequence.

Keywords

None

Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj -> Read(DIALOG_PICKFILE(FILTER = '*'))

; Get the reference to the Referenced Study Sequence
; element, if it exists:
ref = obj -> GetReference('0008'x, '1110'x)
PRINT, ref
PRINT, obj -> GetDescription(REFERENCE = ref)

; Get and print the parent sequence, if it exists.
; This should result in a -1 since this element is not
; a member of a sequence:
parent = obj -> GetParent(ref)
PRINT, parent
IDL Reference Guide IDLffDICOM

2582
PRINT, obj -> GetDescription(REFERENCE=parent)

; Get the children of the Referenced Study Sequence
; element, if it exists:
refs = obj -> GetChildren(ref[0])
PRINT, refs
PRINT, obj -> GetDescription(REFERENCE = refs)
OBJ_DESTROY, obj

Version History

Introduced: 5.2
IDLffDICOM IDL Reference Guide

 2583
IDLffDICOM::GetPreamble

The IDLffDICOM::GetPreamble function method returns the preamble of a DICOM
v3.0 Part 10 file.

Syntax

Result = Obj -> [IDLffDICOM::]GetPreamble()

Return Value

Returns a 128-element byte array containing the preamble, which is a fixed 128 byte
field available for implementation specified usage. If it is not used by the
implementor of the file, it will be set to all zeroes.

Arguments

None

Keywords

None

Examples

; Create a DICOM object, read a DICOM file:
obj = OBJ_NEW('IDLffDICOM')
var = obj -> Read(DIALOG_PICKFILE(FILTER = '*'))

; Get an array of the byte contents of the DICOM file preamble:
arr = obj -> GetPreamble()
PRINT, arr

OBJ_DESTROY, obj

Version History

Introduced: 5.2
IDL Reference Guide IDLffDICOM

2584
IDLffDICOM::GetReference

The IDLffDICOM::GetReference function method takes optional DICOM group
and/or element arguments and returns an array of references to matching elements in
the object.

Syntax

Result = Obj -> [IDLffDICOM::]GetReference([Group [, Element]]
[, DESCRIPTION=string] [, VR=DICOM VR string])

Return Value

Returns an array referencing the matching elements in the object. References are
opaque, meaning that they have no specific significance other than a correspondence
to the element they refer to. If no arguments or keywords are specified, the returned
array contains references to all elements in the object. The effect of multiple
keywords and parameters is to AND their results. If no matching elements can be
found, the function returns -1.

Arguments

Group

An optional argument representing the value for the DICOM group for which to
search, such as ‘0018’x. If this argument is omitted, then all of the DICOM array
elements are returned.

Element

An optional argument specified only if the Group argument has also been specified.
Set this to the value for the DICOM element to search for, such as ‘0010’x. If this
argument is omitted and the Group argument was specified, then all elements of the
specified Group are returned.

Keywords

DESCRIPTION

Set this keyword to a string containing text to be searched for in each element’s
DICOM description. An element will be returned only if the text in this string can be
found in the description. The text comparison is case-insensitive.
IDLffDICOM IDL Reference Guide

 2585
VR

Set this keyword to a DICOM VR string. An element will be returned only if its value
representation matches this string.

Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj -> Read(DIALOG_PICKFILE(FILTER = '*'))

; Get the reference to the patient name element:
ref = obj -> GetReference('0010'x,'0010'x)
PRINT, ref

; Get references to all elements with "patient" in the description:
refs = obj -> GetReference(DESCRIPTION = 'patient')
FOR i = 0, (N_ELEMENTS(refs) - 1) DO BEGIN

PRINT, refs[i]
PRINT, obj -> GetDescription(REFERENCE = refs[i])

ENDFOR

; Get references to all elements with a VR of DA (date):
refs = obj -> GetReference(vr = 'DA')
FOR i = 0, (N_ELEMENTS(refs) - 1) DO BEGIN

PRINT, refs[i]
PRINT, obj -> GetDescription(REFERENCE = refs[i])

ENDFOR

OBJ_DESTROY, obj

Version History

Introduced: 5.2
IDL Reference Guide IDLffDICOM

2586
IDLffDICOM::GetValue

This method takes optional DICOM group and/or element arguments and returns an
array of POINTERs to the values of the elements matching those parameters.

Syntax

Result = Obj -> [IDLffDICOM::]GetValue([Group [, Element]]
[, REFERENCE=list of element references] [, /NO_COPY])

Return Value

Returns an array of pointers to the values of the elements matching the Group and
Element parameters. If no arguments or keywords are specified, the returned array
contains pointers to all elements in the object. The effect of multiple keywords and
parameters is to AND their results. If no matching elements can be found, the
function returns -1.

Arguments

Group

Set this optional argument to the value for the DICOM group for which to search,
such as ‘0018’x. If this argument is omitted, then all of the DICOM array elements
are returned.

Element

This optional argument can be specified only if the Group argument has also been
specified. Set this to the value for the DICOM element for which to search, such as
‘0010’x. If this argument is omitted and the Group argument was specified, then all
elements of the specified Group are returned.

Keywords

REFERENCE

Set this keyword to a list of element references from which to return pointer values.
IDLffDICOM IDL Reference Guide

 2587
NO_COPY

If this keyword is set, the pointers returned point to the actual data in the object for
the specified DICOM fields. If not set (the default), the pointers point to copies of the
data instead, and need to be freed by using PTR_FREE.

Examples

Example 1

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; Get the image data
array = obj->GetValue('7fe0'x, '0010'x)
OBJ_DESTROY, obj

TVScl, *array[0]
PTR_FREE, array

Example 2

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; Get all of the image data element(s), 7fe0,0010, from the file:
array = obj->GetValue('7fe0'x,'0010'x,/NO_COPY)

; Get the row & column size of the image(s):
rows = obj->GetValue('0028'x,'0010'x,/NO_COPY)
cols = obj->GetValue('0028'x,'0011'x,/NO_COPY)

; If the image has a samples per pixel value greater than 1
; it is most likely a color image, get the samples per pixel:
isColor = 0
samples = obj->GetValue('0028'x,'0002'x,/NO_COPY)
IF (SIZE(samples,/N_DIMENSIONS) NE 0) THEN BEGIN
 IF (*samples[0] GT 1) THEN isColor = 1
ENDIF

; Next, we need to differentiate between files with color data
; that is either color-by-plane or color-by-pixel, get the planar
; configuration:
IF (isColor EQ 1) THEN BEGIN
 isPlanar = 0
 planar = obj->GetValue('0028'x,'0006'x, /NO_COPY)
 IF (SIZE(planar, /N_DIMENSIONS) NE 0) THEN BEGIN
IDL Reference Guide IDLffDICOM

2588
 IF (*planar[0] EQ 1) THEN isPlanar = 1
 ENDIF
ENDIF

; Display the first NumWin images from the file:
IF N_ELEMENTS(array) GT 10 THEN NumWin = 10 $
ELSE NumWin = N_ELEMENTS(array)
offset = 0
FOR index = 0, NumWin-1 DO BEGIN
 ; Create window for each image that is the size of the image:
 WINDOW,index,XSize=*cols[0],YSize=*rows[0],XPos=offset,YPos=0
 WSET,index
 ; Display the image data
 IF (isColor EQ 1) THEN $
 IF (isPlanar EQ 1) THEN $
 ; color-by-plane
 TVScl,TRANSPOSE(*array[index],[2,0,1]),/TRUE $
 ELSE $
 ; color-by-pixel
 TVScl,*array[index],/TRUE $
 ELSE $
 ; monochrome
 TVScl,*array[index]
 offset = offset+10
ENDFOR

; Clean up
OBJ_DESTROY,obj

Version History

Introduced: 5.2
IDLffDICOM IDL Reference Guide

 2589
IDLffDICOM::GetVR

The IDLffDICOM::GetVR function method takes optional DICOM group and/or
element arguments and returns an array of VR (Value Representation) STRINGs for
those parameters.

Syntax

array = Obj -> [IDLffDICOM::]GetVR([Group [, Element]]
[, REFERENCE=list of references])

Return Value

Returns an array of strings containing VRs (Value Representations) for the Group and
Element parameters. A VR is a DICOM value representation as described in the
DICOM specification PS 3.5. If no arguments or keywords are specified, the returned
array contains VRs for all elements in the object. The effect of multiple keywords and
parameters is to AND their results. If no matching elements can be found, the
function returns -1.

Arguments

Group

An optional argument representing the value for the DICOM group for which to
search, such as ‘0018’x. If this argument is omitted, then all of the DICOM array
elements are returned.

Element

An optional argument specified only if the Group argument has also been specified.
Set this to the value for the DICOM element for which to search, such as ‘0010’x. If
this argument is omitted and the Group argument was specified, then all elements of
the specified Group are returned.

Keywords

REFERENCE

Use the specified list of references from which to return VR STRING values.
IDL Reference Guide IDLffDICOM

2590
Examples

obj = OBJ_NEW('IDLffDICOM')
read = obj->Read(DIALOG_PICKFILE(FILTER='*'))

; Get the VR of the patient name element:
arr = obj->GetVR('0010'x,'0010'x)
PRINT, arr

; Get an array of all of the VRs from the patient info group:
arr = obj->GetVR('0010'x)
PRINT, arr

OBJ_DESTROY,obj

Version History

Introduced: 5.2
IDLffDICOM IDL Reference Guide

 2591
IDLffDICOM::Init

The IDLffDICOM::Init function method creates a new IDLffDICOM object and
optionally reads the specified file as defined in the IDLffDICOM::Read method.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Result = OBJ_NEW('IDLffDICOM' [, Filename] [, PROPERTY=value])

or

Result = Obj -> [IDLffDICOM::]Init([Filename] [, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

Filename

An optional scalar string argument containing the full path and filename of a DICOM
v3.0 Part 10 file to open, read into memory, then close, when the object is created. It
is the same as calling: result -> Read(Filename).
IDL Reference Guide IDLffDICOM

2592
Keywords

Any property listed under “IDLffDICOM Properties” on page 2568 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

Examples

; Create a DICOM object:
obj = OBJ_NEW('IDLffDICOM')

; Create a DICOM object and read in a DICOM file named ct_head.dcm
; under Microsoft Windows:
obj = OBJ_NEW('IDLffDICOM', $

'c:\rsi\idl52\examples\data\mr_brain.dcm')

; Create a DICOM object and allow the user to choose a DICOM file
; to be read:
obj = OBJ_NEW('IDLffDICOM', DIALOG_PICKFILE(FILTER='*'))

Version History

Introduced: 5.2
IDLffDICOM IDL Reference Guide

 2593
IDLffDICOM::Read

The IDLffDICOM::Read function method opens and reads from the specified disk
file, places the information into the DICOM object, then closes the file.

Syntax

Result = Obj -> [IDLffDICOM::]Read(Filename [, ENDIAN={1 | 2 | 3 | 4}])

Return Value

Return a 1 if successful and 0 otherwise.

Arguments

Filename

A scalar string argument containing the full path and filename of a DICOM Part 10
file to open and read into memory.

Keywords

ENDIAN

Set this keyword to configure the endian format when reading a DICOM file.

• 1 = Implicit VR Little Endian

• 2 = Explicit VR Little Endian

• 3 = Implicit VR Big Endian

• 4 = Explicit VR Big Endian

Examples

; Create a DICOM object and read a DICOM file:
obj = OBJ_NEW('IDLffDICOM')
var = obj -> Read(DIALOG_PICKFILE(FILTER = '*'))
OBJ_DESTROY, obj

Version History

Introduced: 5.2
IDL Reference Guide IDLffDICOM

2594
IDLffDICOM::Reset

The IDLffDICOM::Reset procedure method removes all of the elements from the
IDLffDICOM object, leaving the object otherwise intact.

Syntax

Obj -> [IDLffDICOM::]Reset

Arguments

None

Keywords

None

Examples

; Create a DICOM object, read a DICOM file and dump its contents:
obj = OBJ_NEW('IDLffDICOM')
var = obj->Read(DIALOG_PICKFILE(FILTER='*'))
obj->DumpElements
obj->Reset

; DumpElements should produce no output here:
obj->DumpElements
OBJ_DESTROY, obj

Version History

Introduced: 5.2
IDLffDICOM IDL Reference Guide

 2595
IDLffDXF

An IDLffDXF object contains geometry, connectivity and attributes for graphics
primitives.

Note
IDL supports version 2.003 of the DXF Library.

This object treats a DXF file as a list of entities. Note, these are not directly mapped
to DXF entity types, rather they are an abstraction of the DXF types. The Read
method is used to read the contents of a DXF file into the current entity list. The user
may then query this list using the GetContents method to determine the types and
number of entities in the file. The user may retrieve arrays of entities from the list
using the GetEntity method and add additional entities using the PutEntity method.
Entities can also be removed from the list (RemoveEntity) or the entire list destroyed
(Reset). The current list of entities can also be written to disk as a DXF file. Note, this
object converts DXF entities to IDL entities and back. This conversion is not
reversible; thus, if a DXF file is read and then written, the data in the file is not
changed, but the internal DXF entity types may be changed by IDL. As an example,
DXF face3d entities may be written as DXF polyline entities.

The object has one attribute which can be modified using the Get/SetPalette methods.
This palette is used to convert color index values. The palette is not actually written to
the DXF file. So, if the user wanted to specify entity colors from a 256 entry table,
that table would be set using SetPalette, but the actual colors written to the file are the
closest colors matched to the fixed AutoCAD color palette. There are two special
color values: (0) = color by block color, (256) = color by layer color.

In this object, blocks and layers are treated as named entities with attributes, but are
special in that all other entities have a block and layer entity reference in them. This
allows the user to use these entity names as filters for many operations. There is a
default block and a default layer. The default block has the name “” (the null string),
and the default layer is '0'. The user may change the (non-name) attributes for these
implicit blocks using PutEntity.

Superclasses

This class has no superclass.

Creation

See “IDLffDXF::Init” on page 2616
IDL Reference Guide IDLffDXF

2596
Properties

Objects of this class have no properties of their own.

Methods

This class has the following methods:

• IDLffDXF::Cleanup

• IDLffDXF::GetContents

• IDLffDXF::GetEntity

• IDLffDXF::GetPalette

• IDLffDXF::Init

• IDLffDXF::PutEntity

• IDLffDXF::Read

• IDLffDXF::RemoveEntity

• IDLffDXF::Reset

• IDLffDXF::SetPalette

• IDLffDXF::Write

Version History

Introduced: 5.2
IDLffDXF IDL Reference Guide

 2597
IDLffDXF Properties

Objects of this class have no properties of their own.
IDL Reference Guide IDLffDXF

2598
IDLffDXF::Cleanup

The IDLffDXF::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLffDXF::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.2
IDLffDXF IDL Reference Guide

 2599
IDLffDXF::GetContents

The IDLffDXF::GetContents function method returns a description of the content of
the DXF file.

See the Examples following the GetEntity method description for an illustration of
the difference between the GetContents and the GetEntity methods.

The Read or PutEntity methods must have been called previously for the results of
this method to be valid.

Valid DXF ENTITY
Types

DXF_TYPE
(0=default)

ARC 1

CIRCLE 2

ELLIPSE 3

LINE 4

LINE3D 5

TRACE 6

POLYLINE 7

LWPOLYLINE 8

POLYGON 9

FACE3D 10

SOLID 11

RAY 12

XLINE 13

TEXT 14

MTEXT 15

POINT 16

SPLINE 17

Table 0-4: DXF Entity Types
IDL Reference Guide IDLffDXF

2600
This object uses a small number of IDL named structures to return the data associated
which each entity. This means that several of these DXF types are returned in the
same structures, using different values of the DXF_TYPE field. The mapping of DXF
entities to IDL named structures is as follows (each of these structures is documented
in the GetEntity method):

Syntax

Result = Obj-> [IDLffDXF::]GetContents([Filter] [BLOCK=string]
[, COUNT=variable] [LAYER=string])

BLOCK 18

INSERT 19

LAYER 20

IDL Structure DXF Entity

IDL_DXF_ELLIPSE arc, circle, ellipse

IDL_DXF_POLYLINE line, line3d, trace, polyline, lwpolyline

IDL_DXF_POLYGON face3d, solid, polyline (3-d mesh)

IDL_DXF_POINT point

IDL_DXF_XLINE ray, xline

IDL_DXF_SPLINE spline

IDL_DXF_TEXT text, multitext

IDL_DXF_BLOCK block

IDL_DXF_INSERT insert

IDL_DXF_LAYER layer

Table 0-5: DXF mapping to IDL structures

Valid DXF ENTITY
Types

DXF_TYPE
(0=default)

Table 0-4: DXF Entity Types (Continued)
IDLffDXF IDL Reference Guide

 2601
Return Value

Returns an integer array containing the DXF entity type codes and the number of
occurrences of each entity type contained in the object

Arguments

Filter

An integer array of the DXF entity types to which the return types are restricted. If
set, Result can contain only types given in this argument and count will also reflect
that restriction.

Keywords

BLOCK

Set this keyword to a string value containing the block name to obtain the entities
from. The default is all blocks.

COUNT

A long array containing the number of each entity type contained within the DXF
object. If the Filter argument was provided, the numbers reflect the reduced set of
entities caused by the Filter argument.

LAYER

Set this keyword to a string value containing the layer name to obtain the entities
from. The default is all layers.

Version History

Introduced: 5.2
IDL Reference Guide IDLffDXF

2602
IDLffDXF::GetEntity

The IDLffDXF::GetEntity function method returns an array of data for the requested
entity type.

Syntax

Result = Obj-> [IDLffDXF::]GetEntity(Type [, BLOCK=string] [, INDEX=value]
[, LAYER=string])

Return Value

Returns one of the named structure formats described in “Structure Formats” on
page 2604.

Arguments

Type

The integer DXF entity type from which to obtain the geometry information.

Keywords

BLOCK

Set this keyword to a block name specifying the graphic block from which to obtain
the entity geometry information. The default is all blocks. Setting this keyword to the
null string '' '' will cause this method to only return entities from the default DXF
entity block.

INDEX

Set this keyword to a scalar index or a long array of indices of entities of the given
type to return. If not set, this method returns all entities for the given type.

LAYER

Set this keyword to a string value containing the layer name to obtain the entities
from. The default is all layers.
IDLffDXF IDL Reference Guide

 2603
Fields Common to All Structures

BLOCK

The name of the block this entity is in (these may be in the default block “”).

COLOR

A color index value into the current object palette with 0=use block color and
256=use layer color.

EXTRUSION

The DXF extrusion vector (if any).

LAYER

The name of the layer this entity is in (the default layer is '0').

LINESTYLE

Defined the same as the user linestyle for IDLgrPolyline::Init.

Note
IDL will always return a solid line regardless of the linestyle in DXF

THICKNESS

In AutoCAD units.

DXF_TYPE

Set to one of the values listed in IDLffDXF::GetContents.

Note
It is the user’s responsibility to free all the pointers returned in these structures when
the entity is no longer needed.
IDL Reference Guide IDLffDXF

2604
Structure Formats

Structure IDL_DXF_ELLIPSE

This object is centered at PT0 and has a radius defined by the vector PT1_OFFSET.
This vector determines the length and orientation of the major axis of an ellipse as
well.

The MIN_TO_MAJ_RATIO value specifies the length of the minor axis as a fraction
of the major axis length. For a circle, this value is 1.0.

The START_ANGLE and END_ANGLE values select the portion of the curve to be
drawn. If they are equal, the entire circle or ellipse is drawn.

Field Data Type

PT0 Double [3]

PT1_OFFSET Double [3]

MIN_TO_MAJ_RATIO Double

START_ANGLE Double

END_ANGLE Double

EXTRUSION Double [3]

LINESTYLE Integer [2]

THICKNESS Double

COLOR Integer

DXF_TYPE Integer

BLOCK String

LAYER String

Table 0-6: Fields of the IDL_DXF_ELLIPSE Structure
IDLffDXF IDL Reference Guide

 2605
Structure IDL_DXF_POLYGON

VERTICES is a pointer to an array of dimension [3, n] containing the points for this
entity.

CONNECTIVITY is the array used to connect these points into polygons (see the
POLYGONS keyword for IDLgrPolygon::Init). If this array is not present, the
connectivity is implicit in (U, V) space defined by the values in MESH_DIMS; the
vertices represent a quad mesh of dimensions (MESH_DIMS[0], MESH_DIMS[1]).

VERTEX_COLORS points to an array of color index values for each of the vertices.
If a quad mesh is being returned, it can be closed in either dimension according to the
CLOSED array.

FIT_TYPE, CURVE_FIT, and SPLINE_FIT return the type of curve fit (if any) this
polygon assumes.

Field Data Type

VERTICES Pointer (to an array of 3-D points)

CONNECTIVITY Pointer (to an array of integers)

VERTEX_COLORS Pointer (to an array of integers)

MESH_DIMS Integer [2]

CLOSED Integer [2]

COLOR Integer

EXTRUSION Double [3]

FIT_TYPE Integer

CURVE_FIT Integer

SPLINE_FIT Integer

DXF_TYPE Integer

BLOCK String

LAYER String

Table 0-7: Fields of the IDL_DXF_POLYGON Structure
IDL Reference Guide IDLffDXF

2606
Structure IDL_DXF_POLYLINE

VERTICES is a pointer to an array of dimension [3, n] containing the points for this
entity.

CONNECTIVITY is the array used to connect these points into polylines (see the
POLYLINES keyword for IDLgrPolyline::Init). If this array is not present, the
connectivity is implicit in (U, V) space defined by the values in MESH_DIMS; the
vertices represent a quad mesh of dimensions (MESH_DIMS[0], MESH_DIMS[1]).

VERTEX_COLORS points to an array of color index values for each of the vertices.
If a quad mesh is being returned, it can be closed in either dimension according to the
CLOSED array.

Field Data Type

VERTICES Pointer (to an array of 3-D points)

CONNECTIVITY Pointer (to an array of integers)

VERTEX_COLORS Pointer (to an array of integers)

COLOR Integer

MESH_DIMS Integer [2]

CLOSED Integer [2]

THICKNESS Double

LINESTYLE Integer [2]

EXTRUSION Double [3]

FIT_TYPE String

CURVE_FIT Integer

SPLINE_FIT Integer

DXF_TYPE Integer

BLOCK String

LAYER String

Table 0-8: Fields of the IDL_DXF_POLYLINE Structure
IDLffDXF IDL Reference Guide

 2607
FIT_TYPE, CURVE_FIT, and SPLINE_FIT return the type of curve fit (if any) this
polyline assumes.

Structure IDL_DXF_POINT

PT0 is the location of the point in space.

UCSX_ANGLE is an internal DXF orientation parameter used for symbol plotting.

Field Data Type

PT0 Double [3]

UCSX_ANGLE Double

THICKNESS Double

COLOR Integer

DXF_TYPE Integer

BLOCK String

LAYER String

Table 0-9: Fields of the IDL_DXF_POINT Structure
IDL Reference Guide IDLffDXF

2608
Structure IDL_DXF_SPLINE

This structure is returned verbatim from the DXF spline structure without
interpretation. It is up to the user to interpret these values.

Field Data Type

CTR_PTS Pointer

FIT_PTS Pointer

KNOTS Pointer

WEIGHTS Pointer

COLOR Integer

DEGREE Integer

PERIODIC Integer

RATIONAL Integer

PLANAR Integer

LINEAR Integer

KNOT_TOLERANCE Double

CTL_TOLERANCE Double

FIT_TOLERANCE Double

START_TANGENT Double [3]

END_TANGENT Double [3]

THICKNESS Double

LINESTYLE Integer [2]

EXTRUSION Double [3]

DXF_TYPE Integer

BLOCK String

LAYER String

Table 0-10: Fields of the IDL_DXF_SPLINE Structure
IDLffDXF IDL Reference Guide

 2609
Structure IDL_DXF_TXT

PT0 is the location of the text string.

TEXT_STR is the actual string.

HEIGHT specifies the overall scaling of the glyphs while WIDTH_FACTOR is a
correction in the baseline direction (anisotropic scaling). For multi-line text,
BOX_WIDTH determines where the line breaks should be placed (0.0 for single line
text).

Field Data Type

PT0 Double [3]

TEXT_STR String

COLOR Integer

HEIGHT Double

WIDTH_FACTOR Double

BOX_WIDTH Double

DIRECTION Double [3]

ROT_ANGLE Double

JUSTIFICATION Integer (0=left, 1=center, 2=right,
3=aligned, 4=middle, 5=fit)

VERTICAL_ALIGN Integer (0=baseline, 1=bottom,
2=middle, 3=top)

SHAPE_FILE String

THICKNESS Double

EXTRUSION Double [3]

DXF_TYPE Integer

BLOCK String

LAYER String

Table 0-11: Fields of the IDL_DXF_TXT Structure
IDL Reference Guide IDLffDXF

2610
The text baseline is specified by DIRECTION and its rotation about the z-axis is
specified by ROT_ANGLE. Justification is specified by JUSTIFICATION and
VERTICAL_ALIGN. SHAPE_FILE is the name of the glyph file used to image this
string. The shape file is NOT read by IDL.

Structure IDL_DXF_XLINE

PT0 is the start of a ray or a point on a infinite line in space in the case of an XLINE
entity.

UNIT_VEC determines the direction of the line in space.

Field Data Type

PT0 Double [3]

UNIT_VEC Double [3]

COLOR Integer

THICKNESS Double

LINESTYLE Integer [2]

EXTRUSION Double [3]

DXF_TYPE Integer

BLOCK String

LAYER String

Table 0-12: Fields of the IDL_DXF_XLINE Structure
IDLffDXF IDL Reference Guide

 2611
Structure IDL_DXF_INSERT

The insert entity allows for the “instancing” of a block in a grid fashion.

INSTANCE_BLOCK is the name of a block to repeat.

The block is scaled by SCALE and rotated about the Z axis by ROTATION. The grid
begins at PT0 and contains the number of rows and columns specified by
NUM_ROW_COL (Note: 0 rows or columns will always give a single instance of the
block).

The spacing of the grid is specified by DISTANCE_BETWEEN.

Field Data Type

SCALE Double [3]

PT0 Double [3]

ROTATION Double

INSTANCE_BLOCK String

NUM_ROW_COL Integer [2]

DISTANCE_BETWEEN Double [2]

DXF_TYPE Integer

BLOCK String

COLOR Integer

LAYER String

Table 0-13: Fields of the IDL_DXF_INSERT Structure
IDL Reference Guide IDLffDXF

2612
Structure IDL_DXF_BLOCK

This entity specifies a BLOCK. Blocks have a location in space (PT0) [objects in the
block are interpreted relative to this point], a name, and a COLOR. They are not
contained in layers or other blocks, so these fields are not present.

Structure IDL_DXF_LAYER

This entity specifies a LAYER. Layer is a NAME and a COLOR. They are not
contained in layers or other blocks, so these fields are not present.

Examples

This example illustrates the difference between the GetEntity and GetContents
methods within the IDLffDXF object method. The GetContents method gives a
description of the content of the file read, listing the entity types and the number of
occurrences. GetEntity accesses the values returned by GetContents and determines
how the entities can be logically combined into common structures for drawing
efficiency.

Field Data Type

PT0 Double [3]

COLOR Integer

NAME String

DXF_TYPE Integer

Table 0-14: Fields of the IDL_DXF_BLOCK Structure

Field Data Type

COLOR Integer

NAME String

DXF_TYPE Integer

Table 0-15: Fields of the IDL_DXF_LAYER Structure
IDLffDXF IDL Reference Guide

 2613
PRO view_heart
; Determine path to data file.
heartFile = FILEPATH(’heart.dxf’, $
 SUBDIRECTORY = [’examples’, ’data’])
; Initialize DXF data access object.
oHeart = OBJ_NEW(’IDLffDXF’)
; Read data within DXF file into access object.
status = oHeart -> Read(heartFile)
; Determine what type of entities (and how many of
; each entity) exist in the file.
heartTypes = oHeart -> GetContents(COUNT = heartCounts)
PRINT, ’Entity Types: ’, heartTypes
PRINT, ’Count of Types: ’, heartCounts
; Initialize a model for displaying polygon and polyline
; objects.
oModel = OBJ_NEW(’IDLgrModel’)
; Obtain the tissue data. The tissue is accessed into
; IDL as a single polygon.
tissue = oHeart -> GetEntity(heartTypes[1])
HELP, tissue
HELP, tissue, /STRUCTURE
; Initialize color parameter.
tissueColor = [255, 0, 0]
; Initialize polygon data.
vertices = tissue.vertices
connectivity = tissue.connectivity
; Initialize the polygon object.
oTissue = OBJ_NEW(’IDLgrPolygon’, $
 *vertices, POLYGONS = *connectivity, $
 COLOR = tissueColor)
; Add the polygon to the model.
oModel -> Add, oTissue
; Clean-up all the related pointers.
PTR_FREE, tissue.vertices, tissue.connectivity, $
 tissue.vertex_colors
PTR_FREE, vertices, connectivity
; Display the polylines and the polygon in the XOBJVIEW
; utility.
XOBJVIEW, oModel, /BLOCK, SCALE = 0.75
; Clean-up the object references.
OBJ_DESTROY, [oHeart, oModel]
END

An XOBJVIEW window with the mesh heart object appears when this program is
compiled and run. The following lines are found in the IDLDE Output Log window.

IDL> view_heart
% Compiled module: VIEW_HEART.
% Compiled module: FILEPATH.
IDL Reference Guide IDLffDXF

2614
% Loaded DLM: DXF.
Entity Types: 7 10 18 20
Count of Types: 13 1624 1 2

The Entity Types (7, 10, 18, and 20) are the GetContents method return values
corresponding to the occurrence of DXF ENTITY types found in the object:
POLYLINES, FACE3D, BLOCK, and LAYER, respectively. Note there are a total of
1624 FACE3D entity types, but for efficiency and speed IDL logically combines all
of the similar entities into a single structure that can be used in an IDLgrPolygon
object. This is illustrated by the output resulting from the first Help command in the
program as shown below.

TISSUE STRUCT = -> IDL_DXF_POLYGON Array[1]
** Structure IDL_DXF_POLYGON, 13 tags, length=72:
 EXTRUSION DOUBLE Array[3]
 VERTICES POINTER <PtrHeapVar3>
 CONNECTIVITY POINTER <PtrHeapVar4>
 VERTEX_COLORS POINTER <PtrHeapVar5>
 MESH_DIMS INT Array[2]
 CLOSED INT Array[2]
 COLOR INT 256
 FIT_TYPE INT -1
 CURVE_FIT INT 0
 SPLINE_FIT INT 0
 DXF_TYPE INT 10
 BLOCK STRING ’’
 LAYER STRING ’0----’
% Compiled module: XOBJVIEW.
% Compiled module: UNIQ.
% Compiled module: IDENTITY.
% Compiled module: XMANAGER.

Note that the tissue is represented as an array of polygons having 1 element. This is
evident by the mesh representation of the heart object showing the 1624 individual
polygons as a single object.

Version History

Introduced: 5.2
IDLffDXF IDL Reference Guide

 2615
IDLffDXF::GetPalette

The IDLffDXF::GetPalette procedure method returns the current color table in the
object.

Syntax

Obj-> [IDLffDXF::]GetPalette, Red, Green, Blue

Arguments

Red

Returns an array of the red components to the current color table.

Green

Returns an array of the green components to the current color table.

Blue

Returns an array of the blue components to the current color table.

Keywords

None

Version History

Introduced: 5.2
IDL Reference Guide IDLffDXF

2616
IDLffDXF::Init

The IDLffDXF::Init function method initializes the DXF object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Result = OBJ_NEW('IDLffDXF' [, Filename])

or

Result = Obj -> [IDLffDXF::]Init([Filename]) (Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

Filename

A scalar string optional argument containing the full path and filename of a DXF file
to be read as the object is created.

Keywords

None

Version History

Introduced: 5.2
IDLffDXF IDL Reference Guide

 2617
IDLffDXF::PutEntity

The IDLffDXF::PutEntity procedure method inserts an entity into the DXF object.
The type of the entity is determined from the DXF_TYPE field of the entity structure.
If DXF_TYPE is set to 0, the type is implied by the entity structure.

Note
Line3D entity types will be written as Line entities due to the obsolete status of
Line3D. Polyline entities will be automatically converted to Lightweight Polylines
where applicable.

Syntax

Obj -> [IDLffDXF::]PutEntity, Data

Arguments

Data

An array of Entity structures as defined by the GetEntity method.

Note
If the entity references a non-existent block or layer, one will automatically be
created. Blocks and layers can also be created by passing IDL_DXF_BLOCK or
IDL_DXF_LAYER structures to this routine.

Keywords

None

Version History

Introduced: 5.2
IDL Reference Guide IDLffDXF

2618
IDLffDXF::Read

The IDLffDXF::Read function method reads a file, parsing the DXF object
information contained in the file, and inserts it into itself.

Syntax

Result = Obj-> [IDLffDXF::]Read(Filename)

Return Value

Returns a 1 indicating success in reading the file, otherwise 0.

Arguments

Filename

A scalar string containing the full path and filename of the DXF file to be read.

Keywords

None

Examples

; Read all the lines from the electrical layer:
oDXF = OBJ_NEW('IDLffDXF')
IF (oDXF->Read('myDXF.dxf')) THEN BEGIN

contents = oDXF->GetContents(4,COUNT=numLines, $
LAYER='Electrical')

IF (numLines ne 0) THEN BEGIN
lines = oDXF->GetEntity(4,LAYER='Electrical')

ENDIF
ENDIF

Version History

Introduced: 5.2
IDLffDXF IDL Reference Guide

 2619
IDLffDXF::RemoveEntity

The IDLffDXF::RemoveEntity procedure method removes the specified entity or
entities from the DXF object.

Syntax

Obj -> [IDLffDXF::]RemoveEntity[, Type] [, INDEX=value]

Arguments

Type

An optional scalar string containing the DXF type to be removed from the DXF
object.

Note
Specifying a block or layer entity will cause all the entities in that layer or block to
be removed.

Keywords

INDEX

Set this keyword to a scalar long or a long array of indices to remove from the DXF
object. If not set, or set negative, all entities of the given type are removed.

Version History

Introduced: 5.2
IDL Reference Guide IDLffDXF

2620
IDLffDXF::Reset

The IDLffDXF::Reset procedure method removes all the entities from the DXF
object.

Syntax

Obj-> [IDLffDXF::]Reset

Arguments

None

Keywords

None

Version History

Introduced: 5.2
IDLffDXF IDL Reference Guide

 2621
IDLffDXF::SetPalette

The IDLffDXF::SetPalette procedure method sets the current color table in the
object.

Syntax

Obj-> [IDLffDXF::]SetPalette, Red, Green, Blue

Arguments

Red

Sets the red components of the current color table to this array.

Green

Sets the green components of the current color table to this array.

Blue

Sets the blue components of the current color table to this array.

Keywords

None

Version History

Introduced: 5.2
IDL Reference Guide IDLffDXF

2622
IDLffDXF::Write

The IDLffDXF::Write function method writes a file for the DXF entity information
this object contains.

Syntax

Result = Obj-> [IDLffDXF::]Write(Filename)

Return Value

Returns a 1 if successful in writing the file, 0 otherwise.

Arguments

Filename

A scalar string containing the full path and filename of the DXF file to be written.

Keywords

None

Examples

; Write a square to a new DXF file using lines:
oDXF = OBJ_NEW('IDLffDXF')
lines = {IDL_DXF_POLYLINE}
lines.dxf_type = 4
lines.layer='myLayer'
lines.thickness = 1.0

; Create clockwise square:
lines = REPLICATE(lines, 4)
lines[0].vertices = PTR_NEW([[0.0,0.0,0.0], $

 [0.0,1.0,0.0]])
lines[0].connectivity = PTR_NEW([0,1])
lines[1].vertices = PTR_NEW([[0.0,1.0,0.0], $

[1.0,1.0,0.0]])
lines[1].connectivity = PTR_NEW([0,1])
lines[2].vertices = PTR_NEW([[1.0,1.0,0.0], $

[1.0,0.0,0.0]])
lines[2].connectivity = PTR_NEW([0,1])
lines[3].vertices = PTR_NEW([[1.0,0.0,0.0], $
IDLffDXF IDL Reference Guide

 2623
[0.0,0.0,0.0]])
lines[3].connectivity = PTR_NEW([0,1])
oDXF->PutEntity, lines
IF (not oDXF->Write('mySquare.dxf')) THEN $

PRINT, 'Write Failed.'
; Clean up the memory in the structs:
OBJ_DESTROY, oDXF
FOR i=0,3 DO BEGIN

PTR_FREE, lines[i].vertices, lines[i].connectivity
ENDFOR

Version History

Introduced: 5.2
IDL Reference Guide IDLffDXF

2624
IDLffLanguageCat

The IDLffLanguageCat object provides an interface to IDL language catalog files.

Note
This object is not savable. Restored IDLffLanguageCat objects may contain invalid
data.

Note
This object is not intended to be created with OBJ_NEW. The MSG_CAT_OPEN
function is used to return the correct object reference.

Superclasses

This class has no superclasses.

Creation

See MSG_CAT_OPEN.

Properties

Objects of this class have no properties of their own.

Methods

This class has the following methods:

• IDLffLanguageCat::IsValid

• IDLffLanguageCat::Query

• IDLffLanguageCat::SetCatalog

Version History

Introduced: 5.2.1

See Also

MSG_CAT_CLOSE, MSG_CAT_COMPILE, MSG_CAT_OPEN
IDLffLanguageCat IDL Reference Guide

 2625
IDLffLanguageCat Properties

Objects of this class have no properties of their own.
IDL Reference Guide IDLffLanguageCat

2626
IDLffLanguageCat::IsValid

The IDLffLanguageCat::IsValid function method is used to determine whether the
object has a valid catalog.

Syntax

Result = Obj ->[IDLffLanguageCat::]IsValid()

Return Value

Returns a 1 if the file is valid, 0 otherwise.

Arguments

None

Keywords

None

Version History

Introduced: 5.2.1
IDLffLanguageCat IDL Reference Guide

 2627
IDLffLanguageCat::Query

The IDLffLanguageCat::Query function method is used to return the language string
associated with the given key.

Syntax

Result = Obj ->[IDLffLanguageCat::]Query(Key [, DEFAULT_STRING=string])

Return Value

Returns a string representing the language associated with the given key. If the key is
not found in the given catalog, the default string is returned.

Arguments

Key

The scalar or array of (string) keys associated with the desired language string. If key
is an array, Result will be a string array of the associated language strings.

Keywords

DEFAULT_STRING

Set this keyword to the desired value of the return string if the key cannot be found in
the catalog file. The default value is the empty string.

Version History

Introduced: 5.2.1
IDL Reference Guide IDLffLanguageCat

2628
IDLffLanguageCat::SetCatalog

The IDLffLanguageCat::SetCatalog function method is used to set the appropriate
catalog file.

Syntax

Result = Obj ->[IDLffLanguageCat::]SetCatalog(Application [, FILENAME=string]
[, LOCALE=string] [, PATH=string])

Return Value

Returns 1 upon success, and 0 on failure

Arguments

Application

A scalar string representing the name of the desired application’s catalog file.

Keywords

FILENAME

Set this keyword to a scalar string containing the full path and filename of the catalog
file to open. If this keyword is set, application, PATH, and LOCALE are ignored.

LOCALE

Set this keyword to the desired locale for the catalog file. If not set, the current locale
is used.

PATH

Set this keyword to a scalar string containing the path to search for language catalog
files. The default is the current directory.

Version History

Introduced: 5.2.1
IDLffLanguageCat IDL Reference Guide

 2629
IDLffMrSID

An IDLffMrSID object class is used to query information about and load image data
from a MrSID (.sid) image file.

Superclasses

This class has no superclasses.

Creation

See IDLffMrSID::Init

Properties

Objects of this class have the following properties. See “IDLffMrSID Properties” on
page 2630 for details on individual properties.

• QUIET

Methods

This class has the following methods:

• IDLffMrSID::Cleanup

• IDLffMrSID::GetDimsAtLevel

• IDLffMrSID::GetImageData

• IDLffMrSID::GetProperty

• IDLffMrSID::Init

Version History

Introduced: 5.5
IDL Reference Guide IDLffMrSID

2630
IDLffMrSID Properties

IDLffMrSID objects have the following properties. Properties with the word “Yes” in
the “Init” column of the property table can be set via IDLffMrSID::Init.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

QUIET

A Boolean value to indicate whether error messages are suppressed while
constructing the IDLffMrSID object. If this value is true, the errors messages are
suppressed. Otherwise, the messages are printed to the Output Log.

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDLffMrSID IDL Reference Guide

 2631
IDLffMrSID::Cleanup

The IDLffMrSID::Cleanup procedure method deletes all MrSID objects, closing the
MrSID file in the process. It also deletes the IDL objects used to communicate with
the MrSID library.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLffMrSID::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.5
IDL Reference Guide IDLffMrSID

2632
IDLffMrSID::GetDimsAtLevel

The IDLffMrSID::GetDimsAtLevel function method is used to retrieve the
dimensions of the image at a given level. This can be used, for example, to determine
what level is required to fit the image into a certain area.

Syntax

Result = Obj -> [IDLffMrSID::]GetDimsAtLevel (Level)

Return Value

Returns a floating-point two-element vector containing the dimensions of the image
at a given level.

Arguments

Level

A scalar integer specifying the level at which the dimensions are to be determined.
This level must be in the range returned by the LEVELS keyword of
IDLffMrSID::GetProperty.

Keywords

None

Examples

Initialize the MrSID file object.

oFile = OBJ_NEW('IDLffMrSID', FILEPATH('test_gs.sid', $
SUBDIRECTORY = ['examples', 'data']))

Get the range of levels of resolution contained within the file.

oFile -> GetProperty, LEVELS = lvls
PRINT, lvls

IDL prints,

-9 4
IDLffMrSID IDL Reference Guide

 2633
Print the image dimensions at the lowest image resolution where image level = 4.

imgLevelA = MAX(lvls)
dimsAtA = oFile -> GetDimsAtLevel(imgLevelA)
PRINT, 'Dimensions of lowest resolution image is', dimsAtA

IDL prints,

32 32

Print the image dimensions at full resolution where image level = 0

dimsAtFull = oFile -> GetDimsAtLevel(0)
PRINT, 'Dimensions of full resolution image is', dimsAtFull

IDL prints,

512 512

Print the image dimensions at the highest resolution where image level = -9

highestLvl = MIN(lvls)
dimsAtHighest = oFile -> GetDimsAtLevel(highestLvl)
PRINT, 'Dimensions of highest resolution image is', dimsAtHighest

IDL prints,

262144 262144

Clean up object references.

OBJ_DESTROY, [oFile]

Version History

Introduced: 5.5
IDL Reference Guide IDLffMrSID

2634
IDLffMrSID::GetImageData

The IDLffMrSID::GetImageData function method extracts and returns the image
data from the MrSID file at the specified level and location.

Syntax

Result = Obj -> [IDLffMrSID::]GetImageData ([, LEVEL = lvl]
[, SUB_RECT = rect])

Return Value

Returns an n-by-w-by-h array containing the image data where n is 1 for grayscale or
3 for RGB images, w is the width and h is the height.

Note
The returned image is ordered bottom-up, the first pixel returned is located at the
bottom-left corner of the image. This differs from how data is stored in the MrSID
file where the image is top-down, meaning the pixel at the start of the file is located
at the top-left corner of the image.

Arguments

None

Keywords

LEVEL

Set this keyword to an integer that specifies the level at which to read the image.

If this keyword is not set, the maximum level is used which returns the minimum
resolution (see the LEVELS keyword to IDLffMrSID::GetProperty).

SUB_RECT

Set this keyword to a four-element vector [x, y, xdim, ydim] specifying the position of
the lower left-hand corner and the dimensions of the sub-rectangle of the MrSID
image to return. This is useful for displaying portions of a high-resolution image.
IDLffMrSID IDL Reference Guide

 2635
If this keyword is not set, the whole image will be returned. This may require
significant memory if a high-resolution image level is selected.

If the sub-rectangle is greater than the bounds of the image at the selected level the
area outside the image bounds will be set to black.

Note
The elements of SUB_RECT are measured in pixels at the current level. This means
the point x = 10, y = 10 at level 1 will be located at x = 20, y = 20 at level 0 and
x = 5, y = 5 at level 2.

Examples

PRO MrSID_GetImageData

; Initialize the MrSID file object.
oFile = OBJ_NEW('IDLffMrSID', FILEPATH('test_gs.sid', $

SUBDIRECTORY = ['examples', 'data']))

; Get the range of levels of resolution contained within the file.
oFile -> GetProperty, LEVELS = lvls
PRINT, lvls
; IDL prints, -9, 4

; Get the image data at level 0.
imgDataA = oFile -> GetImageData(LEVEL = 0)
HELP, 'image array data at full resolution', imgDataA
;IDL prints, Array[1, 512, 512] indicating a grayscale 512 x 512
array.

; Display the full resolution image.
oImgA = OBJ_NEW('IDLgrImage', imgDataA)
oModelA = OBJ_NEW('IDLgrModel')
oModelA -> Add, oImgA
XOBJVIEW, oModelA, BACKGROUND = [0,0,0], $

TITLE = 'Full Resolution Image', /BLOCK

; Get the image data of a higher resolution image,
imgDataB = oFile -> GetImageData(LEVEL = -2)
HELP, imgDataB
; IDL returns [1,2048,2048] indicating a grayscale 2048 x 2048
array.
IDL Reference Guide IDLffMrSID

2636
; To save processing time, display only a 1024 x 1024 portion of
; the high resolution, using 512,512 as the origin..
imgDataSelect = oFile -> GetImageData(LEVEL = -2,$

SUB_RECT = [512, 512, 1024, 1024])
oImgSelect = OBJ_NEW('IDLgrImage', imgDataSelect)
oModel = OBJ_NEW('IDLgrModel')
oModel -> Add, oImgSelect

XOBJVIEW, oModel, BACKGROUND = [0,0,0], $
TITLE = 'Detail of High Resolution Image', /BLOCK

; Clean up object references.
OBJ_DESTROY, [oFile, oImgA, oModelA, oImgSelect, oModel]

END

Version History

Introduced: 5.5
IDLffMrSID IDL Reference Guide

 2637
IDLffMrSID::GetProperty

The IDLffMrSID::GetProperty function method is used to query properties
associated with the MrSID image.

Syntax

Obj -> [IDLffMrSID::]GetProperty [, CHANNELS=nChannels]
[, DIMENSIONS=Dims] [, LEVELS=Levels] [, PIXEL_TYPE=pixelType]
[, TYPE=strType] [, GEO_VALID=geoValid] [, GEO_PROJTYPE=geoProjType]
[, GEO_ORIGIN=geoOrigin] [, GEO_RESOLUTION=geoRes]

Arguments

None

Keywords

CHANNELS

Set this keyword to a named variable that will contain the number of image bands.
For RGB images this is 3, for grayscale it is 1.

DIMENSIONS

Set this keyword equal to a named variable that will contain a two-element long
integer array of the form [width, height] that specifies the dimensions of the MrSID
image at level 0 (full resolution).

LEVELS

Set this keyword equal to a named variable that will contain a two-element long
integer array of the form [minlvl, maxlvl] that specifies the range of levels within the
current image. Higher levels are lower resolution. A level of 0 equals full resolution.
Negative values specify higher levels of resolution.

PIXEL_TYPE

Set this keyword to a named variable that will contain the IDL basic type code for a
pixel sample. For a list of the data types indicated by each type code, see the “IDL
Type Codes” section of the SIZE function.
IDL Reference Guide IDLffMrSID

2638
TYPE

Set this keyword to a named variable that will contain a string identifying the file
format. This should always be MrSID.

GEO_VALID

Set this keyword to a named variable that will contain a long integer that is set to:

• 1 - If the MrSID image contains valid georeferencing data.

• 0 - If the MrSID image does not contain georeferencing data or the data is in an
unsupported format.

Note
Always verify that this keyword returns 1 before using the data returned by any
other GEO_* keyword.

GEO_PROJTYPE

Set this keyword to a named variable that will contain an unsigned integer that
specifies the geoTIFF projected coordinate system type code. For example, type code
32613 corresponds to PCS_WGS84_UTM_zone_13N.

For more information on the geoTIFF file type and available type codes see:

http://www.remotesensing.org/geotiff/geotiff.html

GEO_ORIGIN

Set this keyword to a named variable that will contain a two-element double precision
array of the form [x, y] that specifies the location of the center of the upper-left pixel.

GEO_RESOLUTION

Set this keyword to a named variable that will contain a two-element double precision
array of the form [xres, yres] that specifies the pixel resolution.
IDLffMrSID IDL Reference Guide

http://www.remotesensing.org/geotiff/geotiff.html

 2639
Examples

PRO MrSID_GetProperty

; Initialize the MrSID object.
oFile = OBJ_NEW('IDLffMrSID', FILEPATH('test_gs.sid', $

SUBDIRECTORY = ['examples', 'data']))

; Get the property information of the MrSID file
oFile -> GetProperty, CHANNELS = chan, LEVELS = $

lvls, Pixel_Type = pType, TYPE = fileType, GEO_VALID = geoQuery

; Print MrSID file information.
PRINT, 'Number of image channels = ', chan
; IDL returns 1 indicating one image band.

PRINT, 'Range of image levels = ', lvls
; IDL returns -9, 4, the minimum and maximum level values.

PRINT, 'Type code of image pixels = ', pType
; IDL returns 1 indicating byte data type.

PRINT, 'Image file type = ', FileType
; IDL returns "MrSID"

PRINT, 'Result of georeferencing data query = ', geoQuery
; IDL returns 0 indicating that the image does not contain
; georeferencing data.

; Destroy object references.
OBJ_DESTROY, [oFile]

END

Version History

Introduced: 5.5
IDL Reference Guide IDLffMrSID

2640
IDLffMrSID::Init

The IDLffMrSID::Init function method initializes an IDLffMrSID object containing
the image data from a MrSID image file.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Result = OBJ_NEW('IDLffMrSID', Filename[, PROPERTY=value])

or

Result = Obj -> [IDLffMrSID::]Init(Filename[, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

Filename

A scalar string argument containing the full path and filename of a MrSID file to be
accessed through this IDLffMrSID object.

Note
This is a required argument; it is not possible to create an IDLffMrSID object
without specifying a valid MrSID file.
IDLffMrSID IDL Reference Guide

 2641
Keywords

Any property listed under “IDLffMrSID Properties” on page 2630 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

Examples

oMrSID = OBJ_NEW('IDLffMrSID', FILEPATH('test_gs.sid', $
SUBDIRECTORY = ['examples', 'data']))

Version History

Introduced: 5.5
IDL Reference Guide IDLffMrSID

2642
IDLffShape

An IDLffShape object contains geometry, connectivity and attributes for graphics
primitives accessed from ESRI Shapefiles. See “Overview of ESRI Shapefiles” on
page 2644 for more details on Shapefiles.

Superclasses

This class has no superclass.

Creation

See IDLffShape::Init

Properties

Objects of this class have the following properties. See “IDLffShape Properties” on
page 2654 for details on individual properties.

• ATTRIBUTE_INFO

• ATTRIBUTE_NAMES

• DBF_ONLY

• ENTITY_TYPE

• FILENAME

• IS_OPEN

• N_ATTRIBUTES

• N_ENTITIES

• N_RECORDS

• UPDATE

Methods

This class has the following methods:

• IDLffShape::AddAttribute

• IDLffShape::Cleanup
IDLffShape IDL Reference Guide

 2643
• IDLffShape::Close

• IDLffShape::DestroyEntity

• IDLffShape::GetAttributes

• IDLffShape::GetEntity

• IDLffShape::GetProperty

• IDLffShape::Init

• IDLffShape::Open

• IDLffShape::PutEntity

• IDLffShape::SetAttributes

Version History

Introduced: 5.4
IDL Reference Guide IDLffShape

2644
Overview of ESRI Shapefiles

An ESRI Shapefile stores nontopological geometry and attribute information for the
spatial features in a data set.

A Shapefile consists of a main file (.shp), an index file (.shx), and a dBASE table
(.dbf). For example, the Shapefile “states” would have the following files:

• states.shp

• states.shx

• states.dbf

Naming Conventions for a Shapefile

All the files that comprise an ESRI Shapefile must adhere to the 8.3 filename
convention and must be lower case. The main file, index file, and dBASE file must all
have the same prefix. The prefix must start with an alphanumeric character and can
contain any alphanumeric, underscore (_), or hyphen (-). The main file suffix must
use the .shp extension, the index file the .shx extension, and the dBASE table the
.dbf extension.

Major Elements of a Shapefile

A Shapefile consists of the following elements that you can access through the
IDLffShape class:

• Entities

• Attributes

Entities

The geometry for a feature is stored as a shape comprising a set of vector coordinates
(referred to as ‘entities’). The entities in a Shapefile must all be of the same type. The
following are the possible types for entities in a Shapefile:

Shape Type Type Code

Point 1

PolyLine 3

Polygon 5

Table 0-16: Entity Types
IDLffShape IDL Reference Guide

 2645
When retrieving entities using the IDLffShape::GetEntity method, an IDL structure is
returned. This structure has the following fields:

MultiPoint 8

PointZ 11

PolyLineZ 13

PolygonZ 15

MultiPointZ 18

PointM 21

PolyLineM 23

PolygonM 25

MultiPointM 28

MultiPatch 31

Field Data Type

SHAPE_TYPE IDL_LONG

ISHAPE IDL_LONG

BOUNDS Double[8]

N_VERTICES IDL_LONG

VERTICES Pointer (to Vertices array)

MEASURE Pointer (to Measure array)

N_PARTS IDL_LONG

PARTS Pointer (to Parts array).

PART_TYPES Pointer (to part types)

ATTRIBUTES Pointer to attribute array.

Table 0-17: Entity Structure Field Data Types

Shape Type Type Code

Table 0-16: Entity Types (Continued)
IDL Reference Guide IDLffShape

2646
The following table describes each field in the structure:

Field Description

SHAPE_TYPE The entity type.

ISHAPE The identifier of the specific entity in the shape
object.

BOUNDS A bounding box that specifies the range limits of
the entity. This eight element array contains the
following information:

• Index 0 — X minimum value

• Index 1 — Y minimum value

• Index 2 — Z minimum value (if Z is supported
by type)

• Index 3 — Measure minimum value (if
measure is supported by entity type)

• Index4 — X maximum value

• Index5 — Y maximum value

• Index6 — Z maximum value (if Z is supported
by the entity type)

• Index7 — Measure maximum value (if
measure is supported by entity type)

Note - If the entity is a point type, the values
contained in the bounds array are also the values of
the entity.

N_VERTICES The number of vertices in the entity. If this value is
one and the entity is a POINT type (POINT,
POINTM, POINTZ), the vertices pointer will be
set to NULL and the entity value will be
maintained in the BOUNDS field.

Table 0-18: Entity Structure Field Descriptions
IDLffShape IDL Reference Guide

 2647
VERTICES An IDL pointer that contains the vertices of the
entity. This pointer contains a double array that has
one of the following formats:

• [2, N] - If Z data is not present

• [3, N] - If Z data is present

where N is the number of vertices. These array
formats can be passed to the polygon and polyline
objects of IDL Object Graphics.

Note - This pointer will be null if the entity is a
point type, with the values maintained in the
BOUNDS array.

MEASURE If the entity has a measure value (this is dependent
on the entity type), this IDL pointer will contain a
vector array of measure values. The length of this
vector is N_VERTICES.

Note - This pointer will be null if the entity is of
type POINTM, with the values contained in the
BOUNDS array.

N_PARTS If the values of the entity are separated into parts,
the break points are enumerated in the parts array.
This field lists the number of parts in this entity. If
this value is 0, the entity is one part and the PARTS
pointer will be NULL.

PARTS An IDL pointer that contains an array of indices
into the vertex/measure arrays. These values
represent the start of each part of the entity. The
index range of each entity part is defined by the
following:

• Start = Parts[I]

• End = Parts[I+1]-1 or the end of the array

Field Description

Table 0-18: Entity Structure Field Descriptions (Continued)
IDL Reference Guide IDLffShape

2648
Attributes

A Shapefile provides the ability to associate information describing each entity (a
geometric element) contained in the file. This descriptive information, called
attributes, consists of a set of named data elements for each geometric entity
contained in the file. The set of available attributes is the same for every entity
contained in a Shapefile, with each entity having it’s own set of attribute values.

An attribute consist of two components:

• A name

• A data value

The name consists of an 11 character string that is used to identify the data value. The
data value is not limited to any specific format.

The two components that form an attribute are accessed differently using the shape
object. To get the name of attributes for the specific file, the ATTRIBUTE_NAMES
keyword to the IDLffShape::GetProperty method is used. This returns a string array
that contains the names for the attributes defined for the file.

PART_TYPES This IDL pointer is only valid for entities of type
MultiPatch and defines the type of the particular
part. If the entity type is not MultiPatch, part types
are assumed to be type RING (SHPP_RING).

Note - This pointer is NULL if the entity is not
type MultiPatch.

ATTRIBUTES If the attributes for an entity were requested, this
field contains an IDL pointer that contains a
structure of attributes for the entity. For more
information on this structure, see “Attributes” on
page 2648.

Field Description

Table 0-18: Entity Structure Field Descriptions (Continued)
IDLffShape IDL Reference Guide

 2649
To get the attribute values for an entity, the IDLffShape::GetAttributes method is
called or the ATTRIBUTES keyword of the IDLffShape::GetEntity method is set. In
each case, the attribute values for the specified entity is returned as an anonymous
IDL structure. The numeric order of the fields in the returned structure map to the
numeric order of the attributes defined for the file. The actual format of the returned
structure is:

ATTRIBUTE_0 : VALUE,

ATTRIBUTE_1 : VALUE,

ATTRIBUTE_2 : VALUE,

...

ATTRIBUTE_<N-1> : VALUE

To access the values in the returned structure, you can either hardcode the structure
field names or use the structure indexing feature of IDL.

Accessing Shapefiles

The following example shows how to access data in a Shapefile. This example sets up
a map to display parts of a Shapefile, opens a Shapefile, reads the entities from the
Shapefile, and then plots only the state of Colorado:

PRO ex_shapefile

DEVICE, RETAIN=2, DECOMPOSED=0
!P.BACKGROUND=255

;Define a color table
r=BYTARR(256) & g=BYTARR(256) & b=BYTARR(256)
r[0]=0 & g[0]=0 & b[0]=0 ;Definition of black
r[1]=100 & g[1]=100 & b[1]=255 ;Definition of blue
r[2]=0 & g[2]=255 & b[2]=0 ;Definition of green
r[3]=255 & g[3]=255 & b[3]=0 ;Definition of yellow
r[255]=255 & g[255]=255 & b[255]=255 ;Definition of white

TVLCT, r, g, b
black=0 & blue=1 & green=2 & yellow=3 & white=255

; Set up map to plot Shapefile on
MAP_SET, /ORTHO,45, -120, /ISOTROPIC, $
/HORIZON, E_HORIZON={FILL:1, COLOR:blue}, $
/GRID, COLOR=black, /NOBORDER

; Fill the continent boundaries:
MAP_CONTINENTS, /FILL_CONTINENTS, COLOR=green
IDL Reference Guide IDLffShape

2650
; Overplot coastline data:
MAP_CONTINENTS, /COASTS, COLOR=black

; Show national borders:
MAP_CONTINENTS, /COUNTRIES, COLOR=black

;Open the states Shapefile in the examples directory
myshape=OBJ_NEW('IDLffShape', FILEPATH('states.shp', $

SUBDIR=['examples', 'data']))

;Get the number of entities so we can parse through them
myshape -> IDLffShape::GetProperty, N_ENTITIES=num_ent

;Parsing through the entities and only plotting the state of
;Colorado
FOR x=1, (num_ent-1) DO BEGIN
 ;Get the Attributes for entity x
 attr = myshape -> IDLffShape::GetAttributes(x)
 ;See if 'Colorado' is in ATTRIBUTE_1 of the attributes for

;entity x
 IF attr.ATTRIBUTE_1 EQ 'Colorado' THEN BEGIN
 ;Get entity
 ent = myshape -> IDLffShape::GetEntity(x)
 ;Plot entity
 POLYFILL, (*ent.vertices)[0,*], (*ent.vertices)[1,*],
COLOR=yellow
 ;Clean-up of pointers
 myshape -> IDLffShape::DestroyEntity, ent
 ENDIF
ENDFOR

;Close the Shapefile
OBJ_DESTROY, myshape

END
IDLffShape IDL Reference Guide

 2651
This results in the following:

Creating New Shapefiles

To create a Shapefile, you need to create a new Shapefile object, define the entity and
attributes definitions, and then add your data to the file. For example, the following
program creates a new Shapefile (cities.shp), defines the entity type to be
“Point”, defines 2 attributes (CITY_NAME and STATE_NAME), and then adds an
entity to the new file:

PRO ex_shapefile_newfile

;Create the new shapefile and define the entity type to Point
mynewshape=OBJ_NEW('IDLffShape', FILEPATH('cities.shp', $

SUBDIR=['examples', 'data']), /UPDATE, ENTITY_TYPE=1)

;Set the attribute definitions for the new Shapefile
mynewshape->IDLffShape::AddAttribute, 'CITY_NAME', 7, 25, $

PRECISION=0
mynewshape->IDLffShape::AddAttribute, 'STAT_NAME', 7, 25, $

PRECISION=0

Figure 0-1: Example Use of Shapefiles
IDL Reference Guide IDLffShape

2652
;Create structure for new entity
entNew = {IDL_SHAPE_ENTITY}

; Define the values for the new entity
entNew.SHAPE_TYPE = 1
entNew.ISHAPE = 1458
entNew.BOUNDS[0] = -104.87270
entNew.BOUNDS[1] = 39.768040
entNew.BOUNDS[2] = 0.00000000
entNew.BOUNDS[3] = 0.00000000
entNew.BOUNDS[4] = -104.87270
entNew.BOUNDS[5] = 39.768040
entNew.BOUNDS[6] = 0.00000000
entNew.BOUNDS[7] = 0.00000000

;Create structure for new attributes
attrNew = mynewshape ->IDLffShape::GetAttributes($
/ATTRIBUTE_STRUCTURE)

;Define the values for the new attributes
attrNew.ATTRIBUTE_0 = 'Denver'
attrNew.ATTRIBUTE_1 = 'Colorado'

;Add the new entity to new shapefile
mynewshape -> IDLffShape::PutEntity, entNew

;Add the Colorado attributes to new shapefile
mynewshape -> IDLffShape::SetAttributes, 0, attrNew

;Close the shapefile
OBJ_DESTROY, mynewshape

END

Updating Existing Shapefiles

You can modify existing Shapefiles with the following:

• Adding new entities

• Adding new attributes (only to Shapefiles without any existing values in any
attributes)

• Modifying existing attributes

Note
You cannot modify existing entities.
IDLffShape IDL Reference Guide

 2653
For example, the following program adds an entity and attributes for the city of
Boulder to the cities.shp file we created in the previous example:

PRO ex_shapefile_modify

;Open the cities Shapefile
myshape=OBJ_NEW('IDLffShape', FILEPATH('cities.shp', $
 SUBDIR=['examples', 'data']), /UPDATE)

;Create structure for new entity
entNew = {IDL_SHAPE_ENTITY}

; Define the values for the new entity
entNew.SHAPE_TYPE = 1
entNew.ISHAPE = 1380
entNew.BOUNDS[0] = -105.25100
entNew.BOUNDS[1] = 40.026878
entNew.BOUNDS[2] = 0.00000000
entNew.BOUNDS[3] = 0.00000000
entNew.BOUNDS[4] = -105.25100
entNew.BOUNDS[5] = 40.026878
entNew.BOUNDS[6] = 0.00000000
entNew.BOUNDS[7] = 0.00000000

;Create structure for new attributes
attrNew = myshape ->IDLffShape::GetAttributes($
/ATTRIBUTE_STRUCTURE)

;Define the values for the new attributes
attrNew.ATTRIBUTE_0 = 'Boulder'
attrNew.ATTRIBUTE_1 = 'Colorado'

;Add the new entity to new shapefile
myshape -> IDLffShape::PutEntity, entNew

;Add the Colorado attributes to new shapefile
myshape -> IDLffShape::SetAttributes, 0, attrNew

;Close the shapefile
OBJ_DESTROY, myshape

END
IDL Reference Guide IDLffShape

2654
IDLffShape Properties

IDLffShape objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLffShape::GetProperty. Properties with the
word “Yes” in the “Init” column of the property table can be retrieved via
IDLffShape::Init.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ATTRIBUTE_INFO

A array of structures containing the attribute information for each attribute. The
attribute information structures have the following fields:

The file must be open to obtain this information.

Field Description

NAME A string that contains the name of the attribute.

TYPE The IDL type code of the attribute.

WIDTH The width of the attribute.

PRECISION The precision of the attribute.

Table 0-19: ATTRIBUTE_INFO Fields

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLffShape IDL Reference Guide

 2655
ATTRIBUTE_NAMES

A string array containing the names of each attribute in the Shapefile object.

DBF_ONLY

A non-zero, positive integer value indicating whether the underlying dBASE table
(.dbf) component of the shapefile is opened while all other entity related files are left
closed. The following two values are accepted for this property:

• 1 - Open an existing .dbf file,

• Greater than 1 - Create a new .dbf file

Note
The UPDATE keyword is required to open the .dbf file for updating.

ENTITY_TYPE

If retrieving this property, its value is an integer representing the type code for the
entities contained in the Shapefile object. If the value is unknown, this method returns
-1. For more information on entity type codes, see “Entities” on page 2644.

If setting this property, its value is an integer representing the entity type of a new
Shapefile. Use this setting only when creating a new Shapefile. For more information
on entity types, see “Entities” on page 2644.

Property Type String array

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Integer

Name String not displayed

Get: No Set: No Init: Yes Registered: No

Property Type Integer

Name String not displayed

Get: Yes Set: No Init: Yes Registered: No
IDL Reference Guide IDLffShape

2656
FILENAME

A string representing the fully qualified path name of the Shapefile in the current
Shapefile object.

IS_OPEN

An integer value representing information about the status of a Shapefile. The
following values can be returned:

N_ATTRIBUTES

A longword integer representing the number of attributes associated with a Shapefile
object. If the number of attributes is unknown, this property returns 0.

Property Type String

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Value Description

0 File is not open.

1 File is open in read-only mode.

3 File is open in update mode.

Table 0-20: IS_OPEN Values

Property Type Integer

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Long

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLffShape IDL Reference Guide

 2657
N_ENTITIES

A longword integer representing the number of entities contained in Shapefile object.
If the number of entities is unknown, this property returns 0.

N_RECORDS

A longword integer representing the number of records in the dBASE table (.dbf)
component of the Shapefile. In a normal operating mode, this process is
accomplished by getting the number of entities. However, in DBF_ONLY mode, no
entity file exits.

UPDATE

A Boolean value indicating whether the file opened for writing. The file is opened for
writing if this property is set to true. The default is read-only.

Property Type Long

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Long

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDL Reference Guide IDLffShape

2658
IDLffShape::AddAttribute

The IDLffShape::AddAttribute method adds an attribute definition to a Shapefile.
Adding a the attribute definition is required before adding the actual attribute data to
a file. For more information on attributes, see “Attributes” on page 2648.

Note
You can only define new attributes to Shapefiles that do not have any existing values
in any attributes.

Syntax

Obj->[IDLffShape::]AddAttribute, Name, Type, Width [, PRECISION=integer]

Arguments

Name

Set to a string that contains the attribute name. Name values are limited to 11
characters. Arguments longer than 11 characters will be truncated.

Type

Set to the IDL type code that corresponds to the data type that will be stored in the
attribute. The valid types are:

Code Description

3 Longword Integer

5 Double-precision floating-point

7 String

Table 0-21: Type Code Descriptions
IDLffShape IDL Reference Guide

 2659
Width

Set to the width of the field for the data value of the attribute. The following table
describes the possible values depending on the defined Type:

Keywords

PRECISION

Set this keyword to the number of positions to be included after the decimal point.
The default is 8. This keyword is only valid for fields defined as double-precision
floating-point.

Examples

In the following example, we add the attribute “ELEVATION” to an existing
Shapefile. Note that if the file already contains data in an attribute for any of the
entities defined in the file, this operation will fail.

PRO ex_addattr_shapefile

;Open a shapefile
myshape=OBJ_NEW('IDLffShape', FILEPATH('cities.shp', $
 SUBDIR=['examples', 'data']), /UPDATE)

;Define a new attribute for the Shapefile
myshape->IDLffShape::AddAttribute, 'ELEVATION', 3, 4, $
 PRECISION=0

;Close the shapefile
OBJ_DESTROY, myshape

END

Field Type Valid Values

Longword Integer Maximum size of the field.

Double-precision floating-point Maximum size of the field.

String Maximum length of the string.

Table 0-22: Width Values
IDL Reference Guide IDLffShape

2660
Version History

Introduced: 5.4
IDLffShape IDL Reference Guide

 2661
IDLffShape::Cleanup

The IDLffShape::Cleanup procedure method performs all cleanup on a Shapefile
object. If the Shapefile being accessed by the object is open and the file has been
modified, the new information is written to the file if one of the following conditions
is met:

• The file was opened with write permissions using the UPDATE keyword to the
IDLffShape::Open method

• It is a newly created file that has not been written previously.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you cannot
call the Cleanup method directly. There is one exception to this rule: If you write
your own subclass of this class, you can call the Cleanup method from within the
Cleanup method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLffShape::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.4
IDL Reference Guide IDLffShape

2662
IDLffShape::Close

The IDLffShape::Close procedure method closes a Shapefile. If the file has been
modified, it is also written to the disk if neither of the following conditions is met:

• The file was opened with write permissions using the UPDATE keyword to the
IDLffShape::Open method

• It is a newly created file that has not been written previously.

If the file has been modified and one of the previous conditions is not met, the file is
closed and the changes are not written to disk.

Syntax

Obj -> [IDLffShape::]Close

Arguments

None

Keywords

None

Version History

Introduced: 5.4
IDLffShape IDL Reference Guide

 2663
IDLffShape::DestroyEntity

The IDLffShape::DestroyEntity procedure method frees memory associated with the
entity structure. For more information on the entity structure, see “Entities” on
page 2644.

Syntax

Obj -> [IDLffShape::]DestroyEntity, Entity

Arguments

Entity

A scalar or array of entities to be destroyed.

Keywords

None

Examples

In the following example, all of the entities from the states.shp Shapefile are read
and then the DestroyEntity method is called to clean up all pointers:

PRO ex_shapefile

; Open the states Shapefile in the examples directory.
myshape=OBJ_NEW('IDLffShape', FILEPATH('states.shp', $

SUBDIR=['examples', 'data']))

; Get the number of entities so we can parse through them.
myshape -> IDLffShape::GetProperty, N_ENTITIES=num_ent

; Read all the entities.
FOR x=1, (num_ent-1) DO BEGIN

;Read the entity x
ent = myshape -> IDLffShape::GetEntity(x)
;Clean-up of pointers
myshape -> IDLffShape::DestroyEntity, ent

ENDFOR

; Close the Shapefile.
OBJ_DESTROY, myshape
IDL Reference Guide IDLffShape

2664
END

Version History

Introduced: 5.4
IDLffShape IDL Reference Guide

 2665
IDLffShape::GetAttributes

The IDLffShape::GetAttributes function method retrieves the attributes for the
entities you specify from a Shapefile.

Syntax

Result = Obj -> [IDLffShape::]GetAttributes([Index] [, /ALL]
[, /ATTRIBUTE_STRUCTURE])

Return Value

Returns an anonymous structure array. For more information on the structure, see
“Attributes” on page 2648.

Arguments

Index

A scalar or array of longs specifying the entities for which you want to retrieve the
attributes, with 0 being the first entity in the Shapefile.

Note
If you do not specify Index and the ALL keyword is not set, the attributes for the
first entity (0) are returned.

Keywords

ALL

Set this keyword to retrieve the attributes for all entities in a Shapefile. If you set this
keyword, the Index argument is not required.

ATTRIBUTE_STUCTURE

Set this keyword to return an empty attribute structure that can then be used with the
IDLffShape::SetAttributes method to add attributes to a Shapefile.
IDL Reference Guide IDLffShape

2666
Examples

In the first example, we retrieve the attributes associated with entity at location 0 (the
first entity in the file):

attr = myShape->getAttributes(0)

In the next example, we retrieve the attributes associated with entities 10 through 20:

attr = myShape->getAttributes(10+indgen(11))

In the next example, we retrieve the attributes for entities 1,4, 9 and 70:

attr = myShape->getAttributes([1, 4, 9, 70])

In the next example, we retrieve all the attributes for a Shapefile:

attr = myShape->getAttributes(/ALL)

Version History

Introduced: 5.4
IDLffShape IDL Reference Guide

 2667
IDLffShape::GetEntity

The IDLffShape::GetEntity function method returns the entities you specify from a
Shapefile.

Syntax

Result = Obj -> [IDLffShape::]GetEntity([Index] [, /ALL] [, /ATTRIBUTES])

Return Value

Returns a type {IDL_SHAPE_ENTITY} structure array. For more information on the
structure, see “Entities” on page 2644.

Note
Since an entity structure contains IDL pointers, you must free all the pointers
returned in these structures when the entity is no longer needed using the
IDLffShape::DestroyEntity method.

Note
Since entities cannot be modified in a Shapefile, an entity is read directly from the
Shapefile each time you use the IDLffShape::GetEntity method even if you have
already read that entity. If you modify the structure array returned by this method
for a given entity and then use IDLffShape::GetEntity on that same entity, the
modified data will NOT be returned, the data that is actually written in the file is
returned.

Arguments

Index

A scalar or array of longs specifying the entities for which you want to retrieve with 0
being the first entity in the Shapefile. If the ALL keyword is set, this argument is not
required. If you do not specify any entities and the ALL keyword is not set, the first
entity (0) is returned.
IDL Reference Guide IDLffShape

2668
Keywords

ALL

Set this keyword to retrieve all entities from the Shapefile. If this keyword is set, the
Index argument is not required.

ATTRIBUTES

Set this keyword to return the attributes in the entity structure. If not set, the
ATTRIBUTES tag in the entity structure will be a null IDL pointer.

Examples

In the following example, all of the entities from the states.shp Shapefile are read:

PRO ex_shapefile

; Open the states Shapefile in the examples directory.
myshape=OBJ_NEW('IDLffShape', FILEPATH('states.shp', $

SUBDIR=['examples', 'data']))

; Get the number of entities so we can parse through them.
myshape -> IDLffShape::GetProperty, N_ENTITIES=num_ent

; Read all the entities.
FOR x=1, (num_ent-1) DO BEGIN

;Read the entity x
ent = myshape -> IDLffShape::GetEntity(x)
;Clean-up of pointers
myshape -> IDLffShape::DestroyEntity, ent

ENDFOR

; Close the Shapefile.
OBJ_DESTROY, myshape

END

Version History

Introduced: 5.4
IDLffShape IDL Reference Guide

 2669
IDLffShape::GetProperty

The IDLffShape::GetProperty procedure method returns the values of properties
associated with a Shapefile object. These properties are:

• Number of entities

• The type of the entities

• The number of attributes associated with each entity

• The names of the attributes

• The name, type, width, and precision of the attributes

• The status of a Shapefile

• The filename of the Shapefile object

Syntax

Obj -> [IDLffShape::]GetProperty [, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLffShape Properties” on page 2654 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Examples

In the following example, the number of entities and the entity type is returned:

PRO entity_info

; Open the states Shapefile in the examples directory.
myshape=OBJ_NEW('IDLffShape', FILEPATH('states.shp', $

SUBDIR=['examples', 'data']))

; Get the number of entities and the entity type.
myshape -> IDLffShape::GetProperty, N_ENTITIES=num_ent, $

ENTITY_TYPE=ent_type
IDL Reference Guide IDLffShape

2670
; Print the number of entities and the type.
PRINT, 'Number of Entities: ', num_ent
PRINT, 'Entity Type: ', ent_type

; Close the Shapefile.
OBJ_DESTROY, myshape

END

This results in the following:

Number of Entities: 51
Entity Type: 5

In the next example, the definitions for attribute 1 are returned:

PRO attribute_info

; Open the states Shapefile in the examples directory.
myshape=OBJ_NEW('IDLffShape', FILEPATH('states.shp', $

SUBDIR=['examples', 'data']))

; Get the info for all attribute.
myshape -> IDLffShape::GetProperty, ATTRIBUTE_INFO=attr_info

; Print Attribute Info.
PRINT, 'Attribute Number: ', '1'
PRINT, 'Attribute Name: ', attr_info[1].name
PRINT, 'Attribute Type: ', attr_info[1].type
PRINT, 'Attribute Width: ', attr_info[1].width
PRINT, 'Attribute Precision: ', attr_info[1].precision

; Close the Shapefile.
OBJ_DESTROY, myshape

END

This results in the following:

Attribute Number: 1
Attribute Name: STATE_NAME
Attribute Type: 7
Attribute Width: 25
Attribute Precision: 0

Version History

Introduced: 5.4

N_RECORDS keyword: 5.6
IDLffShape IDL Reference Guide

 2671
IDLffShape::Init

The IDLffShape::Init function method initializes or constructs a Shapefile object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Result = OBJ_NEW(‘IDLffShape’ [, Filename] [, PROPERTY=value])

or

Result = Obj -> [IDLffShape::]Init([, Filename] [, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

Filename

A scalar string containing the full path and filename of a Shapefile (.shp) to open. If
this file exists, it is opened. If the file does not exist, a new Shapefile object is
constructed. You do not need to use IDLffShape::Open to open an existing file when
specifying this keyword.

Note
The .shp, .shx, and .dbx files must exist in the same directory for you to be able
to open and access the file unless the UPDATE keyword is set.
IDL Reference Guide IDLffShape

2672
Keywords

Any property listed under “IDLffShape Properties” on page 2654 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

Examples

In the following example, we create a new Shapefile object and open the
examples/data/states.shp file:

myshape=OBJ_NEW('IDLffShape', FILEPATH('states.shp', $
 SUBDIR=['examples', 'data']))

Version History

Introduced: 5.4

DBF_ONLY keyword: 5.6
IDLffShape IDL Reference Guide

 2673
IDLffShape::Open

The IDLffShape::Open function method opens a specified Shapefile.

Syntax

Result = Obj -> [IDLffShape::]Open(‘Filename’ [, /DBF_ONLY] [, /UPDATE]
[, ENTITY_TYPE=’value’])

Return Value

Returns 1 if the file can be read successfully. If not able to open the file, it returns 0.

Arguments

Filename

A scalar string containing the full path and filename of a Shapefile (.shp) to open.
Note that the .shp, .shx, and .dbx files must exist in the same directory for you to
be able to open and access the file unless the UPDATE keyword is set.

Keywords

DBF_ONLY

If this keyword is set to a positive value, only the underlying dBASE table (.dbf)
component of the shapefile is opened. All entity related files are left closed. Two
values to this keyword are accepted: 1 - Open an existing .dbf file, > 1 - Create a new
.dbf file

The UPDATE keyword is required to open the .dbf file for updating.

UPDATE

Set this keyword to have the file opened for writing. The default is read-only.

ENTITY_TYPE

Set this keyword to the entity type of a new Shapefile. Use this keyword only when
creating a new Shapefile. For more information on entity types, see “Entities” on
page 2644.
IDL Reference Guide IDLffShape

2674
Examples

In the following example, the file examples/data/states.shp is opened for
reading and writing:

status = myShape->Open(FILEPATH('states.shp', $
 SUBDIR=['examples', 'data']), /UPDATE)

Version History

Introduced: 5.4

DBF_ONLY keyword: 5.6
IDLffShape IDL Reference Guide

 2675
IDLffShape::PutEntity

The IDLffShape::PutEntity procedure method inserts an entity into the Shapefile
object. The entity must be in the proper structure. For more information on the
structure, see “Entities” on page 2644.

Note
The shape type of the new entity must be the same as the shape type defined for the
Shapefile. If the shape type has not been defined for the Shapefile using the
ENTITY_TYPE keyword for the IDLffShape::Open or IDLffShape::Init methods,
the first entity that is inserted into the Shapefile defines the type.

Note
Only new entities can be inserted into a Shapefile. Existing entities cannot be
updated.

Syntax

Obj -> [IDLffShape::]PutEntity, Data

Arguments

Data

A scalar or an array of entity structures.

Keywords

None

Examples

In the following example, we create a new shapefile, define a new entity, and then use
the PutEntity method to insert it into the new file:

PRO ex_shapefile_newfile

; Create the new shapefile and define the entity type to Point.
mynewshape=OBJ_NEW('IDLffShape', FILEPATH('cities.shp', $

SUBDIR=['examples', 'data']), /UPDATE, ENTITY_TYPE=1)
IDL Reference Guide IDLffShape

2676
; Create structure for new entity.
entNew = {IDL_SHAPE_ENTITY}

; Define the values for the new entity.
entNew.SHAPE_TYPE = 1
entNew.ISHAPE = 1458
entNew.BOUNDS[0] = -104.87270
entNew.BOUNDS[1] = 39.768040
entNew.BOUNDS[2] = 0.00000000
entNew.BOUNDS[3] = 0.00000000
entNew.BOUNDS[4] = -104.87270
entNew.BOUNDS[5] = 39.768040
entNew.BOUNDS[6] = 0.00000000
entNew.BOUNDS[7] = 0.00000000

; Add the new entity to new shapefile.
mynewshape -> IDLffShape::PutEntity, entNew

; Close the shapefile.
OBJ_DESTROY, mynewshape

END

Version History

Introduced: 5.4
IDLffShape IDL Reference Guide

 2677
IDLffShape::SetAttributes

The IDLffShape::SetAttributes procedure method sets the attributes for a specified
entity in a Shapefile object.

Syntax

Obj -> [IDLffShape::]SetAttributes, Index, Attribute_Num, Value

or

Obj -> [IDLffShape::]SetAttributes, Index, Attributes

Arguments

Attribute_Num

The field number for the attribute whose value is being set. This value is 0-based.

Attributes

An Attribute structure whose fields match the fields in the attribute table. If Attributes
is an array, the entities specified in Index, up to the size of the Attributes array, are set.
Using this feature, all the attribute values of a set of entities can be set for a Shapefile.

The type of this Attribute structure must match the type that is generated internally
for Attribute table. To get a copy of this structure, either get the attribute set for an
entity or get the definition using the ATTRIBUTE_STRUCTURE keyword of the
IDLffShape::GetProperty method.

Index

A scalar specifying the entity in which you want to set the attributes. The first entity
in the Shapefile object is 0.

Value

The value that the attribute is being set to. If the value is not of the correct type, type
conversion is attempted.

If Value is an array and Index is a scalar, the value of record is treated as a starting
point. Using this feature, all the attribute values of a specific field can be set for a
Shapefile.
IDL Reference Guide IDLffShape

2678
Keywords

None

Examples

In the following example, we create a new shapefile, define the attributes for the new
file, define a new entity, define some attributes, insert the new entity, and then use the
SetAttributes method to insert the attributes into the new file:

PRO ex_shapefile_newfile

; Create the new shapefile and define the entity type to Point.
mynewshape=OBJ_NEW('IDLffShape', FILEPATH('cities.shp', $

SUBDIR=['examples', 'data']), /UPDATE, ENTITY_TYPE=1)

; Set the attribute definitions for the new Shapefile.
mynewshape->IDLffShape::AddAttribute, 'CITY_NAME', 7, 25, $

PRECISION=0
mynewshape->IDLffShape::AddAttribute, 'STAT_NAME', 7, 25, $

PRECISION=0

; Create structure for new entity.
entNew = {IDL_SHAPE_ENTITY}

; Define the values for the new entity
entNew.SHAPE_TYPE = 1
entNew.ISHAPE = 1458
entNew.BOUNDS[0] = -104.87270
entNew.BOUNDS[1] = 39.768040
entNew.BOUNDS[2] = 0.00000000
entNew.BOUNDS[3] = 0.00000000
entNew.BOUNDS[4] = -104.87270
entNew.BOUNDS[5] = 39.768040
entNew.BOUNDS[6] = 0.00000000
entNew.BOUNDS[7] = 0.00000000

; Create structure for new attributes.
attrNew = mynewshape ->IDLffShape::GetAttributes($
/ATTRIBUTE_STRUCTURE)

; Define the values for the new attributes.
attrNew.ATTRIBUTE_0 = 'Denver'
attrNew.ATTRIBUTE_1 = 'Colorado'

; Add the new entity to new shapefile.
mynewshape -> IDLffShape::PutEntity, entNew
IDLffShape IDL Reference Guide

 2679
; Add the Colorado attributes to new shapefile.
mynewshape -> IDLffShape::SetAttributes, 0, attrNew

; Close the shapefile.
OBJ_DESTROY, mynewshape

END

Version History

Introduced: 5.4
IDL Reference Guide IDLffShape

2680
IDLffXMLSAX

An IDLffXMLSAX object uses an XML SAX level 2 parser. The XML parser allows
you to read an XML file and store arbitrary data from the file in IDL variables. The
parser object’s methods are callbacks. These methods are called automatically when
the parser encounters different types of XML elements or attributes.

Note
To use the XML parser, you must write a subclass of this object class, overriding the
object methods as necessary to process the data in a specific XML file or files. See
Chapter 23, “Using the XML Parser Object Class” in the Building IDL Applications
manual for further information and examples.

The IDLffXMLSAX object encapsulates the Xerces validating XML parser; see
http://xml.apache.org for details.

Superclasses

This class has no superclass.

Subclasses

You must write a subclass of this object, overriding object methods as necessary to
retrieve information from the XML file.

Creation

See “IDLffXMLSAX::Init” on page 2705

Properties

Objects of this class have the following properties. See “IDLffXMLSAX Properties”
on page 2683 for details on individual properties.

• FILENAME

• NAMESPACE_PREFIXES

• PARSER_LOCATION

• PARSER_PUBLICID

• PARSER_URI
IDLffXMLSAX IDL Reference Guide

http://xml.apache.org
http://xml.apache.org

 2681
• SCHEMA_CHECKING

• VALIDATION_MODE

Methods

This class has the following methods:

• IDLffXMLSAX::AttributeDecl

• IDLffXMLSAX::Characters

• IDLffXMLSAX::Cleanup

• IDLffXMLSAX::Comment

• IDLffXMLSAX::ElementDecl

• IDLffXMLSAX::EndCDATA

• IDLffXMLSAX::EndDocument

• IDLffXMLSAX::EndDTD

• IDLffXMLSAX::EndElement

• IDLffXMLSAX::EndEntity

• IDLffXMLSAX::EndPrefixMapping

• IDLffXMLSAX::Error

• IDLffXMLSAX::ExternalEntityDecl

• IDLffXMLSAX::FatalError

• IDLffXMLSAX::GetProperty

• IDLffXMLSAX::IgnorableWhitespace

• IDLffXMLSAX::Init

• IDLffXMLSAX::InternalEntityDecl

• IDLffXMLSAX::NotationDecl

• IDLffXMLSAX::ParseFile

• IDLffXMLSAX::ProcessingInstruction

• IDLffXMLSAX::SetProperty

• IDLffXMLSAX::SkippedEntity

• IDLffXMLSAX::StartCDATA
IDL Reference Guide IDLffXMLSAX

2682
• IDLffXMLSAX::StartDocument

• IDLffXMLSAX::StartDTD

• IDLffXMLSAX::StartElement

• IDLffXMLSAX::StartEntity

• IDLffXMLSAX::StartPrefixmapping

• IDLffXMLSAX::StopParsing

• IDLffXMLSAX::UnparsedEntityDecl

• IDLffXMLSAX::Warning

Version History

Introduced: 5.6
IDLffXMLSAX IDL Reference Guide

 2683
IDLffXMLSAX Properties

IDLffXMLSAX objects have the following properties in addition to properties
inherited from any superclasses. Properties with the word “Yes” in the “Get” column
of the property table can be retrieved via IDLffXMLSAX::GetProperty. Properties
with the word “Yes” in the “Init” column of the property table can be retrieved via
IDLffXMLSAX::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLffXMLSAX::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

FILENAME

A string containing the filename of the XML file being parsed.

Note
This property is only available during a parse operation.

NAMESPACE_PREFIXES

A Boolean value indicating whether namespace prefixes are enabled. Namespace
prefixes are enabled if this property is set to true. By default, namespace prefixes are
disabled.

PARSER_LOCATION

A two-element array containing the approximate location of the parser within the
entity being parsed. The first element of the array is set to the line number and the
second element is set to the column number.

Property Type String

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLffXMLSAX

2684
Note
This property is only available during a parse operation

PARSER_PUBLICID

A string containing the Public ID for the entity being parsed, if it is available. If the
Public ID is not available, an empty string is returned.

Note
This property is only available during a parse operation

PARSER_URI

A string containing the base URI (System ID) for the entity being parsed, if it is
available. If the value is available, it is always an absolute URI. If the System ID is
not available, an empty string is returned.

Note
This property can be used to identify the document or external entity in diagnostics,
or to resolve relative URIs. However, it is only available during a parse operation.

Property Type Array

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type String

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type String

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLffXMLSAX IDL Reference Guide

 2685
SCHEMA_CHECKING

An integer value to indicating the type of validation the parser should perform. XML
Schemas describe the structure and allowed contents of an XML document. Schemas
are more robust than, and are envisioned as a replacement for, DTDs. By default, the
parser will validate the parsed XML file against the specified schema, if one is
provided. If no schema is provided, no validation will occur. Possible values are:

VALIDATION_MODE

An integer value indicating the type of XML validation that the parser should
perform. XML Document Type Definitions (DTDs) describe the structure and
allowed contents of an XML document. By default, the parser will validate the parsed
XML file against the specified DTD, if one is provided; if no DTD is provided, no
validation will occur. Possible values are:

Value Description

0 No validation.

1 Validate only if a schema is provided (the default).

2 Perform full schema constraint checking, if a schema is
provided. This feature checks the schema grammar itself for
additional errors. It does not affect the level of checking
performed on document instances that use schema grammars.

Table 0-23: SCHEMA_CHECKING Values

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Value Description

0 No validation.

1 Validate only if a DTD is provided (the default).

Table 0-24: VALIDATION_MODE Values
IDL Reference Guide IDLffXMLSAX

2686
2 Always perform validation. If this option is in force and no
DTD is provided, every XML element in the document will
generate an error.

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Value Description

Table 0-24: VALIDATION_MODE Values
IDLffXMLSAX IDL Reference Guide

 2687
IDLffXMLSAX::AttributeDecl

The IDLffXMLSAX::AttributeDecl procedure method is called when the parser
detects an <!ATTLIST ...> declaration in a DTD. This method is called once for
each attribute declared by the tag.

Syntax

Obj -> [IDLffXMLSAX::]AttributeDecl, eName, aName, Type, Mode, Value

Arguments

eName

A string containing the name of the element for which the attribute is being declared.

aName

A string containing the name of the attribute being declared.

Type

A string that specifying the type of attribute being defined. Possible values are:

• 'CDATA'

• 'ID'

• 'IDREF'

• 'IDREFS'

• 'NMTOKEN'

• 'NMTOKENS'

• 'ENTITY'

• 'ENTITIES'

or two types of enumerated values. Enumerated values are encoded with
parenthesized strings such as (a|b|c) to indicate that strings a, b, or c are
permissible. If the string is an enumeration of notation names, the string
"NOTATION " (note the space after the second “N”) precedes the parenthesized
string.
IDL Reference Guide IDLffXMLSAX

2688
Mode

A string specifying restrictions on the value of the attribute. Possible values are:

• '#IMPLIED' - the application determines the value

• '#REQUIRED' - the value must be given; defaulting is not permitted

• '#FIXED' - only one value is permitted

• '' - a null string (the value specified by the Value argument is used as the
default)

Value

A string containing the default value for the attribute. If Value contains a null string,
no default value was specified.

Keywords

None

Version History

Introduced: 5.6
IDLffXMLSAX IDL Reference Guide

 2689
IDLffXMLSAX::Characters

The IDLffXMLSAX::Characters procedure method is called when the parser detects
text in the parsed document.

Syntax

Obj -> [IDLffXMLSAX::]Characters, Chars

Arguments

Chars

A string containing the text detected by the parser.

Keywords

None

Version History

Introduced: 5.6
IDL Reference Guide IDLffXMLSAX

2690
IDLffXMLSAX::Cleanup

The IDLffXMLSAX::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. In most cases, you cannot call the Cleanup method
directly. However, one exception to this rule does exist. If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLffXMLSAX::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.6
IDLffXMLSAX IDL Reference Guide

 2691
IDLffXMLSAX::Comment

The IDLffXMLSAX::Comment procedure method is called when the parser detects a
comment section of the form <!-- ... --> .

Syntax

Obj -> [IDLffXMLSAX::]Comment, Comment

Arguments

Comment

A string containing the text within the detected comment section, without the
delimiting characters (“<!--” and “-->”).

Keywords

None

Version History

Introduced: 5.6
IDL Reference Guide IDLffXMLSAX

2692
IDLffXMLSAX::ElementDecl

The IDLffXMLSAX::ElementDecl procedure method is called when the parser
detects an <!ELEMENT ...> declaration in the DTD.

Syntax

Obj -> [IDLffXMLSAX::]ElementDecl, Name, Model

Arguments

Name

A string containing the name of the element.

Model

A string containing the content model (sometimes called the content specification) for
the element, with all whitespace removed.

Keywords

None

Version History

Introduced: 5.6
IDLffXMLSAX IDL Reference Guide

 2693
IDLffXMLSAX::EndCDATA

The IDLffXMLSAX::EndCDATA procedure method is called when the parser
detects the end of a <![CDATA[...]]> text section.

Syntax

Obj -> [IDLffXMLSAX::]EndCDATA

Arguments

None

Keywords

None

Version History

Introduced: 5.6
IDL Reference Guide IDLffXMLSAX

2694
IDLffXMLSAX::EndDocument

The IDLffXMLSAX::EndDocument procedure method is called when the parser
detects the end of the XML document.

Syntax

Obj -> [IDLffXMLSAX::]EndDocument

Arguments

None

Keywords

None

Version History

Introduced: 5.6
IDLffXMLSAX IDL Reference Guide

 2695
IDLffXMLSAX::EndDTD

The IDLffXMLSAX::EndDTD procedure method is called when the parser detects
the end of a Document Type Definition (DTD).

Syntax

Obj -> [IDLffXMLSAX::]EndDTD

Arguments

None

Keywords

None

Version History

Introduced: 5.6
IDL Reference Guide IDLffXMLSAX

2696
IDLffXMLSAX::EndElement

The IDLffXMLSAX::EndElement procedure method is called when the parser
detects the end of an element.

Syntax

Obj -> [IDLffXMLSAX::]EndElement, URI, Local, qName

Arguments

URI

A string containing the namespace URI with which the element is associated, if any.

Note
A URI (or Uniform Resource Identifier) refers to the generic set of all names and
addresses which are short strings which refer to objects.

Local

A string containing the element name with any prefix removed, if the element is
associated with a namespace URI. If the element is not associated with a namespace
URI, this variable will contain an empty string.

qName

A string containing the element name found in the XML file.

Note
If the element is associated with a namespace URI, this variable may contain an
empty string.

Keywords

None

Version History

Introduced: 5.6
IDLffXMLSAX IDL Reference Guide

 2697
IDLffXMLSAX::EndEntity

The IDLffXMLSAX::EndEntity procedure method is called when the parser detects
the end of an internal or external entity expansion.

Syntax

Obj -> [IDLffXMLSAX::]EndEntity, Name

Arguments

Name

A string containing the name of the entity.

Keywords

None

Version History

Introduced: 5.6
IDL Reference Guide IDLffXMLSAX

2698
IDLffXMLSAX::EndPrefixMapping

The IDLffXMLSAX::EndPrefixMapping procedure method is called when a
previously declared prefix mapping goes out of scope.

Syntax

Obj -> [IDLffXMLSAX::]EndPrefixMapping, Prefix

Arguments

Prefix

A string containing the namespace prefix that is going out of scope.

Keywords

None

Version History

Introduced: 5.6
IDLffXMLSAX IDL Reference Guide

 2699
IDLffXMLSAX::Error

The IDLffXMLSAX::Error procedure method is called when the parser detects an
error that is not expected to be fatal. This method prints an IDL error string to the IDL
output log and allows the parser to continue processing.

For example, a violation of XML validity constraints is generally a non-fatal error.

Note
This method will cause error messages to be printed to the IDL output log. If you
would like your application to hide error messages from the user (or display them in
some other fashion), override this method in your subclass of the IDLffXMLSAX
object class. If you do override this method, the error message will not be printed to
the output log unless you explicitly call the superclass method.

Syntax

Obj -> [IDLffXMLSAX::]Error, SystemID, LineNumber, ColumnNumber, Message

Arguments

SystemID

A string containing the URI of the associated text.

LineNumber

A longword integer representing the line number that contains the error.

ColumnNumber

A longword integer representing the column number that contains the error.

Message

A string containing the error message sent to the IDL output log.

Keywords

None
IDL Reference Guide IDLffXMLSAX

2700
Version History

Introduced: 5.6
IDLffXMLSAX IDL Reference Guide

 2701
IDLffXMLSAX::ExternalEntityDecl

The IDLffXMLSAX::ExternalEntityDecl procedure method is called when the parser
detects an <!ENTITY ...> declarations in the DTD for a parsed external entity.

Syntax

Obj -> [IDLffXMLSAX::]ExternalEntityDecl, Name, PublicID, SystemID

Arguments

Name

A string containing the entity name.

PublicID

A string containing the Public ID for the entity.

Note
If this value is not specified in the entity declaration, this variable will contain an
empty string.

SystemID

A string containing the System ID for the entity, provided as an absolute URI.

Keywords

None

Version History

Introduced: 5.6
IDL Reference Guide IDLffXMLSAX

2702
IDLffXMLSAX::FatalError

The IDLffXMLSAX::FatalError procedure method is called when the parser detects
a fatal error. When called, parsing will normally stop, but may sometimes continue
long enough to report further errors. This method prints an IDL error string to the
IDL output log.

Syntax

Obj -> [IDLffXMLSAX::]FatalError, SystemID, LineNumber, ColumnNumber,
Message

Arguments

SystemID

A string containing the URI of the associated text.

LineNumber

A longword integer representing the line number that contains the error.

ColumnNumber

A longword integer representing the column number that contains the error.

Message

A string containing the error message sent to the IDL output log.

Keywords

None

Version History

Introduced: 5.6
IDLffXMLSAX IDL Reference Guide

 2703
IDLffXMLSAX::GetProperty

The IDLffXMLSAX::GetProperty procedure method is used to get the values of
various properties of the parser.

Syntax

Obj -> [IDLffXMLSAX::]GetProperty [, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLffXMLSAX Properties” on page 2683 that contains
the word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Version History

Introduced: 5.6
IDL Reference Guide IDLffXMLSAX

2704
IDLffXMLSAX::IgnorableWhitespace

The IDLffXMLSAX::IgnorableWhitespace procedure method is called when the
parser detects whitespace that separates elements in an element content model.

Syntax

Obj -> [IDLffXMLSAX::]IgnorableWhitespace, Chars

Arguments

Chars

A string containing the whitespace detected by the parser. Whitespace can consist of
spaces, tabs, or newline characters in any combination.

Keywords

None

Version History

Introduced: 5.6
IDLffXMLSAX IDL Reference Guide

 2705
IDLffXMLSAX::Init

The IDLffXMLSAX::Init function method initializes an XML parser object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. In most cases, you cannot call the Init method directly.
However, one exception to this rule does exist. If you write your own subclass of
this class, you can call the Init method from within the Init method of the subclass.

Syntax

Obj = OBJ_NEW('IDLffXMLSAX' [, PROPERTY=value])

or

Result = Obj -> [IDLffXMLSAX::]Init([PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLffXMLSAX Properties” on page 2683 that contains
the word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

Version History

Introduced: 5.6
IDL Reference Guide IDLffXMLSAX

2706
IDLffXMLSAX::InternalEntityDecl

The IDLffXMLSAX::InternalEntityDecl procedure method is called when the parser
detects an <!ENTITY ...> declaration in a DTD for (parsed) internal entities. The
entity can be either a general entity or a parameter entity.

Syntax

Obj -> [IDLffXMLSAX::]InternalEntityDecl, Name, Value

Arguments

Name

A string containing the entity name. Names that start with the “%” character are
parameter entities; all others are general entities.

Value

A string containing the entity value. The entity value can contain arbitrary XML
content, which will be reparsed when the entity is expanded.

Keywords

None

Version History

Introduced: 5.6
IDLffXMLSAX IDL Reference Guide

 2707
IDLffXMLSAX::NotationDecl

The IDLffXMLSAX::NotationDecl procedure method is called when the parser
detects a <!NOTATION ...> declaration in a DTD.

Syntax

Obj -> [IDLffXMLSAX::]NotationDecl, Name, PublicID, SystemID

Arguments

Name

A string containing the notation name.

PublicID

A string containing the Public ID for the notation.

Note
If this value is not specified in the notation declaration, this variable will contain an
empty string.

SystemID

A string containing the System ID for the notation, provided as an absolute URI.

Note
If this value is not specified in the notation declaration, this variable will contain an
empty string.

Keywords

None

Version History

Introduced: 5.6
IDL Reference Guide IDLffXMLSAX

2708
IDLffXMLSAX::ParseFile

The IDLffXMLSAX::ParseFile procedure method parses the specified XML file.
During the parsing operation, different object methods are called as different items
within the XML file are detected. When this method returns, the parse operation is
complete.

Syntax

Obj -> [IDLffXMLSAX::]ParseFile, Filename

Arguments

Filename

A string containing the full path name of the XML file to parse.

Keywords

None

Version History

Introduced: 5.6
IDLffXMLSAX IDL Reference Guide

 2709
IDLffXMLSAX::ProcessingInstruction

The IDLffXMLSAX::ProcessingInstruction procedure method is called when the
parser detects a processing instruction.

Syntax

Obj -> [IDLffXMLSAX::]ProcessingInstruction, Target, Data

Arguments

Target

A string specifying the target, which is the application that should process the
instruction.

Data

A string specifying the data to be passed to the application specified by Target.

Keywords

None

Version History

Introduced: 5.6
IDL Reference Guide IDLffXMLSAX

2710
IDLffXMLSAX::SetProperty

The IDLffXMLSAX::SetProperty procedure method is used to set the values of
various properties of the parser.

Syntax

Obj -> [IDLffXMLSAX::]SetProperty [, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLffXMLSAX Properties” on page 2683 that contains
the word “Yes” in the “Set” column of the properties table can be set using this
method. To set the value of a property, specify the property name as a keyword set
equal to the appropriate property value.

Version History

Introduced: 5.6
IDLffXMLSAX IDL Reference Guide

 2711
IDLffXMLSAX::SkippedEntity

The IDLffXMLSAX::SkippedEntity procedure method is called when the parser
skips an entity and validation is not being performed. This method is rarely called by
SAX parsers.

Syntax

Obj -> [IDLffXMLSAX::]SkippedEntity, Name

Arguments

Name

A string containing the name of the entity that was skipped.

Keywords

None

Version History

Introduced: 5.6
IDL Reference Guide IDLffXMLSAX

2712
IDLffXMLSAX::StartCDATA

The IDLffXMLSAX::StartCDATA procedure method is called when the parser
detects the beginning of a <![CDATA[...]]> text section.

Syntax

Obj -> [IDLffXMLSAX::]StartCDATA

Arguments

None

Keywords

None

Version History

Introduced: 5.6
IDLffXMLSAX IDL Reference Guide

 2713
IDLffXMLSAX::StartDocument

The IDLffXMLSAX::StartDocument procedure method is called when the parser
begins processing a document, and before any data is processed.

Syntax

Obj -> [IDLffXMLSAX::]StartDocument

Arguments

None

Keywords

None

Version History

Introduced: 5.6
IDL Reference Guide IDLffXMLSAX

2714
IDLffXMLSAX::StartDTD

The IDLffXMLSAX::StartDTD procedure method is called when the parser detects
the beginning of a Document Type Definition (DTD).

Syntax

Obj -> [IDLffXMLSAX::]StartDTD, Name, PublicID, SystemID

Arguments

Name

A string containing the declared name of the root element for the document.

PublicID

A string containing the normalized version of the Public ID (a URI) declared for the
external subset, or an empty string if no external subset was declared. Normalization
involves removal of unnecessary “.” and “..” segments from the URI.

SystemID

A string containing the System ID (a URI) of the external subset, or an empty string if
no external subset was declared.

Note
This URI has not been resolved into an absolute URI.

Keywords

None

Version History

Introduced: 5.6
IDLffXMLSAX IDL Reference Guide

 2715
IDLffXMLSAX::StartElement

The IDLffXMLSAX::StartElement procedure method is called when the parser
detects the beginning of an element.

Syntax

Obj -> [IDLffXMLSAX::]StartElement, URI, Local, qName [, attName, attValue]

Arguments

URI

A string containing the namespace URI with which the element is associated, if any.

Local

A string containing the element name with any prefix removed, if the element is
associated with a namespace URI. If the element is not associated with a namespace
URI, this variable will contain an empty string.

qName

A string containing the element name found in the XML file.

Note
If the element is associated with a namespace URI, this variable may contain an
empty string.

attrName

A string array representing the names of the attributes associated with the element, if
any.

attrValue

A string array representing the values of each attribute associated with the element, if
any. The returned array will have the same number of elements as the array returned
in the attrName keyword variable.

Keywords

None
IDL Reference Guide IDLffXMLSAX

2716
Version History

Introduced: 5.6
IDLffXMLSAX IDL Reference Guide

 2717
IDLffXMLSAX::StartEntity

The IDLffXMLSAX::StartEntity procedure method is called when the parser detects
the start of an internal or external entity expansion.

Syntax

Obj -> [IDLffXMLSAX::]StartEntity, Name

Arguments

Name

A string containing the name of the entity.

Keywords

None

Version History

Introduced: 5.6
IDL Reference Guide IDLffXMLSAX

2718
IDLffXMLSAX::StartPrefixmapping

The IDLffXMLSAX::StartPrefixMapping procedure method is called when the
parser detects the beginning of a namespace declaration.

Syntax

Obj -> [IDLffXMLSAX::]StartPrefixmapping, Prefix, URI

Arguments

Prefix

A string containing the prefix, which is being mapped. If the variable specified by
Prefix contains an empty string, the mapping is for the default element namespace.

URI

A string containing the URI of the prefix namespace.

Keywords

None

Version History

Introduced: 5.6
IDLffXMLSAX IDL Reference Guide

 2719
IDLffXMLSAX::StopParsing

Call the IDLffXMLSAX::StopParsing procedure method during a parse operation to
halt the operation and cause the ParseFile method to return. This may be useful when
parsing large XML files and the desired information is known to have been returned.

Syntax

Obj -> [IDLffXMLSAX::]StopParsing

Arguments

None

Keywords

None

Version History

Introduced: 5.6
IDL Reference Guide IDLffXMLSAX

2720
IDLffXMLSAX::UnparsedEntityDecl

The IDLffXMLSAX::UnparsedEntityDecl procedure method is called when the
parser detects an <!ENTITY ...> declaration that includes the NDATA keyword,
indicating that the entity is not meant to be parsed. The value of the NDATA keyword
generally specifies the name of a notation, which in turn specifies the type of data.

Syntax

Obj -> [IDLffXMLSAX::]UnparsedEntityDecl, Name, PublicID, SystemID,
Notation

Arguments

Name

A string containing the name of the unparsed entity.

PublicID

A string containing the Public ID of the notation specified by the entity’s NDATA
keyword, or an empty string if no Public ID was declared.

SystemID

A string containing the System ID of the notation specified by the entity’s NDATA
keyword. This value is normally an absolute URI.

Notation

A string containing the name of the notation specified by the entity’s NDATA
keyword.

Keywords

None

Version History

Introduced: 5.6
IDLffXMLSAX IDL Reference Guide

 2721
IDLffXMLSAX::Warning

The IDLffXMLSAX::Warning procedure method is called when the parser detects a
problem during processing. This method prints an IDL error string to the IDL output
log and allows the parser to continue processing.

Note
This method will cause error messages to be printed to the IDL output log. If you
would like your application to hide error messages from the user (or display them in
some other fashion), override this method in your subclass of the IDLffXMLSAX
object class. If you do override this method, the error message will not be printed to
the output log unless you explicitly call the superclass method.

Syntax

Obj -> [IDLffXMLSAX::]Warning, SystemID, LineNumber, ColumnNumber,
Message

Arguments

SystemID

A string containing the URI of the text that generated the error.

LineNumber

A longword integer representing the line number that contains the error.

ColumnNumber

A longword integer representing the column number that contains the error.

Message

A string containing the error message.

Keywords

None
IDL Reference Guide IDLffXMLSAX

2722
Version History

Introduced: 5.6
IDLffXMLSAX IDL Reference Guide

 2723
IDL Reference Guide IDLffXMLSAX

Chapter 7:

iTools Object Classes
This chapter describes IDL’s built-in annotation class library.
IDLitCommand . 2725
IDLitCommandSet 2737
IDLitComponent 2743
IDLitContainer . 2766
IDLitData . 2778
IDLitDataContainer 2796
IDLitDataOperation 2808
IDLitIMessaging 2823
IDLitManipulator 2840
IDLitManipulatorContainer 2868
IDLitManipulatorManager 2887

IDLitManipulatorVisual 2894
IDLitOperation . 2902
IDLitParameter . 2922
IDLitParameterSet 2939
IDLitReader . 2954
IDLitTool . 2967
IDLitUI . 3016
IDLitVisualization 3035
IDLitWindow . 3083
IDLitWriter . 3124
IDL Reference Guide 2724

Chapter 7: iTools Object Classes 2725
IDLitCommand

The IDLitCommand class provides a dynamic data dictionary storage system. Its
methods and properties allow the iTool developer to store information about the
execution of an iTool operation on a single target object. It provides a tag-based
mechanism for storing and retrieving this information, which allows the iTool
developer to easily implement undo and redo functionality for an operation.

This class is written in the IDL language. Its source code can be found in the file
idlitcommand__define.pro in the lib/itools/framework subdirectory of
the IDL distribution.

Superclasses

IDLitComponent

Creation

See “IDLitCommand::Init” on page 2734.

Properties

Objects of this class have the following properties. See “IDLitCommand Properties”
on page 2727 for details on individual properties.

• TARGET_IDENTIFIER

• OPERATION_IDENTIFIER

In addition, objects of this class inherit the properties of the superclass of this class.

Methods

This class has the following methods:

• IDLitCommand::AddItem

• IDLitCommand::Cleanup

• IDLitCommand::GetItem

• IDLitCommand::GetProperty

• IDLitCommand::GetSize
IDL Reference Guide IDLitCommand

2726 Chapter 7: iTools Object Classes
• IDLitCommand::Init

• IDLitCommand::SetProperty

In addition, this class inherits the methods of its superclass.

Examples

See “Creating a New Generalized Operation” in Chapter 7 of the iTool Developer’s
Guide manual for examples using this class and its methods.

Version History

Introduced: 6.0
IDLitCommand IDL Reference Guide

Chapter 7: iTools Object Classes 2727
IDLitCommand Properties

IDLitCommand objects have the following properties in addition to properties
inherited from any superclasses. Properties with the word “Yes” in the “Get” column
of the property table can be retrieved via IDLitCommand::GetProperty. Properties
with the word “Yes” in the “Init” column of the property table can be set via
IDLitCommand::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLitCommand::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

TARGET_IDENTIFIER

The iTool identifier of the target object for this command. This is the item on which
the operation associated with the command will execute.

OPERATION_IDENTIFIER

The iTool identifier for the operation associated with this command. When an undo-
redo operation takes place, the command object is passed to this operation.

Property Type String

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type String

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLitCommand

2728 Chapter 7: iTools Object Classes
IDLitCommand::AddItem

The IDLitCommand::AddItem function method adds the specified data item to the
data dictionary associated with this object.

Note
If a data item with the specified identifying string is already in the data dictionary,
the new value is not added unless the OVERWRITE keyword is set, in which case
the old value is discarded.

Syntax

Result = Obj -> [IDLitCommand::]AddItem(StrItem, Item[, /OVERWRITE])

Return Value

Returns 1 if the item was successfully added to the data dictionary, or 0 if the new
value was not added.

Arguments

StrItem

A scalar string used to identify the data specified by the Item argument in the data
dictionary. This string is treated in a case-insensitive manner.

Item

A data item of any IDL data type.

Keywords

OVERWRITE

Normally, if an item already exists in the data dictionary of an IDLitCommand object,
it is not overwritten. If this keyword is set, the original value will be overwritten.

Note
If the item being replaced uses dynamic memory (that is, if it is a pointer or object
reference), the memory must be released by calling PTR_FREE or OBJ_DESTROY
before overwriting the value.
IDLitCommand IDL Reference Guide

Chapter 7: iTools Object Classes 2729
Version History

Introduced: 6.0
IDL Reference Guide IDLitCommand

2730 Chapter 7: iTools Object Classes
IDLitCommand::Cleanup

The IDLitCommand::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: if you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLitCommand::]Cleanup() (In a subclass’ Init method only.)

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitCommand IDL Reference Guide

Chapter 7: iTools Object Classes 2731
IDLitCommand::GetItem

The IDLitCommand::GetItem function method retrieves the specified item from the
data dictionary associated with this object.

Syntax

Result = Obj -> [IDLitCommand::]GetItem(StrItem, Item)

Return Value

Returns 1 if the Item is retrieved successfully, or 0 if Item is not found in the data
dictionary.

Arguments

StrItem

A scalar string used to identify the data to be retrieved from the data dictionary. This
string is treated in a case-insensitive manner.

Item

A named IDL variable that will contain the IDLitData object retrieved from the data
dictionary.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitCommand

2732 Chapter 7: iTools Object Classes
IDLitCommand::GetProperty

The IDLitCommand::GetProperty procedure method retrieves the value of a property
or group of properties of a command object.

Syntax

Obj -> [IDLitCommand::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLitCommand Properties” on page 2727 that contains
the word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s super-class.

Version History

Introduced: 6.0
IDLitCommand IDL Reference Guide

Chapter 7: iTools Object Classes 2733
IDLitCommand::GetSize

The IDLitCommand::GetSize function method returns an approximate value for the
amount of memory being used by the items in the data dictionary associated with this
object.

Syntax

Result = Obj -> [IDLitCommand::]GetSize([, /KILOBYTES])

Return Value

Returns the number of bytes of memory used by the data dictionary associated with
this object. The returned value is an approximation.

Arguments

None

Keywords

KILOBYTES

Set this keyword to return the number of kilobytes of memory being used by the data
dictionary. By default, this function returns the number of bytes of memory being
used.

Version History

Introduced: 6.0
IDL Reference Guide IDLitCommand

2734 Chapter 7: iTools Object Classes
IDLitCommand::Init

The IDLitCommand::Init function method initializes the object and allows
specification of items associated with it.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLitCommand' [, PROPERTY=value])

or

Result = Obj -> [IDLitCommand::]Init([PROPERTY=value])
(In a subclass’ Init method only.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLitCommand Properties” on page 2727 that contains
the word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object (IDLitComponent).
IDLitCommand IDL Reference Guide

Chapter 7: iTools Object Classes 2735
Version History

Introduced: 6.0
IDL Reference Guide IDLitCommand

2736 Chapter 7: iTools Object Classes
IDLitCommand::SetProperty

The IDLitCommand::SetProperty procedure method sets the value of a property or
group of properties for the command object.

Syntax

Obj -> [IDLitCommand::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLitCommand Properties” on page 2727 that contains
the word “Yes” in the “Set” column of the properties table can be set using this
method. To set the value of a property, specify the property name as a keyword set
equal to the appropriate property value.

Version History

Introduced: 6.0
IDLitCommand IDL Reference Guide

Chapter 7: iTools Object Classes 2737
IDLitCommandSet

The IDLitCommandSet class stores a collection of IDLitCommand objects, allowing
a group of commands to be managed as a single item. Command sets are useful as
containers for IDLitCommand objects generated by the application of an iTool
operation to multiple target items; the generated command set objects are used to
provide undo/redo functionality to the iTool system.

This class is written in the IDL language. Its source code can be found in the file
idlitcommandset__define.pro in the lib/itools/framework subdirectory
of the IDL distribution.

Superclasses

TrackBall

IDLitCommand

Creation

See “IDLitCommandSet::Init” on page 2742.

Properties

Objects of this class have no properties of their own, but do have properties inherited
from any superclasses.

Methods

This class has the following methods:

• IDLitCommandSet::Cleanup

• IDLitCommandSet::GetSize

• IDLitCommandSet::Init

In addition, this class inherits the methods of its superclasses.
IDL Reference Guide IDLitCommandSet

2738 Chapter 7: iTools Object Classes
Examples

See “Creating a New Generalized Operation” in Chapter 7 of the iTool Developer’s
Guide manual for examples using this class and its methods.

Version History

Introduced: 6.0
IDLitCommandSet IDL Reference Guide

Chapter 7: iTools Object Classes 2739
IDLitCommandSet Properties

Objects of this class have no properties of their own, but do have properties inherited
from any superclasses.
IDL Reference Guide IDLitCommandSet

2740 Chapter 7: iTools Object Classes
IDLitCommandSet::Cleanup

The IDLitCommandSet::Cleanup procedure method performs all cleanup on the
object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: if you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLitCommandSet::]Cleanup() (In a subclass’ Init method only.)

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitCommandSet IDL Reference Guide

Chapter 7: iTools Object Classes 2741
IDLitCommandSet::GetSize

The IDLitCommandSet::GetSize function method returns an approximate value for
the amount of memory being used by the items contained by this command set. When
called, the method will call the GetSize method on all of the command objects that it
contains and generate a sum of the values.

Syntax

Result = Obj -> [IDLitCommand::]GetSize([/KILOBYTES])

Return Value

Returns the number of bytes of memory used by the data dictionary associated with
this object. The returned value is an approximation.

Arguments

None

Keywords

KILOBYTES

Set this keyword to return the number of kilobytes of memory being used. By default,
this function returns the number of bytes of memory being used.

Version History

Introduced: 6.0
IDL Reference Guide IDLitCommandSet

2742 Chapter 7: iTools Object Classes
IDLitCommandSet::Init

The IDLitCommandSet::Init function method initializes the object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLitCommandSet')

or

Result = Obj -> [IDLitCommandSet::]Init() (In a subclass’ Init method only.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

All keywords are passed to the superclass of this object (IDLitCommand).

Version History

Introduced: 6.0
IDLitCommandSet IDL Reference Guide

Chapter 7: iTools Object Classes 2743
IDLitComponent

The IDLitComponent class is the base component from which all iTool components
should subclass. The IDLitComponent class provides support for property descriptors
and property registration, and defines properties that are common to all iTool
component objects.

Note
This class is now a superclass of all the atomic graphical (IDLgr*) object classes.

Superclasses

This class has no superclasses.

Creation

See “IDLitComponent::Init” on page 2755.

Properties

Objects of this class have the following properties. See “IDLitComponent Properties”
on page 2745 for details on individual properties.

• DESCRIPTION

• HELP

• ICON

• IDENTIFIER

• NAME

• UVALUE

Methods

This class has the following methods:

• IDLitComponent::Cleanup

• IDLitComponent::EditUserDefProperty

• IDLitComponent::GetFullIdentifier
IDL Reference Guide IDLitComponent

2744 Chapter 7: iTools Object Classes
• IDLitComponent::GetProperty

• IDLitComponent::GetPropertyAttribute

• IDLitComponent::GetPropertyByIdentifier

• IDLitComponent::Init

• IDLitComponent::QueryProperty

• IDLitComponent::RegisterProperty

• IDLitComponent::SetProperty

• IDLitComponent::SetPropertyAttribute

• IDLitComponent::SetPropertyByIdentifier

Version History

Introduced: 6.0
IDLitComponent IDL Reference Guide

Chapter 7: iTools Object Classes 2745
IDLitComponent Properties

IDLitComponent objects have the following properties. Properties with the word
“Yes” in the “Get” column of the property table can be retrieved via
IDLitComponent::GetProperty. Properties with the word “Yes” in the “Init” column
of the property table can be set via IDLitComponent::Init. Properties with the word
“Yes” in the “Set” column in the property table can be set via
IDLitComponent::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

DESCRIPTION

A string giving the full name or description of this object.

ICON

A string specifying the name of an icon to be associated with this object. Typically,
this property is the name of a bitmap file used when displaying this object in a tree
view. See “System Resources” in Chapter 2 of the iTool Developer’s Guide manual
for details.

HELP

A scalar string representing the help topic associated with this object. If this property
is not set, or is set to a null string, then the object class name will be used as the
default help topic.

Property Type STRING

Name String Description

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type String

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type String
IDL Reference Guide IDLitComponent

2746 Chapter 7: iTools Object Classes
IDENTIFIER

A string containing the object identifier for this object. If this property is not
specified, then the NAME property is used as the identifier. See “iTool Object
Identifiers” in Chapter 2 of the iTool Developer’s Guide manual for details about how
identifiers are named.

NAME

A string giving the human-readable name of this object.

PRIVATE

A boolean value that indicates whether the object should be marked as private.
Objects marked private (and all of their children) are not displayed in the graphical
iTool browser windows.

UVALUE

A value of any type containing any information you wish. If you set this user value
equal to a pointer or object reference that does not belong to a container, you should

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type String

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type STRING

Name String Name

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLitComponent IDL Reference Guide

Chapter 7: iTools Object Classes 2747
explicitly destroy that pointer or object reference when destroying the object of which
this property is a user value.

Property Type User Defined

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLitComponent

2748 Chapter 7: iTools Object Classes
IDLitComponent::Cleanup

The IDLitComponent::Cleanup procedure method performs all cleanup on the object,
and should be called by the Cleanup method of a subclass.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: if you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLitComponent::]Cleanup (only in subclass’ Cleanup method)

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitComponent IDL Reference Guide

Chapter 7: iTools Object Classes 2749
IDLitComponent::EditUserDefProperty

The IDLitComponent::EditUserDefProperty function method defines the interface
that is displayed when a user selects the “Edit” button on a user-defined property in
the property sheet interface. Typically, this method will display an interactive dialog
that allows the user to change the value of the property.

Note
An iTool object class that includes a user-defined property must implement this
method if the property is displayed in a property sheet — that is, if the property is
registered and not hidden. If an iTool object class has no user-defined properties that
are displayed in a property sheet, there is no need to supply an EditUserDefProperty
method.

See “User Defined Property Types” in Chapter 4 of the iTool Developer’s Guide
manual for a discussion of how the property sheet interface displays user-defined
properties.

Syntax

Result = Obj -> [IDLitComponent::] EditUserDefProperty(iTool, PropertyIdentifier)

Return Value

Returns a 1 if the property value was changed, or a 0 if the property value was not
changed.

Note
If the return value is 1, the property sheet interface automatically updates the
displayed property value using the value of the property’s USERDEF attribute. If
the return value is 0, no update takes place.

Arguments

iTool

An object reference to the current iTool object.
IDL Reference Guide IDLitComponent

2750 Chapter 7: iTools Object Classes
PropertyIdentifier

A string containing the property identifier of the user-defined property.

Tip
Since there can only be one EditUserDefProperty method for each class, you can
use the PropertyIdentifier argument to determine which user-defined property is
being edited.

Keywords

None

Example

The following is the EditUserDefProperty method of the IDLitOpConvolution
operation class. Selecting and editing the Kernel property of this operation displays a
dialog that allows the user to edit a convolution kernel.

FUNCTION IDLitopConvolution::EditUserDefProperty, oTool, $
identifier

CASE identifier OF

'KERNEL': RETURN, oTool -> DoUIService('ConvolKernel', self)

ELSE:

ENDCASE

RETURN, 0

END

This method simply checks the property identifier to determine whether it matches
the string 'KERNEL'. If it does, it returns the value returned by the DoUIService
method; otherwise it returns zero. In this case, the DoUIService method actually
handles the modification of the property value. See “User Defined Property Types” in
Chapter 4 of the iTool Developer’s Guide manual for additional discussion.

Version History

Introduced: 6.0
IDLitComponent IDL Reference Guide

Chapter 7: iTools Object Classes 2751
IDLitComponent::GetFullIdentifier

The IDLitComponent::GetFullIdentifier function method navigates the iTool object
container hierarchy of the object on which it is called and retrieves the fully-qualified
object identifier. The full identifier is constructed by recursively retrieving the parent
object reference and prepending this to the identifier, separated by / characters. The
parent must inherit from the IDLitContainer class. The full identifier string has the
following form:

/TOPID/GRANDPARENTID/PARENTID/OBJID

If the Objref argument is specified, the function returns the object identifier path
relative to the specified object.

See “iTool Object Identifiers” in Chapter 2 of the iTool Developer’s Guide manual for
additional discussion of object identifiers.

Syntax

Result = Obj -> [IDLitComponent::]GetFullIdentifier([Objref])

Return Value

Returns a string containing the object identifier.

Arguments

Objref

An object reference to an iTool component object. If this argument is specified, the
returned value is an relative object identifier, beginning with Objref. If this argument
is not specified, the returned value is a fully-qualified object identifier.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitComponent

2752 Chapter 7: iTools Object Classes
IDLitComponent::GetProperty

The IDLitComponent::GetProperty procedure method retrieves the value of an
IDLitComponent property or properties.

Syntax

Obj -> [IDLitComponent::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLitComponent Properties” on page 2745 that contains
that contains the word “Yes” in the “Get” column of the properties table can be
retrieved using this method. To retrieve the value of a property, specify the property
name as a keyword set equal to a named variable that will contain the value of the
property.

Version History

Introduced: 6.0
IDLitComponent IDL Reference Guide

Chapter 7: iTools Object Classes 2753
IDLitComponent::GetPropertyAttribute

The IDLitComponent::GetPropertyAttribute procedure method retrieves property
attribute values for a registered property.

Syntax

Obj -> [IDLitComponent::]GetPropertyAttribute, PropertyIdentifier
[, TYPE=variable]

Arguments

PropertyIdentifier

A string containing the property identifier of the registered property.

Keywords

Any keywords to the RegisterProperty method followed by the word “Get” can be
retrieved. In addition, the following keyword is available:

TYPE

Set this argument to a named variable that returns the TYPE code as an integer, as
specified under the Type argument to IDLitComponent::RegisterProperty.

Version History

Introduced: 6.0
IDL Reference Guide IDLitComponent

2754 Chapter 7: iTools Object Classes
IDLitComponent::GetPropertyByIdentifier

The IDLitComponent::GetPropertyByIdentifier function method retrieves the value
of an IDLitComponent property.

Tip
The IDLitComponent::GetPropertyByIdentifier method is similar to the
IDLitComponent::GetProperty method, but is useful for cases where the property
identifier is defined at runtime.

Syntax

Result = Obj -> [IDLitComponent::]GetPropertyByIdentifier(PropertyIdentifier,
Value)

Return Value

Returns 1 if the property value is defined, or 0 if the property value is undefined.

Arguments

PropertyIdentifier

A string containing the property identifier of the property. PropertyIdentifier does not
need to be a registered property, but must be a valid keyword name for the
GetProperty method of the component.

Value

A named variable that will contain the value of the property. If the property value is
currently undefined, then the contents of the variable specified by Value will not be
modified.

Keywords

None

Version History

Introduced: 6.0
IDLitComponent IDL Reference Guide

Chapter 7: iTools Object Classes 2755
IDLitComponent::Init

The IDLitComponent::Init function method initializes the IDLitComponent object,
and should be called by the Init method of a subclass.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW(’IDLitComponent’[, PROPERTY=value])

or

Result = Obj -> [IDLitComponent::]Init([, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLitComponent Properties” on page 2745 that contains
the word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.
IDL Reference Guide IDLitComponent

2756 Chapter 7: iTools Object Classes
Version History

Introduced: 6.0
IDLitComponent IDL Reference Guide

Chapter 7: iTools Object Classes 2757
IDLitComponent::QueryProperty

The IDLitComponent::QueryProperty function method checks whether a property
identifier is registered, or retrieves a list of all registered properties.

Syntax

Result = Obj -> [IDLitComponent::]QueryProperty([PropertyIdentifier])

Return Value

Returns a 1 if PropertyIdentifier is a scalar string that corresponds to a valid
registered property, or a 0 otherwise. If PropertyIdentifier is an array, the result is an
array of 1s and 0s.

If PropertyIdentifier is not specified, Result is a string array containing the identifiers
of all registered properties.

Arguments

PropertyIdentifier

A scalar string or string array containing property identifiers.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitComponent

2758 Chapter 7: iTools Object Classes
IDLitComponent::RegisterProperty

The IDLitComponent::RegisterProperty procedure method registers a property as
belonging to the component. Only registered properties are displayed in the graphical
property sheet interface for the object.

Syntax

Obj -> [IDLitComponent::]RegisterProperty, PropertyIdentifier[, Type]
[, /BOOLEAN] [, /COLOR] [, DESCRIPTION=string] [, ENUMLIST=stringvector]
[, /FLOAT] [, /HIDE] [, /INTEGER] [, /LINESTYLE] [, NAME=string]
[, /SENSITIVE] [, /STRING] [, /SYMBOL] [, /THICKNESS] [, /UNDEFINED]
[, USERDEF=string] [, VALID_RANGE=vector]

Arguments

PropertyIdentifier

A scalar string containing the property identifier. GetProperty and SetProperty
methods accept this string as a keyword.

Type

An optional integer argument representing the property type. Values recognized by
Property Sheets are:

• 0 = USERDEF

• 1 = BOOLEAN

• 2 = INTEGER

• 3 = FLOAT

• 4 = STRING

• 5 = COLOR

• 6 = LINESTYLE

• 7 = SYMBOL

• 8 = THICKNESS

• 9 = ENUMLIST

If Type is not supplied, then one of the type keywords must be set instead.
IDLitComponent IDL Reference Guide

Chapter 7: iTools Object Classes 2759
Keywords

Some of the following keywords correspond to attributes of the property being
registered. Keywords followed by the word “Get” indicate attributes that can be
retrieved by the IDLitComponent::GetPropertyAttribute method. Keywords followed
by the word “Set” indicate attributes that can be set by the
IDLitComponent::SetPropertyAttribute method.

Some of the following keywords correspond to iTool property data types, which can
also be specified via the Type argument. Note that if both the Type argument and one
of the corresponding keywords are set, the keyword value will be honored.

BOOLEAN

Set this keyword to indicate that the property type is BOOLEAN. Properties of type
BOOLEAN must accept an integer value of either 0 (“False”) or 1 (“True”). Setting
this keyword is equivalent to setting the TYPE argument equal to 1.

COLOR

Set this keyword to indicate that the property type is COLOR. Properties of type
COLOR must accept a three-element integer array containing an RGB triplet. Setting
this keyword is equivalent to setting the TYPE argument equal to 5.

DESCRIPTION (Get, Set)

Set this keyword to a string containing the full name or description of this property.
The DESCRIPTION is displayed in the graphical property sheet interface.

Note
Do not confuse the DESCRIPTION property attribute with the DESCRIPTION
property.

ENUMLIST (Get, Set)

Set this keyword equal to an array of strings to be displayed in the dropdown menu
displayed by a property of type ENUMLIST. The default is a scalar null string.
Properties of type ENUMLIST report their value as an integer between 0 and n-1,
where n is the number of elements in the enumerated list. Setting this keyword
implies that the TYPE argument is equal to 9.
IDL Reference Guide IDLitComponent

2760 Chapter 7: iTools Object Classes
FLOAT

Set this keyword to indicate that the property type is FLOAT. Properties of type
FLOAT must accept a scalar double-precision floating-point value. Setting this
keyword is equivalent to setting the TYPE argument equal to 3.

HIDE (Get, Set)

Set this keyword to hide the given property when displaying the graphical property
sheet interface. By default, all registered properties are displayed.

INTEGER

Set this keyword to indicate that the property type is INTEGER. Properties of type
INTEGER must accept a scalar integer value. Setting this keyword is equivalent to
setting the TYPE argument equal to 2.

LINESTYLE

Set this keyword to indicate that the property type is LINESTYLE. Properties of type
LINESTYLE must accept an integer specifying a pre-defined linestyle, as described
under the LINESTYLE property of the IDLgrPolyline class. Setting this keyword is
equivalent to setting the TYPE argument equal to 6.

NAME (Get, Set)

Set this keyword to a string giving the human-readable name for the property. The
NAME string will be used when displaying the graphical property sheet interface. If
NAME is not set, the value of the PropertyIdentifier argument is used.

Note
Do not confuse the NAME property attribute with the NAME property.

SENSITIVE (Get, Set)

Set this keyword to zero to make the given property insensitive in the graphical
property sheet interface. By default, registered properties are sensitive.

STRING

Set this keyword to indicate that the property type is STRING. Properties of type
STRING must accept a scalar string of any length. Setting this keyword is equivalent
to setting the TYPE argument equal to 4.
IDLitComponent IDL Reference Guide

Chapter 7: iTools Object Classes 2761
SYMBOL

Set this keyword to indicate that the property type is SYMBOL. Properties of type
SYMBOL must accept an integer specifying one of the pre-defined symbol types
described under IDLgrSymbol::Init. Setting this keyword is equivalent to setting the
TYPE argument equal to 7.

THICKNESS

Set this keyword to indicate that the property type is THICKNESS. Properties of type
THICKNESS must accept an integer between 1 and 10 specifying the line thickness
in points. Setting this keyword is equivalent to setting the TYPE argument equal to 8.

UNDEFINED (Get, Set)

Set this keyword to indicate that the property should appear as a blank cell when
displayed in the graphical property sheet interface. This is useful in situations where
properties of multiple objects are displayed in the property sheet (either because
multiple objects are selected, or because the objects have been grouped).

Note
It is the iTool developer’s responsibility to set this property attribute back to zero.
Use the SET_DEFINED field of the WIDGET_PROPERTYSHEET event structure
to determine when to set the UNDEFINED attribute back to zero.

USERDEF (Get, Set)

Set this keyword to a string that represents a user-defined property. Properties of type
USERDEF can accept and return variables of any type. When the actual property
value changes, it is assumed that the string value of the USERDEF attribute will also
be modified to reflect the new property value. Setting this keyword implies that the
TYPE argument is equal to 0.

VALID_RANGE (Get, Set)

For INTEGER or FLOAT types, set this keyword to a two- or three-element vector
specifying the [minimum, maximum] or [minimum, maximum, increment] for valid
values of the property.

If no increment is specified, the property sheet will display an editable text field
allowing the user to enter a numerical value. If increment is specified, values in the
property sheet can only be changed by adjusting a slider, and allowed values are
limited to multiples of the increment value plus the minimum value. If increment is 0,
any value between the minimum and maximum can be selected via the slider.
IDL Reference Guide IDLitComponent

2762 Chapter 7: iTools Object Classes
If this attribute is not set, or is explicitly set equal to zero, the property sheet will use
the minimum and maximum values expressible by the data type and an increment of
0.

Version History

Introduced: 6.0
IDLitComponent IDL Reference Guide

Chapter 7: iTools Object Classes 2763
IDLitComponent::SetProperty

The IDLitComponent::SetProperty procedure method sets the value of an
IDLitComponent property or properties.

Syntax

Obj -> [IDLitComponent::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLitComponent Properties” on page 2745 that contains
the word “Yes” in the “Set” column of the properties table can be set using this
method. To set the value of a property, specify the property name as a keyword set
equal to the appropriate property value.

Version History

Introduced: 6.0
IDL Reference Guide IDLitComponent

2764 Chapter 7: iTools Object Classes
IDLitComponent::SetPropertyAttribute

The IDLitComponent::SetPropertyAttribute procedure method sets one or more
property attributes for a registered property.

Syntax

Obj -> [IDLitComponent::]SetPropertyAttribute , PropertyIdentifier

Arguments

PropertyIdentifier

A string containing the property identifier of the registered property.

Keywords

Any keywords to the IDLitComponent::RegisterProperty method followed by the
word “Set” can be set.

Version History

Introduced: 6.0
IDLitComponent IDL Reference Guide

Chapter 7: iTools Object Classes 2765
IDLitComponent::SetPropertyByIdentifier

The IDLitComponent::SetPropertyByIdentifier procedure method sets the value of an
IDLitComponent property.

Tip
The IDLitComponent::SetPropertyByIdentifier method is similar to the
IDLitComponent::SetProperty method, but is useful for cases where the
PropertyIdentifier is defined at runtime, and avoids the overhead of creating an
_EXTRA structure to pass to SetProperty.

Syntax

Obj -> [IDLitComponent::]SetPropertyByIdentifier, PropertyIdentifier, Value

Arguments

PropertyIdentifier

A string containing the property identifier of the property. PropertyIdentifier does not
need to be a registered property, but must be a valid keyword name for the
SetProperty method of the component.

Value

The new value for the property.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitComponent

2766 Chapter 7: iTools Object Classes
IDLitContainer

The IDLitContainer class is a specialization of the IDL_Container class designed to
manage collections of IDLitComponent objects and provide methods to work with
the iTools identifier system. IDLitContainer object methods allow you to add,
retrieve, and remove values from a IDLitContainer-based hierarchy using either
object references or iTool identifiers.

This class is written in the IDL language. Its source code can be found in the file
idlitcontainer__define.pro in the lib/itools/framework subdirectory of
the IDL distribution.

Superclasses

IDL_Container

IDLitComponent

Creation

See “IDLitContainer::Init” on page 2775.

Properties

Objects of this class have no properties of their own, but do have properties inherited
from any superclasses.

Methods

This class has the following methods:

• IDLitContainer::Add

• IDLitContainer::AddByIdentifier

• IDLitContainer::Cleanup

• IDLitContainer::Get

• IDLitContainer::GetByIdentifier

• IDLitContainer::Init
IDLitContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2767
• IDLitContainer::Remove

• IDLitContainer::RemoveByIdentifier

In addition, this class inherits the methods of its superclasses.

Version History

Introduced: 6.0
IDL Reference Guide IDLitContainer

2768 Chapter 7: iTools Object Classes
IDLitContainer Properties

Objects of this class have no properties of their own, but do have properties inherited
from any superclasses.
IDLitContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2769
IDLitContainer::Add

The IDLitContainer::Add procedure method adds items to the container object.

Syntax

Obj -> [IDLitContainer::]Add, Components[, /NO_NOTIFY]

Arguments

Components

An object reference (or array of object references) to the IDLitComponent object or
objects to be added to the container. When this method is called, the IDENTIFIER
properties of objects specified by Components are validated, verifying that no items
in the container have the same value. If an object with the same identifier already
exists in the container, a unique identifier is created by appending a number to the
original value.

Keywords

NO_NOTIFY

Normally, when an item is added to a container object that inherits from both the
IDLitContainer class and the IDLitIMessaging class, an ADDITEMS notification
message is broadcast to all iTool components registered as monitoring this container.
If this keyword is set, no message is sent.

Version History

Introduced: 6.0
IDL Reference Guide IDLitContainer

2770 Chapter 7: iTools Object Classes
IDLitContainer::AddByIdentifier

The IDLitContainer::AddByIdentifier procedure method adds an object to the
container hierarchy in the position specified by the Identifier argument.

Syntax

Obj -> [IDLitContainer::]AddByIdentifier, Identifier, Item

Arguments

Identifier

An object identifier specifying the location in the container hierarchy where Item
should be added. Identifier can be either a fully-qualified object identifier (beginning
with a “/” character) or a relative to the container on which this method is called. If
Identifier is a null string (''), Item is added to the root of the container object.

See “iTool Object Identifiers” in Chapter 2 of the iTool Developer’s Guide manual for
a discussion of object identifier strings.

Item

An object reference to the iTool component object being added to the container.

Keywords

None

Version History

Introduced: 6.0
IDLitContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2771
IDLitContainer::Cleanup

The IDLitContainer::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: if you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLitContainer::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitContainer

2772 Chapter 7: iTools Object Classes
IDLitContainer::Get

The IDLitContainer::Get function method retrieves items from the container.

Syntax

Result = Obj -> [IDLitContainer::]Get([, /ALL] [, COUNT=variable]
[, ISA=string or array of strings] [, POSITION=index or array of indices]
[, /SKIP_PRIVATE])

Return Value

Returns an object reference or array of object references to the iTool components
stored in the container. Unless either the ALL keyword or the POSITION keyword is
specified, the first object in the container is returned. If no objects are found in the
container, the return value is -1.

Arguments

None

Keywords

ALL

Set this keyword to return an array of object references to all of the objects in the
container.

COUNT

Set this keyword equal to a named variable that will contain the number of objects
selected by the function.

ISA

Set this keyword equal to a class name or vector of class names. This keyword is used
in conjunction with the ALL keyword. The ISA keyword filters the array returned by
the ALL keyword, returning only the objects that inherit from the class or classes
specified by the ISA keyword.

Note
This keyword is ignored if the ALL keyword is not provided.
IDLitContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2773
POSITION

Set this keyword equal to a scalar or array containing the zero-based indices of the
positions of the objects to return.

SKIP_PRIVATE

Set this keyword to ignore any components for which the PRIVATE property is set to
true. This keyword is ignored unless the ALL keyword is also set.

Version History

Introduced: 6.0
IDL Reference Guide IDLitContainer

2774 Chapter 7: iTools Object Classes
IDLitContainer::GetByIdentifier

The IDLitContainer::GetByIdentifier function method retrieves an object from a
container hierarchy using the specified identifier to locate the object.

Syntax

Result = Obj -> [IDLitContainer::]GetByIdentifier(Identifier)

Return Value

Returns an object reference to the object that was requested from the hierarchy, or a
null object reference if no object was located.

Arguments

Identifier

The object identifier of the object that should be retrieved from the container
hierarchy. Identifier can be either a fully-qualified object identifier (beginning with a
“/” character) or a relative to the container on which this method is called.

See “iTool Object Identifiers” in Chapter 2 of the iTool Developer’s Guide manual for
a discussion of object identifier strings.

Keywords

None

Version History

Introduced: 6.0
IDLitContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2775
IDLitContainer::Init

The IDLitContainer::Init function method initializes the object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW(‘IDLitContainer’)

or

Result = Obj -> [IDLitContainer::]Init() (Only in subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitContainer

2776 Chapter 7: iTools Object Classes
IDLitContainer::Remove

The IDLitContainer::Remove procedure method removes items from the container.

Syntax

Obj -> [IDLitContainer::]Remove, Components[, /NO_NOTIFY]

Arguments

Components

An object reference (or array of object references) to the objects to be removed from
the container.

Keywords

NO_NOTIFY

Normally, when an item is removed from a container object that inherits from both
the IDLitContainer class and the IDLitIMessaging class, a REMOVEITEMS
notification message is broadcast to all iTool components registered as monitoring
this container. If this keyword is set, no message is sent.

Version History

Introduced: 6.0
IDLitContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2777
IDLitContainer::RemoveByIdentifier

The IDLitContainer::RemoveByIdentifier function method removes an object from a
container hierarchy using the specified identifier to locate the object.

Syntax

Result = Obj -> [IDLitContainer::]RemoveByIdentifier(Identifier)

Return Value

Returns an object reference to the object that was removed from the hierarchy, or a
null object reference if no object was removed.

Arguments

Identifier

The object identifier of the object that should be removed from the container
hierarchy. The Identifier argument can be either a fully-qualified object identifier
(beginning with a “/” character) or a relative to the container on which this method is
called.

See “iTool Object Identifiers” in Chapter 2 of the iTool Developer’s Guide manual for
a discussion of object identifier strings.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitContainer

2778 Chapter 7: iTools Object Classes
IDLitData

The IDLitData class provides a generic data storage object that can hold data items of
any IDL data type. The IDLitData class provides typing and data change notification
functionality, and when coupled with the IDLitDataContainer object forms the base
element for the construction of composite data types.

The IDLitData class implements the iTools notifier interface, which provides a
mechanism by which observers of a data item can be alerted when the state of the
information contained in the data object changes.

This class is written in the IDL language. Its source code can be found in the file
idlitdata__define.pro in the lib/itools/framework subdirectory of the
IDL distribution.

Superclasses

IDLitComponent

Creation

See “IDLitData::Init” on page 2789.

Properties

Objects of this class have the following properties. See “IDLitData Properties” on
page 2780 for details on individual properties.

• HIDE

• NO_COPY

• READ_ONLY

• TYPE

In addition, objects of this class inherit the properties of the superclass.
IDLitData IDL Reference Guide

Chapter 7: iTools Object Classes 2779
Methods

This class has the following methods:

• IDLitData::AddDataObserver

• IDLitData::Cleanup

• IDLitData::Copy

• IDLitData::GetByType

• IDLitData::GetData

• IDLitData::GetProperty

• IDLitData::GetSize

• IDLitData::Init

• IDLitData::NotifyDataChange

• IDLitData::NotifyDataComplete

• IDLitData::RemoveDataObserver

• IDLitData::SetData

• IDLitData::SetProperty

In addition, this class inherits the methods of its superclasses.

Examples

See Chapter 3, “Data Management” in the iTool Developer’s Guide manual for
examples using this class and its methods.

Version History

Introduced: 6.0
IDL Reference Guide IDLitData

2780 Chapter 7: iTools Object Classes
IDLitData Properties

IDLitData objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLitData::GetProperty. Properties with the word
“Yes” in the “Init” column of the property table can be set via IDLitData::Init.
Properties with the word “Yes” in the “Set” column in the property table can be set
via IDLitData::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

HIDE

A Boolean value that controls the visibility of the data with respect to queries
performed by the IDLitDataContainer methods GetData, SetData and GetIdentifiers.
If the HIDE property has a True value, the data object is not found by these methods
and the methods behave as if the data object did not exist.

NO_COPY

If an initial value of the data is provided, this property will cause the movement of the
data into the object without creating an additional copy, leaving the IDL variable
named by the Data argument undefined.

Property Type BOOLEAN

Name String HIDE

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDLitData IDL Reference Guide

Chapter 7: iTools Object Classes 2781
READ_ONLY

A Boolean value that controls the ability to modify the data with the SetData method.
If the READ_ONLY property has a True value, an attempt to use SetData on the
object fails. IDL prints an informational message in this case.

TYPE

A scalar string containing the type of the data object. The default value of this
property is NULL ('') and cannot be changed after the class is instantiated.
Subclasses of this class set the value of this property to a value that reflects the type
of data that the subclass is implementing.

Property Type BOOLEAN

Name String READ_ONLY

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type STRING

Name String TYPE

Get: Yes Set: No Init: Yes Registered: Yes
IDL Reference Guide IDLitData

2782 Chapter 7: iTools Object Classes
IDLitData::AddDataObserver

The IDLitData::AddDataObserver procedure method specifies an object (the
Observer) that will be notified when the contents of the data object are changed.

The object specified as the Observer must implement three methods that form the
data observer interface:

• OnDataChange

• OnDataComplete

• OnDataDelete

The OnDataChange method is called when the contents of a data object are changed,
and the OnDataComplete method is called when the change messages are completed.
This two-part notification process is used to allow observers of data to transact the
change event and minimize the required system updates (such as graphic redrawing).
The OnDataDelete method is called when the data item is deleted.

Syntax

Obj -> [IDLitData::]AddDataObserver, Observer

Arguments

Observer

An object reference to an iTool component object that implements the data observer
interface methods. When the contained data value changes, the Observer is notified
of this change.

Keywords

None

Version History

Introduced: 6.0
IDLitData IDL Reference Guide

Chapter 7: iTools Object Classes 2783
IDLitData::Cleanup

The IDLitData::Cleanup procedure method performs all cleanup operations on the
object, and should be called by the Cleanup method of any subclass of this class. This
method removes all data stored in the IDLitData object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: if you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLitData::]Cleanup (only in subclass' Cleanup method)

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitData

2784 Chapter 7: iTools Object Classes
IDLitData::Copy

The IDLitData::Copy function method returns an exact copy of the data object and its
contents, including registered property values.

The following values are not copied:

• Values of unregistered properties.

• Values of properties registered after the data object is created.

• Property attribute values.

Note
If an object has been added to the data object, only the object reference to the added
object is copied.

Syntax

Result = Obj -> [IDLitData::]Copy()

Return Value

Returns a copy of the object on which it is called. If the copy operation fails, a null
object is returned.

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitData IDL Reference Guide

Chapter 7: iTools Object Classes 2785
IDLitData::GetByType

The IDLitData::GetByType function method returns all contained objects of the
specified iTool data type.

Syntax

Result = Obj -> [IDLitData::]GetByType(Type[, COUNT=variable])

Return Value

Returns an object array containing references to the contained data objects that are of
the iTool data type specified by Type. If no objects matching Type exist, a null object
reference is returned.

Arguments

Type

A string containing the iTool data type to search for in the data hierarchy rooted by
this data container.

Keywords

COUNT

Set this keyword equal to a named variable that will contain the number of valid
objects returned by this method.

Version History

Introduced: 6.0
IDL Reference Guide IDLitData

2786 Chapter 7: iTools Object Classes
IDLitData::GetData

The IDLitData::GetData function method retrieves the data stored in the object.

Syntax

Result = Obj -> [IDLitData::]GetData(Data[, Identifier] [, NAN=variable]
[, /NO_COPY])

Return Value

Returns a 1 if the operation succeeds, and 0 if it fails.

Arguments

Data

A named variable that will contain the data retrieved from the data object. If the
GetData method fails, the variable is not modified.

Identifier

A string argument that is not used by this method, but is accepted for parameter
compatibility with the IDLitDataContainer::GetData method. If a value for this
argument is supplied, the method does not retrieve any data and returns the value 0.

Keywords

NAN

Set this keyword to a named variable that will contain 1 if Data contains any non-
finite values (either NaN or Infinity), or 0 otherwise.

NO_COPY

Set this keyword to move the data from the data object to the variable specified by the
Data argument, leaving the data value of the data object undefined.

Version History

Introduced: 6.0
IDLitData IDL Reference Guide

Chapter 7: iTools Object Classes 2787
IDLitData::GetProperty

The IDLitData::GetProperty procedure method retrieves the value of an IDLitData
property, and should be called by the GetProperty method of any subclass of this
class.

Syntax

Obj -> [IDLitData::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLitData Properties” on page 2780 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Version History

Introduced: 6.0
IDL Reference Guide IDLitData

2788 Chapter 7: iTools Object Classes
IDLitData::GetSize

The IDLitData::GetSize function method returns an approximate value for the
amount of memory being used by the data object.

Syntax

Result = Obj -> [IDLitData::]GetSize()

Return Value

Returns the number of bytes of memory used by the data object. The returned value is
an approximation.

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitData IDL Reference Guide

Chapter 7: iTools Object Classes 2789
IDLitData::Init

The IDLitData::Init function method initializes the IDLitData object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLitData'[, Data] [, PROPERTY=value])

or

Result = Obj -> [IDLitData::]Init([Data] [, PROPERTY=value])
(Only in subclass' Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

Data

An IDL variable of any type that is stored in the data object.

Keywords

Any property listed under “IDLitData Properties” on page 2780 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.
IDL Reference Guide IDLitData

2790 Chapter 7: iTools Object Classes
Version History

Introduced: 6.0
IDLitData IDL Reference Guide

Chapter 7: iTools Object Classes 2791
IDLitData::NotifyDataChange

The IDLitData::NotifyDataChange procedure method is called when a data object
has been changed; it is part of the notification process that allows data updates to be
reflected by visualizations that use the data. It works in conjunction with the
NotifyDataComplete method to provide a two-pass change notification system that
minimizes the number of operations performed when a data object changes.

When NotifyDataChange is called, the OnDataChange methods of all observers of
the data object (usually visualizations) are automatically called. This causes the
observers to perform any necessary updates without committing those updates. When
the NotifyDataComplete method is called, the observers’ OnDataComplete methods
are called to commit the updates. This two-pass system allows visualizations to be
notified that the data has changed without forcing an immediate redraw of the iTool
window; when the NotifyDataComplete method is called, all visualizations can be
redrawn at once.

Every call to the NotifyDataChange method must have an accompanying
NotifyDataComplete call; without the call to NotifyDataComplete, no updates will
take place.

Note
If the data object is being changed by an operation based on the
IDLitDataOperation class, the call to NotifyDataChange is handled automatically.
The only time you will need to call this method directly is if the operation that
modifies the data is based on the more generic IDLitOperation class.

Syntax

Obj -> [IDLitData::]NotifyDataChange

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitData

2792 Chapter 7: iTools Object Classes
IDLitData::NotifyDataComplete

The IDLitData::NotifyDataComplete procedure method is called after a data object
has been changed; it is part of the notification process that allows data updates to be
reflected by visualizations that use the data. It works in conjunction with the
NotifyDataChange method to provide a two-pass change notification system that
minimizes the number of operations performed when a data object changes.

When NotifyDataChange is called, the OnDataChange methods of all observers of
the data object (usually visualizations) are automatically called. This causes the
observers to perform any necessary updates without committing those updates. When
the NotifyDataComplete method is called, the observers’ OnDataComplete methods
are called to commit the updates. This two-pass system allows visualizations to be
notified that the data has changed without forcing an immediate redraw of the iTool
window; when the NotifyDataComplete method is called, all visualizations can be
redrawn at once.

Every call to the NotifyDataChange method must have an accompanying
NotifyDataComplete call; without the call to NotifyDataComplete, no updates will
take place.

Note
If the data object is being changed by an operation based on the
IDLitDataOperation class, the call to NotifyDataChange is handled automatically.
The only time you will need to call this method directly is if the operation that
modifies the data is based on the more generic IDLitOperation class.

Syntax

Obj -> [IDLitData::]NotifyDataComplete

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitData IDL Reference Guide

Chapter 7: iTools Object Classes 2793
IDLitData::RemoveDataObserver

The IDLitData::RemoveDataObserver method unregisters an object that has been
registered as an observer of this data object. After this method is called, the Observer
will no longer be notified when the contents of the data object change. If the specified
Observer doesn’t exist, this method will return quietly.

Syntax

Obj -> [IDLitData::]RemoveDataObserver, Observer

Arguments

Observer

An object reference to an iTool component object that was previously registered as an
observer of this data object.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitData

2794 Chapter 7: iTools Object Classes
IDLitData::SetData

The IDLitData::SetData function method copies the data from an IDL variable or
expression into the data object, and notifies all its observers that the data has changed.

Syntax

Result = Obj -> [IDLitData::]SetData(Data[, Identifier] [, /NO_COPY] [, /NULL])

Return Value

Returns a 1 if the operation succeeds, and 0 if it fails.

Arguments

Data

An IDL variable or expression whose value is copied into the data object.

Identifier

A string argument that is not used by this method. It is accepted by this method only
for parameter compatibility with IDLitDataContainer::SetData. If a value for this
argument is supplied, the method does not retrieve any data and returns the value 0.

Keywords

NO_COPY

Set this keyword to move the data into the specified IDLitData object without
creating an additional copy. This leaves the original IDL variable named by the Data
argument undefined.

NULL

Set this keyword to remove any data stored in the IDLitData object, leaving it empty.
If this keyword is set, the Data argument is ignored.

Version History

Introduced: 6.0
IDLitData IDL Reference Guide

Chapter 7: iTools Object Classes 2795
IDLitData::SetProperty

The IDLitData::SetProperty procedure method sets the value of an IDLitData
property, and should be called by the SetProperty method of any subclass of this
class.

Syntax

Obj -> [IDLitData::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLitData Properties” on page 2780 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 6.0
IDL Reference Guide IDLitData

2796 Chapter 7: iTools Object Classes
IDLitDataContainer

The IDLitDataContainer class is used to store collections of IDLitData and
IDLitDataContainer objects to form hierarchical data structures. Objects can be
added to and removed from an IDLitDataContainer at any time, allowing for the
dynamic creation of composite data types.

Objects stored in an IDLitDataContainer hierarchy are referenced using iTool object
identifiers. Object identifiers are simple scalar strings assigned to the IDENTIFIER
property of an object when it is created. For a complete discussion of object
identifiers and their role in the iTool system, see “iTool Object Identifiers” in Chapter
2 of the iTool Developer’s Guide manual.

This class is written in the IDL language. Its source code can be found in the file
idlitdatacontainer__define.pro in the lib/itool/framework
subdirectory of the IDL distribution.

Superclasses

IDLitContainer

IDLitData

Creation

See “IDLitDataContainer::Init” on page 2803.

Properties

Objects of this class have no properties of their own, but do have properties inherited
from any superclasses.

Methods

This class has the following methods:

• IDLitDataContainer::Cleanup

• IDLitDataContainer::GetData

• IDLitDataContainer::GetIdentifiers

• IDLitDataContainer::GetProperty

• IDLitDataContainer::Init
IDLitDataContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2797
• IDLitDataContainer::SetData

• IDLitDataContainer::SetProperty

In addition, this class inherits the methods of its superclasses.

Examples

See Chapter 3, “Data Management” in the iTool Developer’s Guide manual for
examples using this class and its methods.

Version History

Introduced: 6.0
IDL Reference Guide IDLitDataContainer

2798 Chapter 7: iTools Object Classes
IDLitDataContainer Properties

Objects of this class have no properties of their own, but do have properties inherited
from any superclasses.
IDLitDataContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2799
IDLitDataContainer::Cleanup

The IDLitDataContainer::Cleanup procedure method performs all cleanup operations
on the object, and should be called by the Cleanup method of any subclass of this
class. This method destroys all data objects stored in this container.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: if you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLitDataContainer::]Cleanup (only in subclass' Cleanup method)

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitDataContainer

2800 Chapter 7: iTools Object Classes
IDLitDataContainer::GetData

The IDLitDataContainer::GetData function method retrieves the data value contained
in the data object specified by the Identifier argument.

Syntax

Result = Obj -> [IDLitDataContainer::]GetData(Data [, Identifier] [, /NO_COPY])

Return Value

Returns a 1 if the operation succeeds, and 0 if it fails.

Arguments

Data

A named variable that will contain the data value of the specified data object.

Identifier

A string containing the relative object identifier path to the target data object for this
method. See “iTool Object Identifiers” in Chapter 2 of the iTool Developer’s Guide
manual for a discussion of object identifier strings.

If Identifier is not set. or is set to a null string, the data contained in the data container
itself is returned.

Keywords

NO_COPY

Set this keyword to move the data from the data container object to the variable
specified by the Data argument, leaving the data value of the data object undefined.

Version History

Introduced: 6.0
IDLitDataContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2801
IDLitDataContainer::GetIdentifiers

The IDLitDataContainer::GetIdentifiers function method retrieves the object
identifiers for all data and data container objects contained in the data container
object.

Syntax

Result = Obj -> [IDLitDataContainer::]GetDataIdentifiers([Pattern] [, /LEAF])

Return Value

Returns an array of strings containing the object identifiers for all data and data
container objects contained by the data container object. If the container is empty, or
if the Pattern argument is supplied and no object identifiers are matched, the function
returns a string array containing one empty string (['']).

Arguments

Pattern

A string specifying a search pattern to be used for filtering the returned object
identifiers. Only object identifiers that match Pattern are returned. See STRMATCH
for a description of the rules used when matching patterns.

Keywords

LEAF

Set this keyword to return only object identifiers whose final node is not a container
object.

Version History

Introduced: 6.0
IDL Reference Guide IDLitDataContainer

2802 Chapter 7: iTools Object Classes
IDLitDataContainer::GetProperty

The IDLitDataContainer::GetProperty procedure method retrieves the value of an
IDLitDataContainer property, and should be called by the GetProperty method of any
subclass of this class.

Syntax

Obj -> [IDLitDataContainer::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLitDataContainer Properties” on page 2798 that
contains the word “Yes” in the “Get” column of the properties table can be retrieved
using this method. To retrieve the value of a property, specify the property name as a
keyword set equal to a named variable that will contain the value of the property.

Version History

Introduced: 6.0
IDLitDataContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2803
IDLitDataContainer::Init

The IDLitDataContainer::Init function method initializes the IDLitDataContainer
object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLitDataContainer'[, Data] [, PROPERTY=value])

or

Result = Obj -> [IDLitDataContainer::]Init([Data] [, PROPERTY=value])
(Only in subclass' Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

Data

An IDL variable of any type or shape that is stored into the object at initialization.

Keywords

Any property listed under “IDLitDataContainer Properties” on page 2798 that
contains the word “Yes” in the “Init” column of the properties table can be initialized
during object creation using this method. To initialize the value of a property, specify
the property name as a keyword set equal to the appropriate property value.
IDL Reference Guide IDLitDataContainer

2804 Chapter 7: iTools Object Classes
Version History

Introduced: 6.0
IDLitDataContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2805
IDLitDataContainer::SetData

The IDLitDataContainer::SetData function method stores data in the IDLitData
object specified by Identifier. This method acts in exactly the same way as the
IDLitData::SetData method.

Syntax

Result = Obj -> [IDLitDataContainer::]SetData(Data, Identifier[, /NO_COPY]
[, /NULL])

Return Value

Returns a 1 if the operation succeeds, or 0 if it fails.

Arguments

Data

An IDL variable of any type that is copied into the specified data object.

Identifier

A scalar string containing the object identifier of the IDLitData object in which the
data specified by Data should be stored. This path must specify a valid IDLitData
object, or the function fails. See “iTool Object Identifiers” in Chapter 2 of the iTool
Developer’s Guide manual for a discussion of object identifier strings.

Keywords

NO_COPY

Set this keyword to move the data into the specified IDLitData object without
creating an additional copy. This leaves the original IDL variable named by the Data
argument undefined.
IDL Reference Guide IDLitDataContainer

2806 Chapter 7: iTools Object Classes
NULL

Set this keyword to remove any data stored in the IDLitData object, leaving it empty.
If this keyword is set, the Data argument is ignored, but must still be present.

Version History

Introduced: 6.0
IDLitDataContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2807
IDLitDataContainer::SetProperty

The IDLitDataContainer::SetProperty procedure method sets the value of an
IDLitDataContainer property, and should be called by the SetProperty method of any
subclass of this class.

Syntax

Obj -> [IDLitDataContainer::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLitDataContainer Properties” on page 2798 that
contains the word “Yes” in the “Set” column of the properties table can be set using
this method. To set the value of a property, specify the property name as a keyword
set equal to the appropriate property value.

Version History

Introduced: 6.0
IDL Reference Guide IDLitDataContainer

2808 Chapter 7: iTools Object Classes
IDLitDataOperation

The IDLitDataOperation class is a subclass of IDLitOperation that automates data
access and automatically records information for the undo-redo system. By
automating this functionality, the IDLitDataOperation class eliminates much of the
work required to implement a standard subclass of the IDLitOperation class. See
IDLitOperation for additional information on iTool operations.

Note
The IDLitDataOperation class is designed for use in operations that affect data
values. If you are creating an operation that acts on items other than the data that
underlies a visualization, you should base your operation class on the
IDLitOperation class.

While the implementation of a standard subclass of an IDLitOperation class requires
the developer to provide implementations of the DoAction, UndoOperation, and
RedoOperation methods, the IDLitDataOperation class provides these methods
automatically. The only method the developer of an IDLitDataOperation class is
required to implement is the Execute method, which contains the logic for the
specific operation being performed. Depending on the operation being performed, the
developer of an IDLitDataOperation may also implement methods to reverse (or un-
execute) the operation, display a user interface before performing the operation, get
and set properties specific to the operation, and initialize the IDLitDataOperation
object.

When an IDLitDataOperation is requested by a user, the following things occur:

1. As with any operation, execution commences when the DoAction method is
called on this object. When called, the IDLitDataOperation retrieves the
currently-selected items. If nothing is selected, the operation returns.

2. For each selected item, the data objects of the parameters registered as
“operation targets” are retrieved.

3. The data objects are queried for iTool data types that match the types supported
by the IDLitDataOperation.
IDLitDataOperation IDL Reference Guide

Chapter 7: iTools Object Classes 2809
For each data object that includes data of an iTool data type supported by the
IDLitDataOperation, the following things occur:

1. The data from the data object is retrieved.

2. If the IDLitDataOperation does not have the REVERSIBLE_OPERATION
property set, a copy of the data is created and placed into the undo-redo
command set.

3. The Execute method is called, with the retrieved data as its argument.

4. If the Execute method succeeds and the IDLitDataOperation has the
EXPENSIVE_OPERATION property set, a copy of the results is placed into
the undo-redo command set.

5. The result of the IDLitDataOperation is placed in the data object. This action
will cause all visualization items that use the data object to update when the
operation is completed.

Once all selected data items have been processed, the undo-redo command set is
placed into the system undo-redo buffer for later use.

For a detailed discussion of both the IDLitOperation and IDLitDataOperation classes,
see Chapter 7, “Creating an Operation” in the iTool Developer’s Guide manual.

This class is written in the IDL language. Its source code can be found in the file
idlitdataoperation__define.pro in the lib/itools/framework
subdirectory of the IDL distribution.

Superclasses

IDLitOperation

Creation

See “IDLitDataOperation::Init” on page 2818.

Properties

Objects of this class have no properties of their own, but do have properties inherited
from any superclasses.
IDL Reference Guide IDLitDataOperation

2810 Chapter 7: iTools Object Classes
Methods

This class has the following methods:

• IDLitDataOperation::Cleanup

• IDLitDataOperation::DoExecuteUI

• IDLitDataOperation::Execute

• IDLitDataOperation::GetProperty

• IDLitDataOperation::Init

• IDLitDataOperation::SetProperty

• IDLitDataOperation::UndoExecute

In addition, this class inherits the methods of its superclasses (if any).

Examples

See “Creating a New Data-Centric Operation” in Appendix of the iTool Developer’s
Guide manual for examples using this class and its methods.

Version History

Introduced: 6.0

See Also

IDLitOperation
IDLitDataOperation IDL Reference Guide

Chapter 7: iTools Object Classes 2811
IDLitDataOperation Properties

Objects of this class have no properties of their own, but do have properties inherited
from any superclasses.
IDL Reference Guide IDLitDataOperation

2812 Chapter 7: iTools Object Classes
IDLitDataOperation::Cleanup

The IDLitDataOperation::Cleanup procedure method performs all cleanup on the
object.

Note
An operation based on the IDLitDataOperation class need not implement this
method if the operation does not allocate any pointers or object references of its
own.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: if you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLitOperation::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitDataOperation IDL Reference Guide

Chapter 7: iTools Object Classes 2813
IDLitDataOperation::DoExecuteUI

The IDLitDataOperation::DoExecuteUI function method provides a way for the iTool
developer to request user input before performing an operation. If the
SHOW_EXECUTION_UI property is set, this method will be called before the
operation’s Execute method is called.

Note
Every operation based directly on the IDLitDataOperation class that requires user
interaction before execution must implement its own DoExecuteUI method. See
Chapter 7, “Creating an Operation” in the iTool Developer’s Guide manual for
details.

The DoExecuteUI method itself can present any interface. In practice, most iTool
DoExecuteUI methods use the IDLitTool::DoUIService method to display a user
interface requesting user input. User interfaces and UI Services are discussed in
Chapter 10, “iTool User Interface Architecture” in the iTool Developer’s Guide
manual.

Warning
If the DoExecuteUI method does not return success, the Execute method will not be
called.

Syntax

Result = Obj -> [IDLitDataOperation::]DoExecuteUI()

Return Value

Returns a 1 if the displayed user interface code executed successfully, and the
operation should be executed. If user interface code does not execute successfully, or
if the user cancels the operation, this function returns a 0.

Arguments

None

Keywords

None
IDL Reference Guide IDLitDataOperation

2814 Chapter 7: iTools Object Classes
Example

The following is an example of a DoExecuteUI method, taken from the iTools “Scale
Factor” operation:

FUNCTION IDLitopScalefactor::DoExecuteUI

oTool = self -> GetTool()
IF (oTool EQ OBJ_NEW()) THEN RETURN, 0

RETURN, oTool -> DoUIService('ScaleFactor', self)

END

This implementation of the DoExecuteUI method does the following:

1. Retrieves an object reference to the current iTool using the GetTool method.

2. Checks to make sure the returned object reference is not a null object (which
would be the case if the GetTool method failed).

3. Calls the ScaleFactor UI Service.

Version History

Introduced: 6.0
IDLitDataOperation IDL Reference Guide

Chapter 7: iTools Object Classes 2815
IDLitDataOperation::Execute

The IDLitDataOperation::Execute function method contains the execution logic for
the operation. This method is called automatically when the iTool user requests an
operation based on the IDLitDataOperation class.

Note
Every operation based directly on the IDLitDataOperation class must implement its
own Execute method. See Chapter 7, “Creating an Operation” in the iTool
Developer’s Guide manual for details.

When the iTool system executes an IDLitDataOperation, it passes the raw data (of
the appropriate iTools data type) from the selected objects to the Execute method.
This means that the Execute method itself does not need to “unpack” a data object
before performing the operations, allowing rapid and simple operation execution. For
example, if the operation expects data of the iTools data type IDLARRAY2D, the iTool
system will include the selected two-dimensional array as the Data argument.

Syntax

Result = Obj -> [IDLitDataOperation::]Execute(Data)

Return Value

The return value is 1 if the operation executed successfully, or 0 otherwise.

Arguments

Data

A single data item on which the operation should be performed. Note that Data is not
an IDLitData object, but actual data.

Keywords

None
IDL Reference Guide IDLitDataOperation

2816 Chapter 7: iTools Object Classes
Version History

Introduced: 6.0

See Also

IDLitDataOperation::UndoExecute
IDLitDataOperation IDL Reference Guide

Chapter 7: iTools Object Classes 2817
IDLitDataOperation::GetProperty

The IDLitDataOperation::GetProperty procedure method retrieves the value of a
property or group of properties of an operation object.

Note
An operation based on the IDLitDataOperation class must implement this method if
the operation defines one or more properties not inherited from the superclass. See
Chapter 7, “Creating an Operation” in the iTool Developer’s Guide manual for
details.

Syntax

Obj -> [IDLitDataOperation::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLitDataOperation Properties” on page 2811 that
contains the word “Yes” in the “Get” column of the properties table can be retrieved
using this method. To retrieve the value of a property, specify the property name as a
keyword set equal to a named variable that will contain the value of the property.

Example

To retrieve the value of the REVERSIBLE_OPERATION property:

Obj -> IDLitDataOperation::GetProperty, REVERSIBLE_OPERATION = rev

Version History

Introduced: 6.0
IDL Reference Guide IDLitDataOperation

2818 Chapter 7: iTools Object Classes
IDLitDataOperation::Init

The IDLitDataOperation::Init function method initializes the IDLitDataOperation
object and sets properties that define the behavior the operation provides.

Note
An operation based on the IDLitDataOperation class must implement this method.
See Chapter 7, “Creating an Operation” in the iTool Developer’s Guide manual for
details.

Note
Init methods are special life cycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLitDataOperation' [, PROPERTY=variable])

or

Result = Obj -> [IDLitDataOperation::]Init([, PROPERTY=variable])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None
IDLitDataOperation IDL Reference Guide

Chapter 7: iTools Object Classes 2819
Keywords

Any property listed under “IDLitDataOperation Properties” on page 2811 that
contains the word “Yes” in the “Init” column of the properties table can be initialized
during object creation using this method. To initialize the value of a property, specify
the property name as a keyword set equal the appropriate property value.

Version History

Introduced: 6.0
IDL Reference Guide IDLitDataOperation

2820 Chapter 7: iTools Object Classes
IDLitDataOperation::SetProperty

The IDLitDataOperation::SetProperty procedure method sets the value of a property
or group of properties for the operation.

Note
An operation based on the IDLitDataOperation class must implement this method if
the operation defines one or more properties not inherited from the superclass. See
Chapter 7, “Creating an Operation” in the iTool Developer’s Guide manual for
details.

Syntax

Obj -> [IDLitDataOperation::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLitDataOperation Properties” on page 2811 that
contains the word “Yes” in the “Set” column of the properties table can be set using
this method. To set the value of a property, specify the property name as a keyword
set equal to the appropriate property value.

Version History

Introduced: 6.0
IDLitDataOperation IDL Reference Guide

Chapter 7: iTools Object Classes 2821
IDLitDataOperation::UndoExecute

The IDLitDataOperation::UndoExecute function method is called when a user selects
the Undo operation after executing an IDLitDataOperation that sets the value of the
REVERSIBLE_OPERATION property to 1. (If the IDLitDataOperation does not set
this property, the UndoExecute method is not called.) If implemented, this method
generally applies the inverse of the operation performed by the Execute method.

Note
An operation based on the IDLitDataOperation class must implement this method if
the operation sets the REVERSIBLE_OPERATION property. See Chapter 7,
“Creating an Operation” in the iTool Developer’s Guide manual for details.

When the iTool system un-executes an IDLitDataOperation, it passes the raw data (of
the appropriate iTools data type) from the selected objects to the UndoExecute
method. This means that the UndoExecute method itself does not need to “unpack” a
data object before performing the operations, allowing rapid and simple operation
execution. For example, if the operation expects data of the iTools data type
IDLARRAY2D, the iTool system will include the selected two-dimensional array as the
Data argument.

Syntax

Result = Obj -> [IDLitDataOperation::]UndoExecute(Data)

Return Value

The return value is 1 if the operation un-executed successfully, or 0 otherwise.

Arguments

Data

A single data item on which the operation should be performed. Note that Data is not
an IDLitData object, but actual data.

Keywords

None
IDL Reference Guide IDLitDataOperation

2822 Chapter 7: iTools Object Classes
Version History

Introduced: 6.0

See Also

IDLitDataOperation::Execute
IDLitDataOperation IDL Reference Guide

Chapter 7: iTools Object Classes 2823
IDLitIMessaging

The IDLitIMessaging interface class provides a set of methods used to allow an
object that implements the interface to send notification messages and to react
appropriately when notification messages are received from other iTool component
objects. This class also provides methods that allow the iTool developer to notify the
iTool user of error conditions via graphical dialogs, to prompt the user for input, and
to retrieve a reference to the current iTool object.

IDLitIMessaging objects are not intended to be created as standalone entities; rather,
this class should be included as the superclass of another iTool class.

Note
In the iTools system, management of messages is handled by the IDLitVisualization
class, of which the IDLitIMessaging class is a superclass. In practice, this means
that if you need to override any methods of the IDLitIMessaging class, you will do
so in the definition of your visualization class.

This class is written in the IDL language. Its source code can be found in the file
idlitimessaging__define.pro in the lib/itools/framework subdirectory
of the IDL distribution.

Superclasses

This class has no superclasses.

Creation

Objects of this class are not created as standalone objects.

Properties

Objects of this class have no properties of their own.

Methods

This class has the following methods:

• IDLitIMessaging::AddOnNotifyObserver

• IDLitIMessaging::DoOnNotify

• IDLitIMessaging::ErrorMessage
IDL Reference Guide IDLitIMessaging

2824 Chapter 7: iTools Object Classes
• IDLitIMessaging::GetTool

• IDLitIMessaging::ProbeStatusMessage

• IDLitIMessaging::ProgressBar

• IDLitIMessaging::PromptUserText

• IDLitIMessaging::PromptUserYesNo

• IDLitIMessaging::RemoveOnNotifyObserver

• IDLitIMessaging::SignalError

• IDLitIMessaging::StatusMessage

Version History

Introduced: 6.0
IDLitIMessaging IDL Reference Guide

Chapter 7: iTools Object Classes 2825
IDLitIMessaging Properties

Objects of this class have no properties of their own.
IDL Reference Guide IDLitIMessaging

2826 Chapter 7: iTools Object Classes
IDLitIMessaging::AddOnNotifyObserver

The IDLitIMessaging::AddOnNotifyObserver procedure method is used to register a
specified iTool component object to receive messages generated by the DoOnNotify
method of another specified iTool component object.

Syntax

Obj -> [IDLitIMessaging::]AddOnNotifyObserver, IdObserver, IdSubject

Arguments

IdObserver

The object identifier of an iTool component object that is the observer expressing
interest in the subject specified by IdSubject. Often, IdObserver is the object
identifier of the object on which this method is being called.

The object specified by IdObserver must implement the OnNotify callback method,
which is called when a notification message is dispatched to IdObserver by the
DoOnNotify method of another iTool component object (usually the object specified
by IdSubject). The OnNotify method has the following signature:

PRO ::OnNotify, idOriginator, idMessage, message

where

• idOriginator is the object identifier of the iTool component that is the source of
the message

• idMessage is a string that identifies the type of message being sent

• message is the message itself.

In general, the idMessage string is used by the OnNotify method to determine what
type of action to take. See “IDLitIMessaging::DoOnNotify” on page 2828 for
additional details.

IdSubject

A string value identifying the item that IdObserver is interested in. This is normally
the object identifier of a particular iTool component object, but it can be any string
value. When a message sent via IDLitIMessaging::DoOnNotify specifies IdSubject as
the originator, the IdObserver object’s OnNotify method is called.
IDLitIMessaging IDL Reference Guide

Chapter 7: iTools Object Classes 2827
Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitIMessaging

2828 Chapter 7: iTools Object Classes
IDLitIMessaging::DoOnNotify

The IDLitIMessaging::DoOnNotifiy procedure method is used to broadcast a
notification message to iTool component objects that are observing the source of the
message.

See the “IDLitIMessaging::AddOnNotifyObserver” on page 2826, and
“IDLitIMessaging::RemoveOnNotifyObserver” on page 2837 methods for more
information on notification messages.

See “iTool Messaging System” in Chapter 2 of the iTool Developer’s Guide manual
for a more in-depth discussion of notification.

Syntax

Obj -> [IDLitIMessaging::]DoOnNotify, IdOriginator, IdMesage, Value

Arguments

IdOriginator

A string value identifying the item that is the source of the message. Normally,
IdOriginator is the object identifier of the object that calls this method, but it can be
any string value.

IdMessage

A string that will uniquely identify the message being sent. The value of IdMessage is
determined by the iTool developer; it is used by the OnNotify methods of any
observer objects to determine what type of message has been received, and to act
accordingly. For example, if a property value has changed, this argument might be set
to the string SETPROPERTY.

Value

Any value that is associated with the message being sent. For example, if a
SETPROPERTY message was sent, Value might contain the name of the property
changed. If no value is associated with the message, set this argument to a null string
('').
IDLitIMessaging IDL Reference Guide

Chapter 7: iTools Object Classes 2829
Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitIMessaging

2830 Chapter 7: iTools Object Classes
IDLitIMessaging::ErrorMessage

The IDLitIMessaging::ErrorMessage procedure method is used to display an error
message to the user.

The actual method used to display the message to the user depends on the user
interface in use. Normally, this method will display a modal dialog.

Syntax

Obj -> [IDLitIMessaging::]ErrorMessage, StrMessage[, SEVERITY=integer]
[, TITLE=string] [, /USE_LAST_ERROR]

Arguments

StrMessage

A scalar string or string array containing a description of the error.

Keywords

SEVERITY

Set this keyword to the severity code to use for this message. The system recognizes
the following values:

• 0 = Informational

• 1 = Warning

• 2 = Error

TITLE

Set this keyword to the title that should be displayed as part of the prompt. In most
cases, this value is placed in the title bar of the modal dialog.
IDLitIMessaging IDL Reference Guide

Chapter 7: iTools Object Classes 2831
USE_LAST_ERROR

If this keyword is set, the system will use the information that was part of the last
error signaled to the iTool. The last error may have been set either by a previous call
to this method or by a call to the IDLitIMessaging::SignalError method.

Version History

Introduced: 6.0
IDL Reference Guide IDLitIMessaging

2832 Chapter 7: iTools Object Classes
IDLitIMessaging::GetTool

The IDLitIMessaging::GetTool function method returns an object reference to the
iTool object associated with the object on which it is called.

Syntax

Result = Obj -> [IDLitIMessaging::]GetTool()

Return Value

Returns an object reference to the iTool object associated with the object on which
the GetTool is called. If the object is not contained by an iTool, this function returns a
null object reference.

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitIMessaging IDL Reference Guide

Chapter 7: iTools Object Classes 2833
IDLitIMessaging::ProbeStatusMessage

The IDLitIMessaging::ProbeStatusMessage procedure method is used to display a
status message to the user, which is displayed in a data-specific region of the user
interface. Unlike other messages that require immediate acknowledgement by the
user, a status message is passive and no response is needed.

The actual method used to display the value to the user depends on the user interface
in use. In a standard iTool included with IDL, this status message is displayed in the
lower right corner of the iTool window.

Syntax

Obj -> [IDLitIMessaging::]ProbeStatusMessage, StrMessage

Arguments

StrMessage

A scalar string that is displayed in the data-specific status area.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitIMessaging

2834 Chapter 7: iTools Object Classes
IDLitIMessaging::ProgressBar

The IDLitIMessaging::ProgressBar function method is used to display a progress bar
to the user and update the displayed values.

On the initial call to this method, a dialog is displayed. The dialog remains active
until the method is called with the /SHUTDOWN keyword.

The actual method used to display the message to the user depends on the user
interface in use. Normally, the progress bar is displayed as a modal dialog.

Syntax

Result = Obj -> [IDLitIMessaging::]ProgressBar(StrMessage[, PERCENT=value]
[, /SHUTDOWN])

Return Value

Returns 1 if the progress bar was displayed successfully, or 0 otherwise.

Arguments

StrMessage

A scalar string or string array containing a description of the action taking place.

Keywords

PERCENT

Set this keyword to a value between 0 and 100 that represents the “percentage
complete” value to be shown on the progress bar.

SHUTDOWN

If set, any progress bar that is being displayed is removed from the user interface.

Version History

Introduced: 6.0
IDLitIMessaging IDL Reference Guide

Chapter 7: iTools Object Classes 2835
IDLitIMessaging::PromptUserText

The IDLitIMessaging::PromptUserText function method is used to prompt the iTool
user with a question and retrieve a text answer. The text answer is returned to the
caller of this method via a supplied IDL variable.

The actual method used to prompt the user depends on the user interface in use.
Normally, the prompt is displayed as a modal dialog.

Syntax

Result = Obj -> [IDLitIMessaging::PromptUserText(StrPrompt, Answer
[, TITLE=string])

Return Value

Returns 1 if the prompt was displayed and the user clicked the OK button. If the user
clicks the Cancel button or dismisses the dialog, the return value is 0.

Arguments

StrPrompt

A scalar string or string array containing a prompt for the user to respond to.

Answer

A named variable that will contain the string value entered by the user.

Keywords

TITLE

Set this keyword to a string representing the title of the prompt. This value is placed
in the title bar of the modal dialog.

Version History

Introduced: 6.0
IDL Reference Guide IDLitIMessaging

2836 Chapter 7: iTools Object Classes
IDLitIMessaging::PromptUserYesNo

The IDLitIMessaging::PromptUserYesNo function method is used to prompt the user
with a yes or no question and return an answer.

The actual method used to prompt the user depends on the user interface in use.
Normally, the prompt is displayed as a modal dialog.

Syntax

Result = Obj -> [IDLitIMessaging::PromptUserYesNo(StrPrompt, Answer
[, TITLE=string])

Return Value

Returns 1 if the dialog executed properly and returned a value in the variable
specified. You must check the value stored in the variable specified as the Answer
argument to determine which button the user pressed.

Arguments

StrPrompt

A scalar string or string array containing a prompt for the user to respond to.

Answer

A named variable that will contain 1 if the user answered Yes to the prompt and 0 if
the user answered No.

Keywords

TITLE

Set this keyword to the title that should be displayed as part of the prompt. In most
cases, this value is placed in the title bar of the modal dialog.

Version History

Introduced: 6.0
IDLitIMessaging IDL Reference Guide

Chapter 7: iTools Object Classes 2837
IDLitIMessaging::RemoveOnNotifyObserver

The IDLitIMessaging::RemoveOnNotifyObserver procedure method is used to un-
register a specified iTool component object as wishing to receive messages generated
by the DoOnNotify method of another specified iTool component object. This
method reverses the action of calling the IDLitIMessaging::AddOnNotifyObserver
method.

Syntax

Obj -> [IDLitIMessaging::]RemoveOnNotifyObserver, IdObserver, IdSubject

Arguments

IdObserver

The object identifier of an iTool component object that is currently registered as an
observer of the component specified by IdSubject. Often, this is the object identifier
of the object on which method is being called.

IdSubject

The object identifier of the iTool component object that IdObserver is currently
registered as observing. This is normally the object identifier of a particular iTool
component object, but it can be any scalar string.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitIMessaging

2838 Chapter 7: iTools Object Classes
IDLitIMessaging::SignalError

The IDLitIMessaging::SignalError procedure method is used to signal an error in the
system. No user interface is displayed to the user, but the error is registered with the
system, made the current error, and recorded by the iTool log service (if enabled).

Note
If this method is used to signal an error, the IDLitIMessaging::ErrorMessage
method can be called with the /USE_LAST_ERROR keyword to use the
information set by this method.

Syntax

Obj -> [IDLitIMessaging::]SignalError, StrMessage [, CODE=integer]
[, SEVERITY=integer]

Arguments

StrMessage

A scalar string or string array containing a description of the error.

Keywords

CODE

Set this keyword to an integer that represents an error code that can be associated
with the error. Error codes can be any integer value specified by the iTool developer.

SEVERITY

Set this keyword to the severity code to use for this message. The system recognizes
the following values:

• 0 = Informational

• 1 = Warning

• 2 = Error

Version History

Introduced: 6.0
IDLitIMessaging IDL Reference Guide

Chapter 7: iTools Object Classes 2839
IDLitIMessaging::StatusMessage

The IDLitIMessaging::StatusMessage procedure method is used to display a status
message to the user. Unlike other messages that require immediate acknowledgement
by the user, a status message is passive and no response is needed.

The actual method used to display the value to the user depends on the user interface
in use. In a standard iTool included with IDL, this status message is displayed in the
lower left corner of the iTool window.

Syntax

Obj -> [IDLitIMessaging::]StatusMessage, StrMessage

Arguments

StrMessage

A scalar string that is displayed as a status message to the user.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitIMessaging

2840 Chapter 7: iTools Object Classes
IDLitManipulator

The IDLitManipulator class provides the base functionality of the iTools manipulator
system. Most automation and functional capabilities of the manipulator system are
provided by this class. Tasks performed by this class include:

• Selection operations and associated selection state management.

• Automated mouse cursor management (changing the cursor as the mouse
traverses different items in the current visualization).

• System event settings management.

• Coordination between the manipulator and manipulator visualization system.

This class is written in the IDL language. Its source code can be found in the file
idlitmanipulator__define.pro in the lib/itools/framework
subdirectory of the IDL distribution.

Superclasses

IDLitContainer

Creation

See “IDLitManipulator::Init” on page 2854.

Properties

Objects of this class have the following properties. See “IDLitManipulator
Properties” on page 2842 for details on individual properties.

• BUTTON_EVENTS

• DEFAULT_CURSOR

• DESCRIPTION

• DISABLE

• DRAG_QUALITY

• KEYBOARD_EVENTS

• MOTION_EVENTS

• OPERATION_IDENTIFIER
IDLitManipulator IDL Reference Guide

Chapter 7: iTools Object Classes 2841
• PARAMETER_IDENTIFIER

• TRANSIENT_DEFAULT

• TRANSIENT_MOTION

• TYPES

• VIEWS_ONLY

• VISUAL_TYPE

In addition, objects of this class inherit the properties of the superclass of this class.

Methods

This class has the following methods:

• IDLitManipulator::Cleanup

• IDLitManipulator::CommitUndoValues

• IDLitManipulator::GetCursorType

• IDLitManipulator::GetProperty

• IDLitManipulator::Init

• IDLitManipulator::OnKeyboard

• IDLitManipulator::OnLoseCurrentManipulator

• IDLitManipulator::OnMouseDown

• IDLitManipulator::OnMouseMotion

• IDLitManipulator::OnMouseUp

• IDLitManipulator::RecordUndoValues

• IDLitManipulator::SetCurrentManipulator

• IDLitManipulator::SetProperty

In addition, this class inherits the methods of its superclass.

Version History

Introduced: 6.0
IDL Reference Guide IDLitManipulator

2842 Chapter 7: iTools Object Classes
IDLitManipulator Properties

IDLitManipulator objects have the following properties in addition to properties
inherited from any superclasses. Properties with the word “Yes” in the “Get” column
of the property table can be retrieved via IDLitManipulator::GetProperty. Properties
with the word “Yes” in the “Init” column of the property table can be set via
IDLitManipulator::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLitManipulator::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

BUTTON_EVENTS

A boolean value controlling whether mouse button events are generated. If set, mouse
button up and button down events will be dispatched to this manipulator. These
events are enabled by default.

DEFAULT_CURSOR

A string containing the name of the default cursor for the manipulator. This is the
name of the cursor that is displayed if no items are hit during mouse cursor motion.
By default, the default cursor is set to 'ARROW'.

DESCRIPTION

A string representing the full name or description of this object.

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type String

Name String not displayed

Get: No Set: No Init: Yes Registered: No

Property Type STRING
IDLitManipulator IDL Reference Guide

Chapter 7: iTools Object Classes 2843
DISABLE

A boolean value indicating that the manipulator should be disabled. Disabling a
manipulator prevents it from being chosen by a user or by the iTool system.

Name String Description

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLitManipulator

2844 Chapter 7: iTools Object Classes
DRAG_QUALITY

An integer value representing the drawing quality to be used when the user clicks on
a visualization and holds down the mouse button. Choosing a lower quality setting for
drag operations may increase performance during the manipulation. When the user
releases the mouse button, the visualization is redrawn at the original quality. The
property can be set to any of the following values:

• 0 = Low

• 1 = Medium

• 2 = High

KEYBOARD_EVENTS

A boolean value controlling whether keyboard events are generated. If set, keyboard
events will be dispatched to the manipulator. These events are enabled by default.

MOTION_EVENTS

A boolean value controlling whether motion events are generated. If set, motion
events will be dispatched to this manipulator. These events are enabled by default.

Property Type ENUMLIST

Name String DRAG_QUALITY

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLitManipulator IDL Reference Guide

Chapter 7: iTools Object Classes 2845
OPERATION_IDENTIFIER

A string identifier for the operation that is associated with the manipulator. This
identifier specifies the operation that is used by the undo-redo system to transact the
actions performed by this manipulator. If not specified, the manipulator actions are
not recorded by the undo-redo system.

PARAMETER_IDENTIFIER

A string identifier specifying which parameter the operation should query when
transacting the manipulator. If specified, this identifier is used in conjunction with the
operation specified by the OPERATION_IDENTIFIER property to transact the
operations performed by a manipulator. The parameter is primarily used to specify
the property identifier for manipulators that change the values of properties.

TRANSIENT_DEFAULT

An integer value used to indicate that the manipulator is transient, which causes the
system to automatically switch to the default manipulator when this manipulator’s
mouse actions are complete (that is, when the OnMouseUp method has been called)
or when an end-of-keyboard-entry character (carriage return or escape key) is
detected.

Property Type String

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type String

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLitManipulator

2846 Chapter 7: iTools Object Classes
This property can be set to any of the following values:

• 0 = No transient behavior

• 1 = Mouse transient behavior is enabled. When a mouse button up is detected,
the manipulation system will switch to the default manipulator for the system.

• 2 = Keyboard transient behavior is enabled. When a carriage return or escape
key is pressed, the system will switch to the default manipulator for the system.

• 3 = Both keyboard and mouse transient behavior are enabled.

TRANSIENT_MOTION

A boolean value controlling whether transient motion events are generated. If set, the
manipulator will generate motion events beginning when the OnMouseDown method
is called and ending when the OnMouseUp method is called.

TYPES

A string array specifying the visualization types that this manipulator can operate on.
If not specified, the manipulator will support all registered visualization types.

Property Type Enumerated List

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Vector

Name String not displayed

Get: Yes Set: No Init: Yes Registered: No
IDLitManipulator IDL Reference Guide

Chapter 7: iTools Object Classes 2847
VIEWS_ONLY

A boolean value controlling the content of the manipulator hierarchy. If set, the
manipulator will only operate on views in the manipulator hierarchy.

VISUAL_TYPE

A string representing the type of selection visual to use with this manipulator. The
VISUAL_TYPE property should match the corresponding property of an
IDLitManipulatorVisual object. This high-level abstraction allows similar selection
visuals to be assigned across multiple manipulators.

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No

Property Type String

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLitManipulator

2848 Chapter 7: iTools Object Classes
IDLitManipulator::Cleanup

The IDLitManipulator::Cleanup procedure method performs all cleanup on the
object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: if you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLitManipulator::]Cleanup() (In a subclass' Init method only.)

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitManipulator IDL Reference Guide

Chapter 7: iTools Object Classes 2849
IDLitManipulator::CommitUndoValues

The IDLitManipulator::CommitUndoValues function method is used to complete a
transaction that is occurring as a result of the manipulator interaction. This method
works in conjunction with the RecordUndoValues method.

When a manipulator interaction is complete, the manipulator should call this method,
which in turn calls the RecordFinalValues method of the operation associated with
the manipulator. The RecordFinalValues method records any information needed to
undo the operation and places the information in the iTool’s undo-redo transaction
buffer.

For interactive manipulators, the CommitUndoValues method should be called by the
OnMouseUp method.

Note
This method must be called on the current manipulator before being called on a
superclass to ensure that the current selection state maintained by the manipulator is
valid.

Syntax

Result = Obj -> [IDLitManipulator::]CommitUndoValues([/UNCOMMENT])

Return Value

Returns 1 if the commit was successful, or 0 otherwise.

Arguments

None

Keywords

UNCOMMIT

Set this keyword to discard any pending information from a previous call to
RecordUndoValues. The interaction is not recorded in the iTool’s undo-redo
transaction buffer.
IDL Reference Guide IDLitManipulator

2850 Chapter 7: iTools Object Classes
Version History

Introduced: 6.0
IDLitManipulator IDL Reference Guide

Chapter 7: iTools Object Classes 2851
IDLitManipulator::GetCursorType

The IDLitManipulator::GetCursorType function method retrieves the name of the
cursor to display for the manipulator. The name of the cursor can be used with the
SetCurrentCursor method of the IDLitWindow component.

The system will use this method to automatically change the cursor when the mouse
traverses the contents of a visualization window. As the mouse transverses the
window, the name for the hit item that is part of the current selection group is
retrieved and passed to this routine. This action gives the manipulator the ability to
change cursors depending on the area of the visualization the cursor is over.

Syntax

Result = Obj -> [IDLitManipulator::]GetCursorType(TypeIn, KeyMods)

Return Value

Returns a string containing the name of the cursor. If nothing is matched, an empty
string is returned.

Arguments

TypeIn

A string variable containing the name of the portion of the selection visual for which
the cursor is being requested.

KeyMods

An integer representing the keyboard modifiers for the button. These can have one of
the following values

1 = SHIFT Key

2 = CTRL Key

4 = CAPS LOCK key

8 = ALT key

Keywords

None
IDL Reference Guide IDLitManipulator

2852 Chapter 7: iTools Object Classes
Version History

Introduced: 6.0
IDLitManipulator IDL Reference Guide

Chapter 7: iTools Object Classes 2853
IDLitManipulator::GetProperty

The IDLitManipulator::GetProperty procedure method retrieves the value of an
IDLitManipulator property, and should be called by the subclass' GetProperty
method. This method also retrieves properties defined in the superclass.

Syntax

Obj -> [IDLitManipulator::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLitManipulator Properties” on page 2842 that contains
the word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Version History

Introduced: 6.0
IDL Reference Guide IDLitManipulator

2854 Chapter 7: iTools Object Classes
IDLitManipulator::Init

The IDLitManipulator::Init function method initializes the IDLitManipulator object,
and should be called by the subclass' Init method. This method also calls the
superclass' Init method.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLitManipulator'[, PROPERTY=value])

or

Result = Obj -> [IDLitManipulator::]Init([, PROPERTY=value])
(In a subclass' Init method only.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLitManipulator Properties” on page 2842 that contains
the word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.
IDLitManipulator IDL Reference Guide

Chapter 7: iTools Object Classes 2855
Version History

Introduced: 6.0
IDL Reference Guide IDLitManipulator

2856 Chapter 7: iTools Object Classes
IDLitManipulator::OnKeyboard

The IDLitManipulator::OnKeyboard procedure method is used when a keyboard
event occurs on the target IDLitWindow.

Syntax

Obj -> [IDLitManipulator::]OnKeyboard, Win, IsASCII, Character, Key Value, X, Y,
Press, Release, KeyMods

Arguments

Win

An object reference for the IDLitWindow from which the event came.

IsASCII

A Boolean value to determine if the character is in the ASCII character set. This value
is True if the character is in the ASCII character set.

KeyValue

The numeric value representing the key pressed if the key is non-ASCII. The possible
numeric values are:

• 1 = Shift

• 2 = Control

• 3 = Caps Lock

• 4 = Alt

• 5 = Left

• 6 = Right

• 7 = Up

• 8 = Down

• 9 = Page Up

• 10 = Page Down

• 11 = Home

• 12 = End
IDLitManipulator IDL Reference Guide

Chapter 7: iTools Object Classes 2857
Character

A string containing the ASCII character of the key pressed.

X

A floating-point value representing the x-coordinate in the window’s coordinates.

Y

A floating-point value representing the y-coordinate in the window’s coordinates.

Press

A Boolean value to determine if the current event is a key press. This value is True if
the event is pressing the key

Release

A Boolean value to determine if the current event is a key release. This value is True
if event is releasing the key

KeyMods

An integer representing the keyboard modifiers for the button. These can have one of
the following values:

• 1 = SHIFT key

• 2 = CTRL key

• 4 = CAPS LOCK key

• 8 = ALT key

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitManipulator

2858 Chapter 7: iTools Object Classes
IDLitManipulator::OnLoseCurrentManipulator

The IDLitManipulator::OnLoseCurrentManipulator procedure method is used when
this manipulator is no longer the current manipulator in the system.

Note
This method is designed to be implemented by a subclass of IDLitManipulator, to
perform any cleanup work necessary when a new manipulator is selected.

Syntax

Obj -> [IDLitManipulator::]OnLoseCurrentManipulator

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitManipulator IDL Reference Guide

Chapter 7: iTools Object Classes 2859
IDLitManipulator::OnMouseDown

The IDLitManipulator::OnMouseDown procedure method is used when a mouse
down event occurs on the target IDLitWindow. When applied, this method will
perform a select operation on the current contents of the target IDLitWindow.

When overriding this method in a sub-class, this method is normally the first task
performed so that the instance data of the object is properly setup.

Syntax

Obj -> [IDLitManipulator::]OnMouseDown, Win, X, Y, IButton, KeyMods, NClicks

Arguments

Win

An object reference for the IDLitWindow from which the event came.

X

A floating-point value representing the x-coordinate in the window’s coordinates.

Y

A floating-point value representing the y-coordinate in the window’s coordinates.

IButton

An integer value representing the mask for the button pressed:

• 1 = Left

• 2 = Middle

• 4 = Right
IDL Reference Guide IDLitManipulator

2860 Chapter 7: iTools Object Classes
KeyMods

An integer representing the keyboard modifiers for the button. These can have one of
the following values:

• 1 = SHIFT key

• 2 = CTRL key

• 4 = CAPS LOCK key

• 8 = ALT key

NClicks

An integer value representing number of clicks

Keywords

None

Version History

Introduced: 6.0
IDLitManipulator IDL Reference Guide

Chapter 7: iTools Object Classes 2861
IDLitManipulator::OnMouseMotion

The IDLitManipulator::OnMouseMotion procedure method implements the
OnMouseMotion method. If no mouse button is down, this method manages the
setting of the cursor on the IDLitWindow object.

If the manipulator is in the middle of a mouse-down, mouse-up transaction, the
following instance data will be valid:

• ButtonPress — Set to the mouse buttons pressed.

• nSelectionList — The number of items selected.

• pSelectionList — A pointer to the objects current selected in the iTool.

These values can be helpful in performing actions in the manipulator and are
automatically managed.

Syntax

Obj -> [IDLitManipulator::]OnMouseMotion, Win, X, Y, KeyMods

Arguments

Win

An object reference for the IDLitWindow object from which the event came.

X

A floating-point value representing the x-coordinate in the window’s coordinates.

Y

A floating-point value representing the y-coordinate in the window’s coordinates.

KeyMods

An integer representing the keyboard modifiers for the button. These can have one of
the following values:

• 1 = SHIFT key

• 2 = CTRL key

• 4 = CAPS LOCK key

• 8 = ALT key
IDL Reference Guide IDLitManipulator

2862 Chapter 7: iTools Object Classes
Keywords

None

Version History

Introduced: 6.0
IDLitManipulator IDL Reference Guide

Chapter 7: iTools Object Classes 2863
IDLitManipulator::OnMouseUp

The IDLitManipulator::OnMouseUp procedure method is used when a mouse up
event occurs on the target IDLitWindow object.

When overriding this method in a sub-class, this method is normally the last task
performed so that the instance data of the object is properly setup.

Syntax

Obj -> [IDLitManipulator::]OnMouseUp, Win, X, Y, IButton

Arguments

Win

An object reference for the IDLitWindow object from which the event came.

X

A floating-point value representing the x-coordinate in the window’s coordinates.

Y

A floating-point value representing the y-coordinate in the window’s coordinates.

IButton

An integer value representing the mask for the button pressed:

• 1 = Left

• 2 = Middle

• 4 = Right

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitManipulator

2864 Chapter 7: iTools Object Classes
IDLitManipulator::RecordUndoValues

The IDLitManipulator::RecordUndoValues function method is used to begin
recording the transaction that is occurring as a result of the manipulator interaction.
This method works in conjunction with the CommitUndoValues method.

To capture information for the undo-redo system of the tools framework, the initial
and final values for the items that the manipulator will adjust must be recorded. This
recording process is accomplished with the RecordUndoValues and
CommitUndoValues methods.

These two methods make use of the operation that is associated with this manipulator
(specified by the OPERATION_IDENTIFIER keyword to the Init method) to capture
the needed information. When the RecordUndoValues method is called, the
manipulator will retrieve the operation associated with this manipulator and call the
RecordInitialValues method on this operation. The RecordInitialValues method is
called with a command set, the list of currently selected items (which the manipulator
is operating on) and the value that was provided by the PARAMETER_IDENTIFIER
keyword to this manipulator. This method will record any information needed to undo
the operation and place the values in the provided command set. See IDLitOperation
for more information on operations.

For interactive manipulators, the RecordUndoValues method is called as part of the
OnMouseDown method.

Syntax

Result = Obj -> [IDLitManipulator::]RecordUndoValues()

Return Value

Returns a 1 if recording was successful, or 0 otherwise.

Arguments

None
IDLitManipulator IDL Reference Guide

Chapter 7: iTools Object Classes 2865
Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitManipulator

2866 Chapter 7: iTools Object Classes
IDLitManipulator::SetCurrentManipulator

The IDLitManipulator::SetCurrentManipulator procedure method sets the
manipulator as the current manipulator in the system.

Syntax

Obj -> [IDLitManipulator::]SetCurrentManipulator [, Item]

Arguments

Item

If this method is being called on a manipulator container object, Item can optionally
be set to a string containing the relative object ID of the manipulator that should be
set as the current manipulator. If Item is not supplied, the manipulator on which the
method is called is set as the current manipulator.

Keyword

None

Version History

Introduced: 6.0
IDLitManipulator IDL Reference Guide

Chapter 7: iTools Object Classes 2867
IDLitManipulator::SetProperty

The IDLitManipulator::SetProperty procedure method sets the value of an
IDLitManipulator property, and should be called by the subclass' SetProperty
method. This method also calls the superclass' SetProperty method.

Syntax

Obj -> [IDLitManipulator::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLitManipulator Properties” on page 2842 that contains
the word “Yes” in the “Set” column of the properties table can be set using this
method. To set the value of a property, specify the property name as a keyword set
equal to the appropriate property value.

Version History

Introduced: 6.0
IDL Reference Guide IDLitManipulator

2868 Chapter 7: iTools Object Classes
IDLitManipulatorContainer

The IDLitManipulatorContainer class allows for the construction of manipulator
hierarchies. Building on the functionality provided by the IDLitManipulator class, the
manipulator container implements the concept of a current manipulator for the items
it contains.

This class is written in the IDL language. Its source code can be found in the file
idlitmanipulatorcontainer__define.pro in the lib/itools/framework
subdirectory of the IDL distribution.

Superclasses

IDLitContainer

IDLitManipulator

Creation

See “IDLitManipulatorContainer::Init” on page 2875.

Properties

Objects of this class have the following properties. See “IDLitManipulatorContainer
Properties” on page 2870 for details on individual properties.

• AUTO_SWITCH

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLitManipulatorContainer::Add

• IDLitManipulatorContainer::GetCurrent

• IDLitManipulatorContainer::GetCurrentManipulator

• IDLitManipulatorContainer::GetProperty

• IDLitManipulatorContainer::Init

• IDLitManipulatorContainer::OnKeyboard
IDLitManipulatorContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2869
• IDLitManipulatorContainer::OnMouseDown

• IDLitManipulatorContainer::OnMouseMotion

• IDLitManipulatorContainer::OnMouseUp

• IDLitManipulatorContainer::SetCurrent

• IDLitManipulatorContainer::SetCurrentManipulator

• IDLitManipulatorContainer::SetProperty

In addition, this class inherits the methods of its superclasses.

Version History

Introduced: 6.0
IDL Reference Guide IDLitManipulatorContainer

2870 Chapter 7: iTools Object Classes
IDLitManipulatorContainer Properties

IDLitManipulatorContainer objects have the following properties in addition to
properties inherited from any superclasses. Properties with the word “Yes” in the
“Get” column of the table are retrieved via IDLitManipulatorContainer::GetProperty.
Properties with the word “Yes” in the “Init” column of the property table are set via
IDLitManipulatorContainer::Init. Properties with the word “Yes” in the “Set” column
in the property table are set via IDLitManipulatorContainer::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

AUTO_SWITCH

A boolean that, if set, causes the manipulator container to automatically change the
value of its current child manipulator depending on the portion of the selection visual
hit during a mouse down operation. This is performed by matching the name of the
portion of the selection visual hit during the mouse down operation and the name of
the sub-manipulators of this container.

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDLitManipulatorContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2871
IDLitManipulatorContainer::Add

The IDLitManipulatorContainer::Add procedure method is used to add a new
manipulator to the container.

Syntax

Obj -> [IDLitManipulatorContainer::]Add, Manipulator

Arguments

Manipulator

The new manipulator to add to this manipulator container. When completed, this
manipulator is also set to the current manipulator for this manipulator container.

Keywords

All keywords are passed to the IDL_Container superclass during the add operation.

Version History

Introduced: 6.0
IDL Reference Guide IDLitManipulatorContainer

2872 Chapter 7: iTools Object Classes
IDLitManipulatorContainer::GetCurrent

The IDLitManipulatorContainer::GetCurrent function method is used to get the
object reference of the current manipulator of the container.

Syntax

Result = Obj -> [IDLitManipulatorContainer::]GetCurrent()

Return Value

Returns an object reference to the current manipulator for this container or a null
object reference if no manipulators are contained by the container.

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitManipulatorContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2873
IDLitManipulatorContainer::GetCurrentManipulator

The IDLitManipulatorContainer::GetCurrentManipulator function method is used to
get the current manipulator of the system. When applied, this function method causes
a traversal of the manipulator hierarchy, returning the current leaf manipulator of the
system.

Syntax

Result = Obj -> [IDLitManipulatorContainer::]GetCurrentManipulator([, /IDENTIFIER])

Return Value

Returns an object reference to the current manipulator in the system. If the
IDENTIFIER keyword is set, the routine will return the identifier for the current
manipulator.

Arguments

None

Keywords

IDENTIFIER

If set, the identifier of the current manipulator is returned. If not set, the current
manipulator itself is returned.

Version History

Introduced: 6.0
IDL Reference Guide IDLitManipulatorContainer

2874 Chapter 7: iTools Object Classes
IDLitManipulatorContainer::GetProperty

The IDLitManipulatorContainer::GetProperty procedure method retrieves the value
of an IDLitManipulatorContainer property, and should be called by the subclass'
GetProperty method. This method also retrieves properties defined in the superclass.

Syntax

Obj -> [IDLitManipulatorContainer::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLitManipulatorContainer Properties” on page 2870 that
contains the word “Yes” in the “Get” column of the properties table can be retrieved
using this method. To retrieve the value of a property, specify the property name as a
keyword set equal to a named variable that will contain the value of the property.

Version History

Introduced: 6.0
IDLitManipulatorContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2875
IDLitManipulatorContainer::Init

The IDLitManipulatorContainer::Init function method initializes the
IDLitManipulatorContainer object, and should be called by the subclass' Init method.
This method also calls the superclass' Init method.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLitManipulatorContainer'[, PROPERTY=value])

or

Result = Obj -> [IDLitManipulatorContainer::]Init([PROPERTY=value])
(In a subclass' Init method only.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLitManipulatorContainer Properties” on page 2870 that
contains the word “Yes” in the “Init” column of the properties table can be initialized
during object creation using this method. To initialize the value of a property, specify
the property name as a keyword set equal to the appropriate property value.
IDL Reference Guide IDLitManipulatorContainer

2876 Chapter 7: iTools Object Classes
Version History

Introduced: 6.0
IDLitManipulatorContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2877
IDLitManipulatorContainer::OnKeyboard

The IDLitManipulatorContainer::OnKeyboard procedure method is used when a
keyboard event occurs on the target IDLitWindow object. If the current child
manipulator supports keyboard events, the OnKeyboard method for that manipulator
is called.

Syntax

Obj -> [IDLitManipulator::]OnKeyboard, Win, IsASCII, Character, Key Value, X, Y,
Press, Release, KeyMods

Arguments

Win

An object reference for the IDLitWindow object from which the event came.

IsASCII

A Boolean value to determine if the character is in the ASCII character set. This value
is True if the character is in the ASCII character set.

KeyValue

The numeric value representing a non-ASCII key pressed. The possible values are:

• 1 = Shift

• 2 = Control

• 3 = Caps Lock

• 4 = Alt

• 5 = Left

• 6 = Right

• 7 = Up

• 8 = Down

• 9 = Page Up

• 10 = Page Down

• 11 = Home
IDL Reference Guide IDLitManipulatorContainer

2878 Chapter 7: iTools Object Classes
• 12 = End

Character

A string containing the ASCII character of the key pressed

X

A floating-point value representing the x-coordinate in the window’s coordinates.

Y

A floating-point value representing the y-coordinate in the window’s coordinates.

Press

A Boolean value to determine if the current event is a key press. This value is True if
the event is pressing the key

Release

A Boolean value to determine if the current event is a key release. This value is True
if event is releasing the key

KeyMods

An integer representing the keyboard modifiers for the button. These can have one of
the following values:

• 1 = SHIFT key

• 2 = CTRL key

• 4 = CAPS LOCK key

• 8 = ALT key

Keywords

None

Version History

Introduced: 6.0
IDLitManipulatorContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2879
IDLitManipulatorContainer::OnMouseDown

The IDLitManipulatorContainer::OnMouseDown procedure method is used when a
mouse down event occurs on the target IDLitWindow object. When applied and auto-
switch mode is enabled in the container, the current child manipulator will be
determined by matching the type of the visualization hit with the identifier of the sub-
manipulators contained in this container. If no match is made, the default child
manipulator is selected. Once complete, normal processing continues.

If the current sub-manipulator supports mouse button events, its OnMouseDown
method is called.

Syntax

Obj -> [IDLitManipulatorContainer::]OnMouseDown, Win, X, Y, IButton, KeyMods,
NClicks

Arguments

Win

An object reference for the IDLitWindow object from which the event came.

X

A floating-point value representing the x-coordinate in the window’s coordinates.

Y

A floating-point value representing the y-coordinate in the window’s coordinates.

IButton

An integer value representing the mask for the button pressed:

• 1 = Left

• 2 = Middle

• 4 = Right
IDL Reference Guide IDLitManipulatorContainer

2880 Chapter 7: iTools Object Classes
KeyMods

An integer representing the keyboard modifiers for the button. These can have one of
the following values:

• 1 = SHIFT key

• 2 = CTRL key

• 4 = CAPS LOCK key

• 8 = ALT key

NClicks

An integer value representing number of clicks

Keywords

None

Version History

Introduced: 6.0
IDLitManipulatorContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2881
IDLitManipulatorContainer::OnMouseMotion

The IDLitManipulatorContainer::OnMouseMotion procedure method implements
the OnMouseMotion method. If no mouse button is down and auto-switch mode is
enabled, this method manages the setting of the cursor on the IDLitWindow object.
Otherwise if the current sub-manipulator supports motion events, its
OnMouseMotion method is called.

Syntax

Obj -> [IDLitManipulatorContainer::]OnMouseMotion, Win, X, Y, KeyMods

Arguments

Win

An object reference for the IDLitWindow object from which the event came.

X

A floating-point value representing the x-coordinate in the window’s coordinates.

Y

A floating-point value representing the y-coordinate in the window’s coordinates.

KeyMods

An integer representing the keyboard modifiers for the button. These can have one of
the following values:

• 1 = SHIFT key

• 2 = CTRL key

• 4 = CAPS LOCK key

• 8 = ALT key

Keywords

None
IDL Reference Guide IDLitManipulatorContainer

2882 Chapter 7: iTools Object Classes
Version History

Introduced: 6.0
IDLitManipulatorContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2883
IDLitManipulatorContainer::OnMouseUp

The IDLitManipulatorContainer::OnMouseUp procedure method is used when a
mouse up event occurs on the target IDLitWindow object. When applied, the
container will call the OnMouseUp method of the current child manipulator if that
manipulator supports button events.

Syntax

Obj -> [IDLitManipulatorContainer::]OnMouseUp, Win, X, Y, IButton

Arguments

Win

An object reference for the IDLitWindow object from which the event came.

X

A floating-point value representing the x-coordinate in the window’s coordinates.

Y

A floating-point value representing the y-coordinate in the window’s coordinates.

IButton

An integer value representing the mask for the button pressed:

• 1 = Left

• 2 = Middle

• 4 = Right

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitManipulatorContainer

2884 Chapter 7: iTools Object Classes
IDLitManipulatorContainer::SetCurrent

The IDLitManipulatorContainer::SetCurrent procedure method is used to set a
manipulator within the container to be the current manipulator.

Syntax

Obj -> [IDLitManipulatorContainer::]SetCurrent, Manipulator

Arguments

Manipulator

The object reference of the manipulator to be set as current in the manipulator
container. This manipulator must be contained in the container or an error is thrown.

Keywords

None

Version History

Introduced: 6.0
IDLitManipulatorContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2885
IDLitManipulatorContainer::SetCurrentManipulator

The IDLitManipulatorContainer::SetCurrentManipulator procedure method is used
to set the current child manipulator in a manipulator hierarchy. When applied, the
manipulator will use the provided identifier to call the SetCurrentManipulator on the
target child manipulator. If the provided identifier is null, the default manipulator is
set as current.

Syntax

Obj -> [IDLitManipulatorContainer::]SetCurrentManipulator, Identifier

Arguments

Identifier

Either the identifier for the manipulator that is to be made current in the system or its
object reference.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitManipulatorContainer

2886 Chapter 7: iTools Object Classes
IDLitManipulatorContainer::SetProperty

The IDLitManipulatorContainer::SetProperty procedure method sets the value of an
IDLitManipulatorContainer property, and should be called by the subclass'
SetProperty method. This method also calls the superclass' SetProperty method.

Syntax

Obj -> [IDLitManipulator::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLitManipulatorContainer Properties” on page 2870 that
contains the word “Yes” in the “Set” column of the properties table can be set using
this method. To set the value of a property, specify the property name as a keyword
set equal to the appropriate property value.

Version History

Introduced: 6.0
IDLitManipulatorContainer IDL Reference Guide

Chapter 7: iTools Object Classes 2887
IDLitManipulatorManager

The IDLitManipulatorManager class is a specialization of a IDLitManipulatorContainer
class that acts as the root of a manipulator hierarchy. In addition, this class provides
the functionality that allows it to interface with external elements in the iTool system.

This class is written in the IDL language. Its source code can be found in the file
idlitmanipulatormanager__define.pro in the lib/itools/framework
subdirectory of the IDL distribution.

Superclasses

IDLitManipulatorContainer

Creation

See “IDLitManipulatorManager::Init” on page 2891.

Properties

Objects of this class have no properties of their own, but do have properties inherited
from any superclasses.

Methods

This class has the following methods:

• IDLitManipulatorManager::Add

• IDLitManipulatorManager::AddManipulatorObserver

• IDLitManipulatorManager::Init

• IDLitManipulatorManager::RemoveManipulatorObserver

In addition, this class inherits the methods of its superclass.

Version History

Introduced: 6.0
IDL Reference Guide IDLitManipulatorManager

2888 Chapter 7: iTools Object Classes
IDLitManipulatorManager Properties

Objects of this class have no properties of their own, but do have properties inherited
from its superclass.
IDLitManipulatorManager IDL Reference Guide

Chapter 7: iTools Object Classes 2889
IDLitManipulatorManager::Add

The IDLitManipulatorManager::Add procedure method is used to add manipulators
to the manipulator manager. This method uses the add functionality of its superclass
to add the given manipulator to the hierarchy and checks the default keyword to
determine if the given manipulator should be treated as the default for the system.

Syntax

Obj -> [IDLitManipulatorManager::]Add, Manipulator [, /DEFAULT]

Arguments

Manipulator

A manipulator to add to the manipulator manager

Keywords

DEFAULT

If set, the added manipulator is made default for the system. This is primarily used
with manipulators that implement transient behavior (mouse or keyboard). When
these manipulators complete interaction, the current manipulator of the system is set
to the default manipulator.

Version History

Introduced: 6.0
IDL Reference Guide IDLitManipulatorManager

2890 Chapter 7: iTools Object Classes
IDLitManipulatorManager::AddManipulatorObserver

The IDLitManipulatorManager::AddManipulatorObserver procedure method is used
to add an observer to the manipulator system. An observer object is notified when the
current manipulator of the manipulator hierarchy changes.

To perform this action, the observer object must implement the method
OnManipulatorChange. This method has the following signature:

PRO ObjectClass::OnManipulatorChange, Subject

Where Subject is this class, the manipulator manager.

Syntax

Obj -> [IDLitManipulatorManager::]AddManipulatorObserver, Observer

Arguments

Observer

A scalar or array of objects that implement the manipulator observer interface.

Keywords

None

Version History

Introduced: 6.0
IDLitManipulatorManager IDL Reference Guide

Chapter 7: iTools Object Classes 2891
IDLitManipulatorManager::Init

The IDLitManipulatorManager::Init function method initializes the
IDLitManipulatorManager object, and should be called by the subclass' Init method.
This method also calls the superclass' Init method.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLitManipulatorManager' [, PROPERTY=value])

or

Result = Obj -> [IDLitManipulatorManager::]Init([PROPERTY=value])
(In a subclass' Init method only.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLitManipulatorManager Properties” on page 2888 that
contains the word “Yes” in the “Init” column of the properties table can be initialized
during object creation using this method. To initialize the value of a property, specify
the property name as a keyword set equal to the appropriate property value.
IDL Reference Guide IDLitManipulatorManager

2892 Chapter 7: iTools Object Classes
Version History

Introduced: 6.0
IDLitManipulatorManager IDL Reference Guide

Chapter 7: iTools Object Classes 2893
IDLitManipulatorManager::RemoveManipulatorObserver

The IDLitManipulatorManager::RemoveManipulatorObserver procedure method is
used to remove a manipulator observer from the manipulator object. If the value for
the Observer argument is not a valid manipulator observer, this method does nothing
and no error is reported.

Syntax

Obj -> [IDLitManipulatorManager::]RemoveManipulatorObserver, Observer

Arguments

Observer

A scalar or array of objects that are to be removed from this container

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitManipulatorManager

2894 Chapter 7: iTools Object Classes
IDLitManipulatorVisual

The IDLitManipulatorVisual class implements methods that allow the iTool
developer to create visual elements that are associated with an interactive
manipulator. IDLitManipulatorVisual objects are not intended to be created as
standalone entities; rather, this class should be included as the superclass of another
iTool class.

Superclasses

This class has no superclasses.

Creation

See “IDLitManipulatorVisual::Init” on page 2899.

Properties

Objects of this class have the following properties. See “IDLitManipulatorVisual
Properties” on page 2895 for details on individual properties.

• UNIFORM_SCALE

• VISUAL_TYPE

Methods

This class has the following methods:

• IDLitManipulatorVisual::Cleanup

• IDLitManipulatorVisual::GetProperty

• IDLitManipulatorVisual::Init

• IDLitManipulatorVisual::SetProperty

Version History

Introduced: 6.0
IDLitManipulatorVisual IDL Reference Guide

Chapter 7: iTools Object Classes 2895
IDLitManipulatorVisual Properties

IDLitManipulatorVisual objects have the following properties. Properties with the
word “Yes” in the “Get” column of the property table can be retrieved via
IDLitManipulatorVisual::GetProperty. Properties with the word “Yes” in the “Init”
column of the property table can be set via IDLitManipulatorVisual::Init. Properties
with the word “Yes” in the “Set” column in the property table can be set via
IDLitManipulatorVisual::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

UNIFORM_SCALE

Set this property to create a manipulator visual which should be scaled equally in all
three dimensions when fitting the manipulator visual to the size of its associated
visualization. If this property is not set, then the manipulator visual will use a
different scale factor in the x, y, and z dimensions, in order to match its associated
visualization.

Property Type Boolean

Name String not applicable

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLitManipulatorVisual

2896 Chapter 7: iTools Object Classes
VISUAL_TYPE

Set this keyword to a string representing the manipulator visual type. The
VISUAL_TYPE property should match the corresponding string in its associated
IDLitManipulator object. When a new manipulator is selected in an iTool, the
VISUAL_TYPE property on the manipulator object is used to search for a
corresponding manipulator visual.

Property Type String

Name String not applicable

Get: Yes Set: Yes Init: Yes Registered: No
IDLitManipulatorVisual IDL Reference Guide

Chapter 7: iTools Object Classes 2897
IDLitManipulatorVisual::Cleanup

The IDLitManipulatorVisual::Cleanup procedure method performs all cleanup on the
object, and should be called by the Cleanup method of a subclass.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: if you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLitManipulatorVisual::]Cleanup (only in subclass’ Cleanup method)

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitManipulatorVisual

2898 Chapter 7: iTools Object Classes
IDLitManipulatorVisual::GetProperty

The IDLitManipulatorVisual::GetProperty procedure method retrieves the value of an
IDLitManipulatorVisual property.

Syntax

Obj -> [IDLitManipulatorVisual::]GetProperty

Arguments

None

Keywords

Any property listed under “IDLitManipulatorVisual Properties” on page 2895 that
contains the word “Yes” in the “Get” column of the properties table can be retrieved
using this method. To retrieve the value of a property, specify the property name as a
keyword set equal to a named variable that will contain the value of the property.

Version History

Introduced: 6.0
IDLitManipulatorVisual IDL Reference Guide

Chapter 7: iTools Object Classes 2899
IDLitManipulatorVisual::Init

The IDLitManipulatorVisual::Init function method initializes the
IDLitManipulatorVisual object, and should be called by the Init method of a subclass.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLitManipulatorVisual'[, PROPERTY=value])

or

Result = Obj -> [IDLitManipulatorVisual::]Init([, PROPERTY=value])
(In a subclass’ Init method only.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLitManipulatorVisual Properties” on page 2895 that
contains the word “Yes” in the “Init” column of the properties table can be initialized
during object creation using this method. To initialize the value of a property, specify
the property name as a keyword set equal to the appropriate property value.
IDL Reference Guide IDLitManipulatorVisual

2900 Chapter 7: iTools Object Classes
Version History

Introduced: 6.0
IDLitManipulatorVisual IDL Reference Guide

Chapter 7: iTools Object Classes 2901
IDLitManipulatorVisual::SetProperty

The IDLitManipulatorVisual::SetProperty procedure method sets the value of an
IDLitManipulatorVisual property.

Syntax

Obj -> [IDLitManipulatorVisual::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLitManipulatorVisual Properties” on page 2895 that
contains the word “Yes” in the “Set” column of the properties table can be set using
this method. To set the value of a property, specify the property name as a keyword
set equal to the appropriate property value.

Version History

Introduced: 6.0
IDL Reference Guide IDLitManipulatorVisual

2902 Chapter 7: iTools Object Classes
IDLitOperation

The IDLitOperation class is the basis for all iTool operations. It defines how an
operation is executed and how information about the operation is recorded for the
command transaction (undo-redo) system.

An operation encapsulates a specific set of tasks that perform some atomic action on
a target. Between executions of the operation, no state values other than properties of
the operation itself are maintained by this object. Two major areas of functionality are
provided: automated operation execution and undo-redo capabilities.

Once defined, the operation object exposes a set of properties whose values can affect
how the operation executes. The properties that an operation exposes are valid across
multiple executions; properties can be set interactively via the Operation browser or
programmatically using the operation object’s GetProperty and SetProperty methods.

Note
For operations that act directly on data items that underlie a visualization, consider
basing your operation class on the IDLitDataOperation class. IDLitDataOperation
is a subclass of IDLitOperation that automates many of the target-selection and
undo-redo mechanisms that must be provided by operation classes based directly on
this class.

For a detailed discussion of both the IDLitOperation and IDLitDataOperation classes,
see Chapter 7, “Creating an Operation” in the iTool Developer’s Guide manual.

This class is written in the IDL language. Its source code can be found in the file
idlitoperation__define.pro in the lib/itools/framework subdirectory of
the IDL distribution.

Superclasses

IDLitComponent

IDLitIMessaging

Creation

See “IDLitOperation::Init” on page 2911.
IDLitOperation IDL Reference Guide

Chapter 7: iTools Object Classes 2903
Properties

Objects of this class have the following properties. See “IDLitOperation Properties”
on page 2905 for details on individual properties.

• EXPENSIVE_COMPUTATION

• REVERSIBLE_OPERATION

• SHOW_EXECUTION_UI

• TYPES

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLitOperation::Cleanup

• IDLitOperation::DoAction

• IDLitOperation::GetProperty

• IDLitOperation::Init

• IDLitOperation::RecordFinalValues

• IDLitOperation::RecordInitialValues

• IDLitOperation::RedoOperation

• IDLitOperation::SetProperty

• IDLitOperation::UndoOperation

In addition, this class inherits the methods of its superclasses.

Examples

See Chapter 7, “Creating an Operation” in the iTool Developer’s Guide manual for
examples using this class and its methods.
IDL Reference Guide IDLitOperation

2904 Chapter 7: iTools Object Classes
Version History

Introduced: 6.0

See Also

IDLitDataOperation
IDLitOperation IDL Reference Guide

Chapter 7: iTools Object Classes 2905
IDLitOperation Properties

IDLitOperation objects have the following properties in addition to properties
inherited from any superclasses. Properties with the word “Yes” in the “Get” column
of the properties table can be retrieved via IDLitOperation::GetProperty. Properties
with the word “Yes” in the “Init” column of the properties table can be initialized via
IDLitOperation::Init. Properties with the word “Yes” in the “Set” column of the
properties table can be set via IDLitOperation::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

EXPENSIVE_COMPUTATION

Set this property to 1 to indicate that a computation of the operation is expensive.
Expensive computations are those that require significant memory or processing time
to execute. Individual operations should use the value of this property to determine
whether the results of the operation should be cached to avoid re-execution when
undoing or redoing.

Property Type Boolean

Name String not displayed

Get: Yes Set: No Init: Yes Registered: No
IDL Reference Guide IDLitOperation

2906 Chapter 7: iTools Object Classes
REVERSIBLE_OPERATION

Set this property to 1 to indicate that the operation is reversible. When an operation is
reversible, it can be undone by applying an operation rather than restoring a stored
value. Rotation by a specified angle is an example of an operation that is reversible,
since applying another rotation by the complementary angle returns the visualization
to its original state. Individual operations should use the value of this property to
determine how the operation should be undone.

SHOW_EXECUTION_UI

Set this property to 1 to indicate that the operation should display a user interface
element such as a dialog when the operation is executed. The flag is ignored by the
IDLitOperation itself, but can be used by subclasses (notably IDLitDataOperation) to
determine when to display user interface elements.

TYPES

Set this property to a string or an array of strings indicating the types of data to which
the operation can be applied. iTools data types are described in Chapter 3, “Data
Management” in the iTool Developer’s Guide manual. Set this property to a null
string ('') to specify that the operation can be applied to all types of data.

Property Type Boolean

Name String not displayed

Get: Yes Set: No Init: Yes Registered: No

Property Type Boolean

Name String Show Dialog

Get: Yes Set: No Init: Yes Registered: No

Property Type User Defined

Name String not displayed

Get: Yes Set: No Init: Yes Registered: No
IDLitOperation IDL Reference Guide

Chapter 7: iTools Object Classes 2907
IDLitOperation::Cleanup

The IDLitOperation::Cleanup procedure method performs all cleanup on the object.

Note
An operation based on the IDLitOperation class need not implement this method if
the operation does not allocate any pointers or object references of its own.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: if you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLitOperation::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitOperation

2908 Chapter 7: iTools Object Classes
IDLitOperation::DoAction

The IDLitOperation::DoAction function method is called when an operation is
requested by the iTools system, either as the result of a user action such as selection
of a menu item or toolbar button, or by another operation.

Note
Every operation based directly on the IDLitOperation class must implement its own
DoAction method. See Chapter 7, “Creating an Operation” in the iTool Developer’s
Guide manual for details.

A specific operation class’ implementation of this method must create an initialized
IDLitCommandSet object, execute the operation, and return the command set object
to the caller. DoAction can also call the IDLitOperation::RecordInitialValues and
IDLitOperation::RecordFinalValues methods to ensure that the appropriate values are
committed to the undo-redo transaction buffer.

If your operation changes the values of its own registered properties (as the result of
user interaction with a dialog or other interface element called by DoUIService, for
example), be sure to call the RecordInitialValues and RecordFinalValues methods.
This ensures that changes made through the dialog are placed in the undo-redo
transaction buffer.

Note
If you are creating an operation that acts directly on the data that underlies a
visualization, consider using the IDLitDataOperation class rather than the
IDLitOperation class. IDLitDataOperation provides additional automation of the
Undo/Redo mechanism.

Syntax

Result = Obj -> [IDLitOperation::]DoAction(Tool)

Return Value

If successful, this method returns an IDLitCommandSet object or array of
IDLitCommandSet objects that will be placed in the iTool’s command buffer. The
command set object will be passed to the UndoOperation and RedoOperation
methods as necessary. If not successful, this method returns a null object reference.
IDLitOperation IDL Reference Guide

Chapter 7: iTools Object Classes 2909
Note
The OPERATION_IDENTIFIER property of the command set object returned by
the IDLitOperation::DoAction method is set equal to the full identifier of the
operation itself. This implies that UndoOperation and RedoOperation methods exist
for the operation, and that they implement the necessary undo and redo
mechanisms. If you are overriding this method, you must either ensure that the
appropriate UndoOperation and RedoOperation methods exist, or manually create
an IDLitCommandSet object with the OPERATION_IDENTIFIER set to another
operation that is capable of undoing or redoing the changes made by your method.

Arguments

Tool

An object reference to the iTool object on which the operation executes.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitOperation

2910 Chapter 7: iTools Object Classes
IDLitOperation::GetProperty

The IDLitOperation::GetProperty procedure method retrieves the value of a property
or group of properties of an operation object.

Note
An operation based on the IDLitOperation class must implement this method if the
operation defines one or more properties not inherited from the superclass. See
Chapter 7, “Creating an Operation” in the iTool Developer’s Guide manual for
details.

Syntax

Obj -> [IDLitOperation::]GetProperty [, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLitOperation Properties” on page 2905 that contains
the word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Example

To retrieve the value of the REVERSIBLE_OPERATION property:

Obj -> IDLitOperation::GetProperty, REVERSIBLE_OPERATION = rev

Version History

Introduced: 6.0
IDLitOperation IDL Reference Guide

Chapter 7: iTools Object Classes 2911
IDLitOperation::Init

The IDLitOperation::Init function method initializes the IDLitOperation object and
sets properties that define the behavior the operation provides.

Note
An operation based on the IDLitOperation class must implement this method. See
Chapter 7, “Creating an Operation” in the iTool Developer’s Guide manual for
details.

Note
Init methods are special life cycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLitOperation' [, PROPERTY=variable])

or

Result = Obj -> [IDLitOperation::]Init([, PROPERTY=variable])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None
IDL Reference Guide IDLitOperation

2912 Chapter 7: iTools Object Classes
Keywords

Any property listed under “IDLitOperation Properties” on page 2905 that contains
the word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

Version History

Introduced: 6.0
IDLitOperation IDL Reference Guide

Chapter 7: iTools Object Classes 2913
IDLitOperation::RecordFinalValues

The IDLitOperation::RecordFinalValues function method records the information
needed to redo an operation. Information about individual operations is recorded in
IDLitCommand objects, which are in turn stored in an IDLitCommandSet object that
is passed to the IDLitOperation::UndoOperation and IDLitOperation::RedoOperation
methods.

Note
If you are creating an operation that acts directly on the data that underlies a
visualization, consider using the IDLitDataOperation class rather than the
IDLitOperation class. IDLitDataOperation provides additional automation of the
Undo and Redo mechanisms.

If this method is implemented for an operation, it should do the following:

• Retrieve the appropriate IDLitCommand object from the IDLitCommandSet
object specified as the first parameter,

• Record any information necessary to redo the operation in the IDLitCommand
object,

• Return 1 for success.

Syntax

Result = Obj -> [IDLitOperation::]RecordFinalValues(CommandSet, Targets
[, IdProperty])

Return Value

The return value is 1 if the final values were recorded successfully, or zero otherwise.

Arguments

CommandSet

An IDLitCommandSet object that encapsulates all information recorded for this
execution of the operation. The command set object is generally created by the
IDLitOperation::DoAction method, which then calls the RecordInitialValues method
to store the initial state of the target object.
IDL Reference Guide IDLitOperation

2914 Chapter 7: iTools Object Classes
Targets

An array of objects that are the targets of this operation. In most cases, the target
objects are the currently selected objects, as returned by the
IDLitTool::GetSelectedItems method.

IdProperty

A property identifier string specifying the target property or parameter of the
operation.

Keywords

None

Version History

Introduced: 6.0
IDLitOperation IDL Reference Guide

Chapter 7: iTools Object Classes 2915
IDLitOperation::RecordInitialValues

The IDLitOperation::RecordInitialValues function method records the information
needed to undo an operation. Information about individual operations is recorded in
IDLitCommand objects, which are in turn stored in an IDLitCommandSet object that
is passed to the IDLitOperation::UndoOperation and IDLitOperation::RedoOperation
methods.

Note
If you are creating an operation that acts directly on the data that underlies a
visualization, consider using the IDLitDataOperation class rather than the
IDLitOperation class. IDLitDataOperation provides additional automation of the
Undo and Redo mechanisms.

If this method is implemented for an operation, it should do the following:

• Create an IDLitCommand object, setting its TARGET_IDENTIFIER property
to the identifier of the target object,

• Record any information necessary to redo the operation in the IDLitCommand
object,

• Add the IDLitCommand object to the IDLitCommandSet object specified as
the first parameter,

• Return 1 for success.

Syntax

Result = Obj -> [IDLitOperation::]RecordInitialValues(CommandSet, Targets
[, IdProperty])

Return Value

The return value is 1 if the initial values were recorded successfully, or zero
otherwise.
IDL Reference Guide IDLitOperation

2916 Chapter 7: iTools Object Classes
Arguments

CommandSet

An IDLitCommandSet object that encapsulates all information recorded for this
execution of the operation. The command set object is generally created by the
IDLitOperation::DoAction method, which then calls the RecordInitialValues method
to store the initial state of the target object.

Targets

An array of objects that are the targets of this operation. In most cases, the target
objects are the currently selected objects, as returned by the
IDLitTool::GetSelectedItems method.

IdProperty

A property identifier string specifying the target property or parameter of the
operation.

Keywords

None

Version History

Introduced: 6.0
IDLitOperation IDL Reference Guide

Chapter 7: iTools Object Classes 2917
IDLitOperation::RedoOperation

The IDLitOperation::RedoOperation function method is called by the iTool system
when the user requests the re-execution of an operation (usually by selecting Redo
from the iTool Edit menu or toolbar).

Note
An operation based on the IDLitOperation class must implement this method. See
Chapter 7, “Creating an Operation” in the iTool Developer’s Guide manual for
details.

Note
If you are creating an operation that acts directly on the data that underlies a
visualization, consider using the IDLitDataOperation class rather than the
IDLitOperation class. IDLitDataOperation provides additional automation of the
Undo and Redo mechanisms.

If this method is implemented for an operation, it should do the following:

• Retrieve the IDLitCommand objects from the IDLitCommandSet object
passed as the first argument,

• For each IDLitCommand object, retrieve the target of the operation, using the
TARGET_IDENTIFIER property,

• Retrieve the stored information and use it to redo the operation,

• Return 1 for success.

Syntax

Result = Obj -> [IDLitOperation::]RedoOperation(CommandSet)

Return Value

The return value is 1 if the operation was redone successfully, or zero otherwise.

Arguments

CommandSet

An IDLitCommandSet object that contains all the IDLitCommand objects that were
stored during the original execution of the operation.
IDL Reference Guide IDLitOperation

2918 Chapter 7: iTools Object Classes
Keywords

None

Version History

Introduced: 6.0

See Also

IDLitOperation::RecordFinalValues, IDLitOperation::RecordInitialValues,
IDLitOperation::UndoOperation
IDLitOperation IDL Reference Guide

Chapter 7: iTools Object Classes 2919
IDLitOperation::SetProperty

The IDLitOperation::SetProperty procedure method sets the value of a property or
group of properties for the operation.

Note
An operation based on the IDLitOperation class must implement this method if the
operation defines one or more properties not inherited from the superclass. See
Chapter 7, “Creating an Operation” in the iTool Developer’s Guide manual for
details.

Syntax

Obj -> [IDLitOperation::]SetProperty [, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLitOperation Properties” on page 2905 that contains
the word “Yes” in the “Set” column of the properties table can be set using this
method. To set the value of a property, specify the property name as a keyword set
equal to the appropriate property value.

Version History

Introduced: 6.0
IDL Reference Guide IDLitOperation

2920 Chapter 7: iTools Object Classes
IDLitOperation::UndoOperation

The IDLitOperation::UndoOperation function method is called by the iTool system
when the user requests the un-execution of an operation (usually by selecting Undo
from the iTool Edit menu or toolbar).

Note
An operation based on the IDLitOperation class must implement this method. See
Chapter 7, “Creating an Operation” in the iTool Developer’s Guide manual for
details.

Note
If you are creating an operation that acts directly on the data that underlies a
visualization, consider using the IDLitDataOperation class rather than the
IDLitOperation class. IDLitDataOperation provides additional automation of the
Undo and Redo mechanisms.

If this method is implemented for an operation, it should do the following:

• Retrieve the IDLitCommand objects from the IDLitCommandSet object
passed as the first argument,

• For each IDLitCommand object, retrieve the target of the operation, using the
TARGET_IDENTIFIER property,

• Retrieve the stored information and use it to undo the operation,

• Return 1 for success.

Syntax

Result = Obj -> [IDLitOperation::]UndoOperation(CommandSet)

Return Value

The return value is 1 if the operation was undone successfully, or zero otherwise.

Arguments

CommandSet

An IDLitCommandSet object that contains all the IDLitCommand objects that were
stored during the original execution of the operation.
IDLitOperation IDL Reference Guide

Chapter 7: iTools Object Classes 2921
Keywords

None

Version History

Introduced: 6.0

See Also

IDLitOperation::RecordFinalValues, IDLitOperation::RecordInitialValues,
IDLitOperation::RedoOperation
IDL Reference Guide IDLitOperation

2922 Chapter 7: iTools Object Classes
IDLitParameter

The IDLitParameter class implements parameter management methods that allow
parameter names to be associated with IDLitData objects. IDLitParameter objects are
not intended to be created as standalone entities; rather, this class should be included
as the superclass of another iTool class.

Note
In the iTools system, management of data parameters is handled by the
IDLitVisualization class, of which the IDLitParameter class is a superclass. In
practice, this means that if you need to override any methods of the IDLitParameter
class, you will do so in the definition of your visualization class. In most cases, the
only method you will need to implement is the OnDataChangeUpdate method.

When an object that inherits from the IDLitParameter class is created, the following
are created as part of the new object’s instance data:

• An IDL_Container object, which will contain parameter names for all
parameters registered with the object. Parameter names are discussed in
“Parameters” in Chapter 3 of the iTool Developer’s Guide manual,

• A pointer to a string array containing the parameter names for all parameters
registered with the object,

• An IDLitParameterSet object, which will contain the actual IDLitData objects
associated with the object’s parameters. Parameter sets are discussed in
“Parameter Sets” in Chapter 3 of the iTool Developer’s Guide manual, and in
“IDLitParameterSet” on page 2939.

This class is written in the IDL language. Its source code can be found in the file
idlitparameter__define.pro in the lib/itools/framework subdirectory of
the IDL distribution.

Superclasses

This class has no superclasses.

Creation

The objects of this class are not created as standalone objects.
IDLitParameter IDL Reference Guide

Chapter 7: iTools Object Classes 2923
Properties

Objects of this class have no properties of their own.

Methods

This class has the following methods:

• IDLitParameter::Cleanup

• IDLitParameter::GetParameter

• IDLitParameter::GetParameterSet

• IDLitParameter::Init

• IDLitParameter::OnDataChangeUpdate

• IDLitParameter::OnDataDisconnect

• IDLitParameter::RegisterParameter

• IDLitParameter::SetData

• IDLitParameter::SetParameterSet

Version History

Introduced: 6.0
IDL Reference Guide IDLitParameter

2924 Chapter 7: iTools Object Classes
IDLitParameter Properties

Objects of this class have no properties of their own.
IDLitParameter IDL Reference Guide

Chapter 7: iTools Object Classes 2925
IDLitParameter::Cleanup

The IDLitParameter::Cleanup procedure method removes the data observer from
each data object in the visualization object’s parameter set, and cleans up the objects
and pointers defined to hold parameter data when the visualization object was
created.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLitParameter::]Cleanup() (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitParameter

2926 Chapter 7: iTools Object Classes
IDLitParameter::GetParameter

The IDLitParameter::GetParameter function method retrieves the IDLitData object
associated with a registered parameter.

Syntax

Result = Obj -> [IDLitParameter::]GetParameter(Name [, /ALL]
[, COUNT=variable])

Return Value

Returns an object reference to the IDLitData object associated with the specified
parameter name, or a null object reference if no data objects are associated with the
specified parameter name.

Arguments

Name

A scalar string containing the parameter name associated with the IDLitData object
to be retrieved.

Keywords

ALL

Set this keyword to retrieve all of the IDLitData objects contained in the visualization
object’s IDLitParameterSet object.

COUNT

Set this keyword equal to a named variable that will contain the number of items
returned by this function.

Version History

Introduced: 6.0
IDLitParameter IDL Reference Guide

Chapter 7: iTools Object Classes 2927
IDLitParameter::GetParameterSet

The IDLitParameter::GetParameterSet function method returns a reference to the
IDLitParameterSet object associated with the visualization object.

Syntax

Result = Obj -> [IDLitParameter::]GetParameterSet([, /DEEP_COPY)

Return Value

Returns an IDLitParameterSet object that contains the IDLitData objects and
associated parameter names for the visualization object.

Arguments

None

Keywords

DEEP_COPY

Set this keyword to cause GetParameterSet to return a parameter set that contains
copies of the IDLitData objects used by the visualization object’s registered
parameters. If this keyword is not set, the parameter set returned by this function will
contain references to the IDLitData objects that are being used by the visualization
object’s registered parameters.

Version History

Introduced: 6.0
IDL Reference Guide IDLitParameter

2928 Chapter 7: iTools Object Classes
IDLitParameter::Init

The IDLitParameter::Init function method initializes object instance fields that
contain parameter data. Since the IDLitParameter class is always used as a superclass
of another class (IDLitVisualization, in the context of the iTool system), initializing
this class simply initializes the objects and pointers used to store parameter
information in the IDLitVisualization object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Result = Obj -> [IDLitParameter::]Init() (Only in subclass’ Init method.)

Return Value

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitParameter IDL Reference Guide

Chapter 7: iTools Object Classes 2929
IDLitParameter::OnDataChangeUpdate

The IDLitParameter::OnDataChangeUpdate method is called when a data value has
been updated or a new data object has been associated with the visualization object.

Note
A visualization class based on the IDLitVisualization class must implement this
method in order for changes or additions to the data parameters to be updated
automatically in the resulting visualizations.

Syntax

Obj -> [IDLitParameter::]OnDataChangeUpdate, Data, ParameterName

Arguments

Data

An object reference to the IDLitData object or the IDLitParameterSet object
containing the changed parameter data. If Data is an IDLitParameterSet object, the
ParameterName argument must be set to the string '<PARAMETER SET>'.

ParameterName

An upper-case scalar string containing the name of the parameter that has changed.
The parameter specified via this argument must be registered with the visualization
object. If oData is an IDLitParameterSet object, this argument must be set to the
string '<PARAMETER SET>'.

Keywords

None
IDL Reference Guide IDLitParameter

2930 Chapter 7: iTools Object Classes
Example

Normally, an implementation of this method will contain a CASE statement that
switches based on the value of the ParameterName argument. For example, the
following code handles a parameter named Z:

PRO MyVis::OnDataChangeUpdate, oData, ParameterName

CASE ParameterName OF
'Z': BEGIN

;; do something with the z data
END
'<PARAMETER SET>': BEGIN

oZ = oData -> GetByName('Z')
;; do something with the z data.

END
ENDCASE

END

Note
The Z parameter is handled twice — once if supplied as an individual IDLitData
object and once if supplied via the IDLitParameterSet object.

See “Creating an OnDataChangeUpdate Method” in the section “Creating a New
Visualization Type” in Chapter 6 of the iTool Developer’s Guide manual for more
discussion of the OnDataChangeUpdate method.

Version History

Introduced: 6.0
IDLitParameter IDL Reference Guide

Chapter 7: iTools Object Classes 2931
IDLitParameter::OnDataDisconnect

The IDLitParameter::OnDataDisconnect procedure method is called when a data
value has been disconnected from a parameter. The general idea is that when a data
item is disassociated from a visualization parameter, one or more properties of the
visualization may need to be reset to reasonable default values.

Note
A visualization class based on the IDLitVisualization class must implement this
method in order for changes or additions to the data parameters to be updated
automatically in the resulting visualizations.

Syntax

Obj -> [IDLitParameter::]OnDataDisconnect, ParameterName

Arguments

ParameterName

An upper-case string containing the name of the parameter that was disconnected.
The parameter must have been previously registered with the visualization.

Keywords

None

Example

Normally, an implementation of this method will contain a CASE statement that
switches based on the value of the ParameterName argument. For example, the
following sample code performs some action when the parameter name is TEXTURE:

PRO MyVis::OnDataDisconnect, ParameterName

CASE ParameterName OF
'TEXTURE': BEGIN
;; do something to remove the ref. of the texture
END

ENDCASE

END
IDL Reference Guide IDLitParameter

2932 Chapter 7: iTools Object Classes
Version History

Introduced: 6.0
IDLitParameter IDL Reference Guide

Chapter 7: iTools Object Classes 2933
IDLitParameter::RegisterParameter

The IDLitParameter::RegisterParameter procedure method registers a parameter with
the visualization object. Registered parameters are displayed in the iTool parameter
editor dialog, allowing users to interactively assign data values to individual
visualization parameters.

Syntax

Obj -> [IDLitParameter::]RegisterParameter, Name [, /BY_VALUE]
[, DESCRIPTION=string] [, /INPUT] [, /OPTARGET] [, /OPTIONAL]
[, /OUTPUT] [, TYPES=string]

Arguments

Name

Set this argument to a string specifying the name of the parameter.

Keywords

BY_VALUE

Set this keyword to indicate that this parameter is a by-value parameter. If a
parameter is marked as by value, when data is associated with it a copy of the data is
made and managed by this class.

DESCRIPTION

Set this keyword to a string giving the full name or description of this object.

INPUT

Set this keyword to indicate that this is an input parameter.

OPTARGET

Set this keyword to indicate that this parameter may be the target of any operations.
IDL Reference Guide IDLitParameter

2934 Chapter 7: iTools Object Classes
OPTIONAL

If this keyword is set, then this parameter is an optional parameter, and it is not
required to be set. The default is OPTIONAL=0, indicating that it is required to be
set.

OUTPUT

Set this keyword to indicate that this is an output parameter.

TYPES

Set this keyword to a scalar string or string array giving the data types that correspond
to this parameter. See “iTool Data Types” in Chapter 3 of the iTool Developer’s Guide
manual for more on parameter data types.

Version History

Introduced: 6.0
IDLitParameter IDL Reference Guide

Chapter 7: iTools Object Classes 2935
IDLitParameter::SetData

The IDLitParameter::SetData function method is used to set data in this interface,
associating a data object with a given parameter. This method can automatically
perform type matching to determine which parameter to associate with a particular
parameter or the user can specify a parameter name.

If a parameter name is provided by the user via the PARAMETER_NAME keyword,
this method will query the given data object for a data item that is of one of the types
supported by this parameter and associate the found data item with the parameter.
This could be the data object provided or if the data object contains other data
objects, one of its children. If a type match doesn’t occur, the method will return 0.

If no parameter name is provided, this method will start with the first available
parameter (non-associated parameters, starting with op-targets first) and attempt to
perform a data type match. When a data type match between the parameter and the
provided data item (or one of its contained items) the association between the two are
made.

When a data match has been made, this object is made an observer of the data object
and if the NO_UPDATE keyword is not set, the OnDataChangeUpdate() method is
called on this object.

If a type match is found, but the given parameter already has a data object associated
with it, the type match will continue.

If a match cannot be found, a value of 0 is returned.

Syntax

Result = Obj -> [IDLitParameter::]SetData(Data [, /BY_VALUE]
[, PARAMETER_NAME=string] [, /NO_UPDATE]

Return Value

Returns 1 if the IDLitData object was successfully matched with a parameter
registered with the visualization object, or 0 otherwise.

Arguments

Data

An IDLitData object to be matched with a parameter registered with the visualization
object.
IDL Reference Guide IDLitParameter

2936 Chapter 7: iTools Object Classes
Keywords

BY_VALUE

Set this keyword to cause Data to be copied and managed by the visualization’s
parameter interface. If this keyword is not set, the data object is managed by the iTool
system, and can be altered by other iTools.

NO_UPDATE

Set this keyword to prevent the OnDataChangeUpdate method from being called
when Data is associated with one of the visualization object’s registered parameters.
If this keyword is not set, the OnDataChangeUpdate method is called, providing the
opportunity for subclasses of the visualization object to be notified that data
associated with the parameter interface has changed.

PARAMETER_NAME

Set this keyword to a scalar string containing the name of the registered parameter
with which Data should be associated. If the iTool data type of the data contained in
Data does not match one of the data types supported by the specified registered
parameter, Data will not be associated with the registered parameter and this function
will return zero.

Version History

Introduced: 6.0
IDLitParameter IDL Reference Guide

Chapter 7: iTools Object Classes 2937
IDLitParameter::SetParameterSet

The IDLitParameter::SetParameterSet function method is used to associate an
IDLitParameterSet object with the visualization object’s parameter interface.
IDLitData objects contained in the parameter set object will be associated with the
registered parameters of the visualization object, either based on the parameter names
included in the parameter set object or on the iTool data types of the data objects.
When the association of the parameter set’s data objects with the visualization
object’s registered parameters is complete, the OnDataChangeUpdate method is
called with the IDLitParameterSet object and the string '<PARAMETER SET>' as the
arguments.

Note
When this method is called, the IDLitParameterSet object created when the
visualization object was initialized will be disassociated from the object’s parameter
interface. This means that any individual data objects or parameter names
previously added to the initial parameter set object will also be disassociated from
the visualization object’s parameter interface.

This method will not destroy or delete the information contained in the specified
IDLitParameterSet object.

Syntax

Result = Obj -> [IDLitParameter::]SetParameterSet(ParamSet)

Return Value

Returns 1 if the IDLitParameterSet object was successfully associated with the
visualization object’s parameter interface, or 0 otherwise.

Arguments

ParamSet

An IDLitParameterSet object to be associated with the visualization object’s
parameter interface.
IDL Reference Guide IDLitParameter

2938 Chapter 7: iTools Object Classes
Keywords

None

Version History

Introduced: 6.0
IDLitParameter IDL Reference Guide

Chapter 7: iTools Object Classes 2939
IDLitParameterSet

The IDLitParameterSet class is a specialized subclass of the IDLitDataContainer
class that provides the ability to associate names with the contained IDLitData
objects. This association allows the iTool developer to package a set of data
parameters in a single container, which is then provided to the iTools system for
processing a display.

In addition to providing a mechanism for associating IDLitData objects with
parameter names, the IDLitParameterSet class allows you to incorporate an
IDLitData object for which no parameter name is provided. These auxiliary data
items are treated as parameters for which the parameter name is a null string ('').
The auxiliary data mechanism allows you to associate any amount of data with a
parameter set without the need to define parameter names.

This class is written in the IDL language. Its source code can be found in the file
idlitparameterset__define.pro in the lib/itools/framework
subdirectory of the IDL distribution.

Superclasses

IDLitDataContainer

Creation

See “IDLitParameterSet::Init” on page 2951.

Properties

Objects of this class have no properties of their own, but do have properties inherited
from the superclass.

Methods

This class has the following methods:

• IDLitParameterSet::Add

• IDLitParameterSet::Cleanup

• IDLitParameterSet::Copy

• IDLitParameterSet::Get
IDL Reference Guide IDLitParameterSet

2940 Chapter 7: iTools Object Classes
• IDLitParameterSet::GetByName

• IDLitParameterSet::GetParameterName

• IDLitParameterSet::Init

• IDLitParameterSet::Remove

In addition, this class inherits the methods of its superclass.

Examples

See Chapter 3, “Data Management” in the iTool Developer’s Guide manual for
examples using this class and its methods.

Version History

Introduced: 6.0
IDLitParameterSet IDL Reference Guide

Chapter 7: iTools Object Classes 2941
IDLitParameterSet Properties

Objects of this class have no properties of their own, but do have properties inherited
from the superclass.
IDL Reference Guide IDLitParameterSet

2942 Chapter 7: iTools Object Classes
IDLitParameterSet::Add

The IDLitParameterSet::Add procedure method is used to add a data object to the
parameter set.

Syntax

Obj -> [IDLitParameterSet::]Add, Data [, PARAMETER_NAME=string]
[, /PRESERVE_LOCATION]

Arguments

Data

An object reference or array of object references to IDLitData objects to be added to
the parameter set.

Keywords

PARAMETER_NAME

Set this keyword to a string or array of strings containing the names of parameters to
be associated with the data objects. If this value is not provided, a null string ('') is
associated with the data object. If the value of this keyword is an array with fewer
elements than the array specified as the Data argument, null strings are associated
with data objects for which no parameter name is specified.

PRESERVE_LOCATION

Set this keyword to leave the PARENT property (of all data items specified by the
Data argument) unchanged. Normally, when an item is added to a parameter set (or
any data container), the item’s PARENT property is changed to be the parameter set
or data container object. This, in turn, changes the data item’s identifier string, since
the item’s location in the iTools hierarchy has changed. (See “iTool Object
Identifiers” in Chapter 2 of the iTool Developer’s Guide manual for details.) In many
cases, it is desirable to leave the PARENT property unchanged when adding items to
a parameter set.
IDLitParameterSet IDL Reference Guide

Chapter 7: iTools Object Classes 2943
Version History

Introduced: 6.0

See Also

IDLitParameterSet::Remove
IDL Reference Guide IDLitParameterSet

2944 Chapter 7: iTools Object Classes
IDLitParameterSet::Cleanup

The IDLitParameterSet::Cleanup procedure method performs all cleanup on the
parameter set object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLitParameterSet::]Cleanup() (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitParameterSet IDL Reference Guide

Chapter 7: iTools Object Classes 2945
IDLitParameterSet::Copy

The IDLitParameterSet::Copy function method will return a copy of the parameter
set and its contents. All items contained in the parameter set are copied when this
method is called.

For individual data objects contained in the parameter set, the following values are
not copied:

• Values of unregistered properties.

• Values of properties registered after the data object is created.

• Property attribute values.

Note
If an object has been added to a contained data object, only the object reference to
the added object is copied.

Syntax

Result = Obj -> [IDLitParameterSet::]Copy()

Return Value

Returns an IDLitParameterSet object that is a copy of the parameter set object on
which the method was called.

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitParameterSet

2946 Chapter 7: iTools Object Classes
IDLitParameterSet::Get

The IDLitParameterSet::Get function method is used to retrieve one or more
IDLitData objects from the parameter set.

Syntax

Result = Obj -> [IDLitParameterSet::]Get([, /ALL] [, COUNT=variable]
[, NAME=variable] [, POSITION=integer]

Return Values

Returns an object reference or array of object references to the IDLitData objects
specified, or returns -1 if the method fails.

Arguments

None

Keywords

ALL

Set this keyword to return an array containing object references to all IDLitData
items in the parameter set.

COUNT

Set this keyword equal to a named variable that will contain the number of items
returned by this function.

NAME

Set this keyword equal to a named variable that will contain a string or string array of
the parameter names associated with the returned IDLitData objects. If a returned
data object has no parameter name, a null string ('') is returned.
IDLitParameterSet IDL Reference Guide

Chapter 7: iTools Object Classes 2947
POSITION

Set this keyword equal to a scalar or array containing the zero-based indices of the
positions of the desired IDLitData objects within the parameter set.

Version History

Introduced: 6.0
IDL Reference Guide IDLitParameterSet

2948 Chapter 7: iTools Object Classes
IDLitParameterSet::GetByName

The IDLitParameterSet::GetByName function method returns the IDLitData object
associated with a specified named parameter.

Syntax

Result = Obj -> [IDLitParameterSet::]GetByName(Names [, COUNT=variable]
[, NAME=variable])

Return Value

An object reference or array of object references to the IDLitData objects specified
by the Names argument. If no matching parameter names are found, a null object is
returned.

Note
If multiple parameter names are specified, the IDLitData objects are returned in the
order in which they are stored in the IDLitParameterSet object, which is not
necessarily the same as the order specified in the Names argument. Use the value
returned by the NAME keyword to associate the parameter names with IDLitData
objects in the returned array.

Arguments

Names

A scalar string or string array that contains the parameter names of the IDLitData
objects to be retrieved from the parameter set.

Note
Parameter names can be supplied in any case; the search is case insensitive.
IDLitParameterSet IDL Reference Guide

Chapter 7: iTools Object Classes 2949
Keywords

NAME

Set this keyword equal to a named variable that will contain a scalar string or string
array of the parameter names of the IDLitData objects returned by this method. When
multiple parameter names are specified via the Names argument, the array returned in
the NAME variable can be used to sort through the returned IDLitData objects by
matching the indices of the two returned arrays.

COUNT

Set this keyword equal to a named variable that will contain the number of items
returned by this function.

Version History

Introduced: 6.0
IDL Reference Guide IDLitParameterSet

2950 Chapter 7: iTools Object Classes
IDLitParameterSet::GetParameterName

The IDLitParameterSet::GetParameterName function method retrieves the name of a
specified parameter using a provided data object.

Syntax

Result = Obj -> [IDLitParameterSet::]GetParameterName(Data, Name)

Return Value

Returns an integer 1 if a parameter name was found for the specified IDLitData
object, or 0 if no parameter name was found.

Arguments

Data

An IDLitData object for which the parameter name is being requested.

Name

A named variable that will contain the parameter name associated with the object
specified by the oData argument. If no parameter name is associated with the object
specified by the oData argument, a null string ('') is returned.

Keywords

None

Version History

Introduced: 6.0
IDLitParameterSet IDL Reference Guide

Chapter 7: iTools Object Classes 2951
IDLitParameterSet::Init

The IDLitParameterSet::Init function method initializes the IDLitParameter object.

Note
Init methods are special life cycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLitParameterSet')

or

Result = Obj -> [IDLitParameterSet::]Init() (Only in subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or 0 otherwise.

Arguments

None

Keywords

The IDLitParameterSet object has no properties of its own, but inherits the properties
of its superclass, IDLitDataContainer. Any property listed under
“IDLitDataContainer Properties” on page 2798 that contains the word “Yes” in the
“Init” column of the properties table can be initialized during object creation using
this method. To initialize the value of a property, specify the property name as a
keyword set equal to the appropriate property value.
IDL Reference Guide IDLitParameterSet

2952 Chapter 7: iTools Object Classes
Version History

Introduced: 6.0
IDLitParameterSet IDL Reference Guide

Chapter 7: iTools Object Classes 2953
IDLitParameterSet::Remove

The IDLitParameterSet::Remove procedure method is used to remove a data item
from the parameter set.

Syntax

Obj -> [IDLitParameterSet::]Remove [, Items] [, /ALL] [, POSITION=integer]

Arguments

Items

An object reference or array of object references to IDLitData objects to be removed
from the parameter set.

Keywords

ALL

Set this keyword to remove all items from the parameter set. If this keyword is set, the
Items parameter is not required.

POSITION

Set this keyword equal to a scalar or array containing the zero-based indices within
the parameter set of the specified IDLitData objects to be removed. If this keyword is
set, the Items parameter is not required

Version History

Introduced: 6.0

See Also

IDLitParameterSet::Add
IDL Reference Guide IDLitParameterSet

2954 Chapter 7: iTools Object Classes
IDLitReader

The IDLitReader class defines the interface used to construct file readers for the
iTools framework. Objects of this class are not intended to be created as standalone
entities; rather, this class should be included as the superclass of an iTool file reader
class.

This class is written in the IDL language. Its source code can be found in the file
idlitreader__define.pro in the lib/itools/framework subdirectory of the
IDL distribution.

Superclasses

IDLitComponent

IDLitIMessaging

Creation

See “IDLitReader::Init” on page 2962.

Properties

Objects of this class do not have any properties of their own, but do have properties
inherited from any superclasses.

Methods

This class has the following methods:

• IDLitReader::Cleanup

• IDLitReader::GetData

• IDLitReader::GetFileExtensions

• IDLitReader::GetFilename

• IDLitReader::GetProperty

• IDLitReader::Init

• IDLitReader::IsA
IDLitReader IDL Reference Guide

Chapter 7: iTools Object Classes 2955
• IDLitReader::SetFilename

• IDLitReader::SetProperty

In addition, this class inherits the methods of its superclasses.

Examples

See Chapter 8, “Creating a File Reader” in the iTool Developer’s Guide manual for
examples using this class and its methods.

Version History

Introduced: 6.0
IDL Reference Guide IDLitReader

2956 Chapter 7: iTools Object Classes
IDLitReader Properties

Objects of this class do not have any properties of their own, but do have properties
inherited from any superclasses.
IDLitReader IDL Reference Guide

Chapter 7: iTools Object Classes 2957
IDLitReader::Cleanup

The IDLitReader::Cleanup procedure method performs all cleanup on the object, and
should be called by the subclass’ Cleanup method.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: if you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLitReader::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitReader

2958 Chapter 7: iTools Object Classes
IDLitReader::GetData

The IDLitReader::GetData function method is called by the system to retrieve the
data from the current file. When called, the reader should access the current filename
and read the desired data. Once the information is loaded, the reader should place the
obtained data in a data object, which is then passed back to the system.

This method will contain a majority of the implementation for a new reader class.

Syntax

Result = Obj -> [IDLitReader::]GetData(Data)

Return Value

Returns a 1 if successful, or a 0 if the initialization failed.

Arguments

Data

A data object that contains the read information. The reader determines the exact type
and format of this data object, which keys off the type of information being read and
what the format supports.

Keywords

None

Version History

Introduced: 6.0
IDLitReader IDL Reference Guide

Chapter 7: iTools Object Classes 2959
IDLitReader::GetFileExtensions

The IDLitReader::GetFileExtensions function method is called by the system to
retrieve the file extensions supported by this particular reader.

Syntax

Result = Obj -> [IDLitReader::]GetFileExtensions([COUNT=variable])

Return Value

Returns a scalar or string array that contains the file extensions associated with this
reader.

Arguments

None

Keywords

COUNT

Set this keyword equal to a named variable that will contain the number of items
returned by this function.

Version History

Introduced: 6.0
IDL Reference Guide IDLitReader

2960 Chapter 7: iTools Object Classes
IDLitReader::GetFilename

The IDLitReader::GetFilename function method is called by the system to retrieve
the current filename associated with this reader. Due to the automated nature of the
file reader system, filenames can be associated with a file reader and then read at a
later time. This method allows direct access to the file currently associated with the
reader.

In addition, this methodology is helpful when multiple reads are performed from a
given file.

Syntax

Result = Obj -> [IDLitReader::]GetFilename()

Return Value

Returns a string containing the current file name associated with this reader, or an
empty string if no filename has been associated.

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitReader IDL Reference Guide

Chapter 7: iTools Object Classes 2961
IDLitReader::GetProperty

The IDLitReader::GetProperty procedure method retrieves the value of an
IDLitReader property, and should be called by the subclass’ GetProperty method.
This method also retrieves properties defined in the superclasses.

Syntax

Obj -> [IDLitReader::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLitReader Properties” on page 2956 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Version History

Introduced: 6.0
IDL Reference Guide IDLitReader

2962 Chapter 7: iTools Object Classes
IDLitReader::Init

The IDLitReader::Init function method initializes the IDLitReader object, and should
be called by the subclass’ Init method. This method also calls the superclass’ Init
method.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLitReader', Extensions [, PROPERTY=value])

or

Result = Obj -> [IDLitReader::]Init(Extensions [, PROPERTY=value])

(Only in subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

Extensions

A scalar or string array containing the file extensions that are common for this file
type. These values should not include the period that is often associated with file
extensions (a correct value is “jpeg” not “.jpeg”).
IDLitReader IDL Reference Guide

Chapter 7: iTools Object Classes 2963
Keywords

Any property listed under “IDLitReader Properties” on page 2956 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

Version History

Introduced: 6.0
IDL Reference Guide IDLitReader

2964 Chapter 7: iTools Object Classes
IDLitReader::IsA

The IDLitReader::IsA function method is called by the system to determine if the
given file is of the type supported by this file reader. Often this is used to determine
what file reader to use when opening a new file.

The default behavior provided by this method is to check the file extension on the
provided file name with the extensions provided to this object during initialization.

When a new reader is implemented, the default behavior can be used, or the
developer can provide further logic to determine if the provided file is the correct
type.

Syntax

Result = Obj -> [IDLitReader::]IsA(Filename)

Return Value

Returns a 1 if the reader supports this type of file, or a 0 if the reader does not support
this type of file.

Arguments

Filename

A string representing of the filename, which is used to check and determine if the
reader supports its format.

Keywords

None

Version History

Introduced: 6.0
IDLitReader IDL Reference Guide

Chapter 7: iTools Object Classes 2965
IDLitReader::SetFilename

The IDLitReader::SetFilename procedure method is called by the system to set the
current filename associated with this reader. Due to the automated nature of the file
reader system, filenames can be associated with a file reader and then the read at a
later time.

Syntax

Obj -> [IDLitReader::]SetFilename, Filename

Arguments

Filename

A string that contains the filename associated with this reader.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitReader

2966 Chapter 7: iTools Object Classes
IDLitReader::SetProperty

The IDLitReader::SetProperty procedure method sets the value of an IDLitReader
property, and should be called by the subclass’ SetProperty method. This method also
calls the superclass’ SetProperty method.

Syntax

Obj -> [IDLitReader::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLitReader Properties” on page 2956 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 6.0
IDLitReader IDL Reference Guide

Chapter 7: iTools Object Classes 2967
IDLitTool

The IDLitTool class represents all the functionality provided by a particular instance
of an IDL Intelligent Tool. It provides the management systems for the underlying
iTool functionality and implements the desired interfaces for external parties to
interact with this functionality in a known manner.

This class is written in the IDL language. Its source code can be found in the file
idlittool__define.pro in the lib/itools/framework subdirectory of the
IDL distribution.

Note on the IDLitToolbase Class

All iTools included with the IDL release are based on a subclass of the IDLitTool
class named IDLitToolbase. If your aim is to create a new iTool that shares the
common features of the iTools included with IDL, you should base your new iTool on
the IDLitToolbase class. Since IDLitToolbase is a subclass of IDLitTool, it inherits all
of IDLitTool’s methods and properties. Additional features included in the
IDLitToolbase class are described in “Subclassing from the IDLitToolbase Class” in
Chapter 5 of the iTool Developer’s Guide manual.

Superclasses

IDLitContainer

IDLitIMessaging

Creation

See “IDLitTool::Init” on page 2993.

Properties

Objects of this class have the following properties. See “IDLitTool Properties” on
page 2970 for details on individual properties.

• DESCRIPTION

• ICON

• NAME

• TYPE
IDL Reference Guide IDLitTool

2968 Chapter 7: iTools Object Classes
• UPDATE_BYTYPE

• VERBOSE

• VERSION

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLitTool::Add

• IDLitTool::AddService

• IDLitTool::Cleanup

• IDLitTool::CommitActions

• IDLitTool::DisableUpdates

• IDLitTool::DoAction

• IDLitTool::DoSetProperty

• IDLitTool::DoUIService

• IDLitTool::EnableUpdates

• IDLitTool::GetCurrentManipulator

• IDLitTool::GetFileReader

• IDLitTool::GetFileWriter

• IDLitTool::GetManipulators

• IDLitTool::GetOperations

• IDLitTool::GetProperty

• IDLitTool::GetSelectedItems

• IDLitTool::GetService

• IDLitTool::GetVisualization

• IDLitTool::Init

• IDLitTool::RefreshCurrentWindow

• IDLitTool::Register

• IDLitTool::RegisterFileReader
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 2969
• IDLitTool::RegisterFileWriter

• IDLitTool::RegisterManipulator

• IDLitTool::RegisterOperation

• IDLitTool::RegisterVisualization

• IDLitTool::SetProperty

• IDLitTool::UnRegister

• IDLitTool::UnRegisterFileReader

• IDLitTool::UnRegisterFileWriter

• IDLitTool::UnRegisterManipulator

• IDLitTool::UnRegisterOperation

• IDLitTool::UnRegisterVisualization

In addition, this class inherits the methods of its superclasses.

Examples

See “Example: Simple iTool” in Chapter 5 of the iTool Developer’s Guide manual.

Version History

Introduced: 6.0

See Also

Chapter 5, “Creating an iTool” in the iTool Developer’s Guide manual
IDL Reference Guide IDLitTool

2970 Chapter 7: iTools Object Classes
IDLitTool Properties

IDLitTool objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLitTool::GetProperty. Properties with the word
“Yes” in the “Init” column of the property table can be set via IDLitTool::Init.
Properties with the word “Yes” in the “Set” column in the property table can be set
via IDLitTool::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

DESCRIPTION

This property contains a string representing the full name or description of this
object.

ICON

A string identifying the icon that should be used when displaying the iTool object.
See “System Resources” in Chapter 2 of the iTool Developer’s Guide manual for
additional details.

NAME

A string representing the name of this object.

Property Type STRING

Name String Description

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type String

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type STRING

Name String Name
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 2971
TYPE

A string or vector of strings that identify the type(s) that this iTool represents.

UPDATE_BYTYPE

A Boolean value controlling whether the given iTool will add new functionality to it
as new visualization types are added. By default, when a new visualization is added
to the iTool, any functionality associated with that visualization type is added to the
iTool. If this property is set to zero (False), this updating is disabled.

VERBOSE

A named variable that will control the verbose logging of the iTool. If set to a non-
zero value, the iTool will log more information than normal. If this keyword is set to
0, minimal logging (error conditions only) will be sent to the logging system.

VERSION

A named variable that will be set to the version of the iTool system.

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type String

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type String

Name String not displayed
IDL Reference Guide IDLitTool

2972 Chapter 7: iTools Object Classes
Get: Yes Set: No Init: Yes Registered: No
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 2973
IDLitTool::Add

The IDLitTool::Add procedure method adds any item to the iTool. If called with a
Visualization, that visualization is added to the current IDLitWindow object. If called
with a data object, that data object is placed in the systems data manager. All other
items are added to the iTool container.

Syntax

Obj -> [IDLitTool::]Add, Item

Arguments

Item

The item to add to the iTool.

Keywords

This method passes keywords to the Add method of the appropriate object. If the
target destination is a data object, no keywords are passed. If the target destination is
a visualization object, the keywords are passed to the IDLitWindow::Add method;
otherwise, the keywords are passed to the IDLitContainer::Add method.

Version History

Introduced: 6.0
IDL Reference Guide IDLitTool

2974 Chapter 7: iTools Object Classes
IDLitTool::AddService

The IDLitTool::AddService procedure method adds a service to the iTool. Unlike
registration methodologies provided by the iTool, the method takes an existing object
and adds it to the service repository in the iTool.

When a service is added to the system, a description of this service class is placed in
the tools service folder. If it is desired to retrieve this descriptor at a later time, the
iTool relative identifier would be SERVICES/identifier, where identifier is
the identifier provided to this method.

Syntax

Obj -> [IDLitTool::]AddService, Service

Arguments

Service

Set this variable to the service to add to the tools service repository. This service can
be retrieved at a later point in time using its identifier (specified when creating the
service object via the identifier keyword).

Keywords

None

Version History

Introduced: 6.0
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 2975
IDLitTool::Cleanup

The IDLitTool::Cleanup procedure method performs all cleanup on the object, and
should be called by the Cleanup method of a subclass.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: if you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLitTool::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitTool

2976 Chapter 7: iTools Object Classes
IDLitTool::CommitActions

The IDLitTool::CommitActions procedure method commits all pending transactions
to the undo-redo buffer and causes a refresh of the current window.

This method is designed to be used in conjunction with the IDLitTool::DoSetProperty
method.

Syntax

Obj -> [IDLitTool::]CommitActions

Arguments

None

Keywords

None

Version History

Introduced: 6.0

See Also

IDLitTool::DoSetProperty
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 2977
IDLitTool::DisableUpdates

The IDLitTool::DisableUpdates procedure method disables all drawing updates to the
current window and UI updates (menu sensitivity) being passed to the user interface.
After this method is called, updates are re-enabled by calling the EnableUpdates
method.

Syntax

Obj -> [IDLitTool::]DisableUpdates

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitTool

2978 Chapter 7: iTools Object Classes
IDLitTool::DoAction

The IDLitTool::DoAction function method initiates an operation or action in the
iTool object. The identifier that is passed in as the argument to this method specifies
the action that executes.

Syntax

Result = Obj -> [IDLitTool::]DoAction(Identifier)

Return Value

Returns 1 if the action succeeds, or 0 if the action fails.

Arguments

Identifier

This argument is set to a string identifier that specifies the object in the iTool that
performs the operation that it implements.

Keywords

All keywords are passed to the DoAction function of the object in the iTool that
performs the operation.

Version History

Introduced: 6.0
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 2979
IDLitTool::DoSetProperty

The IDLitTool::DoSetProperty function method sets a property on a target
component object, and places the change in the undo/redo transaction buffer.

Note
In order to commit the change to the undo/redo transaction buffer, you must call the
IDLitTool::CommitActions method. The property change is not actually undoable
until it has been committed.

The separation of addition of the change to the buffer and commit of the change
allows you to “package” several property changes into a single undo/redo transaction.
The call to the CommitActions method will commit any changes that have been
performed but not committed. For example, the following statements change two
properties on an iTool component (oTarget) and commit them together:

targetID = oTarget -> GetFullIdentifier()
status = oTool -> DoSetProperty(targetID, 'Property1', 'Value 1')
status = oTool -> DoSetProperty(targetID, 'Property2', 'Value 2')
oTool -> CommitActions

If the user later undoes the action, both property value changes will be reversed in one
step.

Syntax

Result = Obj -> [IDLitTool::]DoSetProperty(TargetIdentifier, PropertyIdentifier,
Value)

Return Value

Returns 1 if the SetProperty was successful, or 0 otherwise.

Note
If successful, you are responsible for calling IDLitTool::CommitActions to
complete the transaction.
IDL Reference Guide IDLitTool

2980 Chapter 7: iTools Object Classes
Arguments

TargetIdentifier

A scalar string or a string array containing the full object identifiers of the objects on
which the property is being set.

PropertyIdentifier

A scalar string containing the property identifier to change. PropertyIdentifier must
be a registered property of the target objects.

Value

The new property value.

Keywords

None

Version History

Introduced: 6.0

See Also

IDLitTool::CommitActions
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 2981
IDLitTool::DoUIService

The IDLitTool::DoUIService function method initiates a request for a UI service to
execute. This method allows underlying iTool functionality to perform user-interface
interactions without having a direct connection to the user interface portion of the
iTool.

An example of an iTool UI service would be the File → Open command, which will
prompt the user to select a file using the standard file open dialog. This command is
identified by setting the ServiceIdentifier argument to FileOpen. See Chapter 12,
“Creating a User Interface Service” in the iTool Developer’s Guide manual for more
information about UI services.

Syntax

Result = Obj -> [IDLitTool::]DoUIService(ServiceIdentifier, Requestor)

Return Value

Returns 1 if the action succeeds, or 0 if the action fails.

Arguments

ServiceIdentifier

A string identifier that specifies the UI service being requested. This identifier is
passed to the tools user interface for control dispatching purposes.

Requestor

An object reference to the object that is requesting the UI service. The UI service uses
this object to obtain any information particular to the interaction taking place.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitTool

2982 Chapter 7: iTools Object Classes
IDLitTool::EnableUpdates

The IDLitTool::EnableUpdates procedure method re-enables all drawing updates to
the current window and UI updates (menu sensitivity) being passed to the user
interface. After this method is called, updates can be disabled by calling the
DisableUpdates method.

Syntax

Obj -> [IDLitTool]::EnableUpdates

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 2983
IDLitTool::GetCurrentManipulator

The IDLitTool::GetCurrentManipulator function method returns the current
manipulator in the system.

Syntax

Result = Obj -> [IDLitTool]::GetCurrentManipulator()

Return Value

Returns an object reference to the current manipulator.

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitTool

2984 Chapter 7: iTools Object Classes
IDLitTool::GetFileReader

The IDLitTool::GetFileReader function method retrieves a file reader registered with
the iTool object. If the requested item does not exist in the given iTool, the system
will be queried to see if it supports an object of the given identifier.

Syntax

Result = Obj -> [IDLitTool::]GetFileReaders(Identifier [, /ALL]
[, COUNT=variable])

Return Value

Returns the object descriptors constructed for the registered file reader.

If the ALL keyword is set, the Identifier argument is ignored and the resulting list of
object descriptors will be both those registered with the specific iTool and those file
readers registered with the system.

Arguments

Idenitifer

A string representing the single level identifier of the item that is being requested.
This identifier is the value provided during object registration and is either supplied
using the IDENTIFIER keyword during registration, or constructed automatically by
the name that is provided during the registration call.

Keywords

ALL

Set this keyword to return all file readers registered with the iTool and the system.

COUNT

Set this keyword to a named variable that will contain the number of object
descriptors returned by this method.

Version History

Introduced: 6.0
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 2985
IDLitTool::GetFileWriter

The IDLitTool::GetFileWriter function method retrieves a file writer registered with
the iTool object. If the requested item does not exist in the given iTool, the system
will be queried to see if it supports an object of the given identifier.

Syntax

Result = Obj -> [IDLitTool::]GetFileWriters(Identifier [, /ALL]
[, COUNT=variable])

Return Value

Returns the object descriptors constructed for the registered file writer.

If the ALL keyword is set, the Identifier argument is ignored and the resulting list of
object descriptors will be both those registered with the specific iTool and those file
writers registered with the system.

Arguments

Identifier

A string representing the identifier of the item that is being requested. This identifier
is the value provided during object registration and is either supplied using the
IDENTIFIER keyword during registration, or constructed automatically by the name
that is provided during the registration call.

Keywords

ALL

Set this keyword to return all file writers registered with the iTool and the system.

COUNT

Set this keyword to a named variable that will contain the number of object
descriptors returned by this method.

Version History

Introduced: 6.0
IDL Reference Guide IDLitTool

2986 Chapter 7: iTools Object Classes
IDLitTool::GetManipulators

The IDLitTool::GetManipulators function method retrieves the manipulators
registered with the iTool object. Unlike other items in the iTool and due to the active
nature of the subsystem, manipulators are instantiated when registered.

Syntax

Result = Obj -> [IDLitTool::]GetManipulators([COUNT=variable])

Return Value

Returns the object references to the manipulators that were instantiated when items
were registered with the iTool.

Arguments

None

Keywords

COUNT

Set this keyword to a named variable that will contain the number of object
descriptors returned by this method.

Version History

Introduced: 6.0
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 2987
IDLitTool::GetOperations

The IDLitTool::GetOperations function method retrieves the operations registered
with the iTool object.

Note
This routine returns a set of object descriptor classes that reference the items
registered with the iTool. In addition, if the operation folder in the registry contains
sub-folders, the returned list will contain IDLitContainer classes, each containing
sub-operations.

Syntax

Result = Obj -> [IDLitTool::]GetOperations([, IDENTIFIER=string]
[, COUNT=variable])

Return Value

Returns the object descriptors constructed for the registered operations.

Arguments

None

Keywords

IDENTIFIER

Set this keyword to an optional identifier that identifies the location in the operation
hierarchy to retrieve the operation object descriptors from.

COUNT

Set this keyword to a named variable that will contain the number of object
descriptors returned by this method.

Version History

Introduced: 6.0
IDL Reference Guide IDLitTool

2988 Chapter 7: iTools Object Classes
IDLitTool::GetProperty

The IDLitTool::GetProperty procedure method retrieves the value of an IDLitTool
property, and should be called by the subclass’ GetProperty method. This method
also retrieves properties defined in the superclasses.

Syntax

Obj -> [IDLitTool::]GetProperty, [PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLitTool Properties” on page 2970 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Version History

Introduced: 6.0
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 2989
IDLitTool::GetSelectedItems

The IDLitTool::GetSelectedItems function method returns a vector of references to
the objects currently selected within the current window in the iTool. If no objects are
currently selected, this function returns -1.

Syntax

Result = Obj -> [IDLitTool::]GetSelectedItems([COUNT=variable])

Return Value

Returns a vector of references to the currently selected objects. If no objects are
currently selected, this function returns -1.

Arguments

None

Keywords

COUNT

Set this keyword to a named variable that will contain the number of valid items
returned by this function.

Version History

Introduced: 6.0
IDL Reference Guide IDLitTool

2990 Chapter 7: iTools Object Classes
IDLitTool::GetService

The IDLitTool::GetService method retrieves a service that has been registered with
the iTool.

Syntax

Result = Obj -> [IDLitTool::]GetService(IdService)

Return Value

Returns an object reference to the service.

Arguments

IdService

The identifier of the desired service.

Note
IdService should specify only the relative identifier, not the fully-qualified
identifier. See “iTool Object Identifiers” in Chapter 2 of the iTool Developer’s
Guide manual for details.

Keywords

None

Version History

Introduced: 6.0
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 2991
IDLitTool::GetVisualization

The IDLitTool::GetVisualization function method retrieves a visualization registered
with the iTool object. If the requested item does not exist in the given iTool, the
system will be queried to see if it supports an object of the given identifier.

Syntax

Result = Obj -> [IDLitTool::]GetVisualizations(Identifier [, /ALL]
[, COUNT=variable])

Return Value

Returns the object descriptors constructed for the registered visualizations. (See
“iTool Object Identifiers” in Chapter 2 of the iTool Developer’s Guide manual for a
discussion of object descriptors.)

If the ALL keyword is set, the Identifier argument is ignored and the resulting list of
object descriptors will be both those registered with the specific iTool as well as those
visualizations registered with the system.

Arguments

Identifier

A string containing the relative identifier of the item that is being requested. This
identifier is the value provided during object registration and is either supplied using
the IDENTIFIER keyword during registration, or constructed automatically by the
name that is provided during the registration call. (See “iTool Object Identifiers” in
Chapter 2 of the iTool Developer’s Guide manual for a discussion of relative vs. fully-
qualified identifiers.)

Keywords

ALL

Set this keyword to return all visualizations registered with the iTool and the system.
IDL Reference Guide IDLitTool

2992 Chapter 7: iTools Object Classes
COUNT

Set this keyword to a variable that will contain the number of object descriptors
returned by this method. (See “iTool Object Identifiers” in Chapter 2 of the iTool
Developer’s Guide manual for a discussion of object descriptors.)

Version History

Introduced: 6.0
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 2993
IDLitTool::Init

The IDLitTool::Init function method initializes the IDLitTool object, and should be
called by the Init method of a subclass.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW(’IDLitTool’[, PROPERTY=value])

or

Result = Obj -> [IDLitTool::]Init([PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLitTool Properties” on page 2970 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.
IDL Reference Guide IDLitTool

2994 Chapter 7: iTools Object Classes
Version History

Introduced: 6.0
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 2995
IDLitTool::RefreshCurrentWindow

The IDLitTool::RefreshCurrentWindow procedure method redraws the current
window of the iTool. The redraw will occur only if updates are enabled in the iTool.

Syntax

Obj -> [IDLitTool]::RefreshCurrentWindow

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitTool

2996 Chapter 7: iTools Object Classes
IDLitTool::Register

The IDLitTool::Register procedure method registers a generic object subclassed from
the IDLitComponent class with the iTool. Once registered, the iTool has the ability to
instantiate this type of component when needed. Unlike the other provided methods
to register components, this method is generic.

This method allows items to be registered in the standard registry folders of the
IDLitTool object, and can be used as well for the creation of new folders. If the
provided identifier specifies a folder that does not currently exist in the iTool, it is
created.

This method performs none of the validation performed by the specific registration
functions. As such, it can cause issues with iTool operation, if used incorrectly. You
should use the following related methods for registering certain, specific components
to insure validation:

• File readers — “IDLitTool::RegisterFileReader” on page 2999.

• File writers — “IDLitTool::RegisterFileWriter” on page 3001.

• Manipulators — “IDLitTool::RegisterManipulator” on page 3003.

• Operations — “IDLitTool::RegisterOperation” on page 3005.

• Visualizations — “IDLitTool::RegisterVisualization” on page 3007

Syntax

Obj -> [IDLitTool::]Register, Name, ClassName [, DESCRIPTION=string]
[, ICON=string] [, IDENTIFIER=string] [, PROXY=string]

Arguments

Name

A string containing the human readable name of the component type being registered
with the iTool.

ClassName

A string containing the class name of the component being registered. This class
name is used by the iTool object to instantiate a component of this type when
requested by the system.
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 2997
Keywords

Note
Any keywords provided to this routine but not listed here are treated as property
defaults for the registered item and applied to the registered object when it is
created.

DESCRIPTION

Set this keyword to a string that provides a brief description of the component being
registered.

ICON

Set this keyword to the icon that should be used when displaying the iTool object. See
“System Resources” in Chapter 2 of the iTool Developer’s Guide manual for
additional details.

IDENTIFIER

Set this keyword to the identifier that should be used by the system for this
visualization type. If not provided, an identifier is constructed from the provided
Name value.

To use one of the iTool-provided registration locations, the value of this keyword
should contain the destination for the new component that is being registered. Valid
destinations in the iTool are:

• Visualizations

• Operations

• Manipulators

• File Writers

• File Readers

PROXY

Set this keyword to the identifier of the object that this registered item should utilize
instead of providing a new object descriptor. If a proxy is registered, all requests and
actions performed to this item are routed to the item specified by the identifier
provide to this keyword. (See “iTool Object Identifiers” in Chapter 2 of the iTool
Developer’s Guide manual for a discussion of object descriptors.)
IDL Reference Guide IDLitTool

2998 Chapter 7: iTools Object Classes
Version History

Introduced: 6.0
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 2999
IDLitTool::RegisterFileReader

The IDLitTool::RegisterFileReader procedure method registers a file reader
component with the iTool. Once registered, the iTool has the ability to instantiate this
type of component when needed.

When a reader class is registered with the system, an object descriptor for this
operation class is placed in the iTool’s file reader folder. To retrieve this descriptor at
a later time, the iTool relative identifier would be FILE READERS/identifier,
where identifier is the identifier provided to this method.

Syntax

Obj -> [IDLitTool::]RegisterFileReader, Name, ClassName
[, DESCRIPTION=string] [, ICON=string] [, IDENTIFIER=string]
[, PROXY=string]

Arguments

Name

The human readable name of the component type being registered with the iTool.

ClassName

A string containing the class name of the component being registered. This class
name is used by the iTool object to instantiate a component of this type when
requested by the system.

Keywords

Note
Any keywords provided to this routine but not listed here are treated as property
defaults for the registered item and applied to the registered object when it is
created.

DESCRIPTION

Set this keyword to a string that provides a brief description of the component being
registered.
IDL Reference Guide IDLitTool

3000 Chapter 7: iTools Object Classes
ICON

Set this keyword to the icon that should be used when displaying the file reader in an
iTool browser. See “System Resources” in Chapter 2 of the iTool Developer’s Guide
manual for additional details.

IDENTIFIER

Set this keyword to the identifier that should be used by the system for this
visualization type. If not provided, an identifier is constructed from the provided
Name value.

While some items registered with an iTool can contain sub-folders that are specified
by identifiers, the file reader registration cannot. As such, any nested identifiers that
are registered are not visible to the iTool system.

PROXY

Set this keyword to the identifier of the object that this registered item should utilize
instead of providing a new object descriptor. If a proxy is registered, all requests and
actions performed on this item are routed to the item specified by the identifier
provided for this keyword. (See “iTool Object Identifiers” in Chapter 2 of the iTool
Developer’s Guide manual for a discussion of object descriptors.)

Version History

Introduced: 6.0
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 3001
IDLitTool::RegisterFileWriter

The IDLitTool::RegisterFileWriter procedure method registers a file writer
component with the iTool. Once registered, the iTool has the ability to instantiate this
type of component when needed.

When a writer class is registered with the system, an object descriptor for this
operation class is placed in the iTool’s file writer folder. To retrieve this descriptor at
a later time, the iTool relative identifier would be FILE WRITERS/identifier,
where identifier is the identifier provided to this method.

Syntax

Obj -> [IDLitTool::]RegisterFileWriter, Name, ClassName
[, DESCRIPTION=string] [, ICON=string] [, IDENTIFIER=string]
[, PROXY=string]

Arguments

Name

A string containing the human readable name of the component type being registered
with the iTool.

ClassName

A string containing the class name of the component being registered. The iTool
object uses this class name to instantiate a component of this type when requested by
the system.

Keywords

Note
Any keywords provided to this routine but not listed here are treated as property
defaults for the registered item and applied to the registered object when it is
created.

DESCRIPTION

Set this keyword to a string that provides a brief description of the component being
registered.
IDL Reference Guide IDLitTool

3002 Chapter 7: iTools Object Classes
ICON

Set this keyword to the icon that should be used when displaying the file writer in an
iTool browser. See “System Resources” in Chapter 2 of the iTool Developer’s Guide
manual for additional details.

IDENTIFIER

Set this keyword to the identifier that should be used by the system for this
visualization type. If not provided, an identifier is constructed from the provided
Name value.

While some items registered with an iTool can contain sub-folders that are specified
by identifiers, the file writer registration cannot. As such, any nested identifiers that
are registered are not visible to the iTool system.

PROXY

Set this keyword to the identifier of the object that this registered item should utilize
instead of providing a new object descriptor. If a proxy is registered, all requests and
actions performed on this item are routed to the item specified by the identifier
provided for this keyword. (See “iTool Object Identifiers” in Chapter 2 of the iTool
Developer’s Guide manual for a discussion of object descriptors.)

Version History

Introduced: 6.0
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 3003
IDLitTool::RegisterManipulator

The IDLitTool::RegisterManipulator procedure method registers a manipulator
component with the iTool. Once registered, the iTool has the ability to instantiate this
type of component when needed.

When a manipulator class is registered with the system, an object of the given class is
created and added to the tools manipulator manager (an instance of
IDLitManipulatorManager). To reference the new manipulator, the identifier that is
provided should be prepended with the MANIPULATORS identifier level.

Syntax

Obj -> [IDLitTool::]Manipulator, Name, ClassName [, /DEFAULT]
[, DESCRIPTION=string] [, ICON=string] [, IDENTIFIER=string]

Arguments

Name

A string containing the human readable name of the component type being registered
with the iTool.

ClassName

A string containing the class name of the component being registered. This class
name is used by the iTool object to instantiate a component of this type when
requested by the system.

Keywords

Note
Any keywords provided to this routine but not listed here are treated as property
defaults for the registered item and applied to the registered object when it is
created.

DEFAULT

If set, this registered item will be treated as the default manipulator for this iTool.
Only one default manipulator can exist at anytime.
IDL Reference Guide IDLitTool

3004 Chapter 7: iTools Object Classes
DESCRIPTION

Set this keyword to a string that provides a brief description of the component being
registered.

ICON

Set this keyword to the icon that should be used when displaying the manipulator in
an iTool menubar. See “System Resources” in Chapter 2 of the iTool Developer’s
Guide manual for additional details.

IDENTIFIER

Set this keyword to the identifier that should be used by the system for this
visualization type. If not provided, an identifier is constructed from the provided
name value.

Version History

Introduced: 6.0
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 3005
IDLitTool::RegisterOperation

The IDLitTool::RegisterOperation procedure method registers an operation
component with the iTool. Once registered, the iTool has the ability to instantiate this
type of operation when needed.

When an operation class is registered with the system, an object descriptor for this
operation class is placed in the tools operations folder. To retrieve this descriptor at a
later time, the iTool relative identifier would be OPERATIONS/identifier, where
identifier is the identifier provided to this method.

Syntax

Obj -> [IDLitTool::]RegisterOperation, Name, ClassName [, DESCRIPTION=string]
[, ICON=string] [, IDENTIFIER=string] [, PROXY=string]

Arguments

Name

A string containing the human readable name of the operation type being registered
with the iTool. If the name includes leading identifier values that indicates a location
in the operation hierarchy of the iTool, the new operation shall be placed in the target
location.

If the target location specified by the name does not exist in the tools operation
hierarchy, it is created.

ClassName

A string containing the class name of the operation component being registered. This
class name is used by the iTool object to instantiate an operation component of this
type when requested.

Keywords

Note
Any keywords provided to this routine but not listed here are treated as property
defaults for the registered item and applied to the registered object when it is
created.
IDL Reference Guide IDLitTool

3006 Chapter 7: iTools Object Classes
DESCRIPTION

Set this keyword to a string that provides a brief description of the component being
registered.

ICON

Set this keyword to the icon that should be used when displaying the operation in an
iTool browser. See “System Resources” in Chapter 2 of the iTool Developer’s Guide
manual for additional details.

IDENTIFIER

Set this keyword to the identifier that should be used by the system for this
component type. If not provided, an identifier is constructed from the provided name
value.

If a multiple level identifier is provided (indicated by the presence of a "/"), the
registered item is placed in a subfolder of the tools operation folder. If the specified
folder is not present in the iTool at registration time, it is created. It is this
functionality that allows operations to be classified in logical groupings and results in
sub-menu items in the operations menus of the iTool interface.

PROXY

Set this keyword to the identifier of the object that this registered item should utilize
instead of providing a new object descriptor. If a proxy is registered, all requests and
actions performed on this item are routed to the item specified by the identifier
provided for this keyword. (See “iTool Object Identifiers” in Chapter 2 of the iTool
Developer’s Guide manual for a discussion of object descriptors.)

Version History

Introduced: 6.0
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 3007
IDLitTool::RegisterVisualization

The IDLitTool::RegisterVisualization procedure method registers a visualization
component with the iTool. Once registered, the iTool has the ability to instantiate this
type of visualization when needed.

When a visualization class is registered with the system, an object descriptor for this
visualization class is placed in the iTool’s visualization folder. To retrieve this
descriptor at a later time, the iTool relative identifier would be:
VISUALIZATIONS/identifier where identifier is the identifier provided to this
method.

Syntax

Obj -> [IDLitTool::]RegisterVisualization, Name, ClassName [, /DEFAULT]
[, DESCRIPTION=string] [, ICON=string] [, IDENTIFIER=string]
[, PROXY=string]

Arguments

Name

A string containing the human readable name of the visualization type being
registered with the iTool.

ClassName

A string containing the class name of the visualization component being registered.
The iTool object uses this class name to instantiate a visualization component of this
type when requested.

Keywords

Note
Any keywords provided to this routine but not listed here are treated as property
defaults for the registered item and applied to the registered object when it is
created.

DEFAULT

If set, this registered item will be treated as the default visualization for this iTool.
Only one default visualization can exist at a time.
IDL Reference Guide IDLitTool

3008 Chapter 7: iTools Object Classes
DESCRIPTION

Set this keyword to a string that provides a brief description of the component being
registered.

ICON

Set this keyword to the icon that should be used when displaying the visualization in
an iTool browser. See “System Resources” in Chapter 2 of the iTool Developer’s
Guide manual for additional details.

IDENTIFIER

Set this keyword to the identifier that should be used by the system for this
visualization type. If not provided, an identifier is constructed from the provided
name value.

While some items registered with an iTool can contain sub-folders that are specified
by identifiers, the visualization registration cannot. As such, any nested identifiers
that are registered are not visible to the iTool system.

PROXY

Set this keyword to the identifier of the object that this registered item should utilize
instead of providing a new object descriptor. If a proxy is registered, all requests and
actions performed on this item are routed to the item specified by the identifier
provided for this keyword.

Version History

Introduced: 6.0
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 3009
IDLitTool::SetProperty

The IDLitTool::SetProperty procedure method sets the value of an IDLitTool
property, and should be called by the subclass’ SetProperty method. This method also
calls the superclass’ SetProperty method.

Syntax

Obj -> [IDLitTool::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLitTool Properties” on page 2970 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 6.0

See Also

IDLitTool::DoSetProperty
IDL Reference Guide IDLitTool

3010 Chapter 7: iTools Object Classes
IDLitTool::UnRegister

The IDLitTool::UnRegister procedure method unregisters a component with the
iTool. When a component is unregistered, it is no longer available to perform
whatever function it performs, and it is removed from iTool menus and toolbars.

Syntax

Obj -> [IDLitTool::]UnRegister, Identifier

Arguments

Identifier

Set this to the relative identifier of the component to be removed from the iTool. To
remove a component from the standard folders in the iTool’s content registry, this
identifier should contain the location of the component as well as the component
identifier itself. See “iTool Object Identifiers” in Chapter 2 of the iTool Developer’s
Guide manual for a discussion of iTool identifiers.

Valid destinations in the iTool are:

• Visualizations

• Operations

• Manipulators

• File Writers

• File Readers

Keywords

None

Version History

Introduced: 6.0
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 3011
IDLitTool::UnRegisterFileReader

The IDLitTool::UnRegisterFileReader procedure method unregisters a file reader
component with the iTool. When a file reader is unregistered, it is no longer available
to import files into the iTool, and it is removed from iTool menus and toolbars.

Syntax

Obj -> [IDLitTool::]UnRegisterFileReader, Identifier

Arguments

Identifier

Set this to the relative identifier of the file reader to be removed from the iTool. See
“iTool Object Identifiers” in Chapter 2 of the iTool Developer’s Guide manual for a
discussion of iTool identifiers.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitTool

3012 Chapter 7: iTools Object Classes
IDLitTool::UnRegisterFileWriter

The IDLitTool::UnRegisterFileWriter procedure method unregisters a component
with the iTool. When a file writer is unregistered, it is no longer available to export
files from the iTool, and it is removed from iTool menus and toolbars.

Syntax

Obj -> [IDLitTool::]UnRegisterFileWriter, Identifier

Arguments

Identifier

Set this to the relative identifier of the file writer to be removed from the iTool. See
“iTool Object Identifiers” in Chapter 2 of the iTool Developer’s Guide manual for a
discussion of iTool identifiers.

Keywords

None

Version History

Introduced: 6.0
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 3013
IDLitTool::UnRegisterManipulator

The IDLitTool::UnRegisterManipulator procedure method unregisters a manipulator
component with the iTool. When a manipulator is unregistered, it is removed from
iTool menus and toolbars.

Syntax

Obj -> [IDLitTool::]UnRegisterManipulator, Identifier

Arguments

Identifier

Set this to the relative identifier of the manipulator to be removed from the iTool. See
“iTool Object Identifiers” in Chapter 2 of the iTool Developer’s Guide manual for a
discussion of iTool identifiers.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitTool

3014 Chapter 7: iTools Object Classes
IDLitTool::UnRegisterOperation

The IDLitTool::UnRegisterOperation procedure method unregisters an operation
component with the iTool. When an operation is unregistered, it is no longer available
to perform actions within the iTool, and it is removed from iTool menus and toolbars.

Syntax

Obj -> [IDLitTool::]UnRegisterOperation, Identifier

Arguments

Identifier

Set this to the relative identifier of the component to be removed from the iTool. See
“iTool Object Identifiers” in Chapter 2 of the iTool Developer’s Guide manual for a
discussion of iTool identifiers.

Keywords

None

Version History

Introduced: 6.0
IDLitTool IDL Reference Guide

Chapter 7: iTools Object Classes 3015
IDLitTool::UnRegisterVisualization

The IDLitTool::UnRegisterVisualization procedure method unregisters a
visualization component with the iTool. When a visualization is unregistered,
visualizations of its type can no longer be created by the iTool, and it is removed from
iTool menus and toolbars.

Syntax

Obj -> [IDLitTool::]UnRegisterVisualization, Identifier

Arguments

Identifier

Set this to the relative identifier of the visualization to remove from the iTool. See
“iTool Object Identifiers” in Chapter 2 of the iTool Developer’s Guide manual for a
discussion of iTool identifiers.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitTool

3016 Chapter 7: iTools Object Classes
IDLitUI

The IDLitUI class serves as the link between the underlying functionality of an iTool
and the IDL Widget interface that is displayed to the user. The user interface object
provides the following functionality:

• Access to and communication with the underlying iTool object.

• Registration of various user interface elements that are part of the iTool.

• Registration and management of dialog sub-elements that are used by the iTool
to perform specific tasks.

For additional information on the IDLitUI class, and user interface issues in general,
see Chapter 10, “iTool User Interface Architecture” in the iTool Developer’s Guide
manual.

This class is written in the IDL language. Its source code can be found in the file
idlitui__define.pro in the lib/itools/ui_widgets subdirectory of the
IDL distribution.

Superclasses

IDLitContainer

Creation

See “IDLitUI::Init” on page 3026.

Properties

Objects of this class have the following properties. See “IDLitUI Properties” on
page 3018 for details on individual properties.

• GROUP_LEADER

Methods

This class has the following methods:

• IDLitUI::AddOnNotifyObserver

• IDLitUI::Cleanup

• IDLitUI::DoAction
IDLitUI IDL Reference Guide

Chapter 7: iTools Object Classes 3017
• IDLitUI::GetProperty

• IDLitUI::GetTool

• IDLitUI::GetWidgetByName

• IDLitUI::Init

• IDLitUI::RegisterUIService

• IDLitUI::RegisterWidget

• IDLitUI::RemoveOnNotifyObserver

• IDLitUI::SetProperty

• IDLitUI::UnRegisterUIService

• IDLitUI::UnRegisterWidget

In addition, this class inherits the methods of its superclasses (if any).

Examples

See “Example: A Simple UI Panel” in Chapter 13 of the iTool Developer’s Guide
manual.

Version History

Introduced: 6.0

See Also

Chapter 10, “iTool User Interface Architecture” in the iTool Developer’s Guide
manual
IDL Reference Guide IDLitUI

3018 Chapter 7: iTools Object Classes
IDLitUI Properties

IDLitUI objects have the following properties in addition to properties inherited from
any superclasses. Properties with the word “Yes” in the “Get” column of the property
table can be retrieved via IDLitUI::GetProperty. Properties with the word “Yes” in
the “Init” column of the property table can be set via IDLitUI::Init. Properties with
the word “Yes” in the “Set” column in the property table can be set via
IDLitUI::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

GROUP_LEADER

A long integer containing the IDL Widget ID of the group leader widget for the user
interface.

Property Type Long Integer (Widget ID)

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLitUI IDL Reference Guide

Chapter 7: iTools Object Classes 3019
IDLitUI::AddOnNotifyObserver

The IDLitUI::AddOnNotifyObserver procedure method is used to register a specified
iTool component object as wishing to receive messages generated by the DoOnNotify
method of another specified iTool component object.

Syntax

Obj -> [IDLitUI::]AddOnNotifyObserver, IdObserver, IdSubject

Arguments

IdObserver

The object identifier of an iTool component object that is the observer expressing
interest in the subject specified by IdSubject. Often, IdObserver is the object
identifier of the object on which this method is being called.

The object specified by IdObserver must implement the OnNotify callback method,
which is called when a notification message is dispatched to IdObserver by the
DoOnNotify method of another iTool component object (usually the object specified
by IdSubject). The OnNotify method has the following signature:

PRO ::OnNotify, idObject, idMessage, message

where

• idObject is the object identifier of the iTool component that is the source of the
message.

• idMessage is a string that identifies the type of message being sent.

• message is the message data itself.

In general, the idMessage string is used by the OnNotify method to determine what
type of action to take. See “IDLitIMessaging::DoOnNotify” on page 2828 for
additional details.

IdSubject

A string identifying the item that IdObserver is interested in. This is normally the
object identifier of a particular iTool component object, but it can be any string value.
When a message sent via IDLitIMessaging::DoOnNotify specifies IdSubject as the
originator, the IdObserver object’s OnNotify method is called.
IDL Reference Guide IDLitUI

3020 Chapter 7: iTools Object Classes
Keywords

None

Version History

Introduced: 6.0
IDLitUI IDL Reference Guide

Chapter 7: iTools Object Classes 3021
IDLitUI::Cleanup

The IDLitUI::Cleanup procedure method performs all cleanup on the object, and
should be called by the Cleanup method of a subclass.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: if you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLitUI::]Cleanup (only in subclass’ Cleanup method)

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitUI

3022 Chapter 7: iTools Object Classes
IDLitUI::DoAction

The IDLitUI::DoAction function method initiates an operation or action in the iTool
object associated with this user interface. The identifier that is passed in as the
argument to this method specifies the action that executes.

Syntax

Result = Obj -> [IDLitUI::]doAction(Identifier)

Return Value

Returns 1 if the action succeeds, or 0 if the action fails.

Arguments

Identifier

This argument is set to a string identifier that specifies the object in the iTool that
performs the operation or action that it implements.

Keywords

All keywords are passed to the DoAction function of the object in the iTool that
performs the operation or action.

Version History

Introduced: 6.0
IDLitUI IDL Reference Guide

Chapter 7: iTools Object Classes 3023
IDLitUI::GetProperty

The IDLitUI::GetProperty procedure method retrieves the value of an IDLitUI
property, and should be called by the subclass’ GetProperty method. This method
also retrieves properties defined in the superclass.

Syntax

Obj -> [IDLitUI::]GetProperty, [PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLitUI Properties” on page 3018 that contains the word
“Yes” in the “Get” column of the properties table can be retrieved using this method.
To retrieve the value of a property, specify the property name as a keyword set equal
to a named variable that will contain the value of the property.

Version History

Introduced: 6.0
IDL Reference Guide IDLitUI

3024 Chapter 7: iTools Object Classes
IDLitUI::GetTool

The IDLitUI::GetTool function method returns an object reference to the iTool with
which the user interface is associated.

Syntax

Result = Obj -> [IDLitUI::]GetTool()

Return Value

Returns an object reference to the iTool associated with the current user interface, or a
null object if there is no associated iTool.

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitUI IDL Reference Guide

Chapter 7: iTools Object Classes 3025
IDLitUI::GetWidgetByName

The IDLitUI::GetWidgetByName function method returns the IDL Widget ID of a
widget that has been registered with the user interface object via a call to the
IDLitUI::RegisterWidget method.

Syntax

Result = Obj -> [IDLitUI::]GetWidgetByName(Name)

Return Value

Returns the widget identifier (a long integer) of the widget specified by the Name
argument, or 0 if the widget was not registered with the iTool system.

Arguments

Name

Set this argument to the name that the desired widget was registered with.

Keywords

None

Example

This method can be used to determine whether a given widget already exists and act
accordingly. For example, the following code checks to determine whether a widget
registered as myWidget exists; if it does, that widget is mapped and un-iconified:

wID = oUI -> GetWidgetByName(myWidget)
IF(wID NE 0) THEN BEGIN

WIDGET_CONTROL, wID, /MAP, ICONIFY=0 ;; show the widget
RETURN

ENDIF

Similar code is used in many of the widget interface elements used by the standard
iTools included with IDL.

Version History

Introduced: 6.0
IDL Reference Guide IDLitUI

3026 Chapter 7: iTools Object Classes
IDLitUI::Init

The IDLitUI::Init function method initializes the IDLitUI object, and should be
called by the Init method of a subclass.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLitUI')

or

Result = Obj -> [IDLitUI::]Init() (Only in subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitUI IDL Reference Guide

Chapter 7: iTools Object Classes 3027
IDLitUI::RegisterUIService

The IDLitUI::RegisterUIService function method registers a user interface service
with the user interface. Once the user interface service has been registered, the iTool
with which the user interface is associated can call the UI service to display dialogs
or other UI elements.

Note
Every UI service must implement a callback function that displays the requested
user interface. See Chapter 12, “Creating a User Interface Service” in the iTool
Developer’s Guide manual for details.

Syntax

Restult = Obj -> [IDLitUI::]RegisterUIService(Name, Callback)

Return Value

Returns an iTool object identifier for the UI service specified by Name.

Arguments

Name

A string containing the human readable name of the user interface being registered.

Callback

A string containing the name of the callback function for this UI service. The
callback function is called when execution of the UI service is requested. The
callback should have the following calling signature:

FUNCTION NAME, oUI, oTarget

where:

• NAME is the name of the callback function,

• oUI is an object reference to the user interface object of which the UI service is
a part

• oTarget is an object reference to the object that is the target of the operation or
action with which the UI service is associated.
IDL Reference Guide IDLitUI

3028 Chapter 7: iTools Object Classes
Keywords

None

Version History

Introduced: 6.0
IDLitUI IDL Reference Guide

Chapter 7: iTools Object Classes 3029
IDLitUI::RegisterWidget

The IDLitUI::RegisterWidget function method registers an IDL widget hierarchy
with the user interface object. Once a widget has been registered with the UI object,
the UI can route messages to that widget and manage visibility if the widget is
registered with the FLOATING property set.

Syntax

Result = Obj -> [IDLitUI::]RegisterWidget(wID, Name, Callback[, /FLOATING])

Return Value

The iTool object identifier of the user interface adaptor that links the widget specified
by wID with the iTool.

Arguments

wID

A long integer containing the widget ID of the widget being registered. This value is
provided to the routine specified by the Callback argument when it is called.

Name

A string containing the human readable name for the widget being registered.

Callback

A string containing the name of a callback procedure for the widget. Any notification
messages sent by the iTool to this widget are sent to this callback procedure. The
callback procedure should have the following calling signature:

PRO NAME, wID, strID, message, messageData

where:

• NAME is the name of the callback procedure,

• wID is the widget ID provided to the IDLitUI:;RegisterWidget method,

• strID is a string containing the object identifier of the iTool object that
triggered the message,
IDL Reference Guide IDLitUI

3030 Chapter 7: iTools Object Classes
• message is the message being sent to the callback procedure,

• messageData is any data associated with the message.

Note
If this argument is set to an empty string, no callbacks will be made to this widget.

Keywords

FLOATING

Set this keyword to treat the widget as a floating element of the specified iTool user
interface, to be managed by the user interface object. If this keyword is set, the widget
will only be visible if the associated iTool is “current,” and the widget will be
destroyed when the iTool is destroyed.

Version History

Introduced: 6.0
IDLitUI IDL Reference Guide

Chapter 7: iTools Object Classes 3031
IDLitUI::RemoveOnNotifyObserver

The IDLitUI::RemoveOnNotifyObserver procedure method is used to un-register a
specified iTool component object as wishing to receive messages generated by the
DoOnNotify method of another specified iTool component object. This method
reverses the action of calling the IDLitUI::AddOnNotifyObserver method.

Syntax

Obj -> [IDLitUI::]RemoveOnNotifyObserver, IdObserver, IdSubject

Arguments

IdObserver

The object identifier of an iTool component object that is currently registered as an
observer of the component specified by IdSubject. Often, this is the object identifier
of the object on which method is being called.

IdSubject

The object identifier of the iTool component object that IdObserver is currently
registered as observing. This is normally the object identifier of a particular iTool
component object, but it can also be a string that references a global system service.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitUI

3032 Chapter 7: iTools Object Classes
IDLitUI::SetProperty

The IDLitUI::SetProperty procedure method sets the value of an IDLitUI property,
and should be called by the subclass’ SetProperty method. This method also calls the
superclass’ SetProperty method.

Syntax

Obj -> [IDLitUI::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitUI IDL Reference Guide

Chapter 7: iTools Object Classes 3033
IDLitUI::UnRegisterUIService

The IDLitUI::UnRegisterUIService procedure method unregisters a user interface
service with the user interface object.

Syntax

Obj -> [IDLitUI::]UnRegisterUIService, Name

Arguments

Name

A string containing the name of the UI service to be unregistered.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitUI

3034 Chapter 7: iTools Object Classes
IDLitUI::UnRegisterWidget

The IDLitUI::UnRegisterWidget procedure method unregisters a widget with the user
interface object.

Syntax

Obj -> [IDLitUI::]UnRegisterWidget, Name

Arguments

Name

A string containing the name of the widget to be unregistered.

Keywords

None

Version History

Introduced: 6.0
IDLitUI IDL Reference Guide

Chapter 7: iTools Object Classes 3035
IDLitVisualization

The IDLitVisualization class represents the base visualization component, from
which all iTool visualization classes should subclass. IDLitVisualization acts as a
container and provides methods for adding, removing, and grouping visualization
components.

This class is written in the IDL language. Its source code can be found in the file
idlitvisualization__define.pro in the lib/itools/framework
subdirectory of the IDL distribution.

Superclasses

IDLgrModel

IDLitIMessaging

IDLitParameter

Creation

See “IDLitVisualization::Init” on page 3059.

Properties

Objects of this class have the following properties. See “IDLitVisualization
Properties” on page 3038 for details on individual properties.

• CENTER_OF_ROTATION

• GROUP_PARENT

• IMPACTS_RANGE

• ISOTROPIC

• MANIPULATOR_TARGET

• TYPE

In addition, objects of this class inherit the properties of all superclasses of this class.
IDL Reference Guide IDLitVisualization

3036 Chapter 7: iTools Object Classes
Methods

This class has all the methods associated with the superclasses, plus the following
methods:

• IDLitVisualization::Add

• IDLitVisualization::Aggregate

• IDLitVisualization::Cleanup

• IDLitVisualization::Get

• IDLitVisualization::GetCenterRotation

• IDLitVisualization::GetCurrentSelectionVisual

• IDLitVisualization::GetDataSpace

• IDLitVisualization::GetDataString

• IDLitVisualization::GetDefaultSelectionVisual

• IDLitVisualization::GetManipulatorTarget

• IDLitVisualization::GetProperty

• IDLitVisualization::GetSelectionVisual

• IDLitVisualization::GetTypes

• IDLitVisualization::GetXYZRange

• IDLitVisualization::Init

• IDLitVisualization::Is3D

• IDLitVisualization::IsIsotropic

• IDLitVisualization::IsManipulatorTarget

• IDLitVisualization::IsSelected

• IDLitVisualization::OnDataChange

• IDLitVisualization::OnDataComplete

• IDLitVisualization::OnDataRangeChange

• IDLitVisualization::Remove

• IDLitVisualization::Scale

• IDLitVisualization::Select
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3037
• IDLitVisualization::Set3D

• IDLitVisualization::SetCurrentSelectionVisual

• IDLitVisualization::SetData

• IDLitVisualization::SetDefaultSelectionVisual

• IDLitVisualization::SetParameterSet

• IDLitVisualization::SetProperty

• IDLitVisualization::UpdateSelectionVisual

• IDLitVisualization::VisToWindow

• IDLitVisualization::WindowToVis

In addition, this class inherits the methods of its superclasses.

Examples

See Chapter 6, “Creating a Visualization” in the iTool Developer’s Guide manual for
examples using this class and its methods.

Version History

Introduced: 6.0
IDL Reference Guide IDLitVisualization

3038 Chapter 7: iTools Object Classes
IDLitVisualization Properties

IDLitVisualization objects have the following properties in addition to properties
inherited from any superclasses. Properties with the word “Yes” in the “Get” column
of the property table can be retrieved via IDLitVisualization::GetProperty. Properties
with the word “Yes” in the “Init” column of the property table can be initialized via
IDLitVisualization::Init. Properties with the word “Yes” in the “Set” column of the
property table can be set via IDLitVisualization::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

CENTER_OF_ROTATION

A two- or three-element vector, [x, y] or [x, y, z] indicating the center (in data
coordinates) of rotation for this visualization. If a two-element vector is supplied, the
z value remains unchanged. When retrieving the value of this property, the center of
rotation is always returned as a three-element vector.

GROUP_PARENT

A reference to the IDLitVisualization object that serves as the group parent for this
visualization.

Property Type Vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Object Reference

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3039
IMPACTS_RANGE

A boolean that, when set to 0, indicates that the x, y, and z range of the contents of this
visualization should not impact the x, y, and z range of any visualization that contains
it. By default, IMPACTS_RANGE is 1.

ISOTROPIC

A boolean that, when set to a non-zero value, indicates that this object should have
isotropic scaling applied to it. By default, ISOTROPIC is 0 (isotropic scaling is not
enforced).

MANIPULATOR_TARGET

A boolean that, when set to a non-zero value, indicates that this object should be
treated as a target for manipulations. By default, MANIPULATOR_TARGET is 0
(this object is not a target for manipulations).

PROPERTY_INTERSECTION

A boolean value that indicates whether the visualization should display the
intersection or the union of the properties of any aggregated objects. Visualizations
that display the union of their aggregated objects’ properties appear in iTool browsers
as a single visualization with one set of properties. Visualizations that display the
intersection of their aggregated objects’ properties appear in iTool browsers as a
container for the aggregated objects, allowing access to the contained objects’

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLitVisualization

3040 Chapter 7: iTools Object Classes
properties as well as to those of the container. See “Working with Aggregated
Properties” in Chapter 4 of the iTool Developer’s Guide manual for additional
discussion of aggregated properties.

TYPE

A string or vector of strings that identify the type(s) that this visualization represents.
See “Predefined iTool Visualization Classes” in Chapter 6 of the iTool Developer’s
Guide manual for a list of predefined types.

Property Type Boolean

Name String no default value

Get: Yes Set: No Init: Yes Registered: No

Property Type String

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3041
IDLitVisualization::Add

The IDLitVisualization::Add procedure method adds objects to the visualization
container.

Syntax

Obj -> [IDLitVisualization::]Add, Objects [, /AGGREGATE] [, /GROUP]
[, /NO_UPDATE] [, POSITION=index]

Arguments

Objects

An object reference (or array of object references), each referring to an atomic
graphic object, an IDLgrModel, or another IDLitVisualization object to be added to
the visualization container.

Keywords

AGGREGATE

Set this keyword to indicate that the object(s) being added should become part of this
visualization’s property aggregate. The properties of all aggregated objects are
exposed as properties of this visualization (accessible via the GetProperty and
SetProperty methods).

GROUP

Set this keyword to indicate that the added object is to be considered part of the group
that is rooted at this visualization. By default, the added objects are not considered to
be part of the group.

NO_UPDATE

Set this keyword to indicate that the overall scene should not be updated after the
addition of the object(s). By default, the overall scene is updated.
IDL Reference Guide IDLitVisualization

3042 Chapter 7: iTools Object Classes
POSITION

Set this keyword equal to a scalar or vector of zero-based index values. The number
of elements specified must be equal to the number of object references specified by
the Objects argument. Each index value specifies the position within this
visualization container at which the corresponding object should be placed. The
default is to add new objects at the end of the list of contained items.

Version History

Introduced: 6.0
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3043
IDLitVisualization::Aggregate

The IDLitVisualization::Aggregate procedure method adds the given object(s) to this
visualization's property aggregate. The properties of all aggregated objects are
exposed as properties of this visualization (via ::GetProperty and ::SetProperty).

Syntax

Obj -> [IDLitVisualization::]Aggregate, Objects

Arguments

Objects

An object reference (or array of object references), each of which refers to an atomic
graphic object, an IDLgrModel, or another IDLitVisualization object to be
aggregated within this visualization container.

Keywords

None.

Version History

Introduced: 6.0
IDL Reference Guide IDLitVisualization

3044 Chapter 7: iTools Object Classes
IDLitVisualization::Cleanup

The IDLitVisualization::Cleanup procedure method performs all cleanup on the
object, and should be called by the subclass’ Cleanup method.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: if you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLitVisualization::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3045
IDLitVisualization::Get

The IDLitVisualization::Get function method retrieves object(s) from the
visualization.

Syntax

Result = Obj -> [IDLitVisualization::]Get([, /ALL] [, COUNT=variable]
[, ISA=string or array of strings] [, POSITION=index or array of indices]
[, /SKIP_PRIVATE])

Return Value

Returns the reference of the object retrieved from the visualization. If the object is not
contained by this visualization, a NULL object reference is returned.

Arguments

None

Keywords

ALL

Set this keyword to return an array of object references to all of the objects in the
container.

COUNT

Set this keyword equal to a named variable that will contain the number of objects
selected by the function.

ISA

Set this keyword equal to a class name or vector of class names. This keyword is used
in conjunction with the ALL keyword. The ISA keyword filters the array returned by
the ALL keyword, returning only the objects that inherit from the class or classes
specified by the ISA keyword.

Note
This keyword is ignored if the ALL keyword is not provided.
IDL Reference Guide IDLitVisualization

3046 Chapter 7: iTools Object Classes
POSITION

Set this keyword equal to a scalar or array containing the zero-based indices of the
positions of the objects to return.

SKIP_PRIVATE

Set this keyword to indicate that this method should return only those objects that do
not have the PRIVATE property set.

Version History

Introduced: 6.0
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3047
IDLitVisualization::GetCenterRotation

The IDLitVisualization::GetCenterRotation function method returns the center of
rotation for this visualization.

Syntax

Result = Obj -> [IDLitVisualization::]GetCenterRotation([, /DATA]
[, /NO_TRANSFORM] [, XRANGE=[xmin, xmax]] [, YRANGE=[ymin, ymax]]
[, ZRANGE=[zmin, zmax]])

Return Value

Returns a two- or three-element vector, [x, y] or [x, y, z] indicating the center (in data
coordinates) of the bounding box for this visualization if the center of rotation was
not explicitly specified with the CENTER_OF_ROTATION property of this
visualization. See the CENTER_OF_ROTATION property for more details.

Arguments

None

Keywords

DATA

Set this keyword to indicate that the ranges should be computed for the full data sets
of the contents of this visualization. By default (if the keyword is not set), the ranges
are computed for the displayed portions of the data sets.

NO_TRANSFORM

Set this keyword to indicate that this visualization’s transform should not be applied
when computing the x, y, and z ranges. By default, the transform is applied.

XRANGE

Set this keyword to a named variable that will contain a 2-element vector, [xmin,
xmax], representing the x range of the bounding box for this visualization.
IDL Reference Guide IDLitVisualization

3048 Chapter 7: iTools Object Classes
YRANGE

Set this keyword to a named variable that will contain a 2-element vector, [ymin,
ymax], representing the y range of the bounding box for this visualization.

ZRANGE

Set this keyword to a named variable that will contain a 2-element vector, [zmin,
zmax], representing the z range of the bounding box for this visualization.

Version History

Introduced: 6.0
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3049
IDLitVisualization::GetCurrentSelectionVisual

The IDLitVisualization::GetCurrentSelectionVisual function method returns the
currently active selection visual object for this visualization.

Syntax

Result = Obj -> [IDLitVisualization::]GetCurrentSelectionVisual()

Return Value

Returns a reference to an IDLitManipulatorVisual object. If no selection visual is
currently active, the NULL object reference is returned.

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitVisualization

3050 Chapter 7: iTools Object Classes
IDLitVisualization::GetDataSpace

The IDLitVisualization::GetDataSpace function method returns a reference to the
parent data space object within the graphics hierarchy that contains the visualization.

Syntax

Result = Obj -> [IDLitVisualization::]GetDataSpace([, /UNNORMALIZED])

Return Value

Returns a reference to the nearest data space object in the graphics hierarchy. If no
data space objects are found by walking up the hierarchy, then a null object reference
is returned.

Arguments

None

Keywords

UNNORMALIZED

Set this keyword to indicate that the returned data space should be the parent data
space that subclasses from the IDLitVisDataSpace class (which is not normalized)
rather than the IDLitVisNormDataSpace class (which is normalized).

Version History

Introduced: 6.0
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3051
IDLitVisualization::GetDataString

The IDLitVisualization::GetDataString function method retrieves a description of
this visualization’s data at the given x, y, and z location.

Note
This method is designed to be implemented as needed by subclasses. The
IDLitVisualization::GetDataString method simply always returns an empty string

Syntax

Result = Obj -> [IDLitVisualization::]GetDataString(XYZLocation)

Return Value

Returns a string describing the visualization’s data at the given location.

Arguments

XYZLocation

A three-element vector representing the x, y, and z location of the data for which a
string description is to be returned.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitVisualization

3052 Chapter 7: iTools Object Classes
IDLitVisualization::GetDefaultSelectionVisual

The IDLitVisualization::GetDefaultSelectionVisual function method returns an
object that serves as the default selection visual for this visualization.

Note
If the visualization on which this method is called is not a manipulator target (see
“MANIPULATOR_TARGET” on page 3039), the default selection visual returned
by this method will be used as the current selection visual whenever the
visualization is selected.

Syntax

Result = Obj -> [IDLitVisualization::]GetDefaultSelectionVisual()

Return Value

Returns a reference to an IDLitManipulatorVisual object.

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3053
IDLitVisualization::GetManipulatorTarget

The IDLitVisualization::GetManipulatorTarget function method retrieves the
manipulator target associated with this visualization. The manipulator target may be
this visualization itself.

Syntax

Result = Obj -> [IDLitVisualization::]GetManipulatorTarget()

Return Value

Returns an object reference to the manipulator target, or a NULL object reference if
none is found.

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitVisualization

3054 Chapter 7: iTools Object Classes
IDLitVisualization::GetProperty

The IDLitVisualization::GetProperty procedure method retrieves the value of a
property or group of properties for the object.

Syntax

Obj -> [IDLitVisualization::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLitVisualization Properties” on page 3038 that contains
the word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Version History

Introduced: 6.0
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3055
IDLitVisualization::GetSelectionVisual

The IDLitVisualization::GetSelectionVisual function method retrieves the selection
visual for this visualization that corresponds to the given manipulator.

Syntax

Result = Obj -> [IDLitVisualization::]GetSelectionVisual(Manipulator)

Return Value

Returns a reference to an IDLitManipulatorVisual object that corresponds to the
given manipulator. If this visualization already has a selection visual for the given
manipulator, a reference to that selection visual is returned. Otherwise, a default
selection visual will be requested from the manipulator, added to the visualization,
and returned.

Arguments

Manipulator

Set this argument to a reference to an IDLitManipulator object that identifies the
manipulator for which a selection visual is to be retrieved.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitVisualization

3056 Chapter 7: iTools Object Classes
IDLitVisualization::GetTypes

The IDLitVisualization::GetTypes function method identifies the types that this
visualization represents, including base types and any specializations.

Note
This method is designed to be implemented as needed by subclasses of the
IDLitVisualization class. Calling this method on the IDLitVisualization class itself
returns the following string array: ['VISUALIZATION', '_VISUALIZATION',
AnySpecifiedTypes] where AnySpecifiedTypes are provided by any value
set for the TYPE property of the IDLitVisualization class.

Syntax

Result = Obj -> [IDLitVisualization::]GetTypes()

Return Value

Returns a vector of strings identifying the types that this visualization represents. See
“Predefined iTool Visualization Classes” in Chapter 6 of the iTool Developer’s Guide
manual for a list of predefined types

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3057
IDLitVisualization::GetXYZRange

The IDLitVisualization::GetXYZRange function method computes the x, y, and z
ranges of the overall contents of the visualization, taking into account the
IMPACTS_RANGE property setting for itself and its contents.

Syntax

Result = Obj -> [IDLitVisualization::]GetXYZRange(XRange,YRange, ZRange
[, /DATA] [, /NO_TRANSFORM])

Return Value

Returns a 1 if the x, y, and z ranges were successfully computed, or 0 otherwise.

Arguments

XRange

A named variable that, upon return, will contain a two-element vector, [xmin, xmax],
representing the x-range of the contents of this visualization that impact ranges.

YRange

A named variable that, upon return, will contain a two-element vector, [ymin, ymax],
representing the y-range of the contents of this visualization that impact ranges.

ZRange

A named variable that, upon return, will contain a two-element vector, [zmin, zmax],
representing the z-range of the contents of this visualization that impact ranges.

Keywords

DATA

Set this keyword to indicate that the ranges should be computed for the full data sets
of the contents of this visualization. By default, if the keyword is not set, the ranges
are computed for the displayed portions of the data sets.
IDL Reference Guide IDLitVisualization

3058 Chapter 7: iTools Object Classes
NO_TRANSFORM

Set this keyword to indicate that this visualization’s transform matrix should not be
applied when computing the x, y, and z ranges. By default, the transform matrix is
applied.

Version History

Introduced: 6.0
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3059
IDLitVisualization::Init

 The IDLitVisualization::Init function method initializes the visualization object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLitVisualization' [, PROPERTY=value])

or

Result = Obj -> [IDLitVisualization::]Init([PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLitVisualization Properties” on page 3038 that contains
the word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

Version History

Introduced: 6.0
IDL Reference Guide IDLitVisualization

3060 Chapter 7: iTools Object Classes
IDLitVisualization::Is3D

The IDLitVisualization::Is3D function method determines whether or not this
visualization (or any of its contents) is marked as being three-dimensional.

Syntax

Result = Obj -> [IDLitVisualization::]Is3D()

Return Value

Returns 1 if this visualization is marked as being three-dimensional, or 0 if it is not
three-dimensional.

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3061
IDLitVisualization::IsIsotropic

The IDLitVisualization::IsIsotropic function method indicates whether or not this
visualization (or any of its contents) is marked as being isotropic. See the
ISOTROPIC property for more information.

Syntax

Result = Obj -> [IDLitVisualization::]IsIsotropic()

Return Value

Returns 1 if the visualization or any of the items it contains has the ISOTROPIC
property set, or 0 otherwise.

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitVisualization

3062 Chapter 7: iTools Object Classes
IDLitVisualization::IsManipulatorTarget

The IDLitVisualization::IsManipulatorTarget function method determines whether or
not this visualization is a manipulator target.

Syntax

Result = Obj -> [IDLitVisualization::]IsManipulatorTarget()

Return Value

Returns 1 if this visualization is a manipulator target, or 0 if it is not.

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3063
IDLitVisualization::IsSelected

The IDLitVisualization::IsSelected function method determines if this visualization is
currently selected or not.

Syntax

Result = Obj -> [IDLitVisualization::]IsSelected()

Return Value

Returns 1 if this visualization is currently selected, or 0 if it is not selected.

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitVisualization

3064 Chapter 7: iTools Object Classes
IDLitVisualization::OnDataChange

The IDLitVisualization::OnDataChange procedure method ensures that objects that
use the visualization’s data are notified when the visualization’s data changes.

Note
This method is generally not called explicitly.

Syntax

Obj -> [IDLitVisualization::]OnDataChange, Notifier

Arguments

Notifier

A reference to the object that is sending notification when the data changes.

Keywords

None

Version History

Introduced: 6.0
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3065
IDLitVisualization::OnDataComplete

The IDLitVisualization::OnDataComplete procedure method ensures that objects that
use the visualization’s data are notified when changes to the visualization’s data are
complete.

Note
This method is generally not called explicitly.

Syntax

Obj -> [IDLitVisualization::]OnDataComplete, Notifier

Arguments

Notifier

A reference to the object that is sending notification when the data changes are
complete.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitVisualization

3066 Chapter 7: iTools Object Classes
IDLitVisualization::OnDataRangeChange

The IDLitVisualization::OnDataRangeChange procedure method ensures that objects
that use the visualization’s data are notified when the range of the visualization’s data
changes.

Note
This method is generally not called explicitly.

Syntax

Obj -> [IDLitVisualization::]OnDataRangeChange, Notifier, XRange, YRange,
Zrange

Arguments

Notifier

A reference to the object that is sending notification when the data range changes.

XRange

A two-element vector, [xmin, xmax], representing the new x-range.

YRange

A two-element vector, [ymin, ymax], representing the new y-range.

ZRange

A two-element vector, [zmin, zmax], representing the new z-range.

Keywords

None

Version History

Introduced: 6.0
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3067
IDLitVisualization::Remove

The IDLitVisualization::Remove procedure method removes the given object(s) from
the visualization.

Syntax

Obj -> [IDLitVisualization::]Remove, Object

Arguments

Object

A reference (or vector of references) to the object(s) to be removed from this
visualization.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitVisualization

3068 Chapter 7: iTools Object Classes
IDLitVisualization::Scale

The IDLitVisualization::Scale procedure method scales the visualization by the given
scale factors.

Syntax

Obj -> [IDLitVisualization::]Scale, SX, SY, SZ [, CENTER_OF_ROTATION=[x, y] |
[x, y, z]] [, /PREMULTIPLY]

Arguments

SX

The factor in the x-dimension by which the visualization is to be scaled.

SY

The factor in the y-dimension by which the visualization is to be scaled.

SZ

The factor in the z-dimension by which the visualization is to be scaled.

Keywords

Note
This method accepts all keywords accepted by the Scale method of the
visualization's current selection visual. In addition, the following keywords are
accepted:

CENTER_OF_ROTATION

Set this keyword to a 3-element vector, [x,y,z], representing the center of rotation (in
data coordinates) to be used as the center for scaling. By default, if PREMULTIPLY
is set, then this visualization’s own center of rotation will be used as the center for
scaling; if PREMULTIPLY is not set, the result of transforming this visualization’s
center of rotation by its own transformation matrix will be used as the center for
scaling.
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3069
PREMULTIPLY

Set this keyword to cause the scaling matrix specified by Sx, Sy, and Sz to be pre-
multiplied to this visualization’s transformation matrix. By default, the scaling matrix
is post-multiplied.

Version History

Introduced: 6.0
IDL Reference Guide IDLitVisualization

3070 Chapter 7: iTools Object Classes
IDLitVisualization::Select

The IDLitVisualization::Select procedure method handles notification of mechanisms
that key off the current selection (such as the visualization browser) when this
visualization has been selected.

Syntax

Obj -> [IDLitVisualization::]Select[, Mode]
[, /ADDITIVE | /SELECT | /TOGGLE | /UNSELECT] [, /NO_NOTIFY]

Arguments

Mode

A scalar that indicates the selection mode. Valid values include:

• 0 - Unselect (deselect this visualization).

• 1 - Select (set this visualization as the current selection). This mode is the
default.

• 2 - Toggle (toggle the selection of this visualization). Use the CRTL key to
toggle.

• 3 - Additive (add this visualization to the current selection list). Use the
SHIFT key to add.

Keywords

ADDITIVE

Set this keyword to indicate that the selection mode is additive. This is equivalent to
setting Mode to 3.

NO_NOTIFY

Set this keyword to indicate that this visualization’s parent should not be notified of
this selection. By default, the parent is notified.

SELECT

Set this keyword to indicate that the selection mode is select. This is equivalent to
setting Mode to 1.
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3071
TOGGLE

Set this keyword to indicate that the selection mode is toggle. This is equivalent to
setting Mode to 2.

UNSELECT

Set this keyword to indicate that the selection mode is unselect. This is equivalent to
setting Mode to 0.

Version History

Introduced: 6.0
IDL Reference Guide IDLitVisualization

3072 Chapter 7: iTools Object Classes
IDLitVisualization::Set3D

The IDLitVisualization::Set3D procedure method sets a flag indicating this
visualization is three-dimensional.

Syntax

Obj -> [IDLitVisualization::]Set3D, Is3D [, /ALWAYS] [, /AUTO_COMPUTE]

Arguments

Is3D

A non-zero value indicates that the visualization is three-dimensional; 0 indicates that
it is two-dimensional.

Keywords

ALWAYS

Set this keyword to indicate that the given 3D setting always applies.

AUTO_COMPUTE

Set this keyword to indicate that the 3D setting for this visualization should be auto-
computed based upon the dimensionality of its contents. This keyword is mutually
exclusive of the ALWAYS keyword, and the Is3D argument is ignored if
AUTO_COMPUTE is set.

Version History

Introduced: 6.0
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3073
IDLitVisualization::SetCurrentSelectionVisual

The IDLitVisualization::SetCurrentSelectionVisual procedure method sets the
current selection visual for the given manipulator.

Syntax

Obj -> [IDLitVisualization::]SetCurrentSelectionVisual, Manipulator

Arguments

Manipulator

An object reference (that subclasses from IDLitManipulator) identifying the
manipulator that corresponds to the selection visual to be set as current.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitVisualization

3074 Chapter 7: iTools Object Classes
IDLitVisualization::SetData

The IDLitVisualization::SetData function method sets the data parameter of the
visualization.

Note
If the SetData method returns successfully, notification of a data change is issued to
all observers of the data object.

Syntax

Result = Obj -> [IDLitVisualization::]SetData(Data)

Return Value

Returns a 1 if successful, or 0 if it fails.

Arguments

Data

A reference to the data object to be associated with the visualization parameter.

Keywords

This method accepts all keywords accepted by the IDLitParameter::SetData method.

Version History

Introduced: 6.0
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3075
IDLitVisualization::SetDefaultSelectionVisual

The IDLitVisualization::SetDefaultSelectionVisual procedure method sets the default
selection visual to be associated with this visualization.

Note
If the visualization on which this method is called is not a manipulator target (see
“MANIPULATOR_TARGET” on page 3039) the default selection visual set by this
method will be used as the current selection visual whenever the visualization is
selected.

Syntax

Obj -> [IDLitVisualization::]SetDefaultSelectionVisual, SelectionVisual
[, POSITION=value]

Arguments

SelectionVisual

A reference to the IDLitManipulatorVisual object that is added to the visualization
object and serves as the default selection visual for this visualization.

Keywords

POSITION

Set this keyword equal to the zero-based position at which the selection visual should
be inserted within the container. The default is to add the object to the end of the
container (the visualization object).

Version History

Introduced: 6.0
IDL Reference Guide IDLitVisualization

3076 Chapter 7: iTools Object Classes
IDLitVisualization::SetParameterSet

The IDLitVisualization::SetParameterSet function method associates a parameter set
with this visualization.

Note
If the SetParameterSet method returns successfully, notification of a data change is
issued to all observers of the visualization’s data.

Syntax

Result = Obj -> [IDLitVisualization::]SetParameterSet(ParameterSet)

Return Value

Returns a 1 if successful, or a 0 otherwise.

Arguments

ParameterSet

A reference to the IDLitParameterSet object to be associated with the visualization.

Keywords

None

Version History

Introduced: 6.0
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3077
IDLitVisualization::SetProperty

The IDLitVisualization::SetProperty procedure method sets the value of a property or
group of properties for the object.

Syntax

Obj -> [IDLitVisualization::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLitVisualization Properties” on page 3038 that contains
the word “Yes” in the “Set” column of the properties table can be set using this
method. To set the value of a property, specify the property name as a keyword set
equal to the appropriate property value.

Version History

Introduced: 6.0
IDL Reference Guide IDLitVisualization

3078 Chapter 7: iTools Object Classes
IDLitVisualization::UpdateSelectionVisual

The IDLitVisualization::UpdateSelectionVisual procedure method transforms this
visualization's selection visual to match the visualization's geometry.

Syntax

Obj -> [IDLitVisualization::]UpdateSelectionVisual

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3079
IDLitVisualization::VisToWindow

The IDLitVisualization::VisToWindow procedure method transforms given points
from visualization data space to window device coordinates.

Syntax

Obj -> [IDLitVisualization::]VisToWindow, InX, InY, InZ, OutX, OutY, OutZ
[, /NO_TRANSFORM]

or

Obj -> [IDLitVisualization::]VisToWindow, InX, InY, OutX, OutY
[, /NO_TRANSFORM]

or

Obj -> [IDLitVisualization::]VisToWindow, InVerts, OutVerts
[, /NO_TRANSFORM]

Arguments

InX

A vector of input X values (in visualization data space).

InY

A vector of input Y values (in visualization data space). The number of elements of
this vector must match the number of elements in InX.

InZ

A vector of input Z values (in visualization data space). The number of elements of
this vector must match the number of elements in InX.

InVerts

A [2, n] or [3, n] array of input vertices (in visualization data space).

OutX

A named variable that will contain a vector of output X values (in window device
coordinates).
IDL Reference Guide IDLitVisualization

3080 Chapter 7: iTools Object Classes
OutY

A named variable that will contain a vector of output Y values (in window device
coordinates).

OutZ

A named variable that will contain a vector of output Z values (in window device
coordinates).

OutVerts

A named variable that will contain a vector of output vertices (in window device
coordinates).

Keywords

NO_TRANSFORM

If this keyword is set, the current transformation matrix is not included in the
computation. Setting this keyword is useful when computing selection visual scaling.

Version History

Introduced: 6.0
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3081
IDLitVisualization::WindowToVis

The IDLitVisualization::WindowToVis procedure method transforms given points
from window device coordinates to visualization data space.

Syntax

Obj -> [IDLitVisualization::]WindowToVis, InX, InY, InZ, OutX, OutY, OutZ

or

Obj -> [IDLitVisualization::]WindowToVis, InX, InY, OutX, OutY

or

Obj -> [IDLitVisualization::]WindowToVis, InVerts, OutVerts

Arguments

InX

A vector representing the input x values (in window device coordinates).

InY

A vector representing the input y values (in window device coordinates). The number
of elements of this vector must match the number of elements in InX.

InZ

A vector representing the input z values (in window device coordinates). The number
of elements of this vector must match the number of elements in InX.

InVerts

A [2, n] or [3, n] array representing the input vertices (in window device coordinates).

OutX

A named variable that upon return will contain a vector representing the output x
values (in visualization data space).

OutY

A named variable that upon return will contain a vector representing the output y
values (in visualization data space).
IDL Reference Guide IDLitVisualization

3082 Chapter 7: iTools Object Classes
OutZ

A named variable that upon return will contain a vector representing the output z
values (in visualization data space).

OutVerts

A named variable that upon return will contain a vector representing the output
vertices (in visualization data space).

Keywords

None

Version History

Introduced: 6.0
IDLitVisualization IDL Reference Guide

Chapter 7: iTools Object Classes 3083
IDLitWindow

The IDLitWindow class serves as the base class for all windows within the iTools
framework.

Superclasses

IDLgrWindow

Creation

See “IDLitWindow::Init” on page 3105.

Properties

Objects of this class have the following properties. See “IDLitWindow Properties” on
page 3086 for details on individual properties.

• COLOR_MODEL

• CURRENT_ZOOM

• DESCRIPTION

• DIMENSIONS

• DISPLAY_NAME (X Only)

• GRAPHICS_TREE

• LOCATION

• MINIMUM_VIRTUAL_DIMENSIONS

• NAME

• N_COLORS

• PALETTE

• QUALITY

• RENDERER

• RETAIN

• TITLE

• UNITS
IDL Reference Guide IDLitWindow

3084 Chapter 7: iTools Object Classes
• UVALUE

• VIRTUAL_DIMENSIONS

• VISIBLE_LOCATION

• ZOOM_BASE

• ZOOM_NSTEP

In addition, objects of this class inherit the properties of its superclass.

Methods

This class has the following methods:

• IDLitWindow::Add

• IDLitWindow::AddWindowEventObserver

• IDLitWindow::Cleanup

• IDLitWindow::ClearSelections

• IDLitWindow::DoHitTest

• IDLitWindow::GetEventMask

• IDLitWindow::GetProperty

• IDLitWindow::GetSelectedItems

• IDLitWindow::Init

• IDLitWindow::OnKeyboard

• IDLitWindow::OnMouseDown

• IDLitWindow::OnMouseMotion

• IDLitWindow::OnMouseUp

• IDLitWindow::OnScroll

• IDLitWindow::Remove

• IDLitWindow::RemoveWindowEventObserver

• IDLitWindow::SetCurrentZoom

• IDLitWindow::SetEventMask

• IDLitWindow::SetManipulatorManager

• IDLitWindow::SetProperty
IDLitWindow IDL Reference Guide

Chapter 7: iTools Object Classes 3085
• IDLitWindow::ZoomIn

• IDLitWindow::ZoomOut

In addition, this class inherits the methods of its superclass.

Version History

Introduced: 6.0
IDL Reference Guide IDLitWindow

3086 Chapter 7: iTools Object Classes
IDLitWindow Properties

IDLitWindow objects have the following properties. Properties with the word “Yes”
in the “Get” column of the table can be retrieved via IDLitWindow::GetProperty.
Properties with the word “Yes” in the “Init” column of the property table can be set
via IDLitWindow::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLitWindow::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

COLOR_MODEL

An integer value representing the color model to be used for the window:

• 0 = RGB (default)

• 1 = Color Index

Note
For some X11 display situations, IDL may not be able to support a color index
model destination object in Object Graphics. We do, however, guarantee that an
RGB color model destination will be available for all display situations.

CURRENT_ZOOM

A named variable that upon return will contain a floating point value representing the
current zoom factor associated with this window.

Property Type ENUMLIST

Name String Color model

Get: Yes Set: No Init: Yes Registered: Yes

Property Type FLOAT

Name String Zoom Factor

Get: Yes Set: No Init: No Registered: Yes
IDLitWindow IDL Reference Guide

Chapter 7: iTools Object Classes 3087
DESCRIPTION

A string representing the full name or description of this object.

DIMENSIONS

A two-element vector of the form [width, height] to specify the dimensions of the
window in units specified by the UNITS property. By default, if no value is specified
for DIMENSIONS, IDL uses the value of the “Default Window Width” and “Default
Window Height” preferences set in the IDL Development Environment’s (IDLDE)
Preferences dialog. If there is no preference file for the IDLDE, the DIMENSIONS
property is set equal to one quarter of the screen size. There are limits on the
maximum size of an IDLgrWindow object.

Note
Changing DIMENSIONS properties is merely a request and may be ignored for
various reasons.

DISPLAY_NAME (X Only)

A string containing the name of the X Windows display on which the window is to
appear.

Property Type STRING

Name String Description

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type FLOAT

Name String Zoom Factor

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type STRING

Name String Display Name

Get: Yes Set: No Init: Yes Registered: Yes
IDL Reference Guide IDLitWindow

3088 Chapter 7: iTools Object Classes
GRAPHICS_TREE

An object reference of type IDLgrScene, IDLgrViewgroup, or IDLgrView describing
the graphics tree of this window object. If this property is set to a valid object
reference, calling the Draw method on the destination object with no arguments will
cause the object reference associated with this property to be drawn. If this object is
valid and the destination object is destroyed, this object reference will be destroyed as
well. By default the GRAPHICS_TREE property is set equal to the null-object.

LOCATION

A two-element vector of the form [x, y] to specify the location of the upper left corner
of the window relative to the display screen, in units specified by the UNITS
property. By default, the window is positioned at one of four quadrants on the display
screen, and the location is measured in device units.

Note
Changing LOCATION properties is merely a request and may be ignored for
various reasons. LOCATION may be adjusted to take into account window
decorations.

MINIMUM_VIRTUAL_DIMENSIONS

A two-element vector, [width, height], specifying the minimum dimensions allowed
for the virtual canvas of this window. In a scrolling window, the virtual canvas
represents the full canvas, of which only a smaller visible portion is displayed at any
given time. The default value of this property is [0, 0], a value indicating that the
minimum virtual dimensions should match the current virtual dimensions.

Property Type Object Reference

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type USERDEF

Name String Location

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Vector
IDLitWindow IDL Reference Guide

Chapter 7: iTools Object Classes 3089
NAME

A string representing the human-readable name of this object.

N_COLORS

An integer value representing the number of colors (between 2 and 256) to be used if
COLOR_MODEL is set to Indexed (1). This property is ignored if COLOR_MODEL
is set to RGB (0).

Note
If COLOR_MODEL is set to color index (1), setting N_COLORS is treated as a
request to your operating system. You should always check the actual number of
available colors for any Color Indexed destination with the
IDLgrWindow::GetProperty method. The actual number of available colors
depends on your system and also on how you have used IDL.

PALETTE

The object reference of a palette object (an instance of the IDLgrPalette object class)
to specify the red, green, and blue values that are to be loaded into the graphics
destination’s color lookup table, applicable if the Indexed color model is used.

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type STRING

Name String Name

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type INTEGER

Name String Number of colors

Get: Yes Set: No Init: Yes Registered: Yes

Property Type USERDEF

Name String Color palette

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLitWindow

3090 Chapter 7: iTools Object Classes
QUALITY

An integer value indicating the rendering quality at which graphics are to be drawn to
this destination. Valid values are:

• 0 = Low

• 1 = Medium

• 2 = High (default).

RENDERER

An integer value indicating which graphics renderer to use when drawing objects
within the window. Valid values are:

• 0 = Platform native OpenGL

• 1 = IDL’s software implementation

By default, your platform’s native OpenGL implementation is used. If your platform
does not have a native OpenGL implementation, IDL’s software implementation is
used regardless of the value of this property. See “Hardware vs. Software Rendering”
in Using IDL for details. Your choice of renderer may also affect the maximum size
of an IDLitWindow object.

RETAIN

An integer value to specify how backing store should be handled for the window. By
default, if no value is specified for RETAIN, IDL uses the value of the “Backing
Store” preference set in the IDL Development Environment’s (IDLDE) Preferences
dialog. If there is no preference file for the IDLDE (that is, if you always use IDL in
plain tty mode), the RETAIN property is set equal to 0 by default.

• 0 = No backing store

Property Type ENUMLIST

Name String Draw quality

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Draw quality

Get: Yes Set: No Init: Yes Registered: Yes
IDLitWindow IDL Reference Guide

Chapter 7: iTools Object Classes 3091
• 1 = The server or window system is requested to provide the backing store.
Note that requesting backing store from the server is only a request; backing
store may not be provided in all situations

• 2 = Requests that IDL provide the backing store directly. In some situations,
IDL can not provide this backing store in Object Graphics. To see if IDL
provided backing store, query the RETAIN property of
IDLitWindow::GetProperty. IDL may also alter the RENDERER property
while attempting to provide backing store

Note
If you are using software rendering (that is, the RENDERER property is set equal to
one), IDL will refresh the window automatically regardless of the setting of the
RETAIN property.

TITLE

A string representing the title of the window.

UNITS

An integer value indicating the units of measure for the LOCATION and
DIMENSIONS properties. Valid values are:

• 0 = Device (default)

• 1 = Inches

• 2 = Centimeters

• 3 = Normalized: relative to the dimensions of the screen

Property Type ENUMLIST

Name String Retain

Get: Yes Set: No Init: Yes Registered: Yes

Property Type STRING

Name String Title

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLitWindow

3092 Chapter 7: iTools Object Classes
Note
If you set the value of the UNITS property (using the SetProperty method) without
also setting the value of the LOCATION and DIMENSIONS properties, IDL will
convert the current size and location values into the new units.

UVALUE

A value of any type containing any information you wish. If you set this user value
equal to a pointer or object reference that does not belong to a container, you should
explicitly destroy that pointer or object reference when destroying the object of which
this property is a user value.

Property Type ENUMLIST

Name String Units

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type User Defined

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLitWindow IDL Reference Guide

Chapter 7: iTools Object Classes 3093
VIRTUAL_DIMENSIONS

A two-element vector, [width, height], specifying the dimensions of the virtual
canvas for this window. In a scrolling window, the virtual canvas represents the full
canvas, of which only a smaller visible portion is displayed at any given time. The
default value of this property is [0, 0], a value indicating that the virtual canvas
dimensions should match the visible dimensions (as specified via the DIMENSIONS
property).

VISIBLE_LOCATION

A two-element vector, [x, y], specifying the lower left coordinate of the visible
portion of the canvas (relative to the virtual canvas). In a scrolling window, the
virtual canvas represents the full canvas, of which only a smaller visible
portion is displayed at any given time.

ZOOM_BASE

A floating point value representing the base value by which the window’s current
zoom factor will be multiplied or divided for zooming in or zooming out. The default
is 2.0.

Property Type USERDEF

Name String Virtual dimensions

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type USERDEF

Name String Visible Location

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Float

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLitWindow

3094 Chapter 7: iTools Object Classes
ZOOM_NSTEP

A named variable that, upon return, will contain an integer that indicates the number
of times this window’s ZOOM_BASE property has been applied to achieve the
current zoom factor. A positive value indicates that the current zoom factor represents
the result of zooming in ZOOM_NSTEP times. A negative value indicates that the
current zoom factor represents the result of zooming out -ZOOM_NSTEP times.

Property Type Integer

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLitWindow IDL Reference Guide

Chapter 7: iTools Object Classes 3095
IDLitWindow::Add

The IDLitWindow::Add procedure method adds the given object(s) to the window.

Syntax

Obj -> [IDLitWindow::]Add, Objects [, POSITION=value]

Arguments

Objects

A reference (or array of references) to the object(s) to be added to the window. Any of
the objects that inherit from IDLgrViewGroup are added directly to the window’s
scene, which represents a container for all of the views (and their corresponding
visualization hierarchies) that appear within a window. The remaining objects are
added to the current view within the window’s scene.

Keywords

POSITION

Set this keyword equal to a scalar or array containing the zero-based indices of the
position within the container at which the new object should be placed.

Version History

Introduced: 6.0
IDL Reference Guide IDLitWindow

3096 Chapter 7: iTools Object Classes
IDLitWindow::AddWindowEventObserver

The IDLitWindow::AddWindowEventObserver procedure method adds the given
object(s) to the list of observers that are to be notified of events that occur within this
window. Each observer must support the following methods:

• OnKeyboard

• OnMouseDown

• OnMouseMotion

• OnMouseUp

When an event occurs within this window, the corresponding method (from the list
above) will be called for each observer in the window’s list.

Syntax

Obj -> [IDLitWindow::]AddWindowEventObserver, Objects

Arguments

Objects

A reference (or vector of references) to the object(s) to be added as window event
observers.

Keywords

None

Version History

Introduced: 6.0
IDLitWindow IDL Reference Guide

Chapter 7: iTools Object Classes 3097
IDLitWindow::Cleanup

The IDLitWindow::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: if you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLitWindow::]Cleanup (only in subclass’ Cleanup method)

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitWindow

3098 Chapter 7: iTools Object Classes
IDLitWindow::ClearSelections

The IDLitWindow::ClearSelections procedure method clears the window’s list of
currently selected items (within its current view). The items within the current view
that had been selected are deselected.

Syntax

Obj -> [IDLitWindow::]ClearSelections

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitWindow IDL Reference Guide

Chapter 7: iTools Object Classes 3099
IDLitWindow::DoHitTest

The IDLitWindow::DoHitTest function method performs a hit test to determine
which visualizations within the destination are displayed at a given pixel location.

Note
The objects returned in Result are the “top-level” objects (usually IDLgrModel or
IDLitVisualization objects). Objects contained by he returned objects can be
returned using the SUB_HIT keyword.

Syntax

Result = Obj -> DoHitTest(X, Y [, DIMENSIONS=[width, height]]
[, SUB_HIT=variable] [, UNITS={0 | 1 | 2 | 3}])

Return Value

Returns a vector of references to the IDLitVisualizations that appear at the given
location. If no visualizations are displayed at that location, a null reference is
returned.

Arguments

X

A floating-point value representing the x-location at which the hit test is to be
performed

Y

A floating-point value representing the y-location at which the hit test is to be
performed.

Keywords

DIMENSIONS

Set this keyword to a two-element integer vector, [w, h], to specify the dimensions
(width and height) of the hit test box. The hit test box is centered at the location
specified by the X and Y arguments. Any object that falls within this hit test box will
be included in the return vector. By default, the hit test box is 3 pixels by 3 pixels.
IDL Reference Guide IDLitWindow

3100 Chapter 7: iTools Object Classes
SUB_HIT

Set this keyword to a named variable that will contain references to all contained
visualization objects that satisfy all of the following conditions:

• the objects are contained by the nearest hit visualization (the first object in the
return value),

• the objects are SELECT_TARGETs (see “IDLgrModel” on page 3343), and

• the objects are actively displayed at the given X and Y coordinates.

UNITS

Set this keyword to a scalar value to indicate the units of measure for the X, Y
arguments and the DIMENSIONS keyword. Valid values include:

• 0 = Device (default)

• 1 = Inches

• 2 = Centimeters

• 3 = Normalized: relative to the dimensions of this window

Version History

Introduced: 6.0
IDLitWindow IDL Reference Guide

Chapter 7: iTools Object Classes 3101
IDLitWindow::GetEventMask

The IDLitWindow::GetEventMask function method returns a bitwise mask
representing the events that are enabled for this window.

Syntax

Result = Obj -> [IDLitWindow::]GetEventMask([, BUTTON_EVENTS=variable]
[, KEYBOARD_EVENTS=variable] [, /MOTION_EVENTS=variable]
[, /TRACKING_EVENTS=variable])

Return Value

Returns the bitwise mask as an unsigned long integer. The bits in the mask are as
follows:

Arguments

None

Keywords

BUTTON_EVENTS

Set this keyword to a named variable that upon return will contain a 1 if mouse button
events are currently enabled for this window, or a 0 otherwise.

KEYBOARD_EVENTS

Set this keyword to a named variable that upon return will contain a 1 if keyboard
events are currently enabled for this window, or a 0 otherwise.

Bit Value Event

0 1 Button Events

1 2 Motion Events

2 4 Keyboard Events

3 8 Tracking Events

Table 115: Bits of the Event Mask
IDL Reference Guide IDLitWindow

3102 Chapter 7: iTools Object Classes
MOTION_EVENTS

Set this keyword to a named variable that upon return will contain a 1 if mouse
motion events are currently enabled for this window, or a 0 otherwise.

TRACKING_EVENTS

Set this keyword to a named variable that upon return will contain a 1 if tracking
events are currently enabled for this window, or a 0 otherwise.

Version History

Introduced: 6.0
IDLitWindow IDL Reference Guide

Chapter 7: iTools Object Classes 3103
IDLitWindow::GetProperty

The IDLitWindow::GetProperty procedure method retrieves the value of an
IDLitWindow property, and should be called by the subclass' GetProperty method.
This method also retrieves properties defined in the superclass.

Syntax

Obj -> [IDLitData::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLitWindow Properties” on page 3086 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Version History

Introduced: 6.0
IDL Reference Guide IDLitWindow

3104 Chapter 7: iTools Object Classes
IDLitWindow::GetSelectedItems

The IDLitWindow::GetSelectedItems function method returns the currently selected
objects within this window’s scene, which represents a container for all of the views
(and their corresponding visualization hierarchies) that appear within a window.

Syntax

Result = Obj->[IDLitWindow::]GetSelectedItems([, /COUNT])

Return Value

Returns a vector of references to the objects currently selected within this window’s
scene. If no objects are currently selected, this function returns a –1.

Arguments

None

Keywords

COUNT

Set this keyword to a named variable that will contain the number of items returned
by this method.

Version History

Introduced: 6.0
IDLitWindow IDL Reference Guide

Chapter 7: iTools Object Classes 3105
IDLitWindow::Init

The IDLitWindow::Init function method initializes the window object.

This function method initializes the IDLitWindow object, and should be called by the
subclass' Init method. This method also calls the superclass' Init method.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLitWindow'[, PROPERTY=value])

or

Result = Obj -> [IDLitWindow::]Init([, PROPERTY=value])
(Only in subclass' Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or 0 otherwise.

Arguments

None

Keywords

Any property listed under “IDLitWindow Properties” on page 3086 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.
IDL Reference Guide IDLitWindow

3106 Chapter 7: iTools Object Classes
Version History

Introduced: 6.0
IDLitWindow IDL Reference Guide

Chapter 7: iTools Object Classes 3107
IDLitWindow::OnKeyboard

The IDLitWindow::OnKeyboard procedure method handles notification (from the
native window device) that a keyboard event has occurred, and passes along that
notification to all observers in the list of window event observers.

Syntax

Obj -> [IDLitWindow::]OnKeyboard, IsAlphaNumeric, Character, KeySymbol

Arguments

IsAlphaNumeric

A byte that is non-zero if the keyboard event corresponds to an alphanumeric
character, in which case the ASCII character will be placed in the Character
argument. If the keyboard event does not correspond to an alphanumeric character,
then IsAlphaNumeric will be zero, and the symbol for the key that was pressed will
be placed in the KeySymbol argument.

Character

A string that is set to the ASCII character that corresponds to the key that was pressed
if IsAlphaNumeric is non-zero. Otherwise, this argument is set to zero.

KeySymbol

A string that is set to an unsigned long integer that indicates the key that was pressed
if IsAlphaNumeric is zero. Otherwise, this argument is set to zero. Valid values for
key symbols include:

• 1 = Backspace

• 2 = Tab

• 3 = Return

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitWindow

3108 Chapter 7: iTools Object Classes
IDLitWindow::OnMouseDown

The IDLitWindow::OnMouseDown procedure method handles notification (from the
native window device) that a mouse down event has occurred, and passes along that
notification to all observers in the list of window event observers.

Syntax

Obj -> [IDLitWindow::]OnMouseDown, X, Y, ButtonMask, Modifiers, NumClicks

Arguments

X

A floating-point value representing the x-location (in device coordinates) of the
mouse event.

Y

A floating-point value representing the y-location (in device coordinates) of the
mouse event.

ButtonMask

An integer value of a bitwise mask indicating which of the left, center, or right mouse
button was pressed:

Bitmask Mouse Button

1 Left

2 Middle

4 Right

Table 116: Bitmask for Button Events
IDLitWindow IDL Reference Guide

Chapter 7: iTools Object Classes 3109
Modifiers

An integer value of a bitwise mask indicating which modifier keys are active at the
time the mouse button is pressed. If a bit is zero, the key is up; if the bit is set, the key
is pressed. The following table describes the bits in this bitmask:

NumClicks

An integer value indicating the number of times the mouse button was clicked.

Keywords

None

Version History

Introduced: 6.0

Bit Value Modifier Key

0 1 Shift

1 2 Control

2 4 Caps Lock

3 8 Alt

Table 117: Bits of the Modifier Key Mask
IDL Reference Guide IDLitWindow

3110 Chapter 7: iTools Object Classes
IDLitWindow::OnMouseMotion

The IDLitWindow::OnMouseMotion procedure method handles notification (from
the native window device) that a mouse motion event has occurred, and passes along
that notification to all observers in the list of window event observers.

Syntax

Obj -> [IDLitWindow::]OnMouseMotion, X, Y, Modifiers

Arguments

X

A floating-point value representing the x-location (in device coordinates) of the
mouse event.

Y

A floating-point value representing the y-location (in device coordinates) of the
mouse event.

Modifiers

An integer value of a bitwise mask indicating which modifier keys are active at the
time the mouse button is pressed. If a bit is zero, the key is up; if the bit is set, the key
is pressed. The following table describes the bits in this bitmask:

Keywords

None

Bit Value Modifier Key

0 1 Shift

1 2 Control

2 4 Caps Lock

3 8 Alt

Table 118: Bits of the Modifier Key Mask
IDLitWindow IDL Reference Guide

Chapter 7: iTools Object Classes 3111
Version History

Introduced: 6.0
IDL Reference Guide IDLitWindow

3112 Chapter 7: iTools Object Classes
IDLitWindow::OnMouseUp

The IDLitWindow::OnMouseUp procedure method handles notification (from the
native window device) that a mouse up event has occurred, and passes along that
notification to all observers in the list of window event observers.

Syntax

Obj -> [IDLitWindow::]OnMouseUp, X, Y, ButtonMask

Arguments

X

A floating-point value representing the x-location (in device coordinates) of the
mouse event.

Y

A floating-point value representing the y-location (in device coordinates) of the
mouse event.

ButtonMask

An integer value of a bitwise mask indicating which of the left, center, or right mouse
button was pressed:

Keywords

None

Bitmask Mouse Button

1 Left

2 Middle

4 Right

Table 119: Bitmask for Button Events
IDLitWindow IDL Reference Guide

Chapter 7: iTools Object Classes 3113
Version History

Introduced: 6.0
IDL Reference Guide IDLitWindow

3114 Chapter 7: iTools Object Classes
IDLitWindow::OnScroll

The IDLitWindow::OnScroll procedure method handles notification (from the native
window device) that a scrolling event has occurred. This notification is passed on to
the window’s scene, which handles the cropping of each of its contained views. A
scene represents a container for all of the views (and their corresponding
visualization hierarchies) that appear within a window.

Syntax

Obj -> [IDLitWindow::]OnScroll, X, Y

Arguments

X

A floating-point value representing the x-coordinate of the lower left corner of the
visible portion of the canvas (in device coordinates) after the scroll.

Y

A floating-point value representing the y-coordinate of the lower left corner of the
visible portion of the canvas (in device coordinates) after the scroll.

Keywords

None

Version History

Introduced: 6.0
IDLitWindow IDL Reference Guide

Chapter 7: iTools Object Classes 3115
IDLitWindow::Remove

The IDLitWindow::Remove procedure method removes the given object(s) from the
window.

Syntax

Obj -> [IDLitWindow::]Remove, Object [, /ALL] [, POSITION=index]

Arguments

Object

A reference (or vector of references) to the object(s) to be removed from this window.

Keywords

ALL

Set this keyword to remove all objects from the container. If this keyword is set, the
Object argument is not required.

POSITION

Set this keyword equal to the zero-based index of the object to be removed. If the
Object argument is supplied, this keyword is ignored.

Version History

Introduced: 6.0
IDL Reference Guide IDLitWindow

3116 Chapter 7: iTools Object Classes
IDLitWindow::RemoveWindowEventObserver

The IDLitWindow::RemoveWindowEventObserver procedure method removes the
given object(s) from the list of observers that are notified of events that occur within
this window.

Syntax

Obj -> [IDLitWindow::]RemoveWindowEventObserver, Objects

Arguments

Objects

A reference (or vector of references) to the object(s) to be removed from the list of
window event observers.

Keywords

None

Version History

Introduced: 6.0
IDLitWindow IDL Reference Guide

Chapter 7: iTools Object Classes 3117
IDLitWindow::SetCurrentZoom

The IDLitWindow::SetCurrentZoom procedure method sets the current zoom factor
for this window by changing its virtual dimensions. The contents of the window are
updated to reflect the new zoom factor.

Syntax

Obj -> [IDLitWindow::]SetCurrentZoom, ZoomFactor [, /RESET]

Arguments

ZoomFactor

A positive floating point value indicating the zoom factor to be applied to the
window. Values less than 1.0 result in a zooming out; values greater than 1.0 result in
a zooming in on the contents of the window.

Keywords

RESET

Set this keyword to indicate that the zoom factor should be reset to 1.0. If this
keyword is present, the ZoomFactor argument is ignored.

Version History

Introduced: 6.0
IDL Reference Guide IDLitWindow

3118 Chapter 7: iTools Object Classes
IDLitWindow::SetEventMask

The IDLitWindow::SetEventMask procedure method enables the given events within
this window.

When an event occurs within this window, if the corresponding event type is enabled,
then the list of its window event observers will be notified of the event. See
“IDLitWindow::AddWindowEventObserver” on page 3096 for more details.

Syntax

Obj -> [IDLitWindow::]SetEventMask([EventMask] [, /BUTTON_EVENTS]
[, /KEYBOARD_EVENTS] [, /MOTION_EVENTS] [, /TRACKING_EVENTS])

Arguments

EventMask

An unsigned long integer representing the bitwise mask for the events that are to be
enabled for this window. The bits in the mask are as follows:

This argument is optional; the keywords described below may be used instead.

Keywords

BUTTON_EVENTS

Set this keyword to indicate that mouse button events are to be enabled for this
window.

Bit Value Event

0 1 Button Events

1 2 Motion Events

2 4 Keyboard Events

3 8 Tracking Events

Table 120: Bits of the Event Mask
IDLitWindow IDL Reference Guide

Chapter 7: iTools Object Classes 3119
KEYBOARD_EVENTS

Set this keyword to indicate the keyboard events are to be enabled for this window.

MOTION_EVENTS

Set this keyword to indicate that mouse motion events are to be enabled for this
window.

TRACKING_EVENTS

Set this keyword to indicate that tracking events are to be enabled for this window.

Version History

Introduced: 6.0
IDL Reference Guide IDLitWindow

3120 Chapter 7: iTools Object Classes
IDLitWindow::SetManipulatorManager

The IDLitWindow::SetManipulatorManager procedure method sets the given
IDLitManipulatorManager object as the current manager of this window’s
manipulators.

Syntax

Obj -> [IDLitWindow::]SetManipulatorManager, Manager

Arguments

Manager

A reference to the IDLitManipulatorManager object that is to serve as the manager
for this window’s manipulators.

Keywords

None

Version History

Introduced: 6.0
IDLitWindow IDL Reference Guide

Chapter 7: iTools Object Classes 3121
IDLitWindow::SetProperty

The IDLitWindow::SetProperty procedure method sets the value of an IDLitWindow
property, and should be called by the subclass' SetProperty method. This method also
calls the superclass' SetProperty method.

Syntax

Obj -> [IDLitWindow::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLitWindow Properties” on page 3086 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 6.0
IDL Reference Guide IDLitWindow

3122 Chapter 7: iTools Object Classes
IDLitWindow::ZoomIn

The IDLitWindow::ZoomIn procedure method causes the current zoom factor for this
window to be increased (that is, multiplied by the factor given by the window’s
ZOOM_BASE property). The contents of the window are updated to reflect the new
zoom factor. See “IDLitWindow::SetCurrentZoom” on page 3117 for additional
details.

Syntax

Obj -> [IDLitWindow::]ZoomIn

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDLitWindow IDL Reference Guide

Chapter 7: iTools Object Classes 3123
IDLitWindow::ZoomOut

The IDLitWindow::ZoomOut procedure method causes the current zoom factor for
this window to be decreased (that is, divided by the factor given by the window’s
ZOOM_BASE property). The contents of the window are updated to reflect the new
zoom factor. See “IDLitWindow::SetCurrentZoom” on page 3117 for additional
details.

Syntax

Obj -> [IDLitWindow::]ZoomOut

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitWindow

3124 Chapter 7: iTools Object Classes
IDLitWriter

The IDLitWriter class defines the interface used to construct file writers for the iTools
framework. Objects of this class are not intended to be created as standalone entities;
rather, this class should be included as the superclass of an iTool file writer class.

This class is written in the IDL language. Its source code can be found in the file
idlitwriter__define.pro in the lib/itools/framework subdirectory of the
IDL distribution.

Superclasses

IDLitComponent

IDLitIMessaging

Creation

See “IDLitWriter::Init” on page 3131.

Properties

Objects of this class do not have any properties of their own, but do have properties
inherited from any superclasses.

Methods

This class has the following methods:

• IDLitWriter::Cleanup

• IDLitWriter::GetFileExtensions

• IDLitWriter::GetFilename

• IDLitWriter::GetProperty

• IDLitWriter::Init

• IDLitWriter::IsA

• IDLitWriter::SetData
IDLitWriter IDL Reference Guide

Chapter 7: iTools Object Classes 3125
• IDLitWriter::SetFilename

• IDLitWriter::SetProperty

In addition, this class inherits the methods of its superclasses.

Examples

See Chapter 9, “Creating a File Writer” in the iTool Developer’s Guide manual for
examples using this class and its methods.

Version History

Introduced: 6.0
IDL Reference Guide IDLitWriter

3126 Chapter 7: iTools Object Classes
IDLitWriter Properties

Objects of this class do not have any properties of their own, but do have properties
inherited from any superclasses.
IDLitWriter IDL Reference Guide

Chapter 7: iTools Object Classes 3127
IDLitWriter::Cleanup

The IDLitWriter::Cleanup procedure method performs all cleanup on the object, and
should be called by the subclass’ Cleanup method.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: if you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLitWriter::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitWriter

3128 Chapter 7: iTools Object Classes
IDLitWriter::GetFileExtensions

The IDLitWriter::GetFileExtensions method is called by the system to retrieve the
file extensions supported by this particular writer.

Syntax

Result = Obj -> [IDLitWriter::]GetFileExtensions([COUNT=count])

Return Value

Returns a scalar or string array that contains the file extensions associated with this
writer.

Arguments

None

Keywords

COUNT

Set this keyword to a named variable that will contain the number of file extensions
returned by this method.

Version History

Introduced: 6.0
IDLitWriter IDL Reference Guide

Chapter 7: iTools Object Classes 3129
IDLitWriter::GetFilename

The IDLitWriter::GetFilename function method is called by the system to retrieve the
current filename associated with this writer. Due to the automated nature of the file
writer system, filenames can be associated with a file writer and then the file can be
written at a later time. This method allows direct access to the file currently
associated with the writer.

In addition, this methodology is helpful when multiple writes are performed from a
given file.

Syntax

Result = Obj -> [IDLitWriter::]GetFilename()

Return Value

Returns a string containing the current file name associated with this writer, or an
empty string if no filename has been associated.

Arguments

None

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitWriter

3130 Chapter 7: iTools Object Classes
IDLitWriter::GetProperty

The IDLitWriter::GetProperty procedure method retrieves the value of an
IDLitWriter property, and should be called by the subclass’ GetProperty method.
This method also retrieves properties defined in the superclasses.

Syntax

Obj -> [IDLitWriter::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLitReader Properties” on page 2956 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Version History

Introduced: 6.0
IDLitWriter IDL Reference Guide

Chapter 7: iTools Object Classes 3131
IDLitWriter::Init

The IDLitWriter::Init function method initializes the IDLitWriter object, and should
be called by the subclass’ Init method. This method also calls the superclass’ Init
method.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLitWriter', Extensions [, PROPERTY=value])

or

Result = Obj -> [IDLitWriter::]Init(Extensions [, PROPERTY=value])
(Only in subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or 0 otherwise.

Arguments

Extensions

A scalar or string array that contains the file extensions that are common for this file
type. These values should not include the period that is often associated with file
extensions (a correct value is “jpeg” not “.jpeg”).
IDL Reference Guide IDLitWriter

3132 Chapter 7: iTools Object Classes
Keywords

Any property listed under “IDLitReader Properties” on page 2956 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

Version History

Introduced: 6.0
IDLitWriter IDL Reference Guide

Chapter 7: iTools Object Classes 3133
IDLitWriter::IsA

The IDLitWriter::IsA function method is called by the system to determine if the
given file is of the type supported by this file writer. Often this is used to determine
what file writer to use when opening a new file.

The default behavior provided by this method is to check the file extension on the
provided file name with the extensions provided to this object during initialization.

When a new writer is implemented, the default behavior can be used, or the developer
can provide further logic to determine if the provided file is the correct type.

Syntax

Result = Obj -> [IDLitWriter::]IsA(Filename)

Return Value

Returns a 1 if the writer supports this type of file, or a 0 if the writer does not support
this type of file.

Arguments

Filename

A string scalar representing of the filename, which is used to check and determine if
the writer supports its format.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitWriter

3134 Chapter 7: iTools Object Classes
IDLitWriter::SetData

The IDLitWriter::SetData function method is called by the system to set the data for
the current file. When called, the writer should access the current filename and write
the desired data.

This method will contain a majority of the implementation for a new writer class.

Syntax

Result = Obj -> [IDLitWriter::]SetData(Data)

Return Value

Returns a 1 if successful, or a 0 if the initialization failed.

Arguments

Data

A data object that contains the information to be written.

Keywords

None

Version History

Introduced: 6.0
IDLitWriter IDL Reference Guide

Chapter 7: iTools Object Classes 3135
IDLitWriter::SetFilename

The IDLitWriter::SetFilename procedure method is called by the system to set the
current filename associated with this writer. Due to the automated nature of the file
writer system, filenames can be associated with a file writer and then the file can be
written at a later time.

Syntax

Obj -> [IDLitWriter::]SetFilename, Filename

Arguments

Filename

A string that contains the filename associated with this writer.

Keywords

None

Version History

Introduced: 6.0
IDL Reference Guide IDLitWriter

3136 Chapter 7: iTools Object Classes
IDLitWriter::SetProperty

The IDLitWriter::SetProperty procedure method sets the value of an IDLitWriter
property, and should be called by the subclass’ SetProperty method. This method also
calls the superclass’ SetProperty method.

Syntax

Obj -> [IDLitWriter::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLitReader Properties” on page 2956 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 6.0
IDLitWriter IDL Reference Guide

Chapter 8:

Graphics Object
Classes

This chapter describes IDL’s built-in graphics class library.
IDLgrAxis . 3138
IDLgrBuffer . 3168
IDLgrClipboard . 3195
IDLgrColorbar . 3218
IDLgrContour . 3238
IDLgrFont . 3276
IDLgrImage . 3284
IDLgrLegend . 3307
IDLgrLight . 3327
IDLgrModel . 3343
IDLgrMPEG . 3366
IDLgrPalette . 3382
IDLgrPattern . 3396
IDLgrPlot . 3406
IDLgrPolygon . 3429

IDLgrPolyline . 3457
IDLgrPrinter . 3482
IDLgrROI . 3505
IDLgrROIGroup 3523
IDLgrScene . 3540
IDLgrSurface . 3553
IDLgrSymbol . 3582
IDLgrTessellator 3591
IDLgrText . 3602
IDLgrView . 3626
IDLgrViewgroup 3643
IDLgrVolume . 3655
IDLgrVRML . 3684
IDLgrWindow . 3705
IDL Reference Guide 3137

3138 Chapter 8: Graphics Object Classes
IDLgrAxis

An axis object represents a single vector that may include a set of tick marks, tick
labels, and a title.

An IDLgrAxis object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

IDLitComponent

Creation

See “IDLgrAxis::Init” on page 3165.

Properties

Objects of this class have the following properties. See “IDLgrAxis Properties” on
page 3140 for details on individual properties.

• ALL • AM_PM

• CLIP_PLANES • COLOR

• CRANGE • DAYS_OF_WEEK

• DEPTH_TEST_DISABLE • DEPTH_TEST_FUNCTION

• DEPTH_WRITE_DISABLE • DIRECTION

• EXACT • EXTEND

• GRIDSTYLE • HIDE

• LOCATION • LOG

• MAJOR • MINOR

• MONTHS • NOTEXT

• PALETTE • PARENT

• RANGE • REGISTER_PROPERTIES

• SUBTICKLEN • TEXTALIGNMENTS
IDLgrAxis IDL Reference Guide

Chapter 8: Graphics Object Classes 3139
In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrAxis::Cleanup

• IDLgrAxis::GetCTM

• IDLgrAxis::GetProperty

• IDLgrAxis::Init

• IDLgrAxis::SetProperty

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.0

• TEXTBASELINE • TEXTPOS

• TEXTUPDIR • THICK

• TICKDIR • TICKFORMAT

• TICKFRMTDATA • TICKINTERVAL

• TICKLAYOUT • TICKLEN

• TICKTEXT • TICKUNITS

• TICKVALUES • TITLE

• USE_TEXT_COLOR • XCOORD_CONV

• XRANGE • YCOORD_CONV

• YRANGE • ZCOORD_CONV

• ZRANGE
IDL Reference Guide IDLgrAxis

3140 Chapter 8: Graphics Object Classes
IDLgrAxis Properties

IDLgrAxis objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLgrAxis::GetProperty. Properties with the word
“Yes” in the “Init” column of the property table can be retrieved via IDLgrAxis::Init.
Properties with the word “Yes” in the “Set” column in the property table can be set
via IDLgrAxis::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the properties associated with
the state of this object. State information about the object includes things like color,
range, tick direction, etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

AM_PM

A string array of 2 names to be used for the names of the AM and PM string when
processing explicitly formatted dates (CAPA, CApA, and CapA format codes) with
the TICKFORMAT property.

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type String array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrAxis IDL Reference Guide

Chapter 8: Graphics Object Classes 3141
CLIP_PLANES

A 4 by n floating-point array that specifies the coefficients of the clipping planes to
be applied to this object. The four coefficients for each clipping plane are of the form
[A, B, C, D], where Ax + By + Cz + D = 0. Portions of this object that fall in the half
space Ax + By + Cz + D > 0 will be clipped. By default, the value of this property is a
scalar (-1) indicating that no clipping planes are to be applied.

Note
The clipping planes specified via this property are applied in addition to the near
and far clipping planes associated with the IDLgrView in which this object appears.

Note
Clipping planes are applied in the data space of this object (prior to the application
of any x, y, or z coordinate conversion).

Note
To determine the maximum number of clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES property of the GetDeviceInfo method for the
IDLgrBuffer, IDLgrClipboard, IDLgrWindow, and IDLgrVRML objects.

COLOR

The color to be used as the foreground color for this axis. The color may be specified
as a color lookup table index or as an RGB vector. The default is [0, 0, 0].

CRANGE

A double-precision floating-point vector of the form [minval, maxval] that will
contain the actual full range of the axis. This range may not exactly match the
requested range provided via the RANGE property in the Init and SetProperty

Property Type Floating-point array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Color

Name String Color

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrAxis

3142 Chapter 8: Graphics Object Classes
methods. Adjustments may have been made to round to the nearest even tick interval
or to accommodate the EXTEND property.

DAYS_OF_WEEK

A string array of 7 names to be used for the names of the days of the week when
processing explicitly formatted dates (CDWA, CDwA, and CdwA format codes) with
the TICKFORMAT property.

DEPTH_TEST_DISABLE

An integer value that determines whether depth testing is disabled.

• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth testing. A model may also
enable or disable depth testing.

• Set this property to 1 to explicitly disable depth buffer testing while drawing
this object.

• Set this property to 2 to explicitly enable depth testing for this object.

Disabling depth testing allows an object to draw itself on top of other objects already
on the screen, even if the object is located behind them.

This property is registered as an enumerated list, but it is hidden by default.

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type String array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type ENUMLIST

Name String Depth Test Disable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrAxis IDL Reference Guide

Chapter 8: Graphics Object Classes 3143
DEPTH_TEST_FUNCTION

An integer value that determines the depth test function. Set this property to 0 (the
default) to inherit the value set by the parent model or view. The parent view always
sets a depth test function of LESS. A model may also set a depth test function value.
The graphics device compares the object’s depth at a particular pixel location with
the depth stored in the depth buffer at that same pixel location. If the comparison test
passes, the object’s pixel is drawn at that location on the screen and the depth buffer
is updated (if depth writing is enabled).

Set this property to any of the following values to use the desired function while
rendering this object.

• 0 = INHERIT - use value from parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the object’s depth is less than the depth buffer’s value.

• 3 = EQUAL - passes if the object’s depth is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the object’s depth is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the object’s depth is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the object’s depth is not equal to the depth
buffer’s value.

• 7 = GREATER OR EQUAL - passes if the object’s depth is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Less means closer to the viewer.

This property is registered as an enumerated list, but it is hidden by default.

DEPTH_WRITE_DISABLE

An integer value that determines whether depth writing is disabled.

Property Type ENUMLIST

Name String Depth Test Enable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrAxis

3144 Chapter 8: Graphics Object Classes
• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth writing. A model may also
enable or disable depth writing.

• Set this property to 1 to explicitly disable depth buffer writing while rendering
this object.

• Set this property to 2 to explicitly enable depth writing for this object.

Disabling depth writing allows an object to be overdrawn by other objects, even if the
object is located in front of them.

This property is registered as an enumerated list, but it is hidden by default.

DIRECTION

An integer value that specifies which axis is being created. Specify 0 (zero) to create
an X axis, 1 (one) to create a Y axis, or 2 to create a Z axis. Specifying this property
is the same as specifying the optional Direction argument.

This property is registered as an enumerated list, but it is hidden by default.

EXACT

A Boolean value that determines whether to force the axis range to be exactly as
specified. If this property is not set, the range may be lengthened or shortened slightly
to allow for evenly spaced tick marks.

Property Type ENUMLIST

Name String Depth Write Disable

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Direction

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Boolean

Name String Use exact axis range

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrAxis IDL Reference Guide

Chapter 8: Graphics Object Classes 3145
EXTEND

A Boolean value that determines whether to extend the axis slightly beyond the
specified range. This can be useful when you specify the axis range based on the
minimum and maximum data values, but do not want the graphic to extend all the
way to the end of the axis.

GRIDSTYLE

An integer or two-element vector that indicates the line style that should be used to
draw the axis’ tick marks. The value can be either an integer value specifying a pre-
defined line style, or a two-element vector specifying a stippling pattern.

To use a pre-defined line style, set the GRIDSTYLE property equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1’s or 0’s in the
bitmask should be repeated. (That is, if three consecutive 0’s appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 ≤ repeat ≤ 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example, GRIDSTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off).

Property Type Boolean

Name String Extend axis

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrAxis

3146 Chapter 8: Graphics Object Classes
In a property sheet, this property appears as a Linestyle drop-down list, with the
following options:

HIDE

A Boolean value indicating whether this object should be drawn. Options:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

In property sheets, this property appears as an enumerated list, with the following
options:

• True = Draw graphic (the default)

• False = Do not draw graphic

LOCATION

A two- or three-element floating-point vector of the form [x, y] or [x, y, z] to specify
the coordinate through which the axis should pass. The default is [0, 0, 0]. IDL
converts, maintains, and returns this data as double-precision floating-point.

Property Type Linestyle

Name String Line style

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Show

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrAxis IDL Reference Guide

Chapter 8: Graphics Object Classes 3147
LOG

A Boolean value that indicates whether the axis is logarithmic.

MAJOR

An integer representing the number of major tick marks. The default is -1, specifying
that IDL will compute the number of tickmarks. Setting MAJOR equal to zero
suppresses major tickmarks entirely.

MINOR

An integer representing the number of minor tick marks. The default is -1, specifying
that IDL will compute the number of tickmarks. Setting MINOR equal to zero
suppresses minor tickmarks entirely.

MONTHS

A string array of 12 names to be used for the names of the months when processing
explicitly formatted dates (CMOA, CMoA, and CmoA format codes) with the
TICKFORMAT property.

Property Type Boolean

Name String Use logarithmic axis

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Integer

Name String Number of major ticks

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Integer

Name String Number of minor ticks

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type String array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrAxis

3148 Chapter 8: Graphics Object Classes
NOTEXT

A Boolean value indicating whether the tick labels and the axis title should be drawn.

• 0 = Draw tick labels and axis title (the default).

• 1 = Do not draw tick labels and axis title.

In a property sheet, this property appears as an enumerated list. Options:

• True = Draw tick labels and axis title (the default).

• False = Do not draw the tick labels and axis title.

PALETTE

The object reference of a palette object (an instance of the IDLgrPalette object class)
that defines the color palette of this object. This property is only used if the
destination device is using the RGB color model. If so, and a color value for the
object is specified as a color index value, the palette set by this property is used to
translate the color to RGB space. If the PALETTE property on this object is not set,
the destination object PALETTE property is used (which defaults to a grayscale
ramp).

This property is registered as a user-defined property, but it is hidden by default.

PARENT

An object reference to the object that contains this object.

Property Type ENUMLIST

Name String Text show

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type USERDEF

Name String Color palette

Get: Yes Set: No Init: No Registered: Yes

Property Type Object reference

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLgrAxis IDL Reference Guide

Chapter 8: Graphics Object Classes 3149
RANGE

A two-element floating-point vector containing the minimum and maximum data
values covered by the axis. The default is [0.0, 1.0]. IDL converts, maintains, and
returns this data as double-precision floating-point.

REGISTER_PROPERTIES

A Boolean value that determines whether to register properties available for this
object. Set this property to automatically register the following properties of the
object for display in a property sheet. This property is useful mainly when creating
iTools. By default, no properties are registered.

SUBTICKLEN

A floating-point scale ratio specifying the length of minor tick marks relative to the
length of major tick marks. The default is 0.5, specifying that the minor tick mark is
one-half the length of the major tick mark.

TEXTALIGNMENTS

A two-element floating-point vector, [horizontal, vertical], specifying the horizontal
and vertical alignments for the tick text. Each alignment value should be a value
between 0.0 and 1.0. For horizontal alignment, 0.0 left-justifies the text; 1.0 right-
justifies the text.

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No

Property Type FLOAT

Name String Minor tick length

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrAxis

3150 Chapter 8: Graphics Object Classes
For vertical alignment, 0.0 bottom-justifies the text, 1.0 top-justifies the text. The
defaults are as follows:

• X-Axis: [0.5, 1.0] (centered horizontally, top-justified vertically)

• Y-Axis: [1.0, 0.5] (right-justified horizontally, centered vertically)

• Z-Axis: [1.0, 0.5] (right-justified horizontally, centered vertically)

TEXTBASELINE

A two- or three-element floating-point vector describing the direction in which the
baseline of the tick text is to be oriented. Use this property in conjunction with the
TEXTUPDIR property to specify the plane on which the tick text lies. The default is
[1,0,0].

TEXTPOS

An integer that indicates on which side of the axis to draw the tick text labels. The
table below describes the placement of the tick text with each setting.

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Axis TEXTPOS = 0 TEXTPOS = 1

X

Tick text will be drawn below
the X axis, where below is
defined as being toward the
direction of the negative Y axis
(this is the default).

Tick text will be drawn above
the X axis, where above is
described as being toward the
direction of the positive Y axis.

Table 8-1: Values for the TEXTPOS property
IDLgrAxis IDL Reference Guide

Chapter 8: Graphics Object Classes 3151
In a property sheet, this property appears as an enumerated list. Options:

• Below/left: Text will be drawn below the axis and to the left.

• Above/right: Text will be drawn above the axis and to the right.

TEXTUPDIR

A two- or three-element floating-point vector describing the direction in which the
up-vector of the tick text is to be oriented. Use this property in conjunction with the
TEXTBASELINE property to specify the plane on which the tick text lies.
TEXTUPDIR should be orthogonal to TEXTBASELINE. The default is as follows:

• X-Axis: [0, 1, 0]

• Y-Axis: [0, 1, 0]

• Z-Axis: [0, 0, 1]

Y

Tick text will be drawn to the
left of the Y Axis, where left is
defined as being toward the
direction of the negative X axis
(this is the default).

Tick text will be drawn to the
right of the Y axis, where right
is defined as being toward the
direction of the positive X axis.

Z

Tick text will be drawn to the
left of the Z axis, where left is
defined as being toward the
direction of the negative X axis
(this is the default).

Tick text will be drawn to the
right of the Z axis, where right
is defined as being toward the
direction of the positive X axis.

Property Type ENUMLIST

Name String Text position

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Axis TEXTPOS = 0 TEXTPOS = 1

Table 8-1: Values for the TEXTPOS property
IDL Reference Guide IDLgrAxis

3152 Chapter 8: Graphics Object Classes
THICK

A floating-point value in points between 1.0 and 10.0 that specifies the line thickness
used to draw the axis. The default is 1.0 points.

In a property sheet, this property appears as a Thickness drop-down list with the
following options:

TICKDIR

An integer value of zero or one to indicate the tick mark direction.

Property Type Thickness

Name String Line thickness

Get: Yes Set: Yes Init: Yes Registered: Yes

Axis TICKDIR = 0 TICKDIR = 1

X Tick marks will be drawn
above the X axis, in the
direction of the positive Y axis
(this is the default).

Tick marks will be drawn
below the X axis.

Y Tick marks will be drawn to
the right of the Y axis, in the
direction of the positive X axis
(this is the default).

Tick marks will be drawn to
the left of the Y axis.

Z Tick marks will be drawn to
the right the Z axis, in the
direction of the positive X axis
(this is the default).

Tick marks will be drawn to
the left of the Z axis.

Table 8-2: Tick Mark Direction Values
IDLgrAxis IDL Reference Guide

Chapter 8: Graphics Object Classes 3153
In a property sheet, this property appears as an enumerated list, with the following
options:

• Right/above: Tick marks will be drawn above the axis and to the right.

• Left/below: Tick marks will be drawn below the axis and to the left.

TICKFORMAT

A string, or an array of strings, in which each string represents a format string or the
name of a function to be used to format the tick mark labels. If an array is provided,
each string corresponds to a level of the axis. (The TICKUNITS property determines
the number of levels for an axis.) If the number of strings stored in this property is
one, GetProperty returns a scalar string, otherwise GetProperty returns an array of
strings.

If the string begins with an open parenthesis, it is treated as a standard format string.
(See “Format Codes” in Chapter 10 of the Building IDL Applications manual.)

If the string does not begin with an open parenthesis, it is interpreted as the name of a
callback function to be used to generate tick mark labels.

If TICKUNITS are not specified:

• The callback function is called with three parameters: Axis, Index, and Value,
where:

• Axis is the axis number: 0 for X axis, 1 for Y axis, 2 for Z axis

• Index is the tick mark index (indices start at 0)

• Value is the data value at the tick mark (a double-precision floating point
value)

If TICKUNITS are specified:

The callback function is called with four parameters: Axis, Index, Value, and Level,
where:

• Axis, Index, and Value are the same as described above.

• Level is the index of the axis level for the current tick value to be labeled.
(Level indices start at 0.)

Property Type ENUMLIST

Name String Tick direction

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrAxis

3154 Chapter 8: Graphics Object Classes
Used with the LABEL_DATE function, this property can easily create axes with
date/time labels.

TICKFRMTDATA

A value of any type that will be passed via the DATA property to the user-supplied
formatting function specified via the TICKFORMAT property, if any. By default,
this value is 0, indicating that the DATA property will not be set (and furthermore,
need not be supported by the user-supplied function.)

Note
TICKFRMTDATA will not be included in the structure returned via the ALL
property to the IDLgrAxis::GetProperty method.

TICKINTERVAL

A floating-point scalar indicating the interval between major tick marks for the first
axis level. The default value is computed according to the axis RANGE and the
number of major tick marks (MAJOR). This property takes precedence over
MAJOR.

For example, if TICKUNITS=['S','H','D'], and TICKINTERVAL=30, then the
interval between major ticks for the first axis level will be 30 seconds.

Property Type String or string array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Scalar of any type

Name String not displayed

Get: Set: Init: Registered: No

Property Type FLOAT

Name String Tick interval

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrAxis IDL Reference Guide

Chapter 8: Graphics Object Classes 3155
TICKLAYOUT

An integer scalar that indicates the tick layout style to be used to draw each level of
the axis.

Valid values include:

• 0 = The axis line, major tick marks and tick labels are all included. Minor tick
marks only appear on the first level of the axis. This is the default tick layout
style.

• 1 = Only the labels for the major tick marks are drawn. The axis line, major
tick marks, and minor tick marks are omitted.

• 2 = Each major tick interval is outlined by a box. The tick labels are positioned
within that box (left-aligned). For the first axis level only, the major and minor
tick marks will also be drawn.

Note
For all tick layout styles, at least one tick label will appear on each level of the axis
(even if no major tick marks fall along the axis line). If there are no major tick
marks, the single tick label will be centered along the axis.

In a property sheet, this property appears as an enumerated list with the following
options:

• Axis plus labels: Same as the 0 value above.

• Labels only: Same as the 1 value above.

• Box style: Same as the 2 value above.

Property Type ENUMLIST

Name String Tick layout

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrAxis

3156 Chapter 8: Graphics Object Classes
TICKLEN

A floating-point value that specifies the length of each major tick mark, measured in
data units. The recommended, and default, tick mark length is 0.2. IDL converts,
maintains, and returns this data as double-precision floating-point.

TICKTEXT

An object reference to a single instance of the IDLgrText object class (with multiple
strings) or a vector of instances of the IDLgrText object class (one per major tick) to
specify the annotations to be assigned to the tickmarks. By default, with TICKTEXT
set equal to a null object, IDL computes the tick labels based on major tick values.
The positions of the provided text objects may be overwritten; position is determined
according to tick mark location. The tickmark text will have the same color as the
IDLgrAxis object, regardless of the color specified by the COLOR property of the
IDLgrText object or objects, unless the USE_TEXT_COLOR property is specified.

Note
If IDL computes the tick labels, the text object it creates will be destroyed
automatically when the axis object is destroyed, even if you have altered the
properties of the text object. If you create your own text object containing tickmark
text, however, it will not be destroyed automatically.

TICKUNITS

A string (or a vector of strings) indicating the units to be used for axis tick labeling.
If the number of levels in the axis is one, GetProperty returns a scalar string,
otherwise GetProperty returns an array of strings.

If more than one unit is provided, the axis will be drawn in multiple levels, one level
per unit.

Property Type FLOAT

Name String Major tick length

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Object reference or string vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrAxis IDL Reference Guide

Chapter 8: Graphics Object Classes 3157
The order in which the strings appear in the vector determines the order in which the
corresponding unit levels will be drawn. The first string corresponds to the first level
(the level nearest to the primary axis line).

Valid unit strings include:

• "Numeric"

• "Years"

• "Months"

• "Days"

• "Hours"

• "Minutes"

• "Seconds"

• "Time" - Use this value to indicate that the tick values are time values; IDL
will determine the appropriate time intervals and tick label formats based upon
the range of values covered by the axis.

• ""- Use the empty string to indicate that no tick units are being explicitly set.
This implies that a single axis level will be drawn using the "Numeric" unit.
This is the default setting.

If any of the time units are utilized, then the tick values are interpreted as Julian
date/time values. Note that the singular form of each of the time value strings is also
acceptable (e.g, TICKUNITS='Day' is equivalent to TICKUNITS='Days').

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000hidd, respectively.

This property is registered as a user-defined property, but it is hidden by default.

TICKVALUES

A floating-point vector of data values representing the values at each tick mark. If
TICKVALUES is set to 0, the default, IDL computes the tick values based on the

Property Type STRING

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrAxis

3158 Chapter 8: Graphics Object Classes
axis range and the number of major ticks. IDL converts, maintains, and returns this
data as double-precision floating-point.

TITLE

An object reference to an instance of the IDLgrText object class that specifies the title
for the axis. The default is the null object, specifying that no title is drawn. The title
will be centered along the axis, even if the text object itself has an associated location.
The title will have the same color as the IDLgrAxis object, regardless of the color
specified by the COLOR property of the IDLgrText object, unless the
USE_TEXT_COLOR property is specified.

USE_TEXT_COLOR

A Boolean value that indicates whether, for the tick text and/or title of the axis, the
color property values set for the given IDLgrText objects are to be used to draw those
text items. By default, this value is zero, indicating that the color properties of the
IDLgrText objects will be ignored, and that the COLOR property for the axis object
will be used for these text items instead.

XCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors that convert X coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Object reference

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrAxis IDL Reference Guide

Chapter 8: Graphics Object Classes 3159
Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

XRANGE

A two-element double-precision floating-point vector of the form [xmin, xmax] that
specifies the range of x data coordinates covered by the graphic object.

YCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors that convert Y coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrAxis

3160 Chapter 8: Graphics Object Classes
YRANGE

A two-element double-precision floating-point vector of the form [ymin, ymax] that
specifies the range of y data coordinates covered by the graphic object.

ZCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert Z coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

ZRANGE

A two-element double-precision floating-point vector of the form [zmin, zmax] that
specifies the range of z data coordinates covered by the graphic object.

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Set: Init: Registered: No
IDLgrAxis IDL Reference Guide

Chapter 8: Graphics Object Classes 3161
IDLgrAxis::Cleanup

The IDLgrAxis::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrAxis::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDL Reference Guide IDLgrAxis

3162 Chapter 8: Graphics Object Classes
IDLgrAxis::GetCTM

The IDLgrAxis::GetCTM function method returns the graphics transform matrix
from the current object upward through the graphics tree.

Syntax

Result = Obj -> [IDLgrAxis::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref])

Return Value

Returns the 4 x 4 double-precision floating-point graphics transform matrix.

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the axis
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrAxis::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.
IDLgrAxis IDL Reference Guide

Chapter 8: Graphics Object Classes 3163
Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.

TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrAxis

3164 Chapter 8: Graphics Object Classes
IDLgrAxis::GetProperty

The IDLgrAxis::GetProperty procedure method retrieves the value of a property or
group of properties for the axis.

Syntax

Obj -> [IDLgrAxis::]GetProperty [, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrAxis Properties” on page 3140 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Version History

Introduced: 5.0
IDLgrAxis IDL Reference Guide

Chapter 8: Graphics Object Classes 3165
IDLgrAxis::Init

The IDLgrAxis::Init function method initializes an axis object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrAxis' [, Direction] [, PROPERTY=value])

or

Result = Obj -> [IDLgrAxis::]Init([Direction] [, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

Direction

An integer value specifying which axis is being created. Specify 0 (zero) to create an
X axis, 1 (one) to create a Y axis, or 2 to create a Z axis.

Keywords

Any property listed under “IDLgrAxis Properties” on page 3140 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.
IDL Reference Guide IDLgrAxis

3166 Chapter 8: Graphics Object Classes
Version History

Introduced: 5.0

CLIP_PLANES keyword: 5.6
IDLgrAxis IDL Reference Guide

Chapter 8: Graphics Object Classes 3167
IDLgrAxis::SetProperty

The IDLgrAxis::SetProperty procedure method sets the value of a property or group
of properties for the axis.

Syntax

Obj -> [IDLgrAxis::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrAxis Properties” on page 3140 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrAxis

3168 Chapter 8: Graphics Object Classes
IDLgrBuffer

An IDLgrBuffer object is an in-memory, off-screen destination object. Object trees
can be drawn to instances of the IDLgrBuffer object and the resulting image can be
retrieved from the buffer using the Read() method. The off-screen representation
avoids dithering artifacts by providing a full-resolution buffer for objects using either
the RGB or Color Index color models.

Note
Objects or subclasses of this type can not be saved or restored.

Superclasses

IDLitComponent

Creation

See “IDLgrBuffer::Init” on page 3186.

Properties

Objects of this class have the following properties. See “IDLgrBuffer Properties” on
page 3170 for details on individual properties.

• ALL

• COLOR_MODEL

• DIMENSIONS

• GRAPHICS_TREE

• IMAGE_DATA

• N_COLORS

• PALETTE

• QUALITY

• REGISTER_PROPERTIES

• RESOLUTION

• SCREEN_DIMENSIONS
IDLgrBuffer IDL Reference Guide

Chapter 8: Graphics Object Classes 3169
• UNITS

• ZBUFFER_DATA

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrBuffer::Cleanup

• IDLgrBuffer::Draw

• IDLgrBuffer::Erase

• IDLgrBuffer::GetContiguousPixels

• IDLgrBuffer::GetDeviceInfo

• IDLgrBuffer::GetFontnames

• IDLgrBuffer::GetProperty

• IDLgrBuffer::GetTextDimensions

• IDLgrBuffer::Init

• IDLgrBuffer::PickData

• IDLgrBuffer::Read

• IDLgrBuffer::Select

• IDLgrBuffer::SetProperty

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.0
IDL Reference Guide IDLgrBuffer

3170 Chapter 8: Graphics Object Classes
IDLgrBuffer Properties

IDLgrBuffer objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLgrBuffer::GetProperty. Properties with the
word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrBuffer::Init. Properties with the word “Yes” in the “Set” column in the property
table can be set via IDLgrBuffer::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the retrievable properties
associated with this object (except IMAGE_DATA and ZBUFFER_DATA).

COLOR_MODEL

A Boolean value that determines the color model to be used for the buffer:

• 0 = RGB (default)

• 1 = Color Index

In a property sheet, this property appears as an enumerated list with the following
options:

• RGB

• Indexed

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type ENUMLIST

Name String Color model

Get: Yes Set: Init: Yes Registered: Yes
IDLgrBuffer IDL Reference Guide

Chapter 8: Graphics Object Classes 3171
DIMENSIONS

A two-element integer vector of the form [width, height] that specifies the
dimensions of the buffer in units specified by the UNITS property. The default is
[640,480].

GRAPHICS_TREE

An object reference of type IDLgrScene, IDLgrViewgroup, or IDLgrView that
specifies the graphics tree of this object. If this property is set to a valid object
reference, calling the Draw method on the destination object with no arguments will
cause the object reference associated with this property to be drawn. If this object is
valid and the destination object is destroyed, this object reference will be destroyed as
well. By default the GRAPHICS_TREE property is set equal to the null-object.

IMAGE_DATA

A byte array representing the image that is currently rendered within the buffer. If the
buffer uses an RGB color model, the returned array will have dimensions (3, xdim,
ydim). If the window object uses an indexed color model, the returned array will have
dimensions (xdim, ydim).

Property Type Integer vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Object reference

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Byte array

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrBuffer

3172 Chapter 8: Graphics Object Classes
N_COLORS

An integer that determines the number of colors (between 2 and 256) to be used if
COLOR_MODEL is set to Color Index.

PALETTE

An object reference to a palette object (an instance of the IDLgrPalette object class)
that specifies the red, green, and blue values to be loaded into the buffer’s color
lookup table.

This property is registered as a user-defined property, but it is hidden by default.

QUALITY

An integer that indicates the rendering quality at which graphics are to be drawn to
the buffer. Valid values are:

• 0 = Low

• 1 = Medium

• 2 = High (default)

In a property sheet, this property appears as an enumerated list with the following
options:

• Low

• Medium

Property Type INTEGER

Name String Number of colors

Get: Yes Set: No Init: Yes Registered: Yes

Property Type USERDEF

Name String Color palette

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrBuffer IDL Reference Guide

Chapter 8: Graphics Object Classes 3173
• High

REGISTER_PROPERTIES

A Boolean value that determines whether to register properties available for this
object. Set this property to automatically register the following properties of the
object for display in a property sheet. This property is useful mainly when creating
iTools. By default, no properties are registered.

RESOLUTION

A two-element floating-point vector of the form [xres, yres] that specifies the device
resolution in centimeters per pixel. This value is stored in double precision. The
default value is: [0.035277778, 0.035277778] (72 DPI).

This property is registered as a user-defined property, but it is hidden by default.

SCREEN_DIMENSIONS

A two-element integer vector of the form [width, height] that specifies the maximum
allowed dimensions (measured in device units) for the buffer object.

Property Type ENUMLIST

Name String Draw quality

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No

Property Type USERDEF

Name String Resolution

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrBuffer

3174 Chapter 8: Graphics Object Classes
Note
The maximum buffer dimension size is always 2048 by 2048.

UNITS

An integer value that indicates the units of measure for the DIMENSIONS property.
Valid values are:

• 0 = Device (default)

• 1 = Inches

• 2 = Centimeters

• 3 = Normalized: relative to 1600 x 1200

ZBUFFER_DATA

A floating-point array representing the zbuffer that is currently within the buffer. The
returned array will have dimensions (xdim, ydim).

Property Type Integer vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point array

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLgrBuffer IDL Reference Guide

Chapter 8: Graphics Object Classes 3175
IDLgrBuffer::Cleanup

The IDLgrBuffer::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrBuffer::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDL Reference Guide IDLgrBuffer

3176 Chapter 8: Graphics Object Classes
IDLgrBuffer::Draw

The IDLgrBuffer::Draw procedure method draws the given picture to this graphics
destination.

Note
Objects are drawn to the destination device in the order that they are added to the
model, view, viewgroup, or scene object that contains them.

Syntax

Obj -> [IDLgrBuffer::]Draw [, Picture] [, CREATE_INSTANCE={1 | 2}]
[, /DRAW_INSTANCE]

Arguments

Picture

The view (an instance of an IDLgrView object), viewgroup (an instance of an
IDLgrViewgroup object) or scene (an instance of an IDLgrScene object) to be drawn.

Keywords

CREATE_INSTANCE

Set this keyword equal to one to specify that this scene or view is the unchanging part
of a drawing. Some destinations can make an instance from the current window
contents without having to perform a complete redraw. If the view or scene to be
drawn is identical to the previously drawn view or scene, this keyword can be set
equal to 2 to hint the destination to create the instance from the current window
contents if it can.

DRAW_INSTANCE

Set this keyword to specify that this scene, viewgroup, or view is the changing part of
the drawing. It is overlaid on the result of the most recent CREATE_INSTANCE
draw.

Version History

Introduced: 5.0
IDLgrBuffer IDL Reference Guide

Chapter 8: Graphics Object Classes 3177
IDLgrBuffer::Erase

The IDLgrBuffer::Erase procedure method erases this graphics destination.

Syntax

Obj -> [IDLgrBuffer::]Erase [, COLOR=index or RGB vector]

Arguments

None

Keywords

COLOR

Set this keyword to the color to be used for the erase. The color may be specified as a
color lookup table index or as an RGB vector.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrBuffer

3178 Chapter 8: Graphics Object Classes
IDLgrBuffer::GetContiguousPixels

The IDLgrBuffer::GetContiguousPixels function method returns an array of long
integers whose length is equal to the number of colors available in the index color
mode (that is, the value of the N_COLORS property).

The returned array marks contiguous pixels with the ranking of the range’s size. This
means that within the array, the elements in the largest available range are set to zero,
the elements in the second-largest range are set to one, etc. Use this range to set an
appropriate colormap for use with the SHADE_RANGE property of the
IDLgrSurface and IDLgrPolygon object classes.

To get the largest contiguous range, you could use the following IDL command:

result = obj -> GetContiguousPixels()
Range0 = WHERE(result EQ 0)

A contiguous region in the colormap can be increasing or decreasing in values. The
following would be considered contiguous:

[0,1,2,3,4]
[4,3,2,1,0]

Syntax

Result = Obj -> [IDLgrBuffer::]GetContiguousPixels()

Return Value

Returns an array of long integers whose length is equal to the number of colors
available in the index color mode.

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDLgrBuffer IDL Reference Guide

Chapter 8: Graphics Object Classes 3179
IDLgrBuffer::GetDeviceInfo

The IDLgrBuffer::GetDeviceInfo procedure method returns information which
allows IDL applications to intelligently make decisions for optimal performance. For
example, it allows an application to determine if RENDERER=1 is actually
implemented in hardware. It also allows applications to make optimal quality
decisions when dynamically building texture maps.

Syntax

Obj -> [IDLgrBuffer::]GetDeviceInfo [, ALL=variable]
[, MAX_NUM_CLIP_PLANES=variable]
[, MAX_TEXTURE_DIMENSIONS=variable]
[, MAX_VIEWPORT_DIMENSIONS=variable] [, NAME=variable]
[, NUM_CPUS=variable] [, VENDOR=variable] [, VERSION=variable]

Arguments

None

Keywords

ALL

Set this keyword to a named variable which, upon return, contains a structure with
the values of all the device information keywords as fields.

MAX_NUM_CLIP_PLANES

Set this keyword to a named variable that upon return will contain an integer that
specifies the maximum number of user-defined clipping planes supported by the
device.

MAX_TEXTURE_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_TEXTURE_DIMENSIONS contains a two-element integer array that
specifies the maximum texture size supported by the device.
IDL Reference Guide IDLgrBuffer

3180 Chapter 8: Graphics Object Classes
MAX_VIEWPORT_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_VIEWPORT_DIMENSIONS contains a two-element integer array that
specifies the maximum size of a graphics display supported by the device.

NAME

Set this keyword equal to a named variable. Upon return, NAME contains the name
of the rendering device as a string.

NUM_CPUS

Set this keyword equal to a named variable. Upon return, NUM_CPUS contains an
integer that specifies the number of CPUs that are known to, and available to IDL.

Note
The NUM_CPUS keyword accurately returns the number of CPUs for the SGI
IRIX, SUN, and Microsoft Windows platforms. For platforms other than these, the
number returned may not reflect the actual number of CPUs available to IDL in the
current system.

VENDOR

Set this keyword equal to a named variable. Upon return, VENDOR contains the
name of the rendering device creator as a string.

VERSION

Set this keyword equal to a named variable. Upon return, VERSION contains the
version of the rendering device driver as a string.

Version History

Introduced: 5.0

MAX_NUM_CLIP_PLANES keyword: 5.6
IDLgrBuffer IDL Reference Guide

Chapter 8: Graphics Object Classes 3181
IDLgrBuffer::GetFontnames

The IDLgrBuffer::GetFontnames function method returns the list of available fonts
that can be used in IDLgrFont objects. This method will only return the names of the
available TrueType fonts. Hershey fonts will not be returned. See Appendix H,
“Fonts” for more information.

Syntax

Result = Obj -> [IDLgrBuffer::]GetFontnames(FamilyName[, IDL_FONTS={0 | 1 |
2 }] [, STYLES=string])

Return Value

Returns the list of available fonts that can be used in IDLgrFont objects.

Arguments

FamilyName

A string representing the name of the font family to which all of the returned fonts
must belong. The string may be a fully specified family name—such as “Helvetica”.
You can use both “*” and “?” as wildcard characters, matching any number of
characters or one character respectively. To return all available family names, use
“*”.

Keywords

IDL_FONTS

Set this keyword to specify where to search for fonts that IDL may use. Set
IDL_FONT to 1 to select only fonts installed by IDL and to 2 to select only fonts
detected in the host operating system. The default value is 0, specifying that both IDL
and operating system fonts should be returned.

STYLES

Set this keyword to a string specifying the styles that are to be matched by the
returned font names. You can set STYLES to a fully specified style string, such as
“Bold Italic”. If you set STYLES to the null string, ' ', only fontnames without style
modifiers will be returned. You can use both “*” and “?” as wildcard characters,
matching any number of characters or one character respectively. The default value is
IDL Reference Guide IDLgrBuffer

3182 Chapter 8: Graphics Object Classes
the string, “*”, which returns all fontnames containing the FamilyName argument,
with or without style modifiers.

Version History

Introduced: 5.0
IDLgrBuffer IDL Reference Guide

Chapter 8: Graphics Object Classes 3183
IDLgrBuffer::GetProperty

The IDLgrBuffer::GetProperty procedure method retrieves the value of a property or
group of properties for the buffer.

Syntax

Obj -> [IDLgrBuffer::]GetProperty[, PROPERTY=variable]

Keywords

Any property listed under “IDLgrBuffer Properties” on page 3170 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s super-class.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrBuffer

3184 Chapter 8: Graphics Object Classes
IDLgrBuffer::GetTextDimensions

The IDLgrBuffer::GetTextDimensions function method retrieves the dimensions of a
text or axis object that will be rendered in a window. The result is a 3-element double-
precision floating-point vector [xDim, yDim, zDim] representing the dimensions of
the text or axis object, measured in data units. If the object specified is an axis object,
the result encompasses the tick labels and the title of the axis (if any).

Syntax

Result = Obj ->[IDLgrBuffer::]GetTextDimensions(TextObj
[, DESCENT=variable] [, PATH=objref(s)])

Return Value

Returns the dimensions of a text or axis object that will be rendered in a window.

Arguments

TextObj

The object reference to a text or axis object for which text dimensions are requested.

Keywords

DESCENT

Set this keyword equal to a named variable that will contain an array of double-
precision floating-point values (one for each string in the IDLgrText object). The
values represent the distance to travel (parallel to the UPDIR vector) from the text
baseline to reach the bottom of the lowest descender in the string. All values will be
negative numbers, or zero. This keyword is valid only if TextObj is an IDLgrText
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the text dimensions.
Each path object reference specified with this keyword must contain an alias. The
text dimensions are computed for the version of the object falling within that path. If
this keyword is not set, the PARENT properties determine the path from the current
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrBuffer IDL Reference Guide

Chapter 8: Graphics Object Classes 3185
IDLgrBuffer::GetTextDimensions is called from within a Draw method and the
PATH keyword is not set, the alias path used to find the object during the draw is
used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrBuffer

3186 Chapter 8: Graphics Object Classes
IDLgrBuffer::Init

The IDLgrBuffer::Init function method initializes the buffer object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrBuffer' [, PROPERTY=value])

or

Result = Obj -> [IDLgrBuffer::]Init([PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLgrBuffer Properties” on page 3170 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.
IDLgrBuffer IDL Reference Guide

Chapter 8: Graphics Object Classes 3187
Version History

Introduced: 5.0
IDL Reference Guide IDLgrBuffer

3188 Chapter 8: Graphics Object Classes
IDLgrBuffer::PickData

The IDLgrBuffer::PickData function method maps a point in the two-dimensional
device space of the buffer to a point in the three-dimensional data space of an object
tree. The resulting 3-D data space coordinates are returned in a user-specified
variable. The PickData function returns one if the specified location in the buffer’s
device space “hits” a graphic object, or zero otherwise.

Syntax

Result = Obj -> [IDLgrBuffer::]PickData(View, Object, Location, XYZLocation
[, DIMENSIONS=[width,height]][, PATH=objref(s)] [, PICK_STATUS=variable])

Return Value

Returns one if the specified location in the buffer’s device space “hits” a graphic
object, or zero otherwise.

Arguments

View

The object reference of an IDLgrView object that contains the object being picked.

Object

The object reference of a model or atomic graphic object from which the data space
coordinates are being requested.

Location

A two-element vector [x, y] specifying the location in the buffer’s device space of the
point to pick data from.

XYZLocation

A named variable that will contain the three-dimensional double-precision floating-
point data space coordinates of the picked point. Note that the value returned in this
variable is a location, not a data value.

Note
If the atomic graphic object specified as the target has been transformed using either
the LOCATION or DIMENSIONS properties (this is only possible with
IDLgrBuffer IDL Reference Guide

Chapter 8: Graphics Object Classes 3189
IDLgrAxis, IDLgrImage, and IDLgrText objects), these transformations will not be
included in the data coordinates returned by the PickData function. This means that
you may need to re-apply the transformation accomplished by specifying
LOCATION or DIMENSIONS once you have retrieved the data coordinates with
PickData. This situation does not occur if you transform the axis, text, or image
object using the [XYZ]COORD_CONV properties.

Keywords

DIMENSIONS

Set this keyword to a two-element array [w, h] to specify data picking should occur
for all device locations that fall within a pick box of these dimensions. The pick box
will be centered about the coordinates [x, y] specified in the Location argument, and
will occupy the rectangle defined by:

(x-(w/2), y-(h/2)) - (x+(w/2), y+(h/2))

By default, the pick box covers a single pixel. The array returned via the
XYZLocation argument will have dimensions [3, w, h].

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to map the device position to a
data space coordinate. Each path object reference specified with this keyword must
contain an alias. The data space coordinate is computed for the version of the object
falling within that path. If this keyword is not set, the PARENT properties determine
the path from the current object to the top of the graphics hierarchy and no alias paths
are pursued.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.

PICK_STATUS

Set this keyword to a named variable that will contain “hit” information for each pixel
in the pick box. If the DIMENSIONS keyword is not set, the PICK_STATUS will be
a scalar value exactly matching the Result of the method call. If the DIMENSIONS
keyword is set, the PICK_STATUS variable will be an array matching the dimensions
IDL Reference Guide IDLgrBuffer

3190 Chapter 8: Graphics Object Classes
of the pick box. Each value in the PICK_STATUS array corresponds to a pixel in the
pick box, and will be set to one of the following values:

Version History

Introduced: 5.0

PICK_STATUS keyword: 5.6

Value Description

-1 The pixel falls outside of the window’s viewport.

0 No graphic object is “hit” at that pixel location.

1 A graphic object is “hit” at that pixel location.

Table 8-3: PICK_STATUS Keyword Values
IDLgrBuffer IDL Reference Guide

Chapter 8: Graphics Object Classes 3191
IDLgrBuffer::Read

The IDLgrBuffer::Read function method reads an image from a buffer. The returned
value is an instance of the IDLgrImage object class.

Syntax

Result = Obj -> [IDLgrBuffer::]Read()

Return Value

Returns an instance of the IDLgrImage object class.

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDL Reference Guide IDLgrBuffer

3192 Chapter 8: Graphics Object Classes
IDLgrBuffer::Select

The IDLgrBuffer::Select function method returns a list of objects selected at a
specified location. If no objects are selected, the Select function returns -1.

Note
IDL returns a maximum of 512 objects. This maximum may be smaller if any of the
objects are contained in deep model hierarchies. Because of this limit, it is possible
that not all objects eligible for selection will appear in the list.

Syntax

Result = Obj -> [IDLgrBuffer::]Select(Picture, XY [, DIMENSIONS=[width,
height]] [, /ORDER] [, UNITS={0 | 1 | 2 | 3}])

Return Value

Returns a list of objects selected at a specified location.

Arguments

Picture

The view, viewgroup, or scene (an instance of the IDLgrView, IDLgrViewgroup, or
IDLgrScene class) whose children are among the candidates for selection.

If the first argument is a scene or viewgroup, then the returned object list will contain
one or more views. If the first argument is a view, the list will contain atomic graphic
objects (or model objects which have their SELECT_TARGET property set). Objects
are returned in order, according to their distance from the viewer. The closer an
object is to the viewer, the lower its index in the returned object list. If multiple
objects are at the same distance from the viewer (views in a scene or 2-D geometry),
the first object drawn will appear at a lower index in the list. (The ORDER keyword
can be used to change this behavior.)

XY

A two-element array defining the center of the selection box in device space. By
default, the selection box is 3 pixels by 3 pixels.
IDLgrBuffer IDL Reference Guide

Chapter 8: Graphics Object Classes 3193
Keywords

DIMENSIONS

Set this keyword to a two-element array [w, h] to specify that the selection box will
have a width w and a height h, and will be centered about the coordinates [x, y]
specified in the XY argument. The box occupies the rectangle defined by:

(x-(w/2), y-(h/2)) - (x+(w/1), y+(h/2))

Any object which intersects this box is considered to be selected. By default, the
selection box is 3 pixels by 3 pixels.

ORDER

Set this keyword to control how objects that are the same distance from the viewer
are ordered in the selection list. If ORDER=0 (the default), the order of objects in the
selection list will be the same as the order in which the objects are drawn. If
ORDER=1, the order of objects in the selection list will be the reverse of the order in
which they are drawn. This keyword has no affect on the ordering of objects that are
not at the same distance from the viewer.

Tip
If you are using DEPTH_TEST_FUNCTION=4 (“less than or equal”) on your
graphics objects, set ORDER=1 to return objects at the same depth in the order in
which they appear visually.

UNITS

Set this keyword to indicate the units of measure. Valid values are:

• 0 = Device (default)

• 1 = Inches

• 2 = Centimeters

• 3 = Normalized: relative to the dimensions of the graphics destination.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrBuffer

3194 Chapter 8: Graphics Object Classes
IDLgrBuffer::SetProperty

The IDLgrBuffer::SetProperty procedure method sets the value of a property or
group of properties for the buffer.

Syntax

Obj -> [IDLgrBuffer::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrBuffer Properties” on page 3170 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.0
IDLgrBuffer IDL Reference Guide

Chapter 8: Graphics Object Classes 3195
IDLgrClipboard

An IDLgrClipboard object will send Object Graphics output to the operating system
native clipboard in bitmap format. The format of bitmaps sent to the clipboard is
operating system dependent: output is stored as a device-independent bitmap under
Windows and as an Encapsulated PostScript (EPS) image under UNIX.

Note
Objects or subclasses of this type can not be saved or restored.

Superclasses

IDLitComponent

Creation

See “IDLgrClipboard::Init” on page 3215.

Properties

Objects of this class have the following properties. See “IDLgrClipboard Properties”
on page 3197 for details on individual properties.

• ALL

• COLOR_MODEL

• DIMENSIONS

• GRAPHICS_TREE

• N_COLORS

• PALETTE

• QUALITY

• REGISTER_PROPERTIES

• RESOLUTION

• SCREEN_DIMENSIONS

• UNITS

In addition, objects of this class inherit the properties of all superclasses of this class.
IDL Reference Guide IDLgrClipboard

3196 Chapter 8: Graphics Object Classes
Methods

This class has the following methods:

• IDLgrClipboard::Cleanup

• IDLgrClipboard::Draw

• IDLgrClipboard::GetContiguousPixels

• IDLgrClipboard::GetDeviceInfo

• IDLgrClipboard::GetFontnames

• IDLgrClipboard::GetProperty

• IDLgrClipboard::GetTextDimensions

• IDLgrClipboard::Init

• IDLgrClipboard::SetProperty

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.1
IDLgrClipboard IDL Reference Guide

Chapter 8: Graphics Object Classes 3197
IDLgrClipboard Properties

IDLgrClipboard objects have the following properties in addition to properties
inherited from any superclasses. Properties with the word “Yes” in the “Get” column
of the property table can be retrieved via IDLgrClipboard::GetProperty. Properties
with the word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrClipboard::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLgrClipboard::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure that contains the values of all of the retrievable properties
associated with this object.

COLOR_MODEL

An integer value that determines whether to use the indexed color model for the
clipboard buffer:

• 0 = RGB (default)

• 1 = Color Index

In a property sheet, this property appears as an enumerated list with the following
options:

• RGB

• Indexed

Property Type Anonymous structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type ENUMLIST

Name String Color model

Get: Yes Set: No Init: Yes Registered: Yes
IDL Reference Guide IDLgrClipboard

3198 Chapter 8: Graphics Object Classes
DIMENSIONS

A two-element integer vector of the form [width, height] to specify the dimensions of
the clipboard buffer in units specified by the UNITS property. The default is
[640,480].

GRAPHICS_TREE

An object reference of type IDLgrScene, IDLgrViewgroup, or IDLgrView that
specifies the graphic tree of this object. If this property is set to a valid object
reference, calling the Draw method on the destination object with no arguments will
cause the object reference associated with this property to be drawn. If this object is
valid and the destination object is destroyed, this object reference will be destroyed as
well. By default the GRAPHICS_TREE property is set equal to the null-object.

N_COLORS

An integer value that determines the number of colors (between 2 and 256) to be used
if COLOR_MODEL is set to Color Index.

PALETTE

An object reference to a palette object (an instance of the IDLgrPalette object class)
that specifies the red, green, and blue values that are to be loaded into the clipboard
buffer’s color lookup table.

Property Type Integer vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Object reference

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type INTEGER

Name String Number of colors

Get: Yes Set: No Init: Yes Registered: Yes
IDLgrClipboard IDL Reference Guide

Chapter 8: Graphics Object Classes 3199
This property is registered as a user-defined property, but it is hidden by default.

QUALITY

An integer indicating the rendering quality at which graphics are to be drawn to the
clipboard buffer. Valid values are:

• 0 = Low

• 1 = Medium

• 2 = High (default)

In a property sheet, this property appears as an enumerated list with the following
options:

• Low

• Medium

• High

REGISTER_PROPERTIES

A Boolean value that determines whether to register properties available for this
object. Set this property to automatically register the following properties of the
object for display in a property sheet. This property is useful mainly when creating
iTools. By default, no properties are registered.

Property Type USERDEF

Name String Color palette

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Draw quality

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDL Reference Guide IDLgrClipboard

3200 Chapter 8: Graphics Object Classes
RESOLUTION

A two-element floating-point vector of the form [xres, yres] specifying the device
resolution in centimeters per pixel. This value is stored in double precision. The
default value is: [0.035277778, 0.035277778] (72 DPI).

Note
To match screen rendering on an IDLgrClipboard object, the following properties
should be matched between the devices: DIMENSIONS, UNITS, RESOLUTION,
COLOR_MODEL and N_COLORS.

This property is registered as a user-defined property, but it is hidden by default.

SCREEN_DIMENSIONS

A two-element integer vector of the form [width, height] that specifies the maximum
allowed dimensions (measured in device units) for the clipboard object.

UNITS

An integer value that indicates the units of measure for the DIMENSIONS property.
Valid values are:

• 0 = Device (default)

• 1 = Inches

• 2 = Centimeters

Property Type USERDEF

Name String Resolution

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Integer vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLgrClipboard IDL Reference Guide

Chapter 8: Graphics Object Classes 3201
• 3 = Normalized (relative to 1600 x 1200)

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrClipboard

3202 Chapter 8: Graphics Object Classes
IDLgrClipboard::Cleanup

The IDLgrClipboard::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj-> [IDLgrClipboard::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.1
IDLgrClipboard IDL Reference Guide

Chapter 8: Graphics Object Classes 3203
IDLgrClipboard::Draw

The IDLgrClipboard::Draw procedure method draws the given picture to this
graphics destination.

Note
Objects are drawn to the destination device in the order that they are added to the
model, view, viewgroup, or scene object that contains them.

Syntax

Obj -> [IDLgrClipboard::]Draw [, Picture] [, FILENAME=string]
[, POSTSCRIPT=value] [, VECTOR={ 0 | 1 }]

Arguments

Picture

The view (an instance of an IDLgrView object), viewgroup (an instance of an
IDLgrViewgroup object) or scene (an instance of an IDLgrScene object) to be drawn.

Keywords

FILENAME

Set this keyword to a string representing the name of a file to which the output should
be written. By default, this keyword is the null string, indicating that the output is
written to the clipboard.

POSTSCRIPT

Set this keyword to a nonzero value to indicate that the generated output should be in
PostScript format. By default, the generated output is in Windows Enhanced Metafile
Format on Windows platforms and PostScript on UNIX platforms.

VECTOR

Set this keyword to indicate the type of graphics primitives generated. Valid values
include:

• 0 = Bitmap (default)

• 1 = Vector
IDL Reference Guide IDLgrClipboard

3204 Chapter 8: Graphics Object Classes
If VECTOR = 0 (Bitmap), the Draw method renders the scene to a buffer and then
copies the buffer to the printer in bitmap format. The bitmap retains the quality of the
original image, but the user cannot scale the bitmap effectively on all devices.

If VECTOR = 1 (Vector), the Draw method renders the scene using simple vector
operations that result in a representation of the Scene that is scalable to the printer.
The vector representation does not retain all the attributes of the original image,
however, a user can effectively scale it on other devices. On Windows, the
representation is the Windows Enhanced Metafile (EMF). On UNIX platforms, the
representation is PostScript.

Examples

This example demonstrates the process of copying the contents of an IDL graphics
display object (a buffer or a window) to the system clipboard, where it becomes
available for pasting into another application. The example also uses the
IDLgrClipboard::Draw method to create an encapsulated PostScript file in the current
directory.

PRO SendingPlotToClipboard

; Determine the path to the "damp_sn2.dat" file.
signalFile = FILEPATH('damp_sn2.dat', $
 SUBDIRECTORY = ['examples', 'data'])

; Initialize the parameters of the data within the file.
signalSize = 512
signal = BYTARR(signalSize)

; Open the file, read in data, and then close the file.
OPENR, unit, signalFile, /GET_LUN
READU, unit, signal
FREE_LUN, unit

; Determine viewplane size and margins.
offsetScale = 150.
viewOffset = offsetScale*[-1., -1., 1., 1.]
signalRange = MAX(signal) - MIN(signal)

; Initialize the display objects.
windowSize = [512, 384]
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
 DIMENSIONS = windowSize, $
 TITLE = 'Damped Sine Wave with Noise')
oView = OBJ_NEW('IDLgrView', $
 VIEWPLANE_RECT = [0., 0., signalSize, signalRange] + $
 viewOffset)
IDLgrClipboard IDL Reference Guide

Chapter 8: Graphics Object Classes 3205
oModel = OBJ_NEW('IDLgrModel')

; Initialize the plot object.
oPlot = OBJ_NEW('IDLgrPlot', signal, COLOR = [0, 0, 255])

; Obtain plot ranges.
oPlot -> GetProperty, XRANGE = xPlotRange, $
 YRANGE = yPlotRange

; Initialize axes objects, which are based on the plot
; ranges.
oXTitle = OBJ_NEW('IDLgrText', 'Time (seconds)')
oXAxis = OBJ_NEW('IDLgrAxis', 0, RANGE = xPlotRange, $
 LOCATION = [xPlotRange[0], yPlotRange[0]], /EXACT, $
 TITLE = oXTitle, TICKDIR = 0, $
 TICKLEN = (0.02*(yPlotRange[1] - yPlotRange[0])))
oYTitle = OBJ_NEW('IDLgrText', 'Amplitude (centimeters)')
oYAxis = OBJ_NEW('IDLgrAxis', 1, RANGE = yPlotRange, $
 LOCATION = [xPlotRange[0], yPlotRange[0]], /EXACT, $
 TITLE = oYTitle, TICKDIR = 0, $
 TICKLEN = (0.02*(xPlotRange[1] - xPlotRange[0])))

; Add plot and axes to model, which is added to the
; view, and then displayed in the window.
oModel -> Add, oPlot
oModel -> Add, oXAxis
oModel -> Add, oYAxis
oView -> Add, oModel
oModel -> Translate, -50., -50., 0.
oWindow -> Draw, oView

; Determine the screen resolution.
oWindow -> GetProperty, RESOLUTION = screenResolution

; Initialize clipboard destination object.
oClipboard = OBJ_NEW('IDLgrClipboard', QUALITY = 2, $
 DIMENSIONS = windowSize, $
 RESOLUTION = screenResolution)

; Get the current directory.
CD, CURRENT=dir

; Create a filename for the output EPS file.
epsfile = dir + PATH_SEP() + 'damp_sn2.eps'

; Display the view to the system clipboard.
oClipboard -> Draw, oView, /VECTOR

; Display the view to an Encapsulated PostScript file.
IDL Reference Guide IDLgrClipboard

3206 Chapter 8: Graphics Object Classes
oClipboard -> Draw, oView, FILENAME = epsfile, $
 /POSTSCRIPT, /VECTOR
PRINT, 'Printed clibpoard contents to ', epsfile

; Cleanup object references.
OBJ_DESTROY, [oClipboard, oView, oXTitle, oYTitle]

END

Version History

Introduced: 5.1
IDLgrClipboard IDL Reference Guide

Chapter 8: Graphics Object Classes 3207
IDLgrClipboard::GetContiguousPixels

The IDLgrClipboard::GetContiguousPixels function method returns an array of long
integers whose length is equal to the number of colors available in the index color
mode (that is, the value of the N_COLORS property).

The returned array marks contiguous pixels with the ranking of the range’s size. This
means that within the array, the elements in the largest available range are set to zero,
the elements in the second-largest range are set to one, etc. Use this range to set an
appropriate colormap for use with the SHADE_RANGE property of the
IDLgrSurface and IDLgrPolygon object classes.

To get the largest contiguous range, you could use the following IDL command:

result = obj -> GetContiguousPixels()
Range0 = WHERE(result EQ 0)

A contiguous region in the colormap can be increasing or decreasing in values. The
following would be considered contiguous:

[0,1,2,3,4]
[4,3,2,1,0]

Syntax

Result = Obj ->[IDLgrClipboard::]GetContiguousPixels()

Return Value

Returns an array of long integers whose length is equal to the number of colors
available in the index color mode.

Arguments

None

Keywords

None

Version History

Introduced: 5.1
IDL Reference Guide IDLgrClipboard

3208 Chapter 8: Graphics Object Classes
IDLgrClipboard::GetDeviceInfo

The IDLgrClipboard::GetDeviceInfo procedure method returns information which
allows IDL applications to intelligently make decisions for optimal performance. For
example, it allows an application to determine if RENDERER=1 is actually
implemented in hardware. It also allows applications to make optimal quality
decisions when dynamically building texture maps.

Syntax

Obj -> [IDLgrClipboard::]GetDeviceInfo [, ALL=variable]
[, MAX_NUM_CLIP_PLANES=variable]
[, MAX_TEXTURE_DIMENSIONS=variable]
[, MAX_VIEWPORT_DIMENSIONS=variable] [, NAME=variable]
[, NUM_CPUS=variable] [, VENDOR=variable] [, VERSION=variable]

Arguments

None

Keywords

ALL

Set this keyword to a named variable which, upon return, contains a structure with
the values of all the device information keywords as fields.

MAX_NUM_CLIP_PLANES

Set this keyword to a named variable that upon return will contain an integer that
specifies the maximum number of user-defined clipping planes supported by the
device.

MAX_TEXTURE_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_TEXTURE_DIMENSIONS contains a two element integer array that
specifies the maximum texture size supported by the device.
IDLgrClipboard IDL Reference Guide

Chapter 8: Graphics Object Classes 3209
MAX_VIEWPORT_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_VIEWPORT_DIMENSIONS contains a two element integer array that
specifies the maximum size of a graphics display supported by the device.

NAME

Set this keyword equal to a named variable. Upon return, NAME contains the name
of the rendering device as a string.

NUM_CPUS

Set this keyword equal to a named variable. Upon return, NUM_CPUS contains an
integer that specifies the number of CPUs that are known to, and available to IDL.

Note
The NUM_CPUS keyword accurately returns the number of CPUs for the SGI
IRIX, SUN, and Microsoft Windows platforms. For platforms other than these, the
number returned may not reflect the actual number of CPUs available to IDL in the
current system.

VENDOR

Set this keyword equal to a named variable. Upon return, VENDOR contains the
name of the rendering device creator as a string.

VERSION

Set this keyword equal to a named variable. Upon return, VERSION contains the
version of the rendering device driver as a string.

Version History

Introduced: 5.1

MAX_NUM_CLIP_PLANES keyword: 5.6
IDL Reference Guide IDLgrClipboard

3210 Chapter 8: Graphics Object Classes
IDLgrClipboard::GetFontnames

The IDLgrClipboard::GetFontnames function method returns the list of available
fonts that can be used in IDLgrFont objects. This method will only return the names
of the available TrueType fonts. Hershey fonts will not be returned; see Appendix H,
“Fonts” for more information.

Syntax

Result = Obj -> [IDLgrClipboard::]GetFontnames(FamilyName [, IDL_FONTS={0 |
1 | 2}] [, STYLES=string])

Return Value

Returns the list of available fonts that can be used in IDLgrFont objects.

Arguments

FamilyName

A string representing the name of the font family to which all of the returned fonts
must belong. The string may be a fully specified family name—such as “Helvetica”.
You can use both “*” and “?” as wildcard characters, matching any number of
characters or one character respectively. To return all available family names, use
“*”.

Keywords

IDL_FONTS

Set this keyword to specify where to search for fonts that IDL may use. Set
IDL_FONT to 1 to select only fonts installed by IDL and to 2 to select only fonts
detected in the host operating system. The default value is 0, specifying that both IDL
and operating system fonts should be returned.

STYLES

Set this keyword to a string specifying the styles that are to be matched by the
returned font names. You can set STYLES to a fully specified style string, such as
“Bold Italic”. If you set STYLES to the null string, ' ', only fontnames without style
modifiers will be returned. You can use both “*” and “?” as wildcard characters,
matching any number of characters or one character respectively. The default value is
IDLgrClipboard IDL Reference Guide

Chapter 8: Graphics Object Classes 3211
the string, “*”, which returns all fontnames containing the FamilyName argument,
with or without style modifiers.

Version History

Introduced: 5.1
IDL Reference Guide IDLgrClipboard

3212 Chapter 8: Graphics Object Classes
IDLgrClipboard::GetProperty

The IDLgrClipboard::GetProperty procedure method retrieves the value of a property
or group of properties for the clipboard buffer.

Syntax

Obj -> [IDLgrClipboard::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrClipboard Properties” on page 3197 that contains
the word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.1
IDLgrClipboard IDL Reference Guide

Chapter 8: Graphics Object Classes 3213
IDLgrClipboard::GetTextDimensions

The IDLgrClipboard::GetTextDimensions function method retrieves the dimensions
of a text or axis object that will be rendered in the clipboard buffer. The result is a 3-
element double-precision floating-point vector [xDim, yDim, zDim] representing the
dimensions of the text or axis object, measured in data units. If the object specified is
an axis object, the result encompasses the tick labels and the title of the axis (if any).

Syntax

Result = Obj ->[IDLgrClipboard::]GetTextDimensions(TextObj
[, DESCENT=variable] [, PATH=objref(s)])

Return Value

Returns the dimensions of a text or axis object that will be rendered in the clipboard
buffer.

Arguments

TextObj

The object reference to a text or axis object for which the text dimensions are
requested.

Keywords

DESCENT

Set this keyword equal to a named variable that will contain an array of double-
precision floating-point values (one for each string in the IDLgrText object). The
values represent the distance to travel (parallel to the UPDIR vector) from the text
baseline to reach the bottom of the lowest descender in the string. All values will be
negative numbers, or zero. This keyword is valid only if TextObj is an IDLgrText
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the text dimensions.
Each path object reference specified with this keyword must contain an alias. The
text dimensions are computed for the version of the object falling within that path. If
IDL Reference Guide IDLgrClipboard

3214 Chapter 8: Graphics Object Classes
this keyword is not set, the PARENT properties determine the path from the current
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrClipboard::GetTextDimensions is called from within a Draw method and the
PATH keyword is not set, the alias path used to find the object during the draw is
used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.

Version History

Introduced: 5.1
IDLgrClipboard IDL Reference Guide

Chapter 8: Graphics Object Classes 3215
IDLgrClipboard::Init

The IDLgrClipboard::Init function method initializes the clipboard object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrClipboard' [, PROPERTY=value])

or

Result = Obj -> [IDLgrClipboard::]Init([PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLgrClipboard Properties” on page 3197 that contains
the word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.
IDL Reference Guide IDLgrClipboard

3216 Chapter 8: Graphics Object Classes
Version History

Introduced: 5.1
IDLgrClipboard IDL Reference Guide

Chapter 8: Graphics Object Classes 3217
IDLgrClipboard::SetProperty

The IDLgrClipboard::SetProperty procedure method sets the value of a property or
group of properties for the clipboard buffer.

Syntax

Obj -> [IDLgrClipboard::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrClipboard Properties” on page 3197 that contains
the word “Yes” in the “Set” column of the properties table can be set using this
method. To set the value of a property, specify the property name as a keyword set
equal to the appropriate property value.

Version History

Introduced: 5.1
IDL Reference Guide IDLgrClipboard

3218 Chapter 8: Graphics Object Classes
IDLgrColorbar

The IDLgrColorbar object consists of a color-ramp with an optional framing box and
annotation axis. The object can be horizontal or vertical.

An IDLgrColorbar object is a composite object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

This object class is implemented in the IDL language. Its source code can be found in
the file idlgrcolorbar_ _define.pro in the lib subdirectory of the IDL
distribution.

Superclasses

IDLgrModel

IDLitComponent

Creation

See “IDLgrColorbar::Init” on page 3235.

Properties

Objects of this class have the following properties. See “IDLgrColorbar Properties”
on page 3221 for details on individual properties.

• ALL

• BLUE_VALUES

• COLOR

• DIMENSIONS

• GREEN_VALUES

• HIDE

• MAJOR

• MINOR

• PALETTE

• PARENT
IDLgrColorbar IDL Reference Guide

Chapter 8: Graphics Object Classes 3219
• RED_VALUES

• SHOW_AXIS

• SHOW_OUTLINE

• SUBTICKLEN

• THICK

• THREED

• TICKFORMAT

• TICKFRMTDATA

• TICKLEN

• TICKTEXT

• TICKVALUES

• TITLE

• XCOORD_CONV

• XRANGE

• YCOORD_CONV

• YRANGE

• ZCOORD_CONV

• ZRANGE

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrColorbar::Cleanup

• IDLgrColorbar::ComputeDimensions

• IDLgrColorbar::GetProperty

• IDLgrColorbar::Init

• IDLgrColorbar::SetProperty

In addition, this class inherits the methods of its superclasses (if any).
IDL Reference Guide IDLgrColorbar

3220 Chapter 8: Graphics Object Classes
Version History

Introduced: 5.1
IDLgrColorbar IDL Reference Guide

Chapter 8: Graphics Object Classes 3221
IDLgrColorbar Properties

IDLgrColorbar objects have the following properties in addition to properties
inherited from any superclasses. Properties with the word “Yes” in the “Get” column
of the property table can be retrieved via IDLgrColorbar::GetProperty. Properties
with the word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrColorbar::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLgrColorbar::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure that contains the values of all of the retrievable properties
associated with this object.

BLUE_VALUES

A byte vector containing the blue values for the color palette. Setting this value is the
same as specifying the aBlue argument to the IDLgrColorbar::Init method.

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Byte vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrColorbar

3222 Chapter 8: Graphics Object Classes
COLOR

The color to be used as the foreground color for the axis and outline box. The color
may be specified as a color lookup table index or as an RGB vector. The default is [0,
0, 0].

DIMENSIONS

A two element integer vector [dx, dy] that specifies the size of the ramp display (not
the axis) in pixels. If dx > dy, the colorbar is drawn horizontally with the axis placed
below or above the ramp box depending on the value of the SHOW_AXIS property.
If dx < dy, the colorbar is drawn vertically with the axis placed to the right or left of
the ramp box depending on the value of the SHOW_AXIS property. The default
value is [16,256].

GREEN_VALUES

A byte vector containing the green values for the color palette. Setting this value is
the same as specifying the aGreen argument to the IDLgrColorbar::Init method.

HIDE

A Boolean value to indicate whether this object should be drawn:

• 0 = Draw graphic (the default)

Property Type Color

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Integer vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Byte vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrColorbar IDL Reference Guide

Chapter 8: Graphics Object Classes 3223
• 1 = Do not draw graphic

MAJOR

An integer that represents the number of major tick marks. The default is -1,
specifying that IDL will compute the number of tickmarks. Setting MAJOR equal to
zero suppresses major tickmarks entirely.

MINOR

An integer representing the number of minor tick marks. The default is -1, specifying
that IDL will compute the number of tickmarks. Setting MINOR equal to zero
suppresses minor tickmarks entirely.

PALETTE

An object reference to an instance of the IDLgrPalette object class. If this property is
a valid object reference, the colors within the IDLgrPalette are used to specify the
colors for the colorbar.

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Object reference

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrColorbar

3224 Chapter 8: Graphics Object Classes
PARENT

An object reference to the object that contains this colorbar.

RED_VALUES

A byte vector that contains the red values for the color palette. Setting this value is
the same as specifying the aRed argument to the IDLgrColorbar::Init method.

SHOW_AXIS

An integer value that indicates whether the axis should be drawn:

• 0 = Do not display axis (the default)

• 1 = Display axis on left side or below the color ramp

• 2 = Display axis on right side or above the color ramp

SHOW_OUTLINE

A Boolean value indicating whether the colorbar bounds should be outlined:

• 0 = Do not display outline (the default)

Property Type Object reference

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Byte vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrColorbar IDL Reference Guide

Chapter 8: Graphics Object Classes 3225
• 1 = Display outline

SUBTICKLEN

A floating-point scale ratio specifying the length of minor tick marks relative to the
length of major tick marks. The default is 0.5, specifying that the minor tick mark is
one-half the length of the major tick mark.

THICK

A floating-point value between 1.0 and 10.0, specifying the line thickness used to
draw the axis and box outline, in points. The default is 1.0 points.

THREED

A Boolean value that determines whether to create the colorbar as a graphic object
that can be fully transformed in three dimensions on initialization. By default, the
colorbar always faces the viewer and is drawn at z=0.

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: Init: Yes Registered: No
IDL Reference Guide IDLgrColorbar

3226 Chapter 8: Graphics Object Classes
TICKFORMAT

Either a standard IDL format string (see “Format Codes” in Chapter 10 of the
Building IDL Applications manual for details on format codes) or a string containing
the name of a user-supplied function that returns a string to be used to format the axis
tick mark labels. The function should accept integer arguments for the direction of
the axis, the index of the tick mark, and the value of the tick mark, and should return
a string to be used as the tick mark's label. The function may optionally accept a
keyword called DATA, which will be automatically set to the TICKFRMTDATA
value. The default TICKFORMAT is '', the null string, which indicates that IDL will
determine the appropriate format for each value.

TICKFRMTDATA

A user-defined value of any type passed via the DATA keyword to the user-supplied
formatting function specified via the TICKFORMAT property, if any. By default,
this value is 0, indicating that the DATA keyword will not be set (and furthermore,
need not be supported by the user-supplied function). Note that TICKFRMTDATA
will not be included in the structure returned via the ALL property to the
IDLgrColorbar::GetProperty method.

TICKLEN

A floating-point value that specifies the length of each major tick mark, measured in
data units. The recommended, and default, tick mark length is 0.2. IDL converts,
maintains, and returns this data as double-precision floating-point.

Property Type String

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Scalar of any type

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrColorbar IDL Reference Guide

Chapter 8: Graphics Object Classes 3227
TICKTEXT

An object reference to either a single instance of the IDLgrText object class (with
multiple strings) or to a vector of instances of the IDLgrText object class (each with a
single string) that specifies the annotations to be assigned to the tick marks. By
default, TICKTEXT is set to the NULL object, which indicates that IDL will
compute tick annotations based upon the major tick values. The positions and
orientation of the provided text object(s) may be overwritten by the colorbar.

TICKVALUES

A floating-point vector of data values that represent the values at each tick mark. If
TICKVALUES is set to 0, the default, IDL computes the tick values based on the
axis range and the number of major ticks. IDL converts, maintains, and returns this
data as double-precision floating-point.

TITLE

An object reference to an instance of the IDLgrText object class to specify the title
for the axis. The default is the null object, specifying that no title is drawn. The title
will be centered along the axis, even if the text object itself has an associated
location.

Property Type Object reference or object reference vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Object reference

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrColorbar

3228 Chapter 8: Graphics Object Classes
XCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert X coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

XRANGE

A two-element double-precision floating-point vector of the form [xmin, xmax]
specifying the range of the x data coordinates covered by the colorbar.

YCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors that converts Y coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLgrColorbar IDL Reference Guide

Chapter 8: Graphics Object Classes 3229
The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

YRANGE

A two-element double-precision floating-point vector of the form [ymin, ymax] that
specifies the range of the Y data coordinates covered by the colorbar.

ZCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors that converts Z coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

ZRANGE

A two-element double-precision floating-point vector of the form [zmin, zmax]
specifying the range of the Z data coordinates covered by the colorbar.

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrColorbar

3230 Chapter 8: Graphics Object Classes
Note
Until the colorbar is drawn to the destination object, the [XYZ]RANGE properties
will be zero. Use the ComputeDimensions method on the colorbar object to get the
data dimensions of the colorbar prior to a draw operation.

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLgrColorbar IDL Reference Guide

Chapter 8: Graphics Object Classes 3231
IDLgrColorbar::Cleanup

The IDLgrColorbar::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrColorbar::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.1
IDL Reference Guide IDLgrColorbar

3232 Chapter 8: Graphics Object Classes
IDLgrColorbar::ComputeDimensions

The IDLgrColorbar::ComputeDimensions function method retrieves the dimensions
of a colorbar object for the given destination object. The result is a three-element
double-precision floating-point vector [xDim, yDim, zDim] representing the
dimensions of the colorbar object measured in data units.

Syntax

Result = Obj ->[IDLgrColorbar::]ComputeDimensions(DestinationObj
[, PATH=objref(s)])

Return Value

Returns the dimensions of a colorbar object for the given destination object.

Arguments

DestinationObject

The object reference to a destination object (IDLgrBuffer, IDLgrClipboard,
IDLgrPrinter, or IDLgrWindow) for which the dimensions of the colorbar are being
requested.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the dimensions. Each
path object reference specified with this keyword must contain an alias. The text
dimensions are computed for the version of the object falling within that path. If this
keyword is not set, the PARENT properties determine the path from the current
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrColorbar::ComputeDimensions is called from within a Draw method and the
PATH keyword is not set, the alias path used to find the object during the draw is
used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDLgrColorbar IDL Reference Guide

Chapter 8: Graphics Object Classes 3233
Version History

Introduced: 5.1
IDL Reference Guide IDLgrColorbar

3234 Chapter 8: Graphics Object Classes
IDLgrColorbar::GetProperty

The IDLgrColorbar::GetProperty procedure method retrieves the value of a property
or group of properties for the colorbar.

Syntax

Obj -> [IDLgrColorbar::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrColorbar Properties” on page 3221 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.1
IDLgrColorbar IDL Reference Guide

Chapter 8: Graphics Object Classes 3235
IDLgrColorbar::Init

The IDLgrColorbar::Init function method initializes the colorbar object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrColorbar' [, aRed, aGreen, aBlue] [, PROPERTY=value])

or

Result = Obj -> [IDLgrColorbar::]Init([aRed, aGreen, aBlue] [, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

aRed

A vector containing the red values for the color palette. These values should be
within the range of 0 < Value < 255. The number of elements comprising the aRed
vector must not exceed 256.

aGreen

A vector containing the green values for the color palette. These values should be
within the range of 0 < Value < 255. The number of elements comprising the aGreen
vector must not exceed 256.
IDL Reference Guide IDLgrColorbar

3236 Chapter 8: Graphics Object Classes
aBlue

A vector containing the blue values for the color palette. These values should be
within the range of 0 < Value < 255. The number of elements comprising the aBlue
vector must not exceed 256.

If aRed, aGreen, and aBlue are not provided, the color palette will default to a 256
entry greyscale ramp.

Keywords

Any property listed under “IDLgrColorbar Properties” on page 3221 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.

Version History

Introduced: 5.1
IDLgrColorbar IDL Reference Guide

Chapter 8: Graphics Object Classes 3237
IDLgrColorbar::SetProperty

The IDLgrColorbar::SetProperty procedure method sets the value of a property or
group of properties for the colorbar.

Syntax

Obj -> [IDLgrColorbar::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrColorbar Properties” on page 3221 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.1
IDL Reference Guide IDLgrColorbar

3238 Chapter 8: Graphics Object Classes
IDLgrContour

The IDLgrContour object draws a contour plot from data stored in a rectangular array
or from a set of unstructured points. Both line contours and filled contour plots can be
created.

An IDLgrContour object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

The object stores the following argument or property in double-precision if the
DOUBLE_DATA property is specified, and in single-precision otherwise.

Superclasses

IDLitComponent

Creation

See “IDLgrContour::Init” on page 3273.

Properties

Objects of this class have the following properties. See “IDLgrContour Properties”
on page 3241 for details on individual properties.

• ALL • AM_PM

• ANISOTROPY • C_COLOR

• C_FILL_PATTERN • C_LABEL_INTERVAL

• C_LABEL_NOGAPS • C_LABEL_OBJECTS

• C_LABEL_SHOW • C_LINESTYLE

• C_THICK • C_USE_LABEL_COLOR

• C_USE_LABEL_ORIENTATION • C_VALUE

• CLIP_PLANES • COLOR

• DATA_VALUES • DAYS_OF_WEEK

• DEPTH_OFFSET • DEPTH_TEST_DISABLE

• DEPTH_TEST_FUNCTION • DEPTH_WRITE_DISABLE
IDLgrContour IDL Reference Guide

Chapter 8: Graphics Object Classes 3239
In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrContour::AdjustLabelOffsets

• IDLgrContour::Cleanup

• IDLgrContour::GetCTM

• IDLgrContour::GetLabelInfo

• IDLgrContour::GetProperty

• IDLgrContour::Init

• IDLgrContour::SetProperty

• DOUBLE_DATA • DOUBLE_GEOM

• DOWNHILL • FILL

• GEOM • GEOMX

• GEOMY • GEOMZ

• HIDE • LABEL_FONT

• LABEL_FORMAT • LABEL_FRMTDATA

• LABEL_UNITS • MAX_VALUE

• MIN_VALUE • MONTHS

• N_LEVELS • PALETTE

• PARENT • PLANAR

• POLYGONS • REGISTER_PROPERTIES

• SHADE_RANGE • SHADING

• TICKINTERVAL • TICKLEN

• USE_TEXT_ALIGNMENTS • XCOORD_CONV

• XRANGE • YCOORD_CONV

• YRANGE • ZCOORD_CONV

• ZRANGE
IDL Reference Guide IDLgrContour

3240 Chapter 8: Graphics Object Classes
In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.1
IDLgrContour IDL Reference Guide

Chapter 8: Graphics Object Classes 3241
IDLgrContour Properties

IDLgrContour objects have the following properties in addition to properties
inherited from any superclasses. Properties with the word “Yes” in the “Get” column
of the property table can be retrieved via IDLgrContour::GetProperty. Properties with
the word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrContour::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLgrContour::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the retrievable properties
associated with this object.

AM_PM

A string vector of two values indicating the names of the AM and PM strings when
processing explicitly formatted dates (CAPA, CApA, and CapA format codes) with
the LABEL_FORMAT property.

ANISOTROPY

A three-element floating-point vector [x, y, z] that represents the multipliers to be
applied to the internally computed correction factors along each axis that account for
anisotropic geometry. Correcting for anisotropy is particularly important for the
appropriate representations of downhill tickmarks.

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type String vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrContour

3242 Chapter 8: Graphics Object Classes
By default, IDL will automatically compute correction factors for anisotropy based
on the [XYZ] range of the contour geometry. If the geometry (as provided via the
GEOMX, GEOMY, and GEOMZ keywords) falls within the range [xmin, ymin,
zmin] to [xmax, ymax, zmax], then the default correction factors are computed as
follows:

dx = xmax - xmin
dy = ymax - ymin
dz = zmax - zmin
; Get the maximum of the ranges:
maxRange = (dx > dy) > dz
IF (dx EQ 0) THEN xcorrection = 1.0 ELSE $

xcorrection = maxRange / dx
IF (dy EQ 0) THEN ycorrection = 1.0 ELSE $

ycorrection = maxRange / dy
IF (dz EQ 0) THEN zcorrection = 1.0 ELSE $

zcorrection = maxRange / dz

This internally computed correction is then multiplied by the corresponding [x, y, z]
values of the ANISOTROPY property. The default value for this property is [1,1,1].
IDL converts, maintains, and returns this data as double-precision floating-point.

This property is registered as a user-defined property, but it is hidden by default.

C_COLOR

A vector of colors that represents the colors to be applied at each contour level. If
there are more contour levels than elements in this vector, the colors will be
cyclically repeated. If C_COLOR is set to 0, all contour levels will be drawn in the
color specified by the COLOR property (this is the default).

This property is registered as a user-defined property, but it is hidden by default.

Property Type USERDEF

Name String Anistrophy

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type USERDEF

Name String Colors

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrContour IDL Reference Guide

Chapter 8: Graphics Object Classes 3243
C_FILL_PATTERN

An array of IDLgrPattern objects that represent the patterns to be applied at each
contour level if the FILL property is non-zero. If there are more contour levels than
fill patterns, the patterns will be cyclically repeated. If this property is set to 0, all
contour levels are filled with a solid color (this is the default).

This property is registered as a user-defined property, but it is hidden by default.

C_LABEL_INTERVAL

A floating-point vector that indicates the distance (measured parametrically relative
to the length of each contour path) between labels for each contour level. If the
number of contour levels exceeds the number of provided intervals, the
C_LABEL_INTERVAL values will be repeated cyclically. The default is 0.4.

C_LABEL_NOGAPS

An integer vector that indicates whether gaps should be computed for the labels at the
corresponding contour value. A zero value indicates that gaps will be computed for
labels at that contour value; a non-zero value indicates that no gaps will be computed
for labels at that contour value. If the number of contour levels exceeds the number of
elements in this vector, the C_LABEL_NOGAPS values will be repeated cyclically.
By default, gaps for the labels are computed for all levels (so that a contour line does
not pass through the label).

Property Type USERDEF

Name String Fill patterns

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Integer vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrContour

3244 Chapter 8: Graphics Object Classes
C_LABEL_OBJECTS

An array of object references that provides examples of labels to be drawn for each
contour level. The objects specified via this property must inherit from one of the
following classes:

• IDLgrSymbol

• IDLgrText

If a single object is provided, and it is an IDLgrText object, each of its strings will
correspond to a contour level. If a vector of objects is used, any IDLgrText objects
should have only a single string; each object will correspond to a contour level.

By default, with C_LABEL_OBJECTS set equal to a null object, IDL computes text
labels that are the string representations of the corresponding contour level values.
Note that the objects specified via this property are used as descriptors only. The
actual objects drawn as labels are generated by IDL, and may be accessed via the
IDLgrContour::GetLabelInfo method. The contour labels will have the same color as
the corresponding contour level (see C_COLOR) unless the
C_USE_LABEL_COLOR property is specified. The orientation of the label will be
automatically computed unless the C_USE_LABEL_ORIENTATION property is
specified. The horizontal and vertical alignment of any text labels will default to 0.5
(i.e., centered) unless the USE_TEXT_ALIGNMENTS property is specified.

Note
The object(s) set via this property will not be destroyed automatically when the
contour is destroyed.

C_LABEL_SHOW

An integer vector that indicates whether labels are shown. For each contour value, if
the corresponding value in the C_LABEL_SHOW vector is non-zero, the contour
line for that contour value will be labeled. If the number of contour levels exceeds the

Property Type Object reference array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrContour IDL Reference Guide

Chapter 8: Graphics Object Classes 3245
number of elements in this vector, the C_LABEL_SHOW values will be repeated
cyclically. The default is 0 indicating that no contour levels will be labeled.

C_LINESTYLE

An integer array of linestyles that represent the linestyles to be applied at each
contour level. The array may be either a vector of integers representing pre-defined
linestyles, or an array of 2-element vectors representing a stippling pattern
specification. If there are more contour levels than linestyles, the linestyles will be
cyclically repeated. If this property is set to 0, all levels are drawn as solid lines (this
is the default).

To use a pre-defined line style, set the C_LINESTYLE property equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

This property is registered as a user-defined property, but it is hidden by default.

C_THICK

A floating-point array of line thicknesses that represent the thickness to be applied at
each contour level, where each element is a value between 1.0 and 10.0. If there are
more contour levels than line thicknesses, the thicknesses will be cyclically repeated.

Property Type Integer vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type USERDEF

Name String Linestyles

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrContour

3246 Chapter 8: Graphics Object Classes
If this property is set to 0, all contour levels are drawn with a line thickness of 1.0
points (this is the default).

This property is registered as a user-defined property, but it is hidden by default.

C_USE_LABEL_COLOR

An integer vector that indicates whether the COLOR property value for each of the
label objects (for the corresponding contour level) is to be used to draw that label. If
the number of contour levels exceeds the number of elements in this vector, the
C_USE_LABEL_COLOR values will be repeated cyclically. By default, this value is
zero, indicating that the COLOR properties of the label objects will be ignored, and
the C_COLOR property for the contour object will be used instead.

C_USE_LABEL_ORIENTATION

An integer vector that indicates whether the orientation for each of the label objects
(for the corresponding contour level) is to be used when drawing the label. For text,
the orientation of the object corresponds to the BASELINE and UPDIR property
values; for a symbol, this refers to the default (un-rotated) orientation of the symbol.
If the number of contour levels exceeds the number of elements in this vector, the
C_USE_LABEL_ORIENTATION values will be repeated cyclically. By default, this
value is zero, indicating that orientation of the label object(s) will be set to
automatically computed values (to correspond to the direction of the contour paths).

Property Type USERDEF

Name String Thicknesses

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Integer vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Integer vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrContour IDL Reference Guide

Chapter 8: Graphics Object Classes 3247
C_VALUE

A floating-point value or a floating-point vector for which contour values are to be
drawn. If this property is set to 0, contour levels will be evenly sampled across the
range of the DATA_VALUES, using the value of the N_LEVELS property to
determine the number of samples. IDL converts, maintains, and returns this data as
double-precision floating-point.

This property is registered as a user-defined property, but it is hidden by default.

CLIP_PLANES

A 4-by-N floating-point array of dimensions that specifies the coefficients of the
clipping planes to be applied to this object. The four coefficients for each clipping
plane are of the form [A, B, C, D], where Ax + By + Cz + D = 0. Portions of this
object that fall in the half space Ax + By + Cz + D > 0 will be clipped. By default, the
value of this property is a scalar (-1) indicating that no clipping planes are to be
applied.

Note
The clipping planes specified via this property are applied in addition to the near
and far clipping planes associated with the IDLgrView in which this object appears.

Note
Clipping planes are applied in the data space of this object (prior to the application
of any x, y, or z coordinate conversion).

Note
To determine the maximum number of clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES keyword of the GetDeviceInfo method for the
IDLgrBuffer, IDLgrClipboard, IDLgrWindow, and IDLgrVRML objects.

Property Type USERDEF

Name String Level values

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Floating-point array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrContour

3248 Chapter 8: Graphics Object Classes
COLOR

The color to be used to draw the contours. The color may be specified as a color
lookup table index or as an RGB vector. The default is [0,0,0]. This value will be
ignored if the C_COLOR property is set to a vector.

In a property sheet, this property appears as a color property.

DATA_VALUES

A floating-point vector or two-dimensional array that specifies the values to be
contoured. The property is the same as the Values argument described in the
Arguments section above. IDL converts and stores this data as double-precision
floating-point if the argument is of type DOUBLE or if the DOUBLE_DATA
property is set. Otherwise, the data is stored in single-precision. IDL returns the data
as double-precision if it was stored in double-precision.

DAYS_OF_WEEK

A string vector of 7 values that indicates the names to be used for the days of the
week when processing explicitly formatted dates (CDWA, CDwA, and CdwA format
codes) with the LABEL_FORMAT property.

Property Type COLOR

Name String Color

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Floating-point vector or array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type String vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrContour IDL Reference Guide

Chapter 8: Graphics Object Classes 3249
DEPTH_OFFSET

An integer value that specifies an offset in depth to be used when rendering filled
primitives. This offset is applied along the viewing axis, with positive values moving
the primitive away from the viewer.

The units are “Z-Buffer units,” where a value of 1 is used to specify a distance that
corresponds to a single step in the device’s Z-Buffer.

Use DEPTH_OFFSET to always cause a filled primitive to be rendered slightly
deeper than other primitives, independent of model transforms. This is useful for
avoiding stitching artifacts caused by rendering lines or polygons on top of other
polygons at the same depth.

Note
RSI suggests using this feature to remove stitching artifacts and not as a means for
“layering” complex scenes with multiple DEPTH_OFFSET values. It is safest to
use only a DEPTH_OFFSET value of 0, the default, and one other non-zero value,
such as 1. Many system-level graphics drivers are not consistent in their handling of
DEPTH_OFFSET values, particularly when multiple non-zero values are used.
This can lead to portability problems because a set of DEPTH_OFFSET values may
produce better results on one machine than on another. Using IDL’s software
renderer will help improve the cross-platform consistency of scenes that use
DEPTH_OFFSET.

Note
DEPTH_OFFSET has no effect unless the FILL property is set.

DEPTH_TEST_DISABLE

An integer value that determines whether depth testing is disabled.

• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth testing. A model may also
enable or disable depth testing.

• Set this property to 1 to explicitly disable depth buffer testing while drawing
this object.

Property Type INTEGER

Name String Depth offset

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrContour

3250 Chapter 8: Graphics Object Classes
• Set this property to 2 to explicitly enable depth testing for this object.

Disabling depth testing allows an object to draw itself on top of other objects already
on the screen, even if the object is located behind them.

This property is registered as an enumerated list, but it is hidden by default.

DEPTH_TEST_FUNCTION

An integer value that determines the depth test function. Set this property to 0 (the
default) to inherit the value set by the parent model or view. The parent view always
sets a depth test function of LESS. A model may also set a depth test function value.
The graphics device compares the object’s depth at a particular pixel location with
the depth stored in the depth buffer at that same pixel location. If the comparison test
passes, the object’s pixel is drawn at that location on the screen and the depth buffer
is updated (if depth writing is enabled).

Set this property to any of the following values to use the desired function while
rendering this object.

• 0 = INHERIT - use value from parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the object’s depth is less than the depth buffer’s value.

• 3 = EQUAL - passes if the object’s depth is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the object’s depth is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the object’s depth is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the object’s depth is not equal to the depth
buffer’s value.

• 7 = GREATER OR EQUAL - passes if the object’s depth is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Less means closer to the viewer.

Property Type ENUMLIST

Name String Depth Test Disable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrContour IDL Reference Guide

Chapter 8: Graphics Object Classes 3251
This property is registered as an enumerated list, but it is hidden by default.

DEPTH_WRITE_DISABLE

An integer value that determines whether depth writing is disabled.

• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth writing. A model may also
enable or disable depth writing.

• Set this property to 1 to explicitly disable depth buffer writing while rendering
this object.

• Set this property to 2 to explicitly enable depth writing for this object.

Disabling depth writing allows an object to be overdrawn by other objects, even if the
object is located in front of them.

This property is registered as an enumerated list, but it is hidden by default.

DOUBLE_DATA

A Boolean value that indicates whether the object is to store data provided by either
the Values argument or the DATA_VALUES property parameter in double-precision
or single-precision floating-point.

• 0 = Single-precision floating-point

• 1 = Double-precision floating-point

Property Type ENUMLIST

Name String Depth Test Enable

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Depth Write Disable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrContour

3252 Chapter 8: Graphics Object Classes
IDL converts any value data already stored in the object to the requested precision, if
necessary.

DOUBLE_GEOM

A Boolean value that indicates whether the object is to store data provided by any of
the GEOMX, GEOMY, or GEOMZ property parameters in double-precision or
single-precision floating-point.

• 0 = Single-precision floating-point

• 1 = Double-precision floating-point

IDL converts any geometry data already stored in the object to the requested
precision, if necessary.

DOWNHILL

A Boolean value that indicates whether downhill tick marks should be rendered as
part of each contour level to indicate the downhill direction relative to the contour
line.

• 0 = Do not render downhill tick marks.

• 1 = Render downhill tick marks

In a property sheet, this property appears as an enumerated list with the following
options:

• Hide

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrContour IDL Reference Guide

Chapter 8: Graphics Object Classes 3253
• Show

FILL

A Boolean value that indicates whether the contours should be filled. The default is to
draw the contour levels as lines without filling. Filling contour may produce less than
satisfactory results if your data contains NaNs, or if the contours are not closed.

GEOM

A floating-point value that contains the geometry associated with the contour. IDL
returns this data in single-precision floating-point by default or in double-precision
floating-point if the DOUBLE_GEOM property is set in the IDLgrContour::Init
method.

GEOMX

A floating-point vector or two-dimensional array that specifies the X coordinates of
the geometry with which the contour values correspond. If X is a vector, it must
match the number of elements in the Values argument or DATA_VALUES property
value, or it must match the first of the two dimensions of the Values argument or
DATA_VALUES property value (in which case, the X coordinates will be repeated
for each row of data values). IDL converts and maintains this data as double-
precision floating-point if the parameter is of type DOUBLE or if the
DOUBLE_GEOM property is non-zero. Otherwise, the data is stored in single-

Property Type ENUMLIST

Name String Downhill ticks

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type BOOLEAN

Name String Fill contours

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Floating-point

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrContour

3254 Chapter 8: Graphics Object Classes
precision. IDL returns the data as double-precision if it was stored in double-
precision.

GEOMY

A floating-point vector or two-dimensional array specifying the Y coordinates of the
geometry with which the contour values correspond. If Y is a vector, it must match
the number of elements in the Values argument or DATA_VALUES property value,
or it must match the second of the two dimensions of the Values argument or
DATA_VALUES property value (in which case, the Y coordinates will be repeated
for each column of data values). IDL converts and maintains this data as double
precision floating point if the parameter is of type DOUBLE or if the
DOUBLE_GEOM property is non-zero. Otherwise, the data is stored in single
precision. IDL returns the data as double precision if it was stored in double
precision.

GEOMZ

A floating-point scalar, a vector, or a two-dimensional array specifying the Z
coordinates of the geometry with which the contour values correspond.

• If GEOMZ is a scalar, and the PLANAR property is set, the resulting contour
geometry will be projected onto the plane Z=GEOMZ. If GEOMZ is a scalar,
and the PLANAR property is not set, any geometry associated with the contour
will be freed.

• If GEOMZ is a vector of Z coordinates, the number of elements in the vector
should be the same as the number of elements in DATA_VALUES.

• If GEOMZ is an array and the leading dimension is 3, then the data is treated
as a list or array of 3-D vertices. The product of the array dimensions following
the 3 should equal the number of DATA_VALUES.

Property Type Floating-point vector or array

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No

Property Type Floating-point vector or array

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No
IDLgrContour IDL Reference Guide

Chapter 8: Graphics Object Classes 3255
• If GEOMZ is an array and the leading dimension is not 3, then the data is
treated as a list or array of single Z coordinates. If the number of dimensions is
2, then the data is treated as a 2-D array of Z values. Otherwise, it is treated as
a vector of Z values. In either case, the total number of elements in the array
should be the same as the number of DATA_VALUES.

• If GEOMZ is not set, the geometry will be derived from the DATA_VALUES
property (if it is set to a two-dimensional array). In this case, the connectivity
is implied. The X and Y coordinates match the row and column indices of the
array, and the Z coordinates match the data values.

IDL converts and maintains this data as double precision floating point if the
parameter is of type DOUBLE or if the DOUBLE_GEOM property is non-zero.
Otherwise, the data is stored in single precision. IDL returns the data as double
precision if it was stored in double precision.

HIDE

A Boolean value that indicates whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

In a property sheet, this property appears as an enumerated list with the following
options:

• True = Draw graphic (the default)

• False = Do not draw graphic

LABEL_FONT

An object reference to an IDLgrFont object that describes the default font to be used
for contour labels. This font will be used for all text labels automatically generated by

Property Type Floating-point scalar, vector, or array

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No

Property Type ENUMLIST

Name String Show

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrContour

3256 Chapter 8: Graphics Object Classes
IDL (i.e., if C_LABEL_SHOW is set but the corresponding C_LABEL_OBJECTS
text object is not provided), or for any text label objects provided via
C_LABEL_OBJECTS that do not already have the font property set. The default
value for this property is a NULL object reference, indicating that 12 pt. Helvetica
will be used.

LABEL_FORMAT

A string that represents a format string or the name of a function to be used to format
the contour labels. If the string begins with an open parenthesis, it is treated as a
standard format string. (Refer to the Format Codes in the IDL Reference Guide.) If
the string does not begin with an open parenthesis, it is interpreted as the name of a
callback function to be used to generate contour level labels.

The callback function is called with three parameters: Axis, Index, and Value, where:

• Axis is simply the value 2 to indicate that values along the Z axis are being
formatted. (This allows a single callback routine to be used for both axis
labeling and contour labeling.)

• Index is the contour level index (indices start at 0).

• Value is the data value of the current contour level.

LABEL_FRMTDATA

A user-defined value of any type passed via the DATA keyword to the user-supplied
formatting function specified via the LABEL_FORMAT property, if any. By default,
this value is 0, indicating that the DATA keyword will not be set (and furthermore,
need not be supported by the user-supplied function).

Property Type Object reference

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type String

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrContour IDL Reference Guide

Chapter 8: Graphics Object Classes 3257
Note
LABEL_FRMTDATA will not be included in the structure returned via the ALL
property to the IDLgrContour::GetProperty method.

LABEL_UNITS

A string that indicates the units to be used for default contour level labeling.

Valid unit strings include:

• "Numeric"

• "Years"

• "Months"

• "Days"

• "Hours"

• "Minutes"

• "Seconds"

• "Time" - Use this value to indicate that the contour levels correspond to time
values; IDL will determine the appropriate label format based upon the range
of values covered by the contour Z data.

• "" - The empty string is equivalent to the "Numeric" unit. This is the default.

If any of the time units are utilized, then the contour values are interpreted as Julian
date/time values.

Property Type Scalar of any type

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDL Reference Guide IDLgrContour

3258 Chapter 8: Graphics Object Classes
Note
The singular form of each of the time unit strings is also acceptable (for example,
LEVEL_UNITS='Day' is equivalent to LEVEL_UNITS='Days').

MAX_VALUE

A floating point value that indicates the maximum value to be plotted. Data values
greater than this value are treated as missing data. The default is the maximum value
of the input Z data. IDL converts, maintains, and returns this data as double-precision
floating-point.

MONTHS

A string vector of 12 values indicating the names to be used for the months when
processing explicitly formatted dates (CMOA, CMoA, and CmoA format codes) with
the C_LABEL_FORMAT keyword.

MIN_VALUE

A floating-point value that indicates the minimum value to be plotted. Data values
less than this value are treated as missing data. The default is the minimum value of

Property Type String

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type FLOAT

Name String Maximum value

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type String vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrContour IDL Reference Guide

Chapter 8: Graphics Object Classes 3259
the input Z data. IDL converts, maintains, and returns this data as double-precision
floating-point.

N_LEVELS

An integer value that indicates the number of contour levels to generate. This
property is ignored if the C_VALUE property is set to a vector, in which case, the
number of levels is derived from the number of elements in that vector. Set this
property to zero to indicate that IDL should compute a default number of levels based
on the range of data values. This is the default.

PALETTE

An object reference to a palette object (an instance of the IDLgrPalette object class)
that defines the color palette of this object. This property is only used if the
destination device is using the RGB color model. If so, and a color value for the
object is specified as a color index value, the palette set by this property is used to
translate the color to RGB space. If the PALETTE property on this object is not set,
the destination object PALETTE property is used (which defaults to a grayscale
ramp).

This property is registered as a user-defined property, but it is hidden by default.

Property Type FLOAT

Name String Minimum value

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type INTEGER

Name String Number of levels

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type USERDEF

Name String Color palette

Get: No Set: No Init: Yes Registered: Yes
IDL Reference Guide IDLgrContour

3260 Chapter 8: Graphics Object Classes
PARENT

An object reference to the object that contains this contour.

PLANAR

A Boolean value that indicates whether the contoured data is to be projected onto a
plane. This property is ignored if GEOMZ is not a scalar. The default is non-planar
(i.e., to display the contoured data at the Z locations provided by the GEOMZ
property.

In a property sheet, this property appears as an enumerated list with the following
options:

• Planar (the default)

• Three-D

POLYGONS

An integer array of polygon descriptions that represents the connectivity information
for the data to be contoured (as specified in the Values argument or the
DATA_VALUES property). A polygon description is an integer or long word array
of the form: [n, i0, i1, ..., in-1], where n is the number of vertices that define the
polygon, and i0..in-1 are indices into the X, Y, and Z arguments that represent the
polygon vertices. To ignore an entry in the POLYGONS array, set the vertex count,
n, to 0. To end the drawing list, even if additional array space is available, set n to -1.
If this property is not specified, a single polygon will be generated.

Note
The connectivity array described by POLYGONS allows an individual object to
contain more than one polygon. Vertex, normal, and color information can be

Property Type Object reference

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type ENUMLIST

Name String Projection

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrContour IDL Reference Guide

Chapter 8: Graphics Object Classes 3261
shared by the multiple polygons. Consequently, the polygon object can represent an
entire mesh and compute reasonable normal estimates in most cases.

REGISTER_PROPERTIES

A Boolean value that determines whether to register properties available for this
object. Set this property to automatically register the following properties of the
object for display in a property sheet. This property is useful mainly when creating
iTools. By default, no properties are registered.

SHADE_RANGE

A two-element integer array that specifies the range of pixel values (color indices) to
use for shading. The first element is the color index for the darkest pixel. The second
element is the color index for the brightest pixel. This value is ignored when the
contour is drawn to a graphics destination that uses the RGB color model.

SHADING

An integer that indicates the type of shading to use:

• 0 = Flat (default): The color has a constant intensity for each face of the
contour, based on the normal vector.

• 1 = Gouraud: The colors are interpolated between vertices, and then along
scanlines from each of the edge intensities.

Property Type Integer array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No

Property Type Integer array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrContour

3262 Chapter 8: Graphics Object Classes
Gouraud shading may be slower than flat shading, but results in a smoother
appearance.

In a property sheet, this property appears as an enumerated list with the following
options:

• Flat (the default)

• Gouraud

TICKINTERVAL

A floating-point value that indicates the distance between downhill tickmarks, in data
units. If TICKINTERVAL is not set, or if you explicitly set it to zero, IDL will
compute the distance based on the geometry of the contour. IDL converts, maintains,
and returns this data as double-precision floating-point.

TICKLEN

A floating-point value that indicates the length of the downhill tickmarks, in data
units. If TICKLEN is not set, or if you explicitly set it to zero, IDL will compute the
length based on the geometry of the contour. IDL converts, maintains, and returns
this data as double-precision floating-point

USE_TEXT_ALIGNMENTS

A Boolean value that indicates whether, for any IDLgrText labels (as specified via
the C_LABEL_OBJECTS property), the ALIGNMENT and

Property Type ENUMLIST

Name String Shading

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type FLOAT

Name String Downhill tick interval

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type FLOAT

Name String Downhill tick length

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrContour IDL Reference Guide

Chapter 8: Graphics Object Classes 3263
VERTICAL_ALIGNMENT property values for the given IDLgrText object(s) are to
be used to draw the corresponding labels. By default, this value is zero, indicating
that the ALIGNMENT and VERTICAL_ALIGNMENT properties of the label
IDLgrText object(s) will be set to default values (0.5 for each, indicating centered
labels).

XCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert X coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

XRANGE

A two-element double-precision floating-point vector of the form [xmin, xmax]
specifying the range of the X data coordinates covered by the contour.

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrContour

3264 Chapter 8: Graphics Object Classes
YCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert Y coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

YRANGE

A two-element double-precision floating-point vector of the form [ymin, ymax] that
specifies the range of the Y data coordinates covered by the contour.

ZCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors that converts Z coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLgrContour IDL Reference Guide

Chapter 8: Graphics Object Classes 3265
The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

ZRANGE

A two-element double-precision floating-point vector of the form [zmin, zmax] that
specifies the range of the Z data coordinates covered by the contour.

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrContour

3266 Chapter 8: Graphics Object Classes
IDLgrContour::AdjustLabelOffsets

The IDLgrContour::AdjustLabelOffsets procedure method adjusts the offsets at
which contour labels are positioned.

Syntax

Obj -> [IDLgrContour::]AdjustLabelOffsets, LevelIndex, LabelOffsets

Arguments

LevelIndex

The index of the contour level for which the label offsets are being adjusted. This
value must be greater than or equal to zero and less than the number of levels (refer to
the N_LEVELS property in the IDLgrContour::Init method).

LabelOffsets

A scalar or vector of floating point offsets, [t0, t1, …], that indicate the parametric
offsets along the length of each contour line at which each label is to be positioned.
The number of elements in this vector must exactly match the number of elements
returned in the LABEL_OFFSETS vector retrieved via the
IDLgrContour::GetLabelInfo method for the same level.

Keywords

None

Version History

Introduced: 5.1
IDLgrContour IDL Reference Guide

Chapter 8: Graphics Object Classes 3267
IDLgrContour::Cleanup

The IDLgrContour::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrContour::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.1
IDL Reference Guide IDLgrContour

3268 Chapter 8: Graphics Object Classes
IDLgrContour::GetCTM

The IDLgrContour::GetCTM method returns the 4 x 4 double-precision floating-
point graphics transform matrix from the current object upward through the graphics
tree.

Syntax

Result = Obj -> [IDLgrContour::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref])

Return Value

Returns the graphics transform matrix from the current object upward through the
graphics tree.

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the surface
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrContour::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.
IDLgrContour IDL Reference Guide

Chapter 8: Graphics Object Classes 3269
Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.

TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.

Version History

Introduced: 5.1
IDL Reference Guide IDLgrContour

3270 Chapter 8: Graphics Object Classes
IDLgrContour::GetLabelInfo

The IDLgrContour::GetLabelInfo procedure method retrieves information about the
labels for a contour. The returned information is only valid until the next time the
C_LABEL_INTERVAL or C_LABEL_OBJECTS property is modified using the
IDLgrContour::SetProperty method, or the offsets are adjusted using the
IDLgrContour::AdjustLabelOffsets method.

Syntax

Obj -> [IDLgrContour::]GetLabelInfo, Destination, LevelIndex
[, LABEL_OFFSETS=variable] [, LABEL_POLYS=variable]
[, LABEL_OBJECTS=variable]

Arguments

Destination

A reference to a destination object (such as an IDLgrWindow or IDLgrBuffer object).
The contour label information will be computed so that the requested font size is
satisfied for this destination device.

LevelIndex

The index of the contour level for which the label information is being requested.
This value must be greater than or equal to zero and less than the number of levels
(refer to the N_LEVELS keyword in the IDLgrContour::Init method).

Keywords

LABEL_OFFSETS

Set this keyword to a named variable that upon return will contain a vector of floating
point offsets, [t0, t1, …], that indicate the parametric offsets along the length of each
contour line at which the contour labels are positioned.

LABEL_POLYLINES

Set this keyword to a named variable that upon return will contain a vector of contour
polyline indices, [P0, P1, …], that indicate which contour lines are labeled. Pi
corresponds to the ith contour line.
IDLgrContour IDL Reference Guide

Chapter 8: Graphics Object Classes 3271
Note that if a given contour line has more than one label along its perimeter, then the
corresponding polyline index may appear more than once in the
LABEL_POLYLINES vector.

LABEL_OBJECTS

Set this keyword to a named variable that upon return will contain a vector of objects
that represent the labels for each contour label.

Version History

Introduced: 5.1
IDL Reference Guide IDLgrContour

3272 Chapter 8: Graphics Object Classes
IDLgrContour::GetProperty

The IDLgrContour::GetProperty procedure method retrieves the value of a property
or group of properties for the contour.

Syntax

Obj -> [IDLgrContour::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrContour Properties” on page 3241 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.1
IDLgrContour IDL Reference Guide

Chapter 8: Graphics Object Classes 3273
IDLgrContour::Init

The IDLgrContour::Init function method initializes the contour object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrContour' [, Values] [, PROPERTY=value])

or

Result = Obj -> [IDLgrContour::]Init([Values] [, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

Values

A vector or two-dimensional array of values to be contoured. If no values are
provided, the values will be derived from the GEOMZ keyword value (if set and the
PLANAR keyword is not set). In this case, the values to be contoured will match the
Z coordinates of the provided geometry. IDL converts and maintains this data as
double-precision floating-point if the argument is of type DOUBLE or if the
DOUBLE_DATA keyword is set. Otherwise, the data is stored in single-precision.
IDL returns the data as double-precision if it was stored in double-precision.
IDL Reference Guide IDLgrContour

3274 Chapter 8: Graphics Object Classes
Keywords

Any property listed under “IDLgrContour Properties” on page 3241 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.

Version History

Introduced: 5.1

AM_PM, C_LABEL_INTERVAL, CLIP_PLANES, C_LABEL_OBJECTS,
C_LABEL_NOGAPS, C_LABEL_SHOW, C_USE_LABEL_COLOR,
C_USE_LABEL_ORIENTATION, DAYS_OF_WEEK, LABEL_FONT,
LABEL_FORMAT, LABEL_FRMATDATA, LABEL_UNITS, MONTHS,
USE_TEXT_ALIGNMENTS keywords: 5.6
IDLgrContour IDL Reference Guide

Chapter 8: Graphics Object Classes 3275
IDLgrContour::SetProperty

The IDLgrContour::SetProperty procedure method sets the value of a property or
group of properties for the contour.

Syntax

Obj -> [IDLgrContour::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrContour Properties” on page 3241 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.1
IDL Reference Guide IDLgrContour

3276 Chapter 8: Graphics Object Classes
IDLgrFont

A font object represents a typeface, style, weight, and point size that may be
associated with text objects.

Superclasses

IDLitComponent

Creation

See “IDLgrFont::Init” on page 3281.

Properties

Objects of this class have the following properties. See “IDLgrFont Properties” on
page 3277 for details on individual properties.

• ALL

• SIZE

• SUBSTITUTE

• THICK

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrFont::Cleanup

• IDLgrFont::GetProperty

• IDLgrFont::Init

• IDLgrFont::SetProperty

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.0
IDLgrFont IDL Reference Guide

Chapter 8: Graphics Object Classes 3277
IDLgrFont Properties

IDLgrFont objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLgrFont::GetProperty. Properties with the word
“Yes” in the “Init” column of the property table can be retrieved via IDLgrFont::Init.
Properties with the word “Yes” in the “Set” column in the property table can be set
via IDLgrFont::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the properties associated with
the state of this object. State information about the object includes things like color,
range, tick direction, etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL..

SIZE

A floating-point value representing the point size of the font. The default is 12.0
points.

SUBSTITUTE

A string that indicates the font to use as a substitute if the specified Fontname is not
available on the graphics destination. Valid values are only those fonts that are

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Floating-point

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrFont

3278 Chapter 8: Graphics Object Classes
available on all destination objects (the fonts included with IDL). These are:
'Helvetica' (the default), 'Courier', 'Times', 'Symbol', or 'Hershey'.

THICK

A floating-point value between 1.0 and 10.0, indicating the line thickness (measured
in points) to use for the Hershey vector fonts. The default is 1.0 points.

Property Type String

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrFont IDL Reference Guide

Chapter 8: Graphics Object Classes 3279
IDLgrFont::Cleanup

The IDLgrFont::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrFont::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDL Reference Guide IDLgrFont

3280 Chapter 8: Graphics Object Classes
IDLgrFont::GetProperty

The IDLgrFont::GetProperty procedure method retrieves the value of a property or
group of properties for the font.

Syntax

Obj -> [IDLgrFont:]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrFont Properties” on page 3277 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.0
IDLgrFont IDL Reference Guide

Chapter 8: Graphics Object Classes 3281
IDLgrFont::Init

The IDLgrFont::Init function method initializes the font object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrFont' [, PROPERTY=value])

or

Result = Obj -> [IDLgrFont::]Init([Fontname] [, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

Fontname

A string representing the name of the font to be used. This string should take the form
'fontname*modifier1*modifier2*...*modifierN'. All destination objects support the
following fontnames: Helvetica, Courier, Times, Symbol, and Monospace Symbol.
(These fonts are included with IDL; you may have other fonts installed on your
system as well.) Valid modifiers for each of these fonts (except Symbol and
Monospace Symbol) are:

• Font weight: Bold

• Font angle: Italic

For example, 'Helvetica*Bold*Italic'.
IDL Reference Guide IDLgrFont

3282 Chapter 8: Graphics Object Classes
To select a Hershey font, use a fontname of the form: 'Hershey*fontnum'. See
Appendix H, “Fonts” for further information and a list of fonts supported by IDL.

Note
Beginning with IDL version 5.1, only TrueType and Hershey fonts are supported in
the Object Graphics system.

Keywords

Any property listed under “IDLgrFont Properties” on page 3277 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.

Version History

Introduced: 5.0
IDLgrFont IDL Reference Guide

Chapter 8: Graphics Object Classes 3283
IDLgrFont::SetProperty

The IDLgrFont::SetProperty procedure method sets the value of a property or group
of properties for the font.

Syntax

Obj -> [IDLgrFont:]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrFont Properties” on page 3277 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrFont

3284 Chapter 8: Graphics Object Classes
IDLgrImage

An image object represents a mapping from a two-dimensional array of data values to
a two dimensional array of pixel colors, resulting in a flat 2-D-scaled version of the
image, drawn at Z = 0.

The image object is drawn at Z =0 and is positioned and sized with respect to two
points:

p1 = [LOCATION(0), LOCATION(1), 0]
p2 = [LOCATION(0) + DIMENSION(0), LOCATION(1) + DIMENSION(1), 0].

where LOCATION and DIMENSION are properties of the image object. These
points are transformed in three dimensions, resulting in screen space points
designated as p1' and p2'. The image data is drawn on the display as a 2-D image
within the 2-D rectangle defined by (p1'[0], p1'[1] - p2'[0], p2'[1]). The 2-D image
data is scaled in 2-D (not rotated) to fit into this projected rectangle and then drawn
with Z buffering disabled

Note
Image objects do not take into account the Z locations of other objects that may be
included in the view object. This means that objects that are drawn to the
destination object (window or printer) after the image is drawn will appear to be in
front of the image, even if they are located at a negative Z value (behind the image
object). Objects are drawn to a destination device in the order that they are added
(via the Add method) to the model, view, or scene that contains them. To rotate or
position image objects in three-dimensional space, use the IDLgrPolygon object
with texture mapping enabled.

An IDLgrImage object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

IDLitComponent

Creation

See “IDLgrImage::Init” on page 3304.
IDLgrImage IDL Reference Guide

Chapter 8: Graphics Object Classes 3285
Properties

Objects of this class have the following properties. See “IDLgrImage Properties” on
page 3287 for details on individual properties.

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrImage::Cleanup

• IDLgrImage::GetCTM

• IDLgrImage::GetProperty

• IDLgrImage::Init

• IDLgrImage::SetProperty

• ALL • BLEND_FUNCTION

• CHANNEL • CLIP_PLANES

• DATA • DEPTH_TEST_DISABLE

• DEPTH_TEST_FUNCTION • DEPTH_WRITE_DISABLE

• DIMENSIONS • GREYSCALE

• HIDE • INTERLEAVE

• INTERPOLATE • LOCATION

• NO_COPY • ORDER

• PALETTE • PARENT

• REGISTER_PROPERTIES • RESET_DATA

• SHARE_DATA • SUB_RECT

• XCOORD_CONV • XCOORD_CONV

• XRANGE • YCOORD_CONV

• YRANGE • ZCOORD_CONV

• ZRANGE
IDL Reference Guide IDLgrImage

3286 Chapter 8: Graphics Object Classes
In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.0
IDLgrImage IDL Reference Guide

Chapter 8: Graphics Object Classes 3287
IDLgrImage Properties

IDLgrImage objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLgrImage::GetProperty. Properties with the
word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrImage::Init. Properties with the word “Yes” in the “Set” column in the property
table can be set via IDLgrImage::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the properties associated with
the state of this object. State information about the object includes things like color,
range, tick direction, etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

BLEND_FUNCTION

A two-element integer vector that controls how the alpha channel values will be
interpreted. Set this property equal to a two-element vector [src, dst] specifying one
of the functions listed below for each of the source and destination objects. These are
only valid for RGB model destinations. If an alpha channel is not specified in an
image, the image’s alpha blend factor is assumed to be 1.0. The values of the
blending function (Vsrc and Vdst) are used in the following equation

where Cd is the initial color of a pixel on the destination device (the background
color), Ci is the color of the pixel in the image, and Cd' is the resulting color of the
pixel.

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Cd' Vsrc Ci⋅() Vdst Cd⋅()+=
IDL Reference Guide IDLgrImage

3288 Chapter 8: Graphics Object Classes
Setting src and dst in the BLEND_FUNCTION vector to the following values
determine how each term in the equation is calculated:

For example, setting BLEND_FUNCTION = [3, 4] creates an image in which you
can see through the foreground image to the background to the extent defined by the
alpha channel values of the foreground image.

Since the alpha blending operation is dependent on the values of pixels already drawn
to the destination for some blending functions, the final result may depend more on
the order of drawing the images, and not necessarily on their relative location along
the Z axis. IDL draws images in the order that they are stored in the IDLgrModel
object that contains them.

This property is registered as a user-defined property, but it is hidden by default.

src or dst Vsrc or Vdst What the function does

0 n/a Alpha blending is disabled, which is the
default setting. Cd' = Ci

1 0 The value of Vsrc or Vdst in the equation is
zero, thus the value of the term is zero.

2 1 The value of Vsrc or Vdst in the equation is
one, thus the value of the term is the same
as the color value.

3 Imagea The value of Vsrc or Vdst in the equation is
the blend factor of the image’s alpha
channel.

4 1-Imagea The value of Vsrc or Vdst in the equation is
one minus the blend factor of the image’s
alpha channel.

Table 8-4: Values for src and dst in BLEND_FUNCTION

Property Type USERDEF

Name String Blend function

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrImage IDL Reference Guide

Chapter 8: Graphics Object Classes 3289
CHANNEL

A hexadecimal bitmask that defines which color channel(s) to draw. Each bit that is a
1 is drawn; each bit that is a 0 is not drawn. For example, 'ff0000'X represents a Blue
channel write. The default is to draw all channels, and is represented by the
hexadecimal value 'ffffff'X.

Note
This property is ignored for CI destination objects.

This property is registered, but it is hidden by default.

CLIP_PLANES

A 4-by-N floating-point array of dimensions [4,N] specifying the coefficients of the
clipping planes to be applied to this object. The four coefficients for each clipping
plane are of the form [A, B, C, D], where Ax + By + Cz + D = 0. Portions of this
object that fall in the half space Ax + By + Cz + D > 0 will be clipped. By default, the
value of this property is a scalar (-1) indicating that no clipping planes are to be
applied.

Note
The clipping planes specified via this property are applied in addition to the near
and far clipping planes associated with the IDLgrView in which this object appears.

Note
Clipping planes are applied in the data space of this object (prior to the application
of any x, y, or z coordinate conversion).

Property Type INTEGER

Name String Color channel

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrImage

3290 Chapter 8: Graphics Object Classes
Note
To determine the maximum number of clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES keyword of the GetDeviceInfo method for the
IDLgrBuffer, IDLgrClipboard, IDLgrWindow, and IDLgrVRML objects.

DATA

A n x m, 2 x n x m, 3 x n x m, or 4 x n x m array (any type) of image data for the
object. The n and m values may be in any position as specified by the INTERLEAVE
property. This property is equivalent to the optional argument, ImageData.

DEPTH_TEST_DISABLE

An integer value that determines whether depth testing is disabled.

• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth testing. A model may also
enable or disable depth testing.

• Set this property to 1 to explicitly disable depth buffer testing while drawing
this object.

• Set this property to 2 to explicitly enable depth testing for this object.

Disabling depth testing allows an object to draw itself on top of other objects already
on the screen, even if the object is located behind them.

This property is registered as an enumerated list, but it is hidden by default.

Property Type Floating-point array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Array of any type

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type ENUMLIST

Name String Depth Test Disable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrImage IDL Reference Guide

Chapter 8: Graphics Object Classes 3291
DEPTH_TEST_FUNCTION

An integer value that determines the depth test function. Set this property to 0 (the
default) to inherit the value set by the parent model or view. The parent view always
sets a depth test function of LESS. A model may also set a depth test function value.
The graphics device compares the object’s depth at a particular pixel location with
the depth stored in the depth buffer at that same pixel location. If the comparison test
passes, the object’s pixel is drawn at that location on the screen and the depth buffer
is updated (if depth writing is enabled).

Set this property to any of the following values to use the desired function while
rendering this object.

• 0 = INHERIT - use value from parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the object’s depth is less than the depth buffer’s value.

• 3 = EQUAL - passes if the object’s depth is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the object’s depth is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the object’s depth is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the object’s depth is not equal to the depth
buffer’s value.

• 7 = GREATER OR EQUAL - passes if the object’s depth is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Less means closer to the viewer.

This property is registered as an enumerated list, but it is hidden by default.

DEPTH_WRITE_DISABLE

An integer value that determines whether depth writing is disabled.

Property Type ENUMLIST

Name String Depth Test Enable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrImage

3292 Chapter 8: Graphics Object Classes
• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth writing. A model may also
enable or disable depth writing.

• Set this property to 1 to explicitly disable depth buffer writing while rendering
this object.

• Set this property to 2 to explicitly enable depth writing for this object.

Disabling depth writing allows an object to be overdrawn by other objects, even if the
object is located in front of them.

This property is registered as an enumerated list, but it is hidden by default.

DIMENSIONS

A two-element integer vector of the form [width, height] specifying the dimensions
of the rectangle in which the image is to be drawn on the device. The image will be
resampled as necessary to fit within this rectangle. The default is derived from the
dimensions of the given image data and is measured in pixels. IDL converts,
maintains, and returns this data as double-precision floating-point.

This property is registered as a user-defined property, but it is hidden by default.

GREYSCALE

A Boolean value that determines whether the image is drawn through a palette.

0 = Use palette (the default).

1 = Do not use a palette.

If this property is not set, for an RGB color model destination, if a palette is present in
the image object, it is used. If there is no current destination palette, a greyscale
palette is used. For a Color Index color model destination, the current destination
palette is used.

Property Type ENUMLIST

Name String Depth Write Disable

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type USERDEF

Name String Draw dimensions

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrImage IDL Reference Guide

Chapter 8: Graphics Object Classes 3293
Note
Only single band images (i.e. 1 x n x m) are affected by this property. By default,
GREYSCALE is disabled.

HIDE

A Boolean value that indicates whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

In a property sheet, this property appears as an enumerated list with the following
options:

• True = Draw graphic (the default)

• False = Do not draw graphic.

INTERLEAVE

An integer value that indicates the dimension over which color is interleaved for
images with more than one channel:

• 0 = Pixel interleaved: Images with dimensions (3, m, n)

• 1 = Scan line interleaved (row interleaved): Images with dimensions (m, 3, n)

• 2 = Planar interleaved: Images with dimensions (m, n, 3).

Note
If an alpha channel is present, the 3s should be replaced by 4s. In a greyscale image
with an alpha channel, the 3s should be replaced by 2s.

Property Type BOOLEAN

Name String Grayscale

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Show

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrImage

3294 Chapter 8: Graphics Object Classes
In a property sheet, this property appears as an enumerated list with the following
options:

• Pixel

• Scanline

• Planar.

This property is registered, but it is hidden by default.

INTERPOLATE

An integer value to determine whether to display the IDLgrImage object using
bilinear interpolation. The default is to use nearest neighbor interpolation.

• 0 = Nearest neighbor interpolation (the default)

• 1 = Bilinear interpolation

In a property sheet, this property appears as an enumerated list with the following
options:

• Nearest neighbor

• Bilinear

LOCATION

A two- or three-element floating-point vector [x, y] or [x, y, z] specifying the position
of the lower lefthand corner of the image, measured in data units. If the vector is of
the form [x, y], then the z value is set equal to zero. The default is [0, 0, 0]. IDL
converts, maintains, and returns this data as double-precision floating-point.

Property Type ENUMLIST

Name String Interleaving

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Interpolation

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrImage IDL Reference Guide

Chapter 8: Graphics Object Classes 3295
This property is registered as a user-defined property, but it is hidden by default.

NO_COPY

A Boolean value that determines whether to relocate the image data from the input
variable to the image object, leaving the input variable ImageData undefined. Only
the ImageData argument is affected. If this property is omitted, the input image data
will be duplicated and a copy will be stored in the object.

ORDER

A Boolean value that determines whether to force the rows of the image data to be
drawn from top to bottom. By default, image data is drawn from the bottom row up to
the top row.

In a property sheet, this property appears as and enumerated list with the following
options:

• Bottom-to-top

• Top-to-bottom

PALETTE

An object reference to a palette object (an instance of the IDLgrPalette object class)
that specifies the red, green, and blue values of the color lookup table to be associated
with the image if it is an indexed color image. This property is ignored if the image is
a greyscale or RGB image.

Property Type USERDEF

Name String Location

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type ENUMLIST

Name String Row order

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrImage

3296 Chapter 8: Graphics Object Classes
Note
This table is only used when the destination is an RGB model device. The Indexed
color model writes the indices directly to the device. In order to ensure that these
colors are used when the image is displayed, this palette must be copied to the
graphics destination’s palette for any graphics destination that uses the Indexed
color model.

This property is registered as a user-defined property, but it is hidden by default.

PARENT

An object reference to the object that contains this object.

REGISTER_PROPERTIES

A Boolean value that determines whether to register properties available for this
object. Set this property to automatically register the following properties of the
object for display in a property sheet. This property is useful mainly when creating
iTools. By default, no properties are registered.

RESET_DATA

A Boolean value that determines whether to treat the data provided via the DATA
property as a new data set unique to this object, rather than overwriting data that is
shared by other objects.

Property Type USERDEF

Name String Color palette

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Object reference

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDLgrImage IDL Reference Guide

Chapter 8: Graphics Object Classes 3297
• 0 = Overwrite data that is shared by other objects (the default).

• 1 = Treat DATA as a new data set unique to this object.

There is no reason to use this property if the object on which the property is being set
does not currently share data with another object (that is, if the SHARE_DATA
property is not in use). This property has no effect if no new data is provided via the
DATA property.

SHARE_DATA

An object reference to an object with which data is to be shared by this image. An
image may only share data with another image. The SHARE_DATA property is
intended for use when data values are not set via an argument to the object’s Init
method or by setting the object’s DATA property.

SUB_RECT

A four-element floating-point vector, [x, y, xdim, ydim], specifying the position of the
lower left-hand corner and the dimensions of the sub-rectangle to display.

This property is registered as a user-defined property, but it is hidden by default.

XCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert X coordinates from
data units to normalized units. The formula for the conversion is as follows:

Property Type Boolean

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No

Property Type Object reference

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No

Property Type USERDEF

Name String Sub-rectangle

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrImage

3298 Chapter 8: Graphics Object Classes
NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

XRANGE

A two-element double-precision floating-point vector of the form [xmin, xmax] that
specifies the range of x data coordinates covered by the graphic object.

YCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert Y coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrImage IDL Reference Guide

Chapter 8: Graphics Object Classes 3299
YRANGE

A two-element double-precision floating-point vector of the form [ymin, ymax] that
specifies the range of y data coordinates covered by the graphic object.

ZCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert Z coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

ZRANGE

Two-element double-precision floating-point vector of the form [zmin, zmax] that
specifies the range of z data coordinates covered by the graphic object.

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrImage

3300 Chapter 8: Graphics Object Classes
IDLgrImage::Cleanup

The IDLgrImage::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrImage::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDLgrImage IDL Reference Guide

Chapter 8: Graphics Object Classes 3301
IDLgrImage::GetCTM

The IDLgrImage::GetCTM function method returns the 4 x 4 double-precision
floating-point graphics transform matrix from the current object upward through the
graphics tree.

Syntax

Result = Obj -> [IDLgrImage::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Return Value

Returns the graphics transform matrix from the current object upward through the
graphics tree.

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the image
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrImage::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.
IDL Reference Guide IDLgrImage

3302 Chapter 8: Graphics Object Classes
Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.

TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.

Version History

Introduced: 5.0
IDLgrImage IDL Reference Guide

Chapter 8: Graphics Object Classes 3303
IDLgrImage::GetProperty

The IDLgrImage::GetProperty procedure method retrieves the value of the property
or group of properties for the image.

Syntax

Obj -> [IDLgrImage::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrImage Properties” on page 3287 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrImage

3304 Chapter 8: Graphics Object Classes
IDLgrImage::Init

The IDLgrImage::Init function method initializes the image object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrImage' [, ImageData] [, PROPERTY=value])

or

Result = Obj -> [IDLgrImage::]Init([ImageData] [, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

ImageData

An array of data values to be displayed as an image. If this argument is not already of
byte type, it is converted to byte type when the image object is created. Since IDL
maintains the image data using the byte type, the input data values should range from
0 through 255. Image objects can have a single channel (one value per pixel—
greyscale or color indexed), two channels (greyscale and alpha), three channels (red,
green, and blue), or four channels (red, green, blue, and alpha). The alpha channel, if
present, determines the transparency of the pixel. The BLEND_FUNCTION property
controls the interpretation of the alpha channel values. With channels, the data value
of 0 specifies minimum intensity and the data value of 255 specifies maximum
intensity. The alpha channel values are also specified in the image data in the range 0
IDLgrImage IDL Reference Guide

Chapter 8: Graphics Object Classes 3305
through 255, with an image data value of 0 corresponding to an alpha blend factor of
0 and an image data value of 255 corresponding to an alpha blend factor of 1.0.
ImageData can be any of the following, where n is the width of the image, and m is
the height:

• An n x m array of color lookup table indices.

• An n x m greyscale image, or a 2 x n x m, n x 2 x m, or n x m x 2 greyscale
image with an alpha channel. (The alpha channel is ignored if the destination
device uses indexed color mode.)

• A 3 x n x m, n x 3 x m, or n x m x 3 RGB image, or a 4 x n x m, n x 4 x m, or
n x m x 4 RGB image with an alpha channel.

If the array has more than one channel, the interleave is specified by the
INTERLEAVE property.

Keywords

Any property listed under “IDLgrImage Properties” on page 3287 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.

Version History

Introduced: 5.0

CLIP_PLANES keyword: 5.6
IDL Reference Guide IDLgrImage

3306 Chapter 8: Graphics Object Classes
IDLgrImage::SetProperty

The IDLgrImage::SetProperty procedure method sets the value of the property or
group of properties for the image.

Syntax

Obj -> [IDLgrImage::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrImage Properties” on page 3287 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.0
IDLgrImage IDL Reference Guide

Chapter 8: Graphics Object Classes 3307
IDLgrLegend

The IDLgrLegend object provides a simple interface for displaying a legend. The
legend itself consists of a (filled and/or framed) box around one or more legend items
(arranged in a single column) and an optional title string. Each legend item consists
of a glyph patch positioned to the left of a text string. The glyph patch is drawn in a
square which is a fraction of the legend label font height. The glyph itself can be in
one of two types (see the TYPE keyword). In line type, the glyph is a line segment
with linestyle, thickness and color attributes and an optional symbol object drawn
over it. In fill type, the glyph is a square patch drawn with color and optional pattern
object attributes.

An IDLgrLegend object is a composite object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

This object class is implemented in the IDL language. Its source code can be found in
the file idlgrlegend_ _define.pro in the lib subdirectory of the IDL
distribution.

Superclasses

IDLgrModel

IDLitComponent

Creation

See “IDLgrLegend::Init” on page 3324.

Properties

Objects of this class have the following properties. See “IDLgrLegend Properties” on
page 3310 for details on individual properties.

• ALL

• BORDER_GAP

• COLUMNS

• FILL_COLOR

• FONT
IDL Reference Guide IDLgrLegend

3308 Chapter 8: Graphics Object Classes
• GAP

• GLYPH_WIDTH

• HIDE

• ITEM_COLOR

• ITEM_LINESTYLE

• ITEM_NAME

• ITEM_OBJECT

• ITEM_THICK

• ITEM_TYPE

• OUTLINE_COLOR

• OUTLINE_THICK

• PARENT

• RECOMPUTE

• SHOW_FILL

• SHOW_OUTLINE

• TEXT_COLOR

• TITLE

• XCOORD_CONV

• XRANGE

• YCOORD_CONV

• YRANGE

• ZCOORD_CONV

• ZRANGE

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrLegend::Cleanup

• IDLgrLegend::ComputeDimensions
IDLgrLegend IDL Reference Guide

Chapter 8: Graphics Object Classes 3309
• IDLgrLegend::GetProperty

• IDLgrLegend::Init

• IDLgrLegend::SetProperty

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.1
IDL Reference Guide IDLgrLegend

3310 Chapter 8: Graphics Object Classes
IDLgrLegend Properties

IDLgrLegend objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLgrLegend::GetProperty. Properties with the
word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrLegend::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLgrLegend::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the retrievable properties
associated with this object.

BORDER_GAP

A floating-point value to indicate the amount of blank space to be placed around the
outside of the glyphs and text items. The units for this property are fractions of the
legend label font height. The default is 0.1 (10% of the label font height).

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Floating-point

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrLegend IDL Reference Guide

Chapter 8: Graphics Object Classes 3311
COLUMNS

An integer value to indicate the number of columns the legend items should be
displayed in. The default is one column.

FILL_COLOR

The color to be used to fill the legend background box. The color may be specified as
a color lookup table index or as an RGB vector. The default is [255,255,255].

FONT

An object reference to an instance of an IDLgrFont object class that describes the
font to use to draw the legend labels. The default is 12 point Helvetica.

Note
If the default font is in use, retrieving the value of the FONT property (using the
GetProperty method) will return a font object that will be destroyed when this
legend object is destroyed, leaving a dangling object reference.

GAP

A floating-point value that indicates the amount of blank space to be placed vertically
between each legend item. The units for this property are fractions of the legend label

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type COLOR

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Object reference

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrLegend

3312 Chapter 8: Graphics Object Classes
font height. The default is 0.1 (10% of the label font height). The same gap is placed
horizontally between the legend glyph and the legend text string.

GLYPH_WIDTH

A floating-point value to indicate the width of the glyphs, measured as a fraction of
the font height. The default is 0.8 (80% of the font height).

HIDE

A Boolean value that indicates whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

ITEM_COLOR

An array of colors defining the color of each item. The array defines M different
colors, and should be either of the form [3,M] or [M]. In the first case, the three
values are used as an RGB triplet, in the second case, the single value is used as a
color index value. The default color is [0,0,0].

Property Type Floating-point

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Color array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrLegend IDL Reference Guide

Chapter 8: Graphics Object Classes 3313
ITEM_LINESTYLE

An integer array of integers defining the style of the line to be drawn if the TYPE
property is set to zero. The array can be of the form [M] or [2,M]. The first form
selects the linestyle for each legend item from the predefined defaults:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot

• 5 = long dash

• 6 = no line drawn

The second form specifies the stippling pattern explicitly for each legend item (see
the LINESTYLE property to IDLgrPolyline::Init for details).

ITEM_NAME

An string array representing the names of items in the legend. Specifying this
property is the same as providing the aName argument for the IDLgrLegend::Init
method.

ITEM_OBJECT

An array of object references of type IDLgrSymbol or IDLgrPattern that represents
the shapes of the items in the legend. A symbol object is drawn only if the TYPE
property is set to zero. A pattern object is used when drawing the color patch if the
TYPE property is set to one. The default object is the NULL object.

Property Type Integer array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type String array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrLegend

3314 Chapter 8: Graphics Object Classes
Note
If one or more IDlgrSymbol object references are provided, the SIZE property of
those objects may be modified by this legend to suit its layout needs.

ITEM_THICK

A floating-point array of floating-point values that define the thickness of each item
line, in points, where each element is a value between 1.0 and 10.0. This property is
only used if the TYPE property is set to zero. The default is 1.0 points.

ITEM_TYPE

An integer array that defines the type of glyph to be displayed for each item:

• 0 = line type (the default)

• 1 = filled box type

Property Type Object reference array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Integer array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrLegend IDL Reference Guide

Chapter 8: Graphics Object Classes 3315
OUTLINE_COLOR

The color to be used to draw the legend outline box. The color may be specified as a
color lookup table index or as an RGB vector. The default is [0,0,0].

OUTLINE_THICK

A floating-point value between 1.0 and 10.0 that defines the thickness of the outline
frame, in points. The default is 1.0 points.

PARENT

An object reference to the object that contains this legend.

RECOMPUTE

A Boolean value that determines whether to recompute the legend dimensions when
the legend is redrawn.

• 0 = Prevent IDL from recomputing legend dimensions (the default).

• 1 = Recompute the legend dimensions when the legend is redrawn.

Property Type Color

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Object reference

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Boolean

Name String not displayed

Get: No Set: Yes Init: No Registered: No
IDL Reference Guide IDLgrLegend

3316 Chapter 8: Graphics Object Classes
SHOW_FILL

A Boolean value that indicates whether the background should be filled with a color:

• 0 = Do not fill background (the default)

• 1 = Fill background

SHOW_OUTLINE

A Boolean value indicating whether the outline box should be displayed:

• 0 = Do not display outline (the default)

• 1 = Display outline

TEXT_COLOR

The color to be used to draw the legend item text. The color may be specified as a
color lookup table index or as an RGB vector. The default is [0,0,0].

TITLE

An object reference to an instance of the IDLgrText object class to specify the title
for the legend. The default is the null object, specifying that no title is drawn. The

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Color

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrLegend IDL Reference Guide

Chapter 8: Graphics Object Classes 3317
title will be centered at the top of the legend, even if the text object itself has an
associated location.

XCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert X coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

XRANGE

A two-element double-precision floating-point vector of the form [xmin, xmax] that
specifies the range of the X data coordinates covered by the legend.

YCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors that convert Y coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Property Type Object reference

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrLegend

3318 Chapter 8: Graphics Object Classes
Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

YRANGE

A two-element double-precision floating-point vector of the form [ymin, ymax] that
specifies the range of the Y data coordinates covered by the legend.

ZCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors that convert Z coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrLegend IDL Reference Guide

Chapter 8: Graphics Object Classes 3319
ZRANGE

A two-element double-precision floating-point vector of the form [zmin, zmax] that
specifies the range of the Z data coordinates covered by the legend.

Note
Until the legend is drawn to the destination object, the [XYZ]RANGE properties
will be zero. Use the ComputeDimensions method on the legend object to get the
data dimensions of the legend prior to a draw operation.

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrLegend

3320 Chapter 8: Graphics Object Classes
IDLgrLegend::Cleanup

The IDLgrLegend::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrLegend::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.1
IDLgrLegend IDL Reference Guide

Chapter 8: Graphics Object Classes 3321
IDLgrLegend::ComputeDimensions

The IDLgrLegend::ComputeDimensions function method retrieves the dimensions of
a legend object for the given destination object. The result is a three-element double-
precision floating-point vector [xDim, yDim, zDim] representing the dimensions of
the legend object measured in data units.

Syntax

Result = Obj ->[IDLgrLegend::]ComputeDimensions(DestinationObject
[, PATH=objref(s)])

Return Value

Returns the dimensions of a legend object for the given destination object.

Arguments

DestinationObject

The object reference to a destination object (IDLgrBuffer, IDLgrClipboard,
IDLgrPrinter, or IDLgrWindow) for which the dimensions of the legend are being
requested.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the dimensions. Each
path object reference specified with this keyword must contain an alias. The text
dimensions are computed for the version of the object falling within that path. If this
keyword is not set, the PARENT properties determine the path from the current
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrLegend::ComputeDimensions is called from within a Draw method and the
PATH keyword is not set, the alias path used to find the object during the draw is
used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.
IDL Reference Guide IDLgrLegend

3322 Chapter 8: Graphics Object Classes
Version History

Introduced: 5.1
IDLgrLegend IDL Reference Guide

Chapter 8: Graphics Object Classes 3323
IDLgrLegend::GetProperty

The IDLgrLegend::GetProperty procedure method retrieves the value of a property or
group of properties for the legend.

Syntax

Obj -> [IDLgrLegend::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrLegend Properties” on page 3310 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.1
IDL Reference Guide IDLgrLegend

3324 Chapter 8: Graphics Object Classes
IDLgrLegend::Init

The IDLgrLegend::Init function method initializes the legend object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrLegend' [, aItemNames] [, PROPERTY=value])

or

Result = Obj -> [IDLgrLegend::]Init([aItemNames] [, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

aItemNames

An array of strings to be used as the displayed item label. The length of this array is
used to determine the number of items to be displayed. Each item is defined by taking
one element from the ITEM_NAME, ITEM_TYPE, ITEM_LINESTYLE,
ITEM_THICK, ITEM_COLOR, and ITEM_OBJECT vectors. If the number of items
(as defined by the ITEM_NAME array) exceeds any of the attribute vectors, the
attribute defaults will be used for any additional items.
IDLgrLegend IDL Reference Guide

Chapter 8: Graphics Object Classes 3325
Keywords

Any property listed under “IDLgrLegend Properties” on page 3310 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.

Version History

Introduced: 5.1
IDL Reference Guide IDLgrLegend

3326 Chapter 8: Graphics Object Classes
IDLgrLegend::SetProperty

The IDLgrLegend::SetProperty procedure method sets the value of a property or
group of properties for the legend.

Syntax

Obj-> [IDLgrLegend::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrLegend Properties” on page 3310 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.1
IDLgrLegend IDL Reference Guide

Chapter 8: Graphics Object Classes 3327
IDLgrLight

A light object represents a source of illumination for three-dimensional graphic
objects. Lights may be either ambient, positional, directional, or spotlights. A
maximum of 8 lights per view are allowed. Lights are not required for objects
displayed in two dimensions.

An IDLgrLight object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

IDLitComponent

Creation

See “IDLgrLight::Init” on page 3340.

Properties

Objects of this class have the following properties. See “IDLgrLight Properties” on
page 3329 for details on individual properties.

• ALL

• ATTENUATION

• COLOR

• CONEANGLE

• DIRECTION

• FOCUS

• HIDE

• INTENSITY

• LOCATION

• PALETTE

• PARENT

• REGISTER_PROPERTIES
IDL Reference Guide IDLgrLight

3328 Chapter 8: Graphics Object Classes
• TYPE

• XCOORD_CONV

• YCOORD_CONV

• ZCOORD_CONV

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrLight::Cleanup

• IDLgrLight::GetCTM

• IDLgrLight::GetProperty

• IDLgrLight::Init

• IDLgrLight::SetProperty

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.0
IDLgrLight IDL Reference Guide

Chapter 8: Graphics Object Classes 3329
IDLgrLight Properties

IDLgrLight objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLgrLight::GetProperty. Properties with the
word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrLight::Init. Properties with the word “Yes” in the “Set” column in the property
table can be set via IDLgrLight::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure that contains the values of all of the properties associated
with the state of this object. State information about the object includes things like
color, range, tick direction, etc., but not image, vertex, or connectivity data, or user
values.

Note
The fields of this structure may change in subsequent releases of IDL.

ATTENUATION

A 3-element floating-point vector of the form [constant, linear, quadratic] that
describes the factor by which light intensity is to fall with respect to distance from the
light source. ATTENTUATION applies only to Positional and Spot lights, as
specified by the TYPE property. The overall attenuation factor is computed as
follows:

attenuation = 1/(constant + linear*distance +
quadratic*distance^2)

By default, the values are [1, 0, 0].

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrLight

3330 Chapter 8: Graphics Object Classes
This property is registered as a user-defined property, but it is hidden by default.

COLOR

A three-element byte vector specifying the RGB color of the light. The default is
[255, 255, 255], which is a white light. The color of a light is ignored when graphics
are sent to graphics destinations using the Indexed color model, in which case light
intensities are scaled into the range of colors available on the graphics destination.

In a property sheet, this property appears as a color property.

CONEANGLE

A floating-point value that specifies the angle (measured in degrees) of coverage for
a spotlight. The default is 60.

DIRECTION

A three-element floating-point vector representing the direction in which a spotlight
is to be pointed. The default is [0,0,-1].

Note
For directional lights, the light’s parallel rays follow a vector beginning at the
position specified by LOCATION and ending at [0, 0, 0].

Property Type USERDEF

Name String Attenuation

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type COLOR

Name String Color

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type FLOAT

Name String Spotlight cone angle

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrLight IDL Reference Guide

Chapter 8: Graphics Object Classes 3331
This property is registered as a user-defined property, but it is hidden by default.

FOCUS

A floating-point value that describes the attenuation of intensity for spotlights as the
distance from the center of the cone of coverage increases. This factor is used as an
exponent to the cosine of the angle between the direction of the spotlight and the
direction from the light to the vertex being lighted. The default is 0.0.

HIDE

A Boolean value that indicates whether this light should be enabled:

• 0 = Enable light (the default)

• 1 = Disable light

In a property sheet, this property appears as an enumerated list with the following
options:

• True = Draw graphic (the default)

• False = Do not draw graphic.

Note
If no lights are present in the view (or if all lights in the view are hidden), an
ambient light will be provided by default..

Property Type USERDEF

Name String Spotlight direction

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type FLOAT

Name String Spotlight attenuation

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Show

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrLight

3332 Chapter 8: Graphics Object Classes
INTENSITY

A floating-point value between 0.0 (darkest) and 1.0 (brightest) that indicates the
intensity of the light. The default is 1.0.

LOCATION

A floating-point vector of the form [x, y, z] describing the position of the light. By
default, the position is [0, 0, 0]. IDL converts, maintains, and returns this data as
double-precision floating-point.

This property is registered as a user-defined property, but it is hidden by default.

PALETTE

An object reference to a palette object (an instance of the IDLgrPalette object class)
that specifies the red, green, and blue values of the color lookup table to be associated
with the image if it is an indexed color image. This property is ignored if the image is
a greyscale or RGB image.

Note
This table is only used when the destination is an RGB model device. The Indexed
color model writes the indices directly to the device. In order to ensure that these
colors are used when the image is displayed, this palette must be copied to the
graphics destination’s palette for any graphics destination that uses the Indexed
color model.

Property Type FLOAT

Name String Intensity

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type USERDEF

Name String Location

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrLight IDL Reference Guide

Chapter 8: Graphics Object Classes 3333
This property is registered as a user-defined property, but it is hidden by default.

PARENT

An object reference to the object that contains this object.

REGISTER_PROPERTIES

A Boolean value that determines whether to register properties available for this
object. Set this property to automatically register the following properties of the
object for display in a property sheet. This property is useful mainly when creating
iTools. By default, no properties are registered.

TYPE

An integer that indicates the type of light. Valid values are:

• 0 = Ambient light. An ambient light is a universal light source, which has no
direction or position. An ambient light illuminates every surface in the scene
equally, which means that no edges are made visible by contrast. Ambient
lights control the overall brightness and color of the entire scene. If no value is
specified for the TYPE property, an ambient light is created.

• 1 = Positional light. A positional light supplies divergent light rays, and will
make the edges of surfaces visible by contrast if properly positioned. A
positional light source can be located anywhere in the scene.

Property Type USERDEF

Name String Color palette

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Object reference

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDL Reference Guide IDLgrLight

3334 Chapter 8: Graphics Object Classes
• 2 = Directional light. A directional light supplies parallel light rays. The effect
is that of a positional light source located at an infinite distance from scene.

• 3 = Spot light. A spot light illuminates only a specific area defined by the
light’s position, direction, and the cone angle, or angle which the spotlight
covers.

In a property sheet, this property appears as an enumerated list with the following
options:

• Ambient

• Positional

• Directional

• Spotlight

XCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors that convert X coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

YCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors that convert Y coordinates from
data units to normalized units. The formula for the conversion is as follows:

Property Type ENUMLIST

Name String Type

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Double-precision floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrLight IDL Reference Guide

Chapter 8: Graphics Object Classes 3335
NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

ZCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors that convert Z coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

Property Type Double-precision floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Double-precision floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrLight

3336 Chapter 8: Graphics Object Classes
IDLgrLight::Cleanup

The IDLgrLight::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrLight::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDLgrLight IDL Reference Guide

Chapter 8: Graphics Object Classes 3337
IDLgrLight::GetCTM

The IDLgrLight::GetCTM function method returns the 4-by-4 double-precision
floating-point graphics transform matrix from the current object upward through the
graphics tree.

Syntax

Result = Obj -> [IDLgrLight::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Return Value

Returns the 4-by-4 double-precision floating-point graphics transform matrix from
the current object upward through the graphics tree.

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the light
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrLight::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.
IDL Reference Guide IDLgrLight

3338 Chapter 8: Graphics Object Classes
Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.

TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.

Version History

Introduced: 5.0
IDLgrLight IDL Reference Guide

Chapter 8: Graphics Object Classes 3339
IDLgrLight::GetProperty

The IDLgrLight::GetProperty procedure method retrieves the value of a property or
group of properties for the light.

Syntax

Obj -> [IDLgrLight::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrLight Properties” on page 3329 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrLight

3340 Chapter 8: Graphics Object Classes
IDLgrLight::Init

The IDLgrLight::Init function method initializes the light object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrLight' [, PROPERTY=value])

or

Result = Obj -> [IDLgrLight::]Init([PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLgrLight Properties” on page 3329 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.
IDLgrLight IDL Reference Guide

Chapter 8: Graphics Object Classes 3341
Version History

Introduced: 5.0
IDL Reference Guide IDLgrLight

3342 Chapter 8: Graphics Object Classes
IDLgrLight::SetProperty

The IDLgrLight::SetProperty procedure method sets the value of a property or group
of properties for the light.

Syntax

Obj -> [IDLgrLight::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrLight Properties” on page 3329 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.0
IDLgrLight IDL Reference Guide

Chapter 8: Graphics Object Classes 3343
IDLgrModel

A model object represents a graphical item or group of items that can be transformed
(rotated, scaled, and/or translated). It serves as a container of other IDLgrModel
objects or atomic graphic objects. IDLgrModel applies a transform to the current
view tree.

Superclasses

IDL_Container

Creation

See “IDLgrModel::Init” on page 3359.

Properties

Objects of this class have the following properties. See “IDLgrModel Properties” on
page 3345 for details on individual properties.

• ALL

• CLIP_PLANES

• DEPTH_TEST_DISABLE

• DEPTH_TEST_FUNCTION

• DEPTH_WRITE_DISABLE

• HIDE

• LIGHTING

• PARENT

• REGISTER_PROPERTIES

• SELECT_TARGET

• TRANSFORM

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has this following methods:
IDL Reference Guide IDLgrModel

3344 Chapter 8: Graphics Object Classes
• IDLgrModel::Add

• IDLgrModel::Cleanup

• IDLgrModel::Draw

• IDLgrModel::GetByName

• IDLgrModel::GetCTM

• IDLgrModel::GetProperty

• IDLgrModel::Init

• IDLgrModel::Reset

• IDLgrModel::Rotate

• IDLgrModel::Scale

• IDLgrModel::SetProperty

• IDLgrModel::Translate

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.0
IDLgrModel IDL Reference Guide

Chapter 8: Graphics Object Classes 3345
IDLgrModel Properties

IDLgrModel objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLgrModel::GetProperty. Properties with the
word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrModel::Init. Properties with the word “Yes” in the “Set” column in the property
table can be set via IDLgrModel::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the properties associated with
this object.

Note
The fields of this structure may change in subsequent releases of IDL.

CLIP_PLANES

An 4-by-N floating-point array that specifies the coefficients of the clipping planes to
be applied to this object. The four coefficients for each clipping plane are of the form
[A, B ,C, D], where Ax + By + Cz + D = 0.

Portions of this object that fall in the half space Ax + By + Cz + D > 0 will be clipped.
By default, the value of this property is a scalar (-1) indicating that no clipping planes
are to be applied.

Note
The clipping planes specified via this property are applied in addition to the near
and far clipping planes associated with the IDLgrView in which this object appears.

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrModel

3346 Chapter 8: Graphics Object Classes
Note
Note - Clipping planes are applied in the data space of the objects this model
contains (prior to the application of this model's transform).

Note
To determine the maximum number of clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES property of the GetDeviceInfo method for the
IDLgrBuffer, IDLgrClipboard, IDLgrWindow, and IDLgrVRML objects.

This property is registered as a user-defined property, but it is hidden by default.

DEPTH_TEST_DISABLE

An integer value that determines whether depth testing is disabled.

• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth testing. A model may also
enable or disable depth testing.

• Set this property to 1 to explicitly disable depth buffer testing while drawing
this object.

• Set this property to 2 to explicitly enable depth testing for this object.

Disabling depth testing allows an object to draw itself on top of other objects already
on the screen, even if the object is located behind them.

This property is registered as an enumerated list, but it is hidden by default.

DEPTH_TEST_FUNCTION

An integer value that determines the depth test function. Set this property to 0 (the
default) to inherit the value set by the parent model or view. The parent view always

Property Type USERDEF

Name String Clipping planes

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Depth Test Disable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrModel IDL Reference Guide

Chapter 8: Graphics Object Classes 3347
sets a depth test function of LESS. A model may also set a depth test function value.
The graphics device compares the object’s depth at a particular pixel location with
the depth stored in the depth buffer at that same pixel location. If the comparison test
passes, the object’s pixel is drawn at that location on the screen and the depth buffer
is updated (if depth writing is enabled).

Set this property to any of the following values to use the desired function while
rendering this object.

• 0 = INHERIT - use value from parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the object’s depth is less than the depth buffer’s value.

• 3 = EQUAL - passes if the object’s depth is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the object’s depth is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the object’s depth is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the object’s depth is not equal to the depth
buffer’s value.

• 7 = GREATER OR EQUAL - passes if the object’s depth is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Less means closer to the viewer.

This property is registered as an enumerated list, but it is hidden by default.

DEPTH_WRITE_DISABLE

An integer value that determines whether depth writing is disabled.

• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth writing. A model may also
enable or disable depth writing.

Property Type ENUMLIST

Name String Depth Test Enable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrModel

3348 Chapter 8: Graphics Object Classes
• Set this property to 1 to explicitly disable depth buffer writing while rendering
this object.

• Set this property to 2 to explicitly enable depth writing for this object.

Disabling depth writing allows an object to be overdrawn by other objects, even if the
object is located in front of them.

This property is registered as an enumerated list, but it is hidden by default.

HIDE

A Boolean value indicating whether this object should be drawn:

• 0 = Draw model and children (the default)

• 1 = Do not draw model or children

In a property sheet, this property appears as an enumerated list with the following
options:

• True = Draw graphic (the default)

• False = Do not draw graphic.

Note
HIDE only controls the display attributes of IDLgrModel children since the
IDLgrModel object itself lacks geometry..

LIGHTING

An integer value that indicates whether lighting is to be enabled or disabled for all
atomic graphic objects that have this model as a parent. IDLgrModel objects that
have this model as a parent will not be effected, as they have their own value for this

Property Type ENUMLIST

Name String Depth Write Disable

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Show

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrModel IDL Reference Guide

Chapter 8: Graphics Object Classes 3349
property. If this value is set to 0, any lights added as children of this model will be
used to illuminate any other models in the view hierarchy that have lighting enabled.

• 0 = Disable lighting

• 1 = Enable single-sided lighting

• 2 = Enable double-sided lighting (the default)

This property is registered as an enumerated list, but it is hidden by default.

PARENT

An object reference to the object that contains this object.

REGISTER_PROPERTIES

A Boolean value that determines whether to register properties available for this
object. Set this property to automatically register the following properties of the
object for display in a property sheet. This property is useful mainly when creating
iTools. By default, no properties are registered.

SELECT_TARGET

A Boolean value that tags the model object as the target object to be returned when
any object contained by the model is selected via the IDLgrWindow::Select method.

• 0 = Do not tag the model object as the target object (default).

Property Type ENUMLIST

Name String Lighting

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Object reference

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDL Reference Guide IDLgrModel

3350 Chapter 8: Graphics Object Classes
• 1 = Tag the model object as the target object.

By default, an IDLgrModel object cannot be returned as the target of a SELECT
operation since it contains no geometry.

This property is registered as a Boolean property, but it is hidden by default.

TRANSFORM

A 4-by-4 floating-point transformation matrix to be applied to the object. This matrix
will be multiplied by its parent’s transformation matrix (if the parent has one). The
default is the identity matrix. IDL converts, maintains, and returns this data as
double-precision floating-point.

This property is registered as a user-defined property, but it is hidden by default.

Property Type BOOLEAN

Name String Select target

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type USERDEF

Name String Model transform

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrModel IDL Reference Guide

Chapter 8: Graphics Object Classes 3351
IDLgrModel::Add

The IDLgrModel::Add procedure method adds a child to this Model.

Syntax

Obj -> [IDLgrModel::]Add, Object [, /ALIAS] [, POSITION=index]

Arguments

Object

An instance of an atomic graphic object or another model object to be added to the
model object.

Keywords

ALIAS

Set this keyword to a nonzero value to indicate that an alias—rather than the object
itself—is to be added to the model. With this keyword you can add the same object to
multiple models without duplicating that object and its children. If this keyword is
set, the PARENT keyword on the object being added will not change. Furthermore, if
this keyword is set, the object being added will not be destroyed when the model is
destroyed.

POSITION

Set this keyword equal to the zero-based index of the position within the container at
which the new object should be placed.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrModel

3352 Chapter 8: Graphics Object Classes
IDLgrModel::Cleanup

The IDLgrModel::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrModel::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDLgrModel IDL Reference Guide

Chapter 8: Graphics Object Classes 3353
IDLgrModel::Draw

The IDLgrModel::Draw procedure method draws the specified picture to the
specified graphics destination. This method is provided for purposes of sub-classing
only, and is intended to be called only from the Draw method of a subclass of
IDLgrModel.

Note
Objects are drawn to the destination device in the order that they are added to the
model, view, viewgroup, or scene object that contains them.

Syntax

Obj -> [IDLgrModel::]Draw, Destination, Picture

Arguments

Destination

The destination object (IDLgrBuffer, IDLgrClipboard, IDLgrPrinter, or
IDLgrWindow) to which the specified view object will be drawn.

Picture

The view (an instance of an IDLgrView object), viewgroup (an instance of an
IDLgrViewgroup object), or scene (an instance of an IDLgrScene object) to be
drawn.

Keywords

None

Version History

Introduced: 5.0
IDL Reference Guide IDLgrModel

3354 Chapter 8: Graphics Object Classes
IDLgrModel::GetByName

The IDLgrModel::GetByName function method finds contained objects by name and
returns the object reference to the named object. If the named object is not found, the
GetByName function returns a null object reference.

Note
The GetByName function does not perform a recursive search through the object
hierarchy. If a fully qualified object name is not specified, only the contents of the
current container object are inspected for the named object.

Syntax

Result = Obj -> [IDLgrModel::]GetByName(Name)

Return Value

Returns the object reference to the named object or a null object reference.

Arguments

Name

A string containing the name of the object to be returned.

Object naming syntax is very much like the syntax of a UNIX file system. Objects
contained by other objects can include the name of their parent object; this allows
you to create a fully qualified name specification. For example, if object1 contains
object2, which in turn contains object3, the string specifying the fully qualified
object name of object3 would be 'object1/object2/object3'.

Object names are specified relative to the object on which the GetByName method is
called. If used at the beginning of the name string, the / character represents the top
of an object hierarchy. The string '..' represents the object one level “up” in the
hierarchy.

Keywords

None
IDLgrModel IDL Reference Guide

Chapter 8: Graphics Object Classes 3355
Version History

Introduced: 5.0
IDL Reference Guide IDLgrModel

3356 Chapter 8: Graphics Object Classes
IDLgrModel::GetCTM

The IDLgrModel::GetCTM function method returns the 4-by-4 double-precision
floating-point graphics transform matrix from the current object upward through the
graphics tree.

Syntax

Result = Obj -> [IDLgrModel::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Return Value

Returns the 4-by-4 double-precision floating-point graphics transform matrix from
the current object upward through the graphics tree.

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the model
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrModel::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.
IDLgrModel IDL Reference Guide

Chapter 8: Graphics Object Classes 3357
Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.

TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrModel

3358 Chapter 8: Graphics Object Classes
IDLgrModel::GetProperty

The IDLgrModel::GetProperty procedure method retrieves the value of a property or
group of properties for the model.

Syntax

Obj -> [IDLgrModel::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrModel Properties” on page 3345 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.0
IDLgrModel IDL Reference Guide

Chapter 8: Graphics Object Classes 3359
IDLgrModel::Init

The IDLgrModel::Init procedure method initializes the model object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrModel' [, PROPERTY=value])

or

Result = Obj -> [IDLgrModel::]Init([PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLgrModel Properties” on page 3345 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.
IDL Reference Guide IDLgrModel

3360 Chapter 8: Graphics Object Classes
Version History

Introduced: 5.0

CLIP_PLANES keyword: 5.6
IDLgrModel IDL Reference Guide

Chapter 8: Graphics Object Classes 3361
IDLgrModel::Reset

The IDLgrModel::Reset procedure method sets the current transform matrix for the
model object to the identity matrix.

Note
Using this method is functionally identical to the following statement:

Obj ->[IDLgrModel::]SetProperty, TRANSFORM=IDENTITY(4)

Syntax

Obj -> [IDLgrModel::]Reset

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDL Reference Guide IDLgrModel

3362 Chapter 8: Graphics Object Classes
IDLgrModel::Rotate

The IDLgrModel::Rotate procedure method rotates the model about the specified
axis by the specified angle. IDL computes and maintains the resulting transform
matrix in double-precision floating-point.

Syntax

Obj -> [IDLgrModel::]Rotate, Axis, Angle [, /PREMULTIPLY]

Arguments

Axis

A three-element vector of the form [x, y, z] describing the axis about which the model
is to be rotated.

Angle

The angle (measured in degrees) by which the rotation is to occur.

Keywords

PREMULTIPLY

Set this keyword to cause the rotation matrix specified by Axis and Angle to be pre-
multiplied to the model’s transformation matrix. By default, the rotation matrix is
post-multiplied.

Version History

Introduced: 5.0
IDLgrModel IDL Reference Guide

Chapter 8: Graphics Object Classes 3363
IDLgrModel::Scale

The IDLgrModel::Scale procedure method scales the model by the specified scaling
factors. IDL computes and maintains the resulting transform matrix in double-
precision floating-point.

Syntax

Obj -> [IDLgrModel::]Scale, Sx, Sy, Sz [, /PREMULTIPLY]

Arguments

Sx, Sy, Sz

The scaling factors in the x, y, and z dimensions by which the model is to be scaled.

Keywords

PREMULTIPLY

Set this keyword to cause the scaling matrix specified by Sx, Sy, Sz to be pre-
multiplied to the model’s transformation matrix. By default, the scaling matrix is
post-multiplied.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrModel

3364 Chapter 8: Graphics Object Classes
IDLgrModel::SetProperty

The IDLgrModel::SetProperty procedure method sets the value of a property or
group of properties for the model.

Syntax

Obj -> [IDLgrModel::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrModel Properties” on page 3345 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.0
IDLgrModel IDL Reference Guide

Chapter 8: Graphics Object Classes 3365
IDLgrModel::Translate

The IDLgrModel::Translate procedure method translates the model about the
specified axis by the specified translation offsets. IDL computes and maintains the
resulting transform matrix in double-precision floating-point.

Syntax

Obj -> [IDLgrModel::]Translate, Tx, Ty, Tz [, /PREMULTIPLY]

Arguments

Tx, Ty, Tz

The offsets in X, Y, and Z, respectively, by which the model is to be translated.

Keywords

PREMULTIPLY

Set this keyword to cause the translation matrix specified by Tx, Ty, Tz to be pre-
multiplied to the model’s transformation matrix. By default, the translation matrix is
post-multiplied.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrModel

3366 Chapter 8: Graphics Object Classes
IDLgrMPEG

An IDLgrMPEG object creates an MPEG movie file from an array of image frames.

Note
The MPEG standard does not allow movies with odd numbers of pixels to be
created.

Note
MPEG support in IDL requires a special license. For more information, contact
your RSI sales representative or technical support.

Superclasses

IDLitComponent

Creation

See “IDLgrMPEG::Init” on page 3377.

Properties

Objects of this class have the following properties. See “IDLgrMPEG Properties” on
page 3368 for details on individual properties.

• ALL

• BITRATE

• DIMENSIONS

• FILENAME

• FORMAT

• FRAME_RATE

• IFRAME_GAP

• INTERLACED

• MOTION_VEC_LENGTH

• QUALITY

• SCALE
IDLgrMPEG IDL Reference Guide

Chapter 8: Graphics Object Classes 3367
• STATISTICS

• TEMP_DIRECTORY

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrMPEG::Cleanup

• IDLgrMPEG::GetProperty

• IDLgrMPEG::Init

• IDLgrMPEG::Put

• IDLgrMPEG::Save

• IDLgrMPEG::SetProperty

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.1
IDL Reference Guide IDLgrMPEG

3368 Chapter 8: Graphics Object Classes
IDLgrMPEG Properties

IDLgrMPEG objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLgrMPEG::GetProperty. Properties with the
word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrMPEG::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLgrMPEG::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the retrievable properties
associated with this object.

BITRATE

A double-precision floating-point value to specify the MPEG movie bit rate. Higher
bit rates will create higher quality MPEGs but will increase file size. The following
table describes the valid values:

Set this property to 0.0 (the default setting) to indicate that IDL should compute the
BITRATE value based upon the value you have specified for the QUALITY
property. The value of BITRATE returned by IDLgrMPEG::GetProperty is either the
value computed by IDL from the QUALITY value or the last non-zero valid value
stored in this property.

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

MPEG Version Range

MPEG 1 0.1 to 104857200.0

MPEG 2 0.1 to 429496729200.0

Table 8-5: BITRATE Value Range
IDLgrMPEG IDL Reference Guide

Chapter 8: Graphics Object Classes 3369
Note
Only use the BITRATE property if changing the QUALITY property value does
not produce the desired results. It is highly recommended to set the BITRATE to at
least several times the frame rate to avoid unusable MPEG files or file generation
errors.

DIMENSIONS

A two-element integer array specifying the dimensions (in pixels) of each of the
images to be used as frames for the movie. If this property is not specified, the
dimensions of the first image loaded will be used. Once IDLgrMPEG::Put has been
called, this property can no longer be set.

Note
When creating MPEG files, you must be aware of the capabilities of the MPEG
decoder you will be using to view it. Some decoders only support a limited set of
sampling and bitrate parameters to normalize computational complexity, buffer
size, and memory bandwidth. For example, the Windows Media Player supports a
limited set of sampling and bitrate parameters. In this case, it is best to use 352 x
240 x 30 fps or 352 x 288 x 25 fps when determining the dimensions and frame rate
for your MPEG file. When opening a file in Windows Media Player that does not
use these dimensions, you will receive a “Bad Movie File” error message. The file
is not “bad”, this decoder just doesn’t support the dimensions of the MPEG.

Property Type Floating-point

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Integer array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrMPEG

3370 Chapter 8: Graphics Object Classes
FILENAME

A string that represents the name of the file in which the encoded MPEG sequence is
to be stored. The default is 'idl.mpg'.

FORMAT

A Boolean value that specifies the type of MPEG encoding to use:

• 0 = MPEG1 (the default)

• 1 = MPEG2

FRAME_RATE

An integer value that specifies the frame rate used in creating the MPEG file:

Property Type String

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Value Descriptions

1 23.976 frames/sec: NTSC encapsulated film rate

2 24 frames/sec: Standard international film rate

3 25 frames/sec: PAL video frame rate

4 29.97 frames/sec: NTSC video frame rate

5 30 frames/sec: NTSC drop frame video frame rate (the default)

6 50 frames/sec: Double frame rate/progressive PAL

7 59.94 frames/sec: Double frame rate NTSC

8 60 frames/sec: Double frame rate NTSC drop frame video

Table 8-6: FRAME_RATE Values
IDLgrMPEG IDL Reference Guide

Chapter 8: Graphics Object Classes 3371
IFRAME_GAP

A positive integer value that specifies the number of frames between I frames to be
created in the MPEG file. I frames are full-quality image frames that may have a
number of predicted or interpolated frames between them.

Set this property to 0 (the default setting) to indicate that IDL should compute the
IFRAME_GAP value based upon the value you have specified for the QUALITY
property. The value of IFRAME_GAP returned by IDLgrMPEG::GetProperty is
either the value computed by IDL from the QUALITY value or the last non-zero valid
value stored in this property.

Note
Only use the IFRAME_GAP property if changing the QUALITY property value
does not produce the desired results.

INTERLACED

A Boolean value that indicates whether frames in the encoded MPEG file should be
interlaced.

• 0 = Non-interlaced (the default)

• 1 = Interlaced

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrMPEG

3372 Chapter 8: Graphics Object Classes
MOTION_VEC_LENGTH

An integer value that specifies the length of the motion vectors to be used to generate
predictive frames. The following table describes the valid values:

0 (the default setting) indicates that IDL should compute the
MOTION_VEC_LENGTH value based upon the value you have specified for the
QUALITY property. The value of MOTION_VEC_LENGTH returned by
IDLgrMPEG::GetProperty is either the value computed by IDL from the QUALITY
value or the last non-zero value stored in this property.

Note
Only use the MOTION_VEC_LENGTH property if changing the QUALITY value
does not produce the desired results.

QUALITY

An integer value between 0 (low quality) and 100 (high quality), inclusive, that
specifies the quality at which the MPEG stream is to be stored. Higher quality values
result in lower rates of time compression and less motion prediction which provide
higher quality MPEGs but with substantially larger file size. Lower quality factors
may result in longer MPEG generation times. The default is 50.

Value Description

1 Small motion vectors.

2 Medium motion vectors.

3 Large motion vectors.

Table 8-7: MOTION_VEC_LENGTH Values

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrMPEG IDL Reference Guide

Chapter 8: Graphics Object Classes 3373
Note
Since MPEG uses JPEG (lossy) compression, the original picture quality cannot be
reproduced even when setting QUALITY to its highest setting.

SCALE

A two-element floating-point vector, [xscale, yscale], indicating the scale factors to
be stored with the MPEG file as hints for playback. The default is [1.0, 1.0],
indicating that the movie should be played back at the dimensions of the stored image
frames.

STATISTICS

A Boolean value that determines whether to save statistical information about MPEG
encoding for the supplied image frames in a file when the IDLgrMPEG::Save method
is called. The information will be saved in a file with a name that matches that
specified by the FILENAME property, with the extension “.stat”.

• 0 = Statistics are not saved (the default).

• 1 = Save statistics.

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrMPEG

3374 Chapter 8: Graphics Object Classes
TEMP_DIRECTORY

A string value that specifies the directory in which to place temporary files while
creating the MPEG movie file. The default value is platform specific.

Property Type String

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDLgrMPEG IDL Reference Guide

Chapter 8: Graphics Object Classes 3375
IDLgrMPEG::Cleanup

The IDLgrMPEG::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrMPEG::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.1
IDL Reference Guide IDLgrMPEG

3376 Chapter 8: Graphics Object Classes
IDLgrMPEG::GetProperty

The IDLgrMPEG::GetProperty procedure method retrieves the value of a property or
group of properties for the MPEG object.

Syntax

Obj -> [IDLgrMPEG::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrMPEG Properties” on page 3368 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.1
IDLgrMPEG IDL Reference Guide

Chapter 8: Graphics Object Classes 3377
IDLgrMPEG::Init

The IDLgrMPEG::Init function method initializes the MPEG object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Note
MPEG support in IDL requires a special license. For more information, contact
your RSI sales representative or technical support.

Syntax

Obj = OBJ_NEW('IDLgrMPEG' [, PROPERTY=value])

or

Result = Obj -> [IDLgrMPEG::]Init([PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLgrMPEG Properties” on page 3368 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.
IDL Reference Guide IDLgrMPEG

3378 Chapter 8: Graphics Object Classes
All other keywords are passed to the superclass of this object.

Version History

Introduced: 5.1
IDLgrMPEG IDL Reference Guide

Chapter 8: Graphics Object Classes 3379
IDLgrMPEG::Put

The IDLgrMPEG::Put procedure method puts a given image into the MPEG
sequence at the specified frame. Note that all images in a given MPEG movie must
have matching dimensions. If no dimensions were explicitly specified when the
MPEG object was initialized, the dimensions will be set according to the dimensions
of the first image.

Syntax

Obj -> [IDLgrMPEG::]Put, Image[, Frame]

Arguments

Image

An instance of an IDLgrImage object or a m x n or 3 x m x n array representing the
image to be loaded at the given frame.

Frame

An integer specifying the index of the frame at which the image is to be added. Frame
indices start at zero. If Frame is not supplied, the frame number used will be one
more than the last frame that was put. Frame number need not be consecutive; in case
of a gap in frame numbers, the frame before the gap is repeated to fill the space.

Keywords

None

Version History

Introduced: 5.1
IDL Reference Guide IDLgrMPEG

3380 Chapter 8: Graphics Object Classes
IDLgrMPEG::Save

The IDLgrMPEG::Save procedure method encodes and saves the MPEG sequence to
the specified filename.

Note
The MPEG standard does not allow movies with odd numbers of pixels to be
created.

Syntax

Obj -> [IDLgrMPEG::]Save [, FILENAME=string]

Arguments

None

Keywords

FILENAME

Set this keyword to a string representing the name of the file in which the encoded
MPEG sequence is to be stored. The default is idl.mpg.

Obsolete Keywords

The following keywords are obsolete:

• CREATOR_TYPE

For information on obsolete keywords, See Appendix I, “Obsolete Features”.

Version History

Introduced: 5.1
IDLgrMPEG IDL Reference Guide

Chapter 8: Graphics Object Classes 3381
IDLgrMPEG::SetProperty

The IDLgrMPEG::SetProperty procedure method sets the value of a property or
group of properties for the MPEG object.

Syntax

Obj -> [IDLgrMPEG::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrMPEG Properties” on page 3368 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.1
IDL Reference Guide IDLgrMPEG

3382 Chapter 8: Graphics Object Classes
IDLgrPalette

A palette object represents a color lookup table that maps indices to red, green, and
blue values.

Superclasses

This class has no superclass.

Creation

See “IDLgrPalette::Init” on page 3390.

Properties

Objects of this class have the following properties. See “IDLgrPalette Properties” on
page 3384 for details on individual properties.

• ALL

• BLUE_VALUES

• BOTTOM_STRETCH

• GAMMA

• GREEN_VALUES

• N_COLORS

• RED_VALUES

• TOP_STRETCH

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has this following methods:

• IDLgrPalette::Cleanup

• IDLgrPalette::GetRGB

• IDLgrPalette::GetProperty

• IDLgrPalette::Init
IDLgrPalette IDL Reference Guide

Chapter 8: Graphics Object Classes 3383
• IDLgrPalette::LoadCT

• IDLgrPalette::NearestColor

• IDLgrPalette::SetRGB

• IDLgrPalette::SetProperty

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.0
IDL Reference Guide IDLgrPalette

3384 Chapter 8: Graphics Object Classes
IDLgrPalette Properties

IDLgrPalette objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLgrPalette::GetProperty. Properties with the
word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrPalette::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLgrPalette::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure that contains the values of all of the properties associated
with the state of this object. State information about the object includes things like
color, range, tick direction, etc., but not image, vertex, or connectivity data, or user
values.

Note
The fields of this structure may change in subsequent releases of IDL.

BLUE_VALUES

A byte vector containing the blue values for the color palette. Setting this value is the
same as specifying the aBlue argument to the IDLgrPalette::Init method.

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Byte vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrPalette IDL Reference Guide

Chapter 8: Graphics Object Classes 3385
BOTTOM_STRETCH

An integer value in the range of 0 ≤ Value ≤ 100 to indicate what percentage of the
palette entries at the bottom of the palette should be filled with the value of the first
palette entry. The entire range of red, green, and blue values will be compressed to fit
within the range of palette entries beginning at this entry and ending at the entry
specified by the value of the TOP_STRETCH property. The default is 0 (zero).

GAMMA

A floating-point value that indicates the gamma value to be applied to the color
palette. This value should be in the range of 0.1 ≤ Gamma ≤ 10.0. The default is 1.0.

GREEN_VALUES

A byte vector containing the green values for the color palette. Setting this value is
the same as specifying the aGreen argument to the IDLgrPalette::Init method.

N_COLORS

An integer value that determines the number of elements in the color palette.

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Byte-vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Integer

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrPalette

3386 Chapter 8: Graphics Object Classes
RED_VALUES

A byte vector containing the red values for the color palette. Setting this value is the
same as specifying the aRed argument to the IDLgrPalette::Init method.

TOP_STRETCH

A floating-point value in the range of 0 ≤ Value ≤ 100 to indicate what percentage of
the palette entries at the top of the palette should be filled with the value of the last
palette entry. The entire range of red, green, and blue values will be compressed to fit
within the range of palette entries beginning at the entry specified by the value of the
BOTTOM_STRETCH property and ending at this entry. The default is 0 (zero).

Property Type Byte vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrPalette IDL Reference Guide

Chapter 8: Graphics Object Classes 3387
IDLgrPalette::Cleanup

The IDLgrPalette::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrPalette::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDL Reference Guide IDLgrPalette

3388 Chapter 8: Graphics Object Classes
IDLgrPalette::GetRGB

The IDLgrPalette::GetRGB function method returns the RGB values contained in the
palette at the given index. The returned value is a three-element vector of the form
[red, green, blue].

Syntax

Result = Obj -> [IDLgrPalette::]GetRGB(Index)

Return Value

Returns the RGB values contained in the palette at the given index.

Arguments

Index

The index whose RGB values are desired. This value should be in the range of
0 ≤ Index < N_COLORS, where N_COLORS is the number of elements in the color
palette, as returned by the N_COLORS keyword to the IDLgrPalette:GetProperty
method.

Keywords

None

Version History

Introduced: 5.0
IDLgrPalette IDL Reference Guide

Chapter 8: Graphics Object Classes 3389
IDLgrPalette::GetProperty

The IDLgrPalette::GetProperty procedure method retrieves the value of a property or
group of properties for the palette.

Syntax

Obj -> [IDLgrPalette::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrPalette Properties” on page 3384 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrPalette

3390 Chapter 8: Graphics Object Classes
IDLgrPalette::Init

The IDLgrPalette::Init function method initializes a palette object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrPalette', aRed, aGreen, aBlue [, PROPERTY=value])

or

Result = Obj-> [IDLgrPalette::]Init([aRed, aGreen, aBlue] [, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

aRed

A vector containing the red values for the color palette. These values should be
within the range of 0 ≤ Value ≤ 255. The number of elements comprising the aRed
vector must not exceed 256.

aGreen

A vector containing the green values for the color palette. These values should be
within the range of 0 ≤ Value ≤ 255. The number of elements comprising the aGreen
vector must not exceed 256.
IDLgrPalette IDL Reference Guide

Chapter 8: Graphics Object Classes 3391
aBlue

A vector containing the blue values for the color palette. These values should be
within the range of 0 ≤ Value ≤ 255. The number of elements comprising the aBlue
vector must not exceed 256.

Keywords

Any property listed under “IDLgrPalette Properties” on page 3384 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrPalette

3392 Chapter 8: Graphics Object Classes
IDLgrPalette::LoadCT

The IDLgrPalette::LoadCT procedure method loads one of the IDL predefined color
tables into an IDLgrPalette object.

Syntax

Obj -> [IDLgrPalette::]LoadCT, TableNum [, FILENAME=colortable filename]

Arguments

TableNum

The number of the pre-defined IDL color table to load, from 0 to 40.

Keywords

FILE

Set this keyword to the name of a colortable file to be used instead of the file
colors1.tbl in the IDL distribution. The MODIFYCT procedure can be used to
create and modify colortable files.

Version History

Introduced: 5.0
IDLgrPalette IDL Reference Guide

Chapter 8: Graphics Object Classes 3393
IDLgrPalette::NearestColor

The IDLgrPalette::NearestColor function method returns the index of the color in the
palette that best matches the given RGB values.

Syntax

Result = Obj-> [IDLgrPalette::]NearestColor(Red, Green, Blue)

Return Value

Returns the index of the color in the palette that best matches the given RGB values.

Arguments

Red

The red value of the color that should be matched. This value should be within the
range of 0 ≤ Value ≤ 255.

Green

The green value of the color that should be matched. This value should be within the
range of 0 ≤ Value ≤ 255.

Blue

The blue value of the color that should be matched. This value should be within the
range of 0 ≤ Value ≤ 255.

Keywords

None

Version History

Introduced: 5.0
IDL Reference Guide IDLgrPalette

3394 Chapter 8: Graphics Object Classes
IDLgrPalette::SetRGB

The IDLgrPalette::SetRGB procedure method sets the color values at a specified
index in the palette to the specified Red, Green and Blue values.

Syntax

Obj -> [IDLgrPalette::]SetRGB, Index, Red, Green, Blue

Arguments

Index

The index within the Palette object to be set. This value should be in the range of
0 ≤ Value < N_COLORS.

Red

The red value to set in the color palette.

Green

The green value to set in the color palette.

Blue

The blue value to set in the color palette.

Keywords

None

Version History

Introduced: 5.0
IDLgrPalette IDL Reference Guide

Chapter 8: Graphics Object Classes 3395
IDLgrPalette::SetProperty

The IDLgrPalette::SetProperty procedure method sets the value of a property or
group of properties for the palette.

Syntax

Obj -> [IDLgrPalette::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrPalette Properties” on page 3384 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrPalette

3396 Chapter 8: Graphics Object Classes
IDLgrPattern

A pattern object describes which pixels are filled and which are left blank when an
area is filled. Pattern objects are used by setting the FILL_PATTERN property of a
polygon object equal to the object reference of the pattern object.

Superclasses

IDLitComponent

Creation

See “IDLgrPattern::Init” on page 3403.

Properties

Objects of this class have the following properties. See “IDLgrPattern Properties” on
page 3398 for details on individual properties.

• ALL

• ORIENTATION

• PATTERN

• SPACING

• STYLE

• THICK

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has this following methods:

• IDLgrPattern::Cleanup

• IDLgrPattern::GetProperty

• IDLgrPattern::Init

• IDLgrPattern:SetProperty

In addition, this class inherits the methods of its superclasses (if any).
IDLgrPattern IDL Reference Guide

Chapter 8: Graphics Object Classes 3397
Version History

Introduced: 5.0
IDL Reference Guide IDLgrPattern

3398 Chapter 8: Graphics Object Classes
IDLgrPattern Properties

IDLgrPattern objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLgrPattern::GetProperty. Properties with the
word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrPattern::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLgrPattern:SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the properties associated with
the state of this object. State information about the object includes things like color,
range, tick direction, etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

ORIENTATION

An integer representing the angle (measured in degrees counterclockwise from the
horizontal) of the lines used in a Line Fill. This property is ignored unless the Style
argument (or STYLE property) is set to one.

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrPattern IDL Reference Guide

Chapter 8: Graphics Object Classes 3399
PATTERN

A 32 x 32 bit array (bitmap) describing the pattern that will be tiled over a polygon
when a pattern fill is used. The bitmap must be configured as a 4 x 32 “bitmap byte
array” as created by the CVTTOBM function. Each bit that is a 1 is drawn, each bit
that is 0 is not drawn. Each bit in this array represents a 1 point by 1 point square area
of pixels on the destination device. This property is ignored unless the Style argument
(or STYLE property) is set to 2.

SPACING

A floating-point value representing the distance (measured in points) between the
lines used for a Line Fill. This property is ignored unless the Style argument (or
STYLE property) is set to 1. The default is 2.0 points.

STYLE

An integer value that specifies the type of pattern, as follows:

• 0 = Solid (default)

• 1 = Line Fill

• 2 = Pattern

This property is the same as the Style argument described above.

Property Type Integer array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrPattern

3400 Chapter 8: Graphics Object Classes
THICK

A floating-point value between 1.0 and 10.0 that specifies the line thickness to be
used to draw the pattern lines for a Line Fill, in points. The default is 1.0 points. This
property is ignored unless the Style argument or STYLE property is set to 1.

Property Type Floating-point

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDLgrPattern IDL Reference Guide

Chapter 8: Graphics Object Classes 3401
IDLgrPattern::Cleanup

The IDLgrPattern::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrPattern::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDL Reference Guide IDLgrPattern

3402 Chapter 8: Graphics Object Classes
IDLgrPattern::GetProperty

The IDLgrPattern::GetProperty procedure method retrieves the value of a property or
group of properties for the pattern.

Syntax

Obj -> [IDLgrPattern::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrPattern Properties” on page 3398 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.0
IDLgrPattern IDL Reference Guide

Chapter 8: Graphics Object Classes 3403
IDLgrPattern::Init

The IDLgrPattern::Init function method initializes the pattern object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrPattern' [, Style] [, PROPERTY=value])

or

Result = Obj -> [IDLgrPattern::]Init([Style] [, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

Style

A integer value representing the type of pattern. Valid values are:

• 0 = Solid color (default)

• 1 = Line Fill

• 2 = Pattern

Keywords

Any property listed under “IDLgrPattern Properties” on page 3398 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
IDL Reference Guide IDLgrPattern

3404 Chapter 8: Graphics Object Classes
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.

Version History

Introduced: 5.0
IDLgrPattern IDL Reference Guide

Chapter 8: Graphics Object Classes 3405
IDLgrPattern:SetProperty

The IDLgrPattern::SetProperty procedure method sets the value of a property or
group of properties for the pattern.

Syntax

Obj -> [IDLgrPattern::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrPattern Properties” on page 3398 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrPattern

3406 Chapter 8: Graphics Object Classes
IDLgrPlot

A plot object creates a set of polylines connecting data points in two-dimensional
space.

An IDLgrPlot object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

IDLitComponent

Creation

See “IDLgrPlot::Init” on page 3426.

Properties

Objects of this class have the following properties. See “IDLgrPlot Properties” on
page 3408 for details on individual properties.

• ALL • CLIP_PLANES

• COLOR • DATA

• DATAX • DATAY

• DOUBLE • HIDE

• HISTOGRAM • LINESTYLE

• MAX_VALUE • MIN_VALUE

• NSUM • PALETTE

• PARENT • POLAR

• REGISTER_PROPERTIES • RESET_DATA

• SHARE_DATA • SYMBOL

• THICK • USE_ZVALUE

• VERT_COLORS • XCOORD_CONV

• XRANGE • YCOORD_CONV
IDLgrPlot IDL Reference Guide

Chapter 8: Graphics Object Classes 3407
In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrPlot::Cleanup

• IDLgrPlot::GetCTM

• IDLgrPlot::GetProperty

• IDLgrPlot::Init

• IDLgrPlot::SetProperty

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.0

• YRANGE • ZCOORD_CONV

• ZRANGE • ZVALUE
IDL Reference Guide IDLgrPlot

3408 Chapter 8: Graphics Object Classes
IDLgrPlot Properties

IDLgrPlot objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLgrPlot::GetProperty. Properties with the word
“Yes” in the “Init” column of the property table can be retrieved via IDLgrPlot::Init.
Properties with the word “Yes” in the “Set” column in the property table can be set
via IDLgrPlot::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the properties associated with
the state of this object. State information about the object includes things like color,
range, tick direction, etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

CLIP_PLANES

A 4-by-N floating-point array that specifies the coefficients of the clipping planes to
be applied to this object. The four coefficients for each clipping plane are of the form
[A, B, C, D], where Ax + By + Cz + D = 0. Portions of this object that fall in the half
space Ax + By + Cz + D > 0 will be clipped. By default, the value of this property is a
scalar (-1) indicating that no clipping planes are to be applied.

Note
The clipping planes specified via this property are applied in addition to the near
and far clipping planes associated with the IDLgrView in which this object appears.

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLgrPlot IDL Reference Guide

Chapter 8: Graphics Object Classes 3409
Note
Clipping planes are applied in the data space of this object (prior to the application
of any x, y, or z coordinate conversion).

Note
To determine the maximum number of clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES keyword of the GetDeviceInfo method for the
IDLgrBuffer, IDLgrClipboard, IDLgrWindow, and IDLgrVRML objects.

COLOR

The color to be used as the foreground color for this plot. The color may be specified
as a color lookup table index or as an RGB vector. The default is [0, 0, 0].

In a property sheet, this property appears as a color property.

DATA

The plot data of any type in a 3 x n array, [DataX, DataY, DataZ].

Property Type Floating-point array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type COLOR

Name String Color

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Array of any type

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrPlot

3410 Chapter 8: Graphics Object Classes
DATAX

A vector of any type that specifies the X values to be plotted. This property is the
same as the X argument.

DATAY

A vector of any type that specifies the Y values to be plotted. This property is the
same as the Y argument.

DEPTH_TEST_DISABLE

An integer value that determines whether depth testing is disabled.

• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth testing. A model may also
enable or disable depth testing.

• Set this property to 1 to explicitly disable depth buffer testing while drawing
this object.

• Set this property to 2 to explicitly enable depth testing for this object.

Disabling depth testing allows an object to draw itself on top of other objects already
on the screen, even if the object is located behind them.

This property is registered as an enumerated list, but it is hidden by default.

Property Type Vector of any type

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No

Property Type Vector of any type

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No

Property Type ENUMLIST

Name String Depth Test Disable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrPlot IDL Reference Guide

Chapter 8: Graphics Object Classes 3411
DEPTH_TEST_FUNCTION

An integer value that determines the depth test function. Set this property to 0 (the
default) to inherit the value set by the parent model or view. The parent view always
sets a depth test function of LESS. A model may also set a depth test function value.
The graphics device compares the object’s depth at a particular pixel location with
the depth stored in the depth buffer at that same pixel location. If the comparison test
passes, the object’s pixel is drawn at that location on the screen and the depth buffer
is updated (if depth writing is enabled).

Set this property to any of the following values to use the desired function while
rendering this object.

• 0 = INHERIT - use value from parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the object’s depth is less than the depth buffer’s value.

• 3 = EQUAL - passes if the object’s depth is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the object’s depth is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the object’s depth is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the object’s depth is not equal to the depth
buffer’s value.

• 7 = GREATER OR EQUAL - passes if the object’s depth is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Less means closer to the viewer.

This property is registered as an enumerated list, but it is hidden by default.

DEPTH_WRITE_DISABLE

An integer value that determines whether depth writing is disabled.

Property Type ENUMLIST

Name String Depth Test Enable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrPlot

3412 Chapter 8: Graphics Object Classes
• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth writing. A model may also
enable or disable depth writing.

• Set this property to 1 to explicitly disable depth buffer writing while rendering
this object.

• Set this property to 2 to explicitly enable depth writing for this object.

Disabling depth writing allows an object to be overdrawn by other objects, even if the
object is located in front of them.

This property is registered as an enumerated list, but it is hidden by default.

DOUBLE

A Boolean value that indicates whether data provided by any of the input arguments
will be stored in this object as using double-precision floating-point format.

• Set this property equal to 1 to convert input data to double-precision floating-
point format.

• Set this property equal to 0 to convert input data to single-precision floating-
point format.

• If you do not specify a value for this property, no data type conversion will be
performed, and the data will be stored with its original precision.

Setting this property may be desirable if the data consists of large integers that cannot
be accurately represented in single-precision floating-point arithmetic. This property
is also automatically set to 1 if any of the input arguments are stored using a variable
of type DOUBLE.

HIDE

A Boolean value that indicates whether this object should be drawn:

Property Type ENUMLIST

Name String Depth Write Disable

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrPlot IDL Reference Guide

Chapter 8: Graphics Object Classes 3413
• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

In a property sheet, this property appears as an enumerated list with the following
options:

• True = Draw graphic (the default)

• False = Do not draw graphic..

HISTOGRAM

A Boolean value that determines whether to use only horizontal and vertical lines to
connect the plotted points.

• 0 = The points are connected using a single straight line (the default)..

• 1 = Use only horizontal and vertical lines to connect the plotted points.

LINESTYLE

An integer value that indicates the line style to be used to draw the plot lines. The
value can be either an integer value specifying a pre-defined line style, or a two-
element vector specifying a stippling pattern.

To use a pre-defined line style, set the LINESTYLE property equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

Property Type ENUMLIST

Name String Show

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type BOOLEAN

Name String Histogram plot

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrPlot

3414 Chapter 8: Graphics Object Classes
• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1’s or 0’s in the
bitmask should be repeated. (That is, if three consecutive 0’s appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 ≤ repeat ≤ 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example, LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off).

In a property sheet, this property appears as follows:

MAX_VALUE

A double-precision floating-point value that determines the maximum value to be
plotted. When this property is set, data values greater than the value of
MAX_VALUE are treated as missing data and are not plotted. Note that the IEEE
floating-point value NaN is also treated as missing data. IDL converts, maintains, and
returns this data as double-precision floating-point.

MIN_VALUE

A double-precision floating-point value that determines the minimum value to be
plotted. If this property is present, data values less than the value of MIN_VALUE

Property Type LINESTYLE

Name String Line style

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type FLOAT

Name String Maximum value

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrPlot IDL Reference Guide

Chapter 8: Graphics Object Classes 3415
are treated as missing data and are not plotted. Note that the IEEE floating-point
value NaN is also treated as missing data. IDL converts, maintains, and returns this
data as double-precision floating-point.

NSUM

An integer value representing the number of data points to average when plotting. If
NSUM is larger than 1, every group of NSUM points is averaged to produce one
plotted point. If there are M data points, then M/NSUM points are plotted.

PALETTE

An object reference to a palette object (an instance of the IDLgrPalette object class).
This property is only used if the destination device is using the RGB color model. If
so, and a color value for the object is specified as a color index value, the palette set
by this property is used to translate the color to RGB space. If the PALETTE property
on this object is not set, the destination object PALETTE property is used (which
defaults to a grayscale ramp).

This property is registered as a user-defined property, but it is hidden by default.

Property Type FLOAT

Name String Minimum value

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type INTEGER

Name String Number of points to average

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type USERDEF

Name String Color palette

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrPlot

3416 Chapter 8: Graphics Object Classes
PARENT

An object reference to the object that contains this object.

POLAR

A Boolean value that determines whether to create a polar plot. The X and Y
arguments must both be present. The X argument represents the radius, and the Y
argument represents the angle expressed in radians.

REGISTER_PROPERTIES

A Boolean value that determines whether to register properties available for this
object. Set this property to automatically register the following properties of the
object for display in a property sheet. This property is useful mainly when creating
iTools. By default, no properties are registered.

RESET_DATA

A Boolean value that determines whether to treat the data provided via one of the
DATA[XY] properties as a new data set unique to this object, rather than overwriting
data that is shared by other objects. There is no reason to use this property if the
object on which the property is being set does not currently share data with another

Property Type Object reference

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type BOOLEAN

Name String Polar plot

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDLgrPlot IDL Reference Guide

Chapter 8: Graphics Object Classes 3417
object (that is, if the SHARE_DATA property is not in use). This property has no
effect if no new data is provided via a DATA property.

SHARE_DATA

An object reference to an object with which data is to be shared by this plot. A plot
may only share data with another plot. The SHARE_DATA property is intended for
use when data values are not set via an argument to the object’s Init method or by
setting the object’s DATA property.

SYMBOL

An object reference vector containing instances of the IDLgrSymbol object class.
Each symbol in the vector will be drawn at the corresponding plotted point. If there
are more points than elements in SYMBOL, the elements of the SYMBOL vector are
cyclically repeated. By default, no symbols are drawn. To remove symbols from a
plot, set the SYMBOL property equal to a null object reference.

THICK

A floating-point value between 1.0 and 10.0, specifying the line thickness to be used
to draw the plotted lines, in points. The default is 1.0 points.

Property Type Boolean

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No

Property Type Object reference

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No

Property Type Object reference vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrPlot

3418 Chapter 8: Graphics Object Classes
In a property sheet, this property appears as follows:

USE_ZVALUE

A Boolean value that determines whether to use the current ZVALUE. The plot is
considered three-dimensional if this property is set.

VERT_COLORS

A vector of colors to be used to draw at each vertex. Color is interpolated between
vertices. If there are more plot points than elements in VERT_COLORS, the
elements of VERT_COLORS are cyclically repeated. By default, the plot is all drawn
in the single color provided by the COLOR property. If the VERT_COLORS is
provided, the COLOR property is ignored. Moreover, when VERT_COLORS is used
with symbols, the vertex colors override any colors specified by the symbol object or
any colors specified by graphic atoms contained in a user-defined symbol.

This property is registered as a user-defined property, but it is hidden by default.

Property Type THICKNESS

Name String Thickness

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No

Property Type USERDEF

Name String Vertex colors

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrPlot IDL Reference Guide

Chapter 8: Graphics Object Classes 3419
XCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert X coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

XRANGE

A two-element floating-point vector of the form [xmin, xmax] specifying the range of
x data coordinates covered by the graphic object. If this property is not specified, the
minimum and maximum data values are used. IDL converts, maintains, and returns
this data as double-precision floating-point.

YCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert Y coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrPlot

3420 Chapter 8: Graphics Object Classes
The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

YRANGE

A two-element floating-point vector of the form [ymin, ymax] specifying the range of
y data values covered by the graphic object. If this property is not specified, the
minimum and maximum data values are used. IDL converts, maintains, and returns
this data as double-precision floating-point.

ZCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert Z coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

ZRANGE

A two-element floating-point vector of the form [zmin, zmax] specifying the range of
z data values covered by the graphic object. IDL maintains and returns this property
in double-precision floating-point.

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrPlot IDL Reference Guide

Chapter 8: Graphics Object Classes 3421
Note
The XRANGE and YRANGE properties can also be retrieved via the GetProperty
method; ZRANGE, however, can only be retrieved, not initialized (Init method) or
set (SetProperty method).

ZVALUE

A floating-point value to be used as the Z coordinate for the entire plot. By default,
0.0 is used as the Z coordinate.

Note
The USE_ZVALUE property needs to be set in order for ZVALUE to take effect.

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Floating-point

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrPlot

3422 Chapter 8: Graphics Object Classes
IDLgrPlot::Cleanup

The IDLgrPlot::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrPlot::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDLgrPlot IDL Reference Guide

Chapter 8: Graphics Object Classes 3423
IDLgrPlot::GetCTM

The IDLgrPlot::GetCTM function method returns the 4-by-4 double-precision
floating-point graphics transform matrix from the current object upward through the
graphics tree.

Syntax

Result = Obj -> [IDLgrPlot::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Return Value

Returns the 4-by-4 double-precision floating-point graphics transform matrix from
the current object upward through the graphics tree.

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the plot
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrPlot::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.
IDL Reference Guide IDLgrPlot

3424 Chapter 8: Graphics Object Classes
Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.

TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.

Version History

Introduced: 5.0
IDLgrPlot IDL Reference Guide

Chapter 8: Graphics Object Classes 3425
IDLgrPlot::GetProperty

The IDLgrPlot::GetProperty procedure method retrieves the value of the property or
group of properties for the plot.

Syntax

Obj -> [IDLgrPlot::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrPlot Properties” on page 3408 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrPlot

3426 Chapter 8: Graphics Object Classes
IDLgrPlot::Init

The IDLgrPlot::Init function method initializes the plot object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrPlot' [, [X,] Y] [, PROPERTY=value])

or

Result = Obj -> [IDLgrPlot::]Init([[X,] Y] [, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

X

A vector representing the abscissa values to be plotted. If X is provided, Y is plotted
as a function of X. The value for this argument is double-precision floating-point if
the DOUBLE keyword is set or the inputted value is of type DOUBLE. Otherwise it
is converted to single-precision floating-point.

Y

Either a vector of two-element arrays [x, y] representing the points to be plotted, or a
vector representing the ordinate values to be plotted. If Y is a vector of ordinate
values and X is not specified, Y is plotted as a function of the vector index of Y. The
value for this argument is double-precision floating-point if the DOUBLE keyword is
IDLgrPlot IDL Reference Guide

Chapter 8: Graphics Object Classes 3427
set or the inputted value is of type DOUBLE. Otherwise it is converted to single-
precision floating-point.

Keywords

Any property listed under “IDLgrPlot Properties” on page 3408 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.

Version History

Introduced: 5.0

CLIP_PLANES keyword: 5.6
IDL Reference Guide IDLgrPlot

3428 Chapter 8: Graphics Object Classes
IDLgrPlot::SetProperty

The IDLgrPlot::SetProperty procedure method sets the value of the property or group
of properties for the plot.

Syntax

Obj -> [IDLgrPlot::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrPlot Properties” on page 3408 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.0
IDLgrPlot IDL Reference Guide

Chapter 8: Graphics Object Classes 3429
IDLgrPolygon

A polygon object represents one or more polygons that share a given set of vertices
and rendering attributes. All polygons must be convex—that is, a line connecting any
pair of vertices on the polygon cannot fall outside the polygon. Concave polygons can
be converted to a set of convex polygons using the IDLgrTessellator object.

An IDLgrPolygon object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

IDLitComponent

Creation

See “IDLgrPolygon::Init” on page 3454.

Properties

Objects of this class have the following properties. See “IDLgrPolygon Properties”
on page 3431 for details on individual properties.

• ALL • BOTTOM

• CLIP_PLANES • COLOR

• DATA • DEPTH_OFFSET

• DEPTH_TEST_DISABLE • DEPTH_TEST_FUNCTION

• DEPTH_WRITE_DISABLE • DOUBLE

• FILL_PATTERN • HIDDEN_LINES

• HIDE • LINESTYLE

• NORMALS • PALETTE

• PARENT • POLYGONS

• REGISTER_PROPERTIES • REJECT

• RESET_DATA • SHADE_RANGE

• SHADING • SHARE_DATA
IDL Reference Guide IDLgrPolygon

3430 Chapter 8: Graphics Object Classes
In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrPolygon::Cleanup

• IDLgrPolygon::GetCTM

• IDLgrPolygon::GetProperty

• IDLgrPolygon::Init

• IDLgrPolygon::SetProperty

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.0

• STYLE • TEXTURE_COORD

• TEXTURE_INTERP • TEXTURE_MAP

• THICK • VERT_COLORS

• XCOORD_CONV • XRANGE

• YCOORD_CONV • YRANGE

• ZCOORD_CONV • ZERO_OPACITY_SKIP

• ZRANGE •
IDLgrPolygon IDL Reference Guide

Chapter 8: Graphics Object Classes 3431
IDLgrPolygon Properties

IDLgrPolygon objects have the following properties in addition to properties
inherited from any superclasses. Properties with the word “Yes” in the “Get” column
of the property table can be retrieved via IDLgrPolygon::GetProperty. Properties with
the word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrPolygon::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLgrPolygon::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the properties associated with
the state of this object. State information about the object includes things like color,
range, tick direction, etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

BOTTOM

An RGB color for drawing the bottom of the surface. Set this property to a scalar to
draw the bottom with the same color as the top. Setting a bottom color is only
supported when the destination device uses RGB color mode.

In a property sheet, this property appears as a color property.

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type COLOR

Name String Bottom color

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrPolygon

3432 Chapter 8: Graphics Object Classes
CLIP_PLANES

A 4-by-N floating-point array that specifies the coefficients of the clipping planes to
be applied to this object. The four coefficients for each clipping plane are of the form
[A, B, C, D], where Ax + By + Cz + D = 0. Portions of this object that fall in the half
space Ax + By + Cz + D > 0 will be clipped. By default, the value of this property is a
scalar (-1) indicating that no clipping planes are to be applied.

Note
The clipping planes specified via this property are applied in addition to the near
and far clipping planes associated with the IDLgrView in which this object appears.

Note
Clipping planes are applied in the data space of this object (prior to the application
of any x, y, or z coordinate conversion).

Note
To determine the maximum number of clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES property of the GetDeviceInfo method for the
IDLgrBuffer, IDLgrClipboard, IDLgrWindow, and IDLgrVRML objects.

COLOR

An RGB or indexed color for drawing polygons. The default color is [0, 0, 0] (black).
If the TEXTURE_MAP property is used, the final color is modulated by the texture
map pixel values. This property is ignored if the VERT_COLORS property is
provided.

In a property sheet, this property appears as a color property.

Property Type Floating-point array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type COLOR

Name String Color

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrPolygon IDL Reference Guide

Chapter 8: Graphics Object Classes 3433
DATA

A 2-by-n or a 3-by-n array of any type which defines, respectively, the 2-D or 3-D
vertex data. DATA is equivalent to the optional arguments, X, Y, and Z. This
property is stored as double precision floating point values if the property variable is
of type DOUBLE or if the DOUBLE property parameter is also specified, otherwise
it is converted to single precision floating point.

DEPTH_OFFSET

An integer value that specifies an offset in depth to be used when rendering filled
primitives. This offset is applied along the viewing axis, with positive values moving
the primitive away from the viewer.

The units are “Z-Buffer units,” where a value of 1 is used to specify a distance that
corresponds to a single step in the device’s Z-Buffer.

Use DEPTH_OFFSET to always cause a filled primitive to be rendered slightly
deeper than other primitives, independent of model transforms. This is useful for
avoiding stitching artifacts caused by rendering lines or polygons on top of other
polygons at the same depth.

Note
RSI suggests using this feature to remove stitching artifacts and not as a means for
“layering” complex scenes with multiple DEPTH_OFFSET values. It is safest to
use only a DEPTH_OFFSET value of 0, the default, and one other non-zero value,
such as 1. Many system-level graphics drivers are not consistent in their handling of
DEPTH_OFFSET values, particularly when multiple non-zero values are used.
This can lead to portability problems because a set of DEPTH_OFFSET values may
produce better results on one machine than on another. Using IDL’s software
renderer will help improve the cross-platform consistency of scenes that use
DEPTH_OFFSET.

Property Type Array of any type

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrPolygon

3434 Chapter 8: Graphics Object Classes
Note
DEPTH_OFFEST has no effect unless the value of the STYLE property is 2
(Filled).

DEPTH_TEST_DISABLE

An integer value that determines whether depth testing is disabled.

• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth testing. A model may also
enable or disable depth testing.

• Set this property to 1 to explicitly disable depth buffer testing while drawing
this object.

• Set this property to 2 to explicitly enable depth testing for this object.

Disabling depth testing allows an object to draw itself on top of other objects already
on the screen, even if the object is located behind them.

This property is registered as an enumerated list, but it is hidden by default.

DEPTH_TEST_FUNCTION

An integer value that determines the depth test function. Set this property to 0 (the
default) to inherit the value set by the parent model or view. The parent view always
sets a depth test function of LESS. A model may also set a depth test function value.
The graphics device compares the object’s depth at a particular pixel location with
the depth stored in the depth buffer at that same pixel location. If the comparison test
passes, the object’s pixel is drawn at that location on the screen and the depth buffer
is updated (if depth writing is enabled).

Property Type INTEGER

Name String Depth offset

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Depth Test Disable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrPolygon IDL Reference Guide

Chapter 8: Graphics Object Classes 3435
Set this property to any of the following values to use the desired function while
rendering this object.

• 0 = INHERIT - use value from parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the object’s depth is less than the depth buffer’s value.

• 3 = EQUAL - passes if the object’s depth is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the object’s depth is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the object’s depth is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the object’s depth is not equal to the depth
buffer’s value.

• 7 = GREATER OR EQUAL - passes if the object’s depth is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Less means closer to the viewer.

This property is registered as an enumerated list, but it is hidden by default.

DEPTH_WRITE_DISABLE

An integer value that determines whether depth writing is disabled.

• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth writing. A model may also
enable or disable depth writing.

• Set this property to 1 to explicitly disable depth buffer writing while rendering
this object.

• Set this property to 2 to explicitly enable depth writing for this object.

Disabling depth writing allows an object to be overdrawn by other objects, even if the
object is located in front of them.

Property Type ENUMLIST

Name String Depth Test Enable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrPolygon

3436 Chapter 8: Graphics Object Classes
This property is registered as an enumerated list, but it is hidden by default.

DOUBLE

A Boolean value that indicates whether data provided by any of the input arguments
will be stored in this object as using double-precision floating-point format.

• Set this property equal to 1 to convert input data to double-precision floating-
point format.

• Set this property equal to 0 to convert input data to single-precision floating-
point format.

• If you do not specify a value for this property, no data type conversion will be
performed, and the data will be stored with its original precision.

Setting this property may be desirable if the data consists of large integers that cannot
be accurately represented in single-precision floating-point arithmetic. This property
is also automatically set to 1 if any of the input arguments are stored using a variable
of type DOUBLE.

FILL_PATTERN

An object reference to an IDLgrPattern object (or an array of IDLgrPattern objects)
that specifies the fill pattern to use for filling the polygons. By default,
FILL_PATTERN is set to a null object reference, specifying a solid fill.

Property Type ENUMLIST

Name String Depth Write Disable

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Object reference

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrPolygon IDL Reference Guide

Chapter 8: Graphics Object Classes 3437
HIDDEN_LINES

A Boolean value that determines whether to draw point and wireframe surfaces using
hidden line (point) removal. By default, hidden line removal is disabled.

HIDE

A Boolean value that indicates whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

In a property sheet, this property appears as an enumerated list with the following
options:

• True = Draw graphic (the default)

• False = Do not draw graphic..

LINESTYLE

An integer value that indicates the line style that should be used to draw the polygon.
The value can be either an integer value specifying a pre-defined line style, or a two-
element vector specifying a stippling pattern.

To use a pre-defined line style, set the LINESTYLE property equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

Property Type BOOLEAN

Name String Remove hidden

Get: No Set: Nos Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Show

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrPolygon

3438 Chapter 8: Graphics Object Classes
• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1’s or 0’s in the
bitmask should be repeated. (That is, if three consecutive 0’s appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 ≤ repeat ≤ 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example, LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off).

In a property sheet, this property appears as follows:

NORMALS

A 3-by-n floating-point array of unit polygon normals at each vertex. If this property
is not set, vertex normals are computed by averaging shared polygon normals at each
vertex. Normals are computed using the Right Hand Rule; that is, if the polygon is
facing the viewer, vertices are taken in counterclockwise order. To remove
previously specified normals, set NORMALS to a scalar.

Note
Computing normals is a computationally expensive operation. Rendering speed
increases significantly if you supply the surface normals explicitly. You can
compute the array of polygon normals used by this property automatically. See
“COMPUTE_MESH_NORMALS” on page 276 for details.

Property Type LINESTYLE

Name String Line style

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrPolygon IDL Reference Guide

Chapter 8: Graphics Object Classes 3439
Once you use the NORMALS property in a call to IDLgrPolygon::Init or
IDLgrPolygon::SetProperty, you are responsible for that IDLgrPolygon’s normals
from then on. IDL will not calculate that IDLgrPolygon’s normals for you
automatically, even if you draw the IDLgrPolygon after vertices or connectivity have
been changed.

If you do not use the NORMALS property, IDL calculates normals the first time it
draws the IDLgrPolygon. IDL reuses those normals for subsequent draws unless it
determines that a fresh recalculation of normals is required, such as if the vertices of
the IDLgrPolygon are changed, or you supply new normals via the NORMALS
property.

PALETTE

An object reference to a palette object (an instance of the IDLgrPalette object class).
This property is only used if the destination device is using the RGB color model. If
so, and a color value for the object is specified as a color index value, the palette set
by this property is used to translate the color to RGB space. If the PALETTE property
on this object is not set, the destination object PALETTE property is used (which
defaults to a grayscale ramp).

This property is registered as a user-defined property, but it is hidden by default.

PARENT

An object reference to the object that contains this object.

Property Type Floating-point array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type USERDEF

Name String Color palette

Get: No Set: No Init: Yes Registered: Yes

Property Type Object reference

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrPolygon

3440 Chapter 8: Graphics Object Classes
POLYGONS

An integer array of polygon descriptions. A polygon description is an integer or long
word array of the form: [n, i0, i1, ..., in-1], where n is the number of vertices that
define the polygon, and i0..in-1 are indices into the X, Y, and Z arguments that
represent the polygon vertices. To ignore an entry in the POLYGONS array, set the
vertex count, n, to 0. To end the drawing list, even if additional array space is
available, set n to -1. If this property is not specified, a single polygon will be
generated.

Tip
To ignore an entry in the POLYGONS array, set the entry to 0.

Note
The connectivity array described by POLYGONS allows an individual object to
contain more than one polygon. Vertex, normal, and color information can be
shared by the multiple polygons. Consequently, the polygon object can represent an
entire mesh and compute reasonable normal estimates in most cases.

REGISTER_PROPERTIES

A Boolean value that determines whether to register properties available for this
object. Set this property to automatically register the following properties of the
object for display in a property sheet. This property is useful mainly when creating
iTools. By default, no properties are registered.

REJECT

An integer value to reject polygons as being hidden depending on the orientation of
their normals. Select from one of the following values:

Property Type Integer array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDLgrPolygon IDL Reference Guide

Chapter 8: Graphics Object Classes 3441
• 0 = No polygons are hidden

• 1 = Polygons whose normals point away from the viewer are hidden

• 2 = Polygons whose normals point toward the viewer are hidden

Set this property to zero to draw all polygons regardless of the direction of their
normals.

In a property sheet, this property appears as an enumerated list with the following
options:

• None

• Normals point away

• Normals point toward

RESET_DATA

A Boolean value that determines whether to treat the data provided via the DATA
property as a new data set unique to this object, rather than overwriting data that is
shared by other objects. There is no reason to use this property if the object on which
the property is being set does not currently share data with another object (that is, if
the SHARE_DATA property is not in use). This property has no effect if no new data
is provided via the DATA property.

SHADE_RANGE

A two-element integer array that specifies the range of pixel values (color indices) to
use for shading. The first element is the color index for the darkest pixel. The second
element is the color index for the brightest pixel. The default is [0, 255]. This

Property Type ENUMLIST

Name String Polygon rejection

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Boolean

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrPolygon

3442 Chapter 8: Graphics Object Classes
property is ignored when the polygons are drawn to a graphics destination that uses
the RGB color model.

SHADING

An integer that represents the type of shading to use:

• 0 = Flat (default): The color of the first vertex in each polygon is used to define
the color for the entire polygon. The color has a constant intensity based upon
the normal vector.

• 1 = Gouraud: The colors along each line are interpolated between vertex
colors, and then along scanlines from each of the edge intensities.

Gouraud shading may be slower than flat shading, but results in a smoother
appearance.

In a property sheet, this property appears as an enumerated list with the following
options:

• Flat

• Gouraud

SHARE_DATA

An object reference to an object with which data is to be shared by this polygon(s).
Polygons may only share data with another polygons object or a polyline. The

Property Type Integer array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type ENUMLIST

Name String Shading

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrPolygon IDL Reference Guide

Chapter 8: Graphics Object Classes 3443
SHARE_DATA property is intended for use when data values are not set via an
argument to the object’s Init method or by setting the object’s DATA property.

STYLE

An integer value that specifies how the polygon should be drawn:

• 0 = Points: Only vertices are drawn, using either COLOR or VERT_COLORS.

• 1 = Lines: Each polygon is outlined by connecting vertices.

• 2 = Filled (default): The polygon faces are shaded.

In a property sheet, this property appears as an enumerated list with the following
options:

• Points

• Lines

• Filled

TEXTURE_COORD

A 2 by n array containing the texture map coordinates, where n is the number of
polygon vertices. Each two-element entry in this array specifies the texture
coordinates for the corresponding vertex in the vertex list. One texture coordinate pair
should exist for each vertex. Use this property in conjunction with the
TEXTURE_MAP property to wrap images over 2-D and 3-D polygons. Default
coordinates are not provided.

Texture coordinates are normalized. This means that the m x n image object specified
via the TEXTURE_MAP property is mapped into the range [0.0, 0.0] to [1.0, 1.0]. If
texture coordinates outside the range [0.0, 0.0] to [1.0, 1.0] are specified, the image
object is tiled into the larger range.

Property Type Object reference

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No

Property Type ENUMLIST

Name String Style

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrPolygon

3444 Chapter 8: Graphics Object Classes
For example, suppose the image object specified via TEXTURE_MAP is a 256 x 256
array, and we want to map the image into a square two units on each side. To
completely fill the square with a single copy of the image:

TEXTURE_COORD = [[0,0], [1,0], [1,1], [0,1]]

To fill the square with four tiled copies of the image:

TEXTURE_COORD = [[0,0], [2,0], [2,2], [0,2]]

TEXTURE_INTERP

A Boolean value that indicates whether bilinear sampling is to be used for texture
mapping an image onto the polygon(s). The default is nearest neighbor sampling.

In a property sheet, this property appears as an enumerated list with the following
options:

• Nearest neighbor

• Bilinear

TEXTURE_MAP

An object reference to an IDLgrImage object to be texture mapped onto the polygons.
The tiling or mapping of the texture is defined expressly by TEXTURE_COORD. If
this property is omitted, polygons are filled with the color specified by the COLOR or
VERT_COLORS property. If both TEXTURE_MAP and COLORS or
VERT_COLORS properties exist, the color of the texture is modulated by the base
color of the object. (This means that for the clearest display of the texture image, the
COLOR property should be set equal to [255,255,255].) To remove a texture map, set
TEXTURE_MAP equal to a null object reference.

Setting TEXTURE_MAP to the object reference of an IDLgrImage that contains an
alpha channel allows you to create a transparent IDLgrPolygon object. If an alpha

Property Type Floating-point array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type ENUMLIST

Name String Texture interpolation

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrPolygon IDL Reference Guide

Chapter 8: Graphics Object Classes 3445
channel is present in the IDLgrImage object, IDL blends the texture using the blend
function src=alpha and dst=1 – alpha, which corresponds to a BLEND_FUNCTION
of (3,4) as described for the IDLgrImage object.

If the width and/or height of the provided image is not an exact power of two, then
the texture map will consist of the given image pixel values resampled to the nearest
larger dimensions that are exact powers of two.

Note
Texture mapping is disabled when rendering to a destination object that uses
Indexed color mode.

Note
Texture mapping is applied to all styles that are set by the STYLE property.

This property is registered as a user-defined property, but it is hidden by default.

THICK

A floating-point value between 1.0 and 10.0, specifying the size of the points or the
thickness of the lines to be drawn when STYLE is set to either 0 (Points) or 1 (Lines),
in points. The default is 1.0 points.

Note
The value of this property is ignored if STYLE is set to 2 (Filled).

Property Type USERDEF

Name String Texture map

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrPolygon

3446 Chapter 8: Graphics Object Classes
In a property sheet, this property appears as follows:

VERT_COLORS

A vector of colors to be used to draw at each vertex. Color is interpolated between
vertices if SHADING is set to 1 (Gouraud). If there are more vertices than elements
in VERT_COLORS, the elements of VERT_COLORS are cyclically repeated. By
default, the polygons are all drawn in the single color provided by the COLOR
property. To remove vertex colors, set VERT_COLORS to a scalar.

Note
If the polygon object is being rendered on a destination device that uses the Indexed
color model, and the view that contains the polygon also contains one or more light
objects, the VERT_COLORS property is ignored and the SHADE_RANGE
property is used instead.

This property is registered as a user-defined property, but it is hidden by default.

XCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert X coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Recommended values are:

Property Type THICKNESS

Name String Thickness

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type USERDEF

Name String Vertex colors

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrPolygon IDL Reference Guide

Chapter 8: Graphics Object Classes 3447
[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

XRANGE

A two-element floating-point vector of the form [xmin, xmax] that specifies the range
of x data coordinates covered by the graphic object. IDL maintains and returns this
property in double-precision floating-point.

YCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert Y coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrPolygon

3448 Chapter 8: Graphics Object Classes
YRANGE

A two-element floating-point vector of the form [ymin, ymax] that specifies the range
of y data coordinates covered by the graphic object. IDL maintains and returns this
property in double-precision floating-point.

ZCOORD_CONV

A floating point vector, [s0, s1], of scaling factors used to convert Z coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

ZERO_OPACITY_SKIP

A Boolean value that makes it possible to gain finer control over the rendering of
textured polygon pixels (texels) with an opacity of 0 in the texture map. Texels with
zero opacity do not affect the color of a screen pixel since they have no opacity.

• 1 = Any texels are “skipped” and not rendered at all (the default).

• 0 = The Z-buffer is updated for these pixels and the display image is not
affected as noted above.

By updating the Z-buffer without updating the display image, the polygon can be
used as a clipping surface for other graphics primitives drawn after the current
graphics object. The default value for this property is 1.

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrPolygon IDL Reference Guide

Chapter 8: Graphics Object Classes 3449
Note
This property has no effect if no texture map is used or if the texture map in use
does not contain an opacity channel.

ZRANGE

A two-element floating-point vector of the form [zmin, zmax] that specifies the range
of z data coordinates covered by the graphic object. IDL maintains and returns this
property in double-precision floating-point.

Property Type BOOLEAN

Name String Skip zero opacity

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrPolygon

3450 Chapter 8: Graphics Object Classes
IDLgrPolygon::Cleanup

The IDLgrPolygon::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrPolygon::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDLgrPolygon IDL Reference Guide

Chapter 8: Graphics Object Classes 3451
IDLgrPolygon::GetCTM

The IDLgrPolygon::GetCTM The IDLgrPolygon::GetCTM function method returns
the 4-by-4 double-precision floating-point graphics transform matrix from the current
object upward through the graphics tree.

Syntax

Result = Obj -> [IDLgrPolygon::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Return Value

Returns the 4-by-4 double-precision floating-point graphics transform matrix from
the current object upward through the graphics tree.

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the polygon
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrPolygonl::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.
IDL Reference Guide IDLgrPolygon

3452 Chapter 8: Graphics Object Classes
Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.

TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.

Version History

Introduced: 5.0
IDLgrPolygon IDL Reference Guide

Chapter 8: Graphics Object Classes 3453
IDLgrPolygon::GetProperty

The IDLgrPolygon::GetProperty procedure method retrieves the value of the property
or group of properties for the polygons.

Syntax

Obj -> [IDLgrPolygon::]GetProperty[, PROPERTY=variable]

Arguments

There are no arguments for this methods.

Keywords

Any property listed under “IDLgrPolygon Properties” on page 3431 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrPolygon

3454 Chapter 8: Graphics Object Classes
IDLgrPolygon::Init

The IDLgrPolygon::Init function method initializes the polygons object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrPolygon' [, X [, Y[, Z]]] [, PROPERTY=value])

or

Result = Obj -> [IDLgrPolygon::]Init([X, [Y, [Z]]] [, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

X

A vector argument providing the X coordinates of the vertices. The vector must
contain at least three elements. If the Y and Z arguments are not provided, X must be
an array of either two or three vectors (i.e., [2,*] or [3,*]), in which case, X[0,*]
specifies the X values, X[1,*] specifies the Y values, and X[2,*] specifies the Z
values.

This argument is stored as double precision floating point values if the argument
variable is of type DOUBLE or if the DOUBLE property is non-zero, otherwise it is
converted to single precision floating point.
IDLgrPolygon IDL Reference Guide

Chapter 8: Graphics Object Classes 3455
Y

A vector argument providing the Y coordinates of the vertices. The vector must
contain at least three elements. This argument is stored as double precision floating
point values if the argument variable is of type DOUBLE or if the DOUBLE property
is non-zero, otherwise it is converted to single precision floating point.

Z

A vector argument providing the Z coordinates of the vertices. The vector must
contain at least three elements. This argument is stored as double precision floating
point values if the argument variable is of type DOUBLE or if the DOUBLE property
is non-zero, otherwise it is converted to single precision floating point.

Keywords

Any property listed under “IDLgrPolygon Properties” on page 3431 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.

Version History

Introduced: 5.0

CLIP_PLANES keyword: 5.6
IDL Reference Guide IDLgrPolygon

3456 Chapter 8: Graphics Object Classes
IDLgrPolygon::SetProperty

The IDLgrPolygon::SetProperty procedure method sets the value of the property or
group of properties for the polygons.

Syntax

Obj -> [IDLgrPolygon::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrPolygon Properties” on page 3431 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.0
IDLgrPolygon IDL Reference Guide

Chapter 8: Graphics Object Classes 3457
IDLgrPolyline

A polyline object represents one or more polylines that share a set of vertices and
rendering attributes.

An IDLgrPolyline object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

IDLitComponent

Creation

See “IDLgrPolyline::Init” on page 3479.

Properties

Objects of this class have the following properties. See “IDLgrPolyline Properties”
on page 3459 for details on individual properties.

• ALL • CLIP_PLANES

• COLOR • DATA

• DEPTH_TEST_DISABLE • DEPTH_TEST_FUNCTION

• DEPTH_WRITE_DISABLE • DOUBLE

• HIDE • LABEL_NOGAPS

• LABEL_OFFSETS • LABEL_OBJECTS

• LABEL_POLYLINES • LABEL_USE_VERTEX_COLOR

• LINESTYLE • PALETTE

• PARENT • POLYLINES

• REGISTER_PROPERTIES • RESET_DATA

• SHADING • SHARE_DATA

• SYMBOL • THICK

• USE_LABEL_COLOR • USE_LABEL_ORIENTATION
IDL Reference Guide IDLgrPolyline

3458 Chapter 8: Graphics Object Classes
In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrPolyline::Cleanup

• IDLgrPolyline::GetCTM

• IDLgrPolyline::GetProperty

• IDLgrPolyline::Init

• IDLgrPolyline::SetProperty

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.0

• USE_TEXT_ALIGNMENTS • VERT_COLORS

• XCOORD_CONV • XRANGE

• YCOORD_CONV • YRANGE

• ZCOORD_CONV • ZRANGE
IDLgrPolyline IDL Reference Guide

Chapter 8: Graphics Object Classes 3459
IDLgrPolyline Properties

IDLgrPolyline objects have the following properties in addition to properties
inherited from any superclasses. Properties with the word “Yes” in the “Get” column
of the property table can be retrieved via IDLgrPolyline::GetProperty. Properties with
the word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrPolyline::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLgrPolyline::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the properties associated with
the state of this object. State information about the object includes things like color,
range, tick direction, etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL..

CLIP_PLANES

A 4-by-N floating-point array of dimensions that specifies the coefficients of the
clipping planes to be applied to this object. The four coefficients for each clipping
plane are of the form [A, B, C, D], where Ax + By + Cz + D = 0. Portions of this
object that fall in the half space Ax + By + Cz + D > 0 will be clipped. By default, the
value of this property is a scalar (-1) indicating that no clipping planes are to be
applied.

Note
The clipping planes specified via this property are applied in addition to the near
and far clipping planes associated with the IDLgrView in which this object appears.

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrPolyline

3460 Chapter 8: Graphics Object Classes
Note
Clipping planes are applied in the data space of this object (prior to the application
of any x, y, or z coordinate conversion).

Note
To determine the maximum number of clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES property of the GetDeviceInfo method for the
IDLgrBuffer, IDLgrClipboard, IDLgrWindow, and IDLgrVRML objects..

COLOR

An RGB or indexed color for drawing polylines. The default color is [0, 0, 0] (black).
This property is ignored if the VERT_COLORS property is provided..

In a property sheet, this property appears as a color property.

DATA

A 2-by-n or a 3-by-n floating-point array which defines, respectively, the 2-D or 3-D
vertex data. DATA is equivalent to the optional arguments, X, Y, and Z. This property
is converted to double-precision floating-point values if the DOUBLE property is set.
Otherwise, it is converted to single-precision floating-point..

DEPTH_TEST_DISABLE

An integer value that determines whether depth testing is disabled.

Property Type Floating-point array

Name String

Get: Yes Set: Yes Init: Yes Registered: No

Property Type COLOR

Name String Color

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Floating-point array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrPolyline IDL Reference Guide

Chapter 8: Graphics Object Classes 3461
• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth testing. A model may also
enable or disable depth testing.

• Set this property to 1 to explicitly disable depth buffer testing while drawing
this object.

• Set this property to 2 to explicitly enable depth testing for this object.

Disabling depth testing allows an object to draw itself on top of other objects already
on the screen, even if the object is located behind them.

This property is registered as an enumerated list, but it is hidden by default.

DEPTH_TEST_FUNCTION

An integer value that determines the depth test function. Set this property to 0 (the
default) to inherit the value set by the parent model or view. The parent view always
sets a depth test function of LESS. A model may also set a depth test function value.
The graphics device compares the object’s depth at a particular pixel location with
the depth stored in the depth buffer at that same pixel location. If the comparison test
passes, the object’s pixel is drawn at that location on the screen and the depth buffer
is updated (if depth writing is enabled).

Set this property to any of the following values to use the desired function while
rendering this object.

• 0 = INHERIT - use value from parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the object’s depth is less than the depth buffer’s value.

• 3 = EQUAL - passes if the object’s depth is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the object’s depth is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the object’s depth is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the object’s depth is not equal to the depth
buffer’s value.

Property Type ENUMLIST

Name String Depth Test Disable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrPolyline

3462 Chapter 8: Graphics Object Classes
• 7 = GREATER OR EQUAL - passes if the object’s depth is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Less means closer to the viewer.

This property is registered as an enumerated list, but it is hidden by default.

DEPTH_WRITE_DISABLE

An integer value that determines whether depth writing is disabled.

• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth writing. A model may also
enable or disable depth writing.

• Set this property to 1 to explicitly disable depth buffer writing while rendering
this object.

• Set this property to 2 to explicitly enable depth writing for this object.

Disabling depth writing allows an object to be overdrawn by other objects, even if the
object is located in front of them.

This property is registered as an enumerated list, but it is hidden by default.

DOUBLE

A Boolean value that indicates whether data provided by any of the input arguments
will be stored in this object as using double-precision floating-point format.

• Set this property equal to 1 to convert input data to double-precision floating-
point format.

• Set this property equal to 0 to convert input data to single-precision floating-
point format.

Property Type ENUMLIST

Name String Depth Test Enable

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Depth Write Disable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrPolyline IDL Reference Guide

Chapter 8: Graphics Object Classes 3463
• If you do not specify a value for this property, no data type conversion will be
performed, and the data will be stored with its original precision.

Setting this property may be desirable if the data consists of large integers that cannot
be accurately represented in single-precision floating-point arithmetic. This property
is also automatically set to 1 if any of the input arguments are stored using a variable
of type DOUBLE.

HIDE

A Boolean value indicating whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

In a property sheet, this property appears as an enumerated list with the following
options:

• True = Draw graphic (the default)

• False = Do not draw graphic..

LABEL_NOGAPS

An integer vector of values indicating whether gaps should be computed for the
corresponding label. A zero value indicates that a gap will be computed for the labels;
a non-zero value indicates that no gap will be computed for the label. If the number of
labels exceeds the number of elements in this vector, the LABEL_NOGAPS values

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type ENUMLIST

Name String Show

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrPolyline

3464 Chapter 8: Graphics Object Classes
will be repeated cyclically. By default, gaps are computed for all labels (so that the
polyline does not pass through the label)..

LABEL_OFFSETS

A scalar or vector of floating-point offsets, [t0, t1, …], that indicate the parametric
offsets along the length of each polyline (specified via the LABEL_POLYLINES
property) at which each label (as specified via the LABEL_OBJECTS property)
would be positioned. If LABEL_OFFSETS is set to a scalar less than zero, then the
offsets will be automatically computed to be evenly distributed along the length of
the polyline. If a scalar value greater than or equal to zero is provided, it is used for
all labels. If a vector is provided, the number of offsets must match the number of
labels provided via LABEL_OBJECTS. By default, this property is set to the scalar, -
1, indicating that the label offsets will be automatically computed..

LABEL_OBJECTS

An object reference (or vector of object references) to specify the labels to be drawn
along the polyline path(s). The objects specified via this property must inherit from
one of the following classes:

• IDLgrSymbol

• IDLgrText

If a single object is provided, and it is an IDLgrText object, each of its strings will
correspond to a label. If a vector of objects is used, any IDLgrText objects should
have only a single string; each object will correspond to a label.

If one or more IDLgrText objects are provided, the LOCATION property of the
provided text object(s) may be overwritten; position is determined according to the
values provided via the LABEL_OFFSETS property. The labels will have the same
color as the corresponding polyline (see the COLOR property) unless the

Property Type Integer vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrPolyline IDL Reference Guide

Chapter 8: Graphics Object Classes 3465
USE_LABEL_COLOR property is specified. The orientation of the label objects
USE_LABEL_ORIENTATION property is specified. The horizontal and vertical
alignment for any text labels will each default to 0.5 (i.e., centered) unless the
USE_TEXT_ALIGNMENTS property is specified.

Note
The objects provided via this property will not be destroyed automatically when this
IDLgrPolyline is destroyed..

LABEL_POLYLINES

An integer or integer vector of polyline indices, [P0, P1, …], that indicate which
polylines are to be labeled. Pi corresponds to the ith polyline specified via the
POLYLINES property. This property is intended to be used in conjunction with the
LABEL_OBJECTS property. If a scalar is provided, all labels will be drawn along
the single indicated polyline. If a vector is provided, the number of polyline indices
must match the number of labels provided via LABEL_OBJECTS.

By default, this property is set to the scalar, 0, indicating that only the first polyline
will be labeled.

Note
If a given polyline has more than one label, then the corresponding polyline index
may appear more than once in the LABEL_POLYLINES vector..

LABEL_USE_VERTEX_COLOR

An integer value that indicates whether labels should be colored according to the
vertex coloring (if the VERT_COLORS property is set).

• A non-zero value = labels should be colored according to the vertex coloring

Property Type Object reference

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Integer or integer vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrPolyline

3466 Chapter 8: Graphics Object Classes
• Zero (the default) = the label will be drawn using the color specified via the
COLOR property of the polyline object (unless the USE_LABEL_COLOR
property is set)..

LINESTYLE

An integer or array value that indicates the line style to be used to draw the polyline.
The value can be either an integer value specifying a pre-defined line style, or a two-
element vector specifying a stippling pattern.

To use a pre-defined line style, set the LINESTYLE property equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1’s or 0’s in the
bitmask should be repeated. (That is, if three consecutive 0’s appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 ≤ repeat ≤ 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example, LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off)..

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrPolyline IDL Reference Guide

Chapter 8: Graphics Object Classes 3467
In a property sheet, this property appears as follows:

PALETTE

An object reference to a palette object (an instance of the IDLgrPalette object class)
that defines the color palette of this object. This property is only used if the
destination device is using the RGB color model. If so, and a color value for the
object is specified as a color index value, the palette set by this property is used to
translate the color to RGB space. If the PALETTE property on this object is not set,
the destination object PALETTE property is used (which defaults to a grayscale
ramp)..

This property is registered as a user-defined property, but it is hidden by default.

PARENT

An object reference to the object that contains this object..

POLYLINES

An integer array of polyline descriptions. A polyline description is an integer or long
word array of the form: [n, i0, i1, ..., in-1], where n is the number of vertices that

Property Type LINESTYLE

Name String Line style

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type USERDEF

Name String Color palette

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Object reference

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrPolyline

3468 Chapter 8: Graphics Object Classes
define the polyline, and i0..in-1 are indices into the X, Y, and Z arguments that
represent the vertices of the polyline(s). To ignore an entry in the POLYLINES array,
set the vertex count, n, and all associated indices to 0. To end the drawing list, even if
additional array space is available, set n to -1. If this property is not specified, a single
connected polyline will be generated from the X, Y, and Z arguments.

Note
The connectivity array described by POLYLINES allows an individual object to
contain more than one polyline. Vertex, normal and color information can be shared
by the multiple polylines. Consequently, the polyline object can represent an entire
mesh and compute reasonable normal estimates in most cases..

REGISTER_PROPERTIES

A Boolean value that determines whether to register properties available for this
object. Set this property to automatically register the following properties of the
object for display in a property sheet. This property is useful mainly when creating
iTools. By default, no properties are registered.

RESET_DATA

A Boolean value that determines whether to treat the data provided via one of the
DATA property as a new data set unique to this object, rather than overwriting data
that is shared by other objects. There is no reason to use this property if the object on
which the property is being set does not currently share data with another object (that

Property Type Integer array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDLgrPolyline IDL Reference Guide

Chapter 8: Graphics Object Classes 3469
is, if the SHARE_DATA property is not in use). This property has no effect if no new
data is provided via the DATA property. .

SHADING

An integer representing the type of shading to use:

• 0 = Flat (default): The color of the second vertex in a line segment is used to
define the color for the entire line segment. The color has a constant intensity
based upon the normal vector.

• 1 = Gouraud: The colors along each line are interpolated between vertex
colors.

Gouraud shading may be slower than flat shading, but results in a smoother
appearance..

In a property sheet, this property appears as an enumerated list with the following
options:

• Flat

• Gouraud

SHARE_DATA

An object reference to an object whose data is to be shared by this polyline. A
polyline may only share data with a polygon object or another polyline. The

Property Type Boolean

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No

Property Type ENUMLIST

Name String Shading

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrPolyline

3470 Chapter 8: Graphics Object Classes
SHARE_DATA property is intended for use when data values are not set via an
argument to the object’s Init method or by setting the object’s DATA property..

SYMBOL

An object reference vector containing one or more instances of the IDLgrSymbol
object class to indicate the plotting symbols to be used at each vertex of the polyline.
If there are more vertices than elements in SYMBOL, the elements of the SYMBOL
vector are cyclically repeated. By default, no symbols are drawn. To remove symbols
from a polyline, set SYMBOL to a scalar..

THICK

A floating-point value between 1.0 and 10.0, specifying the line thickness to be used
to draw the polyline, in points. The default is 1.0 points..

In a property sheet, this property appears as follows:

Property Type Object reference

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No

Property Type Object reference vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type THICKNESS

Name String Thickness

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrPolyline IDL Reference Guide

Chapter 8: Graphics Object Classes 3471
USE_LABEL_COLOR

An integer vector of values to indicate whether the COLOR property value for the
corresponding label object is to be used to draw that label. If the number of labels
exceeds the number of elements in this vector, the USE_LABEL_COLOR values
will be repeated cyclically. By default, this value is zero, indicating that the COLOR
property of each label object will be ignored, and the COLOR property for the
polyline object will be used instead..

USE_LABEL_ORIENTATION

An integer vector of values to indicate whether the orientation of the corresponding
label object is to be used to draw that label. For IDLgrText objects, this refers to the
BASELINE and UPDIR property values. For IDLgrSymbol objects, this refers to the
default (un-rotated) orientation of the symbol. If the number of labels exceeds the
number of elements in this vector, the USE_LABEL_ORIENTATION values will be
repeated cyclically. By default, USE_LABEL_ORIENTATION is zero, indicating
that the orientation will be automatically computed so that the baseline is parallel to
the polyline, and the updir is perpendicular to the polyline. .

USE_TEXT_ALIGNMENTS

A Boolean value that indicates whether, for any IDLgrText labels (as specified via
the LABEL_OBJECTS property), the ALIGNMENT and
VERTICAL_ALIGNMENT property values for the given IDLgrText object(s) are to
be used to draw those labels. By default, this value is zero, indicating that the
ALIGNMENT and VERTICAL_ALIGNMENT properties of the IDLgrText

Property Type Integer vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Integer vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrPolyline

3472 Chapter 8: Graphics Object Classes
object(s) will be overwritten with default values (0.5 for each, indicating centered
labels)..

VERT_COLORS

A vector of colors to be used to draw at each vertex. Color is interpolated between
vertices if SHADING is set to 1 (Gouraud). If there are more vertices than elements
in VERT_COLORS, the elements of VERT_COLORS are cyclically repeated. By
default, the polyline is drawn in the single color provided by the COLOR property.
When VERT_COLORS is used with symbols, the vertex colors override any colors
specified by the symbol object or any colors specified by graphic atoms contained in
a user-defined symbol. To remove vertex colors, set VERT_COLORS to a scalar.

This property is registered as a user-defined property, but it is hidden by default.

XCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert X coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point..

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type USERDEF

Name String Vertex colors

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrPolyline IDL Reference Guide

Chapter 8: Graphics Object Classes 3473
XRANGE

A two-element floating-point vector of the form [xmin, xmax] that specifies the range
of x data coordinates covered by the graphic object. IDL maintains and returns this
property in double-precision floating-point..

YCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert Y coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point..

YRANGE

A two-element floating-point vector of the form [ymin, ymax] that specifies the range
of y data coordinates covered by the graphic object. IDL maintains and returns this
property in double-precision floating-point..

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrPolyline

3474 Chapter 8: Graphics Object Classes
ZCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert Z coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point..

ZRANGE

A two-element floating-point vector of the form [zmin, zmax] that specifies the range
of z data coordinates covered by the graphic object. IDL maintains and returns this
property in double-precision floating-point..

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLgrPolyline IDL Reference Guide

Chapter 8: Graphics Object Classes 3475
IDLgrPolyline::Cleanup

The IDLgrPolyline::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrPolyline::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDL Reference Guide IDLgrPolyline

3476 Chapter 8: Graphics Object Classes
IDLgrPolyline::GetCTM

The IDLgrPolyline::GetCTM function method returns the 4-by-4 double-precision
floating-point graphics transform matrix from the current object upward through the
graphics tree.

Syntax

Result = Obj -> [IDLgrPolyline::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Return Value

Returns the 4-by-4 double-precision floating-point graphics transform matrix from
the current object upward through the graphics tree.

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the polyline
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrPolyline::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.
IDLgrPolyline IDL Reference Guide

Chapter 8: Graphics Object Classes 3477
Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.

TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrPolyline

3478 Chapter 8: Graphics Object Classes
IDLgrPolyline::GetProperty

The IDLgrPolyline::GetProperty procedure method retrieves the value of a property
or group of properties for the polylines.

Syntax

Obj -> [IDLgrPolyline::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrPolyline Properties” on page 3459 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.0
IDLgrPolyline IDL Reference Guide

Chapter 8: Graphics Object Classes 3479
IDLgrPolyline::Init

The IDLgrPolyline::Init function method initializes the polylines object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrPolyline' [, X [, Y[, Z]]] [, PROPERTY=value])

or

Result = Obj -> [IDLgrPolyline::]Init([X, [Y, [Z]]] [, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

X

A vector providing the X components of the points to be connected. If the Y and Z
arguments are not provided, X must be an array of either two or three vectors (i.e.,
[2,*] or [3,*]), in which case, X[0,*] specifies the X values, X[1,*] specifies the Y
values, and X[2,*] specifies the Z values. This argument is stored as double precision
floating point values if the argument variable is of type DOUBLE or if the DOUBLE
property is non-zero, otherwise it is stored as single precision floating point.

Y

A vector providing the Y coordinates of the points to be connected. This argument is
stored as double precision floating point values if the argument variable is of type
IDL Reference Guide IDLgrPolyline

3480 Chapter 8: Graphics Object Classes
DOUBLE or if the DOUBLE property is non-zero, otherwise it is stored as single
precision floating point.

Z

A vector providing the Z coordinates of the points to be connected. This argument is
stored as double precision floating point values if the argument variable is of type
DOUBLE or if the DOUBLE property is non-zero, otherwise it is stored as single
precision floating point.

Keywords

Any property listed under “IDLgrPolyline Properties” on page 3459 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.

Version History

Introduced: 5.0

CLIP_PLANES, LABEL_NOGAPS, LABEL_POLYLINES, LABEL_OFFSETS,
LABEL_OBJECTS, LABEL_USE_VERTEX_COLOR, USE_LABEL_COLOR,
USE_LABEL_ORIENTATION, USE_TEXT_ALIGNMENTS keywords: 5.6
IDLgrPolyline IDL Reference Guide

Chapter 8: Graphics Object Classes 3481
IDLgrPolyline::SetProperty

The IDLgrPolylines::SetProperty procedure method sets the value of a property or
group of properties for the polylines.

Syntax

Obj -> [IDLgrPolyline::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrPolyline Properties” on page 3459 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrPolyline

3482 Chapter 8: Graphics Object Classes
IDLgrPrinter

A printer object represents a hardcopy graphics destination. When a printer object is
created, the printer device to which it refers is the default system printer. To change
the printer, utilize the printer dialogs (see “DIALOG_PRINTJOB” on page 508 and
“DIALOG_PRINTERSETUP” on page 506.)

Note
Objects or subclasses of this type can not be saved or restored.

Superclasses

This class has no superclass.

Creation

See “IDLgrPrinter::Init” on page 3500.

Properties

Objects of this class have the following properties. See “IDLgrPrinter Properties” on
page 3484 for details on individual properties.

• ALL

• COLOR_MODEL

• DIMENSIONS

• GAMMA

• GRAPHICS_TREE

• LANDSCAPE

• N_COLORS

• N_COPIES

• PALETTE

• PRINT_QUALITY

• QUALITY

• REGISTER_PROPERTIES
IDLgrPrinter IDL Reference Guide

Chapter 8: Graphics Object Classes 3483
• RESOLUTION

• UNITS

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrPrinter::Cleanup

• IDLgrPrinter::Draw

• IDLgrPrinter::GetContiguousPixels

• IDLgrPrinter::GetFontnames

• IDLgrPrinter::GetProperty

• IDLgrPrinter::GetTextDimensions

• IDLgrPrinter::Init

• IDLgrPrinter::NewDocument

• IDLgrPrinter::NewPage

• IDLgrPrinter::SetProperty

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.0
IDL Reference Guide IDLgrPrinter

3484 Chapter 8: Graphics Object Classes
IDLgrPrinter Properties

IDLgrPrinter objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLgrPrinter::GetProperty. Properties with the
word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrPrinter::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLgrPrinter::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the properties associated with
the state of this object. State information about the object includes things like color,
range, tick direction, etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

COLOR_MODEL

An integer value that determines the color model to be used for the buffer:

• 0 = RGB (default)

• 1 = Color Index

In a property sheet, this property appears as an enumerated list with the following
options:

• RGB

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLgrPrinter IDL Reference Guide

Chapter 8: Graphics Object Classes 3485
• Indexed

DIMENSIONS

A two-element integer vector of the form [width, height] specifying the overall
‘drawable’ area that may be printed on a page. By default, the dimensions are
measured in device units (refer to the UNITS property).

GAMMA

An object reference to an IDLgrPalette object whose entries will be used as the
gamma correction table for color printing. Gamma correction only applies if
COLOR_MODEL=1 (Indexed).

When the color palette (specified via the PALETTE property) is loaded for the
printer, if a gamma correction table is provided, then each of the [R,G,B] entries in
the color palette will be translated through the gamma correction table. For example,
at color index i:

correctedRed[i] = gammaRed[paletteRed[i]]
correctedGreen[i] = gammaGreen[paletteGreen[i]]
correctedBlue[i] = gammaBlue[paletteBlue[i]]

GRAPHICS_TREE

An object reference of type IDLgrScene, IDLgrViewgroup, or IDLgrView that
specifies the graphics tree of this object. If this property is set to a valid object
reference, calling the Draw method on the destination object with no arguments will

Property Type ENUMLIST

Name String Color model

Get: Yes Set: No Init: Yes Registered: Yes

Property Type Integer vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Object reference

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrPrinter

3486 Chapter 8: Graphics Object Classes
cause the object reference associated with this property to be drawn. If this object is
valid and the destination object is destroyed, this object reference will be destroyed as
well. By default the GRAPHICS_TREE property is set equal to the null-object.

LANDSCAPE

A Boolean value that indicates whether to produce hardcopy output in landscape
mode. The default value of zero indicates Portrait mode.

Note
The printer driver may not support the LANDSCAPE option; in general, it is best to
use the printer dialogs to set orientation.

N_COLORS

An integer value that indicates the number of colors (between 2 and 256) to be used if
the COLOR_MODEL is set to Indexed (1). This property is ignored if the
COLOR_MODEL is set to RGB (0).

N_COPIES

An integer that determines the number of copies of print data to be generated. The
default is 1 copy.

Property Type Object reference

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type INTEGER

Name String Number of colors

Get: Yes Set: No Init: Yes Registered: Yes
IDLgrPrinter IDL Reference Guide

Chapter 8: Graphics Object Classes 3487
Note
Your specific printer driver may not support the N_COPIES option. You can also
use the printer dialogs to set the number of copies.

PALETTE

An object reference to a palette object (an instance of the IDLgrPalette object class)
to specify the red, green, and blue values that are to be loaded into the graphics
destination’s color lookup table if the Indexed color model is used.

This property is registered as a user-defined property, but it is hidden by default.

PRINT_QUALITY

An integer value indicating the print quality at which graphics are to be drawn to the
printer. Note that the print quality is independent of the rendering quality (as set by
the QUALITY property). Valid values are:

• 0 = Low

• 1 = Normal (this is the default)

• 2 = High

Generally, setting the print quality to a lower value will increase the speed of the
printing job, but decrease the resolution; setting it to a higher value will cause the
printing job to take more time, but will increase the resolution.

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type USERDEF

Name String Color palette

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrPrinter

3488 Chapter 8: Graphics Object Classes
Note
Some printer drivers may not be able to support different printing qualities. In these
cases, the setting of the PRINT_QUALITY property will be quietly ignored.

QUALITY

An integer value that indicates the rendering quality at which graphics are to be
drawn to this destination. Note that the rendering quality is independent of the print
quality (as set by the PRINT_QUALITY property). Valid values are:

• 0 = Low

• 1 = Medium

• 2 = High (default)

In a property sheet, this property appears as an enumerated list with the following
options:

• Low

• Medium

• High

REGISTER_PROPERTIES

A Boolean value that determines whether to register properties available for this
object. Set this property to automatically register the following properties of the

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type ENUMLIST

Name String Draw quality

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrPrinter IDL Reference Guide

Chapter 8: Graphics Object Classes 3489
object for display in a property sheet. This property is useful mainly when creating
iTools. By default, no properties are registered.

RESOLUTION

A floating-point vector of the form [xres, yres] defining the pixel resolution,
measured in centimeters per pixel. This value is stored in double precision.

UNITS

An integer value that indicates the units of measure for the DIMENSIONS property.
Valid values are:

• 0 = Device (default)

• 1 = Inches

• 2 = Centimeters

• 3 = Normalized: relative to the drawable area on a page.

Note
If you change the value of the UNITS property (using the SetProperty method), IDL
will convert the current value of the DIMENSIONS property to the new units.

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No

Property Type FLOAT

Name String Resolution

Get: Yes Set: No Init: No Registered: Yes

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrPrinter

3490 Chapter 8: Graphics Object Classes
IDLgrPrinter::Cleanup

The IDLgrPrinter::Cleanup procedure method performs all cleanup on the object. If a
document is open (that is, if graphics have been draw to the printer), the document is
closed and the pending graphics are sent to the current printer.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrPrinter::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDLgrPrinter IDL Reference Guide

Chapter 8: Graphics Object Classes 3491
IDLgrPrinter::Draw

The IDLgrPrinter::Draw procedure method draws the given picture to this graphics
destination.

Note
Objects are drawn to the destination device in the order that they are added to the
model, view, viewgroup, or scene object that contains them.

Syntax

Obj -> [IDLgrPrinter::]Draw [, Picture] [, VECTOR={ 0 | 1 }]

Arguments

Picture

The view (an instance of an IDLgrView object), viewgroup (an instance of an
IDLgrViewgroup object), or scene (an instance of an IDLgrScene object) to be
drawn.

Keywords

VECTOR

Set this keyword to indicate the type of graphics primitives generated. Valid values
include:

• 0 = Bitmap (default)

• 1 = Vector

If VECTOR = 0 (Bitmap), the Draw method renders the scene to a buffer and then
copies the buffer to the printer in bitmap format. The bitmap retains the quality of the
original image.

If VECTOR = 1 (Vector), the Draw method renders the scene using simple vector
operations that result in a representation of the Scene that is scalable to the printer.
The vector representation does not retain all the attributes of the original image. The
vector representation is sent to the printer.
IDL Reference Guide IDLgrPrinter

3492 Chapter 8: Graphics Object Classes
Examples

This example demonstrates the process of printing the contents of an IDL graphics
display object (a buffer or a window) to an IDLgrPrinter object. The resolution of the
printed page is based on the resolution of the screen. The model object in the printer
object must be scaled to maintain the same size as displayed on the screen. The
location of the view must also be changed to center the display on the page.

PRO PrintingAnImage

; Determine the path to the "convec.dat" file.
convecFile = FILEPATH('convec.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize the parameters of the image with the file.
convecSize = [248, 248]
convecImage = BYTARR(convecSize[0], convecSize[1])

; Open the file, read in the image, and then close the
; file.
OPENR, unit, convecFile, /GET_LUN
READU, unit, convecImage
FREE_LUN, unit

; Initialize the display objects.
windowSize = convecSize
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = windowSize, $
TITLE = 'Earth Mantle Convection')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., windowSize])

oModel = OBJ_NEW('IDLgrModel')

; Initialize the image object with its palette.
oPalette = OBJ_NEW('IDLgrPalette')
oPalette -> LOADCT, 27
oImage = OBJ_NEW('IDLgrImage', convecImage, $

PALETTE = oPalette)

; Add image to model, which is added to the view, and
; then the view is displayed in the window.
oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

; Determine the centimeter measurements of the image
; on the screen.
oWindow -> GetProperty, RESOLUTION = screenResolution
IDLgrPrinter IDL Reference Guide

Chapter 8: Graphics Object Classes 3493
windowSizeCM = windowSize*screenResolution

; Initialize printer destination object.
oPrinter = OBJ_NEW('IDLgrPrinter', PRINT_QUALITY = 2, $

QUALITY = 2)

; Obtain page parameters to determine the page
; size in centimeters.
oPrinter -> GetProperty, DIMENSIONS = pageSize, $

RESOLUTION = pageResolution
pageSizeCM = pageSize*pageResolution

; Calculate a ratio between screen size and page size.
pageScale = windowSizeCM/pageSizeCM

; Use ratio to scale the model within the printer to the
; same size as the model on the screen.
oModel -> Scale, pageScale[0], pageScale[1], 1.

; Determine the center of the page and the image in
; pixels.
centering = ((pageSizeCM - windowSizeCM)/2.) $

/pageResolution

; Move the view to center the image.
oView -> SetProperty, LOCATION = centering

; Display the view within the printer destination.
oPrinter -> Draw, oView
oPrinter -> NewDocument

; Cleanup object references.
OBJ_DESTROY, [oPrinter, oView, oPalette]

END

Version History

Introduced: 5.0
IDL Reference Guide IDLgrPrinter

3494 Chapter 8: Graphics Object Classes
IDLgrPrinter::GetContiguousPixels

The IDLgrPrinter::GetContiguousPixels function method returns an array of long
integers whose length is equal to the number of colors available in the index color
mode (that is, the value of the N_COLORS property).

The returned array marks contiguous pixels with the ranking of the range’s size. This
means that within the array, the elements in the largest available range are set to zero,
the elements in the second-largest range are set to one, etc. Use this range to set an
appropriate colormap for use with the SHADE_RANGE property of the
IDLgrSurface and IDLgrPolygon object classes.

To get the largest contiguous range, you could use the following IDL command:

result = obj -> GetContiguousPixels()
Range0 = WHERE(result EQ 0)

A contiguous region in the colormap can be increasing or decreasing in values. The
following would be considered contiguous:

[0,1,2,3,4]
[4,3,2,1,0]

Syntax

Result = Obj -> [IDLgrPrinter::]GetContiguousPixels()

Return Value

Returns an array of long integers whose length is equal to the number of colors
available in the index color mode.

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDLgrPrinter IDL Reference Guide

Chapter 8: Graphics Object Classes 3495
IDLgrPrinter::GetFontnames

The IDLgrPrinter::GetFontnames function method returns the list of available fonts
that can be used in IDLgrFont objects. This method will only return the names of the
available TrueType fonts. Hershey fonts will not be returned; see Appendix H,
“Fonts” for more information.

Syntax

Result = Obj -> [IDLgrPrinter::]GetFontnames(FamilyName [, IDL_FONTS={0 | 1 |
2}] [, STYLES=string])

Return Value

Returns the list of available fonts that can be used in IDLgrFont objects.

Arguments

FamilyName

A string representing the name of the font family to which all of the returned fonts
must belong. The string may be a fully specified family name—such as “Helvetica”.
You can use both “*” and “?” as wildcard characters, matching any number of
characters or one character respectively. To return all available family names, use
“*”.

Keywords

IDL_FONTS

Set this keyword to specify where to search for fonts that IDL may use. Set
IDL_FONT to 1 to select only fonts installed by IDL and to 2 to select only fonts
detected in the host operating system. The default value is 0, specifying that both IDL
and operating system fonts should be returned.

STYLES

Set this keyword to a string specifying the styles that are to be matched by the
returned font names. You can set STYLES to a fully specified style string, such as
“Bold Italic”. If you set STYLES to the null string, ' ', only fontnames without style
modifiers will be returned. You can use both “*” and “?” as wildcard characters,
matching any number of characters or one character respectively. The default value is
IDL Reference Guide IDLgrPrinter

3496 Chapter 8: Graphics Object Classes
the string, “*”, which returns all fontnames containing the FamilyName argument,
with or without style modifiers.

Version History

Introduced: 5.0
IDLgrPrinter IDL Reference Guide

Chapter 8: Graphics Object Classes 3497
IDLgrPrinter::GetProperty

The IDLgrPrinter::GetProperty procedure method retrieves the value of a property or
group of properties for the printer.

Syntax

Obj -> [IDLgrPrinter::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrPrinter Properties” on page 3484 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrPrinter

3498 Chapter 8: Graphics Object Classes
IDLgrPrinter::GetTextDimensions

The IDLgrPrinter::GetTextDimensions function method retrieves the dimensions of a
text or axis object that will be rendered in a window. The result is a 3-element double-
precision floating-point vector [xDim, yDim, zDim] representing the dimensions of
the text or axis object, measured in data units. If the object specified is an axis object,
the result encompasses the tick labels and the title of the axis (if any).

Syntax

Result = Obj ->[IDLgrPrinter::]GetTextDimensions(TextObj
[, DESCENT=variable] [, PATH=objref(s)])

Return Value

Returns a 3-element double-precision floating-point vector [xDim, yDim, zDim]
representing the dimensions of the text or axis object, measured in data units.

Arguments

TextObj

The object reference to a text or axis object for which the text dimensions are
requested.

Keywords

DESCENT

Set this keyword equal to a named variable that will contain an array of double-
precision floating-point values (one for each string in the IDLgrText object). The
values represent the distance to travel (parallel to the UPDIR vector) from the text
baseline to reach the bottom of the lowest descender in the string. All values will be
negative numbers, or zero. This keyword is valid only if TextObj is an IDLgrText
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the text dimensions.
Each path object reference specified with this keyword must contain an alias. The
text dimensions are computed for the version of the object falling within that path. If
IDLgrPrinter IDL Reference Guide

Chapter 8: Graphics Object Classes 3499
this keyword is not set, the PARENT properties determine the path from the current
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrPrinter::GetTextDimensions is called from within a Draw method and the
PATH keyword is not set, the alias path used to find the object during the draw is
used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrPrinter

3500 Chapter 8: Graphics Object Classes
IDLgrPrinter::Init

The IDLgrPrinter::Init function method initializes the printer object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrPrinter' [, PROPERTY=value])

or

Result = Obj -> [IDLgrPrinter::]Init([PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLgrPrinter Properties” on page 3484 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.
IDLgrPrinter IDL Reference Guide

Chapter 8: Graphics Object Classes 3501
Version History

Introduced: 5.0
IDL Reference Guide IDLgrPrinter

3502 Chapter 8: Graphics Object Classes
IDLgrPrinter::NewDocument

The IDLgrPrinter::NewDocument procedure method closes the current document (a
page or group of pages), which causes any pending output to be sent to the printer,
finishing the printer job.

Syntax

Obj -> [IDLgrPrinter::]NewDocument

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDLgrPrinter IDL Reference Guide

Chapter 8: Graphics Object Classes 3503
IDLgrPrinter::NewPage

The IDLgrPrinter::NewPage procedure method issues a new page command to the
printer.

Syntax

Obj -> [IDLgrPrinter::]NewPage

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDL Reference Guide IDLgrPrinter

3504 Chapter 8: Graphics Object Classes
IDLgrPrinter::SetProperty

The IDLgrPrinter::SetProperty procedure method sets the value of a property or
group of properties for the printer.

Syntax

Obj -> [IDLgrPrinter::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrPrinter Properties” on page 3484 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.0
IDLgrPrinter IDL Reference Guide

Chapter 8: Graphics Object Classes 3505
IDLgrROI

The IDLgrROI object class is an object graphics representation of a region of interest.

Superclasses

IDLanROI

IDLitComponent

Creation

See “IDLgrROI::Init” on page 3518.

Properties

Objects of this class have the following properties. See “IDLgrROI Properties” on
page 3507 for details on individual properties.

• ALL

• CLIP_PLANES

• COLOR

• DEPTH_TEST_DISABLE

• DEPTH_TEST_FUNCTION

• DEPTH_WRITE_DISABLE

• DOUBLE

• HIDE

• LINESTYLE

• PALETTE

• REGISTER_PROPERTIES

• STYLE

• SYMBOL

• THICK

• XCOORD_CONV

• XRANGE
IDL Reference Guide IDLgrROI

3506 Chapter 8: Graphics Object Classes
• YCOORD_CONV

• YRANGE

• ZCOORD_CONV

• ZRANGE

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

The IDLgrROI object class has the following methods:

• IDLgrROI::Cleanup

• IDLgrROI::GetProperty

• IDLgrROI::Init

• IDLgrROI::PickVertex

• IDLgrROI::SetProperty

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.3
IDLgrROI IDL Reference Guide

Chapter 8: Graphics Object Classes 3507
IDLgrROI Properties

IDLgrROI objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLgrROI::GetProperty. Properties with the word
“Yes” in the “Init” column of the property table can be retrieved via IDLgrROI::Init.
Properties with the word “Yes” in the “Set” column in the property table can be set
via IDLgrROI::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure with the values of all of the properties associated with the
state of this object. State information about the object may include things like color,
line style, etc., but not vertex data or user values.

Note
The fields in this structure may change in subsequent releases of IDL.

CLIP_PLANES

A 4-by-N floating-point array that specifies the coefficients of the clipping planes to
be applied to this object. The four coefficients for each clipping plane are of the form
[A, B, C, D], where Ax + By + Cz + D = 0. Portions of this object that fall in the half
space Ax + By + Cz + D > 0 will be clipped. By default, the value of this property is a
scalar (-1) indicating that no clipping planes are to be applied.

Note
The clipping planes specified via this property are applied in addition to the near
and far clipping planes associated with the IDLgrView in which this object appears.

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrROI

3508 Chapter 8: Graphics Object Classes
Note
Clipping planes are applied in the data space of this object (prior to the application
of any x, y, or z coordinate conversion).

Note
To determine the maximum number of clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES property of the GetDeviceInfo method for the
IDLgrBuffer, IDLgrClipboard, IDLgrWindow, and IDLgrVRML objects.

COLOR

A vector that indicates an RGB or indexed color for drawing the region. The default
color is [0, 0, 0].

In a property sheet, this property appears as a color property.

DEPTH_TEST_DISABLE

An integer value that determines whether depth testing is disabled.

• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth testing. A model may also
enable or disable depth testing.

• Set this property to 1 to explicitly disable depth buffer testing while drawing
this object.

• Set this property to 2 to explicitly enable depth testing for this object.

Disabling depth testing allows an object to draw itself on top of other objects already
on the screen, even if the object is located behind them.

Property Type Floating-point array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type COLOR

Name String Color

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrROI IDL Reference Guide

Chapter 8: Graphics Object Classes 3509
This property is registered as an enumerated list, but it is hidden by default.

DEPTH_TEST_FUNCTION

An integer value that determines the depth test function. Set this property to 0 (the
default) to inherit the value set by the parent model or view. The parent view always
sets a depth test function of LESS. A model may also set a depth test function value.
The graphics device compares the object’s depth at a particular pixel location with
the depth stored in the depth buffer at that same pixel location. If the comparison test
passes, the object’s pixel is drawn at that location on the screen and the depth buffer
is updated (if depth writing is enabled).

Set this property to any of the following values to use the desired function while
rendering this object.

• 0 = INHERIT - use value from parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the object’s depth is less than the depth buffer’s value.

• 3 = EQUAL - passes if the object’s depth is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the object’s depth is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the object’s depth is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the object’s depth is not equal to the depth
buffer’s value.

• 7 = GREATER OR EQUAL - passes if the object’s depth is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Less means closer to the viewer.

Property Type ENUMLIST

Name String Depth Test Disable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrROI

3510 Chapter 8: Graphics Object Classes
This property is registered as an enumerated list, but it is hidden by default.

DEPTH_WRITE_DISABLE

An integer value that determines whether depth writing is disabled.

• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth writing. A model may also
enable or disable depth writing.

• Set this property to 1 to explicitly disable depth buffer writing while rendering
this object.

• Set this property to 2 to explicitly enable depth writing for this object.

Disabling depth writing allows an object to be overdrawn by other objects, even if the
object is located in front of them.

This property is registered as an enumerated list, but it is hidden by default.

DOUBLE

A Boolean value that indicates whether data provided by any of the input arguments
will be stored in this object as using double-precision floating-point format.

• Set this property equal to 1 to convert input data to double-precision floating-
point format.

• Set this property equal to 0 to convert input data to single-precision floating-
point format.

• If you do not specify a value for this property, no data type conversion will be
performed, and the data will be stored with its original precision.

Setting this property may be desirable if the data consists of large integers that cannot
be accurately represented in single-precision floating-point arithmetic. This property

Property Type ENUMLIST

Name String Depth Test Enable

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Depth Write Disable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrROI IDL Reference Guide

Chapter 8: Graphics Object Classes 3511
is also automatically set to 1 if any of the input arguments are stored using a variable
of type DOUBLE.

HIDE

A Boolean value indicating whether this region should be drawn:

• 0 = draw the region (the default)

• 1 = do not draw the region

In a property sheet, this property appears as an enumerated list with the following
options:

• True = Draw graphic (the default)

• False = Do not draw graphic..

LINESTYLE

An integer that indicates the line style to be used to draw the region. The value can be
either an integer value specifying a pre-defined line style, or a two-element vector
specifying a stippling pattern. The valid values for the pre-defined line styles are:

• 0 = solid (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type ENUMLIST

Name String Show

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrROI

3512 Chapter 8: Graphics Object Classes
• 6 = no line drawn

PALETTE

An object reference to a palette object (an instance of the IDLgrPalette object class)
that defines the color palette of this object. This property is only used for Object
Graphics destinations using the RGB color model. In this case, if the color value for
the region is specified as a color index value, this palette is used to look up the color
for the region. If the PALETTE property is not set, the destination object PALETTE
property is used, which defaults to a gray scale ramp.

This property is registered as a user-defined property, but it is hidden by default.

REGISTER_PROPERTIES

A Boolean value that determines whether to register properties available for this
object. Set this property to automatically register the following properties of the
object for display in a property sheet. This property is useful mainly when creating
iTools. By default, no properties are registered.

STYLE

An integer value that indicates the geometrical primitive to use to represent the
region when displayed. Valid values include:

• 0 = points

• 1 = open polyline

Property Type ENUMLIST

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type USERDEF

Name String Color palette

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDLgrROI IDL Reference Guide

Chapter 8: Graphics Object Classes 3513
• 2 = closed polyline (the default)

SYMBOL

An object reference to an IDLgrSymbol object for the symbol used for display when
STYLE = 0 (points). By default, a dot is used.

THICK

A floating-point value between 1.0 and 10.0, specifying the size of the points, or the
thickness of the lines, measured in points. The default is 1.0 points.

In a property sheet, this property appears as follows:

XCOORD_CONV

A vector, [s0, s1], of scaling factors used to convert X coordinates from data units to
normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1*DataX

Recommended values are:

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Object reference

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type THICKNESS

Name String Thickness

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrROI

3514 Chapter 8: Graphics Object Classes
[(–Xmin)/(Xmax – Xmin), 1.0/(Xmax – Xmin)]

IDL converts, maintains, and returns this data as double-precision floating-point.

XRANGE

A two-element floating-point vector of the form [xmin, xmax] that specifies the range
of x data coordinates covered by the graphic object. IDL maintains and returns this
property in double-precision floating-point.

YCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert Y coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1*DataY

Recommended values are:

[(–Ymin)/(Ymax – Ymin), 1.0/(Ymax – Ymin)]

IDL converts, maintains, and returns this data as double-precision floating-point.

Property Type Double-precision floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrROI IDL Reference Guide

Chapter 8: Graphics Object Classes 3515
YRANGE

A two-element floating-point vector of the form [ymin, ymax] that specifies the range
of y data coordinates covered by the graphic object. IDL maintains and returns this
property in double-precision floating-point.

ZCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert Z coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1*DataZ

Recommended values are:

[(–Zmin)/(Zmax – Zmin), 1.0/(Zmax – Zmin)]

IDL converts, maintains, and returns this data as double-precision floating-point.

ZRANGE

A two-element floating-point vector of the form [zmin, zmax] that specifies the range
of z data coordinates covered by the graphic object. IDL maintains and returns this
property in double-precision floating-point.

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrROI

3516 Chapter 8: Graphics Object Classes
IDLgrROI::Cleanup

The IDLgrROI::Cleanup procedure method performs all cleanup for a region of
interest object.

Note
Cleanup methods are special life cycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you cannot
call the Cleanup method directly. There is one exception to this rule: If you write
your own subclass of this class, you can call the Cleanup method from within the
Cleanup method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrROI::]Cleanup (In a subclass’ Cleanup method only.)

Arguments

None

Keywords

None

Version History

Introduced: 5.3
IDLgrROI IDL Reference Guide

Chapter 8: Graphics Object Classes 3517
IDLgrROI::GetProperty

The IDLgrROI::GetProperty procedure method retrieves the value of a property or
group of properties for the Object Graphics region.

Syntax

Obj -> [IDLgrROI::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrROI Properties” on page 3507 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.3
IDL Reference Guide IDLgrROI

3518 Chapter 8: Graphics Object Classes
IDLgrROI::Init

The IDLgrROI::Init function method initializes an Object Graphics region of interest.

Note
Init methods are special life cycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrROI' [, X[, Y[, Z]]] [, PROPERTY=value])

or

Result = Obj -> [IDLgrROI::]Init([X[, Y[, Z]]] [, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

X

A vector providing the X components of the vertices for the region. If the Y and Z
arguments are not specified, X must be a two-dimensional array with the leading
dimension either 2 or 3 ([2, *] or [3, *]), in which case, X[0, *] represents the X
values, X[1, *] represents the Y values, and X[2, *] represents the Z values. This
argument is stored as double precision floating point values if the argument variable
is of type DOUBLE or if the DOUBLE property is non-zero. Otherwise it is
converted and stored as single precision floating point.
IDLgrROI IDL Reference Guide

Chapter 8: Graphics Object Classes 3519
Y

A vector providing the Y components of the vertices. This argument is stored as
double precision floating point values if the argument variable is of type DOUBLE or
if the DOUBLE property is non-zero. Otherwise it is converted and stored as single
precision floating point.

Z

A scalar or vector providing the Z components of the vertices. If not provided, Z
values default to 0.0. This argument is stored as double precision floating point
values if the argument variable is of type DOUBLE or if the DOUBLE property is
non-zero. Otherwise it is converted and stored as single precision floating point.

Keywords

Any property listed under “IDLgrROI Properties” on page 3507 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.

Version History

Introduced: 5.3

CLIP_PLANES keyword: 5.6
IDL Reference Guide IDLgrROI

3520 Chapter 8: Graphics Object Classes
IDLgrROI::PickVertex

The IDLgrROI::PickVertex function method picks a vertex of the region which, when
projected onto the given destination device, is nearest to the given 2-D device
coordinate.

Syntax

Result = Obj -> [IDLgrROI::]PickVertex(Dest, View, Point [, PATH=objref])

Return Value

Returns the index of the nearest region vertex. If two or more vertices are equally
nearest to the point, the smallest index of those vertices is returned.

Arguments

Dest

An object reference to an IDLgrWindow or IDLgrBuffer for which the pick is to
occur.

View

An object reference to the IDLgrView containing this region.

Point

A two-element vector, [x, y], representing the device location used for picking a
nearest vertex.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to map the device position to a
location in the data space of the region. Each path object reference specified with this
keyword must contain an alias. The selected vertex is computed for the version of the
object falling within the specified path. If this keyword is not set, the parent
properties determine the path from the current object to the top of the graphics
hierarchy and no alias paths are pursued.
IDLgrROI IDL Reference Guide

Chapter 8: Graphics Object Classes 3521
Version History

Introduced: 5.3
IDL Reference Guide IDLgrROI

3522 Chapter 8: Graphics Object Classes
IDLgrROI::SetProperty

The IDLgrROI::SetProperty procedure method sets the value of a property or group
of properties for the Object Graphics region.

Syntax

Obj -> [IDLgrROI::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrROI Properties” on page 3507 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.3
IDLgrROI IDL Reference Guide

Chapter 8: Graphics Object Classes 3523
IDLgrROIGroup

The IDLgrROIGroup object class is an Object Graphics representation of a group of
regions of interest.

Superclasses

IDLanROIGroup.

IDLitComponent

Creation

See “IDLgrROIGroup::Init” on page 3535.

Properties

Objects of this class have the following properties. See “IDLgrROIGroup Properties”
on page 3525 for details on individual properties.

• ALL

• CLIP_PLANES

• COLOR

• DEPTH_TEST_DISABLE

• DEPTH_TEST_FUNCTION

• DEPTH_WRITE_DISABLE

• HIDE

• PARENT

• XCOORD_CONV

• XRANGE

• YCOORD_CONV

• YRANGE

• ZCOORD_CONV

• ZRANGE

In addition, objects of this class inherit the properties of all superclasses of this class.
IDL Reference Guide IDLgrROIGroup

3524 Chapter 8: Graphics Object Classes
Methods

The IDLgrROIGroup class has the following methods:

• IDLgrROIGroup::Add

• IDLgrROIGroup::Cleanup

• IDLgrROIGroup::GetProperty

• IDLgrROIGroup::Init

• IDLgrROIGroup::PickRegion

• IDLgrROIGroup::SetProperty

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.3
IDLgrROIGroup IDL Reference Guide

Chapter 8: Graphics Object Classes 3525
IDLgrROIGroup Properties

IDLgrROIGroup objects have the following properties in addition to properties
inherited from any superclasses. Properties with the word “Yes” in the “Get” column
of the property table can be retrieved via IDLgrROIGroup::GetProperty. Properties
with the word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrROIGroup::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLgrROIGroup::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure with the values of all of the properties associated with the
state of this object.

Note
The fields in this structure may change in subsequent releases of IDL.

CLIP_PLANES

A 4-by-N floating-point array that specifies the coefficients of the clipping planes to
be applied to this object. The four coefficients for each clipping plane are of the form
[A, B, C, D], where Ax + By + Cz + D = 0. Portions of this object that fall in the half
space Ax + By + Cz + D > 0 will be clipped. By default, the value of this property is a
scalar (-1) indicating that no clipping planes are to be applied.

Note
The clipping planes specified via this property are applied in addition to the near
and far clipping planes associated with the IDLgrView in which this object appears.

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrROIGroup

3526 Chapter 8: Graphics Object Classes
Note
Clipping planes are applied in the data space of this object (prior to the application
of any x, y, or z coordinate conversion).

Note
To determine the maximum number of clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES property of the GetDeviceInfo method for the
IDLgrBuffer, IDLgrClipboard, IDLgrWindow, and IDLgrVRML objects..

COLOR

An RGB or indexed color for drawing the region group. The default color is [0,0,0]..

DEPTH_TEST_DISABLE

An integer value that determines whether depth testing is disabled.

• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth testing. A model may also
enable or disable depth testing.

• Set this property to 1 to explicitly disable depth buffer testing while drawing
this object.

• Set this property to 2 to explicitly enable depth testing for this object.

Disabling depth testing allows an object to draw itself on top of other objects already
on the screen, even if the object is located behind them.

Property Type Floating-point array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type COLOR

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrROIGroup IDL Reference Guide

Chapter 8: Graphics Object Classes 3527
This property is registered as an enumerated list, but it is hidden by default.

DEPTH_TEST_FUNCTION

An integer value that determines the depth test function. Set this property to 0 (the
default) to inherit the value set by the parent model or view. The parent view always
sets a depth test function of LESS. A model may also set a depth test function value.
The graphics device compares the object’s depth at a particular pixel location with
the depth stored in the depth buffer at that same pixel location. If the comparison test
passes, the object’s pixel is drawn at that location on the screen and the depth buffer
is updated (if depth writing is enabled).

Set this property to any of the following values to use the desired function while
rendering this object.

• 0 = INHERIT - use value from parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the object’s depth is less than the depth buffer’s value.

• 3 = EQUAL - passes if the object’s depth is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the object’s depth is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the object’s depth is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the object’s depth is not equal to the depth
buffer’s value.

• 7 = GREATER OR EQUAL - passes if the object’s depth is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Less means closer to the viewer.

Property Type ENUMLIST

Name String Depth Test Disable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrROIGroup

3528 Chapter 8: Graphics Object Classes
This property is registered as an enumerated list, but it is hidden by default.

DEPTH_WRITE_DISABLE

An integer value that determines whether depth writing is disabled.

• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth writing. A model may also
enable or disable depth writing.

• Set this property to 1 to explicitly disable depth buffer writing while rendering
this object.

• Set this property to 2 to explicitly enable depth writing for this object.

Disabling depth writing allows an object to be overdrawn by other objects, even if the
object is located in front of them.

This property is registered as an enumerated list, but it is hidden by default.

HIDE

A Boolean value indicating whether this region group should be drawn:

• 0 = draw the region group (the default)

• 1 = do not draw the region group.

Property Type ENUMLIST

Name String Depth Test Enable

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Depth Write Disable

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type BOOLEAN

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrROIGroup IDL Reference Guide

Chapter 8: Graphics Object Classes 3529
PARENT

An object reference to the object that contains this object..

XCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert X coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1*DataX

Recommended values are:

[(–Xmin)/(Xmax – Xmin), 1.0/(Xmax – Xmin)]

IDL converts, maintains, and returns this data as double-precision floating-point..

XRANGE

A two-element floating-point vector of the form [xmin, xmax] that specifies the range
of x data coordinates covered by the graphic object. IDL maintains and returns this
property in double-precision floating-point..

YCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert Y coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1*DataY

Property Type Object reference

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrROIGroup

3530 Chapter 8: Graphics Object Classes
Recommended values are:

[(–Ymin)/(Ymax – Ymin), 1.0/(Ymax – Ymin)]

IDL converts, maintains, and returns this data as double-precision floating-point..

YRANGE

A two-element floating-point vector of the form [ymin, ymax] that specifies the range
of y data coordinates covered by the graphic object. IDL maintains and returns this
property in double-precision floating-point..

ZCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert Z coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1*DataZ

Recommended values are:

[(–Zmin)/(Zmax – Zmin), 1.0/(Zmax – Zmin)]

IDL converts, maintains, and returns this data as double-precision floating-point..

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrROIGroup IDL Reference Guide

Chapter 8: Graphics Object Classes 3531
ZRANGE

A two-element floating-point vector of the form [zmin, zmax] that specifies the range
of z data coordinates covered by the graphic object. IDL maintains and returns this
property in double-precision floating-point..

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrROIGroup

3532 Chapter 8: Graphics Object Classes
IDLgrROIGroup::Add

The IDLgrROIGroup::Add procedure method adds a region to the region group. Only
objects of the IDLgrROI class may be added to the group. The regions in the group
must all be of the same type: all points, all paths, or all polygons.

Syntax

Obj -> [IDLgrROIGroup::]Add, ROI

Arguments

ROI

A reference to an instance of the IDLgrROI object class representing the region of
interest to add to the group.

Keywords

Accepts all keywords accepted by the IDLanROIGroup::Add method.

Version History

Introduced: 5.3
IDLgrROIGroup IDL Reference Guide

Chapter 8: Graphics Object Classes 3533
IDLgrROIGroup::Cleanup

The IDLgrROIGroup::Cleanup procedure method performs all cleanup for an Object
Graphics region of interest group object.

Note
Cleanup methods are special life cycle methods, and as such cannot be called
outside the context of object destruction. This means that in most cases, you cannot
call the Cleanup method directly. There is one exception to this rule: If you write
your own subclass of this class, you can call the Cleanup method from within the
Cleanup method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrROIGroup::]Cleanup (In a subclass’ Cleanup method only.)

Arguments

None

Keywords

None

Version History

Introduced: 5.3
IDL Reference Guide IDLgrROIGroup

3534 Chapter 8: Graphics Object Classes
IDLgrROIGroup::GetProperty

The IDLgrROIGroup::Get Property procedure method retrieves the value of a
property or group of properties for the region group.

Syntax

Obj -> [IDLgrROIGroup::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrROIGroup Properties” on page 3525 that contains
the word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.3
IDLgrROIGroup IDL Reference Guide

Chapter 8: Graphics Object Classes 3535
IDLgrROIGroup::Init

The IDLgrROIGroup::Init function method initializes an Object Graphics region of
interest group object.

Note
Init methods are special life cycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrROIGroup' [, PROPERTY=value])

or

Result = Obj -> [IDLgrROIGroup::]Init([PROPERTY=value])
(Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLgrROIGroup Properties” on page 3525 that contains
the word “Yes” in the “Init” column of the properties table can be initialized during
IDL Reference Guide IDLgrROIGroup

3536 Chapter 8: Graphics Object Classes
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.

Version History

Introduced: 5.3

CLIP_PLANES keyword: 5.6
IDLgrROIGroup IDL Reference Guide

Chapter 8: Graphics Object Classes 3537
IDLgrROIGroup::PickRegion

The IDLgrROIGroup::PickRegion function method picks a region within the group
which, when projected onto the given destination device, is nearest to the given 2-D
device coordinate.

Syntax

Result = Obj -> [IDLgrROIGroup::]PickRegion(Dest, View, Point [, PATH=objref])

Return Value

Returns the object reference of the nearest region. If two or more regions are equally
nearest to the point, the one that was added to the region group first is returned.

Arguments

Dest

An object reference to an IDLgrWindow or IDLgrBuffer for which the pick is to
occur.

View

An object reference to the IDLgrView containing this region.

Point

A two-element vector, [x, y], representing the device location to use for picking a
nearest region.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to map the device position to a
location in the data space of the region. Each path object reference specified with this
keyword must contain an alias. The selected region is computed for the version of the
object falling within the specified path. If this keyword is not set, the parent
properties determine the path from the current object to the top of the graphics
hierarchy and no alias paths are pursued.
IDL Reference Guide IDLgrROIGroup

3538 Chapter 8: Graphics Object Classes
Version History

Introduced: 5.3
IDLgrROIGroup IDL Reference Guide

Chapter 8: Graphics Object Classes 3539
IDLgrROIGroup::SetProperty

The IDLgrROIGroup::Set Property procedure method sets the value of a property or
group of properties for the region group.

Syntax

Obj -> [IDLgrROIGroup::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrROIGroup Properties” on page 3525 that contains
the word “Yes” in the “Set” column of the properties table can be set using this
method. To set the value of a property, specify the property name as a keyword set
equal to the appropriate property value.

Version History

Introduced: 5.3
IDL Reference Guide IDLgrROIGroup

3540 Chapter 8: Graphics Object Classes
IDLgrScene

A scene object represents the entire scene to be drawn and serves as a container of
IDLgrView or IDLgrViewgroup objects.

Superclasses

TrackBall.

IDLitComponent

Creation

See “IDLgrScene::Init” on page 3550.

Properties

Objects of this class have the following properties. See “IDLgrScene Properties” on
page 3542 for details on individual properties.

• ALL

• COLOR

• HIDE

• REGISTER_PROPERTIES

• TRANSPARENT

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrScene::Add

• IDLgrScene::Cleanup

• IDLgrScene::GetByName

• IDLgrScene::GetProperty

• IDLgrScene::Init

• IDLgrScene::SetProperty
IDLgrScene IDL Reference Guide

Chapter 8: Graphics Object Classes 3541
In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.0
IDL Reference Guide IDLgrScene

3542 Chapter 8: Graphics Object Classes
IDLgrScene Properties

IDLgrScene objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLgrScene::GetProperty. Properties with the
word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrScene::Init. Properties with the word “Yes” in the “Set” column in the property
table can be set via IDLgrScene::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the properties associated with
the state of this object. State information about the object includes things like color,
range, tick direction, etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

COLOR

The color to which the scene should be erased before drawing. The color may be
specified as a color lookup table index or an RGB vector.

In a property sheet, this property appears as a color property.

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type COLOR

Name String Background color

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrScene IDL Reference Guide

Chapter 8: Graphics Object Classes 3543
HIDE

A Boolean value indicating whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

In a property sheet, this property appears as an enumerated list with the following
options:

• True = Draw graphic (the default)

• False = Do not draw graphic..

REGISTER_PROPERTIES

A Boolean value that determines whether to register properties available for this
object. Set this property to automatically register the following properties of the
object for display in a property sheet. This property is useful mainly when creating
iTools. By default, no properties are registered.

For IDLgrScene, the available properties (and their iTool data types) are:

• HIDE (Boolean)

Property Type ENUMLIST

Name String Show

Get: No Set: No Init: Yes Registered: Yes

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDL Reference Guide IDLgrScene

3544 Chapter 8: Graphics Object Classes
TRANSPARENT

A Boolean value that determines whether to disable window clearing. If this property
is not set, the destination object in use by the scene is automatically erased when the
scene is initialized.

Property Type BOOLEAN

Name String Transparent

Get: Yes Set: Yes Init: No Registered: Yes
IDLgrScene IDL Reference Guide

Chapter 8: Graphics Object Classes 3545
IDLgrScene::Add

The IDLgrScene::Add function method verifies that the added item is an instance of
an IDLgrView or IDLgrViewgroup object. If it is, IDLgrScene:Add adds the view or
viewgroup to the specified scene.

Syntax

Obj -> [IDLgrScene::]Add, View [, POSITION=index]

Arguments

View

An instance of the IDLgrView or IDLgrViewgroup object class.

Keywords

POSITION

Set this keyword equal to the zero-based index of the position within the container at
which the new object should be placed.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrScene

3546 Chapter 8: Graphics Object Classes
IDLgrScene::Cleanup

The IDLgrScene::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrScene::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDLgrScene IDL Reference Guide

Chapter 8: Graphics Object Classes 3547
IDLgrScene::GetByName

The IDLgrScene::GetByName function method finds contained objects by name and
returns the object reference to the named object. If the named object is not found, the
GetByName function returns a null object reference.

Note
The GetByName function does not perform a recursive search through the object
hierarchy. If a fully qualified object name is not specified, only the contents of the
current container object are inspected for the named object.

Syntax

Result = Obj -> [IDLgrScene::]GetByName(Name)

Return Value

Returns the object reference to the named object. If the named object is not found,
returns a null object reference.

Arguments

Name

A string containing the name of the object to be returned.

Object naming syntax is very much like the syntax of a UNIX filesystem. Objects
contained by other objects can include the name of their parent object; this allows
you to create a fully qualified name specification. For example, if object1 contains
object2, which in turn contains object3, the string specifying the fully qualified
object name of object3 would be 'object1/object2/object3'.

Object names are specified relative to the object on which the GetByName method is
called. If used at the beginning of the name string, the / character represents the top
of an object hierarchy. The string '..' represents the object one level “up” in the
hierarchy.

Keywords

None
IDL Reference Guide IDLgrScene

3548 Chapter 8: Graphics Object Classes
Version History

Introduced: 5.0
IDLgrScene IDL Reference Guide

Chapter 8: Graphics Object Classes 3549
IDLgrScene::GetProperty

The IDLgrScene::GetProperty procedure method retrieves the value of a property or
group of properties for the contour.

Syntax

Obj -> [IDLgrScene::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrScene Properties” on page 3542 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrScene

3550 Chapter 8: Graphics Object Classes
IDLgrScene::Init

The IDLgrScene::Init function method initializes the scene object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrScene' [, PROPERTY=value])

or

Result = Obj -> [IDLgrScene::]Init([PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLgrScene Properties” on page 3542 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.
IDLgrScene IDL Reference Guide

Chapter 8: Graphics Object Classes 3551
Version History

Introduced: 5.0
IDL Reference Guide IDLgrScene

3552 Chapter 8: Graphics Object Classes
IDLgrScene::SetProperty

The IDLgrScene::SetProperty procedure method sets the value of a property or group
of properties for the buffer.

Syntax

Obj -> [IDLgrScene::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrScene Properties” on page 3542 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.0
IDLgrScene IDL Reference Guide

Chapter 8: Graphics Object Classes 3553
IDLgrSurface

A surface object represents a shaded or vector representation of a mesh grid.

An IDLgrSurface object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

IDLitComponent

Creation

See “IDLgrSurface::Init” on page 3579.

Properties

Objects of this class have the following properties. See “IDLgrSurface Properties” on
page 3555 for details on individual properties.

• ALL • BOTTOM

• CLIP_PLANES • COLOR

• DATA • DATAX

• DATAY • DATAZ

• DEPTH_OFFSET • DEPTH_TEST_DISABLE

• DEPTH_TEST_FUNCTION • DEPTH_WRITE_DISABLE

• DOUBLE • EXTENDED_LEGO

• HIDDEN_LINES • HIDE

• LINESTYLE • MAX_VALUE

• MIN_VALUE • PALETTE

• PARENT • REGISTER_PROPERTIES

• RESET_DATA • SHADE_RANGE

• SHADING • SHARE_DATA

• SHOW_SKIRT • SKIRT
IDL Reference Guide IDLgrSurface

3554 Chapter 8: Graphics Object Classes
In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrSurface::Cleanup

• IDLgrSurface::GetCTM

• IDLgrSurface::GetProperty

• IDLgrSurface::Init

• IDLgrSurface::SetProperty

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.0

• STYLE • TEXTURE_COORD

• TEXTURE_HIGHRES • TEXTURE_INTERP

• TEXTURE_MAP • THICK

• USE_TRIANGLES • VERT_COLORS

• XCOORD_CONV • XRANGE

• YCOORD_CONV • YRANGE

• ZCOORD_CONV • ZERO_OPACITY_SKIP

• ZRANGE •
IDLgrSurface IDL Reference Guide

Chapter 8: Graphics Object Classes 3555
IDLgrSurface Properties

IDLgrSurface objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLgrSurface::GetProperty. Properties with the
word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrSurface::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLgrSurface::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the properties associated with
the state of this object. State information about the object includes things like color,
range, tick direction, etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

BOTTOM

An RGB color for drawing the bottom of the surface. Set this property to a scalar to
draw the bottom with the same color as the top. Setting a bottom color is only
supported when the destination device uses RGB color mode..

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type COLOR

Name String Bottom color

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrSurface

3556 Chapter 8: Graphics Object Classes
CLIP_PLANES

A 4-by-N floating-point array that specifies the coefficients of the clipping planes to
be applied to this object. The four coefficients for each clipping plane are of the form
[A, B, C, D], where Ax + By + Cz + D = 0. Portions of this object that fall in the half
space Ax + By + Cz + D > 0 will be clipped. By default, the value of this property is a
scalar (-1) indicating that no clipping planes are to be applied.

Note
The clipping planes specified via this property are applied in addition to the near
and far clipping planes associated with the IDLgrView in which this object appears.

Note
Clipping planes are applied in the data space of this object (prior to the application
of any x, y, or z coordinate conversion).

Note
To determine the maximum number of clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES property of the GetDeviceInfo method for the
IDLgrBuffer, IDLgrClipboard, IDLgrWindow, and IDLgrVRML objects..

COLOR

The color to be used as the foreground color for this model. The color may be
specified as a color lookup table index or as an RGB vector. The default is [0, 0, 0]..

In a property sheet, this property appears as a color property.

Property Type Floating-point array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type COLOR

Name String Bottom color

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrSurface IDL Reference Guide

Chapter 8: Graphics Object Classes 3557
DATA

An array of any type that specifies the surface data..

DATAX

A floating-point vector or a two-dimensional array specifying the X coordinates of
the surface grid. This property is the same as the X argument described above. This
property is stored as double precision floating point values if the property is of type
DOUBLE or if the DOUBLE property is non-zero, otherwise it is stored as single
precision floating point..

DATAY

A floating-point vector or a two-dimensional array specifying the Y coordinates of
the surface grid. This property is the same as the Y argument described above. This
property is stored as double precision floating point values if the property is of type
DOUBLE or if the DOUBLE property is non-zero, otherwise it is stored as single
precision floating point..

DATAZ

A two-dimensional floating-point array to display as a surface. This property is the
same as the Z argument described above. This property is stored as double precision

Property Type Array of any type

Name String not displayed

Get: Yes Set: Init: Registered: No

Property Type Floating-point vector or array

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No

Property Type Floating-point vector or array

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrSurface

3558 Chapter 8: Graphics Object Classes
floating point values if the property is of type DOUBLE or if the DOUBLE property
is non-zero, otherwise it is stored as single precision floating point..

DEPTH_OFFSET

An integer value that specifies an offset in depth to be used when rendering filled
primitives. This offset is applied along the viewing axis, with positive values moving
the primitive away from the viewer.

The units are “Z-Buffer units,” where a value of 1 is used to specify a distance that
corresponds to a single step in the device’s Z-Buffer.

Use DEPTH_OFFSET to always cause a filled primitive to be rendered slightly
deeper than other primitives, independent of model transforms. This is useful for
avoiding stitching artifacts caused by rendering lines or polygons on top of other
polygons at the same depth.

Note
RSI suggests using this feature to remove stitching artifacts and not as a means for
“layering” complex scenes with multiple DEPTH_OFFSET values. It is safest to
use only a DEPTH_OFFSET value of 0, the default, and one other non-zero value,
such as 1. Many system-level graphics drivers are not consistent in their handling of
DEPTH_OFFSET values, particularly when multiple non-zero values are used.
This can lead to portability problems because a set of DEPTH_OFFSET values may
produce better results on one machine than on another. Using IDL’s software
renderer will help improve the cross-platform consistency of scenes that use
DEPTH_OFFSET.

Note
DEPTH_OFFEST has no effect unless the value of the STYLE property is 2 or 6
(Filled or LegoFilled)..

Property Type Floating-point array

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No

Property Type INTEGER

Name String Depth offset

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrSurface IDL Reference Guide

Chapter 8: Graphics Object Classes 3559
DEPTH_TEST_DISABLE

An integer value that determines whether depth testing is disabled.

• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth testing. A model may also
enable or disable depth testing.

• Set this property to 1 to explicitly disable depth buffer testing while drawing
this object.

• Set this property to 2 to explicitly enable depth testing for this object.

Disabling depth testing allows an object to draw itself on top of other objects already
on the screen, even if the object is located behind them.

This property is registered as an enumerated list, but it is hidden by default.

DEPTH_TEST_FUNCTION

An integer value that determines the depth test function. Set this property to 0 (the
default) to inherit the value set by the parent model or view. The parent view always
sets a depth test function of LESS. A model may also set a depth test function value.
The graphics device compares the object’s depth at a particular pixel location with
the depth stored in the depth buffer at that same pixel location. If the comparison test
passes, the object’s pixel is drawn at that location on the screen and the depth buffer
is updated (if depth writing is enabled).

Set this property to any of the following values to use the desired function while
rendering this object.

• 0 = INHERIT - use value from parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the object’s depth is less than the depth buffer’s value.

• 3 = EQUAL - passes if the object’s depth is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the object’s depth is less than or equal to the
depth buffer’s value.

Property Type ENUMLIST

Name String Depth Test Disable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrSurface

3560 Chapter 8: Graphics Object Classes
• 5 = GREATER - passes if the object’s depth is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the object’s depth is not equal to the depth
buffer’s value.

• 7 = GREATER OR EQUAL - passes if the object’s depth is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Less means closer to the viewer.

This property is registered as an enumerated list, but it is hidden by default.

DEPTH_WRITE_DISABLE

An integer value that determines whether depth writing is disabled.

• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth writing. A model may also
enable or disable depth writing.

• Set this property to 1 to explicitly disable depth buffer writing while rendering
this object.

• Set this property to 2 to explicitly enable depth writing for this object.

Disabling depth writing allows an object to be overdrawn by other objects, even if the
object is located in front of them.

This property is registered as an enumerated list, but it is hidden by default.

DOUBLE

A Boolean value that indicates whether data provided by any of the input arguments
will be stored in this object as using double-precision floating-point format.

Property Type ENUMLIST

Name String Depth Test Enable

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Depth Write Disable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrSurface IDL Reference Guide

Chapter 8: Graphics Object Classes 3561
• Set this property equal to 1 to convert input data to double-precision floating-
point format.

• Set this property equal to 0 to convert input data to single-precision floating-
point format.

• If you do not specify a value for this property, no data type conversion will be
performed, and the data will be stored with its original precision.

Setting this property may be desirable if the data consists of large integers that cannot
be accurately represented in single-precision floating-point arithmetic. This property
is also automatically set to 1 if any of the input arguments are stored using a variable
of type DOUBLE..

EXTENDED_LEGO

A Boolean value that determines whether to force the IDLgrSurface object to display
the last row and column of data when lego display styles are selected..

HIDDEN_LINES

A Boolean value that determines whether to draw point and wireframe surfaces using
hidden line (point) removal. By default, hidden line removal is disabled..

HIDE

A Boolean value indicating whether this object should be drawn:

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type BOOLEAN

Name String Show last lego row/column

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type BOOLEAN

Name String Remove hidden lines

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrSurface

3562 Chapter 8: Graphics Object Classes
• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

In a property sheet, this property appears as an enumerated list with the following
options:

• True = Draw graphic (the default)

• False = Do not draw graphic..

LINESTYLE

An integer value that indicates the line style to use to draw the surface lines. The
value can be either an integer value specifying a pre-defined line style, or a two-
element vector specifying a stippling pattern.

To use a pre-defined line style, set the LINESTYLE property equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1’s or 0’s in the
bitmask should be repeated. (That is, if three consecutive 0’s appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 ≤ repeat ≤ 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. Bitmask is most conveniently specified as a 16-bit hexadecimal value.

Property Type ENUMLIST

Name String Show

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrSurface IDL Reference Guide

Chapter 8: Graphics Object Classes 3563
For example, LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off)..

In a property sheet, this property appears as follows:

MAX_VALUE

A double-precision floating-point value that determines the maximum value to be
plotted. If this property is present, data values greater than the value of
MAX_VALUE are treated as missing data and are not plotted. Note that the IEEE
floating-point value NaN is also treated as missing data. IDL converts, maintains, and
returns this data as double-precision floating-point..

MIN_VALUE

A double-precision floating-point value that determines the minimum value to be
plotted. If this property is present, data values less than the value of MIN_VALUE
are treated as missing data and are not plotted. Note that the IEEE floating-point
value NaN is also treated as missing data. IDL converts, maintains, and returns this
data as double-precision floating-point..

Property Type LINESTYLE

Name String Line style

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type FLOAT

Name String Maximum value

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type FLOAT

Name String Minimum value

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrSurface

3564 Chapter 8: Graphics Object Classes
PALETTE

An object reference to a palette object (an instance of the IDLgrPalette object class)
that defines the color palette of this object. This property is only used if the
destination device is using the RGB color model. If so, and a color value for the
object is specified as a color index value, the palette set by this property is used to
translate the color to RGB space. If the PALETTE property on this object is not set,
the destination object PALETTE property is used (which defaults to a grayscale
ramp)..

This property is registered as a user-defined property, but it is hidden by default.

PARENT

An object reference to the object that contains this object..

REGISTER_PROPERTIES

A Boolean value that determines whether to register properties available for this
object. Set this property to automatically register the following properties of the
object for display in a property sheet. This property is useful mainly when creating
iTools. By default, no properties are registered.

RESET_DATA

A Boolean value that determines whether to treat the data provided via one of the
DATA[XYZ] properties as a new data set unique to this object, rather than

Property Type USERDEF

Name String Color palette

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Object reference

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDLgrSurface IDL Reference Guide

Chapter 8: Graphics Object Classes 3565
overwriting data that is shared by other objects. There is no reason to use this
property if the object on which the property is being set does not currently share data
with another object (that is, if the SHARE_DATA property is not in use). This
property has no effect if no new data is provided via a DATA property. .

SHADE_RANGE

A two-element integer array that specifies the range of pixel values (color indices) to
use for shading. The first element is the color index for the darkest pixel. The second
element is the color element for the brightest pixel. This value is ignored when the
polygons are drawn to a graphics destination that uses the RGB color model..

SHADING

An integer representing the type of shading to use if STYLE is set to 2 (Filled).

• 0 = Flat (default): The color has a constant intensity for each face of the
surface, based on the normal vector.

• 1 = Gouraud: The colors are interpolated between vertices, and then along
scanlines from each of the edge intensities.

Gouraud shading may be slower than flat shading, but results in a smoother
appearance.

In a property sheet, this property appears as an enumerated list with the following
options:

• Flat

Property Type Boolean

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No

Property Type Integer array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrSurface

3566 Chapter 8: Graphics Object Classes
• Gouraud

SHARE_DATA

An object reference to an object whose data is to be shared by this surface. A surface
may only share data with another surface. The SHARE_DATA property is intended
for use when data values are not set via an argument to the object’s Init method or by
setting the object’s DATA property..

SHOW_SKIRT

A Boolean value that determines whether to enable skirt drawing. The default is to
disable skirt drawing. .

SKIRT

A floating-point value that determines the Z value at which a skirt is to be defined
around the array. The Z value is expressed in data units; the default is 0.0. If a skirt is
defined, each point on the four edges of the surface is connected to a point on the skirt
which has the given Z value, and the same X and Y values as the edge point. In
addition, each point on the skirt is connected to its neighbor. The skirt value is

Property Type ENUMLIST

Name String Fill shading

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Object reference

Name String not displayed

Get: No Set: Yes Init: Yes Registered: No

Property Type BOOLEAN

Name String Show skirt

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrSurface IDL Reference Guide

Chapter 8: Graphics Object Classes 3567
ignored if skirt drawing is disabled (see SHOW_SKIRT above). IDL converts,
maintains, and returns this data as double-precision floating-point..

STYLE

An integer value that indicates the style to be used to draw the surface. Valid values
are:

• 0 = Points

• 1 = Wire mesh (the default)

• 2 = Filled

• 3 = RuledXZ

• 4 = RuledYZ

• 5 = Lego

• 6 = LegoFilled: for outline or shaded and stacked histogram-style plots..

In a property sheet, this property appears as an enumerated list with the following
options:

• Points

• Wire mesh

• Filled

• Ruled XZ

• Ruled YZ

• Lego

• Lego filled

Property Type FLOAT

Name String Skirt bottom height

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Surface style

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrSurface

3568 Chapter 8: Graphics Object Classes
TEXTURE_COORD

A 2-by-n floating-point array of surface coordinate-texture map coordinate pairs [s, t]
at each vertex., containing the fill pattern array subscripts of each of the n polygon
vertices. Use this property in conjunction with the TEXTURE_MAP property to
warp images over the surface. To stretch (or shrink) the texture map to cover the
surface mesh completely, set TEXTURE_COORD to a scalar. By default, IDL
stretches (or shrinks) the texture map to cover the surface mesh completely, and sets
TEXTURE_COORD to a scalar (-1).

Texture coordinates are normalized. This means that the m x n image object specified
via the TEXTURE_MAP property is mapped into the range [0.0, 0.0] to [1.0, 1.0]. If
texture coordinates outside the range [0.0, 0.0] to [1.0, 1.0] are specified, the image
object is tiled into the larger range.

For example, suppose the image object specified via TEXTURE_MAP is a 256 x 256
array, and we want to map the image into a square two units on each side. To
completely fill the square with a single copy of the image:

TEXTURE_COORD = [[0,0], [1,0], [1,1], [0,1]]

To fill the square with four tiled copies of the image:

TEXTURE_COORD = [[0,0], [2,0], [2,2], [0,2]]

Because of the way in which high-resolution textures require modified texture
coordinates, if the TEXTURE_COORD property is used, TEXTURE_HIGHRES
will be disabled..

TEXTURE_HIGHRES

A Boolean value that determines whether texture tiling will be used when necessary
to maintain the full pixel resolution of the original texture image. This is
recommended if IDL is running on modern 3-D hardware and resolution loss due to
downscaling becomes problematic. If not set, and the texture map is larger than the
maximum resolution supported by the 3-D hardware, the texture is scaled down to the
maximum resolution supported by the 3-D hardware on your system. The default
value is 0.

Property Type Floating-point array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrSurface IDL Reference Guide

Chapter 8: Graphics Object Classes 3569
Note
Because of the way in which high-resolution textures require modified texture
coordinates, if you specify the TEXTURE_COORD property, high resolution
textures (TEXTURE_HIGHRES) will be disabled..

In a property sheet, this property appears as an enumerated list with the following
options:

• No tiling

• LOD tiling

• Tiling

TEXTURE_INTERP

A Boolean value that indicates whether bilinear sampling is to be used with texture
mapping. The default method is nearest-neighbor sampling..

In a property sheet, this property appears as an enumerated list with the following
options:

• Nearest neighbor

• Bilinear

TEXTURE_MAP

An object reference to an instance of the IDLgrImage object class to be texture mapped
onto the surface. If this property is omitted or set to a null object reference, no texture
map is applied and the surface is filled with the color specified by the COLOR or
VERT_COLORS property. If both TEXTURE_MAP and COLORS or
VERT_COLORS properties exist, the color of the texture is modulated by the base
color of the object. (This means that for the clearest display of the texture image, the

Property Type ENUMLIST

Name String Texture hires

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Texture interpolation

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrSurface

3570 Chapter 8: Graphics Object Classes
COLOR property should be set equal to [255,255,255].) By default, the texture map
will be stretched (or shrunk) to cover the surface mesh completely.

Setting TEXTURE_MAP to the object reference of an IDLgrImage that contains an
alpha channel allows you to create a transparent IDLgrSurface object. If an alpha
channel is present in the IDLgrImage object, IDL blends the texture using the blend
function src = alpha and dst = 1 - alpha, which corresponds to a
BLEND_FUNCTION of (3,4) as described for the IDLgrImage object.

If a texture is provided without texture coordinates, IDLgrSurface generates its own
texture mapping coordinates to map the texture onto the surface without resampling
artifacts, even if the provided texture image does not have dimensions that are an
exact power of two. If texture coordinates are provided, the image is resampled to the
nearest larger dimensions that are exact powers of two.

Note
Texture mapping is disabled when rendering to a destination object that uses
Indexed color mode.

Note
Texture mapping is applied to all styles that are set by the STYLE property except
Lego and LegoFilled..

This property is registered as a user-defined property, but it is hidden by default.

THICK

A floating-point value between 1.0 and 10.0, specifying the line thickness to use to
draw surface lines, in points. The default is 1.0 points..

Property Type USERDEF

Name String Texture map

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrSurface IDL Reference Guide

Chapter 8: Graphics Object Classes 3571
In a property sheet, this property appears as follows:

USE_TRIANGLES

A Boolean value that determines whether to force the IDLgrSurface object to use
triangles instead of quads to draw the surface and skirt..

In a property sheet, this property appears as an enumerated list with the following
options:

• Quads

• Triangles

VERT_COLORS

A vector of colors to be used to draw at each vertex. Color is interpolated between
vertices if SHADING is set to 1 (Gouraud). If there are more vertices than elements
in VERT_COLORS, the elements of VERT_COLORS are cyclically repeated. By
default, the polygons are all drawn in the single color provided by the COLOR
property. If this property is omitted or set to a scalar, vertex colors are removed and
the surface is drawn in the color specified by the COLOR property.

Note
If the surface object is being rendered on a destination device that uses the Indexed
color model, and the view that contains the surface also contains one or more light

Property Type THICKNESS

Name String Line thickness

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type BOOLEAN

Name String Draw method

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrSurface

3572 Chapter 8: Graphics Object Classes
objects, the VERT_COLORS property is ignored and the SHADE_RANGE
property is used instead..

This property is registered as a user-defined property, but it is hidden by default.

XCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert X coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point..

XRANGE

A two-element floating-point vector of the form [xmin, xmax] that specifies the range
of x data coordinates covered by the graphic object. IDL maintains and returns this
property in double-precision floating-point..

Property Type USERDEF

Name String Vertex colors

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLgrSurface IDL Reference Guide

Chapter 8: Graphics Object Classes 3573
YCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert Y coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point..

YRANGE

A two-element floating-point vector of the form [ymin, ymax] that specifies the range
of y data coordinates covered by the graphic object. IDL maintains and returns this
property in double-precision floating-point..

ZCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert Z coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrSurface

3574 Chapter 8: Graphics Object Classes
The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point..

ZERO_OPACITY_SKIP

A Boolean value that determines whether to gain finer control over the rendering of
textured surface pixels (texels) by setting an opacity of 0 in the texture map. Texels
with zero opacity do not affect the color of a screen pixel since they have no opacity.
If this property is set to 1, any texels are “skipped” and not rendered at all. If this
property is set to zero, the Z-buffer is updated for these pixels and the display image
is not affected as noted above. By updating the Z-buffer without updating the display
image, the surface can be used as a clipping surface for other graphics primitives
drawn after the current graphics object. The default value for this property is 1.

Note
This property has no effect if no texture map is used or if the texture map in use
does not contain an opacity channel..

ZRANGE

A two-element floating-point vector of the form [zmin, zmax] that specifies the range
of z data coordinates covered by the graphic object. IDL maintains and returns this
property in double-precision floating-point..

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type BOOLEAN

Name String Skip zero opacity

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLgrSurface IDL Reference Guide

Chapter 8: Graphics Object Classes 3575
IDLgrSurface::Cleanup

The IDLgrSurface::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrSurface::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDL Reference Guide IDLgrSurface

3576 Chapter 8: Graphics Object Classes
IDLgrSurface::GetCTM

The IDLgrSurface::GetCTM function method returns the 4-by-4 double-precision
floating-point graphics transform matrix from the current object upward through the
graphics tree.

Syntax

Result = Obj -> [IDLgrSurface::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Return Value

Returns the 4-by-4 double-precision floating-point graphics transform matrix from
the current object upward through the graphics tree.

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the surface
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrSurface::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.
IDLgrSurface IDL Reference Guide

Chapter 8: Graphics Object Classes 3577
Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.

TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrSurface

3578 Chapter 8: Graphics Object Classes
IDLgrSurface::GetProperty

The IDLgrSurface::GetProperty procedure method retrieves the value of a property or
group of properties for the surface.

Syntax

Obj -> [IDLgrSurface::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrSurface Properties” on page 3555 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.0
IDLgrSurface IDL Reference Guide

Chapter 8: Graphics Object Classes 3579
IDLgrSurface::Init

The IDLgrSurface::Init function method initializes the surface object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrSurface' [, Z [, X, Y]] [, PROPERTY=value])

or

Result = Obj -> [IDLgrSurface::]Init([Z [, X, Y]] [, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

X

A vector or two-dimensional array specifying the X coordinates of the grid. If this
argument is a vector, each element of X specifies the X coordinates for a column of Z
(e.g., X[0] specifies the X coordinate for Z[0, *]). If X is a two-dimensional array,
each element of X specifies the X coordinate of the corresponding point in Z (Xij
specifies the X coordinate of Zij). This argument is stored as double precision floating
point values if the argument variable is of type DOUBLE or if the DOUBLE property
is non-zero, otherwise it is stored as single precision floating point.
IDL Reference Guide IDLgrSurface

3580 Chapter 8: Graphics Object Classes
Y

A vector or two-dimensional array specifying the Y coordinates of the grid. If this
argument is a vector, each element of Y specifies the Y coordinates for a column of Z
(e.g., Y[0] specifies the Y coordinate for Z[*, 0]). If Y is a two-dimensional array,
each element of Y specifies the Y coordinate of the corresponding point in Z (Yij
specifies the Y coordinate of Zij). This argument is stored as double precision floating
point values if the argument variable is of type DOUBLE or if the DOUBLE property
is non-zero, otherwise it is stored as single precision floating point.

Z

The two-dimensional array to be displayed. If X and Y are provided, the surface is
defined as a function of the (X, Y) locations specified by their contents. Otherwise,
the surface is generated as a function of the array indices of each element of Z. This
argument is stored as double precision floating point values if the argument variable
is of type DOUBLE or if the DOUBLE property is non-zero, otherwise it is stored as
single precision floating point.

Keywords

Any property listed under “IDLgrSurface Properties” on page 3555 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.

Version History

Introduced: 5.0

CLIP_PLANES keyword: 5.6
IDLgrSurface IDL Reference Guide

Chapter 8: Graphics Object Classes 3581
IDLgrSurface::SetProperty

The IDLgrSurface::SetProperty procedure method sets the value of a property or
group of properties for the surface.

Syntax

Obj -> [IDLgrSurface::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrSurface Properties” on page 3555 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrSurface

3582 Chapter 8: Graphics Object Classes
IDLgrSymbol

A symbol object represents a graphical element that is plotted relative to a particular
position.

Note
Seven predefined symbols are provided by IDL.

Superclasses

IDLitComponent

Creation

See “IDLgrSymbol::Init” on page 3588.

Properties

Objects of this class have the following properties. See “IDLgrSymbol Properties” on
page 3584 for details on individual properties.

• ALL

• COLOR

• DATA

• SIZE

• THICK

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrSymbol::Cleanup

• IDLgrSymbol::GetProperty

• IDLgrSymbol::Init

• IDLgrSymbol::SetProperty

In addition, this class inherits the methods of its superclasses (if any).
IDLgrSymbol IDL Reference Guide

Chapter 8: Graphics Object Classes 3583
Version History

Introduced: 5.0
IDL Reference Guide IDLgrSymbol

3584 Chapter 8: Graphics Object Classes
IDLgrSymbol Properties

IDLgrSymbol objects have the following properties in addition to properties
inherited from any superclasses. Properties with the word “Yes” in the “Get” column
of the property table can be retrieved via IDLgrSymbol::GetProperty. Properties with
the word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrSymbol::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLgrSymbol::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the properties associated with
the state of this object. State information about the object includes things like color,
range, tick direction, etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

COLOR

The color used to draw the symbol. The color may be specified as a color lookup
table index or as an RGB vector. The default color is the color of the object for which
this symbol is being used.

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Color

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrSymbol IDL Reference Guide

Chapter 8: Graphics Object Classes 3585
DATA

A Boolean value that determines whether to specify a symbol. This property is
equivalent to the Data argument.

SIZE

A one-, two-, or three-element floating-point vector describing the X, Y, and Z
scaling factors to be applied to the symbol. The default is [1.0, 1.0, 1.0].

• If SIZE is specified as a scalar, then the X, Y, and Z scale factors are all equal
to the scalar value.

• If SIZE is specified as a 2-element vector, then the X and Y scale factors are as
specified by the vector, and the Z scale factor is 1.0.

• If SIZE is specified as a 3-element vector, then the X, Y, and Z scale factors
are as specified by the vector.

IDL converts, maintains, and returns this data as double-precision floating-point.

THICK

A floating-point value between 1.0 and 10.0, specifying the line thickness to used to
draw any lines that make up the symbol, in points. The default is 1.0 points.

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrSymbol

3586 Chapter 8: Graphics Object Classes
IDLgrSymbol::Cleanup

The IDLgrSymbol::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrSymbol::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDLgrSymbol IDL Reference Guide

Chapter 8: Graphics Object Classes 3587
IDLgrSymbol::GetProperty

The IDLgrSymbol::GetProperty procedure method retrieves the value of a property
or group of properties for the symbol.

Syntax

Obj -> [IDLgrSymbol::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrSymbol Properties” on page 3584 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrSymbol

3588 Chapter 8: Graphics Object Classes
IDLgrSymbol::Init

The IDLgrSymbol::Init function method initializes the plot symbol.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrSymbol' [, Data] [, PROPERTY=value])

or

Result = Obj -> [IDLgrSymbol::]Init([Data] [, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

Data

Either an integer value from the list shown below, or an object reference to either an
IDLgrModel object or atomic graphic object.

Use one of the following scalar-represented internal default symbols:

• 0 = No symbol

• 1 = Plus sign, ‘+’ (default)

• 2 = Asterisk

• 3 = Period (Dot)

• 4 = Diamond
IDLgrSymbol IDL Reference Guide

Chapter 8: Graphics Object Classes 3589
• 5 = Triangle

• 6 = Square

• 7 = X

• 8 = “Greater-than” Arrow Head (>)

• 9 = “Less-than” Arrow Head (<)

If an instance of the IDLgrModel object class or an atomic graphic object is used, the
object tree is used as the symbol. For best results, the object should fill the domain
from -1 to +1 in all dimensions. The pre-defined symbols listed above are all defined
in the domain -1 to +1.

Keywords

Any property listed under “IDLgrSymbol Properties” on page 3584 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.

Version History

Introduced: 5.0

Data argument: 5.6
IDL Reference Guide IDLgrSymbol

3590 Chapter 8: Graphics Object Classes
IDLgrSymbol::SetProperty

The IDLgrSymbol::SetProperty procedure method sets the value of a property or
group of properties for the symbol.

Syntax

Obj -> [IDLgrSymbol::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrSymbol Properties” on page 3584 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.0
IDLgrSymbol IDL Reference Guide

Chapter 8: Graphics Object Classes 3591
IDLgrTessellator

A tessellator object decomposes a polygon description into a set of triangles. Use the
tessellator object to convert complex and/or concave polygons into a form suitable for
drawing with the IDLgrPolygon object. IDLgrPolygon can draw only convex
polygons correctly.

The polygon contours may intersect each other and may be self-intersecting. The
contours may be disjoint, overlapping, or contained within other contours. The
contours may also be degenerate, may contain repeated points, and may or may not
be closed. The order of the vertices may be either counter-clockwise or clockwise.
For best results, the polygon contours should be coplanar.

The tessellator object uses the "odd-winding rule" to determine if a point is in the
interior of the polygon and therefore contained in a triangle output by the tessellator.
With this rule, a point is in the interior if it is circled an odd number of times as we
travel around each of the contours.

Note
The INTERIOR keyword for the AddPolygon method is no longer needed to inform
the tessellator that the polygon defines an exterior or interior boundary. This
keyword is ignored by the tessellator because it now performs the interior testing
using the odd-winding rule.

Specify polygon contours with calls to the IDLgrTessellator::AddPolygon method.
After adding all the contours, use the IDLgrTessellator::Tessellate method to perform
the tessellation and retrieve the resulting list of vertices and connectivity array.

If the polygon contours contain intersecting or self-intersecting contours, the
tessellator may return vertices that were not in the original set of vertices specified
with the IDLgrTessellator::AddPolygon method. These vertices are created by the
intersecting contours.

If your vertex data also includes other information, such as a color for each vertex,
then you may wish for this extra information to be created for any new vertices
generated by the tessellator. Use the AUXDATA keywords for
IDLgrTessellator::AddPolygon and IDLgrTessellator::Tessellate to pass in and
retrieve your per-vertex data. The tessellator object interpolates the per-vertex data
from neighboring vertices to create new per-vertex data for the new vertices it
generates.

In the following example of handling per-vertex data with generated vertices, the
polygon is a simple self-intersecting "bow-tie" polygon. It is submitted to the
IDL Reference Guide IDLgrTessellator

3592 Chapter 8: Graphics Object Classes
tessellator with four vertices, but the tessellator returns a fifth at the point of self-
intersection. Color data for the four original vertices is also supplied, and the
tessellator returns a fifth color.

PRO tessaux
 oTess = OBJ_NEW('IDLgrTessellator')
 colors = [[0,255,0],[0,255,0],[0,64,0],[0,64,0]]
 oTess->AddPolygon, [0,1,0,1], [0,0,1,1], AUXDATA=colors
 result = oTess->Tessellate(v, c, AUXDATA=aux)
 PRINT, v[*,4]
 PRINT, aux[*,4]
 oPoly = OBJ_NEW('IDLgrPolygon', v, POLYGONS=c, $
VERT_COLORS=aux, SHADING=1)
 XOBJVIEW, oPoly, /BLOCK
 OBJ_DESTROY, [oTess, oPoly]
END

The generated output will be:

0.500000 0.500000

0 159 0

Superclasses

IDLitComponent

Creation

See “IDLgrTessellator::Init” on page 3598.

Properties

Objects of this class have no properties of their own.

Methods

This class has the following methods:

• IDLgrTessellator::AddPolygon

• IDLgrTessellator::Cleanup

• IDLgrTessellator::Init

• IDLgrTessellator::Reset

• IDLgrTessellator::Tessellate
IDLgrTessellator IDL Reference Guide

Chapter 8: Graphics Object Classes 3593
In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.0
IDL Reference Guide IDLgrTessellator

3594 Chapter 8: Graphics Object Classes
IDLgrTessellator Properties

Objects of this class have no properties of their own.
IDLgrTessellator IDL Reference Guide

Chapter 8: Graphics Object Classes 3595
IDLgrTessellator::AddPolygon

The IDLgrTessellator::AddPolygon procedure method adds a polygon to the
tessellator object.

Syntax

Obj -> [IDLgrTessellator::]AddPolygon, X [, Y[, Z]] [, AUXDATA=array of
auxiliary data] [, /INTERIOR] [, POLYGON=array of polygon descriptions]

Arguments

X

A 1 x n, 2 x n, or 3 x n array of polygon vertices.

Y

A vector of Y values. If X and Y are both specified, they must be one-dimensional
vectors of the same length.

Z

A vector of Z values. If X, Y, and Z are all specified, they must all three be one-
dimensional vectors of the same length. If no Z values are specified, the Z value for
the polygon is set to 0.

Keywords

AUXDATA

Set this keyword to an array of auxiliary per-vertex data. This array must have
dimensions [m,n] where m is the number of auxiliary data items per vertex and n is
the number of vertices specified in the X, Y, and Z arguments. If you specify
AUXDATA in any invocation of the AddPolygon method, you must specify it on all
invocations of the method for the polygons to be tessellated together with the
Tessellate method. Further, the value of m in the dimensions must be the same for all
polygons. That is, all polygons must have the same number of auxiliary data items for
each vertex.
IDL Reference Guide IDLgrTessellator

3596 Chapter 8: Graphics Object Classes
POLYGON

Set this keyword to an array of polygon descriptions. A polygon description is an
integer or long word array of the form: [n, i0, i1, ..., in-1], where n is the number of
vertices that define the polygon, and i0..in-1 are indices into the X, Y, and Z arguments
that represent the polygon vertices. To ignore an entry in the POLYGON array, set
the vertex count, n, to 0. To end the drawing list, even if additional array space is
available, set n to -1. If this keyword is not specified, a single polygon will be
generated.

Note
The connectivity array described by POLYGONS allows you to add multiple
polygons to the tessellator object with a single AddPolygon operation.

INTERIOR

Set this keyword to set a polygon to be an interior polygon, which is treated as a hole
in the exterior polygons.

Note
The INTERIOR keyword for the AddPolygon method is no longer needed to inform
the tessellator that the polygon defines an exterior or interior boundary. This
keyword is ignored by the tessellator because it now performs the interior testing
using the odd-winding rule.

Version History

Introduced: 5.0

AUXDATA keyword: 5.6
IDLgrTessellator IDL Reference Guide

Chapter 8: Graphics Object Classes 3597
IDLgrTessellator::Cleanup

The IDLgrTessellator::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrTessellator::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDL Reference Guide IDLgrTessellator

3598 Chapter 8: Graphics Object Classes
IDLgrTessellator::Init

The IDLgrTessellator::Init function method initializes the tessellator object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrTessellator')

or

Result = Obj -> [IDLgrTessellator::]Init() (Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDLgrTessellator IDL Reference Guide

Chapter 8: Graphics Object Classes 3599
IDLgrTessellator::Reset

The IDLgrTessellator::Reset procedure method resets the object’s internal state. All
previously added polygons are removed from memory and the object is prepared for a
new tessellation task.

Syntax

Obj -> [IDLgrTessellator::]Reset

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDL Reference Guide IDLgrTessellator

3600 Chapter 8: Graphics Object Classes
IDLgrTessellator::Tessellate

The IDLgrTessellator::Tessellate function method performs the actual tessellation.

Syntax

Result = Obj -> [IDLgrTessellator::]Tessellate(Vertices, Poly
[, AUXDATA=variable] [, /QUIET])

Return Value

Returns 1, and the contents of Vertices and Poly are set to the results of the
tessellation. Returns 0 if tessellation fails.

Arguments

If the tessellation succeeds, IDLgrTessellator::Tessellate returns 1 and the contents of
Vertices and Poly are set to the results of the tessellation. If the tessellation fails, the
function returns 0.

Vertices

A 2 x n array if all the input polygons were 2-D. A 3 x n array if all the input
polygons were 3-D.

Poly

An array of polygon descriptions. A polygon description is an integer or long word
array of the form: [n, i0, i1, ..., in-1], where n is the number of vertices that define the
polygon, and i0..in-1 are indices into the X, Y, and Z arguments that represent the
polygon vertices.

Note
On output, the Vertices array can be used as the value of the DATA property, and
the Poly array can be used as the value of the POLYGON property, of an
IDLgrPolygon object.
IDLgrTessellator IDL Reference Guide

Chapter 8: Graphics Object Classes 3601
Keywords

AUXDATA

Set this keyword to a named variable that receives the auxiliary data associated with
each vertex returned in the Vertices argument. The data is an [m, n] array where m is
the number of per-vertex auxiliary data items specified in the call(s) to the
AddPolygon method, and n is the number of vertices returned in the Vertices
argument. The type of the returned auxiliary data is the same as the type of the data
supplied with the AUXDATA keyword in the last call to AddPolygon.

QUIET

Set this keyword to suppress warning and error message generation due to
tessellation errors. !ERROR_STATE is not updated in the case of the return value
being ‘0’ when the QUIET keyword is specified.

Version History

Introduced: 5.0

AUXDATA keywords: 5.6
IDL Reference Guide IDLgrTessellator

3602 Chapter 8: Graphics Object Classes
IDLgrText

A text object represents one or more text strings that share common rendering
attributes. An IDLgrText object is an atomic graphic object; it is one of the basic
drawable elements of the IDL Object Graphics system, and it is not a container for
other objects.

Superclasses

IDLitComponent

Creation

See “IDLgrText::Init” on page 3623.

Properties

Objects of this class have the following properties. See “IDLgrText Properties” on
page 3604 for details on individual properties.

• ALIGNMENT • ALL

• ALPHA_CHANNEL • BASELINE

• CHAR_DIMENSIONS • CLIP_PLANES

• COLOR • ENABLE_FORMATTING

• FONT • HIDE

• KERNING • LOCATIONS

• ONGLASS • ONGLASS

• PALETTE • PARENT

• RECOMPUTE_DIMENSIONS • REGISTER_PROPERTIES

• RENDER_METHOD • STRINGS

• UPDIR • VERTICAL_ALIGNMENT

• XCOORD_CONV • XRANGE

• YCOORD_CONV • YRANGE

• ZCOORD_CONV • ZRANGE
IDLgrText IDL Reference Guide

Chapter 8: Graphics Object Classes 3603
In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrText::Cleanup

• IDLgrText::GetCTM

• IDLgrText::GetProperty

• IDLgrText::Init

• IDLgrText::SetProperty

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.0
IDL Reference Guide IDLgrText

3604 Chapter 8: Graphics Object Classes
IDLgrText Properties

IDLgrText objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLgrText::GetProperty. Properties with the word
“Yes” in the “Init” column of the property table can be retrieved via IDLgrText::Init.
Properties with the word “Yes” in the “Set” column in the property table can be set
via IDLgrText::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALIGNMENT

A floating-point value between 0.0 and 1.0 to indicate the requested horizontal
alignment of the text baseline. An alignment of 0.0 (the default) left-justifies the text
at the given position; an alignment of 1.0 right-justifies the text, and an alignment of
0.5 centers the text over the given position..

ALL

An anonymous structure containing the values of all of the properties associated with
the state of this object. State information about the object includes things like color,
range, tick direction, etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

Property Type FLOAT

Name String Horizontal alignment

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLgrText IDL Reference Guide

Chapter 8: Graphics Object Classes 3605
ALPHA_CHANNEL

A floating-point value that determines the opacity of the text with respect to the
background. Set this property to a value in the range [0.0, 1.0] (1.0 is the default) to
draw the text foreground and background with the specified blending factor. A value
of 1.0 draws the text opaquely without blending the text with objects already drawn
on the destination. Edges of the glyphs are always blended. A value of 0.0 draws no
text at all. A value in the middle of the range draws the text semi-transparently, which
provides a way of creating labels that are visible while allowing features blocked by
the labels to still be seen. This property is used only when the RENDER_METHOD
in effect is 0 (Texture).

BASELINE

A two- or three-element floating-point vector describing the direction in which the
baseline is to be oriented. Use this property in conjunction with the UPDIR property
to specify the plane on which the text lies. The default BASELINE is [1.0,0,0] (i.e.,
parallel to the x-axis).

This property is registered as a user-defined property, but it is hidden by default.

CHAR_DIMENSIONS

A two-element floating-point vector [width, height] indicating the dimensions
(measured in data units) of a bounding box for each character, to be used when
scaling text projected in three dimensions. If either width or height is zero, the text
will be scaled such that if it were positioned halfway between the near and far
clipping planes, it will appear at the point size associated with this text object’s font.
The default value is [0, 0]. IDL converts, maintains, and returns this data as double-
precision floating-point.

Property Type FLOAT

Name String Opacity

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type USERDEF

Name String Baseline direction

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrText

3606 Chapter 8: Graphics Object Classes
Note
If you set the CHAR_DIMENSIONS property to [0,0] (using the SetProperty
method), indicating that IDL should calculate the text size, the value (returned by
the GetProperty method) will not be updated to reflect the calculated size until you
call either the Draw method or the GetTextDimensions method.

For example, if the VIEWPLANE_RECT of the view the text object is being
rendered in is set equal to [0,0,10,10] (that is, it spans ten data units in each of the X
and Y directions), setting the CHAR_DIMENSIONS property equal to [2, 3] will
scale the text such that each character fills 20% of the X range and 30% of the Y
range.

This property has no effect if the ONGLASS property is set equal to one..

CLIP_PLANES

A 4-by-N floating-point array that specifies the coefficients of the clipping planes to
be applied to this object. The four coefficients for each clipping plane are of the form
[A, B, C, D], where Ax + By + Cz + D = 0. Portions of this object that fall in the half
space Ax + By + Cz + D > 0 will be clipped. By default, the value of this property is a
scalar (-1) indicating that no clipping planes are to be applied.

Note
The clipping planes specified via this property are applied in addition to the near
and far clipping planes associated with the IDLgrView in which this object appears.

Note
Clipping planes are applied in the data space of this object (prior to the application
of any x, y, or z coordinate conversion).

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrText IDL Reference Guide

Chapter 8: Graphics Object Classes 3607
Note
To determine the maximum number of clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES property of the GetDeviceInfo method for the
IDLgrBuffer, IDLgrClipboard, IDLgrWindow, and IDLgrVRML objects..

COLOR

The color to be used as the foreground color for the text. The color may be specified
as a color lookup table index or as an RGB vector. The default is [0, 0, 0]..

In a property sheet, this property appears as a color property.

DEPTH_TEST_DISABLE

An integer value that determines whether depth testing is disabled.

• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth testing. A model may also
enable or disable depth testing.

• Set this property to 1 to explicitly disable depth buffer testing while drawing
this object.

• Set this property to 2 to explicitly enable depth testing for this object.

Disabling depth testing allows an object to draw itself on top of other objects already
on the screen, even if the object is located behind them.

Property Type Floating-point array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type COLOR

Name String Color

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrText

3608 Chapter 8: Graphics Object Classes
This property is registered as an enumerated list, but it is hidden by default.

DEPTH_TEST_FUNCTION

An integer value that determines the depth test function. Set this property to 0 (the
default) to inherit the value set by the parent model or view. The parent view always
sets a depth test function of LESS. A model may also set a depth test function value.
The graphics device compares the object’s depth at a particular pixel location with
the depth stored in the depth buffer at that same pixel location. If the comparison test
passes, the object’s pixel is drawn at that location on the screen and the depth buffer
is updated (if depth writing is enabled).

Set this property to any of the following values to use the desired function while
rendering this object.

• 0 = INHERIT - use value from parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the object’s depth is less than the depth buffer’s value.

• 3 = EQUAL - passes if the object’s depth is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the object’s depth is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the object’s depth is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the object’s depth is not equal to the depth
buffer’s value.

• 7 = GREATER OR EQUAL - passes if the object’s depth is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Less means closer to the viewer.

Property Type ENUMLIST

Name String Depth Test Disable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrText IDL Reference Guide

Chapter 8: Graphics Object Classes 3609
This property is registered as an enumerated list, but it is hidden by default.

DEPTH_WRITE_DISABLE

An integer value that determines whether depth writing is disabled.

• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth writing. A model may also
enable or disable depth writing.

• Set this property to 1 to explicitly disable depth buffer writing while rendering
this object.

• Set this property to 2 to explicitly enable depth writing for this object.

Disabling depth writing allows an object to be overdrawn by other objects, even if the
object is located in front of them.

This property is registered as an enumerated list, but it is hidden by default.

ENABLE_FORMATTING

A Boolean value that determines whether the text object should honor embedded
Hershey-style formatting codes within the strings. (Formatting codes are described in
Appendix H, “Fonts”.) The default is not to honor the formatting codes..

Property Type ENUMLIST

Name String Depth Test Enable

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Depth Write Disable

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrText

3610 Chapter 8: Graphics Object Classes
FILL_BACKGROUND

Set this property to zero (the default) to render the text with a transparent bitmap
background, allowing graphics behind the text to show through between the glyphs.
Set this property to non-zero to draw the text bitmap background with the color
specified by the FILL_COLOR property. This property can only be used when
RENDER_METHOD is set to 0 (Texture)..

FILL_COLOR

An integer vector that determines whether to use a text background color other than
the view color. Set this property to -1 (the default) to specify that the text background
should be drawn using the view color. Set this property to an RGB color vector or
color index value to specify that the text bitmap background should be drawn using
the specified color. This property is used only when the FILL_BACKGROUND
property has a non-zero value and the RENDER_METHOD in effect is 0 (Texture).

In a property sheet, this property appears as a color property

FONT

An object reference to an instance of an IDLgrFont object class to describe the font to
use to draw this string. The default is 12 point Helvetica. See IDLgrFont for details.

Property Type BOOLEAN

Name String Fill background

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type COLOR

Name String Fill background

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrText IDL Reference Guide

Chapter 8: Graphics Object Classes 3611
Note
If the default font is in use, retrieving the value of the FONT property (using the
GetProperty method) will return a null object..

HIDE

A Boolean value indicating whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

In a property sheet, this property appears as an enumerated list with the following
options:

• True = Draw graphic (the default)

• False = Do not draw graphic..

KERNING

A Boolean value that determines whether to enable kerning while rendering
characters. Kerning reduces the amount of space between glyphs if the shape of each
glyph allows it, according to the font information stored in the font’s file (e.g., AV).
Set this property to a non-zero value (the default is zero) to enable kerning. Enabling
kerning may not necessarily result in rendering glyphs more closely together because
some fonts do not contain the required kerning information. This property is used
only when the RENDER_METHOD in effect is 0 (Texture)..

Property Type Object reference

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type ENUMLIST

Name String Show

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type BOOLEAN

Name String Kerning

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrText

3612 Chapter 8: Graphics Object Classes
LOCATIONS

A floating-point array of one or more two- or three-element vectors specifying the
coordinates (measured in data units) used to position the string(s). The default
location for each string is [0,0,0]. Each vector is of the form [x, y] or [x, y, z]; if z is
not provided, it is assumed to be zero. Each location corresponds to a string in the
String argument; the number of locations should be equal the number of strings. IDL
converts, maintains, and returns this data as double-precision floating-point..

This property is registered as a user-defined property, but it is hidden by default.

ONGLASS

A Boolean value that indicates whether the text should be displayed “on the glass”.
The default is projected 3-D text..

PALETTE

An object reference to a palette object (an instance of the IDLgrPalette object class)
that defines the color palette of this object. This property is only used if the
destination device is using the RGB color model. If so, and a color value for the
object is specified as a color index value, the palette set by this property is used to
translate the color to RGB space. If the PALETTE property on this object is not set,
the destination object PALETTE property is used (which defaults to a grayscale
ramp)..

This property is registered as a user-defined property, but it is hidden by default.

Property Type USERDEF

Name String Text locations

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type BOOLEAN

Name String On glass

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type USERDEF

Name String Color palette

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrText IDL Reference Guide

Chapter 8: Graphics Object Classes 3613
PARENT

An object reference to the object that contains this object..

RECOMPUTE_DIMENSIONS

An integer value that indicates when this text object’s character dimensions (refer to
the CHAR_DIMENSIONS property) are to be recomputed automatically:

• 0 = The physical size of the text is affected by model and view transforms. The
size of the text in terms of data units is obtained from CHAR_DIMENSIONS.
Since the character dimensions are specified in data units, the text will
maintain the data space size specified by CHAR_DIMENSIONS as the
transforms change. In other words, the physical text size changes along with
other primitives. If the value of this property is [0, 0], the text font’s point size
is used to compute the physical size of the text in terms of data units using the
transforms in effect for the first draw. This setting is the default value for this
property.

• 1 = The physical size of the text is only affected by model transforms. The
CHAR_DIMENSIONS property is ignored. The size of the text is computed
from the font’s point size the first time it is drawn, and IDL does not try to keep
the size of the text constant with respect to changes in the model transforms.

• 2 = The physical size of the text is held constant, even as the model and view
change. The CHAR_DIMENSIONS property is ignored and the text is always
drawn with a physical size equal to the text font’s point size. IDL adjusts its
internal text transforms to maintain the physical size of the text.

In a property sheet, this property appears as an enumerated list with the following
options:

• Never

• Previous

Property Type Object reference

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrText

3614 Chapter 8: Graphics Object Classes
• Always

REGISTER_PROPERTIES

A Boolean value that determines whether to register properties available for this
object. Set this property to automatically register the following properties of the
object for display in a property sheet. This property is useful mainly when creating
iTools. By default, no properties are registered.

RENDER_METHOD

A Boolean value that determines how the text object will be rendered. Set this
property to one of the following values:

• 0 = TEXTURE. IDL renders the text by placing a bitmap representation of a
glyph into a texture map and then rendering a polygon with the texture map.
The FILL_BACKGROUND, ALPHA_CHANNEL, and FILL_COLOR
properties control the drawing of the background portions of the texture map
and how the entire texture map is blended into the scene. Leaving these three
properties set to their default values produces a result that closely
approximates the TRIANGLES rendering method. One important difference is
that the glyph bitmaps are generated by the FreeType font rendering library,
producing glyphs that are more accurately rendered and anti-aliased than those
drawn with the TRIANGLES method. The TEXTURE method cannot be used
on indexed color destinations. The text is rendered with the TRIANGLES
method if the destination color model is indexed.

• 1 = TRIANGLES. IDL renders the text by tessellating the glyph outline into a
set of small triangles that are then drawn to produce the solid glyph. IDL also
draws a blended line around the edge of the glyph to approximate anti-aliasing.
This setting forces IDL to use the process it used as the default before IDL 6.0.

Property Type ENUMLIST

Name String Recompute dimensions

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDLgrText IDL Reference Guide

Chapter 8: Graphics Object Classes 3615
In a property sheet, this property appears as an enumerated list with the following
options:

• Texture

• Triangles

STRINGS

The string (or vector of strings) associated with the text object. This property is the
same as the String argument described above.

If the number of strings matches the number of locations (as specified by the
LOCATIONS property), the existing locations are used.

Note
If the number of strings does not match the number of locations, the number of
locations is modified to match the number of strings, and the location value for each
string is reset to [0,0,0]..

This property is registered as a user-defined property, but it is hidden by default.

UPDIR

A two- (or three-) element floating-point vector describing the vertical direction for
the string. The upward direction is the direction defined by a vector pointing from the
origin to the point specified. Use this property in conjunction with the BASELINE
property to specify the plane on which the text lies; the direction specified by UPDIR
should be orthogonal to the direction specified by BASELINE. The default UPDIR is
[0.0, 1.0, 0.0] (i.e., parallel to the Y axis).

Property Type ENUMLIST

Name String Render method

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type USERDEF

Name String Text strings

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrText

3616 Chapter 8: Graphics Object Classes
This property is registered as a user-defined property, but it is hidden by default.

VERTICAL_ALIGNMENT

A floating-point value between 0.0 and 1.0 to indicate the requested vertical
alignment of the text. An alignment of 0.0 (the default) bottom-justifies the text at the
given location; an alignment of 1.0 top-justifies the text at the given location..

XCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert X coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point..

Property Type USERDEF

Name String Up direction

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type FLOAT

Name String Vertical alignment

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrText IDL Reference Guide

Chapter 8: Graphics Object Classes 3617
XRANGE

A two-element floating-point vector of the form [xmin, xmax] that specifies the range
of x data coordinates covered by the graphic object. IDL maintains and returns this
property in double-precision floating-point..

YCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert Y coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point..

YRANGE

A two-element floating-point vector of the form [ymin, ymax] that specifies the range
of y data coordinates covered by the graphic object. IDL maintains and returns this
property in double-precision floating-point..

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrText

3618 Chapter 8: Graphics Object Classes
ZCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert Z coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point..

ZRANGE

A two-element floating-point vector of the form [zmin, zmax] that specifies the range
of z data coordinates covered by the graphic object. IDL maintains and returns this
property in double-precision floating-point.

Note
Until the text is drawn to the destination object, the [XYZ]RANGE properties will
only report the locations of the text. Use the GetTextDimensions method of the
destination object to get the data dimensions of the text prior to a draw operation..

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLgrText IDL Reference Guide

Chapter 8: Graphics Object Classes 3619
IDLgrText::Cleanup

The IDLgrText::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrText::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDL Reference Guide IDLgrText

3620 Chapter 8: Graphics Object Classes
IDLgrText::GetCTM

The IDLgrText::GetCTM function method returns the 4-by-4 double-precision
floating-point graphics transform matrix from the current object upward through the
graphics tree.

Syntax

Result = Obj -> [IDLgrText::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Return Value

Returns the 4-by-4 double-precision floating-point graphics transform matrix from
the current object upward through the graphics tree.

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the text
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrText::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.
IDLgrText IDL Reference Guide

Chapter 8: Graphics Object Classes 3621
Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.

TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrText

3622 Chapter 8: Graphics Object Classes
IDLgrText::GetProperty

The IDLgrText::GetProperty procedure method retrieves the value of a property or
group of properties for the text.

Syntax

Obj -> [IDLgrText::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrText Properties” on page 3604 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.0
IDLgrText IDL Reference Guide

Chapter 8: Graphics Object Classes 3623
IDLgrText::Init

The IDLgrText::Init function method initializes the text object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrText' [, String or vector of strings] [, PROPERTY=value])

or

Result = Obj -> [IDLgrText::]Init([String or vector of strings] [, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

String

The string (or vector of strings) to be created. If this argument is not a string, it is
converted prior to creation of the text object using the default formatting rules.

Note
Strings have a default location of [0,0,0]. Use the LOCATIONS property to provide
a different location for each string.
IDL Reference Guide IDLgrText

3624 Chapter 8: Graphics Object Classes
Keywords

Any property listed under “IDLgrText Properties” on page 3604 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.

Version History

Introduced: 5.0

CLIP_PLANES keyword: 5.6
IDLgrText IDL Reference Guide

Chapter 8: Graphics Object Classes 3625
IDLgrText::SetProperty

The IDLgrText::SetProperty procedure method sets the value of a property or group
of properties for the text.

Syntax

Obj -> [IDLgrText::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrText Properties” on page 3604 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrText

3626 Chapter 8: Graphics Object Classes
IDLgrView

A view object represents a rectangular area in which graphics objects are drawn. It is
a container for objects of the IDLgrModel class.

Superclasses

IDL_Container

IDLitComponent

TrackBall

Creation

See “IDLgrView::Init” on page 3640.

Properties

Objects of this class have the following properties. See “IDLgrView Properties” on
page 3628 for details on individual properties.

• ALL

• COLOR

• DEPTH_CUE

• DIMENSIONS

• DOUBLE

• EYE

• HIDE

• LOCATION

• PARENT

• PROJECTION

• REGISTER_PROPERTIES

• TRANSPARENT

• UNITS

• VIEWPLANE_RECT
IDLgrView IDL Reference Guide

Chapter 8: Graphics Object Classes 3627
• ZCLIP

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrView::Add

• IDLgrView::Cleanup

• IDLgrView::GetByName

• IDLgrView::GetProperty

• IDLgrView::Init

• IDLgrView::SetProperty

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.0
IDL Reference Guide IDLgrView

3628 Chapter 8: Graphics Object Classes
IDLgrView Properties

IDLgrView objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLgrView::GetProperty. Properties with the word
“Yes” in the “Init” column of the property table can be retrieved via IDLgrView::Init.
Properties with the word “Yes” in the “Set” column in the property table can be set
via IDLgrView::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the properties associated with
the state of this object. State information about the object includes things like color,
range, tick direction, etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

COLOR

The color for the view. This is the color to which the view area will be erased before
its contents are drawn. The color may be specified as a color lookup table index or as
an RGB vector. The default is [255, 255, 255] (white)..

In a property sheet, this property appears as a color property.

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type COLOR

Name String Color

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrView IDL Reference Guide

Chapter 8: Graphics Object Classes 3629
DEPTH_CUE

A two-element floating-point array [zbright, zdim] specifying the near and far Z
planes between which depth cueing is in effect. Depth cueing is only honored when
drawing to a destination object that uses the RGB color model.

Depth cueing causes an object to appear to fade into the background color of the view
object with changes in depth. If the depth of an object is further than zdim (that is, if
the object’s location in the Z direction is farther from the origin than the value
specified by zdim), the object will be painted in the background color. Similarly, if
the object is closer than the value of zbright, the object will appear in its “normal”
color. Anywhere in-between, the object will be a blend of the background color and
the object color. For example, if the DEPTH_CUE property is set to [-1,1], an object
at the depth of 0.0 will appear as a 50% blend of the object color and the view color.

The relationship between Zbright and Zdim determines the result of the rendering:

• Zbright < Zdim: Rendering darkens with depth.

• Zbright > Zdim: Rendering brightens with depth.

• Zbright = Zdim: Disables depth cueing.

You can disable depth cueing by setting zbright = zdim. The default is [0.0, 0.0]..

This property is registered as a user-defined property, but it is hidden by default.

DIMENSIONS

A two-element integer vector of the form [width, height] specifying the dimensions
of the viewport (the rectangle in which models are displayed on a graphics
destination). By default, the viewport dimensions are set to [0, 0], which indicates
that it will match the dimensions of the graphics destination to which it is drawn. The
dimensions are measured in the units specified by the UNITS property..

Property Type USERDEF

Name String Depth cue

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Integer vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrView

3630 Chapter 8: Graphics Object Classes
DOUBLE

A Boolean value that controls the precision used for rendering the entire contents of
the view. If set, IDL calculates the transformations used for the modeling and view
transforms using double-precision floating-point arithmetic. This allows the values
specified for the VIEWPLANE_RECT, modeling transforms in IDLgrModel objects,
and coordinate data in atomic graphic objects to be used as double-precision before
mapping to device coordinates.

Note
If this property is set to 0, IDL uses single-precision floating-point arithmetic for
these values, which can cause loss of significance and incorrect rendering of data.
Setting this property to 1 may impact graphics performance and should only be used
when handling data requiring double precision..

EYE

A floating-point value that specifies the distance from the eyepoint to the viewplane
(Z=0). The default is 4.0. The eyepoint is always centered within the viewplane
rectangle. (That is, if the VIEWPLANE_RECT property is set equal to [0,0,1,1], the
eyepoint will be at X=0.5, Y=0.5.) IDL converts, maintains, and returns this data as
double-precision floating-point..

HIDE

A Boolean value indicating whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

In a property sheet, this property appears as an enumerated list with the following
options:

Property Type BOOLEAN

Name String Double precision

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type FLOAT

Name String Eye distance

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrView IDL Reference Guide

Chapter 8: Graphics Object Classes 3631
• True = Draw graphic (the default)

• False = Do not draw graphic..

LOCATION

A two-element floating-point vector of the form [x, y] specifying the position of the
lower left corner of the view. The default is [0, 0], measured in device units.

This property is registered as a user-defined property, but it is hidden by default.

PARENT

An object reference to the object that contains this object..

PROJECTION

An integer value indicating the type of projection to use within this view. All models
displayed within this view will be projected using this type of projection. Valid
values are described below.

• 1 = Orthogonal projection (default).

• 2 = Perspective: Indicates that all models are projected toward the eye (located
at the origin), which is the apex of the viewing frustum. With a perspective
projection, models that are farther away from the eye will appear smaller in the
view than models that are nearer to the eye..

Property Type ENUMLIST

Name String Show

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type USERDEF

Name String Viewport location

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Object reference

Name String not displayed

Get: Yes Set: Init: Registered: No
IDL Reference Guide IDLgrView

3632 Chapter 8: Graphics Object Classes
In a property sheet, this property appears as an enumerated list with the following
options:

• None

• Orthogonal

• Perspective

REGISTER_PROPERTIES

A Boolean value that determines whether to register properties available for this
object. Set this property to automatically register the following properties of the
object for display in a property sheet. This property is useful mainly when creating
iTools. By default, no properties are registered.

TRANSPARENT

A Boolean value that determines whether to disable the viewport erase, making the
viewport transparent..

UNITS

An integer value that specifies the units of measure for this view. Valid values are:

• 0 = Device (default)

• 1 = Inches

Property Type ENUMLIST

Name String Projection

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No

Property Type BOOLEAN

Name String Transparent

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrView IDL Reference Guide

Chapter 8: Graphics Object Classes 3633
• 2 = Centimeters

• 3 = Normalized: relative to the graphics destination’s rect.

Note
If you set the UNITS property (using the SetProperty method) of a view without
also setting the LOCATION and DIMENSIONS properties, IDL will use the
existing size and location values in the new units, without conversion. This means
that if your view’s location and dimensions were previously measured in
centimeters, and you change the value of UNITS to 1 (measurement in inches), the
actual size of the view object will change..

In a property sheet, this property appears as an enumerated list with the following
options:

• Device

• Inches

• Centimeters

• Normalization

VIEWPLANE_RECT

A four-element floating-point vector of the form [x, y, width, height] to describe the
bounds in x and y of the view volume. Objects within the view volume are projected
into the viewport. These values are measured in normalized space. The default is [-
1.0, -1.0, 2.0, 2.0] IDL converts, maintains, and returns this data as double-precision
floating-point.

Note
The z bounds of the view volume are set via the ZCLIP property. The viewplane
rectangle is always located at Z=0.

Property Type ENUMLIST

Name String Units

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrView

3634 Chapter 8: Graphics Object Classes
This property is registered as a user-defined property, but it is hidden by default.

ZCLIP

A two element floating-point vector representing the near and far clipping planes to
be applied to the objects in this view. The vector should take the form [near, far]. By
default, these values are [1, -1]. IDL converts, maintains, and returns this data as
double-precision floating-point.

This property is registered as a user-defined property, but it is hidden by default.

Property Type USERDEF

Name String Viewplane rectangle

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type USERDEF

Name String Z clipping

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrView IDL Reference Guide

Chapter 8: Graphics Object Classes 3635
IDLgrView::Add

The IDLgrView::Add procedure method adds a child to this view.

Syntax

Obj -> [IDLgrView::]Add, Model [, POSITION=index]

Arguments

Model

An instance of the IDLgrModel object class.

Keywords

POSITION

Set this keyword equal to the zero-based index of the position within the container at
which the new object should be placed.

Version History

Introduced 5.0
IDL Reference Guide IDLgrView

3636 Chapter 8: Graphics Object Classes
IDLgrView::Cleanup

The IDLgrView::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrView::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced 5.0
IDLgrView IDL Reference Guide

Chapter 8: Graphics Object Classes 3637
IDLgrView::GetByName

The IDLgrView::GetByName function method finds contained objects by name. If
the named object is not found, the GetByName function returns a null object
reference.

Note
The GetByName function does not perform a recursive search through the object
hierarchy. If a fully qualified object name is not specified, only the contents of the
current container object are inspected for the named object.

Syntax

Result = Obj -> [IDLgrView::]GetByName(Name)

Return Value

Returns contained objects by name. If the named object is not found, the GetByName
function returns a null object reference.

Arguments

Name

A string containing the name of the object to be returned.

Object naming syntax is very much like the syntax of a UNIX filesystem. Objects
contained by other objects can include the name of their parent object; this allows
you to create a fully qualified name specification. For example, if object1 contains
object2, which in turn contains object3, the string specifying the fully qualified
object name of object3 would be 'object1/object2/object3'.

Object names are specified relative to the object on which the GetByName method is
called. If used at the beginning of the name string, the / character represents the top
of an object hierarchy. The string '..' represents the object one level “up” in the
hierarchy.

Keywords

None
IDL Reference Guide IDLgrView

3638 Chapter 8: Graphics Object Classes
Version History

Introduced 5.0
IDLgrView IDL Reference Guide

Chapter 8: Graphics Object Classes 3639
IDLgrView::GetProperty

The IDLgrView::GetProperty procedure method retrieves the value of the property or
group of properties for the view.

Syntax

Obj -> [IDLgrView::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrView Properties” on page 3628 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced 5.0
IDL Reference Guide IDLgrView

3640 Chapter 8: Graphics Object Classes
IDLgrView::Init

The IDLgrView::Init function method initializes the view object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrView' [, PROPERTY=value])

or

Result = Obj -> [IDLgrView::]Init([PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLgrView Properties” on page 3628 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.
IDLgrView IDL Reference Guide

Chapter 8: Graphics Object Classes 3641
Version History

Introduced 5.0
IDL Reference Guide IDLgrView

3642 Chapter 8: Graphics Object Classes
IDLgrView::SetProperty

The IDLgrView::SetProperty procedure method sets the value of the property or
group of properties for the view.

Syntax

Obj -> [IDLgrView::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrView Properties” on page 3628 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced 5.0
IDLgrView IDL Reference Guide

Chapter 8: Graphics Object Classes 3643
IDLgrViewgroup

The IDLgrViewgroup object is a simple container object, very similar to the
IDLgrScene object. It contains one or more IDLgrView objects and an IDLgrScene
can contain one or more of these objects. This object is special in that it can also
contain objects which do not have a Draw method (e.g. IDLgrPattern and
IDLgrFont). An IDLgrViewgroup object cannot be returned by a call to the
IDLgrWindow::Select method.

Superclasses

IDL_Container

IDLitComponent

Creation

See “IDLgrViewgroup::Init” on page 3652.

Properties

Objects of this class have the following properties. See “IDLgrViewgroup Properties”
on page 3645 for details on individual properties.

• ALL

• HIDE

• PARENT

• REGISTER_PROPERTIES

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrViewgroup::Add

• IDLgrViewgroup::Cleanup

• IDLgrViewgroup::GetByName

• IDLgrViewgroup::GetProperty
IDL Reference Guide IDLgrViewgroup

3644 Chapter 8: Graphics Object Classes
• IDLgrViewgroup::Init

• IDLgrViewgroup::SetProperty

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.1
IDLgrViewgroup IDL Reference Guide

Chapter 8: Graphics Object Classes 3645
IDLgrViewgroup Properties

IDLgrViewgroup objects have the following properties in addition to properties
inherited from any superclasses. Properties with the word “Yes” in the “Get” column
of the property table can be retrieved via IDLgrViewgroup::GetProperty. Properties
with the word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrViewgroup::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLgrViewgroup::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the retrievable properties
associated with this object.

HIDE

A Boolean value to indicate whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

In a property sheet, this property appears as an enumerated list with the following
options:

• True = Draw graphic (the default)

• False = Do not draw graphic..

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type ENUMLIST

Name String Show

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrViewgroup

3646 Chapter 8: Graphics Object Classes
PARENT

An object reference to the object that contains this viewgroup.

REGISTER_PROPERTIES

A Boolean value that determines whether to register properties available for this
object. Set this property to automatically register the following properties of the
object for display in a property sheet. This property is useful mainly when creating
iTools. By default, no properties are registered.

Property Type Object reference

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDLgrViewgroup IDL Reference Guide

Chapter 8: Graphics Object Classes 3647
IDLgrViewgroup::Add

The IDLgrViewgroup::Add function method verifies that the added item is not an
instance of the IDLgrScene or IDLgrViewgroup object. If it is not,
IDLgrViewgroup:Add adds the object to the specified viewgroup.

Syntax

Obj -> [IDLgrViewgroup::]Add, Object [, POSITION=index]

Arguments

Object

An instance of an object or a list of objects. Objects which subclass IDLgrScene or
IDLgrViewgroup can not be added (avoiding circularity constraints). All other
objects are allowed.

Keywords

POSITION

Set this keyword equal to the zero-based index of the position within the container at
which the new object should be placed.

Version History

Introduced: 5.1
IDL Reference Guide IDLgrViewgroup

3648 Chapter 8: Graphics Object Classes
IDLgrViewgroup::Cleanup

The IDLgrViewgroup::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY,Obj

or

Obj -> [IDLgrViewgroup::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.1
IDLgrViewgroup IDL Reference Guide

Chapter 8: Graphics Object Classes 3649
IDLgrViewgroup::GetByName

The IDLgrViewgroup::GetByName function method finds contained objects by
name. If the named object is not found, the GetByName function returns a null object
reference.

Note
The GetByName function does not perform a recursive search through the object
hierarchy. If a fully qualified object name is not specified, only the contents of the
current container object are inspected for the named object.

Syntax

Result = Obj -> [IDLgrViewgroup::]GetByName(Name)

Return Value

Returns contained objects by name. If the named object is not found, the GetByName
function returns a null object reference.

Arguments

Name

A string containing the name of the object to be returned.

Object naming syntax is very much like the syntax of a UNIX filesystem. Objects
contained by other objects can include the name of their parent object; this allows
you to create a fully qualified name specification. For example, if object1 contains
object2, which in turn contains object3, the string specifying the fully qualified
object name of object3 would be 'object1/object2/object3'.

Object names are specified relative to the object on which the GetByName method is
called. If used at the beginning of the name string, the / character represents the top
of an object hierarchy. The string '..' represents the object one level “up” in the
hierarchy.

Keywords

None
IDL Reference Guide IDLgrViewgroup

3650 Chapter 8: Graphics Object Classes
Version History

Introduced: 5.1
IDLgrViewgroup IDL Reference Guide

Chapter 8: Graphics Object Classes 3651
IDLgrViewgroup::GetProperty

The IDLgrViewgroup::GetProperty procedure method retrieves the value of a
property or group of properties for the viewgroup object.

Syntax

Obj -> [IDLgrViewgroup::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrViewgroup Properties” on page 3645 that contains
the word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.1
IDL Reference Guide IDLgrViewgroup

3652 Chapter 8: Graphics Object Classes
IDLgrViewgroup::Init

The IDLgrViewgroup::Init function method initializes the viewgroup object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrViewgroup' [, PROPERTY=value])

or

Result = Obj -> [IDLgrViewgroup::]Init([, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLgrViewgroup Properties” on page 3645 that contains
the word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.
IDLgrViewgroup IDL Reference Guide

Chapter 8: Graphics Object Classes 3653
Version History

Introduced: 5.1
IDL Reference Guide IDLgrViewgroup

3654 Chapter 8: Graphics Object Classes
IDLgrViewgroup::SetProperty

The IDLgrViewgroup::SetProperty procedure method sets the value of a property or
group of properties for the viewgroup.

Syntax

Obj -> [IDLgrViewgroup::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrViewgroup Properties” on page 3645 that contains
the word “Yes” in the “Set” column of the properties table can be set using this
method. To set the value of a property, specify the property name as a keyword set
equal to the appropriate property value.

Version History

Introduced: 5.1
IDLgrViewgroup IDL Reference Guide

Chapter 8: Graphics Object Classes 3655
IDLgrVolume

A volume object represents a mapping from a three-dimensional array of data to a
three-dimensional array of voxel colors, which, when drawn, are projected to two
dimensions.

An IDLgrVolume object is an atomic graphic object; it is one of the basic drawable
elements of the IDL Object Graphics system, and it is not a container for other
objects.

Superclasses

IDLitComponent

Creation

See “IDLgrVolume::Init” on page 3679.

Properties

Objects of this class have the following properties. See “IDLgrVolume Properties” on
page 3657 for details on individual properties.

• ALL • AMBIENT

• BOUNDS • CLIP_PLANES

• COMPOSITE_FUNCTION • CUTTING_PLANES

• DATA0 • DATA1

• DATA2 • DATA3

• DEPTH_CUE • DEPTH_TEST_DISABLE

• DEPTH_TEST_FUNCTION • DEPTH_WRITE_DISABLE

• HIDE • HINTS

• INTERPOLATE • LIGHTING_MODEL

• NO_COPY • OPACITY_TABLE0

• OPACITY_TABLE1 • PALETTE

• PARENT • REGISTER_PROPERTIES
IDL Reference Guide IDLgrVolume

3656 Chapter 8: Graphics Object Classes
In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrVolume::Cleanup

• IDLgrVolume::ComputeBounds

• IDLgrVolume::GetCTM

• IDLgrVolume::GetProperty

• IDLgrVolume::Init

• IDLgrVolume::PickVoxel

• IDLgrVolume::SetProperty

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.0

• RENDER_STEP • RGB_TABLE0

• RGB_TABLE1 • TWO_SIDED

• VALID_DATA • VOLUME_SELECT

• XCOORD_CONV • XRANGE

• YCOORD_CONV • YRANGE

• ZBUFFER • ZCOORD_CONV

• ZERO_OPACITY_SKIP • ZRANGE
IDLgrVolume IDL Reference Guide

Chapter 8: Graphics Object Classes 3657
IDLgrVolume Properties

IDLgrVolume objects have the following properties in addition to properties
inherited from any superclasses. Properties with the word “Yes” in the “Get” column
of the property table can be retrieved via IDLgrVolume::GetProperty. Properties with
the word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrVolume::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLgrVolume::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the properties associated with
the state of this object. State information about the object includes things like color,
range, tick direction, etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

AMBIENT

The color and intensity of the volume’s base ambient lighting. Color is specified as
an RGB vector. The default is [255, 255, 255]. AMBIENT is applicable only when
LIGHTING_MODEL is set..

In a property sheet, this property appears as a color property.

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type COLOR

Name String Ambient color

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrVolume

3658 Chapter 8: Graphics Object Classes
BOUNDS

A six-element floating-point vector of the form [xmin, ymin, zmin, xmax, ymax, zmax],
which represents the sub-volume to be rendered. .

This property is registered as a user-defined property, but it is hidden by default.

CLIP_PLANES

A 4-by-N floating-point array that specifies the coefficients of the clipping planes to
be applied to this object. The four coefficients for each clipping plane are of the form
[A, B, C, D], where Ax + By + Cz + D = 0. Portions of this object that fall in the half
space Ax + By + Cz + D > 0 will be clipped. By default, the value of this property is a
scalar (-1) indicating that no clipping planes are to be applied.

Note
The clipping planes specified via this property are applied in addition to the near
and far clipping planes associated with the IDLgrView in which this object appears.

Note
Clipping planes are applied in the data space of this object (prior to the application
of any x, y, or z coordinate conversion).

Note
To determine the maximum number of clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES property of the GetDeviceInfo method for the
IDLgrBuffer, IDLgrClipboard, IDLgrWindow, and IDLgrVRML objects.

Property Type USERDEF

Name String Subvolume bounds

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrVolume IDL Reference Guide

Chapter 8: Graphics Object Classes 3659
Note
Clipping planes are equivalent to cutting planes (refer to the CUTTING_PLANES
property). The CUTTING_PLANES will be applied first, then the CLIP_PLANES
(until a maximum number of planes is reached)..

COMPOSITE_FUNCTION

An integer value that determines the composite function to be used to measure the
value of a pixel on the viewing plane by analyzing the voxels falling along the
corresponding ray. Specify one of the following compositing functions:

• 0 = Alpha (default): Alpha-blending. The recursive equation

dest' = src * srcalpha + dest * (1 - srcalpha)

is used to compute the final pixel color.

• 1 = MIP: Maximum intensity projection. The value of each pixel on the
viewing plane is set to the brightest voxel, as determined by its opacity. The
most opaque voxel’s color appropriation is then reflected by the pixel on the
viewing plane.

• 2 = Alpha sum: Alpha-blending. The recursive equation

dest' = src + dest * (1 - srcalpha)

is used to compute the final pixel color. This equation assumes that the color
tables have been pre-multiplied by the opacity tables. The accumulated values
can be no greater than 255.

• 3 = Average: Average-intensity projection. The resulting image is the average
of all voxels along the corresponding ray. Disables lighting and only works
with grey scale palettes. Will not work with four-channel volumes..

In a property sheet, this property appears as an enumerated list with the following
options:

• Alpha blending

• Maximum intensity projection

• Alpha sum

Property Type Floating-point array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrVolume

3660 Chapter 8: Graphics Object Classes
• Average intensity

CUTTING_PLANES

A floating-point array with dimensions (4, n) specifying the coefficients of n cutting
planes. The cutting plane coefficients are in the form {{nx, ny, nz, D}, ...} where
(nx)X+(ny)Y+(nz)Z+ D > 0, and (X, Y, Z) are the voxel coordinates. To clear the
cutting planes, set this property to any scalar value (e.g. CUTTING_PLANES = 0).
By default, no cutting planes are defined.

This property is registered as a user-defined property, but it is hidden by default.

DATA0

A three-element array of any type of the format (dx, dy, dz), which specifies a data
volume. Setting this property is the same as including the vol0 argument at creation
time. If the data volume dimensions do not match those of any pre-existing data in
DATA1, DATA2, or DATA3, all existing data is removed from the object..

DATA1

A three-element array of any type of the format (dx, dy, dz), which specifies a data
volume. Setting this property is the same as including the vol1 argument at creation

Property Type ENUMLIST

Name String Composite function

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type USERDEF

Name String Cutting planes

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Array of any type

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrVolume IDL Reference Guide

Chapter 8: Graphics Object Classes 3661
time. If the data volume dimensions do not match those of any pre-existing data in
DATA0, DATA2, or DATA3, all existing data is removed from the object..

DATA2

A three-element array of any type of the format (dx, dy, dz), which specifies a data
volume. Setting this property is the same as including the vol2 argument at creation
time. If the data volume dimensions do not match those of any pre-existing data in
DATA0, DATA1, or DATA3, all existing data is removed from the object..

DATA3

A three-element array of any type of the format (dx, dy, dz), which specifies a data
volume. Setting this property is the same as including the vol3 argument at creation
time. If the data volume dimensions do not match those of any pre-existing data in
DATA0, DATA1, or DATA2, all existing data is removed from the object.

Note
DATA0, DATA1, DATA2, and DATA3 sizes are dynamic..

DEPTH_CUE

A two-element floating-point array [zbright, zdim] specifying the near and far Z
planes between which depth cueing is in effect. Depth cueing is only honored when
drawing to a destination object that uses the RGB color model.

Property Type Array of any type

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Array of any type

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Array of any type

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrVolume

3662 Chapter 8: Graphics Object Classes
Depth cueing causes an object to appear to fade into the background color of the view
object with changes in depth. If the depth of an object is further than zdim (that is, if
the object’s location in the Z direction is farther from the origin than the value
specified by zdim), the object will be painted in the background color.

Similarly, if the object is closer than the value of zbright, the object will appear in its
“normal” color. Anywhere in-between, the object will be a blend of the background
color and the object color. For example, if the DEPTH_CUE property is set to [-1,1],
an object at the depth of 0.0 will appear as a 50% blend of the object color and the
view color.

The relationship between Zbright and Zdim determines the result of the rendering:

• Zbright < Zdim: Rendering darkens with depth.

• Zbright > Zdim: Rendering brightens with depth.

• Zbright = Zdim: Disables depth cueing.

You can disable depth cueing by setting zbright = zdim. The default is [0.0, 0.0]..

This property is registered as a user-defined property, but it is hidden by default.

DEPTH_TEST_DISABLE

An integer value that determines whether depth testing is disabled.

• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth testing. A model may also
enable or disable depth testing.

• Set this property to 1 to explicitly disable depth buffer testing while drawing
this object.

• Set this property to 2 to explicitly enable depth testing for this object.

Disabling depth testing allows an object to draw itself on top of other objects already
on the screen, even if the object is located behind them.

Property Type USERDEF

Name String Depth cue range

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrVolume IDL Reference Guide

Chapter 8: Graphics Object Classes 3663
This property is registered as an enumerated list, but it is hidden by default.

DEPTH_TEST_FUNCTION

An integer value that determines the depth test function. Set this property to 0 (the
default) to inherit the value set by the parent model or view. The parent view always
sets a depth test function of LESS. A model may also set a depth test function value.
The graphics device compares the object’s depth at a particular pixel location with
the depth stored in the depth buffer at that same pixel location. If the comparison test
passes, the object’s pixel is drawn at that location on the screen and the depth buffer
is updated (if depth writing is enabled).

Set this property to any of the following values to use the desired function while
rendering this object.

• 0 = INHERIT - use value from parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the object’s depth is less than the depth buffer’s value.

• 3 = EQUAL - passes if the object’s depth is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the object’s depth is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the object’s depth is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the object’s depth is not equal to the depth
buffer’s value.

• 7 = GREATER OR EQUAL - passes if the object’s depth is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Less means closer to the viewer.

Property Type ENUMLIST

Name String Depth Test Disable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrVolume

3664 Chapter 8: Graphics Object Classes
This property is registered as an enumerated list, but it is hidden by default.

DEPTH_WRITE_DISABLE

An integer value that determines whether depth writing is disabled.

• Set this property to 0 (the default) to inherit the value set by the parent model
or view. The parent view always enables depth writing. A model may also
enable or disable depth writing.

• Set this property to 1 to explicitly disable depth buffer writing while rendering
this object.

• Set this property to 2 to explicitly enable depth writing for this object.

Disabling depth writing allows an object to be overdrawn by other objects, even if the
object is located in front of them.

This property is registered as an enumerated list, but it is hidden by default.

HIDE

A Boolean value indicating whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

In a property sheet, this property appears as an enumerated list with the following
options:

• True = Draw graphic (the default)

Property Type ENUMLIST

Name String Depth Test Enable

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Depth Write Disable

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrVolume IDL Reference Guide

Chapter 8: Graphics Object Classes 3665
• False = Do not draw graphic..

HINTS

An integer value that specifies one of the following acceleration hints:

• 0 = Disables all acceleration hints (default).

• 1 = Enables Euclidean distance map (EDM) acceleration. This option
generates a volume map containing the distance from any voxel to the nearest
non-zero opacity voxel. The map is used to speed ray casting by allowing the
ray to jump over open spaces. It is most useful with sparse volumes. After
setting the EDM hint, the draw operation generates the volume map; this
process can take some time. Subsequent draw operations will reuse the
generated map and may be much faster, depending on the volume’s
sparseness. A new map is not automatically generated to match changes in
opacity tables or volume data (for performance reasons). The user may force
recomputation of the EDM map by setting the HINTS property to 1 again.

• 2 = Enables the use of multiple CPUs for volume rendering if the platforms
used support such use. If HINTS is set to 2, IDL will use all the available (up
to 8) CPUs to render portions of the volume in parallel.

• 3 = Selects the two acceleration options described above..

In a property sheet, this property appears as an enumerated list with the following
options:

• Disable

• Euclidean distance map (EDM)

• Multiple CPU

• EDM and Multiple CPU

Property Type ENUMLIST

Name String Show

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Acceleration hints

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrVolume

3666 Chapter 8: Graphics Object Classes
INTERPOLATE

A Boolean value that determines whether to use Trilinear interpolation to determine
the data value for each step on a ray. Setting this property improves the quality of
images produced, at the cost of more computing time, especially when the volume
has low resolution with respect to the size of the viewing plane. Nearest neighbor
sampling is used by default..

In a property sheet, this property appears as an enumerated list with the following
options:

• Nearest neighbor

• Trilinear

LIGHTING_MODEL

A Boolean value that determines whether to use the current lighting model during
rendering in conjunction with a local gradient evaluation.

Note
Only DIRECTIONAL light sources are honored by the volume object. Because
normals must be computed for all voxels in a lighted view, enabling light sources
increases the rendering time..

NO_COPY

A Boolean value that determines whether to relocate volume data from the input
variables to the volume object, leaving the input variables undefined. Only the

Property Type ENUMLIST

Name String Interpolation

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type BOOLEAN

Name String Use lighting

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrVolume IDL Reference Guide

Chapter 8: Graphics Object Classes 3667
DATA0 property and the vol0 argument are affected. If this property is omitted, the
input volume data will be duplicated and a copy will be stored in the object..

OPACITY_TABLE0

A 256-element byte array that specifies the opacity table for DATA0. The default
table is the linear ramp..

OPACITY_TABLE1

A 256-element byte array that specifies the opacity table for DATA1. The default
table is the linear ramp. This table is used only when VOLUME_SELECT is set
equal to 1..

PALETTE

An object reference to a palette object (an instance of the IDLgrPalette object class)
that defines the color palette of this object. This property is only used if the
destination device is using the RGB color model. If so, and a color value for the
object is specified as a color index value, the palette set by this property is used to
translate the color to RGB space. If the PALETTE property on this object is not set,
the destination object PALETTE property is used (which defaults to a grayscale
ramp)..

Property Type Boolean

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Byte array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Byte array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrVolume

3668 Chapter 8: Graphics Object Classes
This property is registered as a user-defined property, but it is hidden by default.

PARENT

An object reference to the object that contains this object..

REGISTER_PROPERTIES

A Boolean value that determines whether to register properties available for this
object. Set this property to automatically register the following properties of the
object for display in a property sheet. This property is useful mainly when creating
iTools. By default, no properties are registered.

RENDER_STEP

A three-element floating-point vector of the form [x, y, z] that specifies the stepping
factor through the voxel matrix..

This property is registered as a user-defined property, but it is hidden by default.

Property Type USERDEF

Name String Color palette

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Object reference

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No

Property Type USERDEF

Name String XYZ render step

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrVolume IDL Reference Guide

Chapter 8: Graphics Object Classes 3669
RGB_TABLE0

A 256 x 3-element byte array that specifies the RGB color table for DATA0. The
default table is the linear ramp. .

RGB_TABLE1

A 256 x 3-element byte array that specifies the RGB color table for DATA1. The
default table is the linear ramp. This table is used only when VOLUME_SELECT is
set equal to 1..

TWO_SIDED

A Boolean value that determines whether the lighting model uses a two-sided voxel
gradient. The two-sided gradient is different from the one-sided gradient (default) in
that the absolute value of the inner product of the light direction and the surface
gradient is used instead of clamping to 0.0 for negative values. .

In a property sheet, this property appears as an enumerated list with the following
options:

• One-sided

• Two-sided

Property Type Byte array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Byte array

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type ENUMLIST

Name String Voxel gradient

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrVolume

3670 Chapter 8: Graphics Object Classes
VALID_DATA

An integer array (one per volume, DATA0, DATA1, etc.) which have the value 1 if
volume data has been loaded for that volume and 0 if that volume data is currently
undefined..

VOLUME_SELECT

An integer value that selects the form of the volume to be rendered. The
VOLUME_SELECT property is used to modify the src and srcalpha parameters
for the COMPOSITE_FUNCTION property.

• 0 = render voxels from the 8bit DATA0 volume (the default)

src = RGB_TABLE0[DATA0]
srcalpha = OPACITY_TABLE0[DATA0]

• 1 = render voxels formed by modulating the RGBA components from DATA0
and DATA1 (after RGB and OPACITY table lookups).

src = (RGB_TABLE0[DATA0]*RGB_TABLE1[DATA1])/256
srcalpha=(OPACITY_TABLE0[DATA0]*OPACITY_TABLE1[DATA1])/256

• 2 = render voxels formed using a byte from DATA0 (red), DATA1 (green),
DATA2(blue) and DATA3(alpha). The keywords OPACITY_TABLE0 and
RGB_TABLE0, described above, are used to indirect the data from each
volume before forming the RGBA pixel.

src=(RGB_TABLE[DATA0,0],RGB_TABLE[DATA1,1],RGB_TABLE[DATA2,2])/256
srcalpha = (OPACITY_TABLE0[DATA3])/256.

XCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert X coordinates from
data units to normalized units. The formula for the conversion is as follows:

Property Type Integer array

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrVolume IDL Reference Guide

Chapter 8: Graphics Object Classes 3671
NormalizedX = s0 + s1 * DataX

Recommended values are:

[(-Xmin)/(Xmax-Xmin), 1/(Xmax-Xmin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point..

XRANGE

A two-element double-precision floating-point vector of the form [xmin, xmax] that
specifies the range of x data coordinates covered by the graphic object..

YCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert Y coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedY = s0 + s1 * DataY

Recommended values are:

[(-Ymin)/(Ymax-Ymin), 1/(Ymax-Ymin)]

The default is [0.0, 1.0]. IDL converts, maintains, and returns this data as double-
precision floating-point..

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrVolume

3672 Chapter 8: Graphics Object Classes
YRANGE

A two-element double-precision floating-point vector of the form [ymin, ymax] that
specifies the range of y data coordinates covered by the graphic object..

ZBUFFER

A Boolean value that determines whether to clip the rendering to the current Z-buffer
and then update the buffer. The default is to not modify the current Z-buffer..

ZCOORD_CONV

A floating-point vector, [s0, s1], of scaling factors used to convert Z coordinates from
data units to normalized units. The formula for the conversion is as follows:

NormalizedZ = s0 + s1 * DataZ

Recommended values are:

[(-Zmin)/(Zmax-Zmin), 1/(Zmax-Zmin)]

The default is [0.0, 1.0]IDL converts, maintains, and returns this data as double-
precision floating-point..

ZERO_OPACITY_SKIP

A Boolean value that determines whether to skip voxels with an opacity of 0. This
property can increase the output contrast of MIP (MAXIMUM_INTENSITY)
projections by allowing the background to show through. If this property is set,

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type BOOLEAN

Name String Update Z buffer

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrVolume IDL Reference Guide

Chapter 8: Graphics Object Classes 3673
voxels with an opacity of zero will not modify the Z-buffer. The default (not setting
the property) continues to render voxels with an opacity of zero..

ZRANGE

A two-element double-precision floating-point vector of the form [zmin, zmax] that
specifies the range of z data coordinates covered by the graphic object..

Obsolete Properties

The following properties are obsolete:

• CUTTING_PLANES

Property Type BOOLEAN

Name String Skip zero opacity

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrVolume

3674 Chapter 8: Graphics Object Classes
IDLgrVolume::Cleanup

The IDLgrVolume::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrVolume::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDLgrVolume IDL Reference Guide

Chapter 8: Graphics Object Classes 3675
IDLgrVolume::ComputeBounds

The IDLgrVolume::ComputeBounds procedure method computes the smallest
bounding box that contains all voxels whose opacity lookup is greater than a given
opacity value. The BOUNDS property is updated to the computed bounding box.

Syntax

Obj -> [IDLgrVolume::]ComputeBounds [, OPACITY=value] [, /RESET]
[, VOLUMES=int array]

Arguments

None

Keywords

OPACITY

Set this keyword to the opacity value to be used to determine which voxels are
included within the bounding box. All voxels whose opacity lookup is greater than
this value will be included. The default value is zero.

RESET

Set this keyword to cause the BOUNDS keyword of IDLgrVolume::Init to be reset to
contain the entire volume.

VOLUMES

Set this keyword to an array of integers which select which volumes to consider when
computing the bounding box. A non-zero value selects a volume to be searched. The
default is to search all loaded volumes. For example: VOLUMES=[0,1] will cause
ComputeBounds to search only the volume loaded in DATA1.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrVolume

3676 Chapter 8: Graphics Object Classes
IDLgrVolume::GetCTM

The IDLgrVolume::GetCTM function method returns the 4-by-4 double-precision
floating-point graphics transform matrix from the current object upward through the
graphics tree.

Syntax

Result = Obj -> [IDLgrVolume::]GetCTM([, DESTINATION=objref]
[, PATH=objref(s)] [, TOP=objref to IDLgrModel object])

Return Value

Returns the 4-by-4 double-precision floating-point graphics transform matrix from
the current object upward through the graphics tree.

Arguments

None

Keywords

DESTINATION

Set this keyword to the object reference of a destination object to specify that the
projection matrix for the View object in the current tree be included in the returned
transformation matrix. The resulting matrix will transform a point in the data space of
the object on which the GetCTM method is called into a normalized coordinate
system (-1 to +1 in X, Y, and Z), relative to the View object that contains the volume
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the transformation
matrix. Each path object reference specified with this keyword must contain an alias.
The transformation matrix is computed for the version of the object falling within
that path. If this keyword is not set, the PARENT properties determine the path from
the current object to the top of the graphics hierarchy and no alias paths are pursued.
If IDLgrVolume::GetCTM is called from within a Draw method, with the
DESTINATION keyword set and the PATH keyword not set, the alias path used to
find the object during the draw is used, rather than the PARENT path.
IDLgrVolume IDL Reference Guide

Chapter 8: Graphics Object Classes 3677
Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.

TOP

Set this keyword equal to the object reference to an IDLgrModel object to specify
that the returned matrix accumulate from the object on which the GetCTM method is
called up to but not including the specified model object.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrVolume

3678 Chapter 8: Graphics Object Classes
IDLgrVolume::GetProperty

The IDLgrVolume::GetProperty procedure method retrieves the value of a property
or group of properties for the volume.

Syntax

Obj -> [IDLgrVolume::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrVolume Properties” on page 3657 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.0
IDLgrVolume IDL Reference Guide

Chapter 8: Graphics Object Classes 3679
IDLgrVolume::Init

The IDLgrVolume::Init function method initializes the volume object. At least one
volume must be specified, via arguments or keywords.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrVolume' [, vol0 [, vol1 [, vol2 [, vol3]]]]
[, PROPERTY=value])

or

Result = Obj -> [IDLgrVolume::]Init([vol0 [, vol1 [, vol2 [, vol3]]]]
[, PROPERTY=value]) (Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

vol0

A three-dimensional array (dx, dy, dz) which specifies a data volume.

vol1

A three-dimensional array (dx, dy, dz) which specifies a data volume.

vol2

A three-dimensional array (dx, dy, dz) which specifies a data volume.
IDL Reference Guide IDLgrVolume

3680 Chapter 8: Graphics Object Classes
vol3

A three-dimensional array (dx, dy, dz) which specifies a data volume.

Note
If two or more of the above arguments are specified, they must have matching
dimensions.

Keywords

Any property listed under “IDLgrVolume Properties” on page 3657 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.

Version History

Introduced: 5.0

CLIP_PLANES keyword: 5.6
IDLgrVolume IDL Reference Guide

Chapter 8: Graphics Object Classes 3681
IDLgrVolume::PickVoxel

The IDLgrVolume::PickVoxel function method computes the coordinates of the voxel
projected to a location specified by the 2-D device coordinates point, [xi, yi], and the
current Z-buffer. The function returns the volume indices as a a vector of three long
integers. If the selected point is not within the volume, this function returns [-1,-1,-1].

Syntax

Result = Obj -> [IDLgrVolume::]PickVoxel (Win, View, Point [, PATH=objref(s)])

Return Value

Returns the volume indices as a a vector of three long integers. If the selected point is
not within the volume, this function returns [-1,-1,-1].

Arguments

Win

The IDLgrWindow object from which the Z-buffer is to be used.

View

The IDLgrView object that contains the volume.

Point

The [x, y] viewport coordinates of the point chosen.

Keywords

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to map the device position to a
voxel coordinate. Each path object reference specified with this keyword must
contain an alias. The voxel coordinate is computed for the version of the object
falling within the specified path. If this keyword is not set, the PARENT properties
determine the path from the current object to the top of the graphics hierarchy and no
alias paths are pursued.
IDL Reference Guide IDLgrVolume

3682 Chapter 8: Graphics Object Classes
Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.

Version History

Introduced: 5.0
IDLgrVolume IDL Reference Guide

Chapter 8: Graphics Object Classes 3683
IDLgrVolume::SetProperty

The IDLgrVolume::SetProperty procedure method sets the value of a property or
group of properties for the volume.

Syntax

Obj -> [IDLgrVolume::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrVolume Properties” on page 3657 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrVolume

3684 Chapter 8: Graphics Object Classes
IDLgrVRML

The IDLgrVRML object allows you to save the contents of an Object Graphics
hierarchy into a VRML 2.0 format file. The graphics tree can only contain a single
view due to limitations in the VRML specification. The resulting VRML file is
interactive and allows you to explore the geometry interactively using a VRML
browser.

Note
Objects or subclasses of this type can not be saved or restored.

Aspect ratios are difficult to duplicate as they can be browser dependent. The object
is limited to the primitives supported by VRML. Texture maps (and images) will be
inlined into the output file. While this will generate large VRML files, the files are
fully self-contained.

Several entities cannot be translated perfectly. These include:

IDLgrImage objects

Rotation and Z buffer behavior are not completely supported. Image objects will be
converted into texture mapped polygons. BLEND_FUNCTION is not completely
supported (only binary srcAlpha,1-srcAlpha) This function is applied automatically if
an alpha channel is present. It is also very browser dependent. Channel masks are not
supported.

IDLgrPolygon and IDLgrSurface objects

Hidden line/hidden point display, color and vertex color blending with texture colors,
and bottom color are not supported. Shading may be browser dependent. Front face
culling is not supported and back face culling is only supported at the browser’s
discretion.

IDLgrLight objects

Lighting scope and intensity may be browser dependent.

IDLgrText objects

Text using the ONGLASS property is only supported for the initial view.

IDLgrViewgroup, IDLgrScene, IDLgrVolume objects

These objects are not supported.
IDLgrVRML IDL Reference Guide

Chapter 8: Graphics Object Classes 3685
IDLgrPalette objects

Palette objects are simulated using an RGB color model.

IDLgrPattern objects

Only solid or clear patterns are supported.

IDLgrFont, IDLgrSymbol objects

The THICK property is not supported.

IDLgrPolyline, IDLgrSymbol, IDLgrSurface, IDLgrPolygon and
IDLgrPlot objects

Line attributes (thickness, linestyle) are not supported.

IDLgrView objects

Z-clipping control, aspect ratio preservation, the LOCATION property, and
orthographic projections are not supported.

Destination objects

The COLOR_MODEL property is not fully supported in Indexed Color mode, when
using a SHADER_RANGE (an RGB model will be substituted instead). The
QUALITY property is not supported.

Superclasses

IDLitComponent

Creation

See “IDLgrVRML::Init” on page 3702.

Properties

Objects of this class have the following properties. See “IDLgrVRML Properties” on
page 3687 for details on individual properties.

• ALL

• COLOR_MODEL
IDL Reference Guide IDLgrVRML

3686 Chapter 8: Graphics Object Classes
• DIMENSIONS

• FILENAME

• GRAPHICS_TREE

• N_COLORS

• PALETTE

• QUALITY

• REGISTER_PROPERTIES

• RESOLUTION

• SCREEN_DIMENSIONS

• UNITS

• WORLDINFO

• WORLDTITLE

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrVRML::Cleanup

• IDLgrVRML::Draw

• IDLgrVRML::GetDeviceInfo

• IDLgrVRML::GetFontnames

• IDLgrVRML::GetProperty

• IDLgrVRML::GetTextDimensions

• IDLgrVRML::Init

• IDLgrVRML::SetProperty

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.1
IDLgrVRML IDL Reference Guide

Chapter 8: Graphics Object Classes 3687
IDLgrVRML Properties

IDLgrVRML objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Get” column of the
property table can be retrieved via IDLgrVRML::GetProperty. Properties with the
word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrVRML::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLgrVRML::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the retrievable properties
associated with this object.

COLOR_MODEL

An integer value that determines whether to use the indexed color model for the
buffer:

• 0 = RGB (the default)

• 1 = Color indexed.

In a property sheet, this property appears as an enumerated list with the following
options:

• RGB

• Indexed

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type ENUMLIST

Name String Color model

Get: Yes Set: No Init: Yes Registered: Yes
IDL Reference Guide IDLgrVRML

3688 Chapter 8: Graphics Object Classes
DIMENSIONS

A two-element integer vector of the form [width, height] to specify the dimensions of
the window in units specified by the UNITS property. The default is [640,480].

Note
The only use of this property is to support the use of normalized coordinates for the
dimensions of the IDLgrView object passed to the IDLgrVRML::Draw method..

FILENAME

A string that specifies the name of a file into which the vector data will be saved. The
default is idl.wrl..

GRAPHICS_TREE

An object reference of type IDLgrView. If this property is set to a valid object
reference, calling the Draw method on the destination object with no arguments will
cause the object reference associated with this property to be drawn. If this object is
valid and the destination object is destroyed, this object reference will be destroyed as
well. By default the GRAPHICS_TREE property is set equal to the null-object. .

Property Type Integer vector

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type String

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type Object reference

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDLgrVRML IDL Reference Guide

Chapter 8: Graphics Object Classes 3689
N_COLORS

An integer that specifies the number of colors (between 2 and 256) to be used if
COLOR_MODEL is set to indexed.

PALETTE

An object reference to a palette object (an instance of the IDLgrPalette object class)
that specifies the red, green, and blue values that are to be loaded into the buffer’s
color lookup table.

This property is registered as a user-defined property, but it is hidden by default.

QUALITY

An integer indicating the rendering quality at which graphics are to be drawn to the
buffer. Valid values are:

• 0=Low

• 1=Medium

• 2=High (the default).

• In a property sheet, this property appears as an enumerated list with the
following options:

• Low

• Medium

Property Type INTEGER

Name String Number of colors

Get: Yes Set: No Init: Yes Registered: Yes

Property Type USERDEF

Name String Color palette

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrVRML

3690 Chapter 8: Graphics Object Classes
• High

REGISTER_PROPERTIES

A Boolean value that determines whether to register properties available for this
object. Set this property to automatically register the following properties of the
object for display in a property sheet. This property is useful mainly when creating
iTools. By default, no properties are registered.

RESOLUTION

A two-element floating-point vector of the form [xres, yres] specifying the device
resolution in centimeters per pixel.

Note
This property is used for text scaling and partial aspect ratio preservation only. The
default value is [0.0352778, 0.0352778] (72 DPI).

This property is registered as a user-defined property, but it is hidden by default.

Property Type ENUMLIST

Name String Quality

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No

Property Type USERDEF

Name String Resolution

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrVRML IDL Reference Guide

Chapter 8: Graphics Object Classes 3691
SCREEN_DIMENSIONS

A two-element integer vector of the form [width, height] specifying the dimensions
of the overall screen dimensions for the screen with which this object associated. The
screen dimensions are measured in device units..

UNITS

An integer that indicates the units of measure for the DIMENSIONS property. Valid
values are:

• 0 = Device (the default)

• 1 = Inches

• 2 = Centimeters

• 3 = Normalized (relative to 1600 x 1200)..

WORLDINFO

A list of strings for the info field of the VRML WorldInfo node. The default is the
null string, ''.

Property Type Integer vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Integer

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No

Property Type String

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDL Reference Guide IDLgrVRML

3692 Chapter 8: Graphics Object Classes
WORLDTITLE

A string containing the title for the VRML WorldInfo node, TITLE field. The default
is 'IDL VRML file'.

Property Type String

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDLgrVRML IDL Reference Guide

Chapter 8: Graphics Object Classes 3693
IDLgrVRML::Cleanup

The IDLgrVRML::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrVRML::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.1
IDL Reference Guide IDLgrVRML

3694 Chapter 8: Graphics Object Classes
IDLgrVRML::Draw

The IDLgrVRML::Draw procedure method draws the given picture to this graphics
destination.

Syntax

Obj -> [IDLgrVRML::]Draw [, Picture]

Arguments

Picture

The view (an instance of an IDLgrView object) to be drawn. If the view has a
LOCATION property, it is ignored.

Keywords

None

Version History

Introduced: 5.1
IDLgrVRML IDL Reference Guide

Chapter 8: Graphics Object Classes 3695
IDLgrVRML::GetDeviceInfo

The IDLgrVRML::GetDeviceInfo procedure method returns information which
allows IDL applications to intelligently make decisions for optimal performance. For
example, it allows an application to determine if RENDERER=1 is actually
implemented in hardware. It also allows applications to make optimal quality
decisions when dynamically building texture maps.

Syntax

Obj -> [IDLgrVRML::]GetDeviceInfo [, ALL=variable]
[, MAX_NUM_CLIP_PLANES=variable]
[, MAX_TEXTURE_DIMENSIONS=variable]
[, MAX_VIEWPORT_DIMENSIONS=variable] [, NAME=variable]
[, NUM_CPUS=variable] [, VENDOR=variable] [, VERSION=variable]

Arguments

None

Keywords

ALL

Set this keyword to a named variable which, upon return, contains a structure with
the values of all the device information keywords as fields.

MAX_NUM_CLIP_PLANES

Set this keyword to a named variable that upon return will contain an integer that
specifies the maximum number of user-defined clipping planes supported by the
device.

MAX_TEXTURE_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_TEXTURE_DIMENSIONS contains a two element integer array that specifies
the maximum texture size supported by the device.
IDL Reference Guide IDLgrVRML

3696 Chapter 8: Graphics Object Classes
MAX_VIEWPORT_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_VIEWPORT_DIMENSIONS contains a two element integer array that specifies
the maximum size of a graphics display supported by the device.

NAME

Set this keyword equal to a named variable. Upon return, NAME contains the name of
the rendering device as a string.

NUM_CPUS

Set this keyword equal to a named variable. Upon return, NUM_CPUS contains an
integer that specifies the number of CPUs that are known to, and available to IDL.

Note
The NUM_CPUS keyword accurately returns the number of CPUs for the SGI
IRIX, SUN, and Microsoft Windows platforms. For platforms other than these, the
number returned may not reflect the actual number of CPUs available to IDL in the
current system.

VENDOR

Set this keyword equal to a named variable. Upon return, VENDOR contains the
name of the rendering device creator as a string.

VERSION

Set this keyword equal to a named variable. Upon return, VERSION contains the
version of the rendering device driver as a string.

Version History

Introduced: 5.1

MAX_NUM_CLIP_PLANES keyword: 5.6
IDLgrVRML IDL Reference Guide

Chapter 8: Graphics Object Classes 3697
IDLgrVRML::GetFontnames

The IDLgrVRML::GetFontnames function method returns the list of available fonts
that can be used in IDLgrFont objects. This method will only return the names of the
available TrueType fonts. Hershey fonts will not be returned; see Appendix H,
“Fonts” for more information.

Syntax

Result = Obj ->[IDLgrVRML::]GetFontnames(FamilyName [, IDL_FONTS={0 | 1
| 2}] [, STYLES=string])

Return Value

Returns the list of available fonts that can be used in IDLgrFont objects.

Arguments

FamilyName

A string representing the name of the font family to which all of the returned fonts
must belong. The string may be a fully specified family name, such as “Helvetica”.
You can use both “*” and “?” as wildcard characters, matching any number of
characters or one character respectively. To return all available family names, use
“*”.

Keywords

IDL_FONTS

Set this keyword to specify where to search for fonts that IDL may use. Set
IDL_FONT to 1 to select only fonts installed by IDL and to 2 to select only fonts
detected in the host operating system. The default value is 0, specifying that both IDL
and operating system fonts should be returned.

STYLES

Set this keyword to a string specifying the styles that are to be matched by the
returned font names. You can set STYLES to a fully specified style string, such as
“Bold Italic”. If you set STYLES to the null string, ' ', only fontnames without style
modifiers will be returned. You can use both “*” and “?” as wildcard characters,
matching any number of characters or one character respectively. The default value is
IDL Reference Guide IDLgrVRML

3698 Chapter 8: Graphics Object Classes
the string, “*”, which returns all fontnames containing the FamilyName argument,
with or without style modifiers.

Version History

Introduced: 5.1
IDLgrVRML IDL Reference Guide

Chapter 8: Graphics Object Classes 3699
IDLgrVRML::GetProperty

The IDLgrVRML::GetProperty procedure method retrieves the value of a property or
group of properties for the VRML object.

Syntax

Obj -> [IDLgrVRML::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrVRML Properties” on page 3687 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.1
IDL Reference Guide IDLgrVRML

3700 Chapter 8: Graphics Object Classes
IDLgrVRML::GetTextDimensions

The IDLgrVRML::GetTextDimensions function method retrieves the dimensions of a
text or axis object that will be rendered in a window. The result is a 3-element double-
precision floating-point vector [xDim, yDim, zDim] representing the dimensions of
the text or axis object, measured in data units. If the object specified is an axis object,
the result encompasses the tick labels and the title of the axis (if any).

Syntax

Result = Obj ->[IDLgrVRML::]GetTextDimensions(TextObj
[, DESCENT=variable] [, PATH=objref(s)])

Return Value

Returns a 3-element double-precision floating-point vector [xDim, yDim, zDim]
representing the dimensions of the text or axis object, measured in data units.

Arguments

TextObj

The object reference to a text or axis object for which the text dimensions are
requested.

Keywords

DESCENT

Set this keyword equal to a named variable that will contain an array of double-
precision floating-point values (one for each string in the IDLgrText object). The
values represent the distance to travel (parallel to the UPDIR vector) from the text
baseline to reach the bottom of the lowest descender in the string. All values will be
negative numbers, or zero. This keyword is valid only if TextObj is an IDLgrText
object.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the text dimensions.
Each path object reference specified with this keyword must contain an alias. The
text dimensions are computed for the version of the object falling within that path. If
IDLgrVRML IDL Reference Guide

Chapter 8: Graphics Object Classes 3701
this keyword is not set, the PARENT properties determine the path from the current
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrVRML::GetTextDimensions is called from within a Draw method and the
PATH keyword is not set, the alias path used to find the object during the draw is
used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.

Version History

Introduced: 5.1
IDL Reference Guide IDLgrVRML

3702 Chapter 8: Graphics Object Classes
IDLgrVRML::Init

The IDLgrVRML::Init function method initializes the VRML object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrVRML' [, PROPERTY=value])

or

Result = Obj -> [IDLgrVRML::]Init([PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLgrVRML Properties” on page 3687 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.
IDLgrVRML IDL Reference Guide

Chapter 8: Graphics Object Classes 3703
Version History

Introduced: 5.1
IDL Reference Guide IDLgrVRML

3704 Chapter 8: Graphics Object Classes
IDLgrVRML::SetProperty

The IDLgrVRML::SetProperty procedure method sets the value of a property or
group of properties for the VRML world.

Syntax

Obj -> [IDLgrVRML::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrVRML Properties” on page 3687 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.1
IDLgrVRML IDL Reference Guide

Chapter 8: Graphics Object Classes 3705
IDLgrWindow

A window object is a representation of an on-screen area on a display device that
serves as a graphics destination.

Note
Objects or subclasses of this type can not be saved or restored.

Note on Window Size Limits

The OpenGL libraries IDL uses impose limits on the maximum size of a drawable
area. The limits are device-dependent — they depend both on your graphics hardware
and the setting of the RENDERER property. Currently, the smallest maximum
drawable area on any IDL platform is 1280 x 1024 pixels; the limit on your system
may be larger.

Superclasses

IDLitComponent

Creation

See “IDLgrWindow::Init” on page 3729.

Properties

Objects of this class have the following properties. See “IDLgrWindow Properties”
on page 3707 for details on individual properties.

• ALL • COLOR_MODEL

• CURRENT_ZOOM • DIMENSIONS

• DISPLAY_NAME (X Only) • GRAPHICS_TREE

• IMAGE_DATA • LOCATION

• N_COLORS • PALETTE

• QUALITY • REGISTER_PROPERTIES

• RENDERER • RESOLUTION

• RETAIN • SCREEN_DIMENSIONS
IDL Reference Guide IDLgrWindow

3706 Chapter 8: Graphics Object Classes
In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• IDLgrWindow::Cleanup

• IDLgrWindow::Draw

• IDLgrWindow::Erase

• IDLgrWindow::GetContiguousPixels

• IDLgrWindow::GetDeviceInfo

• IDLgrWindow::GetFontnames

• IDLgrWindow::GetProperty

• IDLgrWindow::GetTextDimensions

• IDLgrWindow::Iconify

• IDLgrWindow::Init

• IDLgrWindow::PickData

• IDLgrWindow::Read

• IDLgrWindow::Select

• IDLgrWindow::SetCurrentCursor

• IDLgrWindow::SetProperty

• IDLgrWindow::Show

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.0

• TITLE • UNITS

• VIRTUAL_DIMENSIONS • VISIBLE_LOCATION

• ZBUFFER_DATA
IDLgrWindow IDL Reference Guide

Chapter 8: Graphics Object Classes 3707
IDLgrWindow Properties

IDLgrWindow objects have the following properties in addition to properties
inherited from any superclasses. Properties with the word “Yes” in the “Get” column
of the property table can be retrieved via IDLgrWindow::GetProperty. Properties
with the word “Yes” in the “Init” column of the property table can be retrieved via
IDLgrWindow::Init. Properties with the word “Yes” in the “Set” column in the
property table can be set via IDLgrWindow::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

ALL

An anonymous structure containing the values of all of the properties associated with
the state of this object. State information about the object includes things like color,
range, tick direction, etc., but not image, vertex, or connectivity data, or user values.

Note
The fields of this structure may change in subsequent releases of IDL.

COLOR_MODEL

An integer value that determines whether to use indexed color as the color model for
the window:

• 0 = RGB (default)

• 1 = Color Index

Note
For some X11 display situations, IDL may not be able to support a color index
model destination object in object graphics. We do, however, guarantee that an
RGB color model destination will be available for all display situations..

Property Type Structure

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDL Reference Guide IDLgrWindow

3708 Chapter 8: Graphics Object Classes
In a property sheet, this property appears as an enumerated list with the following
options:

• RGB

• Indexed color

CURRENT_ZOOM

A floating-point value that represents the current zoom factor associated with this
window.

DIMENSIONS

A two-element integer vector of the form [width, height] to specify the dimensions of
the window in units specified by the UNITS property. By default, if no value is
specified for DIMENSIONS, IDL uses the value of the “Default Window Width” and
“Default Window Height” preferences set in the IDL Development Environment’s
(IDLDE) Preferences dialog. If there is no preference file for the IDLDE, the
DIMENSIONS property is set equal to one quarter of the screen size. There are limits
on the maximum size of an IDLgrWindow object; see “Note on Window Size Limits”
on page 3705 for details.

Note
Changing DIMENSIONS properties is merely a request and may be ignored for
various reasons. .

Property Type ENUMLIST

Name String Color model

Get: Yes Set: No Init: Yes Registered: Yes

Property Type FLOAT

Name String Zoom factor

Get: Yes Set: No Init: No Registered: Yes
IDLgrWindow IDL Reference Guide

Chapter 8: Graphics Object Classes 3709
This property is registered as a user-defined property, but it is hidden by default.

DISPLAY_NAME (X Only)

A string that specifies the name of the X Windows display on which the window is to
appear.

GRAPHICS_TREE

An object reference of type IDLgrScene, IDLgrViewgroup, or IDLgrView. If this
property is set to a valid object reference, calling the Draw method on the destination
object with no arguments will cause the object reference associated with this property
to be drawn. If this object is valid and the destination object is destroyed, this object
reference will be destroyed as well. By default the GRAPHICS_TREE property is set
equal to the null-object.

IMAGE_DATA

A byte array representing the image that is currently displayed in the window. If the
window object uses an RGB color model, the returned array will have dimensions (3,
winXSize, winYSize), or (4, winXSize, winYSize) if an alpha channel is included. If the
window object uses an Indexed color model, the returned array will have dimensions

Property Type USERDEF

Name String Dimensions

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type STRING

Name String Display name

Get: Yes Set: Yes Init: No Registered: Yes

Property Type Object reference

Name String not displayed

Get: Yes Set: Yes Init: Yes Registered: No
IDL Reference Guide IDLgrWindow

3710 Chapter 8: Graphics Object Classes
(winXSize, winYSize). See “IDLgrWindow::Read” on page 3734 for more
information.

LOCATION

A two-element floating-point vector of the form [x, y] to specify the location of the
upper lefthand corner of the window relative to the display screen, in units specified
by the UNITS property. By default, the window is positioned at one of four quadrants
on the display screen, and the location is measured in device units.

Note
Changing LOCATION properties is merely a request and may be ignored for
various reasons. LOCATION may be adjusted to take into account window
decorations..

This property is registered as a user-defined property, but it is hidden by default.

N_COLORS

An integer value that specifies the number of colors (between 2 and 256) to be used if
COLOR_MODEL is set to Indexed (1). This property is ignored if COLOR_MODEL
is set to RGB (0).

Note
If COLOR_MODEL is set to Color Index (1), setting N_COLORS is treated as a
request to your operating system. You should always check the actual number of
available colors for any Color Indexed destination with the

Property Type Byte array

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type USERDEF

Name String Location

Get: Yes Set: Yes Init: Yes Registered: Yes
IDLgrWindow IDL Reference Guide

Chapter 8: Graphics Object Classes 3711
IDLgrWindow::GetProperty method. The actual number of available colors
depends on your system and also on how you have used IDL..

PALETTE

An object reference to a palette object (an instance of the IDLgrPalette object class)
to specify the red, green, and blue values that are to be loaded into the graphics
destination’s color lookup table, applicable if the Indexed color model is used..

This property is registered as a user-defined property, but it is hidden by default.

QUALITY

An integer indicating the rendering quality at which graphics are to be drawn to this
destination. Valid values are:

• 0 = Low

• 1 = Medium

• 2 = High (default)..

In a property sheet, this property appears as an enumerated list with the following
options:

• Low

• Medium

Property Type INTEGER

Name String Number of colors

Get: Yes Set: No Init: Yes Registered: Yes

Property Type USERDEF

Name String Color palette

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrWindow

3712 Chapter 8: Graphics Object Classes
• High

REGISTER_PROPERTIES

A Boolean value that determines whether to register properties available for this
object. Set this property to automatically register the following properties of the
object for display in a property sheet. This property is useful mainly when creating
iTools. By default, no properties are registered.

RENDERER

An integer value indicating which graphics renderer to use when drawing objects
within the window. Valid values are:

• 0 = Platform native OpenGL

• 1 = IDL’s software implementation

By default, your platform’s native OpenGL implementation is used. If your platform
does not have a native OpenGL implementation, IDL’s software implementation is
used regardless of the value of this property. See “Hardware vs. Software Rendering”
in Chapter 34 of the Using IDL manual for details. Your choice of renderer may also
affect the maximum size of an IDLgrWindow object; see “Note on Window Size
Limits” on page 3705 for details.

In a property sheet, this property appears as an enumerated list with the following
options:

• OpenGL

Property Type ENUMLIST

Name String Draw quality

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDLgrWindow IDL Reference Guide

Chapter 8: Graphics Object Classes 3713
• Software.

RESOLUTION

A floating-point vector of the form [xres, yres] reporting the pixel resolution,
measured in centimeters per pixel. This value is stored in double precision.

RETAIN

An integer value that specifies how backing store should be handled for the window.
By default, if no value is specified for RETAIN, IDL uses the value of the “Backing
Store” preference set in the IDL Development Environment’s (IDLDE) Preferences
dialog. If there is no preference file for the IDLDE (that is, if you always use IDL in
plain tty mode), the RETAIN property is set equal to 0 by default.

• 0 = No backing store.

• 1 = The server or window system is requested to provide the backing store.
Note that requesting backing store from the server is only a request; backing
store may not be provided in all situations.

• 2 = Requests that IDL provide the backing store directly. In some situations,
IDL can not provide this backing store in Object Graphics. To see if IDL
provided backing store, query the RETAIN property of
IDLgrWindow::GetProperty. IDL may also alter the RENDERER property
while attempting to provide backing store.

In IDL Object Graphics, it is almost always best to disable backing store (that is, set
the RETAIN property equal to zero). This is because drawing to an off-screen
pixmap (which is what happens when backing store is enabled) almost always
bypasses any hardware graphics acceleration that may be available, causing all
rendering to be done in software. To ensure that windows are redrawn properly,

Property Type ENUMLIST

Name String Renderer

Get: Yes Set: No Init: Yes Registered: Yes

Property Type FLOAT

Name String Resolution

Get: Yes Set: No Init: No Registered: Yes
IDL Reference Guide IDLgrWindow

3714 Chapter 8: Graphics Object Classes
enable the generation of expose events on the WIDGET_DRAW window and redraw
the window explicitly when an expose event is received.

Note
If you are using software rendering (that is, the RENDERER property is set equal to
one), IDL will refresh the window automatically regardless of the setting of the
RETAIN property..

In a property sheet, this property appears as an enumerated list with the following
options:

• No backing

• Server/Window

• IDL

SCREEN_DIMENSIONS

A two-element floating-point vector of the form [width, height] specifying the
dimensions of the overall screen dimensions for the screen with which this window is
associated. The screen dimensions are measured in device units.

Note
The maximum screen dimension size depends on the graphics device..

Property Type ENUMLIST

Name String Retain

Get: Yes Set: No Init: Yes Registered: Yes

Property Type Floating-point vector

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLgrWindow IDL Reference Guide

Chapter 8: Graphics Object Classes 3715
TITLE

A string that represents the title of the window..

UNITS

An integer value that indicates the units of measure for the LOCATION and
DIMENSIONS properties. Valid values are:

• 0 = Device (default)

• 1 = Inches

• 2 = Centimeters

• 3 = Normalized: relative to the dimensions of the screen.

Note
If you set the value of the UNITS property (using the SetProperty method) without
also setting the value of the LOCATION and DIMENSIONS properties, IDL will
convert the current size and location values into the new units..

In a property sheet, this property appears as an enumerated list with the following
options:

• Device

• Inches

• Centimeters

• Normalized

Property Type STRING

Name String Title

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type ENUMLIST

Name String Units

Get: Yes Set: Yes Init: Yes Registered: Yes
IDL Reference Guide IDLgrWindow

3716 Chapter 8: Graphics Object Classes
VIRTUAL_DIMENSIONS

A two-element integer vector, [width, height], specifying the dimensions of the
virtual canvas for this window. The default is [0,0], indicating that the virtual canvas
dimensions should match the visible dimensions (as specified via the DIMENSIONS
keyword).

This property is registered as a user-defined property, but it is hidden by default.

VISIBLE_LOCATION

A two-element integer vector, [x,y], specifying the lower left location of the visible
portion of the canvas (relative to the virtual canvas).

This property is registered as a user-defined property, but it is hidden by default..

ZBUFFER_DATA

A floating-point array representing the zbuffer that is currently within the buffer. The
returned array will have dimensions (xdim, ydim).

Property Type USERDEF

Name String Virtual dimensions

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type USERDEF

Name String Visible location

Get: Yes Set: Yes Init: Yes Registered: Yes

Property Type Floating-point array

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLgrWindow IDL Reference Guide

Chapter 8: Graphics Object Classes 3717
IDLgrWindow::Cleanup

The IDLgrWindow::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLgrWindow::]Cleanup (Only in subclass’ Cleanup method.)

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDL Reference Guide IDLgrWindow

3718 Chapter 8: Graphics Object Classes
IDLgrWindow::Draw

The IDLgrWindow::Draw procedure method draws the specified scene or view object
to this graphics destination.

Note
Objects are drawn to the destination device in the order that they are added to the
model, view, viewgroup, or scene object that contains them.

Syntax

Obj -> [IDLgrWindow::]Draw [, Picture] [, CREATE_INSTANCE={1 | 2}]
[, /DRAW_INSTANCE]

Arguments

Picture

The view (an instance of an IDLgrView object), viewgroup (an instance of an
IDLgrViewgroup object), or scene (an instance of an IDLgrScene object) to be
drawn.

Keywords

CREATE_INSTANCE

Set this keyword equal to one specify that this scene or view is the unchanging part of
a drawing. Some destinations can make an instance from the current window contents
without having to perform a complete redraw. If the view or scene to be drawn is
identical to the previously drawn view or scene, this keyword can be set equal to 2 to
hint the destination to create the instance from the current window contents if it can.

DRAW_INSTANCE

Set this keyword to specify that this scene or view is the changing part of a drawing.
It is overlaid on the result of the most recent CREATE_INSTANCE draw.

Version History

Introduced: 5.0
IDLgrWindow IDL Reference Guide

Chapter 8: Graphics Object Classes 3719
IDLgrWindow::Erase

The IDLgrWindow::Erase procedure method erases the entire contents of the
window.

Syntax

Obj -> [IDLgrWindow::]Erase [, COLOR=index or RGB vector]

Arguments

None

Keywords

COLOR

Set this keyword to the color to be used for the erase. The color may be specified as a
color lookup table index or as an RGB vector. The default erase color is white.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrWindow

3720 Chapter 8: Graphics Object Classes
IDLgrWindow::GetContiguousPixels

The IDLgrWindow::GetContiguousPixels function method returns an array of long
integers whose length is equal to the number of colors available in the index color
mode (that is, the value of the N_COLORS property).

The returned array marks contiguous pixels with the ranking of the range’s size. This
means that within the array, the elements in the largest available range are set to zero,
the elements in the second-largest range are set to one, etc. Use this range to set an
appropriate colormap for use with the SHADE_RANGE property of the
IDLgrSurface and IDLgrPolygon object classes.

To get the largest contiguous range, you could use the following IDL command:

result = obj -> GetContiguousPixels()
Range0 = WHERE(result EQ 0)

A contiguous region in the colormap can be increasing or decreasing in values. The
following would be considered contiguous:

[0,1,2,3,4]
[4,3,2,1,0]

Syntax

Result = Obj -> [IDLgrWindow::]GetContiguousPixels()

Return Value

Returns an array of long integers whose length is equal to the number of colors
available in the index color mode.

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDLgrWindow IDL Reference Guide

Chapter 8: Graphics Object Classes 3721
IDLgrWindow::GetDeviceInfo

The IDLgrWindow::GetDeviceInfo procedure method returns information which
allows IDL applications to intelligently make decisions for optimal performance. For
example, it allows an application to determine if RENDERER=0 is actually
implemented in hardware. It also allows applications to make optimal quality
decisions when dynamically building texture maps.

Syntax

Obj -> [IDLgrWindow::]GetDeviceInfo [, ALL=variable]
[, MAX_NUM_CLIP_PLANES=variable]
[, MAX_TEXTURE_DIMENSIONS=variable]
[, MAX_VIEWPORT_DIMENSIONS=variable] [, NAME=variable]
[, NUM_CPUS=variable] [, VENDOR=variable] [, VERSION=variable]

Arguments

None

Keywords

ALL

Set this keyword to a named variable which, upon return, contains a structure with
the values of all the device information keywords as fields.

MAX_NUM_CLIP_PLANES

Set this keyword to a named variable that upon return will contain an integer that
specifies the maximum number of user-defined clipping planes supported by the
device.

MAX_TEXTURE_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_TEXTURE_DIMENSIONS contains a two element integer array that
specifies the maximum texture size supported by the device.
IDL Reference Guide IDLgrWindow

3722 Chapter 8: Graphics Object Classes
MAX_VIEWPORT_DIMENSIONS

Set this keyword equal to a named variable. Upon return,
MAX_VIEWPORT_DIMENSIONS contains a two element integer array that
specifies the maximum size of a graphics display supported by the device.

NAME

Set this keyword equal to a named variable. Upon return, NAME contains the name
of the rendering device as a string.

NUM_CPUS

Set this keyword equal to a named variable. Upon return, NUM_CPUS contains an
integer that specifies the number of CPUs that are known to, and available to IDL.

Note
The NUM_CPUS keyword accurately returns the number of CPUs for the SGI
IRIX, SUN, and Microsoft Windows platforms. For platforms other than these, the
number returned may not reflect the actual number of CPUs available to IDL in the
current system.

VENDOR

Set this keyword equal to a named variable. Upon return, VENDOR contains the
name of the rendering device creator as a string.

VERSION

Set this keyword equal to a named variable. Upon return, VERSION contains the
version of the rendering device driver as a string.

Version History

Introduced: 5.0

MAX_NUM_CLIP_PLANES keyword: 5.6
IDLgrWindow IDL Reference Guide

Chapter 8: Graphics Object Classes 3723
IDLgrWindow::GetFontnames

The IDLgrWindow::GetFontnames function method returns the list of available fonts
that can be used in IDLgrFont objects. This method will only return the names of the
available TrueType fonts. Hershey fonts will not be returned; see Appendix H,
“Fonts” for more information.

Syntax

Result = Obj -> [IDLgrWindow::]GetFontnames(FamilyName [, IDL_FONTS={0 | 1
| 2}] [, STYLES=string])

Return Value

Returns the list of available fonts that can be used in IDLgrFont objects.

Arguments

FamilyName

A string representing the name of the font family to which all of the returned fonts
must belong. The string may be a fully specified family name—such as “Helvetica”.
You can use both “*” and “?” as wildcard characters, matching any number of
characters or one character respectively. To return all available family names, use
“*”.

Keywords

IDL_FONTS

Set this keyword to specify where to search for fonts that IDL may use. Set
IDL_FONT to 1 to select only fonts installed by IDL and to 2 to select only fonts
detected in the host operating system. The default value is 0, specifying that both IDL
and operating system fonts should be returned.

STYLES

Set this keyword to a string specifying the styles that are to be matched by the
returned font names. You can set STYLES to a fully specified style string, such as
“Bold Italic”. If you set STYLES to the null string, ' ', only fontnames without style
modifiers will be returned. You can use both “*” and “?” as wildcard characters,
matching any number of characters or one character respectively. The default value is
IDL Reference Guide IDLgrWindow

3724 Chapter 8: Graphics Object Classes
the string, “*”, which returns all fontnames containing the FamilyName argument,
with or without style modifiers.

Version History

Introduced: 5.0
IDLgrWindow IDL Reference Guide

Chapter 8: Graphics Object Classes 3725
IDLgrWindow::GetProperty

The IDLgrWindow::GetProperty procedure method retrieves the value of a property
or group of properties for the window.

Syntax

Obj -> [IDLgrWindow::]GetProperty[, PROPERTY=variable]

Arguments

None

Keywords

Any property listed under “IDLgrWindow Properties” on page 3707 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Any keyword not recognized is passed to this object’s superclass.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrWindow

3726 Chapter 8: Graphics Object Classes
IDLgrWindow::GetTextDimensions

The IDLgrWindow::GetTextDimensions function method retrieves the dimensions of
a text or axis object that will be rendered in a window. The result is a 3-element
double-precision floating-point vector [xDim, yDim, zDim] representing the
dimensions of the text or axis object, measured in data units. If the object specified is
an axis object, the result encompasses the tick labels and the title of the axis (if any).

Syntax

Result = Obj -> [IDLgrWindow::]GetTextDimensions(TextObj
[, DESCENT=variable] [, PATH=objref(s)])

Return Value

Returns a 3-element double-precision floating-point vector [xDim, yDim, zDim]
representing the dimensions of the text or axis object, measured in data units.

Arguments

TextObj

The object reference to a text or axis object for which the text dimensions are
requested.

Keywords

DESCENT

Set this keyword equal to a named variable that will contain an array of double-
precision floating-point values (one for each string in the IDLgrText object). The
values are the distance to travel (parallel to the UPDIR direction) from the baseline to
reach the bottom of all the descenders for the string; the values will be negative or 0.
This keyword is only valid if TextObj is of the class IDLgrText.

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to compute the text dimensions.
Each path object reference specified with this keyword must contain an alias. The
text dimensions are computed for the version of the object falling within that path. If
this keyword is not set, the PARENT properties determine the path from the current
IDLgrWindow IDL Reference Guide

Chapter 8: Graphics Object Classes 3727
object to the top of the graphics hierarchy and no alias paths are pursued. If
IDLgrWindow::GetTextDimensions is called from within a Draw method and the
PATH keyword is not set, the alias path used to find the object during the draw is
used, rather than the PARENT path.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrWindow

3728 Chapter 8: Graphics Object Classes
IDLgrWindow::Iconify

The IDLgrWindow::Iconify procedure method iconifies or de-iconifies the window.

Note
Iconification under window systems is solely handled by the window manager;
client applications, such as IDL, do not have the capability to manage icons. The
Iconify method provides a hint to the window manager, which applies the
information as it sees fit.

Syntax

Obj -> [IDLgrWindow::]Iconify, IconFlag

Arguments

IconFlag

Set IconFlag to 1 (one) to iconify the window or to 0 (zero) to restore the window. If
the window is already restored, it is brought to the front of the window stack.

Keywords

None

Version History

Introduced: 5.0
IDLgrWindow IDL Reference Guide

Chapter 8: Graphics Object Classes 3729
IDLgrWindow::Init

The IDLgrWindow::Init function method initializes the window object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLgrWindow' [, PROPERTY=value])

or

Result = Obj -> [IDLgrWindow::]Init([, PROPERTY=value])
(Only in a subclass’ Init method.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

None

Keywords

Any property listed under “IDLgrWindow Properties” on page 3707 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

All other keywords are passed to the superclass of this object.
IDL Reference Guide IDLgrWindow

3730 Chapter 8: Graphics Object Classes
Version History

Introduced: 5.0
IDLgrWindow IDL Reference Guide

Chapter 8: Graphics Object Classes 3731
IDLgrWindow::PickData

The IDLgrWindow::PickData function method maps a point in the two-dimensional
device space of the window to a point in the three-dimensional data space of an object
tree. The resulting 3-D data space coordinates are returned in a user-specified
variable. The PickData function returns one if the specified location in the window’s
device space “hits” a graphic object, or zero if no object was “hit”. PickData returns -
1 if the point selected falls outside of the specified view or window.

Syntax

Result = Obj -> [IDLgrWindow::]PickData(View, Object, Location, XYZLocation
[, DIMENSIONS=[w,h]] [, PATH=objref(s)] [, PICK_STATUS=variable])

Return Value

Returns 1 if the specified location in the window’s device space “hits” a graphic
object, or 0 if no object was hit. Returns -1 if the point selected falls outside the
specified view or window.

Arguments

View

The object reference of an IDLgrView object that contains the object being picked.

Object

The object reference of a model or atomic graphic object from which the data space
coordinates are being requested.

Location

A two-element vector [x, y] specifying the location in the window’s device space of
the point to pick data from.

XYZLocation

A named variable that will contain the three-dimensional double-precision floating-
point data space coordinates of the picked point. Note that the value returned in this
variable is a location, not a data value.
IDL Reference Guide IDLgrWindow

3732 Chapter 8: Graphics Object Classes
Note
If the atomic graphic object specified as the target has been transformed using either
the LOCATION or DIMENSIONS properties (this is only possible with
IDLgrAxis, IDLgrImage, and IDLgrText objects), these transformations will not be
included in the data coordinates returned by the PickData function. This means that
you may need to re-apply the transformation accomplished by specifying
LOCATION or DIMENSIONS once you have retrieved the data coordinates with
PickData. This situation does not occur if you transform the axis, text, or image
object using the [XYZ]COORD_CONV properties.

Keywords

DIMENSIONS

Set this keyword to a two-element array [w, h] to specify data picking should occur
for all device locations that fall within a pick box of these dimensions. The pick box
will be centered about the coordinates [x, y] specified in the Location argument, and
will occupy the rectangle defined by:

(x-(w/2), y-(h/2)) - (x+(w/2), y+(h/2))

By default, the pick box covers a single pixel. The array returned via the
XYZLocation argument will have dimensions [3, w, h].

PATH

Set this keyword to a single object reference or a vector of object references. This
keyword specifies the path in the graphics hierarchy to map the device position to a
data space coordinate. Each path object reference specified with this keyword must
contain an alias. The data space coordinate is computed for the version of the object
falling within that path. If this keyword is not set, the PARENT properties determine
the path from the current object to the top of the graphics hierarchy and no alias paths
are pursued.

Note
For more information on aliases, refer to the ALIAS keyword in IDLgrModel::Add.

PICK_STATUS

Set this keyword to a named variable that will contain “hit” information for each
pixel in the pick box. If the DIMENSIONS keyword is not set, the PICK_STATUS
will be a scalar value exactly matching the Result of the method call. If the
IDLgrWindow IDL Reference Guide

Chapter 8: Graphics Object Classes 3733
DIMENSIONS keyword is set, the PICK_STATUS variable will be an array
matching the dimensions of the pick box. Each value in the PICK_STATUS array
corresponds to a pixel in the pick box, and will be set to one of the following values:

Version History

Introduced: 5.0

PICK_STATUS keyword: 5.6

Value Description

-1 The pixel falls outside of the window’s viewport.

0 No graphic object is “hit” at that pixel location.

1 A graphic object is “hit” at that pixel location.

Table 8-8: PICK_STATUS Keyword Values
IDL Reference Guide IDLgrWindow

3734 Chapter 8: Graphics Object Classes
IDLgrWindow::Read

The IDLgrWindow::Read function method reads an image from a window. The
returned value is an instance of the IDLgrImage object class.

Syntax

Result = Obj -> [IDLgrWindow::]Read()

Arguments

None

Keywords

None

Version History

Introduced: 5.0
IDLgrWindow IDL Reference Guide

Chapter 8: Graphics Object Classes 3735
IDLgrWindow::Select

The IDLgrWindow::Select function method returns a list of objects selected at a
specified location. If no objects are selected, the Select function returns -1.

Note
IDL returns a maximum of 512 objects. This maximum may be smaller if any of the
objects are contained in deep model hierarchies. Because of this limit, it is possible
that not all objects eligible for selection will appear in the list.

Syntax

Result = Obj -> [IDLgrWindow::]Select(Picture, XY [, DIMENSIONS=[width,
height]] [, /ORDER] [, UNITS={0 | 1 | 2 | 3}])

Return Value

Returns a list of objects selected at a specified location. Returns -1 if no objects are
selected.

Arguments

Picture

The view or scene (an instance of the IDLgrView, IDLgrViewgroup, or IDLgrScene
class) whose children are among the candidates for selection.

If the first argument is a scene, then the returned object list will contain one or more
views. If the first argument is a view, the list will contain atomic graphic objects (or
model objects which have their SELECT_TARGET property set). Objects are
returned in order, according to their distance from the viewer. The closer an object is
to the viewer, the lower its index in the returned object list. If multiple objects are at
the same distance from the viewer (views in a scene or 2-D geometry), the first object
drawn will appear at a lower index in the list. (The ORDER keyword can be used to
change this behavior.)

XY

A two-element array defining the center of the selection box in device space. By
default, the selection box is 3 pixels by 3 pixels.
IDL Reference Guide IDLgrWindow

3736 Chapter 8: Graphics Object Classes
Keywords

DIMENSIONS

Set this keyword to a two-element array [w, h] to specify that the selection box will
have a width w and a height h, and will be centered about the coordinates [x, y]
specified in the XY argument. The box occupies the rectangle defined by:

(x-(w/2), y-(h/2)) - (x+(w/1), y+(h/2))

Any object that intersects this box is considered to be selected. By default, the
selection box is 3 pixels by 3 pixels.

ORDER

Set this keyword to control how objects that are the same distance from the viewer
are ordered in the selection list. If ORDER=0 (the default), the order of objects in the
selection list will be the same as the order in which the objects are drawn. If
ORDER=1, the order of objects in the selection list will be the reverse of the order in
which they are drawn. This keyword has no affect on the ordering of objects that are
not at the same distance from the viewer.

Tip
If you are using DEPTH_TEST_FUNCTION=4 (“less than or equal”) on your
graphics objects, set ORDER=1 to return objects at the same depth in the order in
which they appear visually.

UNITS

Set this keyword to indicate the units of measure. Valid values are:

• 0 = Device (default)

• 1 = Inches

• 2 = Centimeters

• 3 = Normalized: relative to the dimensions of the graphics destination.

Version History

Introduced: 5.0
IDLgrWindow IDL Reference Guide

Chapter 8: Graphics Object Classes 3737
IDLgrWindow::SetCurrentCursor

The IDLgrWindow::SetCurrentCursor procedure method sets the current cursor
image to be used while positioned over a drawing area.

Syntax

Obj-> [IDLgrWindow::]SetCurrentCursor [, CursorName] [, IMAGE=16 x 16
bitmap] [, MASK=16 x 16 bitmap] [, HOTSPOT=[x, y]]

X Windows Keywords: [, STANDARD=index]

Arguments

CursorName

A string that specifies which built-in cursor to use. This argument is ignored if any
keywords to this routine are set. This string can either be a name provided to the
REGISTER_CURSOR routine or one of the following:

Keywords

IMAGE

Set this keyword to a 16x16 column bitmap, contained in a 16-element short integer
vector, specifying the cursor pattern. The offset from the upper-left pixel to the point
that is considered the “hot spot” can be provided via the HOTSPOT keyword.

• ARROW • CROSSHAIR

• ICON • IBEAM

• MOVE • ORIGINAL

• SIZE_NE • SIZE_NW

• SIZE_SE • SIZE_SW

• SIZE_NS • SIZE_EW

• UP_ARROW
IDL Reference Guide IDLgrWindow

3738 Chapter 8: Graphics Object Classes
MASK

When the IMAGE keyword is set, the MASK keyword can be used to simultaneously
specify the mask that should be used. In the mask, bits that are set indicate bits in the
IMAGE that should be seen and bits that are not are “masked out”.

HOTSPOT

Set this keyword to a two-element vector specifying the [x, y] pixel offset of the
cursor “hot spot”, the point which is considered to be the mouse position, from the
upper left corner of the cursor image. This parameter is only applicable if IMAGE is
provided. The cursor image is displayed top-down (the first row is displayed at the
top).

STANDARD (X Only)

Set this keyword to an X11 cursor font index to change the appearance of the cursor
in the IDL graphics window to a glyph in this font. On non-X platforms, setting this
keyword displays the crosshair cursor.

Version History

Introduced: 5.0

CursorName argument: 5.6
IDLgrWindow IDL Reference Guide

Chapter 8: Graphics Object Classes 3739
IDLgrWindow::SetProperty

The IDLgrWindow::SetProperty procedure method sets the value of a property or
group of properties for the window.

Syntax

Obj -> [IDLgrWindow::]SetProperty[, PROPERTY=value]

Arguments

None

Keywords

Any property listed under “IDLgrWindow Properties” on page 3707 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

Introduced: 5.0
IDL Reference Guide IDLgrWindow

3740 Chapter 8: Graphics Object Classes
IDLgrWindow::Show

The IDLgrWindow::Show procedure method exposes or hides a window.

Syntax

Obj -> [IDLgrWindow::]Show, Position

Arguments

Position

Set this argument equal to a non-zero value to expose the window, or to 0 to hide the
window.

Keywords

None

Version History

Introduced: 5.0
IDLgrWindow IDL Reference Guide

Chapter 9:

Miscellaneous Object
Classes
This chapter describes IDL’s Container, COM, Java, and Trackball class libraries.
IDL_Container . 3742
IDLcomActiveX 3753
IDLcomIDispatch 3755

IDLjavaObject . 3761
TrackBall . 3769
IDL Reference Guide 3741

3742
IDL_Container

An IDL_Container object holds other objects. Destroying an IDL_Container object
destroys any objects that have been added to the container via the Add method.

Superclasses

This class has no superclasses.

Creation

See “IDL_Container::Init” on page 3749.

Properties

Objects of this class have no properties of their own.

Methods

This class has the following methods:

• IDL_Container::Add

• IDL_Container::Cleanup

• IDL_Container::Count

• IDL_Container::Get

• IDL_Container::Init

• IDL_Container::IsContained

• IDL_Container::Move

• IDL_Container::Remove

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.0
IDL_Container IDL Reference Guide

 3743
IDL_Container Properties

Objects of this class have no properties of their own.
IDL Reference Guide IDL_Container

3744
IDL_Container::Add

The IDL_Container::Add procedure method adds one or more child objects to the container.

Syntax

Obj -> [IDL_Container::]Add, Objects [POSITION=index]

Arguments

Objects

An object instance or array of object instances to be added to the container object.

Keywords

POSITION

Set this keyword equal to a scalar or array of zero-based index values. The number of
elements specified must be equal to the number of object references specified by the
Objects argument. Each index value specifies the position within the container at
which a new object should be placed. The default is to add new objects at the end of
the list of contained items.

Examples

If the container has three objects, a new object will be placed at the fourth position.
Since positions begin at zero, this would be equivalent to setting POSITION=3.

Version History

Introduced: 5.0
IDL_Container IDL Reference Guide

 3745
IDL_Container::Cleanup

The IDL_Container::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. This means that in most cases, you cannot call the
Cleanup method directly. There is one exception to this rule: If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj-> [IDL_Container::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None.

Keywords

None.

Version History

Introduced: 5.0
IDL Reference Guide IDL_Container

3746
IDL_Container::Count

The IDL_Container::Count function method returns the number of objects contained
by the container object.

Syntax

Result = Obj -> [IDL_Container::]Count()

Arguments

None.

Keywords

None.

Version History

Introduced: 5.0
IDL_Container IDL Reference Guide

 3747
IDL_Container::Get

The IDL_Container::Get function method returns an array of object references to
objects in a container. Unless the ALL or POSITION keywords are specified, the first
object in the container is returned. If no objects are found in the container, the Get
function returns -1.

Syntax

Result = Obj -> [IDL_Container::]Get ([, /ALL [, ISA=class_name(s)] | ,
POSITION=index] [COUNT=variable])

Arguments

None.

Keywords

ALL

Set this keyword to return an array of object references to all of the objects in the
container.

COUNT

Set this keyword equal to a named variable that will contain the number of objects
selected by the function. If the ALL keyword is also specified, specifying this
keyword is the same as calling the IDL_Container::Count method.

ISA

Set this keyword equal to a class name or vector of class names. This keyword is used
in conjunction with the ALL keyword. The ISA keyword filters the array returned by
the ALL keyword, returning only the objects that inherit from the class or classes
specified by the ISA keyword.

Note
This keyword is ignored if the ALL keyword is not provided.
IDL Reference Guide IDL_Container

3748
POSITION

Set this keyword equal to a scalar or array containing the zero-based indices of the
positions of the objects to return.

Version History

Introduced: 5.0
IDL_Container IDL Reference Guide

 3749
IDL_Container::Init

The IDL_Container::Init function method initializes the container object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: If you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDL_Container')

or

Result = Obj -> [IDL_Container::]Init() (Only in a subclass’ Init method.)

Arguments

None.

Keywords

None.

Version History

Introduced: 5.0
IDL Reference Guide IDL_Container

3750
IDL_Container::IsContained

The IDL_Container::IsContained function method returns true (1) if the specified
object is in the container, or false (0) otherwise.

Syntax

Result = Obj -> [IDL_Container::]IsContained(Object [, POSITION=variable])

Arguments

Object

The object reference or vector of object references of the object(s) to search for in the
container.

Keywords

POSITION

Set this keyword to a named variable that upon return will contain the position(s) at
which (each of) the argument(s) is located within the container, or -1 if it is not
contained.

Version History

Introduced: 5.0
IDL_Container IDL Reference Guide

 3751
IDL_Container::Move

The IDL_Container::Move procedure method moves an object from one position in a
container to a new position. The order of the other objects in the container remains
unchanged.

Positioning within a container controls the rendering order of the contained objects.
The object whose location has the lowest index value is rendered first. If several
objects are located at the same point in three-dimensional space, the object rendered
first will occlude objects rendered later. Objects located “behind” other objects in
three-dimensional space must be rendered before objects in front of them, even if the
“front” objects are translucent.

Syntax

Obj -> [IDL_Container::]Move, Source, Destination

Arguments

Source

The zero-based index of the current location of the object to be moved.

Destination

The zero-based index of the location in the container where the object will reside
after being moved.

Keywords

None.

Version History

Introduced: 5.0
IDL Reference Guide IDL_Container

3752
IDL_Container::Remove

The IDL_Container::Remove procedure method removes an object from the
container.

Syntax

Obj -> [IDL_Container::]Remove [, Child_object | , POSITION=index | , /ALL]

Arguments

Child_object

The object reference of the object to be removed from the container. If Child_object
is not provided (and neither the ALL nor POSITION keyword are set), the first object
in the container will be removed.

Keywords

ALL

Set this keyword to remove all objects from the container. If this keyword is set, the
Child_object argument is not required.

POSITION

Set this keyword equal to the zero-based index of the object to be removed. If the
Child_object argument is supplied, this keyword is ignored.

Version History

Introduced: 5.0
IDL_Container IDL Reference Guide

 3753
IDLcomActiveX

The IDLcomActiveX object class creates an IDL object that encapsulates an ActiveX
control. IDL provides data type and other translation services, allowing IDL
programs to access the ActiveX control’s methods and properties using standard IDL
syntax.

For detailed information on using the IDLcomActiveX object, see “Using ActiveX
Controls in IDL” in Chapter 5 of the External Development Guide manual.

Superclasses

This class is a subclass of IDLcomIDispatch.

Subclasses

When an ActiveX control is instantiated, IDL creates a dynamic subclass of the
IDLcomActiveX class. The dynamic subclass is used to provide a unique name for
each component type, based on the COM class or program identifier. See “ActiveX
Control Naming Scheme” in Chapter 5 of the External Development Guide manual
for details.

Creation

IDLcomActiveX objects are always created automatically by IDL, as a result of a call
to the WIDGET_ACTIVEX function. They should never be created manually.

Properties

Objects of this class have no properties of their own.

Methods

The IDLcomActiveX object class is a direct subclass of the IDLcomIDispatch class,
and relies entirely on the superclass methods, providing none of its own.

Version History

Introduced: 5.5
IDL Reference Guide IDLcomActiveX

3754
IDLcomActiveX Properties

Objects of this class have no properties of their own.
IDLcomActiveX IDL Reference Guide

 3755
IDLcomIDispatch

The IDLcomIDispatch object class creates an IDL object that encapsulates a COM
object. IDL provides data type and other translation services, allowing IDL programs
to access the COM object’s methods and properties using standard IDL syntax.

Note
COM objects encapsulated by IDLcomIDispatch objects must implement an
IDispatch interface.

For detailed information on using the IDLcomIDispatch object, see Chapter 4,
“Using COM Objects in IDL” in the External Development Guide manual.

Superclasses

This class has no superclasses.

Subclasses

When a COM object is instantiated, IDL creates a dynamic subclass of the
IDLcomIDispatch class. The dynamic subclass is used to provide a unique name for
each component type, based on the COM class or program identifier. See
“IDLcomIDispatch Object Naming Scheme” in Chapter 4 of the External
Development Guide manual for details.

ActiveX controls are instantiated within IDL as a special subclass of the
IDLcomIDispatch class named IDLcomActiveX.

Creation

See IDLcomIDispatch::Init

Properties

Objects of this class have the following properties. See “IDLcomIDispatch
Properties” on page 3757 for details on individual properties.

• KEYWORD

In addition, objects of this class inherit the properties of all superclasses of this class.
IDL Reference Guide IDLcomIDispatch

3756
Methods

• IDLcomIDispatch::Init

• IDLcomIDispatch::GetProperty

• IDLcomIDispatch::SetProperty

In addition to these methods, you can call the underlying COM object’s methods
directly. See “Method Calls on IDLcomIDispatch Objects” in Chapter 4 of the
External Development Guide manual for details.

Note
The IDL object system uses method names to identify and call object lifecycle
methods (Init and Cleanup). If the COM object underlying an IDLcomIDispatch
object implements Init or Cleanup methods, they will be overridden by IDL’s
lifecycle methods — the COM object’s methods will be inaccessible from IDL.
Similarly, IDL implements the GetProperty and SetProperty methods for the
IDLcomIDispatch object, so any methods of the underlying COM object that use
these names will be inaccessible from IDL.

Version History

Introduced: 5.5
IDLcomIDispatch IDL Reference Guide

 3757
IDLcomIDispatch Properties

IDLcomIDispatch objects have the following properties in addition to properties
inherited from any superclasses. Properties with the word “Yes” in the “Get” column
of the property table can be retrieved via “IDLcomIDispatch::GetProperty” on
page 3758. Properties with the word “Yes” in the “Init” column of the property table
can be retrieved via “IDLcomIDispatch::Init” on page 3759. Properties with the word
“Yes” in the “Set” column in the property table can be set via
“IDLcomIDispatch::SetProperty” on page 3760.

KEYWORD

KEYWORD is a string containing the name of one of the underlying COM object’s
properties, and Variable is the name of an IDL variable that will contain the retrieved
property value. You can get multiple property values in a single statement by
supplying multiple KEYWORD=Variable pairs.

Note
KEYWORD must map exactly to the full name of the underlying COM object’s
property method. The partial keyword name functionality provided by IDL is not
valid with IDLcomIDispatch objects.
IDL Reference Guide IDLcomIDispatch

3758
IDLcomIDispatch::GetProperty

The IDLcomIDispatch::GetProperty function method is used to get properties from
the COM object that underlies an IDLcomIDispatch object. The COM object’s
property names are represented as IDL keywords to the GetProperty method, and
property values are treated as IDL keyword values. See “Managing COM Object
Properties” in Chapter 4 of the External Development Guide manual.

Syntax

Obj -> [IDLcomIDispatch::]GetProperty, KEYWORD=Variable, [arg0, arg1, …]

Arguments

Because some of the underlying COM object’s property methods may require
arguments, the GetProperty method will accept optional arguments. The values of the
arguments themselves will depend on the COM object that underlies the
IDLcomIDispatch object.

Note
If arguments are required, you can only specify one property to retrieve in a given
call to the GetProperty method.

Keywords

Any property listed under “IDLcomIDispatch Properties” on page 3757 that contains
the word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Version History

Introduced: 5.5
IDLcomIDispatch IDL Reference Guide

 3759
IDLcomIDispatch::Init

The IDLcomIDispatch::Init function method is used to initialize a given COM object
and establish a link between the resulting IDL object and the IDispatch interface of
the underlying COM object.

Syntax

Obj = OBJ_NEW('IDLcomIDispatchID_typeID')

or

Result = Obj -> [IDLcomIDispatchID_typeID::]Init() (Only in a subclass’ Init
method)

where ID_type is one of the following:

• CLSID if the object is identified by its COM class ID, or

• PROGID if the object is identified by its COM program ID,

and ID is the COM object’s actual class or program identifier string. If the COM
object’s class identifier string is used to create the IDLcomIDispatch object, the
braces ({ }) must be removed and the hyphens replaced by underscores. For details
on constructing the class name, see “IDLcomIDispatch Object Naming Scheme” in
Chapter 4 of the External Development Guide manual for details.

Note
While COM objects incorporated into IDL are instances of the dynamic subclass
created when the COM object is instantiated, they still expose the functionality of
the class IDLcomIDispatch, which is the direct superclass of the dynamic subclass.
All IDLcomIDispatch methods are available to the dynamic subclass.

Arguments

None.

Keywords

None.

Version History

Introduced: 5.5
IDL Reference Guide IDLcomIDispatch

3760
IDLcomIDispatch::SetProperty

The IDLcomIDispatch::SetProperty function method is used to set properties for the
COM object that underlies an IDLcomIDispatch object. The COM object’s property
names are represented as IDL keywords to the SetProperty method, and property
values are treated as IDL keyword values. See “Managing COM Object Properties”
in Chapter 4 of the External Development Guide manual for details.

Syntax

Obj -> [IDLcomIDispatch::]SetProperty, KEYWORD=Expression

Arguments

None.

Keywords

Any property listed under “IDLcomIDispatch Properties” on page 3757 that contains
the word “Yes” in the “Set” column of the properties table can be set using this
method. To set the value of a property, specify the property name as a keyword set
equal to the appropriate property value.

Version History

Introduced: 5.5
IDLcomIDispatch IDL Reference Guide

 3761
IDLjavaObject

The IDLjavaObject class creates an IDL object that encapsulates a Java object. IDL
provides data type and other translation services, allowing IDL programs to access
the Java object’s methods and properties using standard IDL syntax.

For detailed information on using the IDLjavaObject class, see Chapter 8, “Using
Java Objects in IDL” in the External Development Guide manual.

Superclasses

This class has no superclasses.

Creation

See “IDLjavaObject::Init” on page 3765.

Properties

The properties of this object depends on which Java object the IDLjavaObject class
encapsulates. See “IDLjavaObject Properties” on page 3763 for more details.

Methods

This class has the following methods:

• IDLjavaObject::GetProperty

• IDLjavaObject::Init

• IDLjavaObject::SetProperty

In addition to these methods, you can call the underlying Java object’s methods
directly. See “Method Calls on IDL-Java Objects” in Chapter 8 of the External
Development Guide manual for details.

Note
The IDL object system uses method names to identify and call object lifecycle
methods (Init and Cleanup). If the Java object underlying IDLjavaObject
implements Init or Cleanup methods, they will be overridden by IDL’s lifecycle
methods — the Java object’s methods will be inaccessible from IDL. Similarly, IDL
implements the GetProperty and SetProperty methods for IDLjavaObject, so any
methods of the underlying Java object that use these names will be inaccessible
IDL Reference Guide IDLjavaObject

3762
from IDL. In Java, you can wrap these methods with different named methods to
work around this limitation.

Examples

See Chapter 8, “Using Java Objects in IDL” in the External Development Guide
manual.

Version History

Introduced: 6.0
IDLjavaObject IDL Reference Guide

 3763
IDLjavaObject Properties

The property name of an instance of IDLjavaObject is passed to the IDL Java
subsystem and is used in conjunction with the Java reflection API to access the
related data member on the underlying object. The data member (property) is
identified through the arguments to the IDLjavaObject::GetProperty and
IDLjavaObject::SetProperty methods.
IDL Reference Guide IDLjavaObject

3764
IDLjavaObject::GetProperty

The IDLjavaObject::GetProperty procedure method retrieves properties (known as
data members in Java) from the Java object that underlies the IDLjavaObject. The
Java object’s property names are represented as IDL keywords to the GetProperty
method, and property values are treated as IDL keyword values. See “Managing IDL-
Java Object Properties” in Chapter 8 of the External Development Guide manual.

Syntax

Obj -> [IDLjavaObject::]GetProperty [, PROPERTY=variable]

Arguments

None

Keywords

PROPERTY

The Java object property names are mapped to IDL keywords. The underlying
property values are treated as IDL keyword values, which is the same convention for
other IDL objects.

Note
The provided keywords must map directly to a property name or IDL issues an
error. Any keyword passed into either of the property routines is assumed to be a
fully-qualified Java property name. As such, the partial keyword name functionality
provided by IDL is not valid with IDL Java based objects.

The variable may be an IDL primitive type, an instance of IDLJavaObject, or an
array of IDL primitive types. See “IDL-Java Bridge Data Type Mapping” in Chapter
8 of the External Development Guide manual for more information.

Note
Besides other Java based objects, no complex types (structures, pointers, etc.) are
supported as parameters to method calls.

Version History

Introduced: 6.0
IDLjavaObject IDL Reference Guide

 3765
IDLjavaObject::Init

The IDLjavaObject::Init function method instantiates the given Java object and
establishes a link between the resulting IDL object with the underlying Java object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: the Init method can be called
from within the Init method of a subclass.

Syntax

Obj = OBJ_NEW('IDLjavaObject$JAVACLASSNAME', JavaClassName[, Arg1, ...])

where JAVACLASSNAME is a case-insensitive string representing the Java class to be
instantiated, see “IDL-Java Bridge Architecture” in Chapter 8 of the External
Development Guide manual for more information. All periods in JAVACLASSNAME
must be converted to underscores.

Return Value

Returns an object reference to the newly-created object if initialization is successful,
or a null object if initialization fails.

Arguments

JavaClassName

A string representing the Java class to be instantiated. See “Java Class Names in IDL”
in Chapter 8 of the External Development Guide manual for more details.

Arg1, ...

Additional arguments as required by the contructor. These arguments are passed to
the underlying Java constructor. Arguments may be IDL primitive types, IDL strings,
IDLJavaObjects, and arrays of the previous types. See “IDL-Java Bridge Data Type
Mapping” in Chapter 8 of the External Development Guide manual for more
information.
IDL Reference Guide IDLjavaObject

3766
Keywords

None

Version History

Introduced: 6.0
IDLjavaObject IDL Reference Guide

 3767
IDLjavaObject::SetProperty

The IDLjavaObject::SetProperty procedure method sets properties (known as data
members in Java) for the Java object that underlies an instance of IDLjavaObject. The
Java object’s property names are represented as IDL keywords to the SetProperty
method, and property values are treated as IDL keyword values. See “Managing IDL-
Java Object Properties” in Chapter 8 of the External Development Guide manual for
more details.

Syntax

Obj -> [IDLjavaObject::]SetProperty [, PROPERTY=value]

Arguments

None

Keywords

PROPERTY

The Java object property names are mapped to IDL keywords. The underlying
property values are treated as IDL keyword values, which is the same convention for
other IDL objects.

Note
The provided keywords must map directly to a property name or IDL issues an
error. Any keyword passed into either of the property routines is assumed to be a
fully-qualified Java property name. As such, the partial keyword name functionality
provided by IDL is not valid with IDL Java based objects.

The value may be an IDL primitive type, an instance of IDLJavaObject, or an array of
IDL primitive types. See “IDL-Java Bridge Data Type Mapping” in Chapter 8 of the
External Development Guide manual for more information.

Note
Besides other Java based objects, no complex types (structures, pointers, etc.) are
supported as parameters to method calls.
IDL Reference Guide IDLjavaObject

3768
Version History

Introduced: 6.0
IDLjavaObject IDL Reference Guide

 3769
TrackBall

A TrackBall object translates widget events from a draw widget (created with the
WIDGET_DRAW function) into transformations that emulate a virtual trackball (for
transforming object graphics in three dimensions).

This object class is implemented in the IDL language. Its source code can be found in
the file trackball_ _define.pro in the lib subdirectory of the IDL distribution.

Superclasses

This class has no superclasses.

Creation

See “TrackBall::Init” on page 3772.

Properties

Objects of this class have the following properties. See “TrackBall Properties” on
page 3770 for details on individual properties.

• AXIS

• CONSTRAIN

• MOUSE

In addition, objects of this class inherit the properties of all superclasses of this class.

Methods

This class has the following methods:

• TrackBall::Init

• TrackBall::Reset

• TrackBall::Update

In addition, this class inherits the methods of its superclasses (if any).

Version History

Introduced: 5.0
IDL Reference Guide TrackBall

3770
TrackBall Properties

TrackBall objects have the following properties in addition to properties inherited
from any superclasses. Properties with the word “Yes” in the “Init” column of the
property table can be retrieved via “TrackBall::Init” on page 3772.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” on page 2505.

AXIS

An integer value that indicates the axis about which rotations are to be constrained if
the CONSTRAIN keyword is set. Valid values include:

• 0 = Rotate only around the X axis.

• 1 = Rotate only around the Y axis.

• 2 = Rotate only around the Z axis (this is the default).

CONSTRAIN

A boolean value that indicates whether the trackball transformations are to be
constrained about the axis specified by the AXIS keyword. The default is not to
constrain the transformations.

MOUSE

An integer value that indicates which mouse button to honor for trackball events.
Valid values include:

• 1 = Left mouse button (the default)

Property Type Integer

Name String not displayed

Get: No Set: No Init: Yes Registered: No

Property Type Boolean

Name String not displayed

Get: No Set: No Init: Yes Registered: No
TrackBall IDL Reference Guide

 3771
• 2 = Middle mouse button

• 4 = Right mouse button

Property Type Integer

Name String not displayed

Get: No Set: No Init: Yes Registered: No
IDL Reference Guide TrackBall

3772
TrackBall::Init

The TrackBall::Init function method initializes the TrackBall object.

Syntax

Obj = OBJ_NEW('TrackBall', Center, Radius [, AXIS={0 | 1 | 2}] [, /CONSTRAIN]
[, MOUSE={1 | 2 | 4}])

or

Result = Obj -> [TrackBall::]Init(Center, Radius) (Only in a subclass’ Init method.)

Note
Keywords can be used in either form. They are omitted in the second form for
brevity.

Arguments

Center

A two-element vector, [X, Y], specifying the center coordinates of the trackball. X and
Y should be specified in device units.

Radius

The radius of the trackball, specified in device units.

Keywords

Any property listed under “TrackBall Properties” on page 3770 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.

Version History

Introduced: 5.0
TrackBall IDL Reference Guide

 3773
TrackBall::Reset

The TrackBall::Reset procedure method resets the state of the TrackBall object.

Syntax

Obj -> [TrackBall::]Reset, Center, Radius [, AXIS={0 | 1 | 2}] [, /CONSTRAIN]
[, MOUSE={1 | 2 | 4}]

Arguments

Center

A two-element vector, [X, Y], specifying the center coordinates of the trackball. X and
Y should be specified in device units.

Radius

The radius of the trackball, specified in device units.

Keywords

AXIS

Set this keyword to an integer value to indicate the axis about which rotations are to
be constrained if the CONSTRAIN keyword is set. Valid values include:

• 0 = Rotate only around the X axis.

• 1 = Rotate only around the Y axis.s

• 2 = Rotate only around the Z axis (this is the default).

CONSTRAIN

Set this keyword to indicate that the trackball transformations are to be constrained
about the axis specified by the AXIS keyword. The default is not to constrain the
transformations.
IDL Reference Guide TrackBall

3774
MOUSE

Set this keyword to an integer value to indicate which mouse button to honor for
trackball events. Valid values include:

• 1 = Left mouse button (the default)

• 2 = Middle mouse button

• 4 = Right mouse button

Version History

Introduced: 5.0
TrackBall IDL Reference Guide

 3775
TrackBall::Update

The TrackBall::Update function method updates the state of the TrackBall object
based on the information contained in the input widget event structure. The return
value is nonzero if a transformation matrix is calculated as a result of the event, or
zero otherwise.

Syntax

Result = Obj -> [TrackBall::]Update(sEvent [, MOUSE={1 | 2 | 4}]
[, TRANSFORM=variable] [, /TRANSLATE])

Arguments

sEvent

The widget event structure.

Keywords

MOUSE

Set this keyword to an integer value to indicate which mouse button to honor for
trackball events. Valid values include:

• 1 = Left mouse button (the default)

• 2 = Middle mouse button

• 4 = Right mouse button

TRANSFORM

Set this keyword to a named variable that will contain a 4 x 4 element floating-point
array if a new transformations matrix is calculated as a result of the widget event.

TRANSLATE

Set this keyword to indicate that the trackball movement should be constrained to
translation in the X-Y plane rather than rotation about an axis.
IDL Reference Guide TrackBall

3776
Example

The example code below provides a skeleton for a widget-based application that uses
the TrackBall object to interactively change the orientation of graphics.

Create a trackball centered on a 512x512 pixel drawable area, and a view containing
the model to be manipulated:

xdim = 512
ydim = 512
wBase = WIDGET_BASE()
wDraw = WIDGET_DRAW(wBase, XSIZE=xdim, YSIZE=ydim, $

GRAPHICS_LEVEL=2, /BUTTON_EVENTS, $
/MOTION_EVENTS, /EXPOSE_EVENTS, RETAIN=0)

WIDGET_CONTROL, wBase, /REALIZE
WIDGET_CONTROL, wDraw, GET_VALUE=oWindow

oTrackball = OBJ_NEW('Trackball', [xdim/2.,ydim/2.], xdim/2.)
oView = OBJ_NEW('IDLgrView')
oModel = OBJ_NEW('IDLgrModel')
oView->Add, oModel
XMANAGER, 'TrackEx', wBase

You must handle the trackball updates in the widget event-handling code. As the
trackball transformation changes, update the transformation for the model object, and
redraw the view:

PRO TrackEx_Event, sEvent
...
bHaveXform = oTrackball->Update(sEvent, TRANSFORM=TrackXform)
IF (bHaveXform) THEN BEGIN
oModel->GetProperty, TRANSFORM=ModelXform
oModel->SetProperty, TRANSFORM=ModelXform # TrackXform
oWindow->Draw, oView
ENDIF
...
END

For a complete example, see the file surf_track.pro, located in the
examples/visual subdirectory of the IDL distribution. The SURF_TRACK
procedure uses IDL widgets to create a graphical user interface to an object tree,
creates a surface object from user-specified data (or from default data, if none is
specified), and places the surface object in an IDL draw widget. The SURF_TRACK
interface allows the user to specify several attributes of the object hierarchy via
pulldown menus.
TrackBall IDL Reference Guide

 3777
Version History

Introduced: 5.0
IDL Reference Guide TrackBall

3778
TrackBall IDL Reference Guide

Part III:
Appendices

Appendix A:

IDL Graphics
Devices

The following topics are covered in this appendix:
Supported Devices 3782
Keywords Accepted by the IDL Devices 3784
Window Systems 3824
Printing Graphics Output Files 3827
The CGM Device 3830
The HP-GL Device 3832
The Metafile Display Device 3834
The Null Display Device 3836

The PCL Device 3837
The Printer Device 3839
The PostScript Device 3840
The Regis Terminal Device 3852
The Tektronix Device 3853
The Microsoft Windows Device 3855
The X Windows Device 3856
The Z-Buffer Device 3865
IDL Reference Guide 3781

3782 Appendix A: IDL Graphics Devices
Supported Devices

IDL Direct Graphics support graphic output to the devices listed below:

Each of these devices is described in a section of this chapter. The SET_PLOT
procedure can be used to select the graphic device to which IDL directs its output.
IDL Object Graphics does not rely on the concept of a current graphics device; see
Using IDL for details about IDL Object Graphics.

The DEVICE procedure controls the graphic device-specific functions. An attempt
has been made to isolate all device-specific functions in this procedure. DEVICE
controls the graphics device currently selected by SET_PLOT. When using DEVICE,
it is important to make sure that the current graphics device is the one you intend to
use. This is because most of the devices have different keywords—you will most
likely get a ‘‘Keyword not allowed in call to: Device’’ error if
you call DEVICE when the wrong device is selected.

Device Name Description

CGM Computer Graphics Metafile

HP Hewlett-Packard Graphics Language (HP-GL)

METAFILE Windows Metafile Format (WMF)

NULL No graphics output

PCL Hewlett-Packard Printer Control Language (PCL)

PRINTER System printer

PS PostScript

REGIS Regis graphics protocol (DEC systems only)

TEK Tektronix compatible terminal

WIN Microsoft Windows

X X Window System

Z Z-buffer pseudo device

Table A-1: IDL Graphics Output Devices
Supported Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3783
Obsolete Graphics Devices and Device Keywords

The following graphics devices are obsolete:

• LJ

• MAC

For information on obsolete graphics devices, See Appendix I, “Obsolete Features”.

The following graphics device keywords are obsolete:

• DEPTH

• FONT

For information on obsolete keywords, See Appendix I, “Obsolete Features”.
IDL Reference Guide Supported Devices

3784 Appendix A: IDL Graphics Devices
Keywords Accepted by the IDL Devices

The following table indicates which keywords are accepted by the DEVICE
procedure. The NULL device is not listed as it accepts no keywords. Details of the
various keywords can be found on the page indicated in the table.

Note
Most keywords to the DEVICE procedure are sticky — that is, once you set them,
they remain in effect until you explicitly change them again, or end your IDL
session. The exceptions are keywords used to return a value from the system
(GET_FONTNAMES, for example) and those that perform a one-time-only
operation (CLOSE_FILE, for example).

Keywords

Devices
C

G
M

H
P

M
E

TA
F

IL
E

P
C

L

P
R

IN
T

E
R

P
S

R
E

G
IS

T
E

K

W
IN X Z

AVANTGARDE •

AVERAGE_LINES •

BINARY •

BITS_PER_PIXEL •

BKMAN •

BOLD •

BOOK •

BYPASS_TRANSLATION • •

CLOSE •

CLOSE_DOCUMENT •

CLOSE_FILE • • • • • • •

Table A-2: Keywords accepted by the IDL devices
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3785
COLOR • •

COLORS • •

COPY • •

COURIER •

CURSOR_CROSSHAIR • •

CURSOR_IMAGE • •

CURSOR_MASK • •

CURSOR_ORIGINAL • •

CURSOR_STANDARD • •

CURSOR_XY • •

DECOMPOSED • •

DEMI •

DIRECT_COLOR •

EJECT •

ENCAPSULATED •

ENCODING •

FILENAME • • • • • • •

FLOYD • •

FONT_INDEX •

FONT_SIZE •

GET_CURRENT_FONT • • • •

Keywords

Devices

C
G

M

H
P

M
E

TA
F

IL
E

P
C

L

P
R

IN
T

E
R

P
S

R
E

G
IS

T
E

K

W
IN X Z

Table A-2: Keywords accepted by the IDL devices (Continued)
IDL Reference Guide Keywords Accepted by the IDL Devices

3786 Appendix A: IDL Graphics Devices
GET_DECOMPOSED • •

GET_FONTNAMES • • • •

GET_FONTNUM • • • •

GET_GRAPHICS_FUNCTION • • •

GET_PAGE_SIZE •

GET_SCREEN_SIZE • •

GET_VISUAL_DEPTH • •

GET_VISUAL_NAME • •

GET_WINDOW_POSITION • •

GET_WRITE_MASK • •

GIN_CHARS •

GLYPH_CACHE • • • • •

HELVETICA •

INCHES • • • • •

INDEX_COLOR • •

ISOLATIN1 •

ITALIC •

LANDSCAPE • • • •

LANGUAGE_LEVEL •

LIGHT •

MEDIUM •

Keywords

Devices

C
G

M

H
P

M
E

TA
F

IL
E

P
C

L

P
R

IN
T

E
R

P
S

R
E

G
IS

T
E

K

W
IN X Z

Table A-2: Keywords accepted by the IDL devices (Continued)
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3787
NARROW •

NCAR •

OBLIQUE •

OPTIMIZE •

ORDERED • •

OUTPUT • •

PALATINO •

PIXELS •

PLOT_TO • •

PLOTTER_ON_OFF •

POLYFILL •

PORTRAIT • • • •

PRE_DEPTH •

PRE_XSIZE •

PRE_YSIZE •

PREVIEW •

PRINT_FILE •

PSEUDO_COLOR •

RESET_STRING •

RESOLUTION •

RETAIN • •

Keywords

Devices

C
G

M

H
P

M
E

TA
F

IL
E

P
C

L

P
R

IN
T

E
R

P
S

R
E

G
IS

T
E

K

W
IN X Z

Table A-2: Keywords accepted by the IDL devices (Continued)
IDL Reference Guide Keywords Accepted by the IDL Devices

3788 Appendix A: IDL Graphics Devices
SCALE_FACTOR • •

SCHOOLBOOK •

SET_CHARACTER_SIZE • • • • • • • • • • •

SET_COLORMAP •

SET_COLORS •

SET_FONT • • • • • •

SET_GRAPHICS_FUNCTION • • •

SET_RESOLUTION •

SET_STRING •

SET_TRANSLATION •

SET_WRITE_MASK • •

STATIC_COLOR •

STATIC_GRAY •

SYMBOL •

TEK4014 •

TEK4100 •

TEXT •

THRESHOLD • •

TIMES •

TRANSLATION • •

TRUE_COLOR • • •

Keywords

Devices

C
G

M

H
P

M
E

TA
F

IL
E

P
C

L

P
R

IN
T

E
R

P
S

R
E

G
IS

T
E

K

W
IN X Z

Table A-2: Keywords accepted by the IDL devices (Continued)
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3789
Keywords accepted by the DEVICE command are described below. A list of devices
that accept the keyword is included in parentheses below the keyword name.

AVANTGARDE

(PS)

Set this keyword to select the ITC Avant Garde PostScript font.

AVERAGE_LINES

(REGIS)

TT_FONT • • • • •

TTY • •

USER_FONT •

VT240, VT241 •

VT340, VT341 •

WINDOW_STATE • •

XOFFSET • • • •

XON_XOFF •

XSIZE • • • • •

YOFFSET • • • •

YSIZE • • • • •

ZAPFCHANCERY •

ZAPFDINGBATS •

Z_BUFFERING •

Keywords

Devices

C
G

M

H
P

M
E

TA
F

IL
E

P
C

L

P
R

IN
T

E
R

P
S

R
E

G
IS

T
E

K

W
IN X Z

Table A-2: Keywords accepted by the IDL devices (Continued)
IDL Reference Guide Keywords Accepted by the IDL Devices

3790 Appendix A: IDL Graphics Devices
Controls the method of writing images to the VT240. If this keyword is set, (default
setting), even and odd pairs of image lines are averaged and written to a single line. If
clear, each image line is written to the screen. See the discussion below. This keyword
has no effect when using a VT300 series terminal.

BINARY

(CGM)

Set this keyword to set the encoding type for the CGM output file to binary.

BITS_PER_PIXEL

(PS)

IDL is capable of producing PostScript images with 1, 2, 4, or 8 bits per pixel. Using
more bits per pixel gives higher resolution at the cost of generating larger files.
BITS_PER_PIXEL is used to specify the number of bits to use. If you do not specify
a value for BITS_PER_PIXEL, a default value of 4 is used.

It should be noted that many laser printers, including the original Apple Laserwriter
are capable of only 32 different shades of gray (which can be represented by 5 bits).
Thus, specifying 8 bits per pixel does not give 256 apparent shades of grey as might
be expected, only 32, at a cost of sending twice the number of bits to the printer.
Often, 4 bits (16 levels of gray) will give acceptable results with a large savings in file
size.

BKMAN

(PS)

Set this keyword to select the ITC Bookman PostScript font.

BOLD

(PS)

Set this keyword to specify that the bold version of the current PostScript font should
be used.

BOOK

(PS)

Set this keyword to specify that the book version of the current PostScript font should
be used.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3791
BYPASS_TRANSLATION

(WIN, X)

Set this keyword to bypass the translation tables, allowing direct specification of
color indices. See “Color Translation” on page 3861 Pixel values read via the TVRD
function are not translated if this keyword is set, and the result contains the byte value
of the actual pixel values present in the display.

By default, the translation tables are used with shared and static color tables. When
using displays with private color tables, the translation tables are bypassed.

This keyword is accepted by the WIN device (for compatibility with the X device),
but has no effect when set.

CLOSE

(Z)

Set this keyword to deallocate the memory used by the Z-buffer. The Z-buffer device
is reinitialized if subsequent graphics operations are directed to the device.

CLOSE_DOCUMENT

(PRINTER)

Set this keyword to have IDL send any buffered output to the currently selected
printer. This keyword is applicable only when the printer device is selected. See “The
Printer Device” on page 3839 for details.

CLOSE_FILE

(CGM, HP, METAFILE, PCL, PS, REGIS, TEK)

Set this keyword to have IDL output any buffered commands and close the current
graphics file.

Caution: If you close the output file and then cause IDL to produce more output (e.g.,
by executing a new PLOT command), IDL will open the file again, causing the
contents of the recently closed file to be lost. To avoid this, use the FILENAME
keyword to specify a different file name or use SET_PLOT to disable the graphics
driver, or be sure to print the closed output file before creating more output.

See the discussion of printing output files in “Printing Graphics Output Files” on
page 3827
IDL Reference Guide Keywords Accepted by the IDL Devices

3792 Appendix A: IDL Graphics Devices
COLOR

(PCL, PS)

Set this keyword to enable color PCL or PostScript output. See “The PCL Device” on
page 3837 or “The PostScript Device” on page 3840.

COLORS

(CGM, TEK)

This keyword specifies the maximum number of colors and the size of the color table
used for output. The value of the system variable fields !D.N_COLORS and
!D.TABLE_SIZE are set to this value and !P.COLOR is set to one less than this value.

For Tektronix Terminals Only

This keyword sets the number of colors supported by a 4100 series terminal. For
example, if your terminal has 4-bit planes, the number of colors is 24 = 16:

DEVICE, COLORS = 16

Valid values of this parameter are: 2, 4, 8, 16, or 64; other values will cause problems.
Some Tektronix terminals will not operate properly if this parameter does not exactly
match the number of colors available in the terminal hardware.

This parameter sets the field !D.N_COLORS, which affects the loading of color
tables, the scaling used by the TVSCL procedure, and the number of bits output by
the TV procedure to the terminal. It also changes the default color, !P.COLOR to the
number of colors minus one.

COPY

(WIN, X)

Use this keyword to copy a rectangular area of pixels from one region of a window to
another. COPY should be set a six or seven element array: [Xs, Ys, Nx, Ny, Xd, Yd, W],
where: (Xs, Ys) is the lower left corner of the source rectangle, (Nx, Ny) are the
number of columns and rows in the rectangle, and (Xd, Yd) is the coordinate of the
destination rectangle. Optionally, W is the index of the window from which the pixels
should be copied to the current window. If it is not supplied, the current window is
used as both the source and destination.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3793
COURIER

(PS)

Set this keyword to select the Courier PostScript font.

CURSOR_CROSSHAIR

(WIN, X)

Set this keyword to selects the crosshair cursor type. This is the IDL default.

CURSOR_IMAGE

(WIN, X)

Specifies the cursor pattern. The value of this keyword must be a 16-line by 16-
column bitmap, contained in a 16-element short integer vector. The offset from the
upper left pixel to the point that is considered the hot spot can be provided via the
CURSOR_XY keyword.

CURSOR_MASK

(WIN, X)

When the CURSOR_IMAGE keyword is used to specify a cursor bitmap, the
CURSOR_MASK keyword can be used to simultaneously specify the mask that
should be used. In the mask, bits that are set indicate bits in the CURSOR_IMAGE
that should be seen and bits that are not set are masked out.

By default, the CURSOR_IMAGE bitmap is used for both the image and the mask.
This can cause the cursor to be invisible on a black background (because only black
pixels are allowed to be displayed).

CURSOR_ORIGINAL

(WIN, X)

Set this keyword to select the window system’s default cursor. Under X Windows, it
is the cursor in use by the root window when IDL starts. For the Microsoft Windows
device, it is the arrow pointer.

CURSOR_STANDARD

(WIN, X)

This keyword can be used to change the cursor appearance in IDL graphics windows.
IDL Reference Guide Keywords Accepted by the IDL Devices

3794 Appendix A: IDL Graphics Devices
For X Windows

This keyword selects one of the predefined cursors provided by the X Window
system. The available cursors shapes are defined in the file cursorfont.h in the
directory /usr/include/X11. In order to use one of these cursors, you select the
number of the cursor and provide it as the value of the CURSOR_STANDARD
keyword. For example, the file gives the value of XC_CROSS as being 30. In order to
make that the current cursor, use the statement:

DEVICE, CURSOR_STANDARD=30

For Microsoft Windows

The table below shows the values for CURSOR_STANDARD that result in different
cursor shapes. For example, to change the cursor to an “I-beam” when the cursor is in
an IDL graphics window, use the command:

DEVICE, CURSOR_STANDARD = 32513

Value Cursor Shape

32512 Arrow

32513 I-Beam

32514 Hourglass

32515 Black Crosshair

32516 Up Arrow

32640 Size (Windows NT only)

32641 Icon (Windows NT only)

32642 Size NW-SE

32643 Size NE-SW

32644 Size E-W

32645 Size N-S

Table A-3: Values for the WIN device CURSOR_STANDARD Keyword
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3795
CURSOR_XY

(WIN, X)

A two element integer vector giving the (X, Y) pixel offset of the cursor hot spot, the
point which is considered to be the mouse position, from the lower left corner of the
cursor image. This parameter is only applicable if CURSOR_IMAGE is provided.
The cursor image is displayed top-down—the first row is displayed at the top.

DECOMPOSED

(WIN, X)

This keyword is used to control the way in which graphics color index values are
interpreted when using displays with decomposed color (TrueColor or DirectColor
visuals). This keyword has no effect with other types of visuals.

Set this keyword to 1 to cause color indices to be interpreted as 3, 8-bit color indices
where the least-significant 8 bits contain the red value, the next 8 bits contain the
green value, and the most-significant 8 bits contain the blue value. This is the way
IDL has always interpreted pixels when using visual classes with decomposed color.

Set this keyword to 0 to cause the least-significant 8 bits of the color index value to be
interpreted as a PseudoColor index. This setting allows users with DirectColor and
TrueColor displays to use IDL programs written for standard, PseudoColor displays
without modification.

In older versions of IDL, color index values higher than !D.N_COLORS-1 were
clipped to !D.N_COLORS-1 in the higher level graphics routines. In some cases, this
clipping caused the exclusive-OR graphics mode to malfunction with raster displays.
This clipping has been removed. Programs that incorrectly specified color indices
higher than !D.N_COLORS-1 will now probably exhibit different behavior.

DEMI

(PS)

Set this keyword to specify that the demi version of the current PostScript font should
be used.

DIRECT_COLOR

(X)

Set this keyword to select the DirectColor visual. The value of the keyword represents
the number of bits per pixel. This keyword has effect only if no windows have been
IDL Reference Guide Keywords Accepted by the IDL Devices

3796 Appendix A: IDL Graphics Devices
created. Visual classes are discussed in more detail in “X Windows Visuals” on
page 3856.

EJECT

(HP)

In order to perform an erase operation on a plotter, it is necessary to remove the
current sheet of paper and load a fresh sheet. The ability of various plotters to do this
varies, so the EJECT keyword allows you to specify what should be done. The
following table describes the possible values.

Many HP-GL plotters lack a sheet feeder, and require the user to load the next page
manually. Therefore, the default action is for IDL to not issue any page eject
instructions. In this case, you must restrict yourself to generating only a single plot at
a time. If your plotter has a sheet feeder, you will want to issue the command:

DEVICE, /EJECT

to tell IDL that it should use the sheet feeder instead of placing the plotter off-line.

If your plotter does not have a sheet feeder, but it does understand the HP-GL NR
command, use the command:

DEVICE, EJECT=2

to place the plotter off-line at the start of every plot except the first one. This causes
the plotter to wait between plots for the user to replace the paper. When the user puts
the plotter back on-line, the graphics commands for the new page are executed by the
plotter. Consult the programming manual for your plotter to determine if this
instruction is provided.

Value Meaning

0 Do nothing. Note that this is likely to cause one page to plot over the
previous one, so you should limit yourself to one page of output per
file. This is the default.

1 Use the sheet feeder to load the next page.

2 Put the plotter off-line at the beginning of each page after the first.

Table A-4: Values for the HP-GL Eject Keyword
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3797
ENCAPSULATED

(PS)

Set this keyword to create an encapsulated PostScript file, suitable for importing into
another document (e.g., a LaTeX or FrameMaker document).

Note
You must explicitly set this keyword to zero to create “regular” PostScript output
after creating encapsulated output. (That is, like most keyword settings to the
DEVICE procedure, the setting “sticks” until you change it, or until you quit IDL.)

Normally, IDL assumes that its PostScript-generated output will be sent directly to a
printer. It therefore includes PostScript commands to position the plot on the page
and to eject the page from the printer. These commands are undesirable if the output
is going to be inserted into the middle of another PostScript document. If
ENCAPSULATED is present and non-zero, IDL does not generate these commands.

IDL follows the standard PostScript convention for encapsulated files. It assumes the
standard PostScript scaling is in effect (72 points per inch), In addition, it declares the
size, or bounding box of the plotting region at the top of the output file. This size is
determined when the output file is opened (when the first graphics command is
given), by multiplying the size of the plotting region (as specified with the XSIZE
and YSIZE keywords) by the current scale factor (as specified by the
SCALE_FACTOR keyword).

Changing the size of the plotting region or scale factor once graphics have been
output will not be reflected in the declared bounding box, and will confuse programs
that attempt to import the resulting graphics. Therefore, when generating
encapsulated PostScript, do not change the plot region size or scaling factor once any
graphics commands have been issued. If you need to change these parameters, use the
FILENAME keyword to start a new file.

ENCODING

(CGM)

Set this keyword to set the CGM encoding type for the output file. Valid values are:

Value Description

1 Binary encoding - the default.

Table A-5: CGM Encoding Values
IDL Reference Guide Keywords Accepted by the IDL Devices

3798 Appendix A: IDL Graphics Devices
The encoding type can only be changed when no CGM file is open.

FILENAME

(CGM, HP, METAFILE, PCL, PS, REGIS, TEK)

Normally, all generated output is sent to a file named idl.xxx, where xxx is the
lowercase name of the device shown in the table under “Supported Devices” on
page 3782. The FILENAME keyword can be used to change these defaults. If
FILENAME is specified:

1. If the file is already open (as happens if plotting commands have been directed
to the file since the call to SET_PLOT), then the file is completed and closed as
if CLOSE_FILE had been specified.

2. The specified file is opened for subsequent graphics output.

HP-GL Only

Under UNIX, if you wish to send HP-GL output directly to a plotter without
generating an intermediate file, you should specify the device special file for the
plotter as the argument to FILENAME. For example, if your plotter is connected to a
serial input/output port known on your system as /dev/ttya, you would issue the
command:

DEVICE, FILENAME='/dev/ttya'

All subsequent HP-GL output is sent directly to the plotter connected to serial port
/dev/ttya.

FLOYD

(PCL, X)

Set this keyword to select the Floyd-Steinberg method of dithering. This algorithm
distributes the error, due to displaying intermediate shades in either black or white, to
surrounding pixels. This method generally gives the most pleasing results but
requires the most computer time.

2 Text encoding.

3 NCAR binary encoding.

Value Description

Table A-5: CGM Encoding Values
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3799
FONT_INDEX

(PS)

An integer representing the font index to be mapped to the current PostScript font.

Normally the font specification keywords (AVANTGARDE, etc.) take effect
immediately to change the current font. The FONT_INDEX keyword alters this
behavior. The current font is not changed. Instead, the specified font is mapped to the
specified font index. This mapping can then be used within text strings to change the
font in the middle of the string. See “Using PostScript Fonts” on page 3841

FONT_SIZE

(PS)

The default height used for displayed text. FONT_SIZE is given in points (a common
typesetting unit of measure). The default size is 12 point text.

GET_CURRENT_FONT

(METAFILE, PRINTER, WIN, X)

Set this keyword to a named variable in which the name of the current font is returned
as a scalar string. A null string is returned if the Windows font is the default font. If
the current device is PRINTER or METAFILE, the current font is returned.

GET_DECOMPOSED

(WIN, X)

Set this keyword to a named variable in which is returned the current state of the
decomposed flag in the current direct graphics device.

GET_FONTNAMES

(METAFILE, PRINTER, WIN, X)

Set this keyword to a named variable in which a string array containing the names of
available fonts is returned. If no fonts are found, a null scalar string is returned. This
keyword must be used in conjunction with the SET_FONT keyword. Set the
SET_FONT keyword to a scalar string containing the name of the desired font or to a
wildcard. For example, the following command will return in the variable fnames
the names of all available fonts:

DEVICE, GET_FONTNAMES=fnames, SET_FONT='*'
IDL Reference Guide Keywords Accepted by the IDL Devices

3800 Appendix A: IDL Graphics Devices
GET_FONTNUM

(METAFILE, PRINTER, WIN, X)

Set this keyword to a named variable in which the number of fonts available to your
installation is returned. This keyword must be used in conjunction with the
SET_FONT keyword. Set the SET_FONT keyword to a scalar string containing the
name of the desired font or a wildcard. For example, the following command will
return in the variable numfonts the number of available fonts:

DEVICE, GET_FONTNUM=numfonts, SET_FONT='*'

GET_GRAPHICS_FUNCTION

(WIN, X, Z)

Set this keyword to a named variable that returns the value of the current graphics
function (which is set with the SET_GRAPHICS_FUNCTION keyword). This can be
used to remember the current graphics function, change it temporarily, and then
restore it. See “SET_GRAPHICS_FUNCTION” on page 3815 keyword for an
example.

GET_PAGE_SIZE

(PRINTER)

Set this keyword to a named variable in which to return a two-element vector that
contains the width and height of the page size in pixels.

GET_SCREEN_SIZE

(WIN, X)

Set this keyword to a named variable in which to return a two-word array that
contains the width and height of the server’s screen, in pixels.

GET_VISUAL_DEPTH

(WIN, X)

Set this keyword to a named variable into which a long integer is returned containing
the depth of the visual associated with this device. Under X, if the X server is not
connected when you call the DEVICE procedure with this keyword set, a new
connection is made.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3801
GET_VISUAL_NAME

(WIN, X)

Set this keyword equal to a named variable in which a string containing the name of
the current visual class IDL is using is returned. Possible return values are:

• StaticGray (X only)

• GrayScale (X only)

• StaticColor (X only)

• PseudoColor

• TrueColor

• DirectColor (X only)

Under X, if no connection to the X server has been established when the DEVICE
procedure is called with this keyword set, a new connection is made.

GET_WINDOW_POSITION

(WIN, X)

Set this keyword to a named variable that returns a two-element array containing the
(X,Y) position of the lower left corner of the current window on the screen. The
origin is also in the lower left corner of the screen.

GET_WRITE_MASK

(WIN, X)

Specifies the name of a variable to receive the current value of the write mask.

GIN_CHARS

(TEK)

The number of characters IDL is to read when accepting a GIN (Graphics INput)
report. The default is 5. If your terminal is configured to send a carriage return at the
end of each GIN report, set this parameter to 6. If the number of GIN characters is too
large, the IDL CURSOR procedure will not respond until two or more keys are
struck. If it is too small, the extra characters sent by the terminal will appear as input
to the next IDL prompt.
IDL Reference Guide Keywords Accepted by the IDL Devices

3802 Appendix A: IDL Graphics Devices
GLYPH_CACHE

(METAFILE, PRINTER, PS, WIN, Z)

Set this keyword to a scalar specifying the maximum number of glyphs to cache at
any given time. The first time a glyph from a TrueType font is used, it is tessellated
into triangles. These triangles are cached so that the tessellation step is not repeated
for each use of that glyph. If the glyph cache fills, the least used glyph will be
released before a new glyph is generated and cached. The default is 256.

HELVETICA

(PS)

Set this keyword to select the Helvetica PostScript font.

INCHES

(HP, METAFILE, PCL, PRINTER, PS)

Normally, the XOFFSET, XSIZE, YOFFSET, and YSIZE keywords are specified in
centimeters. However, if INCHES is present and non-zero, they are taken to be in
inches instead.

INDEX_COLOR

(METAFILE, PRINTER)

Set this keyword to place the printer or MetaFile device in index color mode. This is
the default. This keyword is applicable only when the printer or MetaFile device is
selected.

ISOLATIN1

(PS)

Set this keyword to use Adobe ISO Latin 1 font encoding with any font that supports
such coding. Use of this keyword allows access to many commonly-used foreign
characters.

ITALIC

(PS)

Set this keyword to specify that the italic version of the current PostScript font should
be used.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3803
LANDSCAPE

(HP, PCL, PRINTER, PS)

IDL normally generates plots with portrait orientation (the abscissa is along the short
dimension of the page). If the LANDSCAPE keyword is set, landscape orientation
(abscissa along the long dimension of the page) is used instead. Note that explicitly
setting LANDSCAPE=0 is the same as setting the PORTRAIT keyword.

If the current device is PRINTER, and a page is open in the printer, it is closed and a
new page set to landscape layout is started.

Note
The ability to set a printer to landscape mode is printer-driver dependent. Your
printer may not support this functionality; use the system native print setup dialog
to set the orientation of the print job.

LANGUAGE_LEVEL

(PS)

Set this keyword to indicate the language level of the PostScript output that is to be
generated by the device. Valid values include 1 (the default) and 2 (required for some
features, such as filled patterns for polygons).

LIGHT

(PS)

Set this keyword to specify that the light version of the current PostScript font should
be used.

MEDIUM

(PS)

Set this keyword to specify that the medium version of the current PostScript font
should be used.

NARROW

(PS)

Set this keyword to specify that the narrow version of the current PostScript font
should be used.
IDL Reference Guide Keywords Accepted by the IDL Devices

3804 Appendix A: IDL Graphics Devices
NCAR

(CGM)

Set this keyword to set the encoding type for the CGM output file to NCAR binary.

The NCAR Binary Encoding

The NCAR binary encoding is used exclusively by the NCAR graphics package.
Version 3.01 of NCAR View (ctrans, ictrans, and cgm2ncgm) does not correctly
handle the following graphic elements:

• Cell arrays (raster images) with an odd number of pixels in the X dimension.
Solution: specify an even number of pixels for the X dimension or make the
image one column wider and fill with zeros.

• Raster images drawn in top down order. Solution: invert the image prior to
using TV or TVSCL and do not use the /ORDER keyword. For example:

TV, image
; Draw image top to bottom:
TV, ROTATE(image, 7)

OBLIQUE

(PS)

Set this keyword to specify that the oblique version of the current PostScript font
should be used.

OPTIMIZE

(PCL)

It is desirable, though not always possible, to compress the size of the PCL output
file. Such optimization reduces the size of the output file, and improves I/O speed to
the printer. There are three levels of optimization:

Value Description

0 No optimization is performed. This is the default because it will work
with any PCL device. However, users of devices which can support
optimization should use one of the other optimization levels.

Table A-6: PCL Optimization Values
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3805
ORDERED

(PCL, X)

Set this keyword to select the ordered dither method. This introduces a pseudo-
random error into the display by using a 4 by 4 “dither” matrix, yielding 16 apparent
intensities. This is the default method.

OUTPUT

(HP, PS)

Specifies a scalar string that is sent directly to the graphics output file without any
processing, allowing the user to send arbitrary commands to the file. Since IDL does
not examine the string, it is the user’s responsibility to ensure that the string is correct
for the target device.

PALATINO

(PS)

Set this keyword to select the Palatino PostScript font.

1 Optimization is performed using PCL optimization primitives. This
gives the best output compression and printing speed. Unfortunately, not
all PCL devices support it. On those that can’t, the result will be garbage
printed on the page. Consult the programmers manual for your printer to
determine if it supports the required escape sequences. The required
sequences are: <ESC>*b0M (select full graphics mode), <ESC>*b1M
(select compacted graphics mode 1), and <ESC>*b2M (select compacted
graphics mode 2). The HP LaserJet II does not support this optimization
level. The DeskJet PLUS does.

2 IDL attempts to optimize the output by explicitly moving the left margin
and then outputting non-blank sections of the page. This is primarily
intended for use with the LaserJet II, which does not support
optimization level 1. Note: This optimization can be very slow on some
devices (such as the DeskJet PLUS). On such devices, it is best to avoid
this optimization level.

Value Description

Table A-6: PCL Optimization Values (Continued)
IDL Reference Guide Keywords Accepted by the IDL Devices

3806 Appendix A: IDL Graphics Devices
PIXELS

(PCL)

Normally, the XOFFSET, XSIZE, YOFFSET, and YSIZE keywords are specified in
centimeters. However, if the PIXELS keyword is set, they are taken to be in pixels
instead. Note that the selected resolution will determine how large a region is actually
written on the page.

PLOT_TO

(REGIS, TEK)

Directs the Tektronix graphic output that would normally go to the user’s terminal to
the specified I/O unit. The logical unit specified should be open with write access to a
device or file. Graphic output may be saved in files for later playback, redirected to
other terminals, or to devices that can accept Textronix graphic commands.

Do not use the interactive graphics cursor when graphic output is not directed to your
terminal.

To direct the graphic data to both the terminal and the file, set the unit to the negative
of the actual unit number. Alternatively, you can use the TTY keyword, described
below.

If the specified unit number is zero then Tektronix output to the file is stopped.

PLOTTER_ON_OFF

(HP)

There are some configurations in which a HP-GL plotter is connected between the
computer and a terminal. In this mode (known as eavesdrop mode), the plotter
ignores everything it is sent and passes it through to the terminal—the plotter is
logically off. This state continues until an escape sequence is sent that turns the
plotter logically on. At this point the plotter interprets and executes all input as HP-
GL commands. Another escape sequence is sent at the end of the HP-GL commands
to return the plotter to the logically off state.

Most configurations do not use eavesdrop mode, and the plotter is always logically
on. However, if you are using this style of connection, you must use
PLOTTER_ON_OFF to instruct IDL to generate the necessary on/off commands. If
present and non-zero, PLOTTER_ON_OFF causes each output page to be bracketed
by device control commands that turn the plotter logically on and off. Specifying a
value of zero stops the issuing of such commands. You should only use this keyword
before any output has been generated.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3807
POLYFILL

(HP)

Some plotters (e.g., HP7550A) can perform polygon filling in hardware, while others
(e.g., HP7475) cannot. IDL therefore assumes that the plotter cannot, and generates
all polygon operations in software using line drawing. Specifying a non-zero value
for the POLYFILL keyword causes IDL to use the hardware polygon filling. Setting it
to zero reverts to software filling.

Different implementations of HP-GL plotters may have different limits for the
number of vertices that can be specified for a polygon region before the plotter runs
out of internal memory. Since this limit can vary, the HP-GL driver cannot check for
calls to POLYFILL that specify too many points. Therefore, it is possible for the user
to produce HP-GL output that causes an error when sent to the plotter. To avoid this
situation, minimize the number of points used. On the HP7550A, the limit is about
127 points. If you do generate output that exceeds the limit imposed by your plotter,
you will have to break that polygon filling operation into multiple smaller operations.

PORTRAIT

(HP, PCL, PRINTER, PS)

Set the PORTRAIT keyword to generate plots using portrait orientation. Portrait
orientation is the default. Note that explicitly setting PORTRAIT=0 is the same as
setting the LANDSCAPE keyword.

If the current device is PRINTER, and a page is open in the printer, it is closed and a
new page set to portrait layout is started.

Note
The ability to set a printer to portrait mode is printer-driver dependent. Your printer
may not support this functionality; use the system native print setup dialog to set the
orientation of the print job.

PRE_DEPTH

(PS)

Set this keyword to a value indicating the bit depth to be used for the preview in the
PostScript file. Valid values are 1 (for black and white preview) and 8 (for 8-bit
grayscale preview). This keyword applies only if the PREVIEW keyword is nonzero.
The default depth is 8.
IDL Reference Guide Keywords Accepted by the IDL Devices

3808 Appendix A: IDL Graphics Devices
PRE_XSIZE

(PS)

Set this keyword to the width to be used for the preview in the PostScript file.
PRE_XSIZE is specified in centimeters, unless the INCHES keyword is set. This
keyword applies only if the PREVIEW keyword value is nonzero. The default is
1.77778 inches (128 pixels at 72dpi).

Also see the note below, “A Note About Preview Dimensions”.

PRE_YSIZE

(PS)

Set this keyword to the height to be used for the preview in the PostScript file.
PRE_YSIZE is specified in centimeters, unless the INCHES keyword is set. This
keyword applies only if the PREVIEW keyword value is nonzero. The default is
1.77778 inches (128 pixels at 72dpi).

Also see the note below, “A Note About Preview Dimensions”.

PREVIEW

(PS)

Set this keyword to 1 to add a platform-independent preview to the PostScript output
file in encapsulated PostScript interchange format (EPSI). EPSI is an ASCII format.
Set this keyword to 2 to write the EPS file in EPSF format, including an on-screen
preview that is supported by many Windows applications, e.g. MSWord. The default
(0) is to not include a preview.

Note
EPSF is not an ASCII format and cannot be sent directly to a Postscript printer,
unlike the EPSI format. It must be imported into an application for printing.

A Note About Preview Dimensions

Different applications may utilize the information within a PostScript file in different
ways when displaying a screen preview. Some applications will ignore the preview
contents entirely, and simply use the primary PostScript contents to generate a screen
preview. Other applications will use the preview data and its corresponding
dimensions for screen display. Still others will use the preview data and stretch it to
the dimensions of the primary PostScript contents. It is therefore recommended that
the target application (into which the encapsulated PostScript file is to be loaded) be
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3809
considered when selecting an appropriate XSIZE, YSIZE, PRE_XSIZE, and
PRE_YSIZE.

PRINT_FILE

(WIN)

Set this keyword to the name of a file (e.g., PostScript or PCL) to be sent to the
currently-selected Windows printer. IDL performs no type checking on this file
before sending it to the printer. Therefore, if you have a PostScript printer selected
and you send a file that contains no valid PostScript information, you’ll simply get
text output.

To send the file myfile.ps to the currently-selected Windows printer, enter:

DEVICE, PRINT_FILE='myfile.ps'

PSEUDO_COLOR

(X)

If this keyword is present, the PseudoColor visual is used. The value of the keyword
represents the number of bits per pixel to be used. This keyword has effect only if no
windows have been created. Visual classes are discussed in more detail in “X
Windows Visuals” on page 3856.

RESET_STRING

(TEK)

The string used to place the terminal back into the normal interactive mode after
drawing graphics. Use this parameter, in conjunction with the SET_STRING
keyword, to control the mode switching of your terminal.

For example, the GraphON 200 series terminals require the string <ESC>2 to activate
the alphanumeric window after drawing graphics. The call to set this is:

DEVICE, RESET = string(27b) + '2'

If the 4100 series mode switch is set, using the keyword TEK4100, the default mode
resetting string is <ESC>%!1, which selects the ANSI code mode.
IDL Reference Guide Keywords Accepted by the IDL Devices

3810 Appendix A: IDL Graphics Devices
RESOLUTION

(PCL)

PCL Only

The resolution at which the PCL printer will work. PCL supports resolutions of 75,
100, 150, and 300 dots per inch. The default is 300 dpi. Lower resolution gives
smaller output files, while higher resolution gives superior quality.

RETAIN

(WIN, X)

Use this keyword to specify the default method used for backing store when creating
new windows. This is the method used when the RETAIN keyword is not specified
with the WINDOW procedure. Backing store is discussed in more detail under
“Backing Store” on page 3824, along with the possible values for this keyword. If
RETAIN is not used to specify the default method, method 1 (server-supplied
backing store) is used.

Microsoft Windows Only

The initial value of this parameter can be set by selecting File-Preferences from the
menu bar. See “Backing Store” on page 3824.

A Note on Reading Data from Windows

On some systems, when backing store is provided by the window system
(RETAIN=1), reading data from a window using TVRD may cause unexpected
results. For example, data may be improperly read from the window even when the
image displayed on screen is correct. Having IDL provide the backing store
(RETAIN=2) ensures that the window contents will be read properly. These types of
problems are described in more detail in the documentation for TVRD. See
“Unexpected Results Using TVRD with X Windows” on page 2053.

SCALE_FACTOR

(PRINTER, PS)

Specifies a scale factor applied to the entire plot. The default value is 1.0, allowing
output to appear at its normal size. SCALE_FACTOR is used to magnify or shrink
the resulting output.

The SCALE_FACTOR keyword behaves slightly differently in the context of the
PRINTER device than it does in the context of the PS device.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3811
When the current device is PRINTER, the SCALE_FACTOR keyword is designed to
emulate a scalable resolution setting on the printer. For example, if you have a 300 x
300 pixel image—stored in the variable image—the following IDL commands will
print image in a 0.5 inch square on a 600 dpi printer:

SET_PLOT, 'printer'
TV, image

Setting SCALE_FACTOR to 2 will scale the image to a 1 inch square on the same
600 dpi printer:

SET_PLOT, 'printer'
DEVICE, SCALE_FACTOR=2
TV, image

The output of IDL’s Direct Graphics routines (CONTOUR, PLOT, SURFACE, etc.) is
automatically scaled to fill the available drawing area. As a result, the following IDL
commands will produce two identical copies of the same output on any printer:

SET_PLOT, 'printer'
PLOT, data
DEVICE, SCALE_FACTOR=2
PLOT, data

SCHOOLBOOK

(PS)

Set this keyword to select the New Century Schoolbook PostScript font.

SET_CHARACTER_SIZE

(CGM, HP, METAFILE, PCL, PRINTER, PS, REGIS, TEK, WIN, X, Z)

Set this keyword equal to a two-element vector to specify the font size and line
spacing (leading) of vector and TrueType fonts, and the line spacing of device fonts.
The way that the value of this vector determines character size is not completely
intuitive.

The vector specified to the SET_CHARACTER_SIZE keyword sets the values of the
X_CH_SIZE and Y_CH_SIZE fields in the !D System Variable structure. These
values describe the size of the rectangle that contains the “average” character in the
current font. (It is not important what the “average” character is; it is used only to
calculate a scaling factor that will be applied to all of the characters in the font.) The
first element specifies the width of the rectangle in device units (usually pixels), and
the second element specifies the height.

For vector and TrueType fonts, the height of the “average” character is determined by
the width of the rectangle. The aspect ratio of the “average” character remains fixed;
IDL Reference Guide Keywords Accepted by the IDL Devices

3812 Appendix A: IDL Graphics Devices
the character is scaled so that its width fits in the specified rectangle. The resulting
scale factor is then applied to all of the characters in the font. The amount of spacing
between lines (baseline to baseline) is determined explicitly by the height of the
rectangle.

For device fonts, the character size is fixed. When the device font system is in use, the
first element of the vector specified to SET_CHARACTER_SIZE is silently ignored,
and only the line-spacing value is used.

Note
Changing between font systems (and sometimes changing from one font to another
within the same font system) can also change the !D structure, so do not assume that
the character size you have set is preserved when you change fonts.

SET_COLORMAP

(PCL)

Set this keyword to a 14,739 (= 3 ⋅ 173) element byte vector containing the RGB-to-
printer color translation table for a color PCL printer. The default table is for an HP
Deskjet 500C printer.

The translation table is divided into red, green, and blue planes of 4913 (=173)
elements each. For a given RGB triple, the offset into each plane is calculated as
follows:

Offset = (Red/16)*289 + (Green/16)*17 + (Blue/16)

Thus, if the RGB triple is [16,32,160], the offset into each plane is 333. The printer
will use the value at element 332 of the translation table as the red value, the value at
element 5245 (=4913+332) as the green value, and the value at element 10158
(=9826+332) as the blue value.

The following example shows how to scale an existing colortable for use by a PCL
printer.

; Set the plot window to the X device:
SET_PLOT, 'X'
; Create a window:
WINDOW,0,XS=300,YS=300
; Load a color table:
LOADCT,13
; Read color table values into variables:
TVLCT,r,g,b,/GET
; Re-size color table variables:
r2=CONGRID(r,4913)
g2=CONGRID(g,4913)
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3813
b2=CONGRID(b,4913)
; Create 14,739-element color map:
colormap=[r2,g2,b2]
; Change to the PCL device:
SET_PLOT, 'PCL'
; Set file name, resolution, color, and color map:
DEVICE, FILE = 'pcl.pcl', RESOLUTION = 300, $

/COLOR, SET_COLORMAP = colormap
; Display an image:
TVSCL,DIST(900)
; Close the device:
DEVICE,/CLOSE

Note
The color table used need not be one of IDL’s predefined tables.

SET_COLORS

(Z)

Sets the number of pixel values, !D.N_COLORS and !D.TABLE_SIZE. This value is
used by a number of IDL routines to determine the scaling of pixel data and the
default drawing index. Allowable values range from 2 to 256, and the default value is
256. Use this parameter to make the Z-buffer device compatible with devices with
fewer than 256 colors indices.

SET_FONT

(METAFILE, PRINTER, PS, WIN, X, Z)

Set this keyword to a scalar string specifying the name of the font used when a
hardware or TrueType font is selected. Note that hardware fonts cannot be rotated,
scaled, or projected, and that the “!” commands for formatting may not work. When
generating three-dimensional plots, it is best to use the vector-drawn or TrueType
characters. Note that for the PS device, only one hardware font (other than the
predefined fonts set via the fontname keywords, such as /AVANTEGARDE) may be
loaded at a time.

Note on the FONT Keyword

The SET_FONT keyword was introduced with IDL version 5.1 and replaces the
FONT and USER_FONT keywords used in previous versions.

Using TrueType Fonts

For TrueType fonts, the specified font name must exactly match one of the names in
the first column of the ttfont.map file in the resource/fonts/tt directory or
IDL Reference Guide Keywords Accepted by the IDL Devices

3814 Appendix A: IDL Graphics Devices
(on Windows platforms) the name of an installed font. See “About TrueType Fonts”
on page 3957 for details on the ttfont.map file and for a listing of TrueType fonts
distributed with IDL. Note that you must include the TT_FONT keyword to indicate
that the font specified is a TrueType font. For example, the following sets the font to
the font to the TrueType font Helvetica Bold Italic:

DEVICE, SET_FONT='Helvetica-BoldItalic'

Note
You can append additional TrueType fonts to the ttfont.map file if desired; on
Windows platforms, additional fonts can also be added via the normal font
installation procedures for your system. RSI cannot guarantee that TrueType fonts
you add will be satisfactorily tessellated or displayed. See “About TrueType Fonts”
on page 3957 for details.

Using Hardware Fonts

Because device fonts are specified differently on different platforms, the syntax of the
fontname string depends on which platform you are using.

UNIX

Usually, the window system provides a directory of font files that can be used by all
applications. List the contents of that directory to find the fonts available on your
system. The size of the font selected also affects the size of vector drawn text. X
Windows users can use the xlsfonts command to list available X Windows fonts.

On some machines, fonts are kept in subdirectories of /usr/lib/X11/fonts.

For example, to select the font 8X13:

!P.FONT = 0
DEVICE, SET_FONT = '8X13'

Microsoft Windows

The SET_FONT keyword should be set to a string with the following form:

DEVICE, SET_FONT='font*modifier1*modifier2*...modifiern'

where the asterisk (*) acts as a delimiter between the font’s name (font) and any
modifiers. The string is not case sensitive. Modifiers are simply “keywords” that
change aspects of the selected font. Valid modifiers are:

• For font weight: THIN, LIGHT, BOLD, HEAVY

• For font quality: DRAFT, PROOF

• For font pitch: FIXED, VARIABLE
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3815
• For font angle: ITALIC

• For strikeout text: STRIKEOUT

• For underlined text: UNDERLINE

• For font size: Any number is interpreted as the font height in pixels.

For example, if you have Garamond installed as one of your Windows fonts, you
could select 24-pixel cell height Garamond italic as the font to use in plotting. The
following commands tell IDL to use hardware fonts, change the font, and then make a
simple plot:

!P.FONT = 0
DEVICE, SET_FONT = 'GARAMOND*ITALIC*24'
PLOT, FINDGEN(10), TITLE = 'IDL Plot'

This feature is compatible with TrueType and Adobe Type Manager (and, possibly,
other type scaling programs for Windows). If you have TrueType or ATM installed,
the TrueType or PostScript outline fonts are used so that text looks good at any size.

SET_GRAPHICS_FUNCTION

(WIN, X, Z)

Most window systems allow applications to specify the graphics function. This is a
logical function which specifies how the source pixel values generated by a graphics
operation are combined with the pixel values already present on the screen. The
complete list of possible values is given in the following table:

Logical Function Code Definition

GXclear 0 0

GXand 1 source AND destination

GXandReverse 2 source AND (NOT destination)

GXcopy 3 source

GXandInverted 4 (NOT source) AND destination

GXnoop 5 destination

GXxor 6 source XOR destination

GXor 7 source OR destination

Table A-7: Graphic Function Codes
IDL Reference Guide Keywords Accepted by the IDL Devices

3816 Appendix A: IDL Graphics Devices
The default graphics function is GXcopy, which causes new pixels to completely
overwrite any previous pixels. Not all functions are available on all window systems.

For example, the following code segment inverts the bottom bit in the rectangle
defined by its diagonal corners (x0, y0) and (x1, y1):

; Set graphics function to exclusive or (GXor), and save the
; old function:
DEVICE, GET_GRAPHICS_FUNCTION = oldg, SET_GRAPHICS_FUNCTION = 6
; Use POLYFILL to select the area to be inverted. The source
; pixel value is 1:
POLYFILL, [[x0,y0], [x0,y1], [x1,y1], [x1,y0]], $

/DEVICE, COLOR=1
; Restore the previous graphics function:
DEVICE, SET_GRAPHICS_FUNCTION=oldg

SET_RESOLUTION

(Z)

Set this keyword to a two-element vector that specifies the width and height of the Z-
buffers. The default size is 640 by 480. If this size is not the same as the existing
buffers, the current buffers are destroyed and the device is reinitialized.

GXnor 8 (NOT source) AND (NOT destination)

GXequiv 9 (NOT source) XOR destination

GXinvert 10 (NOT destination)

GXorReverse 11 source OR (NOT destination)

GXcopyInverted 12 (NOT source)

GXorInverted 13 (NOT source) OR destination

GXnand 14 (NOT source) OR (NOT destination)

GXset 15 1

Logical Function Code Definition

Table A-7: Graphic Function Codes (Continued)
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3817
SET_STRING

(TEK)

The string used to place the terminal into the graphics mode from the normal
interactive terminal mode. If the 4100 series mode switch is set, using the keyword
TEK4100, the default graphic mode setting string is <ESC>%!0, which selects the
Tektronix code mode.

SET_TRANSLATION

(X)

This keyword can be used to allow multiple, simultaneous IDL sessions to use the
same colors from a shared colormap. Use this keyword before the X connection is
established (i.e., before a window is created), IDL will use the shared color map
without allocating any additional colors, and will not load a grayscale ramp as is
usually done when the X server starts up. The following example shows two
cooperating IDL processes sharing the same colormap:

Execute the following commands in the first IDL session:

WINDOW, GET_X_ID = a
DEVICE, TRANSLATION = t
OPENW, 1, 'junk.dat'
WRITEU, 1, a, !D.N_COLORS, t[0:!D.N_COLORS-1]
CLOSE, 1
LOADCT, 3

Execute the following commands in the second IDL session:

OPENR, 1, 'junk.dat'
a=0L
n=0L
READU,1, a, n
t = BYTARR(n)
READU, 1, t
CLOSE, 1
DEVICE, SET_TRANSLATION = t
WINDOW, COLORS=n, SET_X_ID=a
TV, DIST(256)

SET_WRITE_MASK

(X, Z)

Sets the write mask to the specified value. For an n-bit system, the write mask can
range from 0 to 2n-1.
IDL Reference Guide Keywords Accepted by the IDL Devices

3818 Appendix A: IDL Graphics Devices
STATIC_COLOR

(X)

Use this keyword to select the X Windows StaticColor visual. The value of the
keyword represents the number of bits per pixel to be used. This keyword has effect
only if no windows have been created. Visual classes are discussed in more detail in
“X Windows Visuals” on page 3856.

STATIC_GRAY

(X)

Use this keyword to select the X Windows StaticGray visual. The value of the
keyword represents the number of bits per pixel to be used. This keyword has effect
only if no windows have been created. Visual classes are discussed in more detail in
“X Windows Visuals” on page 3856.

SYMBOL

(PS)

Set this keyword to select the Symbol PostScript font.

TEK4014

(TEK)

Set this keyword to specify that coordinates are to be output with full 12-bit
resolution. If this keyword is not present or is zero, 10-bit coordinates are output.
Normally, IDL sends 10-bit coordinates. 12-bit coordinates are compatible with most
terminals, even those without the full resolution, but require more characters to send.

Note
The 4014 and the 4100 modes can be used together. The coordinate system IDL
uses for the Tektronix is 0 to 4095 in the X direction and 0 to 3120 in the Y
direction, even when not in the 4014 mode. In the 10-bit case the internal
coordinates are divided by 4 prior to output.

TEK4100

(TEK)

Set this keyword to indicate that the terminal is a 4100 or 4200 series terminal. The
use of color, ANSI and Tektronix mode switching, hardware line styles, and pixel
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3819
output with the TV procedure is supported with these terminals. Also, text is output
differently.

TEXT

(CGM)

Set this keyword to set the encoding type for the CGM output file to text.

THRESHOLD

(PCL, X)

Set this keyword to select the threshold algorithm—the simplest dithering method.
The value of this keyword is the threshold to be used. This algorithm simply
compares each pixel against the given threshold, usually 128. If the pixel equals or
exceeds the threshold the display pixel is set to white, otherwise it is black.

TIMES

(PS)

Set this keyword to select the Times-Roman PostScript font.

TRANSLATION

(WIN, X)

As discussed in “Shared Colormaps” on page 3859, using the shared colormap
(normally recommended) causes IDL to translate between IDL color indices (which
always start with zero and are contiguous) and the pixel values actually present in the
display. The TRANSLATION keyword specifies the name of a variable to receive the
translation vector. To read the translation table, use the command:

DEVICE, TRANSLATION=TRANSARR

where TRANSARR is a named variable into which the translation array is stored.
The result is a 256-element byte vector. Element zero of the vector contains the pixel
value allocated for the first color in the IDL colormap, and so forth.

Microsoft Windows Only

This keyword is accepted by the WIN device, for compatibility with the X Windows
driver, but simply returns a 256-element vector where each element has the value of
its subscript (0 to 255).
IDL Reference Guide Keywords Accepted by the IDL Devices

3820 Appendix A: IDL Graphics Devices
TRUE_COLOR

(METAFILE, PRINTER, X)

Use this keyword to select TrueColor visuals. The value of the keyword represents
the number of bits per pixel to be used. This keyword has effect only if no windows
have been created. Visual classes are discussed in more detail in “X Windows
Visuals” on page 3856. If the current device is PRINTER or METAFILE, the printer
is placed in RGB or TrueColor mode if the value of the TRUE_COLOR keyword is
greater than zero (the number of bits per pixel specified is ignored.)

TT_FONT

(METAFILE, PRINTER, WIN, X, Z)

Set this keyword to indicate that the font set via the SET_FONT keyword (either to
set the fontname or to retrieve fontnames in conjunction with the
GET_FONTNAMES or GET_FONTNUM keywords) should be treated as a
TrueType font.

TTY

(REGIS, TEK)

Set this keyword to specify that output should be sent to the terminal at the same time
that it is being sent to a file due to the FILENAME or PLOT_TO keywords. A zero
value causes output to go only to the file. If no output file is in use, this keyword has
no effect.

USER_FONT

(PS)

This keyword is now obsolete and has been replaced by the SET_FONT keyword.
Code that uses the USER_FONT keyword will continue to function as before, but we
suggest that all new code use SET_FONT.

VT240, VT241

(REGIS)

Set this keyword to configure the REGIS device for VT240 series terminals.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3821
VT340, VT341

(REGIS)

Set this keyword to configure the REGIS device for VT340 series terminals.

WINDOW_STATE

(WIN, X)

Set this keyword to a named variable that returns an array containing one element for
each possible window. Array element i contains a 1 if window i is open, otherwise it
contains a 0.

XOFFSET

(HP, PCL, PRINTER, PS)

Specifies the X position, on the page, of the lower left corner of output generated by
IDL. XOFFSET is specified in centimeters, unless INCHES is specified. See
“Positioning Graphics Output” on page 3828.

PostScript Only

SCALE does not affect the value of XOFFSET.

XON_XOFF

(HP)

If present and non-zero, XON_XOFF causes each output page to start with device
control commands that instruct the plotter to obey xon/xoff (^S/^Q) style flow
control. Specifying a value of zero stops the issuing of such commands. You should
only use this keyword before any output has been generated.

Such handshaking is the default. To turn it off, use the command

DEVICE, XON_XOFF=0

Often, it is not necessary to tell the plotter to obey flow control because the printing
facilities on the system handle such details for you, but it is usually harmless.

XSIZE

(HP, METAFILE, PCL, PRINTER, PS)

Specifies the width of output generated by IDL. XSIZE is specified in centimeters,
unless INCHES is specified.
IDL Reference Guide Keywords Accepted by the IDL Devices

3822 Appendix A: IDL Graphics Devices
PostScript Only

SCALE modifies the value of XSIZE. Hence, the following statement:

DEVICE,/INCHES,XSIZE=7.0,SCALE_FACTOR=0.5

results in a real width of 3.5 inches.

Also see “A Note About Preview Dimensions” on page 3808.

YOFFSET

(HP, PCL, PRINTER, PS)

Specifies the Y position, on the page, of the lower left corner of output generated by
IDL. YOFFSET is specified in centimeters, unless INCHES is specified. See
“Positioning Graphics Output” on page 3828.

Note
The corner of the page from which the Y offset is measured (lower or upper left)
differs on various devices. Read the device specific information in the following
sections to determine how this is handled for your device.

PostScript Only

SCALE does not affect the value of YOFFSET.

YSIZE

(HP, METAFILE, PCL, PRINTER, PS)

Specifies the height of output generated by IDL. YSIZE is specified in centimeters,
unless INCHES is specified.

PostScript Only

SCALE modifies the value of YSIZE. Hence, the following statement:

DEVICE,/INCHES,YSIZE=5.0,SCALE_FACTOR=0.5

results in a real width of 2.5 inches.

Also see “A Note About Preview Dimensions” on page 3808.

ZAPFCHANCERY

(PS)

Set this keyword to select the ITC Zapf Chancery PostScript font.
Keywords Accepted by the IDL Devices IDL Reference Guide

Appendix A: IDL Graphics Devices 3823
ZAPFDINGBATS

(PS)

Set this keyword to select the ITC Zapf Dingbats PostScript font.

Z_BUFFERING

(Z)

This keyword enables and disables the Z-buffering. If this keyword is specified with a
zero value, the driver operates as a standard 2-D device, the Z-buffering is disabled,
and the Z-buffer (if any) is deallocated. Setting this keyword to one (the default
value), enables the Z-buffering.

To disable Z-buffering enter:

DEVICE, Z_BUFFERING = 0
IDL Reference Guide Keywords Accepted by the IDL Devices

3824 Appendix A: IDL Graphics Devices
Window Systems

The different window systems supported by IDL have many features in common.
This section describes those features. See the individual descriptions of each system
later in this chapter for additional information about each one.

IDL utilizes the window system by creating and using one or more largely
independent windows, each of which can be used for the display of graphics and/or
images. One color map table is shared among all these windows. Multiple windows
can be active simultaneously. Windows are referenced using their index which is a
non-negative integer.

“Dithering” or halftoning techniques are used to display images with multiple shades
of gray on monochrome displays—displays that can only display white or black. This
topic is discussed in “Image Display On Monochrome Devices” on page 3826.

Graphic and image output is always directed to the current window. When a window
system is selected as the current IDL graphics device, the index number of the current
window is found in the !D.WINDOW system variable. This variable contains -1 if no
window is open or selected. The WSET procedure is used to change the current
window. WSHOW hides, displays, and iconifies windows. WDELETE deletes a
window.

The WINDOW procedure creates a new window with a given index. If a window
already exists with the same index, it is first deleted. The size, position, title, and
number of colors, may also be specified. If you access the display before creating the
first window, IDL automatically creates a window with an index number of 0 and
with the default attributes.

Backing Store

One of the features that distinguishes various window systems is how they handle the
issue of backing store. When part of a window that was previously not visible is
exposed, there are two basic approaches that a window system can take. Some keep
track of the current contents of all windows and automatically repair any damage to
their visible regions (retained windows). This saved information is known as the
backing store. Others simply report the damage to the program that created the
Window Systems IDL Reference Guide

Appendix A: IDL Graphics Devices 3825
window and leave repairing the visible region to the program (non-retained
windows).

There are convincing arguments for and against both approaches. It is generally more
convenient for IDL if the window system handles this problem automatically, but this
often comes at a performance penalty. The actual cost of retained windows varies
between systems and depends partially on the application.

The X Window system does not by default keep track of window contents. Therefore,
when a window on the display is obscured by another window, the contents of its
obscured portion is lost. Re-exposing the window causes the X server to fill the
missing data with the default background color for that window, and request the
application to redraw the missing data. Applications can request a backing store for
their windows, but servers are not required to provide it. Many X servers do not
provide backing store, and even those that do cannot necessarily provide it for all
requesting windows. Therefore, requesting backing store from the server might help,
but there is no certainty.

The IDL window system drivers allow you to control the issue of backing store using
the RETAIN keyword to the DEVICE and WINDOW procedures. Using it with
DEVICE allows you to set the default action for all windows, while using it with
WINDOW lets you override the default for the new window. The possible values for
this keyword are summarized under “Backing Store” on page 3824, and are described
below:

• Setting the RETAIN keyword to 0 specifies that no backing store is kept. In
this case, exposing a previously obscured window leaves the missing portion of
the window blank. Although this behavior can be inconvenient, it usually has
the highest performance because there is no need to keep a copy of the window
contents.

• Setting the RETAIN keyword to 1 causes IDL to request that a backing store
be maintained. If the window system decides to accept the request, it will
automatically repair the missing portions when the window is exposed. X

Value Description

0 No backing store.

1 Request the server or window system to perform backing store.

2 Make IDL perform backing store.

Table A-8: Allowed Values for the RETAIN Keyword
IDL Reference Guide Window Systems

3826 Appendix A: IDL Graphics Devices
Windows may or may not provide backing store when requested, depending on
the capabilities of the server and the resources available to it.

• Setting the RETAIN keyword to 2 specifies that IDL should keep a backing
store for the window itself, and repair any window damage when the window
system requests it. This option exists for X Windows. In this case, a pixmap
(off-screen display memory) the same size as the window is created at the
same time the window is created, and all graphics operations sent to the
window are also sent to the pixmap. When the server requests IDL to repair
freshly exposed windows, this pixmap is used to fill in the missing contents.
Pixmaps are a precious resource in the X server, so backing pixmaps should
only be requested for windows with contents that must absolutely be
preserved.

If the type of backing store to use is not explicitly specified using the RETAIN
keyword, IDL assumes option 1 and requests the window system to keep a backing
store.

A Note on Reading Data from Windows

On some systems, when backing store is provided by the window system
(RETAIN=1), reading data from a window using TVRD may cause unexpected
results. For example, data may be improperly read from the window even when the
image displayed on screen is correct. Having IDL provide the backing store
(RETAIN=2) ensures that the window contents will be read properly. These types of
problems are described in more detail in the documentation for TVRD. See
“Unexpected Results Using TVRD with X Windows” on page 2053.

Image Display On Monochrome Devices

Images are automatically dithered when sent to some monochrome devices.
Dithering is a technique which increases the number of apparent brightness levels at
the expense of spatial resolution. Images with 256 gray levels are displayed on a
display with only two colors, black and white, using halftoning techniques.
PostScript handles dithering directly. IDL supports dithering for other devices if their
DEVICE procedures accept the FLOYD, ORDERED, or THRESHOLD keywords.
Window Systems IDL Reference Guide

Appendix A: IDL Graphics Devices 3827
Printing Graphics Output Files

For printer and plotter devices (e.g., PCL, PostScript, and HP-GL), IDL creates a file
containing output commands. This file can be sent to the printer via the normal
methods provided by the local operating system. When attempting to output the file
before exiting IDL, the user must be sure that the graphics output file is complete. For
example, the following IDL commands (executed under UNIX) will not produce the
desired result:

SET_PLOT,'PS'
PLOT,x,y
SPAWN,'lpr idl.ps'

These commands fail because the attempt to print the file is premature—the file is
still open within IDL and is not yet complete.

The following lines of code are an IDL procedure called OUTPUT_PLOT which
closes the current graphics file and sends it to the printer. This routine assumes that
the graphics output file is named idl.xxx, where xxx represents the name of the
graphics driver. For example, PostScript output file is assumed to be idl.ps. It also
assumes that the graphics output to be printed is from the current graphics device, as
selected with SET_PLOT.

; Close the current graphics file, and print it. If the
; New_file parameter is present, rename the file to the given
; name so it won’t be overwritten:
Pro OUTPUT_PLOT, New_file
; Close current graphics file:
DEVICE,/CLOSE
; Build the default output file name by using the idl name for
; the current device (!D.NAME):
file = 'idl.' + STRLOWCASE(!D.NAME)
; Build shell commands to send file to the printer.
; You will probably have to change this command in accordance
; with local usage:
cmd = 'lpr ' + file
; Concatenate rename command if new file specified:
IF N_ELEMENTS(New_file) GT 0 THEN $

cmd = cmd + '; mv' + file + ' ' + New_file
; Issue shell commands to print/rename file:
SPAWN, cmd
END

The call to DEVICE causes IDL to finish the file and close it, which makes it
available for printing.
IDL Reference Guide Printing Graphics Output Files

3828 Appendix A: IDL Graphics Devices
Setting Up The Printer

In order for IDL generated output files to work properly with printers and plotters, it
is necessary for the device to be configured properly. This usually involves
configuring both the device hardware and the operating system printing software.
When setting up your system, keep the following points in mind:

• The device and computer must use some form of flow control to prevent the
computer from sending data faster than the printing device can handle it. The
most common form of flow control is known as XON/XOFF, and involves the
sending of Control-S (off) and Control-Q (on) characters from the device to the
printer to manage the flow of data.

Many printers have a large buffer into which they store incoming data they
haven’t yet processed. This reduces the need to invoke flow control. When
testing your configuration to ensure flow control is actually enabled, you must
be sure to print a document long enough to fill any such buffer, or flow control
may never occur, giving a false impression that the setup is correct. A common
source of problems stem from attempting to print long IDL generated output
files without proper flow control.

• Some devices (such as PCL) require an eight-bit data path, while others (such
as PostScript) do not. For devices that do, it is important to ensure that the
printer port and system printing software provide such a connection.

If you are having problems printing on a PostScript printer, the ehandler.ps
file in the resource/fonts/ps subdirectory of the IDL distribution can help
you to debug your problem. Sending this file to your PostScript Printer causes
it to print any subsequent errors it encounters on a sheet of paper and eject it.
The effect of this file lasts until the printer is reset.

Setting Up Printers Under UNIX

Printers are configured in the /etc/printcap file. This file describes to the system
which printers are connected to it, the characteristics of each printer, and how the
printer port should be configured. Managing the printcap file is usually discussed in
the system management documentation supplied with the system by the
manufacturer.

Positioning Graphics Output

The difference between the XOFFSET and YOFFSET keywords to the DEVICE
procedure, and the higher level plot positioning keywords and system variables
(discussed in Appendix B, “Graphics Keywords” and Chapter 17, “Direct Graphics
Printing Graphics Output Files IDL Reference Guide

Appendix A: IDL Graphics Devices 3829
Plotting” in the Using IDL manual) can lead to confusion. A common
misunderstanding is to attempt to use the DEVICE procedure “offset” and “size”
keywords multiple times in an attempt to produce multiple plots on a single output
page.

The DEVICE keywords are intended to specify the size and position of the entire
output area on the page, not to move the plotting region for multiple plots. The driver
does not monitor their values continuously, but only when initializing a new page or
ejecting the current one.

The proper way to produce multiple plots is to use the high level positioning abilities.
The !P.MULTI, !P.POSITION, and !P.REGION system variables can be used to
position individual plots on the page. The plotting routines also accept the
POSITION, MARGIN and REGION keywords.

Image Background Color

Graphical output that is displayed with a black background on a monitor frequently
look better if the background is changed to white when printed on white paper. This is
easily done with the statement:

a(WHERE(a EQ 0B)) = 255B
IDL Reference Guide Printing Graphics Output Files

3830 Appendix A: IDL Graphics Devices
The CGM Device

Device Keywords Accepted by the CGM Device:

BINARY, CLOSE_FILE, COLORS, ENCODING, FILENAME, NCAR,
SET_CHARACTER_SIZE, TEXT

The CGM, Computer Graphics Metafile, standard describes a device independent file
format used for the exchange of graphic information. The IDL CGM driver produces
CGM files encoded in one of three methods: Text, Binary or NCAR Binary. To direct
graphics output to a CGM file, issue the command:

SET_PLOT,'CGM'

This causes IDL to use the CGM driver for producing graphical output. Once the
CGM driver is selected, the DEVICE procedure controls its actions, as described
below. Typing HELP, /DEVICE displays the current state of the CGM driver. The
CGM driver defaults to the binary encoding using 256 colors.

Abilities and Limitations

This section describes details specific to IDL’s CGM implementation:

• IDL uses the CGM default integer encoding for graphic primitives. Coordinate
values range from 0 to 32767. It is advisable to use the values stored in
!D.X_SIZE and !D.Y_SIZE instead of assuming a fixed coordinate range.

• Color information is output with a resolution of 8 bits (color indices and
intensity values range from 0 to 255).

• The definition of background color in the CGM standard is somewhat
ambiguous. According to the standard, color index 0 and the background color
are the same. Because background color is specified in the metafile as a color
value (RGB triple), not an index, it is possible to have the background color
not correspond with the color value of index 0.

• The CGM BACKGROUND_COLOUR attribute is explicitly set by IDL only
during an erase operation: changing the value of the color map at index 0 does
not cause IDL to generate a BACKGROUND_COLOUR attribute until the
next ERASE occurs. An ERASE command sets the background color to the
value in the color map at index 0. The command ERASE, INDEX (where
INDEX is not 0) generates the message “Value of background color is
out of allowed range.” For consistent results, modify the color table
before any graphics are output.
The CGM Device IDL Reference Guide

Appendix A: IDL Graphics Devices 3831
• The CGM standard uses scalable (variable size) pixels for raster images. By
default, the TV and TVSCL procedures output images, regardless of size,
using the entire graphics output area. To output an image smaller than the
graphics output area, specify the XSIZE and YSIZE keywords with the TV and
TVSCL procedures. For example:

; Select the CGM driver:
SET_PLOT, 'CGM'
; Create a 64 x 64 element array:
X = DIST(64)
; Display the image (fills entire screen):
TVSCL, X
; Now display 4 images on the screen:
ERASE
XS = !D.X_SIZE / 2 ; Size of each image, X dimension
YS = !D.Y_SIZE / 2 ; Size of each image, Y dimension
TVSCL, X, 0, XSIZE=XS, YSIZE=YS ; Upper left
TVSCL, X, 1, XSIZE=XS, YSIZE=YS ; Upper right
TVSCL, X, 2, XSIZE=XS, YSIZE=YS ; Lower left
TVSCL, X, 3, XSIZE=XS, YSIZE=YS ; Lower right
IDL Reference Guide The CGM Device

3832 Appendix A: IDL Graphics Devices
The HP-GL Device

Device Keywords Accepted by the HP-GL Device:

CLOSE_FILE, EJECT, FILENAME, INCHES, LANDSCAPE, OUTPUT,
PLOTTER_ON_OFF, POLYFILL, PORTRAIT, SET_CHARACTER_SIZE,
XOFFSET, XON_XOFF, XSIZE, YOFFSET, YSIZE

HP-GL (Hewlett-Packard Graphics Language) is a plotter control language used to
produce graphics on a wide family of pen plotters. To use HP-GL as the current
graphics device, issue the IDL command:

SET_PLOT,'HP'

This causes IDL to use HP-GL for producing graphical output. Once the HP-GL
driver is enabled via SET_PLOT, the DEVICE procedure is used to control its
actions, as described below. The default settings for the HP-GL driver are shown in
the following table. Use the statement:

HELP, /DEVICE

to view the current state of the HP-GL driver.

Feature Value

File idl.hp

Orientation Portrait

Erase No action

Polygon filling Software

Turn plotter logically on/off No

Specify xon/xoff flow control Yes

Horizontal offset 3/4 in.

Vertical offset 5 in.

Width 7 in.

Height 5 in.

Table A-9: Default HP-GL Driver Settings
The HP-GL Device IDL Reference Guide

Appendix A: IDL Graphics Devices 3833
Abilities And Limitations

IDL is able to produce a wide variety of graphical output using HP-GL. The
following is a list of what is and is not supported:

• All types of vector graphics can be generated, including line plots, contours,
surfaces, etc.

• HP-GL plotters can draw lines in different colors selected from the pen
carousel. It should be noted that color tables are not used with HP-GL. Instead,
each color index refers directly to one of the pens in the carousel.

• Some HP-GL plotters can do polygon filling in hardware. Others can rely on
the software polygon filling provided by IDL.

• It is possible to generate graphics using the hardware generated text characters,
although such characters do not give much improvement over the standard
vector fonts. To use hardware characters, set the !P.FONT system variable to
zero, or set the FONT keyword to the plotting routines to zero.

• Since HP-GL is designed to drive pen plotters, it does not support the output of
raster images. Therefore, TV and TVSCL do not work with HP-GL.

• Since pen plotters are not interactive devices, they cannot support such
operations as cursors and windows.

HP-GL Linestyles

The LINESTYLE graphics keyword allows specifying any of 6 linestyles. HP-GL
does not support all of these linestyles, and styles 3 and 4 differ from the definition in
Appendix B, “Graphics Keywords”. The following table summarizes the differences:

Index Normal Line Style HP-GL Line Style

0 Solid same

1 Dotted same

2 Dashed same

3 Dash Dot Relative size of dash and dot are different.

4 Dash Dot Dot Dot Dash Dot Dot

5 Long Dashes same

Table A-10: Linestyles for the HP-GL Device
IDL Reference Guide The HP-GL Device

3834 Appendix A: IDL Graphics Devices
The Metafile Display Device

Device Keywords Accepted by the Null Device:

CLOSE_FILE, FILENAME, GET_CURRENT_FONT, GET_FONTNAMES,
GET_FONTNUM, GLYPH_CACHE, INCHES, INDEX_COLOR,
SET_CHARACTER_SIZE, SET_FONT, TRUE_COLOR, TT_FONT, XSIZE,
YSIZE

The Windows Metafile Format (WMF) is used by Windows to store vector graphics
in order to exchange graphics information between applications. This format is only
available on the Windows platforms. To direct graphics to a file in the WMF format,
use the SET_PLOT procedure:

SET_PLOT, 'METAFILE'

This causes IDL to use the Metafile driver for producing graphical output. Once the
Metafile driver is enabled via SET_PLOT, the DEVICE procedure is used to control
its actions. The default settings are given in the following table:

For example, the following will create a WMF file for a simple plot:

;Create X and Y Axis data
x=findgen(10)
y=findgen(10)

;Save current device name
mydevice=!D.NAME

Feature Value

File idl.emf

Mode N/A

Horizontal offset N/A

Vertical offset N/A

Width 7 in.

Height 5 in.

Resolution Screen

Table A-11: Default Metafile Driver Settings
The Metafile Display Device IDL Reference Guide

Appendix A: IDL Graphics Devices 3835
;Set the device to Metafile
SET_PLOT, 'METAFILE'

;Name the file to be created
DEVICE, FILE='test.emf'

;Create the plot
PLOT, x, y

;Close the device which creates the Metafile
DEVICE, /CLOSE

;Set the device back to the original
SET_PLOT, mydevice
IDL Reference Guide The Metafile Display Device

3836 Appendix A: IDL Graphics Devices
The Null Display Device

Device Keywords Accepted by the Null Device:

No keywords are accepted by the DEVICE procedure when the NULL device is
selected.

To suppress graphics output entirely, use the null device:

SET_PLOT, 'NULL'
The Null Display Device IDL Reference Guide

Appendix A: IDL Graphics Devices 3837
The PCL Device

Device Keywords Accepted by the PCL Device:

CLOSE_FILE, COLOR, FILENAME, FLOYD, INCHES, LANDSCAPE,
OPTIMIZE, ORDERED, PIXELS, PORTRAIT, RESOLUTION,
SET_CHARACTER_SIZE, SET_COLORMAP, THRESHOLD, XOFFSET, XSIZE,
YOFFSET, YSIZE

PCL (Printer Control Language) is used by Hewlett-Packard laser and ink jet printers
to produce graphics output. To direct graphics output to a PCL file, issue the
command:

SET_PLOT,'PCL'

This causes IDL to use the PCL driver for producing graphical output. Once the PCL
driver is enabled via SET_PLOT, the DEVICE procedure is used to control its
actions, as described below. The default settings for the PCL driver are listed in the
following table:

The PCL device draws into a memory buffer of the specified size (or the default size,
if the XSIZE and YSIZE keywords to DEVICE are not specified). Anything drawn
outside this buffer will be silently discarded.

Feature Value

File idl.pcl

Mode Portrait

Optimization level 0 (None)

Dither method Floyd-Steinberg

Resolution 300 dpi

Horizontal offset 1/2 in.

Vertical offset 1 in.

Width 7 in.

Height 5 in.

Table A-12: Default PCL Driver Settings
IDL Reference Guide The PCL Device

3838 Appendix A: IDL Graphics Devices
Note
Unlike monitors where white is the most visible color, PCL writes black on white
paper. Setting the output color index to 0, the default when PCL output is selected,
writes in black. A color index of 255 writes white which is invisible on white paper.

Color tables are not used with PCL unless the color mode has been enabled using the
COLOR keyword to the DEVICE procedure. For images, color dithering produces
realistic color image output even though PCL printers only produce eight output
colors. In most cases, simply choosing an appropriate color table (using LOADCT or
XLOADCT), or creating a color table from an image (via TVLCT) will work fine. If
you need finer control over the colors used, see the SET_COLORMAP keyword for
additional information. For vector graphics, only eight colors are supported—no line
dithering is implemented. Any RGB component that is not zero is treated as 255. The
correct RGB definitions for each color are shown in the following table. Use the
HELP, /DEVICE command to view the current options for PCL output.

Color Red Value Green Value Blue Value

Red 255 0 0

Green 0 255 0

Blue 0 0 255

Cyan 0 255 255

Magenta 255 0 255

Yellow 255 255 0

Black 0 0 0

White 255 255 255

Table A-13: PCL RGB Color Definitions
The PCL Device IDL Reference Guide

Appendix A: IDL Graphics Devices 3839
The Printer Device

Device Keywords Accepted by the PRINTER Device:

CLOSE_DOCUMENT, GET_CURRENT_FONT, GET_FONTNAMES,
GET_FONTNUM, GET_PAGE_SIZE, INDEX_COLOR, PORTRAIT,
SCALE_FACTOR, SET_CHARACTER_SIZE, TRUE_COLOR, XOFFSET,
XSIZE, YOFFSET, YSIZE

The PRINTER device allows IDL Direct Graphics to be output to a system printer. To
direct graphics output to a printer, issue the command:

SET_PLOT, 'printer'

This causes IDL to use a printer driver to produce graphical output. By default, the
default system printer is used for output. Use the DIALOG_PRINTERSETUP
function to define the printing parameters for the printer device. Use the
DIALOG_PRINTJOB function to control the print job itself.

Note that the printer device is an IDL Direct Graphics device. Like other Direct
Graphics devices, you must change to the new device and then issue the IDL
commands that send output to that device. With the printer device, you must use the
CLOSE_DOCUMENT keyword to the DEVICE routine to actually initiate the print
job and make something come out of your printer.
IDL Reference Guide The Printer Device

3840 Appendix A: IDL Graphics Devices
The PostScript Device

Device Keywords Accepted by the PS Device:

AVANTGARDE, BITS_PER_PIXEL, BKMAN, BOLD, BOOK, CLOSE_FILE,
COLOR, COURIER, DEMI, ENCAPSULATED, FILENAME, FONT_INDEX,
FONT_SIZE, HELVETICA, INCHES, ISOLATIN1, ITALIC, LANDSCAPE,
LIGHT, MEDIUM, NARROW, OBLIQUE, OUTPUT, PALATINO, PORTRAIT,
PRE_DEPTH, PRE_XSIZE, PRE_YSIZE, PREVIEW, SCALE_FACTOR,
SCHOOLBOOK, SET_CHARACTER_SIZE, SET_FONT, SYMBOL, TIMES,
TT_FONT, XOFFSET, XSIZE, YOFFSET, YSIZE, ZAPFCHANCERY,
ZAPFDINGBATS

PostScript is a programming language designed to convey a description of a page
containing text and graphics. Many laser printers and high-resolution, high-quality
photo typesetters support PostScript. Color output or direct color separations can be
produced with color PostScript. To direct graphics output to a PostScript file, issue
the command:

SET_PLOT, 'PS'

This causes IDL to use the PostScript driver for producing graphical output. Once the
PostScript driver is enabled via SET_PLOT, the DEVICE procedure is used to control
its actions, as described below. The default settings are given in the following table:

Feature Value

File idl.ps

Mode Portrait, non-encapsulated, no color

Horizontal offset 3/4 in.

Vertical offset 5 in.

Width 7 in.

Height 5 in.

Scale factor 1.0

Font size 12 points

Table A-14: Default PostScript Driver Settings
The PostScript Device IDL Reference Guide

Appendix A: IDL Graphics Devices 3841
Note
Unlike monitors where white is the most visible color, PostScript writes black on
white paper. Setting the output color index to 0, the default when PostScript output
is selected, writes black. A color index of 255 writes white which is invisible on
white paper. Color tables are not used with PostScript unless the color mode has
been enabled using the DEVICE procedure. See “Color Images” on page 3842

To obtain adequate resolution, the device coordinate system used for PostScript
output is expressed in units of 0.001 centimeter (i.e., 1000 pixels/cm).

Use the HELP, /DEVICE call to view the current font, file, and other options set for
PostScript output.

Using PostScript Fonts

Information necessary for rendering a set of 35 standard PostScript fonts are included
with IDL. (The standard 35 fonts are the fonts found on the Apple Laserwriter II
PostScript printer; the same fonts are found on almost any PostScript printer made in
the time since the LaserWriter II appeared.) Use of PostScript fonts is discussed in
detail in “About Device Fonts” on page 3962.

Color PostScript

If you have a color PostScript device you can enable the use of color with the
statement:

DEVICE, /COLOR

Enabling color also enables the color tables. Text and graphic color indices are
translated to RGB by dividing the red, green and blue color table values by 255. As
with most display devices, color indices range from 0 to 255. Zero is normally black
and white is normally represented by an index of 255. For example, to create and load
a color table with four elements, black, red, green and blue:

TVLCT, [0,255,0,0], [0,0,255,0], [0,0,0,255]

Font Helvetica

Bits / Image Pixel 4

Feature Value

Table A-14: Default PostScript Driver Settings (Continued)
IDL Reference Guide The PostScript Device

3842 Appendix A: IDL Graphics Devices
Drawing text or graphics with a color index of 0 results in black, 1 in red, 2 in green,
and 3 in blue.

Color Images

As with black and white PostScript, images may be output with 1, 2, 4, or 8 bits,
yielding 1, 2, 16, or 256 possible colors. In addition, images are either pseudo-color
or TrueColor. A pseudo-color image is a two dimensional image, each pixel of which
is used to index the color table, thereby obtaining an RGB value for each possible
pixel value. Pseudo-color images are similar to those displayed using the workstation
monitor.

Note
In the case of pseudo-color images of fewer than 8 bits, the number of columns in
the image should be an exact multiple of the number of pixels per byte (i.e., when
displaying 4 bit images the number of columns should be even, and 2 bit images
should have a column size that is a multiple of 4). If the image column size is not an
exact multiple, extra pixels with a value of 255 are output at the end of each row.
This causes no problems if the color white is loaded into the last color table entry,
otherwise a stripe of the last (index number 255) color is drawn to the right of the
image.

TrueColor Images

A TrueColor image consists of an array with three dimensions, one of which has a
size of three, containing the three color components. It may be considered as three
two dimensional images, one each for the red, green and blue components. For
example a TrueColor n by m element image can be ordered in three ways: pixel
interleaved (3, n, m), row interleaved (n, 3, m), or image interleaved (n, m, 3). By
convention the first color is always red, the second green, and the last is blue.

TrueColor images are also routed through the color tables. The red color table array
contains the intensity translation table for the red image, and so forth. Assuming that
the color tables have been loaded with the vectors R, G, and B, a pixel with a color
value of (r, g, b) is displayed with a color of (Rr, Gg, Bb). As with other devices, a
color table value of 255 represents maximum intensity, while 0 indicates an absence
of the color. To pass the RGB pixel values without change, load the red, green and
blue color tables with a ramp with a slope of 1.0:

TVLCT, INDGEN(256), INDGEN(256), INDGEN(256)

or with the LOADCT procedure:

; Load standard black/white table:
The PostScript Device IDL Reference Guide

Appendix A: IDL Graphics Devices 3843
LOADCT, 0

Use the TRUE keyword to the TV and TVSCL procedures to indicate that the image
is a TrueColor image and to specify the dimension over which color is interleaved. A
value of 1 specifies pixel interleaving, 2 is row interleaving, and 3 is image
interleaving. The following example writes a 24-bit image, interleaved over the third
dimension, to a PostScript file:

SET_PLOT, 'PS'
;Set the PostScript device to *8* bits per color, not 24:
DEVICE, FILE='24bit.ps', /COLOR, BITS=8
TV, [[[r]], [[g]], [[b]]], TRUE=3
DEVICE, /CLOSE
; Return plotting to X windows:
SET_PLOT, 'X'

Note
Currently, the PostScript device does not support TrueColor plots. Only TrueColor
images are supported.

Image Background Color

Images that are displayed with a black background on a monitor frequently look
better if the background is changed to white when displayed with PostScript. This is
easily done with the statement:

a(WHERE(a EQ 0B)) = 255B

PostScript Positioning

Using the XOFFSET and YOFFSET Keywords

Often, IDL users are confused by the use of the XOFFSET and YOFFSET keywords
to the PostScript DEVICE routine. These keywords control the position of IDL plots
on the page. XOFFSET specifies the “X” position of the lower left corner of the
output generated by IDL. This offset is always taken relative to the lower left-hand
corner of the page when viewed in portrait orientation. YOFFSET specifies the “Y”
position of the lower left corner of the output generated by IDL. This offset is also
taken relative to the lower left-hand corner of the page when viewed in portrait
orientation.

The following figure shows how the XOFFSET and YOFFSET keywords are
interpreted by the PostScript device in the Portrait (left) and Landscape (right) modes.
Note that the landscape plot uses the same origin for determining the effect of the
IDL Reference Guide The PostScript Device

3844 Appendix A: IDL Graphics Devices
XOFFSET and YOFFSET keywords, but that the output is rotated 270 degrees
clockwise.

The page on the left shows an IDL plot printed in “portrait” orientation. Note that the
X and Y offsets work just as we expect them to—increasing the XOFFSET moves the
plot to the right and increasing the YOFFSET moves the plot up the page. The page
on the right shows an IDL plot printed in “landscape” orientation. Here, the X and Y
offsets are still taken relative to the same points even though the orientation of the
plot has changed. This happens because IDL moves the origin of the plot before
rotating the PostScript coordinate system 270 degrees clockwise for the landscape
plot.

Note
The XOFFSET and YOFFSET keywords have no effect when you generate
ENCAPSULATED PostScript output.

Encapsulated PostScript Output

Another form of PostScript output is Encapsulated PostScript. This is the format used
to import PostScript files into page layout and desktop publishing programs. An
Encapsulated PostScript (EPS) file is similar to a regular PostScript file except that it
contains only one page of PostScript output contained in a “bounding box” that is
used to tell other programs about the size and aspect ratio of the encapsulated image.

Figure A-1: Interpretation of the XOFFSET and YOFFSET Keywords

XOFFSET

Y
O

F
F

S
E

T

X
O

F
F

S
E

T

YOFFSET

Portrait Plot
Landscape Plot
The PostScript Device IDL Reference Guide

Appendix A: IDL Graphics Devices 3845
Most of the time, output from IDL to an EPS file is properly scaled into the EPS
bounding box because commands such as PLOT take full advantage of the plotting
area made available to them. Sometimes, however, the default bounding box is
inappropriate for the image being displayed.

As an example, suppose you have an image that is narrow and tall that, when TV’ed
to an IDL window, fills only a small portion of the plotting window. Similarly, when
output to an EPS file, this image will only fill a small portion of the bounding box.
When the resulting EPS file is brought into a desktop publishing program, it becomes
very hard to properly scale the image since the aspect ratio of the bounding box bears
no relation to the aspect ratio of the image itself.

To solve this problem, use the XSIZE and YSIZE keywords to the DEVICE
procedure to make the bounding box just large enough to contain the image. Since
IDL uses a resolution of 1000 dots per centimeter with the PostScript device, the
correct XSIZE and YSIZE (in centimeters) can be computed as:

• XSIZE = Width of image in pixels/1000.0 pixels per cm

• YSIZE = Height of image in pixels/1000.0 pixels per cm

The following IDL procedure demonstrates this technique. This procedure reads an X
Windows Dump file and writes it back out as a properly-sized, 8-bit-color
Encapsulated PostScript file:

PRO XWDTOEPS, filename
; Read the XWD file. Pixel intensity information is stored
; in the variable 'array'. Values to reconstruct the color
; table are stored in 'r', 'g', and 'b':
array = READ_XWD(filename, r, g, b)
; Reconstruct the color table:
TVLCT, r,g,b
; Display the image in an IDL window:
TV, array
; Find the size of the picture. The width of the picture
; (in pixels) is stored in s[1]. The height of the picture
; is stored in s[2]:
s = SIZE(array)
; Take the 'xwd' (for X Windows Dump) extension off of
; the old filename and replace it with 'eps':
fl = STRLEN(filename)
filename = STRMID(filename, 0, fl-4)
filename = filename + '.eps'
PRINT, 'Making file: ', filename
PRINT, s
; Set the plotting device to PostScript:
SET_PLOT, 'ps'
; Use the DEVICE procedure to make the output encapsulated,
IDL Reference Guide The PostScript Device

3846 Appendix A: IDL Graphics Devices
; 8 bits, color, and only as wide and high as it needs to
; be to contain the XWD image:
DEVICE, /ENCAPSUL, BITS_PER_PIXEL=8, /COLOR, $

FILENAME=filename, XSIZE=S[1]/1000., $
YSIZE=S[2]/1000.

; Write the image to the file:
TV, array
; Close the file:
DEVICE, /CLOSE
; Return plotting to X Windows:
SET_PLOT, 'x'
END

Multiple Plots on the Same Page

To put multiple plots on the same PostScript page, use the !P.MULTI system variable
(described in more detail in “!P System Variable” on page 3917). !P.MULTI is a 5-
element integer array that controls the number of rows and columns of plots to make
on a page or in a graphics window.

The first element of !P.MULTI is a counter that reports how many plots remain on the
page. The second element of !P.MULTI is the number of columns per page. The third
element is the number of rows per page.

For example, the following lines of code create a PostScript file, multi.ps, with 6
different plots arranged as 2 columns and 3 rows:

; Set plotting to PostScript:
SET_PLOT, 'PS'
; Set the filename:
DEVICE, FILENAME='multi.ps'
; Make IDL’s plotting area hold 2 columns and 3 rows of plots:
!P.MULTI = [0, 2, 3]
; Create a simple dataset:
A = FINDGEN(10)
; Make 6 different plots:
PLOT, A
PLOT, SIN(A)
PLOT, COS(A)
PLOT, TAN(A)
PLOT, TANH(A)
PLOT, SINH(A)
; Close the file:
DEVICE, /CLOSE
; Return plotting to Windows:
SET_PLOT, 'win'
; Reset plotting to 1 plot per page:
!P.MULTI = 0
The PostScript Device IDL Reference Guide

Appendix A: IDL Graphics Devices 3847
The resulting file produces a set of plots as shown in the following figure:

Importing IDL Plots into Other Documents

This section shows how to generate IDL PostScript graphics so that they can be
inserted into other documents. It also provides several examples of how the
PostScript graphics device is used. Simply omit the ENCAPSULATED keyword
from the calls to DEVICE if you wish to produce plots that can be printed directly.
The following figure is an encapsulated PostScript file suitable for inclusion in other
documents. The figure was produced with the following IDL statements. Note the use
of the ENCAPSULATED keyword in the call to DEVICE:

; Select the PostScript driver:
SET_PLOT, 'PS'
; Note use of ENCAPSULATED keyword:
DEVICE, /ENCAPSULATED, FILENAME = 'pic1.ps'
x = FINDGEN(200)

Figure A-2: Multiple plots on a single page produced by setting the !P.MULTI
system variable.
IDL Reference Guide The PostScript Device

3848 Appendix A: IDL Graphics Devices
; Plot the sine wave:
PLOT, 10000 * SIN(x/5) / EXP(x/100), $

LINESTYLE = 2, TITLE = 'IDL PostScript Plot', $
XTITLE = 'Point Number', YTITLE='Y Axis Title', $
FONT = 0

; Add the cosine:
OPLOT, 10000 * COS(x/5) / EXP(x/100), LINESTYLE = 4
; Annotate the plot:
XYOUTS, 100, -6000, 'Sine', FONT = 0
OPLOT, [120, 180], [-6000, -6000], LINESTYLE = 2
XYOUTS, 100, -8000, 'Cosine', FONT = 0

OPLOT, [120, 180], [-8000, -8000], LINESTYLE = 4

The following figure is a more complicated plot. It demonstrates some of the three-
dimensional plotting capabilities of IDL. It was produced with the following IDL
statements:

; Select the PostScript driver:
SET_PLOT, 'PS'
; Note use of ENCAPSULATED keyword:
DEVICE, /ENCAPSULATED, FILENAME = 'pic2.ps'
; Access the data:
OPENR, 1, FILEPATH('abnorm.dat', SUBDIR=['examples', 'data'])
aa = ASSOC(1, BYTARR(64, 64))

Figure A-3: Sample PostScript plot using Helvetica font.
The PostScript Device IDL Reference Guide

Appendix A: IDL Graphics Devices 3849
; Get a smoothed version:
a = SMOOTH(aa[0], 3)
; Generate the surface:
SURFACE, a, /SAVE, ZAXIS = 1, XSTYLE = 1, YSTYLE = 1
; Add the contour:
CONTOUR, a, /T3D, /NOERASE, ZVALUE = 1, $

XSTYLE = 1, YSTYLE = 1, C_LINESTYLE = [0,1,2], $
TITLE = 'IDL PostScript Plot'

CLOSE, 1

The following figure illustrates polygon filling. It was produced with the following
IDL statements:

SET_PLOT, 'PS'
DEVICE, /ENCAPSULATED, FILENAME = 'pic3.ps'
x = FINDGEN(200)
; Upper sine wave:
a = 10000 * sin(x / 5) / exp(x / 100)
PLOT, a, /NODATA, TITLE = 'IDL PostScript Plot', $

XTITLE='Point Number', YTITLE='Y Axis Title', $
FONT = 0

Figure A-4: Three-Dimensional Plot with Vector-Drawn Characters
IDL Reference Guide The PostScript Device

3850 Appendix A: IDL Graphics Devices
; Vector of X vertices for polygon filling. Note that the
; ROTATE(V,2) function call returns the vector V in reverse order:
C = [X, ROTATE(X, 2)]
; Vector of Y vertices for polygon filling:
D = [A, ROTATE(A-2000, 2)]
; Fill the region using an intensity of about 75% white:

POLYFILL, C, D, COLOR=192

The following figure illustrates IDL PostScript images. In this case, the same image
is reproduced four times. In each case, a different number of bits are used per image
pixel. It was produced with the following IDL statements:

SET_PLOT, 'PS'
DEVICE, /ENCAPSULATED, FILENAME = 'pic4.ps'
; Open image file:
OPENR, 1, FILEPATH('people.dat', SUBDIR = ['examples','data'])
; Variable to hold image:
a = BYTARR(192, 192, /NOZERO)
; Input the image:
READU, 1, a
; Done with the file:
CLOSE, 1
; Add a color table ramp to the bottom of the image:
A[0,0] = BYTSCL(INDGEN(192))#REPLICATE(1,16)
; Output the image four times:
FOR i = 0,3 DO BEGIN

; Use 1, 2, 4, and 8 bits per pixel:

Figure A-5: Polygon Filling Example
The PostScript Device IDL Reference Guide

Appendix A: IDL Graphics Devices 3851
DEVICE, BITS_PER_PIXEL=2^i
; Output using TV with position numbers 0, 1, 2, and 3:
TV, a, i, XSIZE=2.5, YSIZE=2.5, /INCHES

ENDFOR

Figure A-6: 1, 2, 4, and 8-bit PostScript Images
IDL Reference Guide The PostScript Device

3852 Appendix A: IDL Graphics Devices
The Regis Terminal Device

Device Keywords Accepted by the REGIS Device:

AVERAGE_LINES, CLOSE_FILE, FILENAME, PLOTTER_ON_OFF,
SET_CHARACTER_SIZE, TTY, VT240, VT241, VT340, VT341

IDL provides Regis graphics output for the DEC VT240, VT330, and VT340 series
of terminals. To output graphics to such terminals, issue the IDL command:

SET_PLOT, 'REGIS'

This causes IDL to use the Regis driver for producing graphical output.

Defaults for Regis Devices

The default setting for Regis output is: VT340, 16 colors, 4 bits per pixel.

Regis Limitations

• Four colors are available with VT240 and VT241 terminals, sixteen colors are
available with the VT330 and VT340.

• Thick lines are emulated by filling polygons. There may be a difference in
linestyle appearance between thick and normal lines.

• Image output is slow and is of poor quality, especially on the VT240 series.
The VT240 is only able to write pixels on even numbered screen lines. IDL
offers two methods of writing images to the 240:

• Even and odd pairs of rows are averaged and written to the screen. An n, m
image will occupy n columns and m screen rows. If this method is selected,
graphics and image coordinates coincide. This method is the default
(AVERAGE_LINES = 1). Routines that rely on a uniform graphics and
image coordinate system, such as SHADE_SURF, work only in this mode.

• Each line of the image is written to the screen, displaying every image
pixel. An n, m image occupies 2m lines on the screen. (AVERAGE_LINES =
0). Graphics and image coordinates coincide only at the lower left corner
of the image.

• Pixel values cannot be read back from the terminal, rendering the TVRD
function inoperable.
The Regis Terminal Device IDL Reference Guide

Appendix A: IDL Graphics Devices 3853
The Tektronix Device

Device Keywords Accepted by the REGIS Device:

CLOSE_FILE, COLORS, FILENAME, GIN_CHARS, PLOT_TO,
RESET_STRING, SET_CHARACTER_SIZE, SET_STRING, TEK4014, TEK4100,
TTY

The Tektronix 4000 (4010, 4014, etc.), 4100 and 4200 series of graphics terminals
(and the multitude of terminals and microcomputers that emulate them) are among
the most common graphics devices available. To use IDL graphics with such
terminals, issue the command:

SET_PLOT,'TEK'

This causes IDL to use the Tektronix driver for producing graphical output. Once the
Tektronix driver is enabled via SET_PLOT, the DEVICE procedure is used to control
its actions, and to configure IDL for the specific features of your terminal. If you
never call the DEVICE procedure, IDL assumes a plain vanilla Tektronix 4000 series
compatible terminal. The 4200 series is upwardly compatible with the 4100 series; all
references to the 4100 series also include the 4200 series. To set up IDL for use with
a 4100 series compatible terminal with n colors, enter the following commands:

SET_PLOT, 'TEK'
DEVICE, /TEK4100, COLORS = n

The number of colors should be set to 2B where B is the number of bit planes in your
terminal. If you use a Tektronix compatible terminal that requires calling the
DEVICE procedure for configuration, you should probably create and use a start-up
procedure the calls the DEVICE procedure, as described in Chapter 2. Because of the
tremendous variation among the requirements and abilities of these terminals, it is
crucial that you configure IDL properly for your terminal. In particular, the mode
switching character sequences, set by the keyword parameters SET_STRING and
RESET_STRING must be set correctly.

The DEVICE Procedure For Tektronix Terminals

The default setting for Tektronix output is: 10-bit coordinates, 4000 series terminals,
and no use of color. The DEVICE keywords can be used to modify these defaults.

Tektronix Limitations

• The line drawing procedures work with all models. Line style and color
capabilities vary greatly among terminal models and/or emulation programs.
IDL Reference Guide The Tektronix Device

3854 Appendix A: IDL Graphics Devices
• Color and the display of images (albeit very slowly and frequently of a poor
quality because of the small number of colors) is usable only with 4100 series
terminals. Hardware polygon fill and thick lines do not work with the 4000
series.

• The image coordinate system does not match the graphics coordinate system.
The graphics coordinates range from 0 to 3071 in Y, and from 0 to 4095 in X.
Image coordinates vary according to terminal model. A typical range is from 0
to 479 in Y, and 0 to 639 in X. Because of this, the SHADE_SURF procedure
does not work with Tektronix terminals.

Warning
Not all 4100 series terminals are capable of displaying images—the Tektronix pixel
operations option is required. Many terminal emulators do not emulate this option.
The Tektronix commands used to output images are: RU, begin pixel operations,
RS, set pixel viewport, and RP, raster write. If your terminal or emulator does not
accept these commands, you will not be able to display images.

• The Tektronix graphics protocol does not allow the specification of line
thickness. Lines with a thickness more than 1.0 are drawn using polygon filling
in the case of 4100 series terminals. With 4000 series terminals, thick lines are
emulated by drawing multiple thin lines. This scheme will produce artifacts on
some Tektronix emulating devices because of differing resolutions, normal line
thicknesses and inexact coordinate conversions.

Tektronix Device Limitations

Usage of Tektronix and Tektronix-compatible terminals with IDL has the following
limitations:

• Image coordinates do not match the coordinates used by the rest of the graphic
procedures. This is because no two models of Tektronix terminals are
compatible. The graphics procedures utilize the default coordinate system of
1024 by 780, or 4096 by 3120 in the 12-bit mode. The size of the pixel
memory and coordinate system vary widely between models. The Position
parameter of the TV and TVSCL procedures does not work.

• The cursor can not be positioned from the computer meaning that the TVCRS
procedure cannot be used with the Tektronix driver.

• Pixel values may not be read back from the terminal, rendering the TVRD
function inoperable.
The Tektronix Device IDL Reference Guide

Appendix A: IDL Graphics Devices 3855
The Microsoft Windows Device

Device Keywords Accepted by the WIN Device:

BYPASS_TRANSLATION, COPY, CURSOR_CROSSHAIR,
CURSOR_ORIGINAL, CURSOR_STANDARD, DECOMPOSED,
GET_CURRENT_FONT, GET_FONTNAMES, GET_FONTNUM,
GET_GRAPHICS_FUNCTION, GET_SCREEN_SIZE,
GET_WINDOW_POSITION, PRINT_FILE, RETAIN, SET_CHARACTER_SIZE,
SET_FONT, SET_GRAPHICS_FUNCTION, TRANSLATION, WINDOW_STATE

The Microsoft Windows version of IDL uses the “WIN” device by default. This
device is similar to the X Windows device described below. The “WIN” device is
only available in IDL for Windows.

To set plotting to the Microsoft Windows device, use the command:

SET_PLOT, 'WIN'
IDL Reference Guide The Microsoft Windows Device

3856 Appendix A: IDL Graphics Devices
The X Windows Device

Device Keywords Accepted by the X Device:

BYPASS_TRANSLATION, COPY, CURSOR_CROSSHAIR, CURSOR_IMAGE,
CURSOR_MASK, CURSOR_ORIGINAL, CURSOR_STANDARD,
CURSOR_XY, DECOMPOSED, DIRECT_COLOR, FLOYD,
GET_CURRENT_FONT, GET_FONTNAMES, GET_FONTNUM,
GET_GRAPHICS_FUNCTION, GET_SCREEN_SIZE, GET_VISUAL_NAME,
GET_WINDOW_POSITION, GET_WRITE_MASK, ORDERED,
PSEUDO_COLOR, RETAIN, SET_CHARACTER_SIZE, SET_FONT,
SET_GRAPHICS_FUNCTION, SET_TRANSLATION, SET_WRITE_MASK,
STATIC_COLOR, STATIC_GRAY, THRESHOLD, TRUE_COLOR, TTY,
WINDOW_STATE

X Windows is a network-based windowing system developed by MIT’s project
Athena. IDL uses the X System (often referred to simply as “X”), to provide an
environment in which the user can create one or more independent windows, each of
which can be used for the display of graphics and/or images.

In the X system, there are two basic cooperating processes: clients and servers. A
server consists of a display, keyboard, and pointer (such as a mouse) as well as the
software that controls them. Client processes (such as IDL) display graphics and text
on the screen of a server by sending X protocol requests across the network to the
server. Although in the most common case, the server and client reside on the same
machine, this network based design allows much more elaborate configurations.

To use X Windows as the current graphics device, issue the IDL command:

SET_PLOT, 'X'

This causes IDL to use the X Window System for producing graphical output. Once
the X driver is enabled via SET_PLOT, the DEVICE procedure is used to control its
actions, as described below.

Use the statement:

HELP, /DEVICE

to view the current state of the X Windows driver.

X Windows Visuals

Visuals specify how the hardware deals with color. The X Window server (your
display) may provide colors or only gray scale (black and white), or both. The color
The X Windows Device IDL Reference Guide

Appendix A: IDL Graphics Devices 3857
tables may be changeable from within IDL (read-write), or may be fixed (read-only).
The value of each pixel value may be mapped to any color (Un-decomposed
Colormap), or certain bits of each pixel are dedicated to the red, green, and blue
primary colors (Decomposed Colormap).

There are six X Windows visual classes—read-write and read-only visuals for three
types of displays: Gray Scale, Pseudo Color, and Decomposed Color. The names of
the visuals are shown in the following table:

IDL supports all six types of visuals, although not at all possible depths. UNIX X
Window System users can use the command xdpyinfo to determine which visuals
are supported by their systems.

Each X Window server has a default visual class. Many servers may provide multiple
visual classes. For example, a server with display hardware that supports an 8-bit-
deep, un-decomposed, writable color map (PseudoColor), may also easily provide
StaticColor, StaticGray, and GrayScale visuals.

You can select the visual used by IDL using the DEVICE procedure before a window
is created, or by including the resource idl.gr_visual in your X defaults file, as
explained in “Setting the X Window Defaults” on page 3864.

How IDL Selects a Visual Class

When opening the display, IDL asks the display for the following visuals, in order,
until a supported visual class is found:

1. DirectColor, 24-bit

2. TrueColor, 24-bit

3. TrueColor, 16-bin (on Linux platforms only)

Visual Name Writable Description

StaticGray no Gray scale

GrayScale yes Gray scale

StaticColor no Undecomposed color

PseudoColor yes Undecomposed color

TrueColor no Decomposed color

DirectColor yes Decomposed color

Table A-15: X Windows Visual Classes
IDL Reference Guide The X Windows Device

3858 Appendix A: IDL Graphics Devices
4. PseudoColor, 8-bit, then 4-bit

5. StaticColor, 8-bit, then 4-bit

6. GrayScale, any depth

7. StaticGray, any depth

You can override this behavior by using the DEVICE routine to specify the desired
visual class and depth before you create a window. For example, if you are using a
display that supports both the DirectColor, 24-bit-deep visual, and an 8-bit-deep
PseudoColor visual, IDL will select the 24-bit-deep DirectColor visual. To instead
use PseudoColor, issue the following command before creating a window:

DEVICE, PSEUDO_COLOR = 8

The colormap/visual class combination is chosen when IDL first connects with the X
Window server. Note that if you connect with the X server by creating a window or
using the DEVICE keyword to the HELP procedure, the visual class will be set; it
then cannot be changed until IDL is restarted. If you wish to use a visual class other
than the default, be sure to set it with a call to the DEVICE procedure before creating
windows or otherwise connecting with the X Window server.

Windows are created in two ways:

1. Using the WINDOW procedure. WINDOW allows you to explicitly control
many aspects of how the window is created.

2. If no windows exist and a graphics operation requiring a window is executed,
IDL implicitly creates window 0 with the default characteristics.

Once the visual class is selected, all subsequently-created windows share the same
class and colormap. The number of simultaneous colors available is stored in the
system variable !D.N_COLORS. The visual class and number of colors, once
initialized, cannot be changed without first exiting IDL.

How IDL Obtains a Colormap

IDL chooses the type of colormap in the following manner:

• By default, the shared colormap is used whenever possible (i.e., whenever IDL
is using the default visual for the system). All available colors from the shared
colormap are allocated for use by IDL. This is what happens when no window
currently exists and a graphics operation causes IDL to implicitly create one.

• If the number of colors to use is explicitly specified using the COLORS
keyword with the WINDOW procedure, IDL attempts to allocate the number
of colors specified from the shared colormap using the default visual of the
The X Windows Device IDL Reference Guide

Appendix A: IDL Graphics Devices 3859
screen. If there aren’t enough colors available, a private colormap with that
number of colors is used instead.

• Specifying a negative value for the COLORS keyword to the WINDOW
procedure causes IDL to attempt to use the shared colormap, allocating all but
the specified number of colors. For example:

WINDOW, COLORS = -8

allocates all but 8 of the currently available colors. This allows other
applications that might need their own colors to run in tandem with IDL.

• If a visual type and depth is specified, via the DEVICE procedure, which does
not match the default visual of the screen, a new, private, colormap is created.

Using Color Under X

Colormaps define the mapping from color index to screen color. Two attributes of
colormaps are important to the IDL user: they may be private or shared; and they
may be static or writable. These different types of colormaps are described below.

Shared Colormaps

The window manager creates a colormap when it is started. This is known as the
default colormap, and can be shared by most applications using the display. When
each application requires a colormap entry (i.e., a mapping from a color index to a
color), it allocates one from this shared table. Advantages and disadvantages of
shared colormaps include:

• Using the shared colormap ensures that all applications share the available
colors without conflict. A given application will not change a color that is
allocated to a different application. In the case of IDL it means that IDL can
change the colors it has allocated without changing the colors in use by the
window manager or other applications.

• The window system interface routines must translate between the actual and
allocated pixel values, significantly slowing the transfer of images.

• The shared colormap might not have enough colors available to perform the
desired operations with IDL.

• The number of available colors in the shared colormap depends on the window
manager in use and the demands of other applications. Thus, the number of
available colors can vary.
IDL Reference Guide The X Windows Device

3860 Appendix A: IDL Graphics Devices
• The allocated colors in a shared colormap do not generally start at zero and
they are not necessarily contiguous. This makes it difficult to use the write
mask for certain operations.

Private Colormaps

An application can create its own private color map. Most hardware can only display
a single colormap at a time, so these private colormaps are called virtual color maps,
and only one at a time is actually in use and visible. When the window manager gives
the color focus to a window with a private colormap, the X window system loads its
virtual colormap into the hardware colormap.

• Every color index supported by the hardware is available to IDL, improving
the quality of images.

• Allocated colors always start at zero and are contiguous. This simplifies using
the write mask.

• No translation between internal pixel values and the values required by the
server is required, making the transfer of images more efficient.

• When the IDL colormap is loaded, other applications are displayed using the
wrong colors. Furthermore, colors from the shared colormap are usually
allocated from the lower end of the map first. These are the colors allocated by
the window manager for such things as window borders, the color of text, and
so forth. Since most IDL colormaps have very dark colors in the lower entries,
the end effect with the IDL colormap loaded is that the non-IDL portions of the
screen go blank.

Static Colormaps

As mentioned above, the contents of static colormaps are determined outside of IDL
and cannot be changed. When using a static colormap, the TVLCT procedure
simulates writable colormaps by finding the closest RGB color entry in the colormap
to the requested color. The colormap translation table is then set to map IDL color
indices to those of the closest colors in the colormap.

The colors present in the colormap may, and probably will, not match the requested
colors exactly. For example, with a typical static color map, loading the IDL standard
color table number 0, which consists of 256 intensities of gray, results in only 8 or 16
distinct intensities.

With static colormaps, loading a new color table does not affect the appearance of
previously written objects. The internal translation tables are modified, which only
affects objects that are subsequently written.
The X Windows Device IDL Reference Guide

Appendix A: IDL Graphics Devices 3861
Color Translation

As mentioned above, colors from the shared colormap do not necessarily start from
index zero, and are not necessarily contiguous. IDL preserves the illusion of a zero
based contiguous colormap by maintaining a translation table between user color
indices, which range from 0 to !D.TABLE_SIZE, and the actual pixel values
allocated from the X server. Normally, the user need not be concerned with this
translation table, but it is available using the statement:

DEVICE, TRANSLATION=T

This statement stores the current translation table, a 256 element byte vector, in the
variable T. Element zero of the vector contains the value pixel allocated for the zeroth
color in the IDL colormap, and so forth. In the case of a private colormap, each
element of the translation vector contains it’s own index value, because private
colormaps start at zero and are contiguous.

The translation table may be bypassed, allowing direct access to the display’s color
indices, by setting the BYPASS_TRANSLATION keyword in the DEVICE
procedure.

DEVICE, /BYPASS_TRANSLATION

Translation can be reestablished by setting the keyword to zero:

DEVICE, BYPASS_TRANSLATION=0

When a private or static (read-only) color table is initialized, the bypass flag is
cleared. It is set when initializing a shared color table.

Using Pixmaps

X Windows can direct graphics to windows or pixmaps. Windows are the usual
windows that appear on the screen and contain graphics. Pixmaps are invisible
graphics memory contained in the server. Drawing to a window produces a viewable
result, while drawing to a pixmap simply updates the pixmap memory.

Pixmaps are useful because it is possible to write graphics to a pixmap and then copy
the contents of the pixmap to a window where it can be viewed. Furthermore, this
copy operation is very fast because it happens entirely within the server. Provided
enough pixmap memory is available, this technique works very well for animating a
series of images by placing the images into pixmap memory and then sequentially
copying them to a visible window.

To create a pixmap, use the PIXMAP keyword with the WINDOW procedure. For
example, to create a square pixmap with 128 pixels per side as IDL window 1, use the
command:
IDL Reference Guide The X Windows Device

3862 Appendix A: IDL Graphics Devices
WINDOW, 1, /PIXMAP, XSIZE=128, YSIZE=128

Once they are created, pixmaps are treated just like normal windows, although some
operations (WSHOW for instance) don’t do anything useful when applied to a
pixmap.

The following procedure shows how animation can be done using pixmap memory. It
uses a series of 15 heart images taken from the file abnorm.dat. This file is supplied
with all IDL distributions in the examples/data subdirectory of the main IDL
directory. It creates a pixmap and writes the heart images to it. It then uses the COPY
keyword of the DEVICE procedure to copy the images to a visible window. Pressing
any key causes the display process to halt:

; Animate heart series:
PRO animate_heart
; Open the file containing the images:
OPENR, u, FILEPATH('abnorm.dat', SUBDIR = ['examples','data']), $

/GET_LUN
; Associate a file variable with the file. Each heart image
; is 64x64 pixels:
frame = ASSOC(u, BYTARR(64,64))
; Window pixwin is a pixmap which is 4 images tall and 4
; images wide. The images will be placed in this pixmap:
WINDOW, pixwin, /PIXMAP, XSIZE = 512, YSIZE = 512, /FREE
; Write each image to the pixmap. SMOOTH is used to improve
; the appearance of each image and REBIN is used to
; enlarge/shrink each image to the final display size:
FOR i=0, 15-1 DO TV, REBIN(SMOOTH(frame[i],3), 128, 128),i
; Close the image file and free the file unit:
FREE_LUN, u
; Window win is a visible window. It will be used to display
; the animated heart cycle:
WINDOW, win, XSIZE = 128, YSIZE=128, TITLE='Heart', /FREE
; Current frame number:
i = 0L
; Display frames until any key is pressed:
WHILE GET_KBRD(0) EQ '' DO BEGIN
; Compute x and y locations of pixmap image’s lower left corner:

x = (i mod 4) * 128 & y = 384 - (i/4) * 128
; Copy the next image from the pixmap to the visible window:
DEVICE, COPY = [x, y, 128, 128, 0, 0, pixwin]
; Keep track of total frame count:
i = (i + 1) MOD 15
ENDWHILE
END
The X Windows Device IDL Reference Guide

Appendix A: IDL Graphics Devices 3863
Animation sequences with more and/or larger images can be made. See the
documentation for the XANIMATE procedure, which is a more generalized
embodiment of the above procedure.

Note
Some X Windows servers will refuse to create a pixmap that is larger than the
physical screen in either dimension.

How Color is Interpreted for a TrueColor Visual

How a color (such as !P.COLOR) is interpreted by IDL (when a TrueColor visual is
being utilized) depends in part upon the decomposed setting for the device.

To retrieve the decomposed setting:

DEVICE, GET_DECOMPOSED = currentDecomposed

To set the decomposed setting:

DEVICE, DECOMPOSED = newDecomposed

If the decomposed value is zero, colors (like !P.COLOR) are interpreted as indices
into IDL's color table. A color should be in the range from 0 to !D.TABLE_SIZE - 1.
The IDL color table contains a red, green, and blue component at a given index; each
of these components is in the range of 0 up to 255.

Note
IDL’s color table does not map directly to a hardware color table for a TrueColor
visual. If IDL’s color table is modified, for example using the LOADCT or TVLCT
routines, then the new color table will only take effect for graphics that are drawn
after it has been modified.

If the decomposed value is non-zero, colors (like !P.COLOR) are interpreted as a
combination of red, green, and blue settings. The least significant 8 bits contain the
red component, the next 8 bits contain the green component, and the most significant
8 bits contain the blue component.

In either case, the most significant bits of each of the resulting red, green, and blue
components are utilized. The number of bits utilized per component depends upon
the red, green, and blue masks for the visual. On UNIX systems, a new field (Bits Per
RGB) has been added to the output from HELP, /DEVICE. This Bits Per RGB field
indicates the amount of bits utilized for each component.
IDL Reference Guide The X Windows Device

3864 Appendix A: IDL Graphics Devices
Tip
The UNIX command xdpyinfo also provides information about each of the
visuals.

Setting the X Window Defaults

You can set the initial default value of the following parameters by setting resources
in the file .Xdefaults file in your home directory as follows:

For example, to set the default visual to PseudoColor, and to allocate 100 colors,
insert the following lines in your defaults file:

idl.gr_visual: PseudoColor
idl.colors: 100

Resource Name Description

idl.colors The number of colors used by IDL.

idl.gr_depth The depth, in bits, of the visual used by IDL.

idl.retain The default setting for the retain parameter: 0=none,
1= by server, 2=by IDL.

idl.gr_visual The type of visual: StaticGray, GrayScale, StaticColor,
PseudoColor, TrueColor, or DirectColor.

Table A-16: IDL/ X Window Defaults
The X Windows Device IDL Reference Guide

Appendix A: IDL Graphics Devices 3865
The Z-Buffer Device

Device Keywords Accepted by the Z Device:

CLOSE, GET_GRAPHICS_FUNCTION, GET_WRITE_MASK,
SET_CHARACTER_SIZE, SET_COLORS, SET_FONT,
SET_GRAPHICS_FUNCTION, SET_RESOLUTION, Z_BUFFERING

The IDL Z-buffer device is a pseudo device that draws 2-D or 3-D graphics in a
buffer contained in memory. This driver implements the classic Z buffer algorithm for
hidden surface removal. Although primarily used for 3-D graphics, the Z-buffer
driver can be used to create 2-D objects in a frame buffer in memory. The resolution
of this device can be set by the user.

All of the IDL plotting and graphics routines work with the Z-buffer device driver. In
addition, the POLYFILL procedure has a few keyword parameters, allowing Gouraud
shading and warping images over 3-D polygons, that are only effective when used
with the Z-buffer.

When used for 3-D graphics, two buffers are present: an 8-bit-deep frame buffer that
contains the picture; and a 16-bit-deep Z-buffer of the same resolution, containing the
z-value of the visible surface of each pixel. The Z-buffer is initialized to the depth at
the back of the viewing volume. When objects are drawn, the z-value of each pixel is
compared with the value at the same location in the Z-buffer, and if the z-value is
greater (closer to the viewer), the new pixel is written in the frame buffer and the Z-
buffer is updated with the new z-value.

The Z-buffer device is a “pseudo device” in that drawing commands update buffers in
memory rather than sending commands to a physical device or file. The TVRD
function reads the contents of either buffer to an IDL array. This array may then be
further processed, written to a file, or output to a raster-based graphics output device.

The Z-buffer driver can be used for 2-D graphics by disabling the depth
computations.

To use the Z-buffer as the current graphics device, issue the IDL command:

SET_PLOT, 'Z'

Once the Z-buffer driver is enabled the DEVICE procedure is used to control its
actions, as described below.

Use the statement:

HELP, /DEVICE
IDL Reference Guide The Z-Buffer Device

3866 Appendix A: IDL Graphics Devices
to view the current state of the Z-buffer driver and the amount of memory used for the
buffers.

Reading and Writing Buffers

The contents of both buffers are directly accessed by the TV and TVRD routines. The
frame buffer that contains the picture is 8 bits deep and is accessed as channel 0. The
Z depth buffer contains 16 bit integers and is accessed as channel 1. Always use
CHANNEL=1 and set the keyword WORDS when reading or writing the depth buffer.

The normal procedure is to set the graphics device to “Z”, draw the objects, read the
frame buffer, and then select another graphics device and write the image. For
example, to create an image with the Z-buffer driver and then display it on an X-
Window display:

; Select Z-buffer device:
SET_PLOT,'Z'
; Write objects to the frame buffer using normal graphics
; routines, e.g. PLOT, SURFACE, POLYFILL
...
; Read back the entire frame buffer:
a=TVRD()
; Select X Windows:
SET_PLOT,'X'
; Display the contents of the frame buffer:
TV, a

To read the depth values in the Z-buffer, use the command:

a = TVRD(CHANNEL=1, /WORDS)

To write the depth values, use the command:

TV, a, /WORDS, CHANNEL=1

The TV, TVSCL, and TVRD routines write or read pixels directly to a rectangular
area of the designated buffer without affecting the other buffer.

Z-Axis Scaling

The values in the depth buffer are short integers, scaled from -32765 to +32765,
corresponding to normalized Z-coordinate values of 0.0 to 1.0.

Polyfill Procedure

The following POLYFILL keywords are active only with the Z-buffer device:
IMAGE_COORDINATES, IMAGE_INTERPOLATE, and TRANSPARENT. These
The Z-Buffer Device IDL Reference Guide

Appendix A: IDL Graphics Devices 3867
parameters allow images, specified via the PATTERN keyword, to be warped over
2-D and 3-D polygons.

The IMAGE_COORDINATES keyword contains a 2 by N array containing the image
space coordinates that correspond to each of the N vertices of the polygon. The
IMAGE_INTERPOLATE keyword indicates that bilinear interpolation is to be used,
rather than the default nearest neighbor sampling. Pixels less than the value of
TRANSPARENT are not drawn, simulating transparency. For Gouraud shading of
polygons, the COLOR keyword can contain an array specifying the color index for
each polygon vertex.

Examples Using the Z-Buffer

This example forms a Bessel function, draws its shaded surface and overlays its
contour, using the Z-buffer as shown in the following figure.The final output is
directed to PostScript.

; Select the Z-buffer:
SET_PLOT, 'Z'
n = 50 ; Size of array for Bessel
; Make the Bessel function:
a = BESELJ(SHIFT(DIST(n), n/2, n/2)/2, 0)
; Draw the surface, label axes in black, background in white:
SHADE_SURF, a, /SAVE, COLOR=1, BACKGROUND=255
nlev = 8 ; Number of contour levels
; Make the Contour at normalized Z=.6:
CONTOUR, a, /OVERPLOT, ZVALUE=.6, /T3D, $

LEVELS=FINDGEN(nlev)*1.5/nlev-.5, COLOR=1
; Read image:
b=TVRD()
; Select PostScript output:
SET_PLOT, 'PS'
; Output the image:
TV, b
; Close the new PostScript file:
DEVICE, /CLOSE
IDL Reference Guide The Z-Buffer Device

3868 Appendix A: IDL Graphics Devices
The following example warps an image to a cube as shown in the figure below. The
lower two quadrants of the image are warped to the front two faces of the cube. The
upper-right quadrant is warped to the top face of the cube. The image is held in the
array a, with dimensions nx by ny. The image is then output to PostScript as in the
previous example.

; Select the Z-buffer:
SET_PLOT, 'Z'
; Make a white background for final output to PostScript:
ERASE, 255
; Establish 3-D scaling as (0,1) cube:
SCALE3, XRANGE=[0,1], YRANGE=[0,1], ZRANGE=[0,1]
; Define vertices of cube. Vertices 0-3 are bottom, 4-7 are top:
verts = [[0,0,0], [1,0,0], [1,1,0], [0,1,0], $

[0,0,1], [1,0,1], [1,1,1], [0,1,1]]
; Fill lower left face:
POLYFILL, verts[*, [3,0,4,7]], /T3D, PATTERN=a, $

IMAGE_COORD=[[0,0], [nx/2,0], [nx/2,ny/2], [0,ny/2]]
; Fill lower right face:
POLYFILL, verts[*, [0,1,5,4]], /T3D, PATTERN=a, $

IMAGE_COORD=[[nx/2,0], [nx-1,0], $
[nx-1,ny/2], [nx/2,ny/2]]

; Fill top face:
POLYFILL, verts[*, [4,5,6,7]], /T3D, PATTERN=a, $

IMAGE_COORD = [[nx/2,ny/2], [nx-1,ny/2], $
[nx-1,ny-1], [nx/2,ny-1]]

; Draw edges of cube in black:
PLOTS, verts[*, [0,4]], /T3D, COLOR=0

Figure A-7: Combined Shaded Surface and Contour Plot
The Z-Buffer Device IDL Reference Guide

Appendix A: IDL Graphics Devices 3869
; Edges of top face:

PLOTS, verts[*, [4,5,6,7,4]], /T3D, COLOR=0

Figure A-8: Image Warped to a Cube Using the Z-Buffer
IDL Reference Guide The Z-Buffer Device

3870 Appendix A: IDL Graphics Devices
The Z-Buffer Device IDL Reference Guide

Appendix B:

Graphics Keywords
The IDL Direct Graphics routines, CURSOR, ERASE, PLOTS, POLYFILL, TV (and
TVSCL), TVCRS, TVRD, and XYOUTS, and the plotting procedures, AXIS,
CONTOUR, PLOT, OPLOT, SHADE_SURF, and SURFACE, accept a number of
common keywords. Therefore, instead of describing each keyword along with the
description of each routine, this section contains a brief summary of each graphics
keyword. Routine-specific keywords are documented in the description of the
routine.

The graphics keywords are described below. The name of each keyword is followed
by a list of routines that accept that keyword. Keywords that have a direct
correspondence to fields in a system variable (usually !P) are also indicated.

The keywords that control the plot axes are prefixed with the character ‘X’, ‘Y’, or
‘Z’ depending on the axis in question. These keywords correspond to fields in the
axis system variables: !X, !Y, and !Z, and are described in more detail in “Graphics
System Variables” on page 3913 The axis keywords are shown in the form
[XYZ]NAME. For example, [XYZ]CHARSIZE refers to the three keywords
XCHARSIZE, YCHARSIZE, and ZCHARSIZE, which control the size of the
characters annotating the three axes.
IDL Reference Guide 3871

3872 Appendix B: Graphics Keywords
The system variable fields that control this are !X.CHARSIZE, !Y.CHARSIZE, and
!Z.CHARSIZE.

The following graphics keywords are discussed in this appendix:

BACKGROUND

Accepted by: CONTOUR, PLOT, SURFACE.

System variable equivalent: !P.BACKGROUND.

The background color index to which all pixels are set when erasing the screen or
page. The default is 0 (black). Not all devices support erasing the background to a
specified color index.

For example, to produce a black plot with a white background on a color display:

PLOT, Y, BACKGROUND = 255, COLOR = 0

CHANNEL

Accepted by: ERASE, TV, TVRD. System variable equivalent: !P.CHANNEL.

BACKGROUND ORIENTATION [XYZ]STYLE

CHANNEL POSITION [XYZ]THICK

CHARSIZE PSYM [XYZ]TICK_GET

CHARTHICK SUBTITLE [XYZ]TICKFORMAT

CLIP SYMSIZE [XYZ]TICKINTERVAL

COLOR T3D [XYZ]TICKLAYOUT

DATA THICK [XYZ]TICKLEN

DEVICE TICKLEN [XYZ]TICKNAME

FONT TITLE [XYZ]TICKS

LINESTYLE [XYZ]CHARSIZE [XYZ]TICKUNITS

NOCLIP [XYZ]GRIDSTYLE [XYZ]TICKV

NODATA [XYZ]MARGIN [XYZ]TITLE

NOERASE [XYZ]MINOR Z

NORMAL [XYZ]RANGE ZVALUE
IDL Reference Guide

Appendix B: Graphics Keywords 3873
This keyword specifies the memory channel for the operation. This parameter is
ignored on display systems that have only one memory channel. When using a
“decomposed” display system, the red channel is 1, the green channel is 2, and the
blue channel is 3. Channel 0 indicates all channels. If omitted, !P.CHANNEL
contains the default channel value.

Note
CONTOUR, PLOT, SHADE_SURF, and SURFACE also accept the CHANNEL
keyword, but simply pass it to ERASE.

CHARSIZE

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE, XYOUTS.
System variable equivalent: !P.CHARSIZE.

The overall character size for the annotation when Hershey fonts are selected. This
keyword does not apply when hardware (i.e. PostScript) fonts are selected. A
CHARSIZE of 1.0 is normal. The size of the annotation on the axes may be set,
relative to CHARSIZE, with xCHARSIZE, where x is X, Y, or Z. The main title is
written with a character size of 1.25 times this parameter.

CHARTHICK

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE, XYOUTS.
System variable equivalent: !P.CHARTHICK.

An integer value specifying the line thickness of the vector drawn font
characters.This keyword has no effect when used with the hardware drawn fonts. The
default value is 1.

CLIP

Accepted by: CONTOUR, DRAW_ROI, OPLOT, PLOT, PLOTS, POLYFILL,
SURFACE, XYOUTS. System variable equivalent: !P.CLIP.

The coordinates of a rectangle used to clip the graphics output. The rectangle is
specified as a vector of the form [X0, Y0, X1, Y1], giving coordinates of the lower left
and upper right corners, respectively. The default clipping rectangle is the plot
window, the area enclosed within the axes of the most recent plot. Coordinates are
specified in data units unless an overriding coordinate unit specification keyword is
present (i.e., NORMAL or DEVICE). If the clipping is provided in data or
IDL Reference Guide

3874 Appendix B: Graphics Keywords
normalized units, the actual clipping rectangle is computed by converting those
values to device units. The clipping itself always occurs in device space.

Note
The default is not to clip the output of PLOTS and XYOUTS. To enable clipping
include the keyword parameter NOCLIP = 0. With PLOTS, POLYFILL, and
XYOUTS, this keyword controls the clipping of vectors and vector-drawn text.

For example, to draw a vector using normalized coordinates with its contents clipped
within a rectangle covering the upper left quadrant of the display:

PLOTS, X, Y, CLIP=[0.,.5,.5,1.0], /NORM, NOCLIP=0

COLOR

Accepted by: AXIS, CONTOUR, DRAW_ROI, ERASE, OPLOT, PLOT, PLOTS,
POLYFILL, SHADE_SURF, SURFACE, XYOUTS. System variable equivalent:
!P.COLOR.

The color index of the data, text, line, or solid polygon fill to be drawn. If this
keyword is omitted, !P.COLOR specifies the color index.

When used with the PLOTS, POLYFILL, or XYOUTS procedure, this keyword
parameter can be set to a vector to specify multiple color indices.

Gouraud shading of polygons is performed with the Z-buffer graphics output device
and POLYFILL procedure when COLOR contains an array of color indices, one for
each vertex.

DATA

Accepted by: AXIS, CONTOUR, CURSOR, DRAW_ROI, PLOT, PLOTS,
POLYFILL, SHADE_SURF, SURFACE, TV, TVCRS, XYOUTS.

Set this keyword to indicate that the clipping and/or positioning coordinates supplied
are specified in the data coordinate system. The default coordinate system is DATA if
no other coordinate-system specifications are present.

DEVICE

AXIS, CONTOUR, CURSOR, DRAW_ROI, PLOT, PLOTS, POLYFILL,
SHADE_SURF, SURFACE, TV, TVCRS, XYOUTS.
IDL Reference Guide

Appendix B: Graphics Keywords 3875
Set this keyword to indicate that the clipping and/or positioning coordinates supplied
are specified in the device coordinate system. The default coordinate system is DATA
if no other coordinate-system specifications are present.

For example, the following code displays an image contained in the variable A and
then draws a contour plot of pixels [100:499, 100:399] over the correct section of the
image:

;Display the image.
TV,A

;Draw the contour plot, specify the coordinates of the plot, in
;device coordinates, do not erase, set the X and Y axis styles to
;EXACT.
CONTOUR, A[100:499, 100:399], $

POS = [100,100, 499,399], /DEVICE, $
/NOERASE, XSTYLE=1, YSTYLE=1

Note that in the above example, the keyword specification /DEVICE is equivalent to
DEVICE = 1.

FONT

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE, XYOUTS.
System variable equivalent: !P.FONT.

An integer that specifies the graphics text font system to use. Set FONT equal to -1 to
selects the Hershey character fonts, which are drawn using vectors. Set FONT equal
to 0 (zero) to select the device font of the output device. Set FONT equal to 1 (one) to
select the TrueType font system. See Appendix H, “Fonts” for a complete description
of IDL’s font systems.

LINESTYLE

Accepted by: DRAW_ROI, OPLOT, PLOT, PLOTS, SURFACE. System variable
equivalent: !P.LINESTYLE.
IDL Reference Guide

3876 Appendix B: Graphics Keywords
This keyword indicates the line style used to draw lines; it indicates the line style of
the lines used to connect the data points. This keyword should be set to the
appropriate index for the desired linestyle as described in the following table.

NOCLIP

Accepted by: CONTOUR, DRAW_ROI, OPLOT, PLOT, PLOTS, POLYFILL,
SURFACE, XYOUTS. System variable equivalent: !P.NOCLIP.

Set this keyword to suppress clipping of the plot. The clipping rectangle is contained
in !P.CLIP. By default, the plot is clipped within the plotting window.

Note
The default value is clipping-disabled for PLOTS, POLYFILL, and XYOUTS. For
all other routines, the default is to enable clipping.

With PLOTS, POLYFILL, and XYOUTS, this keyword controls the clipping of
vectors and vector-drawn text. The default is to disable clipping, so to enable clipping
include the parameter NOCLIP = 0. To explicitly disable clipping set this parameter
to one.

NODATA

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE.

If this keyword is set, only the axes, titles, and annotation are drawn. No data points
are plotted.

For example, to draw an empty set of axes between some given values:

Index Linestyle

0 Solid

1 Dotted

2 Dashed

3 Dash Dot

4 Dash Dot Dot

5 Long Dashes

Table B-1: IDL Linestyles
IDL Reference Guide

Appendix B: Graphics Keywords 3877
PLOT, [XMIN, XMAX],[YMIN, YMAX], /NODATA

NOERASE

Accepted by: AXIS, CONTOUR, PLOT, SURFACE. System variable equivalent:
!P.NOERASE.

Specifies that the screen or page is not to be erased. By default, the screen is erased,
or a new page is begun, before a plot is produced.

NORMAL

Accepted by: AXIS, CONTOUR, CURSOR, DRAW_ROI, PLOT, PLOTS,
POLYFILL, SHADE_SURF, SURFACE, TV, TVCRS, XYOUTS.

Set this keyword to indicate that the clipping and/or positioning coordinates supplied
are specified in the normalized coordinate system, and range from 0.0 to 1.0. The
default coordinate system is DATA if no other coordinate-system specifications are
present.

ORIENTATION

Accepted by: DRAW_ROI, POLYFILL, XYOUTS.

Specifies the counterclockwise angle in degrees from horizontal of the text baseline
and the lines used to fill polygons.When used with the POLYFILL procedure, this
keyword forces the “linestyle” type of fill, rather than solid or patterned fill.

POSITION

Accepted by: CONTOUR, MAP_SET, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: !P.POSITION.

Allows direct specification of the plot window. POSITION is a 4-element vector
giving, in order, the coordinates [(X0, Y0), (X1, Y1)], of the lower left and upper right
corners of the data window. Coordinates are expressed in normalized units ranging
from 0.0 to 1.0, unless the DEVICE keyword is present, in which case they are in
actual device units. The value of POSITION is never specified in data units, even if
the DATA keyword is present.

When setting the position of the window, be sure to allow space for the annotation,
which resides outside the window. IDL outputs the message “% Warning: Plot
truncated.” if the plot region is larger than the screen or page size. The plot region is
the rectangle enclosing the plot window and the annotation.
IDL Reference Guide

3878 Appendix B: Graphics Keywords
When plotting in three dimensions, the POSITION keyword is a 6-element vector
with the first four elements describing, as above, the XY position, and with the last
two elements giving the minimum and maximum Z coordinates. The Z specification
is always in normalized coordinate units.

When making more than one plot per page it is more convenient to set !P.MULTI than
to manipulate the position of the plot directly with the POSITION keyword.

For example, the following statement produces a contour plot with data plotted in
only the upper left quarter of the screen:

CONTOUR, Z, POS=[0., 0.5, 0.5, 1.0]

Because no space on the left or top edges was allowed for the axes or their annotation,
the above described warning message results.

PSYM

Accepted by: DRAW_ROI, OPLOT, PLOT, PLOTS. System variable equivalent:
!P.PSYM.

The symbol used to mark each data point. Normally, PSYM is 0, data points are
connected by lines, and no symbols are drawn to mark the points. Set this keyword, or
the system variable !P.PSYM, to the symbol index as shown in the table below to
mark data points with symbols. The keyword SYMSIZE is used to set the size of the
symbols.

PSYM
Value

Plotting Symbol

1 Plus sign (+)

2 Asterisk (*)

3 Period (.)

4 Diamond

5 Triangle

6 Square

7 X

8 User-defined. See USERSYM procedure.

Table B-2: Values for the PSYM Keyword
IDL Reference Guide

Appendix B: Graphics Keywords 3879
Negative values of PSYM cause the symbol designated by PSYM to be plotted at
each point with solid lines connecting the symbols. For example, a value of -5 plots
triangles at each data point and connects the points with lines. Histogram mode is the
exception to this rule; since the points are already connected when PSYM=10,
specifying the value -10 is meaningless, and will result in an error.

The following IDL code plots an array using points, and then overplots the smoothed
array, connecting the points with lines:

;Plot using points.
PLOT, A, PSYM=3

;Overplot smoothed data.
OPLOT, SMOOTH(A,7)

SUBTITLE

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: !P.SUBTITLE.

A text string to be used as a subtitle for the plot. Subtitles appear below the X axis.

SYMSIZE

Accepted by: DRAW_ROI, OPLOT, PLOT, PLOTS.

Specifies the size of the symbols drawn when PSYM is set. The default size of 1.0
produces symbols approximately the same size as a character.

T3D

Accepted by: AXIS, CONTOUR, DRAW_ROI, MAP_SET, OPLOT, PLOT, PLOTS,
POLYFILL, SHADE_SURF, SURFACE, TV, TVCRS, XYOUTS. System variable
equivalent: !P.T3D.

9 Undefined

10 Histogram mode. Horizontal and vertical lines connect the
plotted points, as opposed to the normal method of
connecting points with straight lines.

PSYM
Value Plotting Symbol

Table B-2: Values for the PSYM Keyword
IDL Reference Guide

3880 Appendix B: Graphics Keywords
Set this keyword to indicate that the generalized transformation matrix in !P.T is to be
used. If not present, the user-supplied coordinates are simply scaled to screen
coordinates. See the examples in the description of the SAVE keyword.

Note
Since T3D uses the transformation matrix in !P.T, it is important that !P.T contain a
valid transformation matrix. This can be achieved in several ways:

• Use the SAVE keyword to save the transformation matrix from an earlier
graphics operation.

• Establish a transformation matrix using the T3D, SURFR, or, SCALE3
procedures.

• Set the value of !P.T directly.

THICK

Accepted by: AXIS, DRAW_ROI, OPLOT, PLOT, PLOTS, POLYFILL,
SHADE_SURF, SURFACE. System variable equivalent: !P.THICK.

Indicates the line thickness. THICK overrides the setting of !P.THICK.

TICKLEN

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: !P.TICKLEN.

Controls the length of the axis tick marks, expressed as a fraction of the window size.
The default value is 0.02. TICKLEN of 1.0 produces a grid, while a negative
TICKLEN makes tick marks that extend outside the window, rather than inwards.

For example, to produce outward-going tick marks of the normal length:

PLOT, X, Y, TICKLEN = -0.02

To provide a new default tick length, set !P.TICKLEN.

TITLE

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: !P.TITLE.

Produces a main title centered above the plot window. The text size of this main title
is larger than the other text by a factor of 1.25. For example:
IDL Reference Guide

Appendix B: Graphics Keywords 3881
PLOT, X, Y, TITLE = 'Final Results'

[XYZ]CHARSIZE

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalents: ![XYZ].CHARSIZE.

The size of the characters used to annotate the axis and its title when Hershey fonts
are selected. This keyword does not apply when hardware (i.e. PostScript) fonts are
selected. This field is a scale factor applied to the global scale factor set by
!P.CHARSIZE or the keyword CHARSIZE.

[XYZ]GRIDSTYLE

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE

The index of the linestyle to be used for plot tickmarks and grids (i.e., when
[XYZ]TICKLEN is set to 1.0). See LINESTYLE for a list of linestyles.

[XYZ]MARGIN

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].MARGIN.

A 2-element array specifying the margin on the left (bottom) and right (top) sides of
the plot window, in units of character size. Default margins are 10 and 3 for the X
axis, and 4 and 2 for the Y axis. The ZMARGIN keyword is present for consistency
and is currently ignored.

[XYZ]MINOR

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].MINOR.

The number of minor tick mark intervals.

[XYZ]RANGE

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].RANGE.

The desired data range of the axis, a 2-element vector. The first element is the axis
minimum, and the second is the maximum. IDL will frequently round this range. This
override can be defeated using the [XYZ]STYLE keywords.
IDL Reference Guide

3882 Appendix B: Graphics Keywords
[XYZ]STYLE

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].STYLE.

This keyword allows specification of axis options such as rounding of tick values and
selection of a box axis. Each option is described in the following table:

Note that this keyword is set bitwise, so multiple effects can be set by adding values
together. For example, to make an X axis that is both exact (value 1) and suppresses
the box style (setting 8), set the XAXIS keyword to 1+8, or 9.

[XYZ]THICK

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].THICK.

This keyword controls the thickness of the lines forming the axis and tick marks. A
value of 1.0 is the default.

[XYZ]TICK_GET

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE.

A named variable in which to return the values of the tick marks for the designated
axis. The result is a double precision floating-point array with the same number of
elements as ticks.

For example, to retrieve in the variable V the values of the tick marks selected by IDL
for the Y axis:

PLOT, X, Y, YTICK_GET = V

Value Description

1 Force exact axis range.

2 Extend axis range.

4 Suppress entire axis

8 Suppress box style axis (i.e., draw axis on only one side of plot)

16 Inhibit setting the Y axis minimum value to 0 (Y axis only)

Table B-3: Values for the [XYZ]STYLE Keyword
IDL Reference Guide

Appendix B: Graphics Keywords 3883
[XYZ]TICKFORMAT

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TICKFORMAT.

Set this keyword to a string or a vector of strings. If a vector is provided, each string
corresponds to a level of the axis. The [XYZ]TICKUNITS keyword determines the
number of levels for an axis.

Each string is one of the following:

A format code:

If the string begins with an open parenthesis, it is treated as a standard format string.
See “Format Codes” in Chapter 10 of the Building IDL Applications manual for more
information on format codes.

Example 1: Display the X axis tick values using a format of F6.2 (six characters,
with 2 places after the decimal point):

PLOT, X, Y, XTICKFORMAT='(F6.2)'

Example 2: Display the Y tick values using the “dollars and cents” format $dddd.dd:

PLOT, X, Y, YTICKFORMAT='("$", F7.2)'

The string 'LABEL_DATE' :

Set [XYZ]TICKFORMAT to the string 'LABEL_DATE' to create axes with date
labels. The formatting of the labels is specified by first calling LABEL_DATE with
the DATE_FORMAT keyword. See LABEL_DATE for more information.

Example: Use the LABEL_DATE function as the callback function to display the X
tick values in a date/time format:

dummy = LABEL_DATE(DATE_FORMAT='%M %Z')
mytimes = TIMEGEN(12, UNITS='MONTHS', START=JULDAY(1,1,2000))
y = FINDGEN(12)
PLOT, mytimes, y, XTICKUNITS='Time', XTICKFORMAT='LABEL_DATE'

The name of a user-defined function:

If the string does not begin with an open parenthesis, it is interpreted as the name of a
callback function to be used to generate tick mark labels. This function is defined
with either three or four parameters, depending on whether [XYZ]TICKUNITS is
specified:
IDL Reference Guide

3884 Appendix B: Graphics Keywords
If [XYZ]TICKUNITS is not specified, the callback function is called with three
parameters, Axis, Index, and Value, where:

• Axis is the axis number: 0 for X axis, 1 for Y axis, 2 for Z axis.

• Index is the tick mark index (indices start at 0).

• Value is the data value at the tick mark (a double-precision floating point
value).

Note
Value is a double-precision floating-point value that represents the Julian date. The
Julian date follows the astronomical convention, where Julian date 0.0d corresponds
to 1 Jan 4713 B.C.E. at 12 pm.

If [XYZ]TICKUNITS is specified, the callback function is called with four
parameters, Axis, Index, Value, and Level, where:

• Axis, Index, and Value are the same as described above.

• Level is the index of the axis level for the current tick value to be labeled (level
indices start at 0).

Example 1: Use a callback function to display the Y tick values as a percentage of a
fixed value. Note that because we don’t specify [XYZ]TICKUNITS, we do not
include the Level parameter in our function definition:

FUNCTION YTICKS, axis, index, value
 fixvalue = 389.0d
 pvalue = (value/fixvalue) * 100.0d
 RETURN, STRING(pvalue, FORMAT='(D5.2,"%")')
END

PRO use_callback

Y = FINDGEN(10)
PLOT, Y, YTICKFORMAT='YTICKS'

END

Example 2: Create a two-level X axis. Display the X tick values in a customized
date/time format that shows the number of days open for business for each month on
one level, and marks leap years with an asterisk on another level:

FUNCTION XTICKS, axis, index, value, level

 CASE level OF
 0: BEGIN ; months
 ; Number of days open for business in given month:
IDL Reference Guide

Appendix B: Graphics Keywords 3885
 CALDAT, value, month
 open = [18,19,23,20,22,22,19,10,20,21,22,14]
 nbdays = open[month]
 ; Return a string containing the month name plus
 ; the number of business days in parentheses:
 RETURN, STRING(value, nbdays, $
 FORMAT='(C(CMoA), "(", I2, ")")')
 END
 1: BEGIN ; years
 ; Generate a string for the year.
 yrStr = STRING(value, FORMAT='(C(CYI))')
 ; Determine if a leap year. If so,
 ; append an asterisk to the string.
 CALDAT, value, mo, da, yr
 IF (yr MOD 4 EQ 0) THEN BEGIN
 IF (yr MOD 100 EQ 0) THEN $
 isLeap = (yr MOD 400) EQ 0 $
 ELSE $
 IsLeap = 1b
 ENDIF ELSE $
 isLeap = 0b
 IF (isLeap NE 0b) THEN $
 yrStr = yrStr + '*'
 RETURN, yrStr
 END
 ENDCASE

END

PRO plot_sales

 myDates = TIMEGEN(12, UNITS='Months', START=JULDAY(1,1,2000))
 sales = [180,190,230,200,220,220,190,100,200,210,220,140]
 PLOT, myDates, sales, XTICKUNITS=['Months', 'Years'], $
 XTICKFORMAT='XTICKS', XTITLE = 'Date (* = Leap Year)', $
 YTITLE='Sales (units)', POSITION = [0.2, 0.2, 0.9, 0.9]

END

[XYZ]TICKINTERVAL

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE

variable equivalent: ![XYZ].TICKINTERVAL

Set this keyword to a scalar indicating the interval between major tick marks for the
first axis level. The default value is computed according to the axis range
IDL Reference Guide

3886 Appendix B: Graphics Keywords
([XYZ]RANGE) and the number of major tick intervals ([XYZ]TICKS). This
keyword takes precedence over [XYZ]TICKS.

For example, if TICKUNITS=[“Seconds”, “Hours”, “Days”], and
XTICKINTERVAL=30, then the interval between major ticks for the first axis level
will be 30 seconds.

[XYZ]TICKLAYOUT

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TICKLAYOUT.

Set this keyword to a scalar that indicates the tick layout style to be used to draw each
level of the axis.

Valid values include:

• 0 = The axis line, major tick marks and tick labels are all included. Minor tick
marks only appear on the first level of the axis. This is the default tick layout
style.

• 1 = Only the labels for the major tick marks are drawn. The axis line, major
tick marks, and minor tick marks are omitted.

• 2 = Each major tick interval is outlined by a box. The tick labels are positioned
within that box (left-aligned). For the first axis level only, the major and minor
tick marks will also be drawn.

Note
For all tick layout styles, at least one tick label will appear on each level of the axis
(even if no major tick marks fall along the axis line). If there are no major tick
marks, the single tick label will be centered along the axis.

[XYZ]TICKLEN

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TICKLEN.

This keyword controls the lengths of tick marks (expressed in normal coordinates) for
the individual axes. This keyword, if nonzero, overrides the global tick length
specified in !P.TICKLEN, and/or the TICKLEN keyword parameter, which is
expressed in terms of the window size.
IDL Reference Guide

Appendix B: Graphics Keywords 3887
[XYZ]TICKNAME

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TICKNAME.

A string array of up to 30 elements that controls the annotation of each tick mark.

[XYZ]TICKS

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TICKS.

The number of major tick intervals to draw for the axis. If this keyword is omitted,
IDL selects from three to six tick intervals. Setting this field to n, where n > 1,
produces exactly n tick intervals, and n+1 tick marks. Setting this field equal to 1
suppresses tick marks.

[XYZ]TICKUNITS

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TICKUNITS.

Set this keyword to a string or a vector of strings indicating the units to be used for
axis tick labeling. If a vector of strings is provided, the axis will be drawn in multiple
levels, where each string represents one level in the specified units.

Note
When creating multiple-level axes, you may need to adjust the plot positioning
using the POSITION or [XYZ]MARGIN keywords in order to ensure that axis
labels and titles are visible in the plot window.

The order in which the strings appear in the vector determines the order in which the
corresponding unit levels will be drawn. The first string corresponds to the first level
(the level nearest to the primary axis line).

Valid unit strings include:

• 'Numeric'

• 'Years'

• 'Months'

• 'Days'

• 'Hours'
IDL Reference Guide

3888 Appendix B: Graphics Keywords
• 'Minutes'

• 'Seconds'

• 'Time' - Use this value to indicate that the tick values are time values; IDL will
determine the appropriate time intervals and tick label formats based upon the
range of values covered by the axis.

• ''- Use the empty string to indicate that no tick units are being explicitly set.
This implies that a single axis level will be drawn using the 'Numeric' unit.
This is the default setting.

If any of the time units are utilized, the tick values are interpreted as Julian date/time
values.

Note that the singular form of each of the time value strings is also acceptable (e.g,
TICKUNITS='Day' is equivalent to TICKUNITS='Days').

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000, respectively.

[XYZ]TICKV

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TICKV.

The data values for each tick mark, an array of up to 60 elements.

Note
To specify the number of ticks and their values exactly, set [XYZ]TICKS=N(where
N > 1) and [XYZ]TICKV=Values, where Values has N+1 elements.

[XYZ]TITLE

Accepted by: AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE. System
variable equivalent: ![XYZ].TITLE.

A string that contains a title for the specified axis.

Z

Accepted by: PLOTS, POLYFILL, TV, TVCRS, XYOUTS.
IDL Reference Guide

Appendix B: Graphics Keywords 3889
Provides the Z coordinate if a Z parameter is not present in the call. This is of use
only if the three-dimensional transformation is in effect (i.e., the T3D keyword is set).

ZVALUE

Accepted by: AXIS, CONTOUR, MAP_SET, OPLOT, PLOT, SHADE_SURF,
SURFACE.

Sets the Z coordinate, in normalized coordinates in the range of 0 to 1, of the axis and
data output from PLOT, OPLOT, and CONTOUR.

This keyword has effect only if !P.T3D is set and the three-dimensional to two-
dimensional transformation is stored in !P.T. If ZVALUE is not specified,
CONTOUR will output each contour at its Z coordinate, and the axes and title at a Z
coordinate of 0.0.
IDL Reference Guide

3890 Appendix B: Graphics Keywords
IDL Reference Guide

Appendix C:

Thread Pool
Keywords
Many of the system routines documented in this manual make use of the IDL thread
pool. The thread pool is discussed in detail in Chapter 14, “Multithreading in IDL” in
the Building IDL Applications manual. System-wide use of the thread pool can be
controlled with the CPU procedure, and the current system settings are visible via the
!CPU system variable.

All system routines that use the thread pool accept the following keywords, which
can be used to modify the default behavior for the duration of a single call. This
allows you to modify the settings for a particular computation without affecting the
global default settings of the IDL session.
IDL Reference Guide 3891

3892 Appendix C: Thread Pool Keywords
Thread Pool Keywords

TPOOL_MAX_ELTS

Set this keyword to a non-zero value to set the maximum number of data elements
involved in a computation that uses the thread pool. If the number of elements in the
computation exceeds the number you specify, IDL will not use the thread pool for the
computation. Setting this value to 0 removes any limit on the maximum number of
elements, and any computation with at least TPOOL_MIN_ELTS will use the thread
pool.

This keyword overrides the default value, given by !CPU.TPOOL_MAX_ELTS. See
“Possible Drawbacks to the Use of the IDL Thread Pool” in Chapter 14 of the
Building IDL Applications manual for discussion of the circumstances under which it
may be useful to specify a maximum number of elements.

TPOOL_MIN_ELTS

Set this keyword to a non-zero value to set the minimum number of data elements
involved in a computation that uses the thread pool. If the number of elements in the
computation is less than the number you specify, IDL will not use the thread pool for
the computation. Use this keyword to prevent IDL from using the thread pool on
tasks that are too small to benefit from it.

This keyword overrides the default value, given by !CPU.TPOOL_MIN_ELTS. See
“Possible Drawbacks to the Use of the IDL Thread Pool” in Chapter 14 of the
Building IDL Applications manual for discussion of the circumstances under which it
may be useful to specify a minimum number of elements.

TPOOL_NOTHREAD

Set this keyword to explicitly prevent IDL from using the thread pool for the current
computation. If this keyword is set, IDL will use the non-threaded implementation of
the routine even if the current settings of the !CPU system variable would allow use
of the threaded implementation.

This keyword overrides the default value, given by !CPU.TPOOL_NTHREADS. See
“Possible Drawbacks to the Use of the IDL Thread Pool” in Chapter 14 of the
Building IDL Applications manual for discussion of the circumstances under which it
may be useful to disable use of the thread pool entirely.
IDL Reference Guide

Appendix D:

System Variables
The following topics are included in this appendix:
What Are System Variables? 3894
Constant System Variables 3895
Error Handling System Variables 3897

IDL Environment System Variables 3902
Graphics System Variables 3913
IDL Reference Guide 3893

3894 Appendix D: System Variables
What Are System Variables?

System variables are a special class of predefined variables available to all program
units. Their names always begin with the exclamation mark character (!). System
variables are used to set the options for plotting, to set various internal modes, to
return error status, etc.

System variables have a predefined type and structure that cannot be changed. When
an expression is stored into a system variable, it is converted to the variable type, if
necessary and possible. Certain system variables are read only, and their values
cannot be changed. The user can define new system variables with the DEFSYSV
procedure.
What Are System Variables? IDL Reference Guide

Appendix D: System Variables 3895
Constant System Variables

The following system variables contain pre-defined constants or values for use by
IDL routines. System variables can be used just like other variables. For example, the
command:

PRINT, ACOS(A) * !RADEG

converts a result expressed in radians to one expressed in degrees.

!DPI

A read-only variable containing the double-precision value of pi (π).

!DTOR

A read-only variable containing the floating-point value used to convert degrees to
radians (π/180 ≅ 0.01745).

!MAP

An array variable containing the information needed to effect coordinate conversions
between points of latitude and longitude and map coordinates. The values in this
array are established by the MAP_SET procedure; the user should not change them
directly.

!PI

A read-only variable containing the single-precision value of pi (π).

!RADEG

A read-only variable containing the floating-point value used to convert radians to
degrees (180/π ≅ 57.2958).

!VALUES

A read-only variable containing the IEEE single- and double-precision floating-point
values Infinity and NaN (Not A Number). !VALUES is a structure variable with the
following fields:
IDL Reference Guide Constant System Variables

3896 Appendix D: System Variables
** Structure !VALUES, 4 tags, length=24:
F_INFINITY FLOAT Infinity
F_NAN FLOAT NaN
D_INFINITY DOUBLE Infinity
D_NAN DOUBLE NaN

where Infinity is the value Infinity and NaN is the value Not A Number. For more
information on these special floating-point values, see “Special Floating-Point
Values” in Chapter 18 of the Building IDL Applications manual.
Constant System Variables IDL Reference Guide

Appendix D: System Variables 3897
Error Handling System Variables

The following system variables are either set by IDL when an error condition occurs
or used by IDL when displaying information about errors.

!ERR

This system variable is now obsolete and has been replaced by the !ERROR_STATE
system variable. Code that uses the !ERR system variable will continue to function as
before, but all new code should use !ERROR_STATE.CODE.

!ERROR_STATE

A structure variable which contains the status of the last error message.
!ERROR_STATE includes the following fields:

** Structure !ERROR_STATE, 8 tags, length=112, data length=108:
NAME STRING 'IDL_M_SUCCESS'
BLOCK STRING 'IDL_MBLK_CORE'
CODE LONG 0
SYS_CODE LONG Array[2]
SYS_CODE_TYPE STRING ''
MSG STRING ''
SYS_MSG STRING ''
MSG_PREFIX STRING '% '

• NAME: A read-only string variable containing the error name of the IDL-
generated component of the last error message.

• BLOCK: A read-only string variable containing the name of the message block
for the last error message’s IDL-generated component.

Note
See the External Development Guide for more information about blocks.

• CODE: A long-integer variable containing the error code of the last error’s
IDL-generated component.

• SYS_CODE: A long-integer variable containing the error code of the last
error’s operating system-generated component, if it exists.

For historical reasons, SYS_CODE is a two-element longword array. The first
element of the array (that is, SYS_CODE[0]) contains the OS-defined error
code. The second element of the array is not used, and always contains zero.
IDL Reference Guide Error Handling System Variables

3898 Appendix D: System Variables
Either !ERROR_STATE.SYS_CODE or !ERROR_STATE.SYS_CODE[0]
will return the relevant error code.

• SYS_CODE_TYPE: A string describing the type of system code contained in
SYS_CODE. A null string in this field indicates that there is no system code
corresponding to the current error. The possible non-NULL values are:

• MSG: A read-only string variable containing the text of the last IDL-generated
error message.

• SYS_MSG: A read-only string variable containing the text of the last error’s
operating system-generated component, if it exists.

• MSG_PREFIX: A string variable containing the prefix string used for error
messages.

This system variable replaces !ERROR, !ERR_STRING, !MSG_PREFIX,
!SYSERR_STRING, and !SYSERROR, and includes two new fields: error name and
block name. For a more detailed explanation of !ERROR_STATE, see “Error
Handling” in Chapter 18 of the Building IDL Applications manual.

!ERROR

This system variable is now obsolete and has been replaced by the !ERROR_STATE
system variable. Code that uses the !ERROR system variable will continue to function
as before, but we suggest that all new code use !ERROR_STATE.CODE.

!ERR_STRING

This system variable is now obsolete and has been replaced by the !ERROR_STATE
system variable. Code that uses the !ERR_STRING system variable will continue to
function as before, but we suggest that all new code use !ERROR_STATE.MSG.

Value Meaning

errno Unix/Posix system error

win32 Microsoft Windows Win32 system error

winsock Microsoft Windows sockets library error

Table D-1: SYS_COD_TYPE Values
Error Handling System Variables IDL Reference Guide

Appendix D: System Variables 3899
!EXCEPT

An integer variable that controls when IDL checks for invalid mathematical
computations (exceptions), such as division by zero. The three allowed values are:

For more information on invalid mathematical computations and error reporting, see
“Math Errors” in Chapter 18 of the Building IDL Applications manual.

The value of !EXCEPT is used by the CHECK_MATH function to determine when to
return errors. See “CHECK_MATH” on page 226 for details.

Note
In versions of IDL up to and including IDL 4.0.1, the default exception handling
was functionally identical to setting !EXCEPT=2.

!MOUSE

A structure variable that contains the status from the last cursor read operation.
!MOUSE has the following fields:

** Structure !MOUSE, 4 tags, length=16:
X LONG 511
Y LONG 252
BUTTON LONG 4
TIME LONG 1428829775

• X and Y: Contain the location (in device coordinates) of the cursor when the
mouse button was pressed.

• BUTTON: Contains

• 1 (one) if the left mouse button was pressed,

Value Description

0 Never report exceptions.

1 Report exceptions when the interpreter is returning to an
interactive prompt (the default).

2 Report exceptions at the end of each IDL statement. Note that
this slows IDL by roughly 5% compared to setting
!EXCEPT=1.

Table D-2: EXCEPT Values
IDL Reference Guide Error Handling System Variables

3900 Appendix D: System Variables
• 2 (two) if the middle mouse button was pressed

• 4 (four) if the right mouse button was pressed.

• TIME: Contains the number of milliseconds since a base time.

See “CURSOR” on page 344 for details on reading the cursor position.

!MSG_PREFIX

This keyword is now obsolete and has been replaced by the !ERROR_STATE system
variable. Code that uses the !MSG_PREFIX system variable will continue to function
as before, but we suggest that all new code use !ERROR_STATE.MSG_PREFIX.

!SYSERROR

This keyword is now obsolete and has been replaced by the !ERROR_STATE system
variable. Code that uses the !SYSERROR system variable will continue to function as
before, but we suggest that all new code use !ERROR_STATE.SYS_CODE.

!SYSERR_STRING

This keyword is now obsolete and has been replaced by the !ERROR_STATE system
variable. Code that uses the !SYSERR_STRING system variable will continue to
function as before, but we suggest that all new code use !ERROR_STATE.SYS_MSG.

!WARN

A structure variable that causes IDL to print warnings to the console or command log
when obsolete IDL features are found at compile time. !WARN has the following
fields:

** Structure !WARN, 3 tags, length=3:
OBS_ROUTINES BYTE 0
OBS_SYSVARS BYTE 0
PARENS BYTE 0

Setting each of the three fields to 1 (one) generates a warning for a different type of
obsolete code. If the OBS_ROUTINES field is set equal to one, IDL generates
warnings when it encounters references to obsolete internal or library routines. If the
OBS_SYSVARS field is set equal to one, IDL generates warnings when it encounters
references to obsolete system variables. If the PARENS field is set equal to one, IDL
generates warnings when it encounters a use of parentheses to specify an index into
an array.
Error Handling System Variables IDL Reference Guide

Appendix D: System Variables 3901
No warnings are generated when the fields of the !WARN structure are set equal to
zero (the default).
IDL Reference Guide Error Handling System Variables

3902 Appendix D: System Variables
IDL Environment System Variables

The following system variables contain information about IDL’s configuration.

!CPU

IDL can use multiple system processors to perform some computations in parallel.
See Chapter 14, “Multithreading in IDL” in the Building IDL Applications manual
for additional information.

The !CPU system variable supplies information about the state of the system
processor, and of IDL's use of it. !CPU is readonly, and cannot be modified directly.
Use the CPU procedure to modify values contained in !CPU.

The !CPU structure is defined as follows:

{ !CPU, HW_VECTOR:0L, VECTOR_ENABLE:0L, HW_NCPU:0L,
TPOOL_NTHREADS:0L, TPOOL_MIN_ELTS:0L, TPOOL_MAX_ELTS:0L }

The meaning of the fields of !CPU are given in the following table.!

Field Meaning

HW_VECTOR True (1) if the system supports a vector unit (e.g.
Macintosh Altivec/Velocity Engine). False (0)
otherwise.

Note - This value is currently always 0 (False) on
platforms other than Macintosh.

VECTOR_ENABLE True (1) if IDL will use a vector unit, if such a unit is
available on the current system, and False (0)
otherwise.

Note - This value is currently always 0 (False) on
platforms other than Macintosh.

HW_NCPU The number of CPUs contained in the system on
which IDL is currently running.

Table D-3: Meaning of !CPU fields
IDL Environment System Variables IDL Reference Guide

Appendix D: System Variables 3903
!DIR

A string variable containing the path to the main IDL directory.

TPOOL_NTHREADS The number of threads that IDL will use in thread
pool computations. The default is to use HW_NCPU
threads, so that each thread will have the potential to
run in parallel with the others. For numerical
computation, there is no benefit to using more threads
than your system has CPUs. However, depending on
the size of the problem and the number of other
programs running on the system, there may be a
performance advantage to using fewer CPUs.

TPOOL_MIN_ELTS The number of elements in a computation that are
necessary before IDL will use the thread pool to
perform the work. For fewer than
TPOOL_MIN_ELTS, the main IDL thread will
simply perform the work without using the thread
pool. It is important not to use the thread pool for
small tasks because the overhead of threading will not
be offset by the overhead incurred by operation of the
pool, and the overall computation will go slower than
if threading is not used.

TPOOL_MAX_ELTS The maximum number of elements in a computation
for which IDL will use the thread pool. If this value is
0 (zero) (the default), then no limit is imposed and any
computation with at least TPOOL_MIN_ELTS is a
candidate for the thread pool. If your computation is
too large for the physical memory available on the
system, the virtual memory system of the operating
system will begin paging. Under such conditions, the
performance of the thread pool can be worse than that
of a single threaded computation because the threads
end up fighting each other for access to memory.
TPOOL_MAX_ELTS can be used to prevent this.

Field Meaning

Table D-3: Meaning of !CPU fields (Continued)
IDL Reference Guide IDL Environment System Variables

3904 Appendix D: System Variables
!DLM_PATH

Significant portions of IDL’s built in functionality are packaged in the form of
Dynamically Loadable Modules (DLMs). DLMs correspond to UNIX sharable
libraries or Windows DLLs, depending on the operating system in use. At startup,
IDL searches for DLM definition files (which end in the .dlm suffix) and makes note
of the routines supplied by each DLM. If such are routine is called, IDL loads the
DLM that supplies it into memory. To see a list of the DLMs that IDL knows about,
use HELP, /DLM (see “HELP” on page 800 for more information).

!DLM_PATH is initialized from the environment variable IDL_DLM_PATH at
startup. This initialization is similar to that performed for IDL_PATH, (see “!PATH”
on page 3909), including recursive path expansion denoted with a leading “+” but not
including any use of IDLDE preferences settings. See “Environment Variables Used
by IDL” in Chapter 1 of the Using IDL manual for details on setting the
IDL_DLM_PATH environment variable.

If the IDL_DLM_PATH environment variable is not defined, IDL supplies a default
that contains the directory in the IDL distribution where the DLMs supplied by RSI
reside. Once !DLM_PATH is expanded, IDL uses it as the list of places to look for
DLM definition files.

Since all DLM searching happens once at startup time, it would be meaningless to
change the value of !DLM_PATH afterwards. For this reason, it is a read-only system
variable and cannot be assigned to. The value of !DLM_PATH is useful because it
shows you where IDL looked for DLMs when it started.

Using Path Definition Tokens to Load a DLM Path

Note that using the <IDL_BIN_DIRNAME> token in the IDL_DLM_PATH
environment variable can be useful for distributing packages of DLMs with support
for multiple operating system and hardware combinations. This token is described in
“The Path Definition String” under EXPAND_PATH.

For example, assume that you have your DLMs installed in /usr/local/mydlm,
with support for each platform in a subdirectory using the same naming convention
that IDL uses for the platform dependant subdirectories underneath the bin directory
of the IDL distribution. The following line, which might be located in a file executed
by a UNIX shell when you log in (.cshrc, .login), will add the location of the
proper DLM for your current system to IDL's !DLM_PATH at startup:

% setenv IDL_DLM_PATH
"/usr/local/mydlm/<IDL_BIN_DIRNAME>:<IDL_DEFAULT>"
IDL Environment System Variables IDL Reference Guide

Appendix D: System Variables 3905
(all on a single line). Setting the Windows environment variable IDL_DLM_PATH to
a similar string would produce the same result on a Windows system.

Similarly, the <IDL_VERSION_DIRNAME> token can be useful for distributing
packages of DLMs with support for multiple IDL versions, operating systems, and
hardware platforms. This token is described in “The Path Definition String” under
EXPAND_PATH.

For example, assume that you have your DLMs installed in /usr/local/mydlm.
Within the mydlm subdirectory would be a directory for each supported version of
IDL. Within each of those subdirectories would be a subdirectory for each operating
system and hardware combination supported by that version of IDL. The following
line, which might be located in a file executed by your shell when you log in
(.cshrc, .login) will add the location of the proper DLM for your current system
to IDL's !DLM_PATH at startup:

% setenv IDL_DLM_PATH
"/usr/local/mydlm/<IDL_VERSION_DIRNAME>/<IDL_BIN_DIRNAME>:<IDL_DEFAULT>"

(all on a single line). Setting the Windows environment variable IDL_DLM_PATH to
a similar string would produce the same result on a Windows system.

!EDIT_INPUT

An integer variable indicating whether keyboard line editing is enabled (when set to a
non-zero value) or disabled (when set to zero). By default, !EDIT_INPUT is set equal
to one, and line editing is enabled.

By default, IDL saves the last 20 command lines. You can change the number of
command lines saved in the recall buffer by setting !EDIT_INPUT equal to the
number of lines you would like to save. In order for the change to take effect, IDL
must be able to process the assignment statement before providing a command
prompt. This means that you must put the assignment statement in the IDL startup
file. (See “Startup Files” in Chapter 1 of the Using IDL manual for more information
on startup files.)

!HELP_PATH

A string variable listing the directories IDL will search for online help files. On
UNIX systems, help files must be Adobe Portable Document Format (.pdf) files or
HTML (.html or .htm) files. On Windows systems, help files can be HTML Help
(.chm), Windows Help (.hlp), Portable Document Format (.pdf), or HTML
(.html or .htm) files.
IDL Reference Guide IDL Environment System Variables

3906 Appendix D: System Variables
!HELP_PATH is initialized from the environment variable IDL_HELP_PATH at
startup. This initialization is similar to that performed for IDL_PATH (see “!PATH”
on page 3909), including recursive path expansion denoted with a leading “+” but not
including any use of IDLDE preferences settings. See “Environment Variables Used
by IDL” in Chapter 1 of the Using IDL manual for details on setting the
IDL_HELP_PATH environment variable

If the IDL_HELP_PATH environment variable is not defined, IDL supplies a default
that contains the directory in the IDL distribution where the help files supplied by
RSI reside.

To change the value of !HELP_PATH for the duration of an IDL session, simply set
the variable equal to a new string containing the desired path. See “Changing the
Value of !PATH After IDL Starts” on page 3910 for tips that also apply to setting the
value of !HELP_PATH.

!JOURNAL

A read-only long-integer variable containing the logical unit number of the file used
for journal output.

!MAKE_DLL

The MAKE_DLL procedure and the CALL_EXTERNAL function’s AUTO_GLUE
keyword use the standard system C compiler and linker to generate sharable libraries
that can be used by IDL in various contexts (CALL_EXTERNAL, DLMs,
LINKIMAGE). There is a great deal of variation possible in the use of these tools
between different platforms, operating system versions, and compiler releases. The
!MAKE_DLL system variable is used to configure how IDL uses them for the current
platform.

The !MAKE_DLL structure is defined as follows:

{ !MAKE_DLL, COMPILE_DIRECTORY:’’, COMPILER_NAME:’’, CC:’’, LD:’’}

The meaning of the fields of !MAKE_DLL are given in the following table. When
expanding !MAKE_DLL.CC and !MAKE_DLL.LD, IDL substitutes text in place of
the PRINTF style codes described in the following table. These codes are case-
insensitive, and can be either upper or lower case.

It is possible to use C compilers other than the one assumed by RSI in !MAKE_DLL
to build sharable libraries. To do so, you can alter the contents of !MAKE_DLL or
use the CC and/or LD keyword to MAKE_DLL and CALL_EXTERNAL. Please
understand that RSI cannot and does not maintain a list of all possible compilers and
the necessary compiler options. This information is available in your compiler and
IDL Environment System Variables IDL Reference Guide

Appendix D: System Variables 3907
system documentation. It is the programmers responsibility to understand the rules
for their chosen compiler.

Field Meaning

COMPILE_DIRECTORY IDL requires a place to create the intermediate files
necessary to build a sharable library, and possibly the
final library itself. Unless told to use an explicit
directory, it uses the directory given by the
COMPILE_DIRECTORY field of !MAKE_DLL. If
the IDL_MAKE_DLL_COMPILE_DIRECTORY
environment variable is set, IDL uses its value to
initialize the COMPILE_DIRECTORY field.
Otherwise, IDL supplies a standard location.

Note - If the directory given by
!MAKE_DLL.COMPILE_DIRECTORY does not
exist when IDL needs it, IDL automatically creates it
for you if possible.

COMPILER_NAME A string containing the name of the C compiler used
by RSI to build the currently running IDL. This field
is not used by IDL, and exists solely for informational
purposes and to help the end user decide which C
compiler to install on their system.

CC A string used by IDL as a template to construct the
command for using the C compiler. This template
uses PRINTF style substitution codes, as described in
the following table.

LD A string used by IDL as a template to construct the
command for using the linker. This template uses
PRINTF style substitution codes, as described in the
following table.

Table D-4: Meaning of !MAKE_DLL Fields
IDL Reference Guide IDL Environment System Variables

3908 Appendix D: System Variables
The following table describes the substitution codes for the CC and LD fields:

!MORE

An integer variable indicating whether IDL should paginate help output sent to a tty
device. Setting !MORE to zero (0) prevents IDL from paginating the output text. A
non-zero value (the default) causes IDL to display output text one screen at a time.

Code Meaning

%B %b The base name of a C file to compile. For example, if the C file
is moose.c, then %B substitutes moose.

%C %c The name of the C file.

%E %e The name of the linker options file. This file, which is
automatically generated by IDL as needed, is used to control
the linker. Under UNIX, the system documentation refers to
this as an export file, or a linker map file. Microsoft Windows
calls it a .DEF file.

%F %f This substitution code is no longer meaningful, and will be
ignored.

%L %l The name of the resulting sharable library. IDL constructs this
name by using the base name (%B) and adding the appropriate
suffix for the current platform (.dll, .so, .sl, .exe, ...).

%O %o An object file name. IDL constructs this name by using the
base name (%B) and adding the appropriate suffix for the
current platform (.o, .obj).

%X %x When expanding !MAKE_DLL.CC, any text supplied via the
EXTRA_CFLAGS keyword to MAKE_DLL or
CALL_EXTERNAL is inserted in place of %X. IDL does not
interpret this text. It is the users responsibility to ensure that it
is meaningful in the command. When expanding
!MAKE_DLL.LD, the text from the EXTRA_LFLAGS
keyword is substituted. The primary use for this code is to
include necessary header include directories and link libraries.

%% Replaced with a single % character.

Table D-5: Description of CC and LD Field Codes
IDL Environment System Variables IDL Reference Guide

Appendix D: System Variables 3909
!PATH

A string variable listing the directories IDL will search for libraries, include files, and
executive commands.

Note
The current directory is always searched before consulting !PATH.

!PATH is initialized from the environment variable IDL_PATH when IDL starts. See
“Environment Variables Used by IDL” in Chapter 1 of the Using IDL manual for
details on setting the IDL_PATH environment variable.

Note
If the IDL_PATH environment variable does not exist, IDL uses the value set in the
Path tab of the Preferences dialog of the IDLDE. If no preference value is set, or if
you are using the UNIX command-line interface rather than the IDLDE, IDL uses a
default value in order to initialize !PATH.

Note on Path Expansion

When IDL starts, it reads the IDL_PATH environment variable (or the default value,
if IDL_PATH does not exist) and builds a value to be stored in !PATH from the
specified initialization value. While the initialization value can consist of a normal
path string specifying all directories to be included in !PATH, it can also take
advantage of several special values that IDL uses to dynamically create the value of
!PATH. These values (the “+” symbol and the “<IDL_*>” strings) are described in
detail in “The Path Definition String” under “EXPAND_PATH” in the IDL Reference
Guide manual.

Path Caching

By default, as IDL searches directories included in the !PATH system variable for
.pro or .sav files to compile, it creates an in-memory list of all .pro and .sav
files contained in each directory. When IDL later searches for a .pro or .sav file,
before attempting to open the file in a given directory, IDL checks the path cache to
determine whether the directory has already been cached. If the directory is included
in the cache, IDL uses the cached information to determine whether the file will be
found in that directory, and will only attempt to open the file there if the cache tells it
that the file exists. By eliminating unnecessary attempts to open files, the path cache
speeds the path searching process. See “PATH_CACHE” in the IDL Reference Guide
manual for details.
IDL Reference Guide IDL Environment System Variables

3910 Appendix D: System Variables
Changing the Value of !PATH After IDL Starts

Once IDL has started, you can alter the value of !PATH by setting it to a new string
value. For example, on a UNIX system, to add a directory to !PATH for the duration
of an IDL session, you would use a command like the following:

!PATH = '/usr2/project/idl_files:' + !PATH

Keep the following in mind when changing the value of !PATH by setting its value to
a new string:

• Remember to use the proper path string separator character for your platform.
If you are writing a cross-platform application that changes !PATH, you may
want to use code that looks something like this:

pathsep = PATH_SEP(/SEARCH_PATH)
!PATH = 'new_path' + pathsep + !PATH

where new_path is the path to the directory you want to add.

• You can use the EXPAND_PATH function to generate a path string. This
method allows you to specify one or more directories and let IDL figure out
whether those directories contain .pro or .sav files. It also allows you to use
the “+” character path expansion technique. For example, the following
commands add all directories below the new_path directory that contain .pro
or .sav files to !PATH:

pathsep = PATH_SEP(/SEARCH_PATH)
!PATH = EXPAND_PATH('+new_path') + pathsep + !PATH

See “EXPAND_PATH” in the IDL Reference Guide manual for details.

!PROMPT

A string variable containing the text string used by IDL to prompt the user for input.
The default is IDL>.

!QUIET

A long-integer variable indicating whether informational messages should be printed
(0) or suppressed (nonzero). By default, !QUIET is set to zero.

!VERSION

A structure variable containing information about the version of IDL in use. The
structure is defined as follows:
IDL Environment System Variables IDL Reference Guide

Appendix D: System Variables 3911
{ !VERSION, ARCH:'', OS:'', OS_FAMILY:'', OS_NAME:'', $
RELEASE:'', BUILD_DATE:'', MEMORY_BITS:0, FILE_OFFSET_BITS:0 }

The meaning of the fields of !VERSION are given in the following table.

Field Meaning

ARCH CPU hardware architecture of the system.

OS The vendor name of the operating system (for example:
AIX, HP-UX, IRIX, linux, MacOS, OSF, sunos,
Win32). This is the name of the underlying operating
system kernel (not necessarily of the overall operating
environment: see OS_NAME). Once an OS name is
assigned to a platform by RSI, it is not altered in
subsequent releases. This makes it safe for use in IDL
programs that need to distinguish between platforms.
RSI recommends that you first consider using the
OS_FAMILY field before using the OS field, as most
programs are mainly concerned with high level platform
differences.

OS_FAMILY The generic name of the operating system (UNIX,
Windows). RSI recommends that whenever possible
this field (rather than OS or OS_NAME) be used in
code that must distinguish between platforms.

OS_NAME The vendor’s name for the operating system
environment, as used by the vendor for casual
descriptive and promotional purposes. For example, on
Sun workstations, the name of the operating system
kernel (!VERSION.OS) is “sunos”, whereas the name
of the overall system (!VERSION.OS_NAME) is
“Solaris”. Vendors change their descriptive environment
names from time to time, and RSI updates the
OS_NAME field to reflect this. As a result, RSI
recommends that IDL users restrict their use of this field
to descriptive textual uses, and that the OS_FAMILY or
OS fields of !VERSION be used in code that must
distinguish between platforms.

RELEASE IDL version number.

Table D-6: Meaning of the !VERSION Fields
IDL Reference Guide IDL Environment System Variables

3912 Appendix D: System Variables
If you need to differentiate between different IDL versions in your code, use
!VERSION.OS_FAMILY. At present, two operating system families are supported:
UNIX and Windows. For even more detail, you can use !VERSION.OS.

BUILD_DATE The date the IDL executable was compiled, in the
format dictated by ANSI C for the __DATE__ macro.

MEMORY_BITS The number of bits used to address memory. Possible
values are 32 or 64. The number of bits used to address
memory places a theoretical upper limit on the amount
of memory available to IDL.

FILE_OFFSET_BITS The number of bits used to position file offsets. Possible
values are 32 or 64. The number of bits used to position
files places a theoretical upper limit on the largest file
IDL can access.

Field Meaning

Table D-6: Meaning of the !VERSION Fields
IDL Environment System Variables IDL Reference Guide

Appendix D: System Variables 3913
Graphics System Variables

The following system variables control various IDL Direct Graphics functions. These
system variables are structures that contain many tags. For example, the command

!P.TITLE = 'Cross Section'

sets the default plot title.

Many of the functions of the graphics keywords described in Appendix B, “Graphics
Keywords”, are also controlled by the system variables !P, !X, !Y, and !Z.

You can change the default style of plots, fonts, etc., by setting the corresponding
field in the appropriate system variable. Also, some effects that persist longer than
one call are controlled only by system variables. The field !P.MULTI is one example.

!C System Variable

The cursor system variable. Currently, the only function of this system variable is to
contain the subscript of the largest or smallest element found by the MAX and MIN
functions. That information is better obtained through the optional output arguments
to those routines. !C is included only for compatibility with old versions of IDL.

!D System Variable

This system variable is a structure that contains information about the current
graphics output device (or window, on a windowing system). Fields, in alphabetical
order, are:

FILL_DIST

The line interval, in device coordinates, required to obtain a solid fill.
IDL Reference Guide Graphics System Variables

3914 Appendix D: System Variables
FLAGS

A longword of flags that provide information about the current device. Each bit is a
flag encoded as shown in the following table.

Bit Value Function

0 1 Device has scalable pixel size (e.g., PostScript).

1 2 Device can output text at an arbitrary angle using hardware.

2 4 Device can control line thickness with hardware.

3 8 Device can display images.

4 16 Device supports color.

5 32 Device supports polygon filling with hardware.

6 64 Device hardware characters are monospace.

7 128 Device can read pixels (i.e., it supports TVRD).

8 256 Device supports windows.

9 512 Device prints black on a white background (e.g., printers are
plotters).

10 1024 Device has no hardware characters.

11 2048 Device does line-fill style polygon filling in hardware.

12 4096 Device will apply Hershey-style embedded formatting
commands to device fonts.

13 8192 Device is a pen plotter.

14 16384 Device can transfer 16-bit pixels.

15 32768 Device supports Kanji characters.

16 65536 Device supports widgets.

17 131072 Device has Z-buffer.

18 262144 Device supports TrueType fonts.

Table D-7: !D.FLAGS Bit Definitions
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 3915
To test whether a particular bit is set on your system, use an IDL command like the
following:

IF (!D.FLAGS AND value) NE 0 THEN PRINT, 'Bit is set.'

where value is the value associated with the bit you wish to examine. For example, to
check whether the device supports color, use:

IF (!D.FLAGS AND 16) NE 0 THEN PRINT, 'Bit is set.'

N_COLORS

The number of allowed color values. In the case of devices with windows, this field is
set after the window system is initialized. For a monochrome system,
!D.N_COLORS is 2. For TrueColor displays, !D.N_COLORS is 2^24-1 (roughly
16.7 million colors).

NAME

A string containing the name of the device.

ORIGIN

A two-element integer array containing the current pan/scroll offset. An offset of (0,
0) is normal. Positive offsets shift the display memory to the right and upwards. This
field has relevance only with devices with hardware pan and scroll abilities.

TABLE_SIZE

The number of color table indices.

Note
For TrueColor visuals, !D.TABLE_SIZE will always be 256. If the visual depth is
less than 24 bits, IDL emulates 256 entries.

UNIT

The logical number of the file open for output by the current graphics device. This
field only has meaning for devices that write to a file if the file is accessible to the
user from IDL, and is 0 if no file is open.

For example, the PostScript driver fills this field with the unit number of the file open
for PostScript output. In the case of Tektronix output to a file, !D.UNIT may be set to
either + or – the logical unit number.
IDL Reference Guide Graphics System Variables

3916 Appendix D: System Variables
WINDOW

The index of the currently open window. This field is set to -1 if no window is
currently open. This field is used only with devices that support windows.

X_CH_SIZE, Y_CH_SIZE

The width and height of the rectangle that encloses the “average” character in the
current font, in device units (usually pixels).

These values describe the size of the rectangle that contains the “average” character
in the current font. (It is not important what the “average” character is; it is used only
to calculate a scaling factor that will be applied to all of the characters in the font.)
The first element specifies the width of the rectangle in device units (usually pixels),
and the second element specifies the height.

For vector and TrueType fonts, the height of the “average” character is determined by
the width of the rectangle. The aspect ratio of the “average” character remains fixed;
the character is scaled so that its width is the value of X_CH_SIZE. The resulting
scale factor is then applied to all of the characters in the font. The amount of spacing
between lines is determined explicitly by the value of Y_CH_SIZE.

For device fonts, the character size is fixed. When the device font system is in use, the
value of X_CH_SIZE is silently ignored, and only the Y_CH_SIZE value is used.

X_PX_CM, Y_PX_CM

The approximate number of pixels per centimeter in the X and Y directions.

X_SIZE, Y_SIZE

The total size of the display or window in the X and Y directions, in device units.

X_VSIZE, Y_VSIZE

The size of the visible area of the display or window. This area can be smaller than
the total size fields.

ZOOM

This field contains the current X and Y zoom factors for the display or window. This
field has relevance only with devices equipped with hardware zoom. A zoom factor
of [1, 1] is normal.
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 3917
!ORDER System Variable

Controls the direction of image transfers when using the TV, TVSCL, and TVRD
procedures. If !ORDER is 0, images are transferred from bottom to top, i.e. the row
with a 0 subscript is written on the bottom. Setting !ORDER to 1, transfers images
from top to bottom.

!P System Variable

The main plotting system variable structure. All fields, except !P.MULTI, have a
directly corresponding keyword parameter in the plot procedures: PLOT, OPLOT,
CONTOUR, and SURFACE. Fields, in alphabetical order, are:

BACKGROUND

The background color index. When erasing the screen or page, all pixels are set to
this color. The default value is 0. Not all devices support this feature.

CHANNEL

The default source or destination channel. This field has meaning only on graphics
devices that contain multiple display channels, and is device dependent. It may
contain either a channel mask or index.

CHARSIZE

The overall character size of all annotations when Hershey fonts are selected. This
field has no effect on the character size when hardware (device) fonts are selected,
except for devices that support scalable pixel sizes (i.e., Postscript). Note, however,
that !P.CHARSIZE always affects the layout and scaling of a plot, regardless of the
font system being used. The default size is 1.0.

CHARTHICK

An integer specifying the thickness of the lines used to draw the characters when
using the vector drawn fonts. This field has no effect on the appearance of characters
drawn with the hardware fonts. Normal thickness is 1.

CLIP

The device coordinates of the clipping window, a 6-element vector of the form
[x0, y0, x1, y1, z0, z1], specifying two opposite corners of the volume to be displayed.
In the case of two-dimensional displays, the Z coordinates can be omitted. Normally,
the clipping window coordinates are implicitly set by PLOT, CONTOUR,
IDL Reference Guide Graphics System Variables

3918 Appendix D: System Variables
SHADE_SURF, and SURFACE to correspond to the plot window. You may also
manually set !P.CLIP if you want to specify a different rectangular clipping window
or if the clipping coordinates have not yet been set in the current IDL session.

COLOR

The default color index.

FONT

An integer that specifies the graphics text font system to use. Set FONT equal to -1 to
selects the Hershey character fonts, which are drawn using vectors. Set FONT equal
to 0 (zero) to select the device font of the output device. Set FONT equal to 1 (one) to
select the TrueType font system. See Appendix H, “Fonts”, for a complete
description of IDL’s font systems.

LINESTYLE

The default style of the lines used to connect points. A line style index of 0 yields a
solid line. See “LINESTYLE” on page 3875 for a description of the linestyles.

MULTI

!P.MULTI allows making multiple plots on a page or screen. It is a 5-element integer
array defined as follows:

!P.MULTI[0] contains the number of plots remaining on the page. If !P.MULTI[0] is
less than or equal to 0, the page is cleared, the next plot is placed in the upper left
hand corner, and !P.MULTI[0] is reset to the number of plots per page.

Setting !P.MULTI[0] to a value greater than zero can be used to manually set the
plotting area to a specific row and column. For example, to plot in the lower left
corner of a window of two rows and two columns, set !P.MULTI as follows:

!P.MULTI=[2,2,2]
PLOT, X, Y

!P.MULTI[1] is the number of plot columns per page. If this value is less than or
equal to 0, one is assumed. If more than two plots are ganged in either the X or Y
direction, the character size is halved.

!P.MULTI[2] is the number of rows of plots per page. If this value is less than or
equal to 0, one is assumed.

!P.MULTI[3] contains the number of plots stacked in the Z dimension.
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 3919
!P.MULTI[4] is 0 to make plots from left to right (column major), and top to bottom,
and is 1 to make plots from top to bottom, left to right (row major).

Note
If !P.MULTI[0] is zero, an erase will occur before the current plot is displayed
(unless the /NOERASE keyword is set). This is true no matter whether
!P.POSITION and/or !P.REGION are set.

For example, to gang two plots across the page:

!P.MULTI = [0, 2, 0, 0, 0]
PLOT, X0, Y0 ;Make left plot.
PLOT, X1, Y1 ;Right plot.

To gang two plots vertically:

!P.MULTI = [0, 0, 2, 0, 0]
PLOT, X0, Y0 ;Make top plot.
PLOT, X1, Y1 ;Bottom plot.

To make four plots per page, two across and two up and down:

!P.MULTI = [0, 2, 2, 0, 0]

and then call plot four times.

To reset !P.MULTI back to the normal one plot per page:

!P.MULTI = 0

NOCLIP

A field which, if set, inhibits the clipping of the graphic vectors and vector-drawn
text. By default, most routines clip to the plotting window, with the exception of
PLOTS and XYOUTS. !P.CLIP contains the clipping rectangle.

NOERASE

Set this field to a non-zero value to inhibit erasing the screen before plotting.

NSUM

The number of adjacent points to average to obtain a plotted point.

POSITION

Specifies the normalized coordinates of the rectangular plot window. This is a four
element floating point vector (x0, y0, x1, y1), where (x0, y0) is the origin, and (x1, y1) is
the upper right corner.
IDL Reference Guide Graphics System Variables

3920 Appendix D: System Variables
!P.POSITION determines the plotting window if x0 does not equal x1, and the
POSITION keyword is not present. If set, it overrides the effect of the MARGIN and
!P.MULTI variables and keywords.

Note
If !P.POSITION (or the POSITION keyword) or !P.REGION is set, all but the first
element of !P.MULTI are ignored.

PSYM

The default plotting symbol index. Each point drawn by PLOT, PLOTS, and OPLOT
is marked with a symbol if this field is non-zero. The possible symbols are given in
“PSYM” on page 3878.

REGION

A four element vector that specifies the normalized coordinates of the rectangle
enclosing the plot region, which includes the plot data window and its surrounding
annotation area. It is in the same form as !P.POSITION, (x0, y0, x1, y1), where (x0, y0)
is the origin, and (x1, y1) is the upper right corner. It is ignored if !P.REGION[0] is
equal to !P.REGION[2].

Note
!P.POSITION (or the POSITION keyword) takes precedence over !P.REGION.

SUBTITLE

The plot subtitle, placed under the X axis label.

T

Contains the homogeneous 4 x 4 transformation matrix. This field is a two-
dimensional array of double-precision floating-point values. For more information
about transformations, refer to “Three-Dimensional Graphics” in Chapter 18 of the
Using IDL manual.

T3D

Enables the three-dimensional to two-dimensional transformation contained in the
homogeneous 4 by 4 matrix !P.T. Note that if T3D is set, !P.T must contain a valid
transformation matrix.
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 3921
THICK

The thickness of the lines connecting points. 1.0 is normal.

TITLE

The main plot title.

TICKLEN

The length of the tick marks, expressed as a fraction of the plot size (from 0.0 to 1.0).
The default is 0.02. A value of 0.5 makes a grid. Negative values make the tick marks
point outward.

!X, !Y, !Z System Variables

The system variables !X, !Y, and !Z, are structures of type AXIS, that affect the
appearance and scaling of the three axes. The fields for !X, !Y, and !Z have identical
fields with identical meanings and usage. In addition, almost all fields have
corresponding keyword parameters, with identical function, but with temporary
effect. For example, to suppress the minor tick marks on the X axis using the !X
system variable, you could use the command:

!X.MINOR = -1

To suppress the tick marks for just one call to plot, you could use the command:

PLOT, X, Y, XMINOR = -1

The name of the keyword parameter is simply the name of the system variable field,
prefixed with the letter X, Y, or Z.

The fields for these system variables, in alphabetical order are:

CHARSIZE

The size of the characters used to annotate the axis and its title when Hershey fonts
are selected. This field has no meaning when hardware (i.e. PostScript) fonts are
selected. This field is a scale factor applied to the global scale factor. For example,
setting !P.CHARSIZE to 2.0, and !X.CHARSIZE to 0.5 results in a character size of
1.0 for the X axis.

CRANGE

The output axis range. Setting this variable has no effect; set ![XYZ].RANGE to
change the range. ![XYZ].CRANGE[0]) always contains the minimum axis value,
IDL Reference Guide Graphics System Variables

3922 Appendix D: System Variables
and ![XYZ].CRANGE[1] contains the maximum axis value of the last plot before
extending the axes.

Note
If the axis is logarithmic, the CRANGE field reports the log (base 10) of the
minimum and maximum axis values.

Example 1:

;Create a 10-element array.
a = INDGEN(10)

;Plot the straight line.
PLOT, a

;Print the minimum and maximum axis values.
PRINT, !X.CRANGE

IDL prints:

0.00000 10.0000

Example 2:

;Plot a with logarithmic scaling on the X axis.
PLOT, a, /XLOG

;Print the minimum and maximum axis values.
PRINT, !X.CRANGE

The axis is scaled from 10-12 to 102. IDL prints:

-12.0000 2.00000

GRIDSTYLE

The index of the linestyle to be used for tick marks and grids. See “LINESTYLE” on
page 3875 for a description of the linestyles

MARGIN

A 2-element array specifying the margin on the left (bottom) and right (top) sides of
the plot window, in units of character size. The plot window is the rectangular area
that contains the plot data, i.e. the area enclosed by the axes.

The default values for !X.MARGIN are [10, 3] yielding a 10-character wide left
margin and a 3-character wide right margin. The values for !Y.MARGIN are [4, 2],
for a 4-character high bottom margin and a 2-character high top margin. While
specifying !Z.MARGIN will not cause an error, Z margins are currently ignored.
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 3923
When calculating the size and position of the plot window, IDL first determines the
plot region, the area enclosing the window plus the axis annotation and titles. It then
subtracts the appropriate margin from each side, obtaining the window.

Setting !P.POSITION, or specification of the POSITION parameter overrides the
effect of this field.

MINOR

The number of minor tick mark intervals. If !X.MINOR is 0, the default, the number
of minor tick intervals is automatically determined from the tick mark increment.
You can force a given number of minor tick intervals by setting this field to the
desired number. To suppress minor tick marks, set !X.MINOR to -1.

OMARGIN

A 2-element array specifying the “outer” margin on the left (bottom) and right (top)
sides of a multi-plot window, in units of character size. A multi-plot window is
created by setting the !P.MULTI system variable field. OMARGIN controls the
amount of space around the entire plot area, including individual plot margins set
with !X.MARGIN and !Y.MARGIN. The default values for !X.OMARGIN and
!Y.OMARGIN are [0, 0].

When calculating the size and position of the individual plots, IDL first determines
the plot region, the area enclosing the window plus the axis annotation and titles. It
then subtracts the appropriate margin from each side, obtaining the window.

Setting !P.POSITION, or specification of the POSITION parameter overrides the
effect of this field.

RANGE

The input axis range, a 2-element vector. The first element is the axis minimum, and
the second is the maximum. Set this field, or use the corresponding keyword
parameter, to specify the data range to plot. If axis end point rounding is selected (see
STYLE above), the final axis range may not be equal to this input range. The field
!X.CRANGE contains the axis range used for the plot before extending the axes. Set
both elements equal to 0 for automatic axis ranges:

!X.RANGE = 0

For example, to force the X axis to run from 5.5 to 8.3:

!X.RANGE = [5.5, 8.3]
PLOT, X, Y
IDL Reference Guide Graphics System Variables

3924 Appendix D: System Variables
Alternatively, by using keywords:

PLOT, X, Y, XRANGE=[5.5, 8.3]

Note that even though the range was set to (5.5, 8.3), the resulting plot has a range of
(5.5, 8.5), because axis rounding is the default.

REGION

Contains the normalized coordinates of the region. This field is similar to WINDOW,
in that it is set by the graphics procedures and is a 2-element floating point array. To
change the default plotting region, set !P.REGION.

S

The scaling factors for converting between data coordinates and normalized
coordinates (a 2-element array). The formula for conversion from data (Xd) to
normalized (Xn) coordinates is Xn = S1Xd + S0

If logarithmic scaling is in effect, substitute log10(Xd) for Xd.

The CONVERT_COORD function can be used to convert between coordinate
systems. The user should save and restore these fields when switching between
windows or devices with different sizes and/or scaling.

STYLE

The style of the axis encoded as bits in a longword. The axis style can be set to exact,
extended, none, or no box using this field. The following table lists the axis style bit
values:
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 3925
Note that this system variable field is set bitwise, so multiple effects can be set by
adding values together. For example, to make an X axis that is both exact (value 1)
and suppresses the box style (setting 8), set the !X.STYLE system variable to 1+8, or
9.

For example, to set the Y axis style to exact using the !Y system variable:

!Y.STYLE = 1

or by using a keyword parameter:

PLOT, X, Y, YSTYLE = 1

THICK

The thickness of the axis line. 1.0 is normal.

TICKFORMAT

Set this field to a format string or a string containing the name of a function that
returns a string to be used to format the axis tick mark labels.

See “[XYZ]TICKFORMAT” on page 3883 for more information.

Bit Value Function

0 1 Exact. By default, the end points of the axis are rounded in
order to obtain even tick increments. Setting this bit inhibits
rounding, making the axis fit the data range exactly.

1 2 Extend. If this bit is set, the axes are extended by 5% in each
direction, leaving a border around the data.

2 4 None. If this bit is set, the axis and its annotation are not
drawn.

3 8 No box. Normally, PLOT and CONTOUR draw a box-style
axis with the data window surrounded by axes.

4 16 Inhibits setting the Y axis minimum value to zero when the
data are all greater than 0. The keyword YNOZERO sets this
bit temporarily.

Table D-8: Axis Style Bit Values
IDL Reference Guide Graphics System Variables

3926 Appendix D: System Variables
TICKINTERVAL

A scalar indicating the interval between major tick marks for the first axis level. This
setting takes precedence over ![XYZ].TICKS.

For example, if !X.TICKUNITS=[“Seconds”, “Hours”, “Days”], and
!X.TICKINTERVAL=30, then the interval between major ticks for the first axis level
will be 30 seconds.

See “[XYZ]TICKINTERVAL” on page 3885 for more information.

TICKLAYOUT

Set this keyword to a scalar that indicates the tick layout style to be used to draw each
level of the axis.

See “[XYZ]TICKLAYOUT” on page 3886 for more information.

TICKLEN

The lengths of tick marks (expressed in normal coordinates) for the individual axes.

TICKNAME

The annotation for each tick. A string array of up to 60 elements. Setting elements of
this array allows direct specification of the tick label. If this element contains a null
string, the default value, IDL annotates the thick with its numeric value. Setting the
element to a 1-blank string suppresses the tick annotation.

For example, to produce a plot with an abscissa labeled with the days of the week:

;Set up X axis tick labels.
!X.TICKNAME = ['SUN', 'MON', 'TUE', 'WED', $

'THU', 'FRI', 'SAT']

;Use six tick intervals, requiring seven tick labels.
!X.TICKS = 6

;Plot the data, this assumes that Y contains 7 elements.
PLOT, Y

The same plot can be produced, using keyword parameters, with:

;Set fields, as above, only temporarily.
PLOT, Y, XTICKN = ['SUN', 'MON', 'TUE', 'WED',$

'THU', 'FRI', 'SAT'], XTICKS = 6
Graphics System Variables IDL Reference Guide

Appendix D: System Variables 3927
TICKS

The number of major tick intervals to draw for the axis. If !X.TICKS is set to 0, the
default, IDL will select from three to six tick intervals. Setting this field to n, where n
> 1, produces exactly n tick intervals, and n+1 tick marks. Setting this field equal to 1
suppresses tick marks.

TICKUNITS

Set this keyword to a string (or a vector of strings) indicating the units to be used for
axis tick labeling.

Note
The singular form of each of the time value strings is also acceptable (e.g,
!X.TICKUNITS='Day' is equivalent to !X.TICKUNITS='Days').

Note
To set the ![XYZ].TICKUNITS field to a single string, the following approach is
recommended:

!X.TICKUNITS = '' ; Clear all previous tick unit strings.

!X.TICKUNITS = ['Days'] ;Single unit string in array.

The following:

!X.TICKUNITS = 'Days'

will copy the 'Days' string to all levels, resulting in a multi-level axis.

See “[XYZ]TICKUNITS” on page 3887 for more information.

TICKV

An array of up to 60 elements containing the data values for each tick mark. You can
directly specify the location of each tick by setting !X.TICKS to the number of tick
marks (the number of intervals plus 1) and storing the data values of the tick marks in
!X.TICKV. If, as is true by default, !X.TICKV[0] is equal to !X.TICKV[1], IDL
automatically determines the value of the tick marks.

TITLE

A string containing the axis title.
IDL Reference Guide Graphics System Variables

3928 Appendix D: System Variables
TYPE

The type of axis, 0 for linear, 1 for logarithmic.

WINDOW

Contains the normalized coordinates of the axis end points, the plot data window.
This field is set by PLOT, CONTOUR, SHADE_SURF, and SURFACE. Changing its
value has no effect. A 2-element floating point array. To change the default plotting
window, set !P.POSITION. The keyword parameter POSITION sets the plot data
window on a per call basis.
Graphics System Variables IDL Reference Guide

Appendix E:

IDL Operators
This appendix lists all IDL operators and provides brief examples of their usage. For more
information on IDL operators, see Chapter 2, “Expressions and Operators” in the Building IDL
Applications manual. The following topics are covered in this appendix:
Mathematical Operators 3930
Minimum and Maximum Operators 3932
Matrix Operators 3933
Logical Operators 3934

Bitwise Operators 3935
Relational Operators 3937
Other Operators 3938
Operator Precedence 3940
IDL Reference Guide 3929

3930 Appendix E: IDL Operators
Mathematical Operators

Operator Description Example

+ Addition ;Store the sum of 3 and 6 in B:
B = 3 + 6

String Concatenation ;Store the string value of "John Doe" in B:
B = 'John' + ' ' + 'Doe'

++ Increment Adds one to the operand:

A = 3
A++
PRINT, A

IDL Prints:

4

Note - The increment operator supports both pre- and
post-fix syntax. See “Increment/Decrement” in Chapter
2 of the Building IDL Applications manual.

– Subtraction ;Store the value of 5 subtracted from 9 in C:
C = 9 - 5

Negation ;Change the sign of C:
C = -C

-- Decrement Subtracts one from the operand:

A = 3
A--
PRINT, A

IDL Prints:

2

Note - The decrement operator supports both pre- and
post-fix syntax. See “Increment/Decrement” in Chapter
2 of the Building IDL Applications manual.

Table E-1: Mathematical Operators
Mathematical Operators IDL Reference Guide

Appendix E: IDL Operators 3931
* Multiplication ;Store the product of 2 and 5 in variable C:
C = 2 * 5

Pointer dereference If ptr is a valid pointer (created via the PTR_NEW
function), then *ptr is the value held by the heap
variable that ptr points to. For more information on
IDL pointers, see Chapter 8, “Pointers” in the Building
IDL Applications manual.

/ Division ;Store result of 10.0 divided by 3.2 in
;variable D:
D = 10.0/3.2

^ Exponentiation ;Store result of 2 raised to the 3rd power in
;variable B:
B = 2^3

MOD Modulo ;Print the value of 9 modulo 5:
PRINT, 9 MOD 5

IDL Prints:

4

Operator Description Example

Table E-1: Mathematical Operators (Continued)
IDL Reference Guide Mathematical Operators

3932 Appendix E: IDL Operators
Minimum and Maximum Operators

Operator Description Example

< Minimum operator.
The value of “A < B”
is equal to the smaller
of A or B.

For complex numbers
the absolute value is
used.

;Set A equal to 3.
A = 5 < 3

;Set all points in array ARR that are larger
;than 100 to 100:
ARR = ARR < 100

;Set X to the smallest of the three operands:
X = X0 < X1 < X2

> Maximum operator.
“A > B” is equal to
the larger of A or B.

For complex numbers
the absolute value is
used.

;‘>’ is used to avoid taking the log of zero
;or negative numbers:
C = ALOG(D > 1E - 6)

;Plot positive points only. Negative points
;are plotted as zero:
PLOT, ARR > 0

Table E-2: Minimum and Maximum Operators
Minimum and Maximum Operators IDL Reference Guide

Appendix E: IDL Operators 3933
Matrix Operators

Operator Description Example

Computes array elements
by multiplying the
columns of the first array
by the rows of the second
array.

;A 3-column by 2-row array:
array1 = [[1, 2, 1], [2, -1, 2]]
;A 2-column by 3-row array:
array2 = [[1, 3], [0, 1], [1, 1]]
PRINT, array1#array2

IDL prints:

7 -1 7
2 -1 2
3 1 3

Computes array elements
by multiplying the rows of
the first array by the
columns of the second
array.

;A 3-column by 2-row array:
array1 = [[1, 2, 1], [2, -1, 2]]
;A 2-column by 3-row array:
array2 = [[1, 3], [0, 1], [1, 1]]
PRINT, array1##array2

IDL prints:

2 6
4 7

Table E-3: Matrix Operators
IDL Reference Guide Matrix Operators

3934 Appendix E: IDL Operators
Logical Operators

Operator Description Example

&& Logical AND.
Returns 1 whenever both of its
operands are true; otherwise,
returns 0. Non-zero numerical
values, non-null strings, and non-
null heap variables (pointers and
object references) are considered
true, everything else is false.

Operands must be scalars or single-
element arrays. The && operator
short-circuits; the second operand
will not be evaluated if the first is
false.

PRINT, 5 && 7

IDL Prints: 1

PRINT, 5 && 2

IDL Prints: 1

PRINT, 4 && 0
IDL Prints: 0

|| Logical OR.
Returns 1 whenever either of its
operands are true; otherwise,
returns 0. Uses the same test for
“truth” as the && operator.

Operands must be scalars or single-
element arrays. The || operator
short-circuits; the second operand
will not be evaluated if the first is
true.

IF ((5 GT 3) || (4 GT 5)) THEN $
PRINT, 'True'

IDL Prints:

True

~ Logical negation.
Returns 1 when its operand is false;
otherwise, returns 0.
Uses the same test for “truth” as the
&& operator.

PRINT, ~ [1, 2, 0]

IDL Prints:

0 0 1

Table E-4: Logical Operators
Logical Operators IDL Reference Guide

Appendix E: IDL Operators 3935
Bitwise Operators

Operator Description Example

AND Bitwise AND.
For integer, longword, and byte
operands, a bitwise AND operation
is performed. For operations on
other types, the result is equal to the
second operand if the first operand
is not equal to zero or the null
string; otherwise, the result is zero
or the null string.

PRINT, (5 GT 2) AND (4 GT 2)

IDL Prints: 1

PRINT, (5 GT 2) AND (4 GT 5)

IDL Prints: 0

PRINT, 5 AND 7

IDL Prints: 5

PRINT, 5 AND 2

IDL Prints: 0

PRINT, 4 AND 2

IDL Prints: 0

NOT Bitwise complement.
For integer, longword, and byte
operands, NOT returns the
complement of each bit of the
operand. For floating-point
operands, the result is 1.0 if the
operand is zero; otherwise, the
result is zero. Not valid for string or
complex operands.

PRINT, NOT 1

IDL Prints:

-2

IF (NOT (5 GT 6)) THEN $
PRINT, 'True'

IDL Prints:

True

OR Bitwise OR.
For integer or byte operands, a
bitwise inclusive OR is performed.
For floating- point operands,
returns the first operand if it is non-
zero, or the 2nd operand otherwise.

IF ((5 GT 3) OR (4 GT 5)) THEN $
PRINT, 'True'

IDL Prints:

True

Table E-5: Logical Operators
IDL Reference Guide Bitwise Operators

3936 Appendix E: IDL Operators
XOR Bitwise exclusive OR.
XOR is only valid for byte, integer,
and longword operands. A bit in the
result is set to 1 if the
corresponding bits in the operands
are different; if they are equal, it is
set to zero.

IF ((5 GT 3) XOR (4 GT 5)) THEN $
PRINT, 'Different' $
ELSE PRINT, 'Same'

IDL Prints:

Different

Operator Description Example

Table E-5: Logical Operators (Continued)
Bitwise Operators IDL Reference Guide

Appendix E: IDL Operators 3937
Relational Operators

Operator Description Example

EQ Equal to ;Determine if A equals B:
IF (A EQ B) THEN PRINT, 'True'

GE Greater than or equal to ;Determine if A is greater than or equal
;to B:
IF (A GE B) THEN PRINT, 'True'

GT Greater than ;Determine if A is greater than B:
IF (A GT B) THEN PRINT, 'True'

LE Less than or equal to ;Determine if A is less than or equal
;to B:
IF (A LE B) THEN PRINT, 'True'

LT Less than ; Determine if A is less than B:
IF (A LT B) THEN PRINT, 'True'

NE Not equal to ; Determine if A does not equal B:
IF (A NE B) THEN PRINT, 'True'

Table E-6: Relational Operators
IDL Reference Guide Relational Operators

3938 Appendix E: IDL Operators
Other Operators

Operator Description Examples

[] Array concatenation.

The expression [A,B] is an
array formed by
concatenating A and B.

;Define C as three-point vector:
C = [0, 1, 3]

;Add 5 to the end of C:
PRINT, [C, 5]

IDL Prints: 0 1 3 5

;Insert -1 at the beginning of C:
PRINT, [-1, C]

IDL Prints: -1 0 1 3

Enclose array subscripts A = [2, 1, 5]
;Print the 3rd element in A:
PRINT, A[2]

IDL Prints: 5

() Group expressions to control
order of evaluation

PRINT, 3 + 4 * 2 ^ 2 /2

IDL Prints: 11

PRINT, (3 + (4 * 2) ^ 2 / 2)

IDL Prints: 35

= Assignment ;Assign 5 to variable A:
A = 5

;Assign "Hello World" to variable B:
B='Hello World'

Table E-7: Other Operators
Other Operators IDL Reference Guide

Appendix E: IDL Operators 3939
op= Compound Assignment
where op is one of the
following operators: ##, #, *,
+, -, /, <, >, ^, AND, EQ, GE,
GT, LE, LT, MOD, NE, OR,
XOR

Applies the specified operation to the target
variable “in place,” without making a copy of the
variable. For example,

A += 5

adds 5 to the value of the variable A.

Note -

A op= expression

is equivalent to:

A = TEMPORARY(A) op (expression)

See “Compound Assignment Operators” in
Chapter 11 of the Building IDL Applications
manual for details.

?: Conditional expression.
For

value=expr1 ? expr2 : expr3

expr1 is evaluated first. If
expr1 is true, then
value=expr2. If expr1 is false,
value=expr3.

A=6 & B=4
;Set Z to the greater of A and B:
Z = (A GT B) ? A : B
PRINT, Z

IDL Prints: 6

Operator Description Examples

Table E-7: Other Operators (Continued)
IDL Reference Guide Other Operators

3940 Appendix E: IDL Operators
Operator Precedence

The following table lists IDL’s operator precedence. Operators with the highest
precedence are evaluated first. Operators with equal precedence are evaluated from
left to right.

Priority Operator

First (highest) () (parentheses, to group expressions)

[] (brackets, to concatenate arrays)

Second . (structure field dereference)

[] (brackets, to subscript an array)

() (parentheses, used in a function call)

Third * (pointer dereference)

^ (exponentiation)

++ (increment)

-- (decrement)

Fourth * (multiplication)

and ## (matrix multiplication)

/(division)

MOD (modulus)

Fifth + (addition)

- (subtraction and negation)

< (minimum)

> (maximum)

NOT (bitwise negation)

Table E-8: Operator Precedence
Operator Precedence IDL Reference Guide

Appendix E: IDL Operators 3941
Sixth EQ (equality)

NE (not equal)

LE (less than or equal)

LT (less than)

GE (greater than or equal)

GT (greater than)

Seventh AND (bitwise AND)

OR (bitwise OR)

XOR (bitwise exclusive OR)

Eighth && (logical AND)

|| (logical OR)

~ (logical negation)

Ninth ?: (conditional expression)

Priority Operator

Table E-8: Operator Precedence (Continued)
IDL Reference Guide Operator Precedence

3942 Appendix E: IDL Operators
Operator Precedence IDL Reference Guide

Appendix F:

Special Characters
Within the IDL environment, a number of characters have special meanings.

The following table lists characters with special interpretations and states their
functions in IDL. These characters are discussed further in the descriptions following
the table.

Character Function

! • First character of system variable names and font-
positioning commands.

' • Delimit string constants

• Indicate part of octal or hex constant

; • Begin comment field

Table F-1: Special Characters
IDL Reference Guide 3943

3944 Appendix F: Special Characters
Exclamation Point (!)

The exclamation point is the first character of names of IDL system-defined
variables. System variables are predefined scalar variables of a fixed type. Their
purpose is to override defaults for system procedures, to return status information,
and to control the action of IDL.

$ • Continue current command on the next line

• Issue operating system command if entered on a line by
itself.

" • Delimit string constants or precede octal constants

. • Indicate constant is floating point

• Start executive command

& • Separate multiple statements on one line

: • End label identifiers

• Separate start and end subscript ranges

* • Multiplication operator

• Array subscript range

• Pointer dereference (if in front of a valid pointer)

@ • Include file

• Execute IDL batch file

? • Invokes online help when entered at the IDL command
line.

• Part of the ?: ternary operator used in conditional
expressions.

Character Function

Table F-1: Special Characters (Continued)
IDL Reference Guide

Appendix F: Special Characters 3945
Apostrophe (')

The apostrophe delimits string literals and indicates part of an octal or hex constant.

Semicolon (;)

The semicolon is the first character of the optional comment field of an IDL
statement. All text on a line following a semicolon is ignored by IDL. A line can
consist of a comment only or both a valid statement and a comment.

Dollar Sign ($)

The dollar sign at the end of a line indicates that the current statement is continued on
the following line. The dollar sign character can appear anywhere a space is legal
except within a string constant or between a function name and the first open
parenthesis. Any number of continuation lines are allowed.

When the $ character is entered as the first character after the IDL prompt, the rest of
the line is sent to the operating system as a command. If $ is the only character
present, an interactive subprocess is started. Under UNIX, IDL execution suspends
until the new shell process terminates.

Quotation Mark (")

The quotation mark precedes octal numbers, which are always integers, and delimits
string constants. Example: "100B is a byte constant equal to 64 base 10 and "Don’t
drink the water" is a string constant.

Period (.)

The period or decimal point indicates in a numeric constant that the number is of
floating-point or double-precision type. Example: 1.0 is a floating-point number.
Also, in response to the IDL prompt, the period begins an executive command. For
example,

.run myfile

causes IDL to compile the file myfile.pro. If myfile.pro contains a main program, the
program also will be executed. In addition, the period precedes the name of a tag
when referring to a field within a structure. For example, a reference to a tag called
NAME in a structure stored in the variable A is A.NAME.
IDL Reference Guide

3946 Appendix F: Special Characters
Ampersand (&)

The ampersand separates multiple statements on one line. Statements can be
combined until the maximum line length is reached. For example, the following line
contains two statements:

I = 1 & PRINT, 'value:', I

Colon (:)

The colon ends label identifiers. Labels can only be referenced by GOTO and
ON_ERROR statements. The following line contains a statement with the label
LOOP1.

LOOP1: X = 2.5

The colon also separates the starting and ending subscripts in subscript range
specifiers. For example, A(3:6) designates elements three to six of the variable A.

Asterisk (*)

The asterisk represents one of the following, depending on context:

1. Multiplication (3 * 3).

2. An ending subscript range equal to the size of the dimension. For example,
A[3:*] represents all elements of the vector A from A[3] to the last element,
while B[*,3] represents all elements of row four of matrix B.

3. A pointer dereference operation. For example, if ptr is a valid pointer (created
via the PTR_NEW function), then *ptr is the value held by the heap variable
that ptr points to. For more information on IDL pointers, see Chapter 8,
“Pointers” in the Building IDL Applications manual.

At Sign (@)

The “at” sign is used both as an include character and to signal batch execution.

@ as an Include Character

The “at” sign at the beginning of a line causes the IDL compiler to substitute the
contents of the file whose name appears after the @ for the line. If the full path name
is not specified after the @ symbol, IDL searches the current directory and a list of
known locations where procedures are kept.
IDL Reference Guide

Appendix F: Special Characters 3947
• UNIX: IDL searches for the file in the list of directories (as established by the
environment variable IDL_PATH) stored in the system variable !PATH.

• Windows: IDL searches for the file in the list of directories stored in the
system variable !PATH (specified in the “Preferences” dialog of the File
menu).

For example, the line

@doit

when included in a file, causes the file doit.pro to be compiled in its place. (The suffix
.pro is the default for IDL program files.) When the end of the file is reached,
compilation resumes at the line after the @.

@ to Signal Batch Processing

When IDL is running in interactive mode, a line beginning with the character @ is
entered in response to the IDL prompt and the file is opened for batch input. See
Chapter 10, “Executing Batch Jobs in IDL” in the Using IDL manual for details.

Question Mark (?)

The question mark is used as follows:

• When entered at the IDL command line, the IDL online help facility is
invoked.

• Used in conditional expressions as part of the ?: ternary operator. For example:

; A shorter way of saying IF (a GT b) THEN z=a ELSE z=b:
z = (a GT b) ? a : b

For more on conditional expressions, see “Conditional Expression” in Chapter 2 of
the Building IDL Applications manual.
IDL Reference Guide

3948 Appendix F: Special Characters
IDL Reference Guide

Appendix G:

Reserved Words
Variables, user-written procedures, and user-written functions should not have the
same names as IDL functions or procedures. Re-using names of IDL routines can
lead to syntax errors or to “hiding” variables. In addition, certain words representing
IDL language constructs are strictly forbidden—using any of these reserved words as
a variable, procedure, or function name will cause an immediate syntax error. The
following table lists all of the reserved words in IDL.

AND BEGIN BREAK

CASE COMMON COMPILE_OPT

CONTINUE DO ELSE

END ENDCASE ENDELSE

ENDFOR ENDIF ENDREP

ENDSWITCH ENDWHILE EQ

FOR FORWARD_FUNCTION FUNCTION
IDL Reference Guide 3949

3950 Appendix G: Reserved Words
GE GOTO GT

IF INHERITS LE

LT MOD NE

NOT OF ON_IOERROR

OR PRO REPEAT

SWITCH THEN UNTIL

WHILE XOR
IDL Reference Guide

Appendix H:

Fonts
The following topics are covered in this appendix:
Overview . 3952
Fonts in IDL Direct vs. Object Graphics . 3953
About Vector Fonts 3954
About TrueType Fonts 3957
About Device Fonts 3962

Choosing a Font Type 3969
Embedded Formatting Commands 3971
Formatting Command Examples 3975
TrueType Font Samples 3980
Vector Font Samples 3983
IDL Reference Guide 3951

3952 Appendix H: Fonts
Overview

IDL uses three font systems for writing characters on the graphics device: Hershey
(vector) fonts, TrueType (outline) fonts, and device (hardware) fonts. This chapter
describes each of the three types of fonts, discusses when to use each type, and
explains how to use fonts when creating graphical output in IDL.

 Vector-drawn fonts, also referred to as Hershey fonts, are drawn as lines. They are
device-independent (within the limits of device resolution). All vector fonts included
with IDL are guaranteed to be available in any IDL installation. See “About Vector
Fonts” on page 3954 for additional details.

TrueType fonts, also referred to here as outline fonts, are drawn as character outlines,
which are filled when displayed. They are largely device-independent, but do have
some device-dependent characteristics. Four TrueType font families are included
with IDL; these fonts should display in a similar way on any IDL platform. TrueType
font support for IDL Object Graphics was introduced in IDL version 5.0 and support
in IDL Direct Graphics was introduced in IDL version 5.1. See “About TrueType
Fonts” on page 3957 for additional details.

Device fonts, also referred to as hardware fonts, rely on character-display hardware
or software built in to a specific display device. Device fonts, necessarily, are device-
dependent and differ from platform to platform and display device to display device.
See “About Device Fonts” on page 3962 for additional details.
Overview IDL Reference Guide

Appendix H: Fonts 3953
Fonts in IDL Direct vs. Object Graphics

This volume deals almost exclusively with IDL Direct Graphics. However, the vector
and TrueType font systems described here are also available in the IDL Object
Graphics system, described in Using IDL.

IDL Direct Graphics

When generating characters for Direct Graphics plots, IDL uses the font system
specified by the value of the system variable !P.FONT. The normal default for this
variable is -1, which specifies that the built-in, vector-drawn (Hershey) fonts should
be used. Setting !P.FONT equal to 1 specifies that TrueType fonts should be used.
Setting !P.FONT equal to zero specifies that fonts supplied by the graphics device
should be used.

The setting of the IDL system variable !P.FONT can be overridden for a single IDL
Direct Graphics routine (AXIS, CONTOUR, PLOT, SHADE_SURF, SURFACE, or
XYOUTS) by setting the FONT keyword equal to -1, 0, or 1.

Once a font system has been selected, an individual font can be chosen either via a
formatting command embedded in a text string as described in “Embedded
Formatting Commands” on page 3971, or by setting the value of the SET_FONT
keyword to the DEVICE routine (see “SET_FONT” on page 3813).

IDL Object Graphics

IDL Object Graphics can use the vector and TrueType font systems. See Using IDL
for more information on using fonts with Object Graphics. Any TrueType fonts you
add to your IDL installation as described in “About TrueType Fonts” on page 3957
will also be available to the Object Graphics system.
IDL Reference Guide Fonts in IDL Direct vs. Object Graphics

3954 Appendix H: Fonts
About Vector Fonts

The vector fonts used by IDL were digitized by Dr. A.V. Hershey of the Naval
Weapons Laboratory. Characters in the vector fonts are stored as equations, and can
be scaled and rotated in three dimensions. They are drawn as lines on the current
graphics device, and are displayed quickly and efficiently by IDL. The vector fonts
are built into IDL itself, and are always available.

All the available fonts are illustrated in “Vector Font Samples” on page 3983. The
default vector font (Font 3, Simplex Roman) is in effect if no font changes have been
made.

Using Vector Fonts

To use the vector font system with IDL Direct Graphics, either set the value of the
IDL system variable !P.FONT equal to -1 (negative one), or set the FONT keyword of
one of the Direct Graphics routines equal to -1. The vector font system is the default
font system for IDL.

Once the vector font system is selected, use an embedded formatting command to
select a vector font (or fonts) for each string. (See “Embedded Formatting
Commands” on page 3971 for details on embedded formatting commands.) The font
selected “sticks” from string to string; that is, if you change fonts in one string, future
strings will use the new font until you change it again or exit IDL.

For example, to use the Duplex Roman vector font for the title of a plot, you would
use a command that looks like this:

PLOT, mydata, TITLE=”!5Title of my plot”

Consult Using IDL for details on using the vector font system with IDL Object
Graphics.

Specifying Font Size

To specify the size of a vector font, use the SET_CHARACTER_SIZE keyword to
the DEVICE procedure. The SET_CHARACTER_SIZE keyword takes a two-
About Vector Fonts IDL Reference Guide

Appendix H: Fonts 3955
element vector as its argument. The first element specifies the width of the “average”
character in the font (in pixels) and calculates a scaling factor that determines the
height of the characters. (It is not important what the “average” character is; it is used
only to calculate a scaling factor that will be applied to all of the characters in the
font.) The second element of the vector specifies the number of pixels between
baselines of lines of text.

The ratio of the “average” character’s height to its width differs from font to font, so
specifying the same value [x, y] to the SET_CHARACTER_SIZE keyword may
produce characters of different sizes in different fonts.

Note
While the first element of the vector specified to SET_CHARACTER_SIZE is
technically a width, it is important to note that the width value has no effect on the
widths of individual characters in the font. The width value is used only to calculate
the appropriate scaling factor for the font.

For example, the following IDL commands display the word “Hello There” on the
screen, in letters based on an “average” character that is 70 pixels wide, with 90
pixels between lines:

DEVICE, SET_CHARACTER_SIZE=[70,90]
XYOUTS, 0.1, 0.5, 'Hello!CThere'

You can also use the CHARSIZE keyword to the graphics routines or the CHARSIZE
field of the !P System Variable to change the size of characters to a multiple of the
size of the currently-selected character size. For example, to create characters one
half the size of the current character size, you could use the following command:

XYOUTS, 0.1, 0.5, 'Hello!CThere', CHARSIZE=0.5

Note
Changing CHARSIZE adjusts both the character size and the space between lines.

ISO Latin 1 Encoding

The default font (Font 3, Simplex Roman) follows the ISO Latin 1 Encoding scheme
and contains many international characters. The illustration of this font under “Vector
Font Samples” on page 3983 can be used to find the octal codes for the special
characters.

For example, suppose you want to display some text with an Angstrom symbol in it.
Looking at the chart of font 3, we see that the Angstrom symbol has octal code 305.
Non-printable characters can be represented in IDL using octal or hexadecimal
IDL Reference Guide About Vector Fonts

3956 Appendix H: Fonts
notation and the STRING function (see “Representing Non-Printable Characters” in
Chapter 3 of the Building IDL Applications manual for details). So the Angstrom can
be printed by inserting a STRING("305B) character in our text string as follows:

XYOUTS,.1, .5, 'Here is an Angstrom symbol: ' + STRING("305B), $
/NORM, CHARSIZE=3

Customizing the Vector Fonts

The EFONT procedure is a widget application that allows you to edit the Hershey
fonts and save the results. Use this routine to add special characters or completely
new, custom fonts to the Hershey fonts.
About Vector Fonts IDL Reference Guide

Appendix H: Fonts 3957
About TrueType Fonts

Beginning with version 5.2, five TrueType font families are included with IDL. The
fonts included are:

When TrueType fonts are rendered on an IDL graphics device or destination object,
the font outlines are first scaled to the proper size. After scaling, IDL converts the
character outline information to a set of polygons using a triangulation algorithm.
When text in a TrueType font is displayed, IDL is actually drawing a set of polygons
calculated from the font information. This process has two side effects:

1. Computation time is used to triangulate and create the polygons. This means
that you may notice a slight delay the first time you use text in a particular font
and size. Once the polygons have been created, the information is cached by
IDL and there is no need to re-triangulate each time text is displayed.
Subsequent uses of the same font and size happen quickly.

2. Because the TrueType font outlines are converted into polygons, you may
notice some chunkiness in the displayed characters, especially at small point
sizes. The smoothness of the characters will vary with the quality of the
TrueType font you are using, the point size, and the general smoothness of the
font outlines.

Font Family Italic Bold BoldItalic

Courier Courier Italic Courier Bold Courier Bold Italic

Helvetica Helvetica Italic Helvetica Bold Helvetica Bold Italic

Monospace Symbol

Times Times Italic Times Bold Times Bold Italic

Symbol

Table H-1: TrueType Font Names
IDL Reference Guide About TrueType Fonts

3958 Appendix H: Fonts
Using TrueType Fonts

To use the TrueType font system with IDL Direct Graphics, either set the value of the
IDL system variable !P.FONT equal to 1 (one), or set the FONT keyword to on one of
the Direct Graphics routines equal to 1.

Once the TrueType font system is selected, use the SET_FONT keyword to the
DEVICE routine to select the font to use. The value of the SET_FONT keyword is a
font name string. The font name is the name by which IDL knows the font; the names
of the TrueType fonts included with IDL are listed under “About TrueType Fonts” on
page 3957. Finally, specify the TT_FONT keyword in the call to the DEVICE
procedure. For example, to use Helvetica Bold Italic, use the following statement:

DEVICE, SET_FONT='Helvetica Bold Italic', /TT_FONT

To use Times Roman Regular:

DEVICE, SET_FONT='Times', /TT_FONT

IDL’s default TrueType font is 12 point Helvetica regular.

Specifying Font Size

To specify the size of a TrueType font, use the SET_CHARACTER_SIZE keyword to
the DEVICE procedure. The SET_CHARACTER_SIZE keyword takes a two-
element vector as its argument. The first element specifies the width of the “average”
character in the font (in pixels) and calculates a scaling factor that determines the
height of the characters. (It is not important what the “average” character is; it is used
only to calculate a scaling factor that will be applied to all of the characters in the
font.) The second element of the vector specifies the number of pixels between
baselines of lines of text.

The ratio of the “average” character’s height to its width differs from font to font, so
specifying the same value [x, y] to the SET_CHARACTER_SIZE keyword may
produce characters of different sizes in different fonts.

Note
While the first element of the vector specified to SET_CHARACTER_SIZE is
technically a width, it is important to note that the width value has no effect on the
widths of individual characters in the font. The width value is used only to calculate
the appropriate scaling factor for the font.

For example, the following IDL commands display the word “Hello There” on the
screen in Helvetica Bold, in letters based on an “average” character that is 70 pixels
wide, with 90 pixels between lines:
About TrueType Fonts IDL Reference Guide

Appendix H: Fonts 3959
DEVICE, FONT='Helvetica Bold', /TT_FONT,
SET_CHARACTER_SIZE=[70,90]
XYOUTS, 0.1, 0.5, 'Hello!CThere'

You can also use the CHARSIZE keyword to the graphics routines or the CHARSIZE
field of the !P System Variable to change the size of characters to a multiple of the
size of the currently-selected character size. For example, to create characters one
half the size of the current character size, you could use the following command:

XYOUTS, 0.1, 0.5, 'Hello!CThere', CHARSIZE=0.5

Note that changing the CHARSIZE adjusts both the character size and the space
between lines.

Using Embedded Formatting Commands

Embedded formatting commands allow you to position text and change fonts within a
single line of text. A subset of the embedded formatting commands available for use
with the vector fonts are also available when using the TrueType font system. See
“Embedded Formatting Commands” on page 3971 for a list of in-line formatting
commands.

IDL TrueType Font Resource Files

The TrueType font system relies on a resource file named ttfont.map, located in
the resource/fonts/tt subdirectory of the IDL directory. The format of the
ttfont.map file is:

FontName FileName DirectGraphicsScale ObjectGraphicsScale

where the fields in each column must be separated by white space (spaces and/or
tabs). The fields contain the following information

The Fontname field contains the name that would be used for the SET_FONT
keywords to the DEVICE routine.

The Filename field contains the name of the TrueType font file. On UNIX platforms,
IDL will search for the file specified in the FileName field in the current directory
(that is, in the resource/fonts/tt subdirectory of the IDL directory) if a bare
filename is provided, or it will look for the file in the location specified by the fully-
qualified file name if a complete path is provided. Because different platforms use
different path-specification syntax, we recommend that you place any TrueType font
files you wish to add to the ttfont.map file in the resource/fonts/tt
subdirectory of the IDL directory. On Windows platforms, this entry may be '*', in
which case the font will be loaded from the operating system font list, but that the
following two scale entries will be honored.
IDL Reference Guide About TrueType Fonts

3960 Appendix H: Fonts
The DirectGraphicsScale field contains a correction factor that will be applied when
choosing a scale factor for the glyphs prior to being rendered on a Direct Graphics
device. If you want the tallest character in the font to fit exactly within the vertical
dimension of the device’s current character size (as set via the
SET_CHARACTER_SIZE keyword to the DEVICE procedure), set the scale factor
equal to 1.0. Change the scale factor to a smaller number to scale a smaller portion of
the tallest character into the character size.

For example, suppose the tallest character in your font is “Ã”. Setting the scale factor
to 1.0 will scale this character to fit the current character size, and then apply the
same scaling to all characters in the font. As a result, the letter “M” will fill only
approximately 85% of the full height of the character size. To scale the font such that
the height of the “M” fills the vertical dimension of the character size, you would
include the value 0.85 in the scale field of the ttfont.map file.

The ObjectGraphicsScale field contains a correction factor that will be applied when
choosing a scale factor for the glyphs prior to being rendered on a Object Graphics
device. (This field works just like the DirectGraphicsScale field.) This scale factor
should be set to 1.0 if the maximum ascent among all glyphs within a given font is to
fit exactly within the font size (as set via the SIZE property to the IDLgrFont object).

Adding Your Own Fonts

To add a your own font to the list of fonts known to IDL, use a text editor to edit the
ttfont.map file, adding the FontName, FileName, DirectGraphicsScale, and
ObjectGraphicsScale fields for your font. You will need to restart IDL for the
changes to the ttfont.map file to take effect. On Windows systems, you can use
fonts that are not mentioned in the ttfont.map file, as long as they are installed in
the Fonts control panel, as described below.

Warning
If you choose to modify the ttfont.map file, be sure to keep a backup copy of the
original file so you can restore the defaults if necessary. Note also that applications
that use text may appear different on different platforms if the scale entries in the
ttfont.map file have been altered.

Where IDL Searches for Fonts

The TrueType font files included with IDL are located in the resource/fonts/tt
subdirectory of the IDL directory. When attempting to resolve a font name (specified
via the FONT keyword to the DEVICE procedure), IDL will look in the
About TrueType Fonts IDL Reference Guide

Appendix H: Fonts 3961
ttfont.map file first. If it fails to find the specified font file in the ttfont.map file,
it will search for the font file in the following locations:

UNIX

No further search will be performed. If the specified font is not included in the
ttfont.map file, IDL will substitute Helvetica.

Microsoft Windows

If the specified font is not included in the ttfont.map file, IDL will search the list
of fonts installed in the system (the fonts installed in the Font control panel). If the
specified font is not found, IDL will substitute Helvetica.
IDL Reference Guide About TrueType Fonts

3962 Appendix H: Fonts
About Device Fonts

Device, or hardware, fonts are fonts that are provided directly by your system’s
hardware or by software other than IDL. In past releases of IDL, we have used the
term “hardware fonts” extensively to discuss these types of fonts. This is because in
the early days of IDL, computer displays were either text-only terminals or dedicated
graphics display devices such as plotters or Tektronix graphics terminals. These
graphics displays generally came with a set of fonts built-in; when IDL asked the
device to display characters in a built-in font, it was making a request to the hardware
to display those characters.

As computer displays have become more sophisticated, the concept of fonts provided
“by the hardware” has expanded to include fonts provided by the computer’s
operating system, or by font-management software. For example, many computers
now use font management software like Adobe Type Manager to manage the fonts
made available by the operating system to all applications. We use the term “device
font” to refer to a font that is available to one of IDL’s graphics devices from a source
other than IDL itself. (In this case, a “graphics device” can be either a Direct
Graphics device as specified by the DEVICE routine or an Object Graphics
“destination” such as a window or a printer.) While device fonts may include fonts
only available because a particular piece of hardware knows how to draw characters
in that font (a pen plotter is an example of a device that may still have its own special
fonts), in most cases device fonts are fonts supplied by the operating system to any
application that may want to use them.

Which Device Fonts Are Available?

To determine which device fonts are available on your system and the exact font
strings to specify for each, use the GET_FONTNAMES keyword to the DEVICE
procedure. You can also use an operating system specific method to determine which
fonts are available:
About Device Fonts IDL Reference Guide

Appendix H: Fonts 3963
UNIX

On most systems, the xlsfonts utility displays a list of fonts available to the
operating system.

Microsoft Windows

Fonts available to the system are displayed in the Fonts control panel. You may also
have other fonts available if you use font-management software such as Adobe Type
Manager.

Using Device Fonts

To use the Device font system with IDL Direct Graphics, either set the value of the
IDL system variable !P.FONT equal to 0 (zero), or set the FONT keyword to on one
of the Direct Graphics routines equal to 0.

Once the Device font system is selected, use the SET_FONT keyword to the
DEVICE routine to select the font to use. Because device fonts are specified
differently on different platforms, the syntax of the fontname string depends on which
platform you are using.

UNIX

Usually, the window system provides a directory of font files that can be used by all
applications. List the contents of that directory to find the fonts available on your
system. The size of the font selected also affects the size of vector drawn text. On
some machines, fonts are kept in subdirectories of /usr/lib/X11/fonts. You can
use the xlsfonts command to list available X Windows fonts.
IDL Reference Guide About Device Fonts

3964 Appendix H: Fonts
For example, to select the font 8X13:

!P.FONT = 0
DEVICE, SET_FONT = '8X13'

Microsoft Windows

The SET_FONT keyword should be set to a string with the following form:

DEVICE, SET_FONT="font*modifier1*modifier2*...modifiern"

where the asterisk (*) acts as a delimiter between the font’s name (font) and any
modifiers. The string is not case sensitive. Modifiers are simply “keywords” that
change aspects of the selected font. Valid modifiers are:

• For font weight: THIN, LIGHT, BOLD, HEAVY

• For font quality: DRAFT, PROOF

• For font pitch: FIXED, VARIABLE

• For font angle: ITALIC

• For strikeout text: STRIKEOUT

• For underlined text: UNDERLINE

• For font size: Any number is interpreted as the font height in pixels.

For example, if you have Garamond installed as one of your Windows fonts, you
could select 24-pixel cell height Garamond italic as the font to use in plotting. The
following commands tell IDL to use hardware fonts, change the font, and then make a
simple plot:

!P.FONT = 0
DEVICE, SET_FONT = "GARAMOND*ITALIC*24"
PLOT, FINDGEN(10), TITLE = "IDL Plot"

This feature is compatible with TrueType and Adobe Type Manager (and, possibly,
other type scaling programs for Windows). If you have TrueType or ATM installed,
the TrueType or PostScript outline fonts are used so that text looks good at any size.

Fonts and the PostScript Device

A special set of device fonts are available when the current Direct Graphics device is
PS (PostScript). IDL includes font metric information for 35 standard PostScript
fonts, and can create PostScript language files that include text in these fonts. (The 35
fonts known to IDL are listed in the following table; they the standard fonts included
in memory in the vast majority of modern PostScript printers.) The PostScript font
About Device Fonts IDL Reference Guide

Appendix H: Fonts 3965
metric files (*.afm files) are located in the resource/fonts/ps subdirectory of
the IDL directory.

Using PostScript Fonts

To use a PostScript font in your Direct Graphics output, you must first specify that
IDL use the device font system, they switch to the PS device, then choose a font using
the SET_FONT keyword to the DEVICE procedure.

The following IDL commands choose the correct font system, set the graphics
device, select the font Palatino Roman, open a PostScript file to print to, plot a simple
data set, and close the PostScript file:

AvantGarde-Book Helvetica-Narrow-Oblique

AvantGarde-BookOblique Helvetica-Oblique

AvantGarde-Demi NewCenturySchlbk-Bold

AvantGarde-DemiOblique NewCenturySchlbk-BoldItalic

Bookman-Demi NewCenturySchlbk-Italic

Bookman-DemiItalic NewCenturySchlbk-Roman

Bookman-Light Palatino-Bold

Bookman-LightItalic Palatino-BoldItalic

Courier Palatino-Italic

Courier-Bold Palatino-Roman

Courier-BoldOblique Symbol

Courier-Oblique Times-Bold

Helvetica Times-BoldItalic

Helvetica-Bold Times-Italic

Helvetica-BoldOblique Times-Roman

Helvetica-Narrow ZapfChancery-MediumItalic

Helvetica-Narrow-Bold ZapfDingats

Helvetica-Narrow-BoldOblique

Table H-2: Names of Supported PostScript Fonts
IDL Reference Guide About Device Fonts

3966 Appendix H: Fonts
!P.FONT = 0
SET_PLOT, 'PS'
DEVICE, SET_FONT = 'Palatino-Roman', FILE = 'testfile.ps'
PLOT, INDGEN(10), TITLE = 'My Palatino Title'
DEVICE, /CLOSE

Note
Subsequent PostScript output will continue to use the font Palatino Roman until you
explicitly change the font again, or exit IDL.

You can also specify PostScript fonts using a set of keywords to the DEVICE
procedure. The keyword combinations for the fonts included with IDL are listed in
the following table.

PostScript Font DEVICE Keywords

Courier /COURIER

Courier Bold /COURIER, /BOLD

Courier Oblique /COURIER, /OBLIQUE

Courier Bold Oblique /COURIER, /BOLD, /OBLIQUE

Helvetica /HELVETICA

Helvetica Bold /HELVETICA, /BOLD

Helvetica Oblique /HELVETICA, /OBLIQUE

Helvetica Bold Oblique /HELVETICA, /BOLD, /OBLIQUE

Helvetica Narrow /HELVETICA, /NARROW

Helvetica Narrow Bold /HELVETICA, /NARROW, /BOLD

Helvetica Narrow Oblique /HELVETICA, /NARROW, /OBLIQUE

Helvetica Narrow Bold Oblique /HELVETICA, /NARROW, /BOLD,
/OBLIQUE

ITC Avant Garde Gothic Book /AVANTGARDE, /BOOK

ITC Avant Garde Gothic Book
Oblique

/AVANTGARDE, /BOOK, /OBLIQUE

ITC Avant Garde Gothic Demi /AVANTGARDE, /DEMI

Table H-3: The Standard 35 PostScript Fonts
About Device Fonts IDL Reference Guide

Appendix H: Fonts 3967
For example to use the PostScript font Palatino Bold Italic, you could use either of the
following DEVICE commands:

DEVICE, SET_FONT = 'Palatino*Bold*Italic'
DEVICE, /PALATINO, /BOLD, /ITALIC

ITC Avant Garde Gothic Demi
Oblique

/AVANTGARDE, /DEMI, /OBLIQUE

ITC Bookman Demi /BKMAN, /DEMI

ITC Bookman Demi Italic /BKMAN, /DEMI, /ITALIC

ITC Bookman Light /BKMAN, /LIGHT

ITC Bookman Light Italic /BKMAN, /LIGHT, /ITALIC

ITC Zapf Chancery Medium Italic /ZAPFCHANCERY, /MEDIUM, /ITALIC

ITC Zapf Dingbats /ZAPFDINGBATS

New Century Schoolbook /SCHOOLBOOK

New Century Schoolbook Bold /SCHOOLBOOK, /BOLD

New Century Schoolbook Italic /SCHOOLBOOK, /ITALIC

New Century Schoolbook Bold Italic /SCHOOLBOOK, /BOLD, /ITALIC

Palatino /PALATINO

Palatino Bold /PALATINO, /BOLD

Palatino Italic /PALATINO, /ITALIC

Palatino Bold Italic /PALATINO, /BOLD, /ITALIC

Symbol /SYMBOL

Times /TIMES

Times Bold /TIMES, /BOLD

Times Italic /TIMES, /ITALIC

Times Bold Italic /TIMES, /ITALIC, /BOLD

PostScript Font DEVICE Keywords

Table H-3: The Standard 35 PostScript Fonts (Continued)
IDL Reference Guide About Device Fonts

3968 Appendix H: Fonts
Changing the PostScript Font Assigned to an Index

You can change the PostScript font assigned to a given font index using the
FONT_INDEX keyword to the DEVICE procedure. Font indices and their use are
discussed in “Embedded Formatting Commands” on page 3971.

Changing the font index assigned to a font can be useful when changing PostScript
fonts in the middle of a text string. For example, the following statements map
Palatino Bold Italic to font index 4, and then output text using that font and the
Symbol font:

; Map the font selected by !4 to be PalatinoBoldItalic:
DEVICE, /PALATINO, /BOLD, /ITALIC, FONT_INDEX=4
; Output "Alpha :" in PalatinoBoldItalic followed by an
; Alpha character:
XYOUTS, .3, .5, /NORMAL, "!4Alpha: !9a", FONT=0, SIZE=5.0

Adding Your Own PostScript Fonts

Because the 35 PostScript fonts included with IDL are built in to a PostScript
printer’s memory, the IDL distribution includes only the font metric files, which
provide positioning information. In addition, the .afm files used by IDL are specially
processed to provide the information in a format IDL expects.

You can add your own PostScript fonts to the list of fonts known to IDL if you have
access to the PostScript font file (usually named font.pfb) to load into your printer
and to the font.afm file supplied by Adobe. You can convert the standard .afm file
into a file IDL understands using the IDL routine PSAFM. Consult the file
README.TXT in the resource/fonts/ps subdirectory of the IDL directory for
details on adding PostScript fonts to your system.
About Device Fonts IDL Reference Guide

Appendix H: Fonts 3969
Choosing a Font Type

Some of the issues involved in choosing between vector, TrueType, and device fonts
are explained below.

Appearance

Vector-drawn characters are of medium quality, suitable for most uses. TrueType
characters are of relatively high quality, although at some point sizes the triangulation
process (described in “About TrueType Fonts” on page 3957) may cause characters to
appear slightly jagged. The appearance of device characters varies from mediocre
(characters found in many graphics terminals) to publication quality (PostScript).

Three-Dimensional Transformations

Vector or TrueType fonts should always be used with three-dimensional
transformations. Both vector and TrueType characters pass through the same
transformations as the rest of the plot, yielding a better looking plot. See “Three-
Dimensional Graphics” in Chapter 18 of the Using IDL manual for an example of
vector-drawn characters with three-dimensional graphics. Device characters are not
subject to the three-dimensional transforms.

Portability

The vector-drawn fonts work using any graphics device and look the same on every
device (within the limitations of device resolution) on any system supported by IDL.

TrueType fonts are available only on the X, WIN, PRINTER, PS, and Z Direct Graphics
devices, and in IDL’s Object Graphics system. If you use only the fonts supplied with
IDL, TrueType fonts also look the same on every supported device (again within the
limits of the device resolution). If you use TrueType fonts other than those supplied
with IDL, your font may not be installed on the system which runs your program. In
this case, IDL will substitute a known font for the missing font.

The appearance, size, and availability of device fonts varies greatly from device to
device. Many, if not most, of the positioning and font changing commands
recognized by the vector-drawing routines are ignored when using device fonts. The
exception to this rule is the Direct Graphics PS device; if you use one of the
PostScript fonts supported by IDL, the PostScript output from the PS device will be
identical between platforms.
IDL Reference Guide Choosing a Font Type

3970 Appendix H: Fonts
Computational Time

Device fonts are generally rendered the most quickly, since the hardware device or
operating system handles all computations and caching.

It takes more computer time to draw characters with line vectors and generally results
in more input/output. However, this is not an important issue unless the plot contains
a large number of characters or the transmission link to the device is very slow.

The initial triangulation step used when displaying TrueType fonts for the first time
can be computationally expensive. However, since the font shapes are cached,
subsequent uses of the same font are relatively speedy.

Flexibility

Vector-drawn fonts provide a great deal of flexibility. There are many different
typefaces available, as shown in the tables at the end of this chapter. In addition, such
fonts can be arbitrarily scaled, rotated, and transformed.

TrueType fonts support fewer embedded formatting commands than do the vector
fonts, and cannot be scaled, rotated, or transformed.

The abilities of hardware-generated characters differ greatly between devices so it is
not possible to make a blanket statement on when they should be used—the best font
to use depends on the available hardware. In general, however, the vector or TrueType
fonts are easier to use and often provide superior results to what is available from the
hardware. See the discussion of the device you are using in Appendix A, “IDL
Graphics Devices” for details on the hardware-generated characters provided by that
device.

Print Quality

For producing publication-quality output, we recommend using either the TrueType
font system or the Direct Graphics PS device and one of the PostScript fonts
supported by IDL.
Choosing a Font Type IDL Reference Guide

Appendix H: Fonts 3971
Embedded Formatting Commands

When you use vector, TrueType, and some device fonts, text strings can include
embedded formatting commands that facilitate subscripting, superscripting, and
equation formatting. The method used is similar to that developed by Grandle and
Nystrom (1980). Embedded formatting commands are always introduced by the
exclamation mark, (!). (The string “!!” is used to produce a literal exclamation
mark.)

Note
Embedded formatting commands prefaced by the exclamation mark have no special
significance for hardware-generated characters unless the ability is provided by the
particular device in use. The IDL PostScript device driver accepts many of the
standard embedded formatting commands, and is described here. If you wish to use
hardware fonts with IDL Direct Graphics devices other than the PostScript device,
consult the description of the device in Appendix A, “IDL Graphics Devices”
before trying to use these commands with hardware characters.

You can determine whether embedded formatting commands are available for use
with device fonts on your current graphics device by inspecting bit 12 of the Flags
field of the !D System Variable. Use the IDL statement:

IF (!D.FLAGS AND 4096) NE 0 THEN PRINT, 'Bit is set.'

to determine whether bit 12 of the Flags field is set for the current graphics device.

Changing Fonts within a String

You can change fonts one or more times within a text string using the embedded font
commands shown in the table below. The character following the exclamation mark
can be either upper or lower case.

Examples of commands used to change fonts in mid-string are included in
“Formatting Command Examples” on page 3975.

Command Vector Font TrueType Font PostScript Font

!3 Simplex Roman (default) Helvetica Helvetica

!4 Simplex Greek Helvetica Bold Helvetica Bold

!5 Duplex Roman Helvetica Italic Helvetica Narrow

Table H-4: Embedded Font Selection Commands
IDL Reference Guide Embedded Formatting Commands

3972 Appendix H: Fonts
!6 Complex Roman Helvetica Bold
Italic

Helvetica Narrow
Bold Oblique

!7 Complex Greek Times Times Roman

!8 Complex Italic Times Italic Times Bold Italic

!9 Math/special characters Symbol Symbol

!M Math/special characters
(change effective for one
character only)

Symbol Symbol

!10 Special characters Symbol * Zapf Dingbats

!11(!G) Gothic English Courier Courier

!12(!W) Simplex Script Courier Italic Courier Oblique

!13 Complex Script Courier Bold Palatino

!14 Gothic Italian Courier Bold Italic Palatino Italic

!15 Gothic German Times Bold Palatino Bold

!16 Cyrillic Times Bold Italic Palatino Bold Italic

!17 Triplex Roman Helvetica * Avant Garde Book

!18 Triplex Italic Helvetica * New Century
Schoolbook

!19 Helvetica * New Century
Schoolbook Bold

!20 Miscellaneous Helvetica * Undefined User
Font

!X Revert to the entry font Revert to the entry
font

Revert to the entry
font

* The font assigned to this index may be replaced in a future release of IDL.

Command Vector Font TrueType Font PostScript Font

Table H-4: Embedded Font Selection Commands (Continued)
Embedded Formatting Commands IDL Reference Guide

Appendix H: Fonts 3973
Positioning Commands

The positioning and other font-manipulation commands are described in the
following table. Examples of commands used to position text are included in
“Formatting Command Examples” on page 3975.

Command Action

!A Shift above the division line .

!B Shift below the division line .

!C “Carriage return,” begins a new line of text. Shift back to the
starting position and down one line. This command also
performs an implicit “!N” command, returning to the normal
level and character size at the beginning of the new line.

!D Shift down to the first level subscript and decrease the
character size by a factor of 0.70.

!E Shift up to the exponent level and decrease the character size
by a factor of 0.44.

!I Shift down to the index level and decrease the character size
by a factor of 0.44.

!L Shift down to the second level subscript. Decrease the
character size by a factor of 0.62.

!N Shift back to the normal level and original character size.

!R Restore position. The current position is set from the top of the
saved positions stack.

!S Save position. The current position is saved on the top of the
saved positions stack.

!U Shift to upper subscript level. Decrease the character size by a
factor of 0.70.

!X Return to the entry font.

Table H-5: Vector-Drawn Positioning and Miscellaneous Commands
IDL Reference Guide Embedded Formatting Commands

3974 Appendix H: Fonts
!Z(u0,u1,...,un) Display one or more character glyphs according to their
unicode value. Each ui within the parentheses will be
interpreted as a 16-bit hexadecimal unicode value. If more
than one unicode value is to be included, the values should be
separated by commas.

!! Display the ! symbol.

Command Action

Table H-5: Vector-Drawn Positioning and Miscellaneous Commands
Embedded Formatting Commands IDL Reference Guide

Appendix H: Fonts 3975
Formatting Command Examples

The figure below illustrates the relative positions and effects on character size of the
level commands. In this figure, the letters “!N” are normal level and size characters.

The positioning shown was created with the following command:

XYOUTS, 0.1, 0.3, $
'!LLower!S!EExponent!R!IIndex!N Normal!S!EExp!R!IInd!N!S!U Up
!R!D Down!N!S!A Above!R!B Below'

Note that the string argument to the XYOUTS procedure must be entered on a single
line rather than the two lines shown above.

Figure H-1: Positioning Commands With Vector Fonts (Top) and
TrueType Fonts (Bottom)
IDL Reference Guide Formatting Command Examples

3976 Appendix H: Fonts
A Complex Equation

Embedded positioning commands and the vector font system can be used to create
the integral shown below:

The command string used to produce the integral is:

XYOUTS, 0, .2, $
'!MI!S!A!E!8x!R!B!Ip!N !7q!Ii!N!8U!S!E2!R!Ii!Ndx', $
SIZE = 3, /NORMAL

Remember that the case of the letter in an embedded command is not important. The
string may be broken down into the following components:

!MI

Changes to the math set and draws the integral sign, uppercase I.

!S

Saves the current position on the position stack.

!A!E!8x

Shifts above the division line and to the exponent level, switches to the Complex
Italic font (Font 8), and draws the “x.”

Figure H-2: An integral created with the vector fonts.
Formatting Command Examples IDL Reference Guide

Appendix H: Fonts 3977
!R!B!Ip

Restores the position to the position immediately after the integral sign, shifts below
the division line to the index level, and draws the “p.”

!N !7q

Returns to the normal level, advances one space, shifts to the Complex Greek font
(Font 7), and draws the Greek letter rho, which is designated by “q” in this set.

!Ii!N

Shifts to the index level and draws the “i” at the index level. Returns to the normal
level.

!8U

Shifts to the Complex Italic font (Font 8) and outputs the upper case “U.”

!S!E2

Saves the position and draws the exponent “2.”

!R!Ii

Restores the position and draws the index “i.”

!N dx

Returns to the normal level and outputs “dx.”

Note
The equation shown in the figure above could not be created so simply using the
TrueType font system, because the large integral symbol is broken into two or more
characters in the TrueType fonts.

Vector-Drawn Font Example

IDL uses vector-drawn font when the value of the system variable !P.FONT is -1.
This is the default condition. Initially, all characters are drawn using the Simplex
Roman font (Font 3). When plotting, font changing commands may be embedded in
the title strings keyword arguments (XTITLE, YTITLE, and TITLE) to select other
fonts. For example, the following statement uses the Complex Roman font (Font 6)
for the x-axis title:
IDL Reference Guide Formatting Command Examples

3978 Appendix H: Fonts
PLOT, X, XTITLE = '!6X Axis Title'

This font remains in effect until explicitly changed. The order in which the
annotations are drawn is main title, x-axis numbers, x-axis title, y-axis numbers, and
y-axis title. Strings to be output also may contain embedded information selecting
subscripting, superscripting, plus other features that facilitate equation formatting.

The following statements were used to produce the figure below. They serve as an
example of a plot using vector-drawn characters and of equation formatting.

; Define an array:
X = FLTARR(128)
; Make a step function:
X[30:40] = 1.0
; Take FFT and magnitude:
X = ABS(FFT(X, 1))
; Produce a log-linear plot. Use the Triplex Roman font for the
; x title (!17), Duplex Roman for the y title (!5), and Triplex
; Italic for the main title (!18). The position keyword is used to
; shrink the plotting window:
PLOT, X[0:64], /YLOG, XTITLE = '!17Frequency', $

YTITLE = '!5Power', $
TITLE = '!18Example of Vector Drawn Plot', $
POSITION = [.2, .2, .9, .6]

SS = '!6F(s) = (2!4p)!e-1/2!n !mi!s!a!e!m $
!r!b!i ' + '-!m $

Figure H-3: Example of a Vector-drawn Plot
Formatting Command Examples IDL Reference Guide

Appendix H: Fonts 3979
; String to produce equation:
!nF(x)e !e-i2!4p!3xs!ndx'

XYOUTS, 0.1, .75, SS, SIZE = 3, $
; Output string over plot. The NOCLIP keyword is needed because
; the previous plot caused the clipping region to shrink:

/NORMAL, /NOCLIP
IDL Reference Guide Formatting Command Examples

3980 Appendix H: Fonts
TrueType Font Samples

The following figures show roman versions of the four TrueType font families
included with IDL. The character sets for the bold, italic, and bold italic versions of
these fonts are the same as the roman versions.

The SHOWFONT command was used to create these figures. For example, to display
the following figure on the screen, you would the command:

SHOWFONT, 'Helvetica', 'Helvetica', /TT_FONT

For more information, see “SHOWFONT” on page 1788.

Note
The following font charts are numbered in octal notation. To read the octal number
of a character, add the column index (along the top) to ten times the row index. For
example, the capital letter “A” is octal 101, and the copyright symbol is octal 251.
TrueType Font Samples IDL Reference Guide

Appendix H: Fonts 3981

IDL Reference Guide TrueType Font Samples

3982 Appendix H: Fonts
TrueType Font Samples IDL Reference Guide

Appendix H: Fonts 3983
Vector Font Samples

The following figures show samples of various vector-drawn fonts. The
SHOWFONT command was used to create these figures. For example, to display the
following figure on the screen, you would the command:

SHOWFONT, 3, 'Simplex Roman'

To output this figure to a postscript file, you would use the following commands:

SET_PLOT, 'PS'
SHOWFONT, 3, 'Simplex Roman'
DEVICE, /CLOSE

For more information, see “SHOWFONT” on page 1788.

Note
The following font charts are numbered in octal notation. To read the octal number
of a character, add the column index (along the top) to ten times the row index. For
example, the capital letter “A” is octal 101, and the “$” symbol is octal 44.
IDL Reference Guide Vector Font Samples

3984 Appendix H: Fonts
Vector Font Samples IDL Reference Guide

Appendix H: Fonts 3985

IDL Reference Guide Vector Font Samples

3986 Appendix H: Fonts
Vector Font Samples IDL Reference Guide

Appendix H: Fonts 3987
IDL Reference Guide Vector Font Samples

3988 Appendix H: Fonts
Vector Font Samples IDL Reference Guide

Appendix H: Fonts 3989
IDL Reference Guide Vector Font Samples

3990 Appendix H: Fonts
Vector Font Samples IDL Reference Guide

Appendix H: Fonts 3991
IDL Reference Guide Vector Font Samples

3992 Appendix H: Fonts
Vector Font Samples IDL Reference Guide

Appendix I:

Obsolete Features
The following topics are covered in this appendix:
What Are Obsolete Features? 3994
Routines Obsoleted in IDL 6.0 3995
Routines Obsoleted in IDL 5.6 3996
Routines Obsoleted in IDL 5.5 3997
Routines Obsoleted in IDL 5.4 3998
Routines Obsoleted in IDL 5.3 3999
SDF Routines Obsoleted in IDL 5.3 4000

Routines Obsoleted in IDL 5.2 4001
Routines Obsoleted in IDL 5.1 4002
Routines Obsoleted in IDL 5.0 4003
Routines Obsoleted in IDL 4.0 or Earlier 4004
Obsolete Arguments and Keywords 4010
Obsolete System Variables 4015
Obsolete Graphics Devices 4017
IDL Reference Guide 3993

3994 Appendix I: Obsolete Features
What Are Obsolete Features?

To improve the overall quality and functionality of IDL, Research Systems, Inc.
occasionally replaces existing routines with new, improved routines. In many cases,
existing routines are improved without changing their existing behavior—through
improvements of the underlying algorithms, for example, or by adding keyword
functionality. In some cases, however, the improved methods are incompatible with
the old. In these situations, we consider the routines that we have replaced to be
obsolete.

For similar reasons, arguments and keywords to existing routines may occasionally
become obsolete. In many cases, the functionality activated by the obsolete argument
or keyword can be achieved more efficiently using a new argument or keyword. If
this is the case, existing code using the obsolete argument or keyword will generally
continue to function as it always has, although performance may be better using the
new, replacement argument or keyword. In cases where the obsolete argument or
keyword activated functionality that is no longer available (perhaps as a result of an
operating system upgrade or change), IDL will either quietly ignore the presence of
the argument or keyword (if doing so does not affect the resulting output) or warn that
an invalid parameter has been specified.

This chapter lists the routines that have become obsolete in each version of IDL.
These routines are not documented in the online help. To view reference information
for routines obsoleted in IDL version 5.0 and later, see the obsolete.pdf file in the
docs subdirectory of the IDL distribution. Routines obsoleted in IDL 4.0 and earlier
are not documented in the obsolete.pdf file. If a .pro file for the routine exists, it
is located in the lib/obsolete subdirectory of the IDL distribution. You can read
the documentation header of a routine in the obsolete directory either by opening
the .pro file or using the DOC_LIBRARY routine.
What Are Obsolete Features? IDL Reference Guide

Appendix I: Obsolete Features 3995
Routines Obsoleted in IDL 6.0

The following routines were present in IDL Version 5.6 but became obsolete in IDL
Version 6.0.

Note
For information about routines replaced by the iTools system, see the iTools User’s
Guide.

Routine Replaced by .pro File?

LIVE_CONTOUR ICONTOUR

LIVE_CONTROL iTools system

LIVE_DESTROY iTools system

LIVE_EXPORT iTools system

LIVE_IMAGE IIMAGE

LIVE_INFO iTools system

LIVE_LINE iTools system

LIVE_LOAD iTools system

LIVE_OPLOT IPLOT

LIVE_PLOT IPLOT

LIVE_PRINT iTools system

LIVE_RECT iTools system

LIVE_STYLE iTools system

LIVE_SURFACE ISURFACE

LIVE_TEXT iTools system

Table I-1: Routines Obsoleted in IDL 5.6
IDL Reference Guide Routines Obsoleted in IDL 6.0

3996 Appendix I: Obsolete Features
Routines Obsoleted in IDL 5.6

The following routines were present in IDL Version 5.5 but became obsolete in IDL
Version 5.6.

Routine Replaced by .pro File?

HDF_VD_GETNEXT HDF_VG_GETNEXT

VAX_FLOAT VAX_FLOAT keyword to
OPEN

Table I-2: Routines Obsoleted in IDL 5.6
Routines Obsoleted in IDL 5.6 IDL Reference Guide

Appendix I: Obsolete Features 3997
Routines Obsoleted in IDL 5.5

The following routines were present in IDL Version 5.4 but became obsolete in IDL
Version 5.5.

Routine Replaced by .pro File?

DELETE_SYMBOL n/a

DELLOG n/a

DO_APPLE_SCRIPT n/a

ERRORF ERF

GET_SYMBOL n/a

LJLCT n/a

REWIND n/a

SET_SYMBOL n/a

SETLOG n/a

SKIPF n/a

TAPRD n/a

TAPWRT n/a

TRNLOG n/a

WEOF n/a

Table I-3: Routines Obsoleted in IDL 5.5
IDL Reference Guide Routines Obsoleted in IDL 5.5

3998 Appendix I: Obsolete Features
Routines Obsoleted in IDL 5.4

The following routines were present in IDL Version 5.3 but became obsolete in IDL
Version 5.4.

Routine Replaced by .pro File?

POLYFITW POLY_FIT, MEASURE_ERRORS
keyword

polyfitw.pro

RIEMANN RADON

Table I-4: Routines Obsoleted in IDL 5.4
Routines Obsoleted in IDL 5.4 IDL Reference Guide

Appendix I: Obsolete Features 3999
Routines Obsoleted in IDL 5.3

The following routines were present in IDL Version 5.2 but became obsolete in IDL
Version 5.3.

Routine Replaced by .pro File?

HDF_DFSD_*
Routines

HDF_SD_* Routines

RSTRPOS STRPOS, /REVERSE_SEARCH rstrpos.pro

STR_SEP STRSPLIT for single character
delimiters

STRSPLIT, /REGEX for longer
delimiters

str_sep.pro

Table I-5: Routines Obsoleted in IDL 5.3
IDL Reference Guide Routines Obsoleted in IDL 5.3

4000 Appendix I: Obsolete Features
SDF Routines Obsoleted in IDL 5.3

HDF_DFSD_* routines have been obsoleted in IDL 5.3.

What is DFSD and Why Are We Obsoleting It?

DFSD is an SD (Scientific Data Model). DFSD is the older, single-file SD form. The
newer SD format, MFSD, is referred to in the IDL API as HDF_SD_*. New IDL
code should use HDF_SD_* routines rather than HDF_DFSD_* routines.

Version HDF4.1r2 of HDF has obsoleted the DFSD interface, somewhat forcing us to
do so as well. IDL 5.3 uses HDF4.1r3 (Version 4.1, revision 3). It is recommended
that users convert their old HDF files to the 4.1r3 format.

The following HDF routines have been obsoleted in IDL 5.3.

• HDF_DFSD_ADDDATA • HDF_DFSD_GETSLICE

• HDF_DFSD_DIMGET • HDF_DFSD_PUTSLICE

• HDF_DFSD_DIMSET • HDF_DFSD_READREF

• HDF_DFSD_ENDSLICE • HDF_DFSD_SETINFO

• HDF_DFSD_GETDATA • HDF_DFSD_STARTSLICE

• HDF_DFSD_GETINFO
SDF Routines Obsoleted in IDL 5.3 IDL Reference Guide

Appendix I: Obsolete Features 4001
Routines Obsoleted in IDL 5.2

The following routines were present in IDL Version 5.1 but became obsolete in IDL
Version 5.2.

Routine Replaced by .pro File?

DEMO_MODE LMGR demo_mode.pro

Table I-6: Routines Obsoleted in IDL 5.2
IDL Reference Guide Routines Obsoleted in IDL 5.2

4002 Appendix I: Obsolete Features
Routines Obsoleted in IDL 5.1

The following routines were present in IDL Version 5.0 but became obsolete in IDL
Version 5.1.

Routine Replaced by .pro File?

SLICER SLICER3 slicer3.pro

Table I-7: Routines Obsoleted in IDL 5.1
Routines Obsoleted in IDL 5.1 IDL Reference Guide

Appendix I: Obsolete Features 4003
Routines Obsoleted in IDL 5.0

The following routines were present in IDL Version 4.0 but became obsolete in IDL
Version 5.0.

Routine Replaced by .pro File?

DDE Routines n/a

GETHELP OUTPUT keyword to HELP

HANDLE_CREATE PTR_NEW

HANDLE_FREE PTR_FREE

HANDLE_INFO PTR_VALID

HANDLE_MOVE n/a

HANDLE_VALUE dereference operator

INP, INPW, OUTP, OUTPW n/a

PICKFILE DIALOG_PICKFILE

Old RPC API New RPC API

.SIZE Executive Command No longer needed

TIFF_DUMP n/a

TIFF_READ READ_TIFF

TIFF_WRITE WRITE_TIFF

WIDED n/a

WIDGET_MESSAGE DIALOG_MESSAGE

Table I-8: Routines Obsoleted in IDL 5.0
IDL Reference Guide Routines Obsoleted in IDL 5.0

4004 Appendix I: Obsolete Features
Routines Obsoleted in IDL 4.0 or Earlier

The following routines became obsolete in IDL version 4.0 or earlier. These routines
are not documented in the obsolete.pdf file. If a .pro file for the routine exists, it
is located in the obsolete subdirectory of the lib directory of the IDL distribution.
You can read the documentation header of a routine in the obsolete directory either
by opening the .pro file or using the DOC_LIBRARY routine.

Routine Replaced by .pro File?

ADDSYSVAR DEFSYSV addsysvar.pro

ADJCT XPALETTE adjct.pro

ANOVA KW_TEST anova.pro

ANOVA_UNEQUAL KW_TEST anova_uneqal.pro

BETAI IBETA betai.pro

C_EDIT XPALETTE c_edit.pro

CALL_VMS CALL_EXTERNAL

CHI_SQR CHISQR_CVF chi_sqr.pro

CHI_SQR1 CHISQR_PDF chi_sqr1.pro

COLOR_EDIT XPALETTE color_edit.pro

CONTINGENT CTI_TEST contingent.pro

CORREL_MATRIX CORRELATE correl_matrix.pro

COSINES n/a cosines.pro

CW_BSELECTOR WIDGET_DROPLIST cw_bselector.pro

CW_LOADSTATE NO_COPY keyword to
WIDGET_CONTROL

cw_loadstate.pro

CW_SAVESTATE NO_COPY keyword to
WIDGET_CONTROL

cw_savestate.pro

DIFFEQ_23 RK4 diffeq_23.pro

Table I-9: Routines Obsoleted in IDL 4.0 or Earlier
Routines Obsoleted in IDL 4.0 or Earlier IDL Reference Guide

Appendix I: Obsolete Features 4005
DIFFEQ_45 RK4 diffeq_23.pro

DISP_TEXT XYOUTS disp_text.pro

EIGEN_II EIGENVEC eigen_ii.pro

EQUAL_VARIANCE FV_TEST equal_variance.pro

F_TEST F_CVF f_test.pro

F_TEST1 F_PDF f_test1.pro

FILLCONTOUR FILL keyword to
CONTOUR

fillcontour.pro

FORRD READU

FORRD_KEY READU

FORWRT WRITEU

FRIEDMAN KW_TEST friedman.pro

GAUSS GAUSS_CVF gauss.pro

GOODFIT XSQ_TEST goodfit.pro

HELP_VM MEMORY keyword to
HELP

help_vm.pro

HSV_TO_RGB COLOR_CONVERT hsv_to_rgb.pro

JOIN CLUSTER join.pro

KMEANS CLUSTER kmeans.pro

KRUSKAL_WALLIS KW_TEST kruskal_wallis.pro

LATLON n/a latlon.pro

LEGO LEGO keyword to
SURFACE

lego.pro

LISTREP n/a listrep.pro

LISTWISE n/a listwise.pro

Routine Replaced by .pro File?

Table I-9: Routines Obsoleted in IDL 4.0 or Earlier (Continued)
IDL Reference Guide Routines Obsoleted in IDL 4.0 or Earlier

4006 Appendix I: Obsolete Features
LN03 n/a ln03.pro

LUBKSB LUSOL

LUDCMP LUDC

MAKETREE CLUSTER maketree.pro

MANN_WHITNEY RS_TEST mann_whitney.pro

MENUS WIDGET_DROPLIST, etc. menus.pro

MIPSEB_DBLFIXUP n/a mipseb_dblfixup.pro

MOVIE XINTERANIMATE movie.pro

MPROVE LUMPROVE

MULTICOMPARE Hypothesis Testing Routines multicompare.pro

NR_BETA BETA

NR_BROYDN BROYDEN

NR_CHOLDC CHOLDC

NR_CHOLSL CHOLSOL

NR_DFPMIN DFPMIN

NR_ELMHES ELMHES nr_elmhes.pro

NR_EXPINT EXPINT

NR_FULSTR FULSTR

NR_HQR HQR nr_hqr.pro

NR_INVERT INVERT

NR_LINBCG LINBCG

NR_LUBKSB LUSOL nr_lubksb.pro

NR_LUDCMP LUDC nr_ludcmp.pro

NR_MACHAR MACHAR

Routine Replaced by .pro File?

Table I-9: Routines Obsoleted in IDL 4.0 or Earlier (Continued)
Routines Obsoleted in IDL 4.0 or Earlier IDL Reference Guide

Appendix I: Obsolete Features 4007
NR_MPROVE LUMPROVE

NR_NEWT NEWTON

NR_POWELL POWELL

NR_QROMB QROMB

NR_QROMO QROMO

NR_QSIMP QSIMP

NR_RK4 RK4

NR_SPLINE SPL_INIT

NR_SPLINT SPL_INTERP

NR_SPRSAB SPRSAB

NR_SPRSAX SPRSAX

NR_SPRSIN SPRSIN nr_sprsin.pro

NR_SVBKSB SVSOL nr_svbksb.pro

NR_SVD SVDC nr_svd.pro

NR_TQLI TRIQL

NR_TRED2 TRIRED

NR_TRIDAG TRISOL

NR_WTN WTN nr_wtn.pro

NR_ZROOTS FZ_ROOTS

ONLY_8BIT n/a only_8bit.pro

PALETTE XPALETTE palette.pro

PARTIAL2_COR P_CORRELATE partial2_cor.pro

PARTIAL_COR P_CORRELATE partical_cor.pro

PHASER n/a phaser.pro

Routine Replaced by .pro File?

Table I-9: Routines Obsoleted in IDL 4.0 or Earlier (Continued)
IDL Reference Guide Routines Obsoleted in IDL 4.0 or Earlier

4008 Appendix I: Obsolete Features
PM n/a pm.pro

PMF n/a pmf.pro

POLYCONTOUR FILL keyword to
CONTOUR

polycontour.pro

PROMPT n/a prompt.pro

PWIDGET n/a pwidget.pro

REGRESS1 REGRESS regress1.pro

REGRESSION REGRESS regression.pro

RGB_TO_HSV COLOR_CONVERT rgb_to_hsv.pro

RM n/a rm.pro

RMF n/a rmf.pro

ROT_INT ROT rot_int.pro

RSI_GAMMAI IGAMMA rsi_gamma.pro

RUNS_TEST R_TEST runs_test.pro

SET_NATIVE_PLOT n/a set_native_plot.pro

SET_SCREEN n/a set_screen.pro

SET_VIEWPORT n/a set_viewport.pro

SET_XY n/a set_xy.pro

SIGMA MOMENT sigma.pro

SIGN_TEST S_TEST sign_test.pro

SIMPSON QSIMP or QROMB simpson.pro

SPEARMAN R_CORRELATE sprearman.pro

STDEV MOMENT stdev.pro

STEPWISE REGRESS stepwise.pro

STUDENT1_T T_PDF student1_t.pro

Routine Replaced by .pro File?

Table I-9: Routines Obsoleted in IDL 4.0 or Earlier (Continued)
Routines Obsoleted in IDL 4.0 or Earlier IDL Reference Guide

Appendix I: Obsolete Features 4009
STUDENT_T T_CVF student_t.pro

STUDRANGE T_PDF studrange.pro

SURFACE_FIT SFIT surface_fit.pro

SVBKSB SVSOL

SVD SVDC

TESTCONTRAST n/a testcontrast.pro

TQLI TRIQL

TRED2 TRIRED

TRIDAG TRISOL

TVDELETE WDELETE

TVRDC CURSOR

TVSET WSET

TVSHOW WSHOW

TVWINDOW WINDOW

VMSCODE n/a vmscode.pro

WILCOXON RS_TEST wilcoxon.pro

WMENU WIDGET_DROPLIST, etc. wmenu.pro

XANIMATE XINTERANIMATE xanimate.pro

XBACKREGISTER TIMER keyword to
WIDGET_CONTROL

xbackregister.pro

XDL n/a xdl.pro

XMANAGERTOOL XMTOOL xmanagertool.pro

XMENU WIDGET_DROPLIST, etc. xmenu.pro

XPDMENU WIDGET_DROPLIST, etc. xpdmenu.pro

ZROOTS FZ_ROOTS

Routine Replaced by .pro File?

Table I-9: Routines Obsoleted in IDL 4.0 or Earlier (Continued)
IDL Reference Guide Routines Obsoleted in IDL 4.0 or Earlier

4010 Appendix I: Obsolete Features
Obsolete Arguments and Keywords

The following arguments and keywords are obsolete and should not be used in new
IDL code..

Routine
Argument or

Keyword Description

BYTEORDER DTOGFLOAT keyword This keyword was available
only on the VMS platform

GFLOATTOD keyword This keyword was available
only on the VMS platform.

CALL_EXTERNAL DEFAULT keyword This keyword was ignored on
non-VMS platforms.

PORTABLE keyword This keyword was ignored on
non-VMS platforms.

VAX_FLOAT keyword This keyword was available
only on the VMS platform.

DEVICE DEPTH keyword This keyword was available
only on the VMS platform.

FONT keyword This keyword was replaced by
the SET_FONT keyword.

DOC_LIBRARY FILE keyword This keyword was ignored on
non-VMS platforms.

PATH keyword This keyword was ignored on
non-VMS platforms.

OUTPUTS keyword This keyword was available
only on the VMS platform.

EXTRACT_SLICE CUBIC keyword EXTRACT_SLICE does not
support cubic interpolation.

IDLgrMPEG::Save CREATOR_TYPE
keyword

This keyword was ignored on
non-Macintosh OS 9 (and
earlier) platforms.

Table I-10: Arguments and Keywords Obsoleted in IDL 5.5
Obsolete Arguments and Keywords IDL Reference Guide

Appendix I: Obsolete Features 4011
LINKIMAGE DEFAULT keyword This keyword was ignored on
non-VMS platforms.

LIVE_PRINT SETUP keyword This keyword was ignored on
non-Macintosh OS 9 (and
earlier) platforms.

MAKE_DLL VAX_FLOAT keyword This keyword was ignored on
non-VMS platforms.

ONLINE_HELP HTML_HELP keyword This keyword is no longer
necessary; ONLINE_HELP
parses the value of the BOOK
keyword to determine file type.

OPEN Record_Length
argument

This argument was ignored on
non-VMS platforms.

BINARY keyword Windows file I/O changed to
function like UNIX file I/O.

BLOCK keyword This keyword was ignored on
non-VMS platforms.

DEFAULT keyword This keyword was ignored on
non-VMS platforms.

EXTENDSIZE keyword This keyword was ignored on
non-VMS platforms.

FIXED keyword This keyword was ignored on
non-VMS platforms.

FORTRAN keyword This keyword was ignored on
non-VMS platforms.

INITIALSIZE keyword This keyword was ignored on
non-VMS platforms.

KEYED keyword This keyword was ignored on
non-VMS platforms.

Routine Argument or
Keyword Description

Table I-10: Arguments and Keywords Obsoleted in IDL 5.5 (Continued)
IDL Reference Guide Obsolete Arguments and Keywords

4012 Appendix I: Obsolete Features
OPEN, continued LIST keyword This keyword was ignored on
non-VMS platforms.

MACCREATOR
keyword

This keyword was ignored on
non-Macintosh OS 9 (and
earlier) platforms.

MACTYPE keyword This keyword was ignored on
non-Macintosh OS 9 (and
earlier) platforms.

NOAUTOMODE
keyword

Windows file I/O changed to
function like UNIX file I/O.

NONE keyword This keyword was ignored on
non-VMS platforms.

NOSDTIO Keyword was renamed RAWIO.

PRINT keyword This keyword was ignored on
non-VMS platforms.

SEGMENTED keyword This keyword was ignored on
non-VMS platforms.

SHARED keyword This keyword was ignored on
non-VMS platforms.

STREAM keyword This keyword was ignored on
non-VMS platforms.

SUBMIT keyword This keyword was ignored on
non-VMS platforms.

SUPERSEDE keyword This keyword was ignored on
non-VMS platforms.

TRUNCATE_ON_CLOSE
keyword

This keyword was ignored on
non-VMS platforms.

Routine Argument or
Keyword Description

Table I-10: Arguments and Keywords Obsoleted in IDL 5.5 (Continued)
Obsolete Arguments and Keywords IDL Reference Guide

Appendix I: Obsolete Features 4013
OPEN, continued UDF_BLOCK keyword This keyword was ignored on
non-VMS platforms.

VARIABLE keyword This keyword was ignored on
non-VMS platforms.

PRINT/PRINTF REWRITE keyword This keyword was ignored on
non-VMS platforms.

READ_TIFF ORDER keyword This keyword was replaced by
the ORIENTATION keyword

UNSIGNED keyword This keyword became obsolete
when IDL began supporting an
unsigned 16-bit integer data
type.

READ/READF KEY_ID keyword This keyword was ignored on
non-VMS platforms.

KEY_MATCH keyword This keyword was ignored on
non-VMS platforms.

KEY_VALUE keyword This keyword was ignored on
non-VMS platforms.

READU KEY_ID keyword This keyword was ignored on
non-VMS platforms.

KEY_MATCH keyword This keyword was ignored on
non-VMS platforms.

KEY_VALUE keyword This keyword was ignored on
non-VMS platforms.

SAVE XDR keyword IDL always writes XDR files.

Routine Argument or
Keyword Description

Table I-10: Arguments and Keywords Obsoleted in IDL 5.5 (Continued)
IDL Reference Guide Obsolete Arguments and Keywords

4014 Appendix I: Obsolete Features
SPAWN FORCE keyword This keyword was incorrectly
included in the SPAWN
documentation.

MACCREATOR
keyword

This keyword was ignored on
non-Macintosh OS 9 (and
earlier) platforms.

NOCLISYM keyword This keyword was ignored on
non-VMS platforms.

NOLOGNAM keyword This keyword was ignored on
non-VMS platforms.

NOTIFY keyword This keyword was ignored on
non-VMS platforms.

WIDGET_BASE APP_MBAR keyword This keyword was ignored on
non-Macintosh OS 9 (and
earlier) platforms.

WRITE_TIFF Order argument The Order argument has been
replaced by the ORIENTATION
keyword. Code that uses the
Order argument will continue to
work as before, but new code
should use the ORIENTATION
keyword instead.

WRITEU REWRITE keyword This keyword was ignored on
non-VMS platforms.

Routine Argument or
Keyword Description

Table I-10: Arguments and Keywords Obsoleted in IDL 5.5 (Continued)
Obsolete Arguments and Keywords IDL Reference Guide

Appendix I: Obsolete Features 4015
Obsolete System Variables

The following IDL system variables became obsolete in the change from VAX IDL
(IDL version 1) to IDL version 2. While it is highly unlikely that you will find
references to these system variables in existing code, we include them here because
they are flagged when the OBS_SYSVARS field of the !WARN structure is set equal
to one. See Appendix D, “System Variables” for information on IDL system
variables.

System Variable Replaced by

!BCOLOR BOTTOM keyword to SURFACE

!COLOR !P.COLOR

!CXMAX !X.CRANGE[1]

!CXMIN !X.CRANGE[0]

!CYMAX !Y.CRANGE[1]

!CYMIN !Y.CRANGE[0]

!FANCY No direct equivalent. Use !P.FONT and
!P.CHARSIZE

!FLIP No equivalent.

!GRID !P.TICKLEN

!HI No equivalent.

!IGNORE !P.NOCLIP

!LINETYPE !P.LINESTYLE

!LO No equivalent.

!MTITLE !P.TITLE

!NOERAS !P.NOERASE

!NORMALCONT FOLLOW keyword to CONTOUR

!NSUM !P.NSUM

Table I-11: Obsolete System Variables
IDL Reference Guide Obsolete System Variables

4016 Appendix I: Obsolete Features
!PSYM !P.PSYM

!SC1 !P.POSITION[0] * !D.X_VSIZE if !P.POSITION[2]
is nonzero, or !X.WINDOW[0] * !D.X_VSIZE
otherwise.

!SC2 !P.POSITION[2] * !D.X_VSIZE if !P.POSITION[2]
is nonzero, or !X.WINDOW[1] * !D.X_VSIZE
otherwise.

!SC3 !P.POSITION[1] * !D.X_VSIZE if !P.POSITION[2]
is nonzero, or !Y.WINDOW[0] * !D.X_VSIZE
otherwise.

!SC4 !P.POSITION[3] * !D.X_VSIZE if !P.POSITION[2]
is nonzero, or !Y.WINDOW[1] * !D.X_VSIZE
otherwise.

!TERM DEVICE procedure.

!TYPE !X.TYPE, !X.STYLE, !Y.TYPE, !Y.STYLE,
!P.TICKLEN

!XMAX !X.RANGE[1]

!XMIN !X.RANGE[0]

!XTICKS !X.TICKS

!XTITLE !X.TITLE

!YMAX !Y.RANGE[1]

!YMIN !Y.RANGE[0]

!YTICKS !Y.TICKS

!YTITLE !Y.TITLE

System Variable Replaced by

Table I-11: Obsolete System Variables (Continued)
Obsolete System Variables IDL Reference Guide

Appendix I: Obsolete Features 4017
Obsolete Graphics Devices

The following arguments and keywords are obsolete and should not be used in new
IDL code..

Graphics Device Description

The LJ Device (LJ) The LJ device was only available in IDL for VMS.

The Macintosh Device (MAC) The MAC device was only available in IDL for
Macintosh versions running under OS 9 and earlier.
Versions of IDL for Macintosh running under OS
X and later use the X device.

Table I-12: Obsolete Graphics Devices
IDL Reference Guide Obsolete Graphics Devices

4018 Appendix I: Obsolete Features
Obsolete Graphics Devices IDL Reference Guide

Index

Symbols
! character, 3944
!C system variable, 3913
!CPU system variable, 3902
!D system variable, 3913
!D.TABLE_SIZE system variable

array scale, 2055
graphic variable, 3915

!D.WINDOW system variable
WDELETE procedure, 2111
WINDOW procedure, 2342
WSET procedure, 2383

!DIR system variable, 3903
!DLM_PATH system variable

environment variable, 3904
expanding paths, 576

!DPI system variable, 3895

!DTOR system variable, 3895
!EDIT_INPUT system variable, environment

variable, 3905
!ERR system variable

error handling, 3897
WHERE function, 2116

!ERROR_STATE system variable
error handling variable, 3897
I/O errors, 1403
MSG field, 1911
retrieving errors, 1911

!EXCEPT system variable, 3899
!HELP_PATH system variable

environment variable, 3905
path expansion, 576

!JOURNAL system variable
environment variable, 3906
IDL Reference Guide 4019

4020
!JOURNAL system variable (continued)
JOURNAL procedure, 1015

!MAKE_DLL system variable, 3906
!MAP system variable

constant variable, 3895
coordinate conversion, 1252

!MORE system variable, 3908
!MOUSE system variable

CURSOR procedure, 344
structure information, 3899

!ORDER system variable, 3917
!P system variable, 3917
!P.COLOR system variable, 2444
!P.FONT system variable, 3953
!P.MULTI system variable, 3846
!P.T system variable

adjusting, 422
creating 3-D view, 332
SURFR procedure, 1940
T3D procedure, 1966
transformation matrix, 3880

!P.T3D system variable, 332
!PATH system variable

environment variable, 3909
expansion, 576

!PI system variable, 3895
!PROMPT system variable, 3910
!QUIET system variable

environment variable, 3910
error notification, 1325

!RADEG system variable, 3895
!VALUES system variable, 3895
!VERSION system variable, 3910
!WARN system variable, 3900
!X system variable, 3921
!Y system variable, 3921
!Z system variable, 3921
operator, 3933
operator, 3933
$ character, line continuation, 3945
& character, 3946

&& operator, 3934
' character, 3945
* character, 3946
. character, 3945
.COMPILE command, 63
.CONTINUE command, 64
.EDIT command, 65
.FULL_RESET_SESSION command, 66
.GO command, 67
.OUT command, 68
.RESET_SESSION command, 69
.RETURN command, 71
.RNEW command, 72
.RUN command, 74
.sid image files, 2629
.SKIP command, 76
.STEP command, 78
.STEPOVER command, 79
.TRACE command, 80
.Xdefaults file, 2139
: character, 3946
; character, 3945
< operator, 3932
> operator, 3932
? character, starting online help, 3947
?: ternary operator, 3939
@ character, 3946
|| operator, 3934
~ operator, 3934
’’ character, 3945
⁄ character, in keywords, 2502

Numerics
2-D rendering of 3-D volumes, 1514
3D

coordinate transformations, 313
drawing transformation, 422
images

reconstructed from 2D arrays, 1666
viewing coordinate system, 332
Index IDL Reference Guide

4021
3D (continued)
rendering, 1304
transformations

SCALE3D procedure, 1731
SURFR procedure, 1940
VERT_T3D function, 2091

volume slices, 1810
3D plots, viewing, 2445
3D transforms, implementing, 1966
64-bit integer

array creation, 1032
data type, converting to, 1172
LONG64ARR arrays, 1166
vectors, 1166

A
A_CORRELATE function, 82
ABS function, 84
absolute deviation, 1342
absolute value, 84
ACOS function, 86
active command line, 2417
ActiveX controls, creating in IDL widget hier-

archies, 3753
ADAPT_HIST_EQUAL function, 88
addition, array elements, 1995
addition operator, 3930
AddPolygon method, 3595
ADDSYSVAR, see obsolete routines
adjacency list, Delaunay triangulation, 2009
ADJCT, see obsolete routines
Adobe

Font Metrics files, 1519
Type Manager

device fonts, 3964
setting font, 3815

Aitoff map projection, 1254
Alber’s equal area conic map projection, 1254
aligning text (XYOUTS), 2489
allocated memory, returning amount of, 803

ALOG function, 91
ALOG10 function, 93
alpha channel, 3304
AMOEBA function, 95
ampersand, 3946
analysis objects

IDLanRIOGroup, 2542
IDLanROI class, 2514

AND operator, 3935
Angstrom symbol, 3955
animation

closing MPEG files, 1365
flickering images, 676
MPEG frame storage, 1370
opening MPEG files, 1366
saving MPEG files, 1372
widgets (CW_ANIMATE), 357
widgets (XINTERANIMATE), 2403
XVOLUME, 2477

ANNOTATE procedure, 99
annotations, of displayed images, 99
ANOVA, see obsolete routines
ANOVA_UNEQUAL, see obsolete routines
apostrophe, 3945
AppendData method, IDLanROI, 2520
approximating models, statistical, 259
arc-cosine, 86
architecture, current version in use, 3910
arc-sine, 114
arc-tangent, 119
ARG_PRESENT function, 101
arguments

checking existence of, 101
described, 57

arguments, described, 2501
array operators

CHOLDC, 236
CHOLSOL, 238
COND, 277
CRAMER, 327
DETERM, 486
IDL Reference Guide Index

4022
array operators (continued)
EIGENVEC, 542
ELMHES, 545
GS_ITER, 774
HQR, 832
INVERT, 929
LA_CHOLDC, 1034
LA_CHOLMPROVE, 1037
LA_CHOLSOL, 1041
LA_DETERM, 1044
LA_EIGENPROBLEM, 1046
LA_EIGENVEC, 1058
LA_ELMHES, 1062
LA_HQR, 1068
LA_INVERT, 1071
LA_LUDC, 1083
LA_LUMPROVE, 1086
LA_LUSOL, 1089
LA_SVD, 1092
LA_TRIDC, 1096
LA_TRIQL, 1104
LA_TRIRED, 1107
LA_TRISOL, 1109
LU_COMPLEX, 1179
LUDC, 1181
LUMPROVE, 1183
LUSOL, 1186
NORM, 1389
SVDC, 1941
SVSOL, 1950
TRIQL, 2023
TRIRED, 2026
TRISOL, 2028

ARRAY_EQUAL function, 103
ARRAY_INDICES function, 105
arrays

arbitrary resizing, 279
changing dimensions of, 1674
comparing to scalars, 103
comparing values, 103
concatenation, 3938

arrays (continued)
converting subscripts, 105
creating

64-bit integer
(L64INDGEN function), 1032
(LON64ARR function), 1166

any type (MAKE_ARRAY function), 1194
byte

(BINDGEN function), 160
(BYTARR function), 179

complex
(CINDGEN function), 240
(COMPLEXARR function), 272
(DCINDGEN function), 454
(DCOMPLEXARR function), 459

double-precision
(DBLARR function), 452
(DCINDGEN function), 454
(DCOMPLEXARR function), 459
(DINDGEN function), 523

integer
(INDGEN function), 903
(INTARR function), 915

longword
(LINDGEN function), 1133
(LONARR function), 1168

single-precision, floating-point
(FINDGEN function), 667
(FLTARR function), 683

string
(SINDGEN function), 1797
(STRARR function), 1887

unsigned 64-bit, (ULON64ARR function),
2068

unsigned 64-bit integer, (UL64INDGEN
function), 2064

unsigned integer, (UINDGEN function),
2058

unsigned longword
(ULINDGEN function), 2066
(ULONARR function), 2070
Index IDL Reference Guide

4023
arrays (continued)
data type, determining type, SIZE function,

1800
extracting sub-arrays, 585
filling with a scalar value, 1686
finding number of elements in, 1380
floating-point, 667
incrementing elements, 819
interactive editing tool (XVAREDIT proce-

dure), 2475
of structures, creating, 1687
operators, see array operators
resizing, 1661
resizing 2D, 574
returning

maximum value, 1268
minimum value, 1329
subscripts of non-zero elements, 2115

reversing indices, 1699
rotating, 1709
searching in 2D, 1732
searching in 3D, 1735
shifting elements, 1761
size, 1800
sorting, 1844
subscripts, returning non-zero elements,

2115
summing elements, 1995
transposing, 2002
unique elements of (UNIQ function), 2076
updating, 164

ARROW procedure, 108
ASCII_TEMPLATE function, 110
ASIN function, 114
assignment operator, 3938
assignment operators (compund), 3939
ASSOC, function, 116
associated variables, 116
asterisk, 3946
at sign (character), 3946
ATAN function, 119

attributes
adding to a Shapefile, 2658
of a Shapefile, 2648

autocorrelation, 82
autocovariance, 82
autoregressive time-series forecasting

coefficients, 2033
values, 2037

AVANTGARDE keyword, 3789
average

mean, 1342
median, 1278

AVERAGE_LINES keyword, 3789
axes

axis gridstyles, 3145
axis thickness, 3152
changing type, 2446
date labels for, 1112
direction, 3144
end points, 3928
gridstyle system variable, 3922
input range, 3923
linear, 3928
location, 3146
logarithmic

specifying, 3147
system variable, 3928

margin system variable, 3922
multi-level, 3887
object, 3138
outer margins, 3923
output range, 3921
range, 3882
range (CRANGE, EXACT, EXTEND,

RANGE), 3141
scaling, 3924
style, 3924
system variables for, 3921
thickness system variable, 3925
thickness, (XYZ)THICK keyword, 3882
title system variable field, 3927
IDL Reference Guide Index

4024
axes (continued)
titles, 3158

graphics keyword, 3888
axis object, 3138
AXIS procedure, 123
azimuth, mapping points, 1204
azimuthal equidistant map projection, 1254

B
background color

changing, 3829
for graphics windows, 553

BACKGROUND keyword, 3872
BACKGROUND system variable field, 3917
background tasks, widgets, 2203
backing store

about draw widgets, 2228
defined, 3824
for zoom widgets, 448
setting, 2343
setting for draw widgets, 370
setting for WIDGET_DRAW, 2219
setting graphics device, 3810

backprojection
Hough inverse transform, 823
Radon inverse transform, 1581

back-substitution, 1950
backward index list (for histograms), 814
bar charts, 127
BAR_PLOT procedure, 127
base 10 logarithm, 93
base widgets

bulletin board bases, 2127
changing title of, 2204
column bases, 2132
events returned by, 2148
exclusive, 2134
exclusive and non-exclusive, 2127
keyboard focus events, 2135
mapping and unmapping, 2188

base widgets (continued)
nonexclusive, 2138
positioning

WIDGET_BASE, 2127
WIDGET_CONTROL, 2203

resize events, 2144
row bases, 2141
top-level, 2130
WIDGET_BASE, 2127

batch files, signaling batch process, 3947
BEGIN...END statement, 131
benchmarks, 1987
Bernoulli distribution, 162
BESELI function, 134
BESELJ function, 137
BESELK function, 142
BESELY function, 145
Bessel functions

BESELI, 134
BESELJ, 137
BESELK, 142
BESELY, 145
recurrence relationship, 139

BETA function, 148
BETAI, see obsolete routines
big endian byte ordering

converting, 183
SOCKET procedure, 1842
swapping with little endian, 1952

bi-level images, 1983
BILINEAR function, 150
bilinear interpolation, 150
BIN_DATE function, 153
binary interpolation, 920
BINARY keyword, 3790
binary SAVE and RESTORE, 1723
BINARY_TEMPLATE function, 155
BINDGEN function, 160
binomial distribution, 162
BINOMIAL function, 162
Index IDL Reference Guide

4025
binomial random deviates
RANDOMN function, 1591
RANDOMU function, 1597

bins, histogram, 814
bit shift operation, 953
bitmap

byte array, 355
editing button labels, 2392
files

reading (READ_BMP), 1611
writing (WRITE_BMP), 2346

labels, creating, 355
widget button labels, 2151

BITS_PER_PIXEL keyword, 3790
Bitwise operators, 3935
BKMAN keyword, 3790
BLAS_AXPY procedure, 164
BLK_CON function, 168
blob coloring, 1116
block convolution, 168
BMP files

reading (READ_BMP), 1611
writing (WRITE_BMP), 2346

BOLD keyword, 3790
BOOK keyword, 3790
Bookman font, 3790
Boolean operators see Bitwise operators
Boolean operators see Logical operators
bottom margin, setting, 3923
BOX_CURSOR procedure, 170
boxcar average, 1834
BREAK statement, 172
BREAKPOINT procedure, 173
breakpoints

removing, 174
returning information on, 801
setting, 175

BROYDEN function, 176
Broyden’s method, 176
buffered output

emptying, 547

buffered output (continued)
flushing, 685

buffers
flushing, 685
flushing on exit, 570
type-ahead, 728

bulletin board bases, 2127
button

groups, 374
labels, creating, 355
widgets

button release events, 2156
creating bitmap labels, 2151
editing bitmap labels, 2392
events returned by, 2161
groups, 374
setting pointer focus, 2186
toggle, 2151
WIDGET_BUTTON, 2151

BYPASS_TRANSLATION keyword, 3791
BYTARR function, 179
byte

arrays
BINDGEN function, 160
BYTARR function, 179

scaling values into a range of bytes, 188
swapping, 183
swapping short integers, 185
type, converting to, 181

BYTE function, 181
byte order, reversing

SOCKET procedure, 1841
SWAP_ENDIAN_INPLACE procedure,

1954
byte ordering

big endian, 157
binary data, 157
little endian, 157
native method, 157

BYTEORDER procedure, 183
BYTSCL function, 188
IDL Reference Guide Index

4026
C
C_CORRELATE function, 191
C_EDIT, see obsolete routines
caching, 1429, 1429
CALDAT procedure, 194
CALENDAR procedure, 197
CALL_EXTERNAL function, 198
CALL_FUNCTION function, 209
CALL_METHOD, 211
CALL_PROCEDURE procedure, 213
CALL_VMS, see obsolete routines
calling

external modules from IDL, 198
IDL functions from a string, 209
IDL methods from a string, 211
IDL procedures from a string, 213
routines written in other languages, 198
routines written in other languages at runt-

ime, 1138
sequence, 56

calling sequence
function methods, 2500
procedure methods, 2500

cancel button, 2175
Cartesian

converting from lat/lon, 1226
converting to lat/lon, 1250

CASE statement, 215
CATCH procedure, 217

messages, 1323
catch, C++ language, 217
CD procedure, 220
CEIL function, 223
central map projection, 1254
CGM driver, 3830
changing

access permissions, 608
directories, 220

CHANNEL keyword, 3872
CHANNEL system variable field, 3917

characters
character sets, 3971
newline, 2326
plotting in graphics windows, 2488
size, 2489

CHARSIZE keyword, 3873
CHARSIZE system variable field

annotations, 3917
axis, 3921

CHARTHICK keyword, 3873
CHARTHICK system variable field, 3917
CHEBYSHEV function, 225
CHECK_MATH function, 226
CHI_SQR, see obsolete routines
CHI_SQR1, see obsolete routines
children, of widgets, 2243
CHISQR_CVF function, 232
CHISQR_PDF function, 234
Chi-square distribution

compute cutoff, 232
compute probability, 234

chi-square error statistic, minimizing, 1135
Chi-square goodness-of-fit test

computing, 2470
contingency table, 341

chmod, 608
CHOLDC procedure, 236
Cholesky decomposition

constructing (CHOLDC), 236
constructing (LA_CHOLDC), 1034
constructing (LA_CHOLMPROVE), 1037
constructing (LA_CHOLSOL), 1041
solution, 238

CHOLSOL function, 238
CINDGEN function, 240
CIR_3PNT procedure, 242
classes

iTools
command collection, 2737
component (class) base, 2743
component collection, 2766
Index IDL Reference Guide

4027
classes (continued)
iTools

data collection, 2796
data undo and redo, 2808
IDLitCommand, 2725
IDLitCommandSet, 2737
IDLitComponent, 2743
IDLitContainer, 2766
IDLitData, 2778
IDLitDataContainer, 2796
IDLitDataOperation, 2808
IDLitiMessaging, 2823
IDLitManipulator, 2840
IDLitManipulatorContainer, 2868
IDLitManipulatorManager, 2887
IDLitManipulatorVisual, 2894
IDLitOperation, 2902
IDLitParameter, 2922
IDLitParameterSet, 2939
IDLitReader, 2954
IDLitTool, 2967
IDLitUI, 3016
IDLitVisualization, 3035
IDLitWindow, 3083
IDLitWriter, 3124
maniplator collection, 2868
manipulating objects, 2840
manipulator base, 2887
messaging, 2823
naming data objects, 2939
operating tasks, 2902
parameters, 2922
reading files, 2954
storing data, 2778
tool base, 2967
undo and redo commands, 2725
user-interface, 3016
visual base, 3035
window base, 3083
writing files, 3124

Java, IDLjavaObject, 3761, 3761

clearing breakpoints, 174
CLIP keyword, 3873
CLIP system variable field, 3917
clipboard object, 3195
clipping meshes, 1286
clipping window, 3917
clock, system, 1958
CLOSE keyword, 3791
CLOSE procedure, 244
CLOSE_DOCUMENT keyword, 3791
CLOSE_FILE keyword, 3791
closing

(image processing) function, 518
files (CLOSE procedure), 244
graphics output files, 3791
Shapefiles, 2662

CLUST_WTS function, 246
cluster analysis

CLUST_WTS function, 246
CLUSTER function, 248

CLUSTER function, 248
cluster weights, 246
CMY color system, 442
coastlines, 1208
colon character, 3946
COLOR keyword

DEVICE procedure, 3792
graphics keyword, 3874

COLOR system variable field, 3918
color tables

colors1.tbl, 1340
creating and modifying with XPALETTE,

2440
definitions, 1157
gamma correction, 710
histogram equalization, 778
histogram equalizing, 777
HLS (Hue, Lightness, Saturation), 821
HSV (Hue, Saturation, Value), 834
LHB (Lightness, Hue, Brightness), 1520
loading, 2048
IDL Reference Guide Index

4028
color tables (continued)
loading into variables (GET keyword), 2049
loading predefined, 1157
loading predefined interactively, 2410
maximum indices for draw widgets, 2215
modifying predefined colortable files, 1340
setting maximum number of indices, 2342
stretching, 1898
Tektronix 4115, 1975
wrapping (MULTI procedure), 1378

COLOR_CONVERT procedure, 251
COLOR_EDIT, see obsolete routines
COLOR_QUAN function, 253
colorbar object, 3218
COLORMAP_APPLICABLE function, 257
colors

background graphic keyword, 3872
background system variable, 3917
changing background, 3829
converting between color systems, 251
default index, 3918
erasing background, 553
gamma correction (GAMMA_CT), 710
indices

controlling interpretation, 3795
display, 383
index selection, 380
slider, 442

luminance of (CT_LUMINANCE function),
339

maximum number available, 2055
maximum number for draw widgets, 2215
quantization, 253
reducing number in an image, 1672
resources, for widgets, 2140
setting maximum number of indices, 2342
shared colormap, 3817
systems

displaying, 2048
modifying with CW_RGBSLIDER, 442

COLORS keyword, 3792

column bases, 2132
COM objects

creating in IDL object hierarchies, 3755
IDLcomIDispatch object class, 3755

combobox widgets, 2162
COMFIT function, 259
command input buffer, displaying, 805
command recall, buffer, 1665
commands

displaying previously-executed, 805
executive

.COMPILE, 63

.CONTINUE, 64

.EDIT, 65

.FULL_RESET_SESSION, 66

.GO, 67

.OUT, 68

.RESET_SESSION, 69

.RETURN, 71

.RNEW, 72

.RUN, 74

.SKIP, 76

.STEP, 78

.STEPOVER, 79

.TRACE, 80
COMMON statement, 262
comparing array values, 103
COMPILE_OPT statement, 263
compiling

functions and procedures, 805
RESOLVE_ALL, 1690
RESOLVE_ROUTINE, 1692

complex
arrays, creating

(CINDGEN function), 240
(COMPLEXARR function), 272
(DCOMPLEXARR function), 459
double precision, 454

arrays, rounding, 274
conjugate, 282
Index IDL Reference Guide

4029
complex (continued)
data type, 456

COMPLEX function, 268
numbers, returning imaginary part of, 901
numbers, returning real part of, 677
numbers, returning the magnitude of, 84
polynomials, 705

COMPLEX function, 268
COMPLEXARR function, 272
COMPLEXROUND function, 274
compound assignment operators, 3939
compound widgets

CW_ANIMATE, 357
CW_ARCBALL, 369
CW_BGROUP, 374
CW_CLR_INDEX, 380
CW_COLORSEL, 383
CW_DEFROI, 386
CW_FIELD, 390
CW_FILESEL, 395
CW_FORM, 400
CW_FSLIDER, 408
CW_LIGHT_EDITOR, 413
CW_LIGHT_EDITOR_GET, 417
CW_LIGHT_EDITOR_SET, 420
CW_ORIENT, 422
CW_PALETTE_EDITOR, 425
CW_PALETTE_EDITOR_GET, 432
CW_PALETTE_EDITOR_SET, 433
CW_PDMENU, 434
CW_RGBSLIDER, 442
CW_ZOOM, 447

compression, JPEG
read, 1620
write, 2351

COMPUTE_MESH_NORMALS function,
276

ComputeBounds method, 3675
ComputeDimensions method

colorbar object, 3232
legend object, 3321

ComputeGeometry method, IDLanROI, 2523
ComputeMask method

IDLanROI, 2525
IDLanROIGroup, 2548

ComputeMesh method, IDLanROIGroup,
2551

Computer Graphics Metafile, 3830
concatenation, array, 3938
COND function, 277
condition number, 277
conditional expression, 3939
CONGRID function, 279
CONJ function, 282
conjugate, complex, 282
connectivity list, 1286
CONSTRAINED_MIN procedure, 284
container object, 3742
ContainsPoints method

IDLanROI, 2528
IDLanROIGroup, 2553

context-sensitive menu, widget, 2211
continental boundaries, 1208
contingency table, 341
CONTINGENT, see obsolete routines
CONTINUE statement, 291
contour object, 3238
contour plots

CONTOUR procedure, 292
interactive (iTool) routine, 840
overlaying with images, 896
polar, 1461
with images and surface plots, 1786

CONTOUR procedure, 292
contrast, gamma correction, 710
convergence criterion, 1387
CONVERT_COORD function, 305
converting

colors between color systems, 251
coordinate systems, 305

converting expressions
between host and network byte ordering, 183
IDL Reference Guide Index

4030
converting expressions (continued)
to 64-bit integer type, 1172
to byte type, 181
to complex type

COMPLEX function, 268
DCOMPLEX function, 456

to double-precision type, 533
to integer type, 673
to longword type, 1170
to single-precision floating-point type, 677
to string type, 1900
to unsigned 64-bit integer type, 2074
to unsigned integer type, 2060
to unsigned longword type, 2072

convex hulls, 1536
CONVOL function, 308
convolution

computing, 168
filtering, 308

COORD2TO3 function, 313
coordinates

3D transformations
2D to 3D, 313
scaling, 1731
scaling 3D, 1729
setting, 1940
vertices, 2091

clipping, 3873
converting

2D to 3D, 313
between coordinate systems, 352
map coordinates, 1252
systems, 305

defining 3D systems, 332
device, 3874
normal, 3877

COPY keyword, DEVICE procedure, 3792
COPY_LUN procedure, 315
copying

data between files, 315
files, 612

copying (continued)
pixels from one window to another, 3792

correction, gamma, 710
CORREL_MATRIX, see obsolete routines
CORRELATE function, 318
correlation analysis

correlation/covariance matrix, 318
Kendall’s tau rank, 1576
lagged autocorrelation, 82
lagged crosscorrelation, 191
multiple, 1189
partial, 1424
Pearson’s correlation, 318
Spearman’s rho rank, 1576

correlation coefficient
CORRELATE, 318
Kendalls’s, 1576
M_CORRELATE, 1189
multiple, 1189
P_CORRELATE, 1424
partial, 1424
Pearson, 318
R_CORRELATE, 1576
rank, 1576
Spearman’s, 1576

COS function, 320
COSH function, 322
cosine

COS function, 320
hyperbolic, 322
inverse, 86

COSINES, see obsolete routines
count accumulation, 819
Count method, 3746
country boundaries, 1208
COURIER keyword, 3793
CPU procedure, 324
CRAMER function, 327
Cramer’s rule, 327
CRANGE system variable field, 3921
CREATE_STRUCT function, 329
Index IDL Reference Guide

4031
CREATE_VIEW procedure, 332
creating

iTools, 873
realizing widgets, 2190
symbolic links, 631
system variables, 480
windows, 2342

cross correlation, 191
cross covariance, 191
CROSSP function, 336
CRVLENGTH function, 337
CT_LUMINANCE function, 339
CTI_TEST function, 341
cubic convolution interpolation

returning, 921
warping, 1468

cubic spline interpolation
establishing type, 1862
returning, 1864

current (active) iTool, 983
current IDL session, returning information on,

800
current working directory, 220
cursor

box, 170
changing appearance, 3793
displaying, 2046
graphics on Tektronix terminals, 3801
hiding, 2047
hourglass, 2186
positioning, 2046
reading position of, 1602
registering, 1679
returning events from draw widgets, 2218
setting to crosshair, 3793
specifying pattern, 3793
type, 3793

CURSOR procedure
and Tektronix terminals, 3801
reference, 344

CURSOR_CROSSHAIR keyword, 3793

CURSOR_IMAGE keyword, 3793
CURSOR_STANDARD keyword, 3793
CURSOR_XY keyword, 3795
curve fitting

COMFIT function, 259
CRVLENGTH function, 337
CURVEFIT function, 347
GAUSS2DFIT function, 715
GAUSSFIT function, 719
LADFIT function, 1119
LINFIT function, 1135
LMFIT function, 1144
MIN_CURVE_SURF function, 1332
POLY_FIT function, 1474
REGRESS function, 1681
SFIT function, 1747
SVDFIT function, 1944

CURVEFIT function, 347
cutoff value

Chi-square distribution, 232
F distribution, 593
Gaussian distribution, 711
T distribution, 1961

CV_COORD function, 352
CVTTOBM function, 355
CW_ANIMATE function, 357
CW_ANIMATE_GETP procedure, 362
CW_ANIMATE_LOAD procedure, 364
CW_ANIMATE_RUN procedure, 367
CW_ARCBALL function, 369
CW_BGROUP function, 374
CW_BSELECTOR, see obsolete routines
CW_CLR_INDEX function, 380
CW_COLORSEL function, 383
CW_DEFROI function, 386
CW_FIELD function, 390
CW_FILESEL function, 395
CW_FORM function, 400
CW_FSLIDER function, 408
CW_LIGHT_EDITOR function, 413
CW_LIGHT_EDITOR_GET procedure, 417
IDL Reference Guide Index

4032
CW_LIGHT_EDITOR_SET procedure, 420
CW_LOADSTATE, see obsolete routines
CW_ORIENT function, 422
CW_PALETTE_EDITOR function, 425
CW_PALETTE_EDITOR_GET procedure,

432
CW_PALETTE_EDITOR_SET procedure,

433
CW_PDMENU function, 434, 2155
CW_RGBSLIDER function, 442
CW_SAVESTATE, see obsolete routines
CW_TMPL procedure, 446
CW_ZOOM function, 447
cylindrical coordinates, 352
cylindrical equidistant map projection, 1254

D
data coordinates, converting to other types, 306
data entry, field widget, 390
DATA keyword, 3874
data types, determining using SIZE, 1800
date

converting from string to binary, 153
converting Julian to calendar, 194
displaying calendars, 197
labeling axes with, 1112
returning current, 1958

Daubechies wavelet filter, 2387
Davidon-Fletcher-Powell minimization, 492
day, returning current, 1958
DBLARR function, 452
DCINDGEN function, 454
DCOMPLEX function, 456
DCOMPLEXARR function, 459
DDE routines, see obsolete routines
deallocated memory, returning amount of, 803
debugging

BREAKPOINT procedure, 173
PROFILER procedure, 1509
shared memory, 1763

decimating a mesh, 1293
DECOMPOSED keyword, 3795
decomposition

Cholesky, 238
Cholesky (CHOLDC), 236
Cholesky (LA_CHOLDC), 1034
Cholesky (LA_CHOLMPROVE), 1037
Cholesky (LA_CHOLSOL), 1041
LU

LA_LUDC procedure, 1083
LA_LUSOL function, 1089
LA_TRIDC function, 1096
LU_COMPLEX function, 1179
LUDC procedure, 1181
LUSOL function, 1186

singular value
LA_SVD procedure, 1092
solving, 1951
SVDC procedure, 1941

decrement operator, 3930
default button, 2178
default font, 3611
default visual class, 3857
DEFINE_KEY procedure, 461
DEFINE_MSGBLK procedure, 470
DEFINE_MSGBLK_FROM_FILE procedure,

473
defining

command or help path, 576
keys, 461
region of interest, 478
system variables, 480

DEFROI function, 478
DEFSYSV procedure, 480
Delaunay triangulation, 2009
DELETE_SYMBOL, see obsolete routines
deleting

a region of interest, 2467
files or directories, 616
iTools, 985
variables, 482
Index IDL Reference Guide

4033
deleting (continued)
windows, 2111

DELLOG, see obsolete routines
DELVAR procedure, 482
DEMI keyword, 3795
DEMO_MODE, see obsolete routines
density function, 814
DERIV function, 483
DERIVSIG function, 484
de-sensitizing widgets, 2192
destroying

widgets, WIDGET_CONTROL, 2179
windows, 2111

DETERM function, 486
determinant of a square matrix

DETERM, 486
LA_DETERM, 1044

deviation, mean absolute, 1276
DEVICE

keyword, 3874
procedure, 488
supported, 3782

device
backing store, 3824
CGM, 3830
coordinates, 306
display channels, 3917
flags, 3914
for graphics output, 3782
graphics output, 3782
height, 3822
HP-GL, 3832
Microsoft Windows (WIN), 3855
monochrome, 3826
name of, 3915
Null, 3836
number of color table indices, 3915
number of colors, 3915
PCL, 3837
PostScript, 3840
Printer, 3839

device (continued)
Regis terminals, 3852
resolution of, 3916
size of display, 3916
Tektronix, 3853
width, 3821
x offset, 3821
X Windows, 3856
y offset, 3822
Z-buffer, 3865

Device fonts, 3952
DFPMIN procedure, 492
DIAG_MATRIX function, 496
diagonal matrix, 496
DIALOG_MESSAGE function, 498
DIALOG_PICKFILE function, 501
DIALOG_PRINTERSETUP function, 506
DIALOG_PRINTJOB function, 508
DIALOG_READ_IMAGE function, 510
DIALOG_WRITE_IMAGE function, 513
dialogs

message dialog box, 498
modal, 498

dicer, 1810
DICOM

conformance summary, 2564
IDLffDICOM object, 2562
querying DICOM files, 1556
reading DICOM files, 1614

DIFFEQ_23, see obsolete routines
DIFFEQ_45, see obsolete routines
differentiation, CONVOL function, 308
digital dissolve effect, 525
digital smoothing polynomial, 1725
DIGITAL_FILTER function, 515
DILATE function, 517
dilation operator, 517
DINDGEN function, 523
Direct Graphics, font use, 3953
DIRECT_COLOR keyword, 3795
DirectColor visuals, 3795
IDL Reference Guide Index

4034
direction, of light source, 1741
directories

changing, 220
changing permissions, 608
creating, 634
deleting, 616
expanding pathnames, 622
main directory system variable, 3903
making, 634
popping, 1492
printing, 1500
pushing, 1530
searching for files, 661
searching for help files, 3905

DISP_TEXT, see obsolete routines
displaying images

flickering (FLICK), 676
TrueColor, 2044
TV, 2042
with intensity scaling, 2055

displaying text
ASCII files, 2394
in a graphics window, 2488

displays, size, 3916
DISSOLVE procedure, 525
DIST function, 527
distance, between points, 1204
dithering

about, 3824
Floyd-Steinberg, 3798
monochrome, 3826
ordered, 3805
threshold, 3819

division operator, 3931
DLM

building sharable libraries, 1198
loading, 529
registering, 530

DLM_LOAD procedure, 529
DLM_REGISTER procedure, 530
DO_APPLE_SCRIPT, see obsolete routines

DOC_LIBRARY procedure, 531
documentation headers, extracting, 531
dollar sign, 3945
Doppler frequency, 2093
DOUBLE function, 533
double-clicks, 2277
double-precision

arrays, creating
(DBLARR function), 452
(DINDGEN function), 523

type, converting to, 533
drag events

for floating-point slider widgets, 409
for RGB slider widgets, 443
for slider widgets, 2290
in draw widgets

mouse motion, 2218
setting, 2181

draw widgets, 2213
backing store, 2228
changing size

horizontal, 2181
vertical, 2181

events
determining if set, 2244
returned by, 2224
returning, 2180

motion events, 2218
obtaining window number of, 2222
returning events

button press, 2180
motion, 2181
viewport

draw, 2180
motion, 2181

viewport, position, 2194
viewport, position, widget, 2183

DRAW_ROI procedure, 535
drawing

arrows, 108
continents, 1208
Index IDL Reference Guide

4035
drawing (continued)
lines (PLOTS procedure), 1454
objects (ANNOTATE procedure), 99

droplist widgets, 2230
events returned by, 2236
returning

current selection, 2245
number of elements, 2245

setting, 2194
droplist widgets returned events, 2169
DXF library, supported version, 2595
DXF object

displaying, 2397
IDLffDXF class, 2595
manipulation, 2397

dynamic memory
returning amount in use, 803
usage, 1281

dynamically loadable module. See DLM
dynamically loadable modules. See DLM
dynamically loaded modules, keyword, 801

E
earth, interpolating irregularly-sampled data

over, 2009
edge detection, CONVOL function, 308
edge enhancement

ROBERTS function, 1704
SOBEL function, 1837

EDM, Euclidean Distance Map. See Euclidean
norm

EFONT procedure, 537
EIGEN_II, see obsolete routines
EIGENQL function, 539
eigenvalues

computing, 1046
Hessenberg array, 545
Hessenberg array, returning (HQR), 832
Hessenberg array, returning (LA_HQR),

1068

eigenvalues (continued)
non-symmetric array, 542
symmetric array (EIGENQL), 539
symmetric array (LA_EIGENQL), 1052
tridiagonal array, 2023

EIGENVEC function, 542
eigenvectors

(EIGENQL), 539
(LA_EIGENQL), 1052
non-symmetric array (EIGENVEC), 542
non-symmetric array (LA_EIGENVEC),

1058
tridiagonal array, 2023

EJECT keyword, 3796
elements, number of, 1380
ELMHES function, 545
EMPTY procedure, 547
emptying

file buffers, 685
graphics buffers, 547

ENABLE_SYSRTN procedure, 548
ENCAPSULATED keyword, 3797
encapsulated PostScript, 3844
ENCODING keyword, 3797
endian

big, 157, 1842
byte ordering, 157
little, 157, 1842

end-of-file, 550
entities

inserting into a Shapefile, 2675
retrieving from a Shapefile, 2667
types of in ShapeFile, 2644

environment variables, 734
adding or changing, 1743
returning value of, 734

EOF function, 550
EPS machine-specific parameter, 1193
EPSI files, 3808
EPSNEG machine-specific parameter, 1193
EQ operator, defined, 3937
IDL Reference Guide Index

4036
EQUAL_VARIANCE, see obsolete routines
Erase method

IDLgrBuffer, 3177
IDLgrWindow, 3719

ERASE procedure, 553
erasing IDL windows, 553
ERF function, 555
ERFC function, 557
ERFCX function, 559
ERODE function, 561
erosion operator, morphologic, 561
error messages

generating (MESSAGE procedure), 1323
modal dialog box, 498
returning text of (STRMESSAGE function),

1911
ERRORF, see obsolete routines
errors

error bars, 566
error bars (OPLOTERR), 1422
error bars (PLOTERR), 1452
handling

CATCH procedure, 217
ON_ERROR procedure, 1402
ON_IOERROR procedure, 1403
OPEN procedure, 1412

messages, generating (MESSAGE proce-
dure), 1323

messages, modal dialog box, 498
messages, returning text of (STRMESSAGE

function), 1911
placing error status in variable, 1412

ERRPLOT procedure, 566
Euclidean Distance Map. See Euclidean norm
Euclidean norm

distance map, 1348
of vector, 1389

events
basic structure returned by all widgets, 2238
button release, 2156
clearing, 2176

events (continued)
processing, 2237
returned by

button widgets, 2161
draw widgets, 2224
droplist widgets, 2236
list widgets, 2276
slider widgets, 2297
text widgets, 2330
top-level base widgets, 2148

returning
base resize events, 2144
handler procedure name, 2246
keyboard focus events

WIDGET_BASE, 2135
WIDGET_DRAW, 2217
WIDGET_TABLE, 2311
WIDGET_TEXT, 2326

sending to widgets, 2192
top-level base kill events, 2144

events returned by
droplist widgets, 2169
tab widgets, 2305
tree widgets, 2340

example files, surf_track.pro, 3776
exclamation point

embedded formatting commands, 3971
system variables, 3944

EXECUTE function
CALL_FUNCTION speed, 209
reference, 568

EXIT procedure, 570
exiting IDL, EXIT procedure, 570
EXP function, 572
EXPAND procedure, 574
EXPAND_PATH function, 576
expanding pathnames, 622
EXPINT function, 582
exponential

integral, 582
natural, 572
Index IDL Reference Guide

4037
exponential (continued)
random deviates

RANDOMN function, 1592
RANDOMU function, 1597

exponentiation operator, 3931
expressions

determining data type, SIZE function, 1800
returning information on, 800

external, sharable object, 198
EXTRAC function, 585
EXTRACT_SLICE function, 588

F
F distribution

cutoff value, 593
probability, 595

F_CVF function, 593
F_PDF function, 595
F_TEST, see obsolete routines
F_TEST1, see obsolete routines
FACTORIAL function, 597
Fast Fourier transform, 599
FFT function, 599
field

plots, 681
widget, 390

file
symbolic links

creating, 631
following, 638

file pointer, moving, 1807
file units

allocating, 730
returning information about, 802
See also logical unit numbers
setting file position pointer, 1459

FILE_BASENAME function, 605
FILE_CHMOD procedure, 608
FILE_COPY procedure, 612
FILE_DELETE procedure, 616

FILE_DIRNAME function, 619
FILE_EXPAND_PATH function, 622
FILE_INFO function, reference, 624
FILE_LINES function, 628
FILE_LINK procedure, 631
FILE_MKDIR procedure, 634
FILE_MOVE procedure, 635
FILE_READLINK function, 638
FILE_SAME function, 640
FILE_SEARCH function, 643
FILE_TEST function, 657
FILE_WHICH function, 661
FILENAME keyword, 3798
FILEPATH function, 663
files

changing permissions, 608
closing

CLOSE procedure, 244
DEVICE keyword, 3791
freeing file units, 690

comparing, 640
copying, 612
current pointer position, 693
deleting, 616
deriving

base name, 605
directory name, 619

displaying ASCII, 2394
expanding pathnames, 622
filenames, 3798
finding, 501, 1429, 1429
finding in IDL distribution, 663
freeing logical unit numbers, 690
iTools

reading objects, 2954
writing objects, 3124

moving, 635
opening, OPEN procedure, 1410
pointer position, POINT_LUN procedure,

1459
printing to, 1497
IDL Reference Guide Index

4038
files (continued)
protection classes, 608
reading

ASCII data, 1606
binary data from, 1658
data, 1603
unformatted binary data, 1658

returning information on open, 800
searching directories, 661
selecting, 501
size of, 693
special functions (IOCTL function), 931
writing

formatted output, 1497
unformatted binary data, 2381

FILL_DIST system variable field, 3913
FILLCONTOUR, see obsolete routines
filling

plotting symbols, 2078
polygons

POLYFILL procedure, 1478
POLYFILLV, 1482

filtering
convolution, 168
digital, 515
digital filters, 515
filenames, 502
frequency domain, 599
Hanning windows, 784
histogram equalization, 811
Lee filter algorithm, 1125
mean, 1834
median, 1278
morphologic dilation, 517
morphologic erosion, 561
Roberts, 1704
Sobel, 1837

FINDFILE function, 665
FINDGEN function, 667
finding, files, 501
finite, numbers, 669

FINITE function, reference, 669
FIX function, 673
FLAGS system variable field, 3914
FLICK procedure, 676
FLOAT function, 677
floating-point

arithmetic, 1192
arrays

FINDGEN, 667
FLTARR, 683

converting type to, 677
mantissa, 1192
native format, 183
precision, 1193
slider widgets, 408
XDR format, 183

FLOOR function, 679
flow

control, 3821
field, plotting 3D, 681
field, plotting velocity, 2086

FLOW3 procedure, 681
FLOYD keyword, 3798
FLTARR function, 683
FLUSH procedure, 685
focus events, keyboard

WIDGET _CONTROL, 2187
WIDGET_INFO, 2248

focus events, keyboard WIDGET_BASE, 2135
focus events, keyboard WIDGET_TABLE,

2311
focus events, keyboard WIDGET_TEXT, 2326
FONT keyword, 3875
font object

IDLgrFont, 3276
modifiers, 3281

FONT system variable field, 3918
FONT_INDEX keyword, 3799
FONT_SIZE keyword, 3799
fonts

character sets, 3971
Index IDL Reference Guide

4039
fonts (continued)
default for widgets, 2178
device, 3952
Direct Graphics, 3953
displaying vector fonts, 1788
displaying X Windows fonts, 2401
editing, 537
examples of TrueType fonts, 3980
examples of vector fonts, 3983
finding current X windows font, 3799
finding names of, 3799
finding number of, 3800
hardware, 3952
Hershey, 3952
Object Graphics, 3953
outline, 3952
positioning commands, 3973
PostScript, 1518
TrueType

overview, 3952
specifying with DEVICE, 3815

vector, 3952
FOR statement, 686
foreground color, 2444
formal parameters, 57
FORMAT_AXIS_VALUES function, 687
forms, creating, 400
FORRD, see obsolete routines
FORRD_KEY, see obsolete routines
Fortran file formats, 1412
forward difference, 2035
FORWARD_FUNCTION statement, 689
FORWRT, see obsolete routines
four-dimensional displays, 1484
Fourier transform, 599
FREE_LUN procedure, 690
freeing, heap variables

HEAP_FREE procedure, 795
PTR_FREE procedure, 1522

freeing, objects, 1394
FRIEDMAN, see obsolete routines

FSTAT function, reference, 692
FSTAT structure, 692
FULSTR function, 695
FUNCT procedure, 697
function keys

defining
example, 468
reference, 461

for different keyboards, 1744
returning definitions, 800

function methods, calling sequence for, 2500
FUNCTION statement, 699
functions

calling sequence for, 56
compiled, 1714
displaying compiled, 805

FV_TEST function, 700
FX_ROOT function, 702
FZ_ROOTS function, 705

G
gamma correction, 710
GAMMA function, 708
gamma function

incomplete, 878
logarithm of, 1152

gamma random deviates
RANDOMN function, 1592
RANDOMU function, 1597

GAMMA_CT procedure, 710
garbage collection, 798
GAUSS, see obsolete routines
GAUSS_CVF function, 711
GAUSS_PDF function, 713
GAUSS2DFIT function, 715
GAUSSFIT function, 719
Gaussian

distribution
cutoff value, 711
probability, 713
IDL Reference Guide Index

4040
Gaussian (continued)
elimination method, 929
integral, 724
iterated quadrature, 906, 910
two-dimensional fit, 715

GAUSSINT function, 724
Gauss-Krueger map projection, 1256
Gauss-Markov linear model, 1065
Gauss-Seidel iteration, 774
GE operators, 3937
general perspective map projection, 1255
Get method, 3747
GET_CURRENT_FONT keyword, 3799
GET_DECOMPOSED keyword, 3799
GET_DRIVE_LIST function, 726
GET_FONTNAMES keyword, 3799
GET_FONTNUM keyword, 3800
GET_GRAPHICS_FUNCTION keyword,

3800
GET_KBRD function, 728
GET_LUN procedure, 690, 730
GET_PAGE_SIZE keyword, 3800
GET_SCREEN_SIZE function, 732
GET_SCREEN_SIZE keyword, 3800
GET_SYMBOL, see obsolete routines
GET_VISUAL_DEPTH keyword, 3800
GET_VISUAL_NAME keyword, 3801
GET_WINDOW_POSITION keyword, 3801
GET_WRITE_MASK keyword, 3801
GetByName method

IDLgrModel, 3354
IDLgrScene, 3547
IDLgrView, 3637
IDLgrViewgroup, 3649

GetContents method, 2599
GetDeviceInfo method

IDLgrBuffer, 3179
IDLgrClipboard, 3208
IDLgrVRML, 3695
IDLgrWindow, 3721

GetEntity method, 2602

GETENV function, 734
GetFontnames method

IDLgrBuffer, 3181
IDLgrPrinter, 3495
IDLgrVRML, 3697
IDLgrWindow, 3723

GETHELP, see obsolete routines
GetPalette method, 2615
GetRGB method, 3388
GetTextDimensions method

IDLgrBuffer, 3184
IDLgrClipboard, 3213
IDLgrPrinter, 3498
IDLgrVRML, 3700
IDLgrWindow, 3726

GIN_CHARS keyword, 3801
gnomic map projection, 1254
gnomonic map projection, 1254
GOODFIT, see obsolete routines
GOTO statement, reference, 737
Gouraud shading, 1741
graphics

cursor positioning, 344
devices

DEVICE procedure, 488
erasing, 553
list of supported, 3782
returning information about current, 801
setting, 1739

functions
getting, 3800
setting, 3815

image file formats
BMP

reading, 1611
writing, 2346

Interfile, 1618
JPEG

reading, 1620
writing, 2351

NRIF, 2354
Index IDL Reference Guide

4041
graphics (continued)
image file formats

PICT
reading, 1627
writing, 2356

SRF
reading, 1635
writing, 2365

TIFF
reading, 1641
writing, 2369

X11 bitmap, 1652
XWD, 1654

keywords (collected), 3871
GRAPHICS_TIMES procedure, 1987
great circle, 1204
GRID_INPUT procedure, 738
GRID_TPS function, 743
GRID3 function, 747
GRIDDATA function, 750
gridding

irregular intervals, 2021
irregularly gridded, 2009
spherical

SPH_SCAT function, 1856
TRIGRID function, 2013

GRIDSTYLE system variable field, 3922
growth trends, 259
GS_ITER function, 774
GT operator, 3937
guard digits, 1192

H
H_EQ_CT procedure, 777
H_EQ_INT procedure, 778
H5_BROWSER function, 781
halftoning, 3824
halting program execution, 1886
Hammer-Aitoff map projection, 1254
HANDLE_CREATE, see obsolete routines

HANDLE_FREE, see obsolete routines
HANDLE_INFO, see obsolete routines
HANDLE_MOVE, see obsolete routines
HANDLE_VALUE, see obsolete routines
HANNING function, 784
hardware fonts, 3952
HDF_BROWSER function, 787
HDF_READ function, 791
HDF_VD_GETNEXT, see obsolete routines
HDF5 files, viewing, 781
heap variables

creating, 1523
destroying, 1522
freeing, HEAP_FREE, 795
garbage collection, 798

HEAP_FREE procedure, 795
HEAP_GC procedure, 798
help, ONLINE_HELP procedure, 1405
HELP procedure, 800
HELP_VM, see obsolete routines
HELVETICA keyword, 3802
Hershey fonts, 3952
Hershey, Dr. A. V., 3954
Hessenberg array

eigenvalues (HQR), 832
eigenvalues (LA_HQR), 1068
returning (ELMHES), 545
returning (LA_ELMHES), 1062

Hessenberg array or matrix (LA_ELMHES),
1062

Hewlett-Packard Graphics Language, see HP-
GL

hidden object classes, 2511
hiding cursor, 2047
HILBERT function, 807
HIST_2D function, 809
HIST_EQUAL function, 811
histogram

equalization
H_EQ_CT function, 777
interactive (H_EQ_INT function), 778
IDL Reference Guide Index

4042
histogram (continued)
plotting mode, 3879
view of ROI, 2462

HISTOGRAM function, 814
HLS color system

adjusting with slider, 442
converting, 251
displaying, 2048

HLS procedure, 821
Hough

backprojection, 823
transform, 823

HOUGH function, 823
hourglass cursor

for widgets, 2186
saving, 2240

Householder
method, 2026
reductions, 539

HP-GL
driver, 3832
files, 3827

HQR function, 832
HSV color system

adjusting with slider, 442
converting, 251
displaying, 2048

HSV procedure, 834
HSV_TO_R, see obsolete routines
HTML, 1337
hyperbolic

cosine, 322
sine, 1798
tangent, 1973

HyperText Markup Language, 1337
hypothesis testing

Chi-square model validation, 2470
contingency test for independence, 341
F-variances test, 700
Kruskal-Wallis H-test, 1029
Lomb frequency test, 1154

hypothesis testing (continued)
Mann-Whitney U-test, 1717
median delta test, 1272
normality test

FV_TEST, 700
TM_TEST, 1993

runs test for randomness, 1579
sign test, 1720
t-means test, 1993
Wilcoxon rank-sum test, 1717

I
I/O, see input/output
IBETA function, 836
IBETA machine-specific parameter, 1192
Iconify method, 3728
iconifying

widgets, 2186
windows, 2385

icons, editing, 2392
ICONTOUR procedure, 840
IDENTITY function, 863
IDL, for Windows, 3855
IDL_Container

Add method, 3744
class, 3742
Cleanup method, 3745
Count method, 3746
Get method, 3747
Init method, 3749
IsContained method, 3750
Move method, 3751
Remove method, 3752

IDL_VALIDNAME function, 866
IDLanROI

AppendData method, 2520
class, 2514
Cleanup method, 2522
ComputeGeometry method, 2523
ComputeMask method, 2525
Index IDL Reference Guide

4043
IDLanROI (continued)
ContainsPoints method, 2528
GetProperty method, 2530
Init method, 2531
RemoveData method, 2533
ReplaceData method, 2535
Rotate method, 2538
Scale method, 2539
SetProperty method, 2540
Translate method, 2541

IDLanROIGroup
Add method, 2546
class, 2542
Cleanup method, 2547
ComputeMask method, 2548
ComputeMesh method, 2551
ContainsPoints method, 2553
GetProperty method, 2555
Init method, 2556
Rotate method, 2557
Scale method, 2558
Translate method, 2559

IDLcomActiveX, class, 3753
IDLcomIDispatch

class, 3755
GetProperty method, 3758
Init method, 3759
SetProperty method, 3760

IDLffDICOM
class, 2562
Cleanup method, 2569
DumpElements method, 2570
GetChildren method, 2571
GetDescription method, 2573
GetElement method, 2575
GetGroup method, 2577
GetLength method, 2579
GetParent method, 2581
GetPreamble method, 2583
GetReference method, 2584
GetValue method, 2586

IDLffDICOM (continued)
GetVR method, 2589
Init method, 2591
Read method, 2593
Reset method, 2594

IDLffDXF
class, 2595
Cleanup method, 2598
GetContents method, 2599
GetEntity method, 2602
GetPalette method, 2615
Init method, 2616, 2616
PutEntity method, 2617
Read method, 2618
RemoveEntity method, 2619
Reset method, 2620
SetPalette method, 2621
Write method, 2622

IDLffLanguageCat
class, 2624
IsValid method, 2626
Query method, 2627
SetCatalog method, 2628

IDLffMrSID
class, 2629
Cleanup method, 2631
GetDimsAtLevel method, 2632
GetImageData method, 2634
GetProperty method, 2637
Init method, 2640

IDLffShape
AddAttribute method, 2658
class, 2642
Cleanup method, 2661
Close method, 2662
DestroyEntity method, 2663
GetAttributes method, 2665
GetEntity method, 2667
GetProperty method, 2669
Init method, 2671
Open method, 2673
IDL Reference Guide Index

4044
IDLffShape (continued)
PutEntity method, 2675
SetAttributes method, 2677

IDLffXMLSAX
AttributeDecl method, 2687
Characters method, 2689
class, 2680
Cleanup method, 2690
Comment method, 2691
ElementDecl method, 2692
EndCDATA method, 2693
EndDocument method, 2694
EndDTD method, 2695
EndElement method, 2696
EndEntity method, 2697
EndPrefixMapping method, 2698
Error method, 2699
ExternalEntityDecl method, 2701
FatalError method, 2702
GetProperty method, 2703
IgnorableWhitespace method, 2704
Init method, 2705
InternalEntityDecl method, 2706
NotationDecl method, 2707
ParseFile method, 2708
ProcessingInstruction method, 2709
SetProperty method, 2710
SkippedEntity method, 2711
StartCDATA method, 2712
StartDocument method, 2713
StartDTD method, 2714
StartElement method, 2715
StartEntity method, 2717
StartPrefixmapping method, 2718
StopParsing method, 2719
UnparsedEntityDecl method, 2720
Warning method, 2721

IDLgrAxis
class, 3138
Cleanup method, 3161
GetCTM method, 3162

IDLgrAxis (continued)
GetProperty method, 3164
Init method, 3165
SetProperty method, 3167

IDLgrBuffer
class, 3168
Cleanup method, 3175
Draw method, 3176
Erase method, 3177
GetContiguousPixels method, 3178
GetDeviceInfo method, 3179
GetFontnames method, 3181
GetProperty method, 3183
GetTextDimensions method, 3184
Init method, 3186
PickData method, 3188
Read method, 3191
Select method, 3192
SetProperty method, 3194

IDLgrClipboard
class, 3195
Cleanup method, 3202
Draw method, 3203
GetContiguousPixels method, 3207
GetDeviceInfo method, 3208
GetProperty method, 3212
GetTextDimensions method, 3213
Init method, 3215

IDLgrColorbar
class, 3218
Cleanup method, 3231
ComputeDimensions method, 3232
GetProperty method, 3234
Init method, 3235
SetProperty method, 3237

IDLgrContour
AdjustLabelOffsets method, 3266
class, 3238
Cleanup method, 3267
GetCTM method, 3268
GetLabelInfo method, 3270
Index IDL Reference Guide

4045
IDLgrContour (continued)
GetProperty method, 3272
Init method, 3273
SetProperty method, 3275

IDLgrFont
class, 3276
Cleanup method, 3279
GetProperty method, 3280
Init method, 3281
SetProperty method, 3283

IDLgrImage
class, 3284
Cleanup method, 3300
GetCTM method, 3301
GetProperty method, 3303
Init method, 3304
SetProperty method, 3306

IDLgrLegend
class, 3307
Cleanup method, 3320
ComputeDimensions method, 3321
GetProperty method, 3323
Init method, 3324
SetProperty method, 3326

IDLgrLight
class, 3327
Cleanup method, 3336
GetCTM method, 3337
GetProperty method, 3339
Init method, 3340
SetProperty method, 3342

IDLgrModel
Add method, 3351
class, 3343
Cleanup method, 3352
Draw method, 3353
GetByName method, 3354
GetCTM method, 3356
GetProperty method, 3358
Init method, 3359
Reset method, 3361

IDLgrModel (continued)
Rotate method, 3362
Scale method, 3363
SetProperty method, 3364
Translate method, 3365

IDLgrMPEG
class, 3366
Cleanup method, 3375
GetProperty method, 3376
Init method, 3377
Put method, 3379
Save method, 3380
SetProperty method, 3381

IDLgrPalette
class, 3382
Cleanup method, 3387
GetProperty method, 3389
GetRGB method, 3388
Init method, 3390
LoadCT method, 3392
NearestColor method, 3393
SetProperty method, 3395
SetRGB method, 3394

IDLgrPattern
class, 3396
Cleanup method, 3401
GetProperty method, 3402
Init method, 3403
SetProperty method, 3405

IDLgrPlot
class, 3406
Cleanup method, 3422
GetCTM method, 3423
GetProperty method, 3425
Init method, 3426
SetProperty method, 3428

IDLgrPolygon
class, 3429
Cleanup method, 3450
GetCTM method, 3451
GetProperty method, 3453
IDL Reference Guide Index

4046
IDLgrPolygon (continued)
Init method, 3454
SetProperty method, 3456

IDLgrPolyline
class, 3457
Cleanup method, 3475
GetCTM method, 3476
GetProperty method, 3478
Init method, 3479
SetProperty method, 3481

IDLgrPrinter
class, 3482
Cleanup method, 3490
Draw method, 3491
GetContiguousPixels method, 3494
GetFontnames method, 3495
GetProperty method, 3497
GetTextDimensions method, 3498
Init method, 3500
NewDocument method, 3502
NewPage method, 3503
SetProperty method, 3504

IDLgrROI
class, 3505
Cleanup method, 3516
GetProperty method, 3517
Init method, 3518
PickVertex method, 3520
SetProperty method, 3522

IDLgrROIGroup
Add method, 3532
class, 3523
Cleanup method, 3533
GetProperty method, 3534
Init method, 3535
PickRegion method, 3537
SetProperty method, 3539

IDLgrScene
Add method, 3545
class, 3540
Cleanup method, 3546

IDLgrScene (continued)
GetByName method, 3547
GetProperty method, 3549
Init method, 3550
SetProperty method, 3552

IDLgrSurface
class, 3553
Cleanup method, 3575
GetCTM method, 3576
GetProperty method, 3578
Init method, 3579
SetProperty method, 3581

IDLgrSymbol
class, 3582
Cleanup method, 3586
GetProperty method, 3587
Init method, 3588
SetProperty method, 3590

IDLgrTessellator
AddPolygon method, 3595
class, 3591
Cleanup method, 3597
Init method, 3598
Reset method, 3599
Tessellate method, 3600

IDLgrText
class, 3602
Cleanup method, 3619
GetCTM method, 3620
GetProperty method, 3622
Init method, 3623
SetProperty method, 3625

IDLgrView
Add method, 3635
class, 3626
Cleanup method, 3636
GetByName method, 3637
GetProperty method, 3639
Init method, 3640
SetProperty method, 3642
Index IDL Reference Guide

4047
IDLgrViewgroup
Add method, 3647
class, 3643
Cleanup method, 3648
GetByName method, 3649
GetProperty method, 3651
Init method, 3652
SetProperty method, 3654

IDLgrVolume
class, 3655
Cleanup method, 3674
ComputeBounds method, 3675
GetCTM method, 3676
GetProperty method, 3678
Init method, 3679
PickVoxel method, 3681
SetProperty method, 3683

IDLgrVRML
class, 3684
Draw method, 3694
GetDeviceInfo method, 3695
GetFontnames method, 3697
GetProperty method, 3699
GetTextDimensions method, 3700
Init method, 3702
SetProperty method, 3704

IDLgrWindow
class, 3705
Cleanup method, 3717
Draw method, 3718
Erase method, 3719
GetContiguousPixels method, 3720
GetDeviceInfo method, 3721
GetFontnames method, 3723
GetProperty method, 3725
GetTextDimensions method, 3726
Iconify method, 3728
Init method, 3729
maximum size, 3705
PickData method, 3731
Read method, 3734

IDLgrWindow (continued)
Select method, 3735
SetCurrentCursor method, 3737
SetProperty method, 3739
Show method, 3740

IDLitCommand
class, 2725
methods

AddItem, 2728
Cleanup, 2730
GetItem, 2731
GetProperty, 2732
GetSize, 2733
Init, 2734
SetProperty, 2736

properties, 2727
IDLitCommandSet

class, 2737
methods

Cleanup, 2740
GetSize, 2741
Init, 2742

properties, 2739
IDLitComponent

class, 2743
methods

Cleanup, 2748
EditUserDefProperty, 2749
GetFullIdentifier, 2751
GetProperty, 2752
GetPropertyAttribute, 2753
GetPropertyByIdentifier, 2754
Init, 2755
QueryProperty, 2757
RegisterProperty, 2758
SetProperty, 2763
SetPropertyAttribute, 2764
SetPropertyByIdentifier, 2765

properties, 2745
IDLitContainer

class, 2766
IDL Reference Guide Index

4048
IDLitContainer (continued)
methods

Add, 2769
AddByIdentifier, 2770
Cleanup, 2771
Get, 2772
GetByIdentifier, 2774
Init, 2775
Remove, 2776
RemoveByIdentifier, 2777

properties, 2768
IDLitData

class, 2778
methods

AddDataObserver, 2782
Cleanup, 2783
Copy, 2784
GetByType, 2785
GetData, 2786
GetProperty, 2787
GetSize, 2788
Init, 2789
NotifyDataChange, 2791
NotifyDataComplete, 2792
RemoveDataObserver, 2793
SetData, 2794
SetProperty, 2795

properties, 2780
IDLitDataContainer

class, 2796
methods

Cleanup, 2799
GetData, 2800
GetIdentifiers, 2801
GetProperty, 2802
Init, 2803
SetData, 2805
SetProperty, 2807

properties, 2798
IDLitDataOperation

class, 2808

IDLitDataOperation (continued)
methods

Cleanup, 2812
DoExecuteUI, 2813
Execute, 2815
GetProperty, 2817
Init, 2818
SetProperty, 2820
UndoExecute, 2821

properties, 2811
IDLitIMessaging

class, 2823
methods

AddOnNotifyObserver, 2826
DoOnNotifiy, 2828
ErrorMessage, 2830
GetTool, 2832
ProbeStatusMessage, 2833
ProgressBar, 2834
PromptUserText, 2835
PromptUserYesNo, 2836
RemoveOnNotifyObserver, 2837
SignalError, 2838
StatusMessage, 2839

properties, 2825
IDLitManipulator

class, 2840
methods

Cleanup, 2848
CommitUndoValues, 2849
GetCursorType, 2851
GetProperty, 2853
Init, 2854
OnKeyboard, 2856
OnLoseCurrentManipulator, 2858
OnMouseDown, 2859
OnMouseMotion, 2861
OnMouseUp, 2863
RecordUndoValues, 2864
SetCurrentManipulator, 2866
SetProperty, 2867
Index IDL Reference Guide

4049
IDLitManipulator (continued)
properties, 2842

IDLitManipulatorContainer
class, 2868
methods

Add, 2871
GetCurrent, 2872
GetCurrentManipulator, 2873
GetProperty, 2874
Init, 2875
OnKeyboard, 2877
OnMouseDown, 2879
OnMouseMotion, 2881
OnMouseUp, 2883
SetCurrent, 2884
SetCurrentManipulator, 2885
SetProperty, 2886

properties, 2870
IDLitManipulatorManager

class, 2887
methods

Add, 2889
AddManipulatorObserver, 2890
Init, 2891
RemoveManipulatorObserver, 2893

properties, 2888
IDLitManipulatorVisual

class, 2894
methods

Cleanup, 2897
GetProperty, 2898
Init, 2899
SetProperty, 2901

properties, 2895
IDLitOperation

class, 2902
methods

Cleanup, 2907
DoAction, 2908
GetProperty, 2910
Init, 2911

IDLitOperation (continued)
methods

RecordFinalValues, 2913
RecordInitialValues, 2915
RedoOperation, 2917
SetProperty, 2919
UndoOperation, 2920

properties, 2905
IDLitParameter

class, 2922
methods

Cleanup, 2925
GetParameter, 2926
GetParameterSet, 2927
Init, 2928
OnDataChangeUpdate, 2929
OnDataDisconnect, 2931
RegisterParameter, 2933
SetData, 2935
SetParameterSet, 2937

properties, 2924
IDLitParameterSet

class, 2939
methods

Add, 2942
Cleanup, 2944
Copy, 2945
Get, 2946
GetByName, 2948
GetParameterName, 2950
Init, 2951
Remove, 2953

properties, 2941
IDLitReader

class, 2954
methods

Cleanup, 2957
GetData, 2958
GetFileExtensions, 2959
GetFilename, 2960
GetProperty, 2961
IDL Reference Guide Index

4050
IDLitReader (continued)
methods

Init, 2962
IsA, 2964
SetFilename, 2965
SetProperty, 2966

properties, 2956
IDLITSYS_CREATETOOL function, 873
IDLitTool

class, 2967
methods

Add, 2973
AddService, 2974
Cleanup, 2975
CommitActions, 2976
DisableUpdates, 2977
DoAction, 2978
DoSetProperty, 2979
DoUIService, 2981
EnableUpdates, 2982
GetCurrentManipulator, 2983
GetFileReader, 2984
GetFileWriter, 2985
GetManipulators, 2986
GetOperations, 2987
GetProperty, 2988
GetSelectedItems, 2989
GetService, 2990
GetVisualization, 2991
Init, 2993
RefreshCurrentWindow, 2995
Register, 2996
RegisterFileReader, 2999
RegisterFileWriter, 3001
RegisterManipulator, 3003
RegisterOperation, 3005
RegisterVisualization, 3007
SetProperty, 3009
UnRegister, 3010
UnRegisterFileReader, 3011
UnRegisterFileWriter, 3012

IDLitTool (continued)
methods

UnRegisterManipulator, 3013
UnRegisterOperation, 3014
UnRegisterVisualization, 3015

properties, 2970
IDLitUI

class, 3016
methods

AddOnNotifyObserver, 3019
Cleanup, 3021
DoAction, 3022
GetProperty, 3023
GetTool, 3024
GetWidgetByName, 3025
Init, 3026
RegisterUIService, 3027
RegisterWidget, 3029
RemoveOnNotifyObserver, 3031
SetProperty, 3032
UnRegisterUIService, 3033
UnRegisterWidget, 3034

properties, 3018
IDLitVisualization

class, 3035
methods

Add, 3041
Aggregate, 3043
Cleanup, 3044
Get, 3045
GetCenterRotation, 3047
GetCurrentSelectionVisual, 3049
GetDataSpace, 3050
GetDataString, 3051
GetDefaultSelectionVisual, 3052
GetManipulatorTarget, 3053
GetProperty, 3054
GetSelectionVisual, 3055
GetTypes, 3056
GetXYZRange, 3057
Init, 3059
Index IDL Reference Guide

4051
IDLitVisualization (continued)
methods

Is3D, 3060
IsIsotropic, 3061
IsManipulatorTarget, 3062
IsSelected, 3063
OnDataChange, 3064
OnDataComplete, 3065
OnDataRangeChange, 3066
Remove, 3067
Scale, 3068
Select, 3070
Set3D, 3072
SetCurrentSelectionVisual, 3073
SetData, 3074
SetDefaultSelectionVisual, 3075
SetParameterSet, 3076
SetProperty, 3077
UpdateSelectionVisual, 3078
VisToWindow, 3079
WindowToVis, 3081

properties, 3038
IDLitWindow

class, 3083
methods

Add, 3095
AddWindowEventObserver, 3096
Cleanup, 3097
ClearSelections, 3098
DoHitTest, 3099
GetEventMask, 3101
GetProperty, 3103
GetSelectedItems, 3104
Init, 3105
OnKeyboard, 3107
OnMouseDown, 3108
OnMouseMotion, 3110
OnMouseUp, 3112
OnScroll, 3114
Remove, 3115
RemoveWindowEventObserver, 3116

IDLitWindow (continued)
methods

SetCurrentZoom, 3117
SetEventMask, 3118
SetManipulatorManager, 3120
SetProperty, 3121
ZoomIn, 3122
ZoomOut, 3123

properties, 3086
IDLitWriter

class, 3124
methods

Cleanup, 3127
GetFileExtensions, 3128
GetFilename, 3129
GetProperty, 3130
Init, 3131
IsA, 3133
SetData, 3134
SetFilename, 3135
SetProperty, 3136

properties, 3126
IDLjavaObject

class, 3761
methods

GetProperty, 3764
Init, 3765
SetProperty, 3767

properties, 3763
IEXP machine-specific parameter, 1193
IF...THEN...ELSE statement, 876
IGAMMA function, 878
IIMAGE procedure, 881
image object, 3284
IMAGE_CONT procedure, 896
IMAGE_STATISTICS procedure, 898
images

annotating, 99
bi-level, 1983
color channel, 884, 3289
copying areas, 3792
IDL Reference Guide Index

4052
images (continued)
defining region of interest, 478
displaying

color table, 2048
returning array, 2051
scrolling display, 1830
zooming, 447

displaying (FLICK), 676
displaying (TV), 2042
displaying (TVSCL), 2055
displaying with intensity scaling, 2055
dissolve effect, 525
interactive (iTool) routine, 881
JPEG, 1620, 2351
magnified, 2492, 2494
monochrome, 3826
MPEG files

closing, 1365
opening, 1366
saving, 1372
storing image frame, 1370

object, 3284
profiling, 1506
profiling, interactive, 1512
reading from display, 2051
region labeling, 1116
Roberts edge enhancement, 1704
rotating, 1709
searching for objects, 1732
sharing data, 3297
smoothing, 1834
Sobel edge enhancement, 1837
thinning, 1983
transfer direction, 3917
TrueColor, 2052
warping, 1467
warping to maps

MAP_IMAGE function, 1218
MAP_PATCH function, 1222

with surface and contour plots, 1786
zooming, 447

IMAGINARY function, 901
imaginary part of complex numbers, 901
INCHES keyword, 3802
incomplete

beta function, 836
gamma function, 878

increment operator, 3930
incrementing array elements, 819
INDEX_COLOR keyword, 3802
INDGEN function, 903
Infinity norm, 1389
initialization of objects, 2504
INP, see obsolete routines
input/output

associated variables, 116
bitmap files, 1611
BMP files, 2346
closing files, 244
emptying buffers

EMPTY, 547
FLUSH, 685

errors, 1403
formatted, using PRINT/PRINTF, 1497
Interfile files, 1618
JPEG files

reading, 1620
writing, 2351

NRIF files, 2354
opening files, 1410
PGM files

reading, 1632
writing, 2361

PICT files
reading, 1627
writing, 2356

PPM files
reading, 1632
writing, 2361

reading
ASCII files, 1606
formatted data, 1603
Index IDL Reference Guide

4053
input/output (continued)
reading

formatted data from a string, 1656
from a prompt, 1604
unformatted binary data, 1658

SRF files
reading, 1635
writing, 2365

TIFF files
reading, 1641
writing, 2369

unformatted binary data, writing, 2381
wave files

reading, 1650
writing, 2379

X11 Bitmaps, 1652
XWD files, 1654

INT_2D function, 906
INT_3D function, 910
INT_TABULATED function, 913
INTARR function, 915
integer

arrays
(INDGEN), 903
converting to, 673

arrays(INTARR), 915
data type, converting to, 673

integration
INT_2D, 906
INT_3D, 910
INT_TABULATED, 913
QROMB, 1540
QROMO, 1545
QSIMP, 1548
RK4, 1701
tabulated functions, 913
univariate functions, 1540, 1545, 1548

Interfile files, reading, 1618
Internet socket support, 1839
INTERPOL function, 917
INTERPOLATE function, 920

interpolation
bilinear, 150
cubic convolution, 921
cubic convolution in warping, 1468
cubic spline

SPL_INIT function, 1862
SPLINE function, 1866
SPLINE_P procedure, 1868

dependent variable to volume, 1531
INTERPOLATE function, 920
irregularly-sampled data over earth, 2009
KRIG2D, 1022
MIN_CURVE_SURF, 1332
of irregularly-gridded data

KRIG2D function, 1022
MIN_CURVE_SURF function, 1332
TRIGRID function, 2013

POLAR_SURFACE, 1463
quintic, 2016
scattered data to regular, 750
spherical, 1856
SPL_INIT, 1862
SPL_INTERP, 1864
thin-plate-spline

GRID_TPS, 743
MIN_CURVE_SURF, 1332

INTERVAL_VOLUME procedure, 924
invalid widget ID’s, 2239
inverse

cosine, 86
of a complex array or matrix, 1179
sine, 114
subspace iteration, 542
tangent, 119

INVERT function, 929
IOCTL function, 931
IPLOT procedure, 935
IRND machine-specific parameter, 1192
irregularly-gridded data, 2009, 2013
IsContained method, 3750
ISHFT function, 953
IDL Reference Guide Index

4054
ISO Latin 1 encoding, 3955
ISOCONTOUR procedure, 955
ISOLATIN1 keyword, 3802
ISOSURFACE procedure, 960
isosurfaces, displaying, 1758
ISURFACE procedure, 964
IT machine-specific parameter, 1192
ITALIC keyword, 3802
ITCURRENT procedure, 983
ITDELETE procedure, 985
iterative

biconjugate gradient, 1130
Gaussian quadrature

double integral, 906
trivariate function integral, 910

improvement of a solution, 1183
ITGETCURRENT function, 987
iTools

classes
component (class) base, 2743
component collection, 2766
data collection, 2796
data undo and redo, 2808
manipulating objects, 2840
manipulator base, 2887
manipulator collection, 2868
messaging, 2823
naming data objects, 2939
operating tasks, 2902
parameters, 2922
reading files, 2954
storing data, 2778
tool base, 2967
undo and redo commands, 2725
user-interface, 3016
visual base, 3035
window base, 3083
writing files, 3124

command collection, 2737
creating, 873
current (active), 983

iTools (continued)
deleting, 985
displaying properties, 2278
registering, 989
resetting, 992
retrieving current, 987
routines

contours, 840
creating tools, 873
current (active) tool, 983
deleting tools, 985
image, 881
plot, 935
property sheet, 2278
registering tools, 989
resetting tools, 992
retrieving current tool, 987
surface, 964
volume, 994

ITREGISTER procedure, 989
ITRESET procedure, 992
IVOLUME procedure, 994

J
Java, objects, 3761
JFIF, see JPEG
JOIN, see obsolete routines
JOURNAL procedure, 1015
JPEG files

reading, 1620
writing, 2351

JULDAY function, 1017
Julian date, converting to calendar, 194
Julian date definition, 1988
Julian dates/time, generating, 1988

K
Kendall’s tau rank correlation, 1576
Index IDL Reference Guide

4055
kernel, convolving an array with, 308
keyboard

defining keys, 461
defining keys for different keyboards, 1744
focus events

base widget, 2135
widget control, 2187
widget info, 2248
widget table, 2311
widget text, 2326

numeric keypads, 1746
returning characters from, 728

KEYWORD_SET function, 1020
keywords

arguments, checking existence of, 101
described, 57, 2501
graphics, 3871
meaning of slash character, 2502
setting, 2501

KMEANS, see obsolete routines
KRIG2D function, 1022
kriging, 1022
KRUSKAL_WALLIS, see obsolete routines
Kruskal-Wallis H-Test, 1029
kurtosis

KURTOSIS function, 1027
MOMENT function, 1342

KURTOSIS function, 1027
KW_TEST function, 1029

L
L64INDGEN function, 1032
LA_CHOLDC procedure, 1034
LA_CHOLMPROVE function, 1037
LA_CHOLSOL function, 1041
LA_DETERM function, 1044
LA_EIGENPROBLEM function, 1046
LA_EIGENQL function, 1052
LA_EIGENVEC function, 1058
LA_ELMHES function, 1062

LA_GM_LINEAR_MODEL function, 1065
LA_HQR function, 1068
LA_INVERT function, 1071
LA_LEAST_SQUARE_EQUALITY function,

1073
LA_LEAST_SQUARES function, 1076
LA_LINEAR_EQUATION function, 1080
LA_LUDC procedure, 1083
LA_LUMPROVE function, 1086
LA_LUSOL function, 1089
LA_SVD procedure, 1092
LA_TRIDC procedure, 1096
LA_TRIMPROVE function, 1100
LA_TRIQL procedure, 1104
LA_TRIRED procedure, 1107
LA_TRISOL function, 1109
label widgets, WIDGET_LABEL, 2263
LABEL_DATE function, 1112
LABEL_REGION function, 1116
labeling, regions regions, 1116
LADFIT function, 1119
lagged

autocorrelation, 83
cross correlation, 193

LAGUERRE function, 1122
Laguerre polynomials, 1122
Laguerre’s method, 705
Lambert’s conformal conic map projection,

1254
Lambert’s equal-area map projection, 1255
LANDSCAPE keyword, 3803
landscape orientation

for IDL plots (LANDSCAPE keyword),
3803

PostScript positioning, 3843
laser printers, 3840
LATLON, see obsolete routines
LE operator, 3937
least absolute deviation, 1119
least squares fit

CURVEFIT function, 347
IDL Reference Guide Index

4056
least squares fit (continued)
GAUSSFIT function, 719
POLY_FIT function, 1474
SVDFIT function, 1944

LEEFILT function, 1125
LEGENDRE function, 1127
Legendre polynomials, 1127
LEGO, see obsolete routines
length of strings, 1905
LIGHT keyword, 3803
light object, 3327
light source

IDLgrLight object, 3327
shading, 1741

LINBCG function, 1130
LINDGEN function, 1133
line

drawing
method for contours, 292
PLOTS procedure, 1454

editing, enabling and disabling, 3905
interval, 3913
styles, 3876

linear
interpolation, 920
linear-log plots, 1444
regression, 1681

linear algebra
CHOLDC, 236
CHOLSOL, 238
COND, 277
CRAMER, 327
DETERM, 486
EIGENVEC, 542
ELMHES, 545
GS_ITER, 774
HQR, 832
INVERT, 929
LA_CHOLDC, 1034
LA_CHOLMPROVE, 1037
LA_CHOLSOL, 1041

linear algebra (continued)
LA_DETERM, 1044
LA_EIGENPROBLEM, 1046
LA_EIGENVEC, 1058
LA_ELMHES, 1062
LA_HQR, 1068
LA_INVERT, 1071
LA_LUDC, 1083
LA_LUMPROVE, 1086
LA_LUSOL, 1089
LA_SVD, 1092
LA_TRIDC, 1096
LA_TRIQL, 1104
LA_TRIRED, 1107
LA_TRISOL, 1109
LINBCG, 1130
LU_COMPLEX, 1179
LUDC, 1181
LUMPROVE, 1183
LUSOL, 1186
NORM, 1389
SVDC, 1941
SVSOL, 1950
TRIQL, 2023
TRIRED, 2026
TRISOL, 2028

linear model, Gauss-Markov, 1065
linear programming solutions, 1790
lines, counting, 628
LINESTYLE keyword, 3875
LINESTYLE system variable field, 3918
linestyles, table of, 3876
LINFIT function, 1135
LINKIMAGE procedure

alternative to, 198
using, 1138

linking
C code with IDL, 1198
dynamically, 1198

list widgets
Index IDL Reference Guide

4057
list widgets (continued)
determining

selected element, , 2248
topmost element, 2249

double-clicks, 2277
events returned by, 2276
number, 2248
selecting multiple items

setting, 2272
WIDGET_INFO, 2248

setting, 2194
WIDGET_LIST, 2270

LISTREP, see obsolete routines
LISTWISE, see obsolete routines
little endian byte ordering

SOCKET procedure, 1842
swapping with big endian, 1952

LIVE_CONTOUR, see obsolete routines
LIVE_CONTROL, see obsolete routines
LIVE_DESTROY, see obsolete routines
LIVE_EXPORT, see obsolete routines
LIVE_IMAGE, see obsolete routines
LIVE_INFO, see obsolete routines
LIVE_LINE, see obsolete routines
LIVE_LOAD, see obsolete routines
LIVE_OPLOT, see obsolete routines
LIVE_PLOT, see obsolete routines
LIVE_PRINT, see obsolete routines
LIVE_RECT, see obsolete routines
LIVE_STYLE, see obsolete routines
LIVE_SURFACE, see obsolete routines
LIVE_TEXT, see obsolete routines
LJLCT, see obsolete routines
LL_ARC_DISTANCE function, 1142
LMFIT function, 1144
LMGR function, 1149
LN03, see obsolete routines
LNGAMMA function, 1152
LNP_TEST function, 1154
LoadCT method, 3392
LOADCT procedure, 1157

loading color tables, 2048
LOCALE_GET function, 1159
logarithm

base 10, 93
natural, 91
of the gamma function, 1152

logarithmic axes, 302
logging an IDL session, 1015
Logical operators, 3934
logical unit number, SOCKET procedure, 1840
logical unit numbers

!D system variable field, 3915
allocating, 730
freeing, 690
FSTAT function, 692
getting, 1412
journal file, 3906
obtaining status information, 692
returning information about, 802
setting file position pointer, 1459

LOGICAL_AND function, 1160
LOGICAL_OR function, 1162
LOGICAL_TRUE function, 1164
log-linear plots

AXIS, 124
CONTOUR, 302
PLOT, 1444
SHADE_SURF, 1753
SURFACE, 1938

Lomb Normalized Periodogram, 1154
LON64ARR function, 1166
LONARR function, 1168
LONG function, 1170
LONG64 function, 1172
longjmp, C language, 217
longword

arrays
LINDGEN function, 1133
LONARR function, 1168
ULON64ARR, 2068

data type, converting to, 1170
IDL Reference Guide Index

4058
longword (continued)
unsigned arrays, 2066

lossy compression
READ_JPEG procedure, 1620
WRITE_JPEG procedure, 2351

lower margin, setting, 3923
lowercase, converting strings to, 1906
LSODE function, 1174
LT operator, 3937
LU decomposition

LA_LUDC procedure, 1083
LA_LUSOL function, 1089
LA_TRIDC function, 1096
LU_COMPLEX function, 1179
LUDC procedure, 1181
LUSOL function, 1186

LU_COMPLEX function, 1179
LUBKSB, see obsolete routines
LUDC procedure, 1181
LUDCMP, see obsolete routines
luminance, 339
LUMPROVE function, 1183
LUN

freeing, 690
TCP/IP socket, 1839

LUSOL function, 1186

M
M_CORRELATE function, 1189
MACHAR function, 1192
MACHEP machine-specific parameter, 1192
machine-specific parameters, 1192
magnifying arrays, 1661
magnitude, returning for complex number, 84
magnitude-based ranks, 1600
MAKE_ARRAY function, 1194
MAKE_DLL procedure, 1198
MAKETREE, see obsolete routines
MANN_WHITNEY, see obsolete routines
Mann-Whitney U-Test, 1717

map coordinates, transforming
Cartesian to lat/lon, 1250
lat/lon to Cartesian, 1226

map projections
Aitoff, 1254
Alber’s equal area conic, 1254
azimuthal equidistant, 1254
cylindrical equidistant, 1254
drawing boundaries over, 1208
drawing continent boundaries, 1257
drawing parallels and meridians, 1213
gnomonic (central, gnomic), 1254
Hammer-Aitoff, 1254
Lambert’s conformal conic, 1254
Lambert’s equal area, 1255
MAP_PROJ_INIT function, 1234
Mercator, 1255
Miller, 1255
Mollweide, 1255
orthographic, 1255
satellite, 1255
setting, 1252
sinusoidal, 1256
stereographic, 1256
Transverse Mercator (UTM), 1256
warping images to maps

MAP_IMAGE function, 1218
MAP_PATCH function, 1222

MAP_2POINTS function, 1204
MAP_CONTINENTS procedure, 1208
MAP_GRID procedure, 1213
MAP_IMAGE function, 1218
MAP_PATCH function, 1222
MAP_PROJ_FORWARD function, 1226
MAP_PROJ_INFO procedure, 1231
MAP_PROJ_INIT function, 1234
MAP_PROJ_INVERSE function, 1250
MAP_SET procedure, 1252
mapping widgets, 2136
MARGIN system variable field, 3922
Index IDL Reference Guide

4059
margins
setting for multi-plot window, 3923
setting for single plot, 3922

marquee selector, 170
mathematical operators, table of, 3930
matrices

DIAG_MATRIX, 496
MATRIX_MULTIPLY, 1263
MATRIX_POWER, 1266
multiplication example, 3933

matrix operators
CHOLDC, 236
CHOLSOL, 238
COND, 277
CRAMER, 327
DETERM, 486
EIGENVEC, 542
ELMHES, 545
GS_ITER, 774
HQR, 832
INVERT, 929
LA_CHOLDC, 1034
LA_CHOLMPROVE, 1037
LA_CHOLSOL, 1041
LA_DETERM, 1044
LA_EIGENPROBLEM, 1046
LA_EIGENVEC, 1058
LA_ELMHES, 1062
LA_HQR, 1068
LA_INVERT, 1071
LA_LUDC, 1083
LA_LUMPROVE, 1086
LA_LUSOL, 1089
LA_SVD, 1092
LA_TRIDC, 1096
LA_TRIQL, 1104
LA_TRIRED, 1107
LA_TRISOL, 1109
LU_COMPLEX, 1179
LUDC, 1181
LUMPROVE, 1183

matrix operators (continued)
LUSOL, 1186
NORM, 1389
SVDC, 1941
SVSOL, 1950
TRIQL, 2023
TRIRED, 2026
TRISOL, 2028
See also sparse arrays

MATRIX_MULTIPLY function, 1263
MATRIX_POWER function, 1266
MAX function, 1268
MAXEXP machine-specific parameter, 1193
maximum operator, 3932
maximum size, draw area, 3705
maximum value

for slider widgets, 2292
of an array, 1268

MD_TEST function, 1272
mean

absolute deviation, 1276
MOMENT function, 1342
of distribution, 1029

MEAN function, 1274
MEANABSDEV function, 1276
median

Median Delta Test, 1272
MOMENT function, 1342
smoothing, 1278

MEDIAN function, 1278
MEDIUM keyword, 3803
memory

conserving, 1976
dynamic memory in use, 803

MEMORY function, 1281
menu bars, 2136
menus

displaying context-sensitive, 2211
menu bars, 2136
pulldown menu button, 2155

MENUS, see obsolete routines
IDL Reference Guide Index

4060
Mercator map projection, 1255
merging meshes, 1299
meridians, drawing, 1213
mesh plots, 1934
MESH_CLIP function, 1285
MESH_DECIMATE function, 1290
MESH_ISSOLID function, 1297
MESH_MERGE function, 1298
MESH_NUMTRIANGLES function, 1303
MESH_OBJ procedure, 1304
MESH_SMOOTH function, 1311
MESH_SURFACEAREA function, 1317
MESH_VALIDATE function, 1319
MESH_VOLUME function, 1321
message dialogs, 498
MESSAGE procedure, 1323
messages, suppressing informational, 3910
Metafile, 3782
Microsoft Internet Explorer, 1337
Microsoft Windows

display device (WIN)
accepted keywords, 3855
support for, 3782

Miller map projection, 1255
MIN function, 1329
MIN_CURVE_SURF function

reference, 1332
smoothing with, 292

MINEXP machine-specific parameter, 1193
minimization

Davidon-Fletcher-Powell method, 492
Powell method, 1493

minimum and maximum operators, 3932
minimum curvature surface, 1332
minimum value

for slider widgets (MINIMUM keyword),
2292

of an array, 1329
MINOR system variable field, 3923
MIPSEB_DBLFIXUP, see obsolete routines

missing data
in CONTOUR plots, 298
in irregular grids

TRI_SURF, 2006
TRIGRID, 2015

in map projections, 1220
in plots

OPLOT, 1419
PLOTS, 1443
SHADE_SURF, 1752
SURFACE, 1936

in reconstructed images, 1668
in rotated images, 1708
in velocity fields, 2089
in warped images, 1469

MK_HTML_HELP procedure, reference, 1337
model object, 3343
MODIFYCT procedure, 1340
modules

compiled, 805
dynamically loaded, 801

modulo operator, 3931
Mollweide map projection, 1255
MOMENT function, 1342
MORPH_CLOSE function, 1345
MORPH_DISTANCE function, 1348
MORPH_GRADIENT function, 1351
MORPH_HITORMISS function, 1354
MORPH_OPEN function, 1357
MORPH_THIN function, 1360
MORPH_TOPHAT function, 1362
morphology

dilation operator, 517
erosion operator, 561

mouse
double-clicks, 2277
reading position of, 1602
reading position with the CURSOR proce-

dure, 344
returning events from draw widgets, 2218

Move method, 3751
Index IDL Reference Guide

4061
MOVIE, see obsolete routines
movies

MPEG
closing, 1365
opening, 1366
saving, 1372
storing image frame, 1370

moving, files (FILE_MOVE procedure), 635
moving averages

SMOOTH function, 1834
TS_SMOOTH function, 2039

MPEG object, 3366
MPEG_CLOSE procedure, 1365
MPEG_OPEN function, 1366
MPEG_PUT procedure, 1370
MPEG_SAVE procedure, 1372
MPROVE, see obsolete routines
MrSID image files

deleting, 2631
dimensions, 2632
extracting data, 2634
loading, 2629
query, 2629
query properties, 2637

MSG_CAT_CLOSE procedure, 1373
MSG_CAT_COMPILE procedure, 1374
MSG_CAT_OPEN function, 1376
Müller’s method, 702
MULTI procedure, 1378
MULTI system variable field, 3918
MULTICOMPARE, see obsolete routines
multiple correlation coefficient, 1189
multiple plots on a page, 3918
multiplication, * operator, 3931
multiplication of matrices, 1263
multivariate analysis

contingency table, 341
Kruskal-Wallis H-test, 1029
multiple correlation, 1189
partial correlation, 1424

multivariate functions
CTI_TEST, 341
KW_TEST, 1029
M_CORRELATE, 1189
P_CORRELATE, 1424

N
N_COLORS system variable field, 3915
N_ELEMENTS function, reference, 1380
N_PARAMS function, reference, 1382
N_TAGS function, 1383
NAME system variable field, 3915
named, variables, 57, 57, 2501
names, of structure tags, 1969
NARROW keyword, 3803
native format (floating-point values), 183
natural exponential function, 572
natural logarithm, 91
NCAR binary encoding, 3804
NCAR keyword, 3804
NCAR Raster Interchange Format files, writ-

ing, 2354
NE operator, about, 3937
NearestColor method, 3393
negation operator, 3930
NEGEP machine-specific parameter, 1192
nesting

setting TRACEBACK keyword, 806
showing for procedures and functions, 800

Netscape, 1337
new page, 553
NewDocument method, 3502
newline character, 2326
NewPage method, 3503
NEWTON function, 1386
Newton’s method, 913, 1386
NGRD machine-specific parameter, 1192
NOCLIP keyword, 3876
NOCLIP system variable field, 3919
NODATA keyword, 3876
IDL Reference Guide Index

4062
NOERASE keyword, 3877
NOERASE system variable field, 3919
noise, filtering, 1278
nonlinear equations

BROYDEN, 176
CONSTRAINED_MIN, 284
FX_ROOT, 702
FZ_ROOTS, 705
NEWTON, 1386

nonparametric tests
LNP_TEST, 1154
MD_TEST, 1272
R_TEST, 1579
RS_TEST, 1717
S_TEST, 1720
XSQ_TEST, 2470

NORM function, 1389
normal

coordinates, converting to other types, 306
distribution (Gaussian)

cutoff value, 711
probability, 713

random deviates, 1597
NORMAL keyword, 3877
normally-distributed random numbers, 1590
NOT operator, 3935
NR_BETA, see obsolete routines
NR_BROYDN, see obsolete routines
NR_CHOLDC, see obsolete routines
NR_CHOLSL, see obsolete routines
NR_DFPMIN, see obsolete routines
NR_ELMHES, see obsolete routines
NR_EXPINT, see obsolete routines
NR_FULSTR, see obsolete routines
NR_HQR, see obsolete routines
NR_INVERT, see obsolete routines
NR_LINBCG, see obsolete routines
NR_LUBKSB, see obsolete routines
NR_LUDCMP, see obsolete routines
NR_MACHAR, see obsolete routines
NR_MPROVE, see obsolete routines

NR_NEWT, see obsolete routines
NR_POWELL, see obsolete routines
NR_QROMB, see obsolete routines
NR_QROMO, see obsolete routines
NR_QSIMP, see obsolete routines
NR_RK4, see obsolete routines
NR_SPLINE, see obsolete routines
NR_SPLINT, see obsolete routines
NR_SPRSAB, see obsolete routines
NR_SPRSAX, see obsolete routines
NR_SPRSIN, see obsolete routines
NR_SVBKSB, see obsolete routines
NR_SVD, see obsolete routines
NR_TQLI, see obsolete routines
NR_TRED2, see obsolete routines
NR_TRIDAG, see obsolete routines
NR_WTN, see obsolete routines
NR_ZROOTS, see obsolete routines
NRIF, files, writing, 2354
NSUM system variable field, 3919
Null display device (NULL), 3836
number of array elements, 1380
numbers, random

normally distributed, 1590
uniformly-distributed, 1595

numeric keypads, 1746
numerical integration, 1548

O
OBJ_CLASS function, reference, 1392
OBJ_DESTROY procedure, 1394
OBJ_ISA function, reference, 1395
OBJ_NEW function, reference, 1396
OBJ_VALID function, reference, 1398
OBJARR function, reference, 1400
object classes, undocumented, 2511
objects

creating, 1396
creating arrays, 1400
destroying, OBJ_DESTROY function, 1394
Index IDL Reference Guide

4063
objects (continued)
determining

class names, 1392
subclasses, 1395

iTools
command collection, 2737
component (class) base, 2743
component collection, 2766
data collection, 2796
data undo and redo, 2808
manipulating, 2840
manipulator base, 2887
manipulator collection, 2868
messaging, 2823
naming data, 2939
operating tasks, 2902
parameters, 2922
reading files, 2954
storing data, 2778
tool base, 2967
undo and redo commands, 2725
user-interface, 3016
visual base, 3035
window base, 3083
writing files, 3124

Java classes, IDLjavaObject, 3761
Object Graphics, font use, 3953
testing existence, 1398

OBLIQUE keyword, 3804
obsolete routines and system variables, 3994
obsolete SDF routines, 4000
OMARGIN system variable field, 3923
ON_ERROR procedure

messages, 1323
reference, 1402

ON_IOERROR procedure, 1403
messages, 1323

online help
calling from programs, 1405
viewing from own program

DOC_LIBRARY, 531

online help (continued)
viewing from own program

MK_HTML_HELP, 1337
ONLINE_HELP procedure, reference, 1405
ONLY_8BIT, see obsolete routines
opacities, 2098
OPEN procedures, 1410
opening, Shapefiles, 2673
opening files

getting information on open files, 800
OPEN procedures, 1410

opening operation, in image processing, 518
operating system, current version in use, 3910
operators

&&, 3934
||, 3934
~, 3934
addition, 3930
AND, 3935
array concatenation, 3938
assignment, 3938
Bitwise, 3935
compound assignment, 3939
decrement, 3930
division, 3931
EQ, 3937
exponentiation, 3931
GE, 3937
GT, 3937
increment, 3930
LE, 3937
Logical, 3934
LT, 3937
mathematical, table of, 3930
matrix multiplication, 3933
maximum, 3932
minimum, 3932
minimum and maximum, 3932
modulo, 3931
multiplication, 3931
NE, 3937
IDL Reference Guide Index

4064
operators (continued)
NOT, 3935
OR, 3935
other, 3938
relational, 3937
subtraction and negation, 3930
XOR, 3936

OPLOT procedure, 1419
OPLOTERR procedure, 1422
optimal feasible vector, 1791
optimization

AMOEBA function, 95
CONSTRAINED_MIN, 284
DFPMIN, 492
POWELL, 1493

OPTIMIZE keyword, 3804
optional parameters in user-written functions,

1382
OR operator, 3935
ORDERED keyword, 3805
ordinary differential equations, LSODE func-

tion, 1174
ordinary differential equations, RK4, 1701
ORIENTATION keyword, 3877
ORIGIN system variable field, 3915
orthographic map projection, 1255
outer margins, setting, 3923
outline fonts, 3952
outlines of continents, 1208
outlying data regression, 1119
OUTP, see obsolete routines
output

BMP files, 2346
JPEG files, 2351
NRIF files, 2354
PGM files, 2361
PICT files, 2356
PPM files, 2361
SRF files, 2365
TIFF files, 2369
wave files, 2379

OUTPUT keyword, 3805
overflow, integer, 1193
overplotting, 1419

P
P_CORRELATE function, 1424
page break, 553
PALATINO keyword, 3805
palette object, 3382
PALETTE, see obsolete routines
pan offset, 3915
parallels, drawing

MAP_GRID procedure, 1213
MAP_SET procedure, 1258

parameters
finding number of, 1382
formal, 57

parents, of widgets, 2249
partial correlation coefficient, 1424
PARTIAL_COR, see obsolete routines
PARTIAL2_COR, see obsolete routines
PARTICLE_TRACE procedure, 1426
path

caching, 1429, 1429
definition string, 576
maintaining in memory, 1429

path separation delimiters, 1436
path specification, 643
PATH_CACHE procedure, 1429
PATH_SEP function, 1436
pattern object, 3396
PCL

driver, 3837
files, 3827

PCOMP function, 1437
Pearson correlation coefficient, 318
period (character), 3945
permutation, 597
perspective, 1966
Index IDL Reference Guide

4065
PGM files
reading, 1632
writing, 2361

phase, 119
PHASER, see obsolete routines
PickData

IDLgrBuffer, 3188
IDLgrWindow, 3731

PICKFILE, see obsolete routines
PickRegion method, IDLgrROIGroup, 3537
PickVertex method, IDLgrROI, 3520
PickVoxel method, 3681
PICT files

reading, 1627
writing, 2356

pixels
returning value of, using RDPIX procedure,

1602
PIXELS keyword, 3806
plane of vector-drawn text, 2489
plot object, 3406
PLOT procedure, 1442
PLOT_3DBOX procedure, 1446
PLOT_FIELD procedure, 1450
PLOT_IO, see YLOG keyword to PLOT
PLOT_OI, see XLOG keyword to PLOT
PLOT_OO, see (XY)LOG keywords to PLOT
PLOT_TO keyword, 3806
PLOTERR procedure, 1452
plots

interactive (iTool) routine, 935
margins, 3922
outer margins, 3923
viewing in 3D, 2445

PLOTS procedure, 1454
PLOTTER_ON_OFF keyword, 3806
plotting

2D fields, 1450
3D fields, 681
3D transformations, 3879

adjusting, 422

plotting (continued)
3D transformations, 3879

coordinate conversion, 313
scaling, 1731
setting, 1940
specifying, 1729
vertices, 2091

axes
graphics keywords, 3888
thickness, 3882

bar plots, 127
closing files (CLOSE_FILE keyword), 3791
color, 2444
contour plots, 896

creating, 292
drawing axes (AXIS procedure), 123
error bars

ERRPLOT procedure, 566
OPLOTERR procedure, 1422
PLOTERR procedure, 1452

filename for output (FILENAME keyword),
3798

flow field, 681
functions of 2 variables, 1446
height of output, 3822
histogram, 3879
landscape orientation, 3803
line thickness

graphic keyword, 3880
system variable, 3921

lines, 1454
linestyles

graphic keyword, 3875
system variable, 3918

logarithmic axes
linear-log, 1444
log-linear, 302

AXIS, 124
CONTOUR, 302
PLOT, 1444
SHADE_SURF, 1753
SURFACE, 1938
IDL Reference Guide Index

4066
plotting (continued)
missing data, 1419, 1443
multiple plots on a page

placing, 3846
specifying, 3918

output, positioning, 3828
overplotting, 896

vector data and plot, 1419
PLOT procedure, 1442
points, 1454
polar

oPLOT procedure, 1420
PLOT procedure, 1444

portrait orientation, 3807
position of window

graphic keyword, 3877
system variable, 3919

region, 3920
selecting a plotting device, 1739
shaded surfaces, 1750
subtitles

graphic keyword, 3879
system variable, 3920

symbol size, 3879
symbols

graphic keyword, 3878
system variable, 3920

text, 2488
three-dimensional lines, 1455
titles

graphic keyword, 3880
system variable, 3921

user-defined symbols, 2078
velocity field, 681
velocity fields, 2088
weather fronts, 2112
width of output, 3821
wire-mesh surfaces, 1934
without data, 3876
without erasing

graphic keyword, 3877

plotting (continued)
without erasing

system variable, 3919
XY plots, 1442
Z-coordinate for, graphic keyword, 3888

PM, see obsolete routines
PMF, see obsolete routines
PNG library, supported version, 1629
PNT_LINE function, 1457
POINT_LUN procedure, 1459
pointers

creating, 1523
creating arrays, 1528
destroying, 1522
freeing, 795
testing existence, 1525

Poisson random deviates
RANDOMN function, 1592
RANDOMU function, 1598

polar plots, 1444
contours, 1461
coordinates

converting, 352
interpolation of surface, 1463

POLAR_CONTOUR procedure, 1461
POLAR_SURFACE function, 1463
polishing of roots, 705
political boundaries, 1208
POLY function, 1466
POLY_2D function, 1467
POLY_AREA function, 1472
POLY_FIT function, 1474
POLYCONTOUR, see obsolete routines
POLYFILL keyword, 3807
POLYFILL procedure, 1478
POLYFILLV function, 1482
POLYFITW, see obsolete routines
polygon filling

POLYFILL procedure, 1478
returning array subscripts, 1482
with HP plotters, 3807
Index IDL Reference Guide

4067
polygon object
clipping meshes, 1286
decimating meshes, 1293
IDLgrPolygon, 3429
merging meshes, 1299
smoothing meshes, 1312

polyline object, 3457
polynomial warping, 1467
polynomials

digital smoothing, 1725
Laguerre, 1122
least-squares fit, 1725
Legendre, 1127

POLYSHADE function, 1484
POLYWARP procedure, 1488
POPD procedure, 1492
pop-up menu seecontext-sensitive menu
PORTRAIT keyword, 3807
portrait orientation

for IDL output (PORTRAIT keyword), 3807
PostScript positioning, 3843

POSITION keyword, 3877
POSITION system variable field, 3919
positional parameters, 57

returning number of, 1382
positioning

child widgets within a base, 2127
commands, 3973
cursor, 2046
graphics cursor, 344
PostScript output, 3843
top level base widgets, 2203
widget bases, 2127
windows (XPOS and YPOS keywords), 2344

PostScript
color, 3841
device, 3840
encapsulated

about EPS, 3844
device keyword, 3797

PostScript (continued)
EPSI (Encapsulated PostScript Interchange)

files, 3808
files, 3827
files with preview headers, 3808
font index, 3799
fonts

displaying, 1518
using, 3841

importing graphics into other programs, 3847
importing into another document, 3797
language level, 3803
multiple plots on a single page, 3846
pixel bit depth, 3790
positioning output, 3843
scaling entire plot (SCALE_FACTOR key-

word), 3810
TrueColor images, 3842
writing 24-bit images, 3843

Powell minimization (POWELL procedure),
1493

PPM files
reading, 1632
writing, 2361

PREVIEW keyword, 3808
PRIMES function, 1496
principal components analysis, 1437
PRINT procedure, 1497
PRINT_FILE keyword, 3809
PRINTD procedure, 1500
Printer Control Language, see PCL
PRINTER device, 3839
printer object, 3482
PRINTF procedure, 1497
printing

closing files (CLOSE_FILE keyword), 3791
dialog, 508
filename for output (FILENAME keyword),

3798
graphics output files, 3827
landscape orientation, 3803
IDL Reference Guide Index

4068
printing (continued)
printer device, 3839
printer set up, 3828
properties, 506
setup dialog, 506
to file units, 1497
to standard output, 1497

PRO statement, 1501
probability

bivariate distributions, 811
density distribution, 814
Gaussian distribution, 724
Histogram function, 814

probability functions
binomial distribution, 162
Chi-square distribution

cutoff value, 232
probability, 234

F distribution
cutoff value, 593
probability, 595

Gaussian distribution
cutoff value, 711
probability, 713

student’s T distribution
cutoff value, 1961
probability, 1964

procedure methods, calling sequence for, 2500
procedures

call stack, returning, 801
calling, sequence for, 56
compiled, 1714
DEVICE, 3782
displaying compiled, 805
SET_PLOT, 3782

PRODUCT function, 1503
PROFILE function, 1506
PROFILER procedure, 1509
PROFILES procedure, 1512
program, listings, 74

programming
displaying traceback information, 806
stopping programs, 1886
suspending execution of programs, 2104
traceback information, 801

PROJECT_VOL function, 1514
projections

2D from 3D datasets, 1514
3D plots on walls, 2446
Aitoff, 1254
Albers, 1254
azimuthal equidistant, 1254
cylindrical equidistant, 1254
gnomonic (central, gnomic), 1254
Hammer-Aitoff, 1254
Lambert’s conformal conic, 1254
Lambert’s equal area, 1255
Mercator, 1255
Miller, 1255
Mollweide, 1255
orthographic, 1255
satellite, 1255
sinusoidal, 1256
stereographic, 1256
Transverse Mercator (UTM), 1256

prompt
changing default, 3910
reading from, 1604

PROMPT, see obsolete routines
properties

displaying, 2278
retrieving, 2504
setting, 2504
widget, 2278

properties of objects, 2503
PS_SHOW_FONTS procedure, 1518
PSAFM procedure, 1519
PSEUDO procedure, 1520
PSEUDO_COLOR keyword, 3809
pseudo-color images, converting from True-

Color, 253
Index IDL Reference Guide

4069
pseudo-color PostScript images, 3842
PSYM keyword, 3878
PSYM system variable field, 3920
PTR_FREE procedure, 1522
PTR_NEW function, 1523
PTR_VALID function, 1525
PTRARR function, 1528
pulldown menu

activating from button, 2155
creating, 434

PUSHD procedure, 1530
Put method, 3379
PutEntity method, 2617
PWIDGET, see obsolete routines

Q
QGRID3 function, 1531
QHULL procedure, 1536
QL algorithm, 2023
QL method (computing eigenvalues), 539
QROMB function, 1540
QROMO function, 1545
QSIMP function, 1548
quantizing colors, 253
QUERY_* routines, 1551
QUERY_BMP routine, 1555
QUERY_DICOM function, 1556
QUERY_IMAGE function, 1558
QUERY_JPEG routine, 1562
QUERY_MRSID function, 1563
QUERY_PICT routine, 1566
QUERY_PNG routine, 1567
QUERY_PPM routine, 1569
QUERY_SRF routine, 1571
QUERY_TIFF routine, 1572
QUERY_WAV function, 1574
question mark, starting online help, 3947
quintic interpolation, 2016
quitting IDL, 570
quotation marks, octal numbers, 3945

R
R_CORRELATE function, 1576
R_TEST function, 1579
radix, 1192
Radon backprojection, 1581
RADON function, 1581
Radon transform, 1581
random deviates

binomial
RANDOMN function, 1591
RANDOMU function, 1597

exponential
RANDOMN function, 1592
RANDOMU function, 1597

gamma
RANDOMN function, 1592
RANDOMU function, 1597

normal, 1597
Poisson

RANDOMN function, 1592
RANDOMU function, 1598

random, 1598
random numbers

normally-distributed, 1590
uniformly-distributed, 1595

RANDOMN function, 1590
RANDOMU function, 1595
RANGE system variable field, 3923
rank correlation coefficient, 1576
RANKS function, 1600
rank-sum test, 1717
RDPIX procedure, 1602
READ procedure, 1603
READ_ASCII function, 1606
READ_BINARY function, 1609
READ_BMP function, 1611
READ_DICOM function, 1614
READ_IMAGE function, 1616
READ_INTERFILE procedure, 1618
READ_JPEG procedure, 1620
READ_MRSID function, 1624
IDL Reference Guide Index

4070
READ_PICT procedure, 1627
READ_PNG routine, 1629
READ_PPM procedure, 1632
READ_SPR function, 1634
READ_SRF procedure, 1635
READ_SYLK function, 1637
READ_TIFF function, 1641
READ_WAV function, 1649
READ_WAVE procedure, 1650
READ_X11_BITMAP procedure, 1652
READ_XWD function, 1654
READF procedure, 1603
reading

ASCII files, 1606
BMP files, 1611
current color table, 2049
cursor position, 1602
data from a string, 1656
formatted data, 1603
from a prompt, 1604
images from the display, 2051
Interfile files, 1618
JPEG files, 1620
mouse position, 344
PGM files, 1632
PICT files, 1627
pixel values, 1602
PPM files, 1632
SRF files, 1635
TIFF files, 1641
unformatted binary data, 1658
wave files, 1650
X11 bitmaps, 1652
XWD files, 1654

read-only system variables, 480
READS procedure, reference, 1656
READU procedure, 1658
real part of complex numbers, 677
REAL_PART function, 1660
realizing widgets, 2190
REBIN function, 1661

recall buffer, command, 1665
RECALL_COMMANDS function, 1665
RECON3 function, 1666
reconstructions, 3D from 2D images, 1666
recording an interactive IDL session, 1015
rectangular coordinates

converting, 352
interpolation of, 1463

recursive file searching, 647
reduce operator, 561
REDUCE_COLORS procedure, 1672
REFORM function, 1674
reformatting arrays, 1674
region growing, properties dialog, 2464
region labeling, 1116
region of interest

defining, 478
IDLanROI, 2514
widgets, 386
XROI, 2454

REGION system variable field
axes, 3924
plots, 3920

REGION_GROW function, 1676
Regis device, 3852
REGISTER_CURSOR procedure, 1679
registering iTools, 989
RegisterProperty method, 2507
REGRESS function, 1681
REGRESS1, see obsolete routines
regression analysis, 1681
REGRESSION, see obsolete routines
relational operators, 3937
relaxed structure assignment

creating, 1928
restoring, 1695

release, current version in use, 3910
Remove method, 3752
RemoveData method, IDLanROI, 2533
RemoveEntity method, 2619
removing, breakpoints, 174
Index IDL Reference Guide

4071
rendering
3D objects, 1304
3D volumes as 2D images, 1514
voxel, 2098

REPEAT...UNTIL statement, 1685
ReplaceData method, 2535
REPLICATE function, 1686
REPLICATE_INPLACE procedure, 1688
reserved words, 3949
Reset method

IDLffDXF, 2620
IDLgrModel, 3361
IDLgrTessellator, 3599
TrackBall, 3773

RESET_STRING keyword, 3809
resetting iTools, 992
resetting widgets, 2191
resizing arrays

arbitrary amount, 279
by dimension multiples, 1661
two-dimensional, 574

RESOLUTION keyword, 3810
RESOLVE_ALL procedure, reference, 1690
RESOLVE_ROUTINE procedure, 1692
resource names for IDL widgets, 2139
RESTORE procedure, reference, 1694
restoring IDL save files, 1694
RETAIN keyword, 3810
RETALL command, 1696
retrieving

attributes of a Shapefile, 2665
image dimensions, 2632

retrieving object properties, 2504
RETURN command, 1697
returning

subscripts of non-zero array elements, 2115
widget information, 2241

REVERSE function, 1699
reverse index list (for histograms), 814
reversing

array indices, 1699

reversing (continued)
byte order, 1954

REWIND, see obsolete routines
RGB color system

converting, 251
displaying, 2048
widget slider, 442

RGB_TO_HSV, see obsolete routines
rhumb line, 1204
RIEMANN, see obsolete routines
rivers, 1208
RK4 function, 1701
RM, see obsolete routines
RMF, see obsolete routines
Roberts edge enhancement, 1704
ROBERTS function, 1704
ROI

deleting, 2467
geometric and statistical data, 2454
growing, 2463
histogram view, 2462
using XROI procedure, 2454

Romberg integration
closed interval, 1540
open interval, 1545

roots, 702, 705
ROT function, 1706
ROT_INT, see obsolete routines
ROTATE function, 1709
Rotate method

IDLanROI, 2538
IDLanROIGroup, 2557
IDLgrModel, 3362

rotating
arrays, 1709
by arbitrary amounts, 1706
by multiples of 90 degrees, 1709
the viewing matrix, 1966
using widgets, 369

ROUND function, 1712
IDL Reference Guide Index

4072
rounding
ceiling function, 223
determining, 1192
floor function, 679
to nearest integer, 1712

ROUTINE_INFO function, 1714
routines

converting array subscripts, 105
files

base name, 605
directory name, 619

iTools (interactive)
contours, 840
creating tools, 873
current (active) tool, 983
deleting tools, 985
image, 881
plot, 935
property sheet, 2278
registering tools, 989
resetting tools, 992
retrieving current tool, 987
surface, 964
volume, 994

logical
AND, 1160
OR, 1162
TRUE, 1164

obsolete, 3994
path caching, 1429
saving as binary files, 1722
validating variable names, 866

row bases, 2141
RS_TEST function, 1717
RSI_GAMMAI, see obsolete routines
RSTRPOS, see obsolete routines
Runge-Kutta method, 1701
run-length encoding, 1483
runs test for randomness, 1579
RUNS_TEST, see obsolete routines

S
S system variable field, 3924
S_TEST function, 1720
satellite map projection, 1255
Save method (IDLgrMPEG), 3380
SAVE procedure, reference, 1722
save/restore

binary files, 1723
files, 1694

saved commands, displaying, 805
SAVGOL function, 1725
saving

IDL routines as binary files, 1722
IDL variables, 1722
system variables, 1723
variables, 1724

Savitzky-Golay smoothing filter, 1725
scalable pixels, 3831
Scale method, 3363

IDLanROI, 2539
IDLanROIGroup, 2558

SCALE_FACTOR keyword, 3810
SCALE3 procedure, 1729
SCALE3D procedure, 1731
scaling

3D transformation, 1966
factors, 3924
values into range of bytes, 188

scene object, 3540
SCHOOLBOOK keyword, 3811
scroll bars

for draw widgets, 2213
APP_SCROLL keyword, 2214

for text widgets, 2323
scroll offset, 3915
SEARCH2D function, 1732
SEARCH3D function, 1735
searching subdirectories, 647
searching, within strings, 1915
segmentation, 1116
Index IDL Reference Guide

4073
Select method
IDLgrBuffer, 3192
IDLgrWindow, 3735

semicolon character, 3945
semi-logarithmic plots

AXIS, 124
CONTOUR, 302
PLOT, 1444
SHADE_SURF, 1753
SURFACE, 1938

sensitizing widgets, WIDGET_CONTROL,
2192

SET_CHARACTER_SIZE keyword, 3811
SET_COLORMAP keyword, 3812
SET_FONT keyword, 3813
SET_GRAPHICS_FUNCTION keyword,

3815
SET_NATIVE_PLOT, see obsolete routines
SET_PLOT procedure

device settings, 3782
reference, 1739

SET_RESOLUTION keyword, 3816
SET_SCREEN, see obsolete routines
SET_SHADING procedure, 1741
SET_STRING keyword, 3817
SET_SYMBOL, see obsolete routines
SET_TRANSLATION keyword, 3817
SET_VIEWPORT, see obsolete routines
SET_WRITE_MASK keyword, 3817
SET_XY, see obsolete routines
SetCurrentCursor method, 3737
SETENV procedure, reference, 1743
setjmp, C language, 217
SETLOG, see obsolete routines
SetPalette method, 2621
SetRGB method, 3394
setting

breakpoints, 175
keywords, 2501
the current window, 2383
widget values, 2199

setting properties
existing objects, 2504
initialization, 2504
objects, 2503

SETUP_KEYS procedure
reference, 1744
using, 462

SFIT function, 1747
SHADE_SURF procedure, 1750
SHADE_SURF_IRR procedure, 1755
SHADE_VOLUME procedure, 1758
shaded surfaces

changing position of light source, 1741
creating, 1750
from polygons, 1484

shading
changing position of light source, 1741
volumes, 1484

Shapefile
adding attributes, 2658
attribute structure, 2649
attributes, 2648
closing, 2662
entity, 2644
entity structure, 2645
included files, 2644
inserting entities, 2675
naming conventions, 2644
object properties, 2669
opening, 2673
retrieving attributes, 2665
retrieving entities, 2667
setting attributes, 2677

sharable library, building, 1198
shared colormap

device keyword, 3817
translation vector, 3819

shared memory
debugging, 1763
mapping, 1765
unmapping, 1780
IDL Reference Guide Index

4074
sheet feeder, 3796
shells, spawning, 1846
SHIFT function, 1761
shifting

array elements, 1761
bit, 953

SHMDEBUG function, 1763
SHMMAP procedure, 1765
SHMUNMAP procedure, 1780
SHMVAR function, 1782
short word swap, 185
shortcut menu seecontext-sensitive menu
Show method, 3740
SHOW3 procedure, 1786
SHOWFONT procedure, 1788
showing

images, 2042
windows, 2385

shrink operator, 561
shrinking

arrays, 1661
windows, 2385

.sid image files, 2629
SIGMA, see obsolete routines
sign test, 1720
SIGN_TEST, see obsolete routines
signal

filtering, 168
processing, 308

SIMPLEX function, 1790
simplex method, 1790
SIMPSON, see obsolete routines
Simpson’s rule, 1548
SIN function, 1795
SINDGEN function, 1797
sine

hyperbolic, 1798
inverse, 114
SINE function, 1795

single-precision

single-precision (continued)
arrays

FINDGEN function, 667
FLTARR function, 683

converting values to, 677
singular value decomposition

computing, 1941
LA_SVD procedure, 1092
using, 1951

SINH function, 1798
sinusoidal map projection, 1256
size, of arrays, 1800
SIZE function, 1800
skeletons of bi-level images, 1983
skewness

computing with MOMENT function, 1342
computing with SKEWNESS function, 1805

SKEWNESS function, 1805
SKIP_LUN procedure, 1807
SKIPF, see obsolete routines
slash character, 2502
SLICER, see obsolete routines
SLICER3 procedure, 1810
SLIDE_IMAGE procedure, 1830
slider widgets

changing maximum value, 2195
changing minimum value, 2195
creating, 2290
drag events, 2297
draggable, 2290
events returned by, 2297
floating-point, 408
maximum value, 2292
minimum value, 2292
returning minimum and maximum values,

2252
SMOOTH function, 1834
smoothing

CONVOL function, 308
median, 1278
meshes, 1312
Index IDL Reference Guide

4075
smoothing (continued)
MIN_CURVE_SURF function, 292
SMOOTH function, 1834

SOBEL function, 1837
SOCKET procedure, 1839
SORT function, 1844
sorting, arrays, 1844
sparse arrays

FULSTR, 695
LINBCG, 1130
READ_SPR, 1634
SPRSAB, 1871
SPRSAX, 1874
WRITE_SPR, 2363

spawn, shell process, 1846
SPAWN procedure, 1846
SPEARMAN, see obsolete routines
Spearman’s rho rank correlation, 1576
special characters, displaying in plots, 3955
special functions

BETA, 148
IBETA, 836

SPH_4PNT procedure, 1854
SPH_SCAT function, 1856
SPHER_HARM function, 1859
spherical coordinates, 352
spherical gridding

SPH_SCAT function, 1856
TRIANGULATE procedure, 2009
TRIGRID function, 2013

spherical harmonic, relation to Legendre poly-
nomial, 1859

spherical interpolation, 1856
spherical triangulation, 2009
SPL_INIT function, 1862
SPL_INTERP function, 1864
spline

cubic interpolation
establishing type, 1862
parmetric cubic, 1868
performing, 1866

spline (continued)
thin-plate surface, 1332

SPLINE function, 1866
SPLINE_P procedure, 1868
spreadsheet data files

reading, 1637
writing, 2367

SPRSAB function, 1871
SPRSAX function, 1874
SPRSIN function, 1876
SPRSTP function, 1879
SQRT function, 1880
square root, 1880
SRF files

reading, 1635
writing, 2365

stacked histogram plots (LEGO keyword),
1936

standard, input, 728
standard deviation

MOMENT function, 1342
STDDEV function, 1884

STANDARDIZE function, 1882
standardized variables, 1882
STATIC_COLOR keyword, 3818
STATIC_GRAY keyword, 3818
statistics

approximating models, 259
fitting data

growth trends, 259
least absolute deviation regression, 1119
moving averages, 1834
multiple linear regression, 1681
nonlinear least-squares regression, 347
outlying data regression, 1119

kurtosis, 1027
tools

absolute deviation, 1342
chi-square error, minimizing, 1135
combinations, 597
contingency table, 341
IDL Reference Guide Index

4076
statistics (continued)
tools

cumulative sum, 1995
factorial, 597
frequency tables, 814
histogram, 814
kurtosis

KURTOSIS function, 1027
MOMENT function, 1342

Lomb normalized periodogram, 1154
magnitude-based ranking, 1600
maximum, 1268
mean

MEAN function, 1274
MOMENT function, 1342

mean absolute deviation, 1276
median, 1342
minimum, 1329
number generators

normally-distributed random, 1590
primes, 1496
uniformly-distributed, 1595

permutations, 597
skewness

MOMENT function, 1342
SKEWNESS function, 1805

sort, 1844
standard deviation

MOMENT function, 1342
STDDEV function, 1884

T-statistic, Student’s, 1993
variance

MOMENT function, 1342
VARIANCE function, 2082

STDDEV function, 1884
STDEV, see obsolete routines
STEPWISE, see obsolete routines
stereographic map projection, 1256
STOP procedure, 1886
stopping program execution

STOP procedure, 1886

stopping program execution (continued)
using breakpoints, 173

STR_SEP, see obsolete routines
STRARR function, 1887
STRCMP function, 1888
STRCOMPRESS function, 1890
STREAMLINE procedure, 1892
streamlines, 2086
STREGEX function, 1894
STRETCH procedure, 1898
STRING function, reference, 1900
strings

calling
IDL functions from, 209
IDL methods from, 211
IDL procedures from, 213

converting to lowercase, 1906
converting to uppercase, 1932
creating arrays, 1797
creating string arrays, 1887
data type, converting to, 1900
executing contents of, 568
extracting substrings from, 1913
finding substrings within, 1915
inserting strings into, 1918
length of, 1905
reading data from, 1656
removing whitespace (all), 1890
removing whitespace from (leading/trailing),

1926
STRJOIN function, 1903
STRLEN function, 1905
STRLOWCASE function, 1906
STRMATCH function, 1908
STRMESSAGE function, 1911
STRMID function, 1913
STRPOS function, 1915
STRPUT procedure, 1918
STRSPLIT function, 1920
STRTRIM function, 1926
STRUCT_ASSIGN procedure, reference, 1928
Index IDL Reference Guide

4077
STRUCT_HIDE procedure, 1930
structures

concatenating, 329
creating and defining, 329
creating arrays of, 1687
defining, 1928
displaying information on currently-defined,

805
FSTAT, 692
relaxed definition

performing, 1928
restoring, 1695

returned by widgets, 2238
returning length of, 1383
returning number of tags, 1383
tag names

creating structure from, 329
returning, 1969

structuring element, 517
STRUPCASE function, 1932
STUDENT_T, see obsolete routines
Student’s t distribution

cutoff value, 1961
probability, 1964

Student’s T-statistic, 1993
STUDENT1_T, see obsolete routines
STUDRANGE, see obsolete routines
STYLE system variable field, 3924
subscripts, converting to multi-dimensional,

105
SUBTITLE keyword, 3879
SUBTITLE system variable field, 3920
subtraction operator, 3930
summation, array elements, 1995
Sun raster files

reading, 1635
writing, 2365

suppressing information messages, 3910
surf_track.pro (example file), 3776
surface fitting, SFIT, 1747
surface object, 3553

surface plots
interactive (iTool) routine, 964
interface for, 2473
with images and contours, 1786

SURFACE procedure
duplicating transformations, 1940
reference, 1934

SURFACE_FIT, see obsolete routines
surfaces, shaded

creating, 1750
creating for elevation data, 1755
MESH_OBJ procedure, 1304

SURFR procedure, 1940
SVBKSB, see obsolete routines
SVD, see obsolete routines
SVDC procedure, 1941
SVDFIT function, 1944
SVSOL function, 1950
SWAP_ENDIAN function, 1952
SWAP_ENDIAN_INPLACE procedure, 1954
swapping the order of bytes, 183
SWITCH statement, 1956
SYLK files

reading, 1637
writing, 2367

SYMBOL keyword, 3818
symbol object, 3582
symbolic link files

reading, 1637
writing, 2367

symbolic links
creating, 631
following, 638

symbols, IDLgrSymbol, 3582
symbols, plotting

graphic keyword, 3878
system variable, 3920
user-defined, 2078

symmetric array or matrix
determining eigenvalues and eigenvectors,

2023
IDL Reference Guide Index

4078
symmetric array or matrix (continued)
reducing, 2026

SYMSIZE keyword, 3879
system clock, 1958
system variable fields

BACKGROUND, 3917
BLOCK, 3897
CHANNEL, 3917
CHARSIZE, 3917, 3921
CHARTHICK, 3917
CLIP, 3917
CODE, 3897
COLOR, 3918
CRANGE, 3921
FILL_DIST, 3913
FLAGS, 3914
FONT, 3918
GRIDSTYLE, 3922
LINESTYLE, 3918
MARGIN, 3922
MINOR, 3923
MSG, 3898
MSG_PREFIX, 3898
MULTI, 3918
N_COLORS, 3915
NAME, 3897, 3915
NOCLIP, 3919
NOERASE, 3919
NSUM, 3919
OMARGIN, 3923
ORIGIN, 3915
POSITION, 3919
PSYM, 3920
RANGE, 3923
REGION, 3920, 3924
S, 3924
STYLE, 3924
SUBTITLE, 3920
SYS_CODE, 3897
SYS_CODE_TYPE, 3898
SYS_MSG, 3898

system variable fields (continued)
T, 3920
T3D, 3920
TABLE_SIZE, 3915
THICK, 3921, 3925
TICKFORMAT, 3925
TICKINTERVAL, 3926
TICKLAYOUT, 3926
TICKLEN, 3921, 3926
TICKNAME, 3926
TICKS, 3927
TICKUNITS, 3927
TICKV, 3927
TITLE, 3921, 3927
TYPE, 3928
UNIT, 3915
WINDOW, 3916, 3928
X_CH_SIZE, 3916
X_PX_CM, 3916
X_SIZE, 3916
X_VSIZE, 3916
Y_CH_SIZE, 3916
Y_PX_CM, 3916
Y_SIZE, 3916
Y_VSIZE, 3916
ZOOM, 3916

system variables
!C, 3913
!D, 3913
!D.TABLE_SIZE, 2055
!D.WINDOW

creating window, 2342
deleting specified, 2111
setting, 2383

!ERR, 2116
!ERROR_STATE, message text, 1911
!JOURNAL, 1015
!MAP, 1252
!MOUSE, 344
!ORDER, 3917
!P, 3917
Index IDL Reference Guide

4079
system variables (continued)
!P.COLOR, 2444
!P.MULTI, 3846
!P.T, 3880
!QUIET, 1325
!X, 3921
!Y, 3921
!Z, 3921
creating, 480
displaying variable information, 806
for axes, 3921
for graphics, 3913
obsolete, 3994
overview, 3894
read-only, 480
saving, 1723

SYSTIME function, 1958

T
T system variable field, 3920
T_CVF function, 1961
T_PDF function, 1964
T3D keyword, 3879
T3D procedure, 1966
T3D system variable field, 3920
tab widgets

about, 2298
events returned by, 2305

table widgets
keyboard focus events, 2311
WIDGET_TABLE, 2307

TABLE_SIZE system variable field, 3915
TAG_NAMES function, 1969
tags, number in a structure, 1383
TAN function, 1971
tangent

hyperbolic, 1973
inverse, 119
TAN function, 1971

TANH function, 1973

TAPRD, see obsolete routines
TAPWRT, see obsolete routines
TCP/IP client side socket support, 1839
TEK_COLOR procedure, 1975
TEK4014 keyword, 3818
TEK4100 keyword, 3818
Tektronix device, 3853
TEMPORARY function, 1976
temporary variables, 1976
ternary operator, ?:, 3939
tesselation, 2009
Tessellate method, 3600
tessellator object, 3591
test functions, 1154

CTI_TEST, 341
FV_TEST, 700
KW_TEST, 1029
LNP_TEST, 1154
MD_TEST, 1272
R_TEST, 1579
RS_TEST, 1717
S_TEST, 1720
TM_TEST, 1993
XSQ_TEST, 2470

TESTCONTRAST, see obsolete routines
TETRA_CLIP function, 1978
TETRA_SURFACE function, 1980
TETRA_VOLUME function, 1981
text

aligning (XYOUTS), 2489
character

height, 3916
size, 3917
thickness, 2489, 3917
width, 3916

displaying, 2394
font index, 3875
font selection, 3918
plane of, 2489
plotting in graphics windows, 2488
positioning, 3973
IDL Reference Guide Index

4080
text (continued)
size, 3881
size of characters, 2489
widgets, see text widgets
width of, 2489

text files, counting lines, 628
text object, 3602
text widgets, 2323

appending text to, 2175
changing selected text, 2208
converting

character offsets to column/line form, 2254
line/column positions to character offsets,

2255
determining

if all events are being returned, 2253
if text widget is editable, 2254

editable, 2324
making editable after creation, 2182

events returned by, 2323
specifying, 2174
WIDGET_TEXT, 2330

keyboard focus events, 2326
returning

line number of top line in viewport, 2254
number of characters, 2254
offsets of text selection, 2254
selected text, 2208

setting
text selection, 2197
top line, 2197

setting keyboard focus to, 2186
suppressing newline characters, 2189

THICK keyword, 3880
THICK system variable field

axes, 3925
plotting, 3921

thickness of characters, 2489
THIN function, 1983
thinning images, 1983

thin-plate-spline interpolation
GRID_TPS function, 743
MIN_CURVE_SURF function, 1332

THREED procedure, 1985
three-dimensional

transformations
array transforms, 2091
coordinate conversion, 313
coordinates, 422
duplicating SURFACE transforms, 1940
plotting

adjusting, 422
coordinate conversion, 313

scaling
setup, 1729
unit cube, 1731

T3D keyword, 3920
THRESHOLD keyword, 3819
throw, C++ language, 217
tick marks

annotation
graphic keyword, 3887
system variable, 3926

data values for
graphic keyword, 3888
system variable, 3927

getting values of, 3882
intervals

graphic keyword, 3887
system variable, 3927

layout in individual axes, 3886
length

graphic keyword, 3880
system variable, 3921

length on individual axes
graphic keyword, 3886
system variable, 3926

linestyles, 3881
minor

graphic keyword, 3881
system variable, 3923
Index IDL Reference Guide

4081
tick marks (continued)
string labels for, 3925
styles, 3922
suppressing

graphic keyword, 3887
system variable, 3927

units for labeling, 3887
TICKFORMAT system variable field, 3925
TICKINTERVAL system variable field, 3926
TICKLAYOUT system variable field, 3926
TICKLEN keyword, 3880
TICKLEN system variable field

axes, 3926
plotting, 3921

TICKNAME system variable field, 3926
TICKS system variable field, 3927
TICKUNITS system variable field, 3927
TICKV system variable field, 3927
TIFF files

reading, 1641
writing, 2369

TIFF_DUMP, see obsolete routines
TIFF_READ, see obsolete routines
TIFF_WRITE, see obsolete routines
time

converting from string to binary, 153
returning current, 1958

TIME_TEST2 procedure, 1987
TIMEGEN function, 1988
TIMES keyword, 3819
time-series analysis

autocorrelation, 82
autocovariance, 82
autoregressive modeling

TS_COEF function, 2033
TS_FCAST function, 2037

cross correlation, 191
cross covariance, 191
forward differencing, 2035

TITLE keyword, 3880

TITLE system variable field
axes, 3927
plotting, 3921

TM_TEST function, 1993
t-means test, 1993
toggle buttons, WIDGET_BUTTON, 2151
top margin, setting, 3923
top-level base, 2130
TOTAL function, 1995
TQLI, see obsolete routines
TRACE function, 1999
traceback information

displaying, 806
returning, 801

Trackball
Init method, 3772
Reset method, 3773
Update method, 3775

TrackBall object, 3769
transformation matrices, 3920
transforming, map coordinates, 1226, 1250
transforms

Fourier, 599
Hough, 823
Radon, 1581

Translate method, 3365
IDLanROI, 2541
IDLanROIGroup, 2559

translation, 1966
TRANSLATION keyword, 3819
translation tables, bypassing, 3791
transparency

image objects, 3304
polygon objects, 3444
surface objects, 3570

TRANSPOSE function, 2002
transposing arrays, 2002
Transverse Mercator map (UTM) projection,

1256
TRED2, see obsolete routines
IDL Reference Guide Index

4082
tree widgets
about, 2333
events returned by, 2340

TRI_SURF function, 2005
TRIANGULATE function, 1286
TRIANGULATE procedure, 2009
triangulation

Delaunay, 1536
scattered data points, 1531
spherical, 2009
TRIANGULATE procedure, 2009
TRIGRID function, 2013

TRIDAG, see obsolete routines
tridiagonal array or matrix, 1109

determining eigenvalues and eigenvectors,
2023

Householder’s method, 2026
solving, 2028

TRIGRID function, 2013
trilinear interpolation, 920
trimming strings, 1926
TRIQL procedure, 2023
TRIRED procedure, 2026
TRISOL function, 2028
TRNLOG, see obsolete routines
TRUE_COLOR keyword, 3820
TrueColor

images
and the PostScript device, 3842
converting to pseudo-color, 253
displaying, 2044
reading, 2052

true-color visuals, 3795
TrueType fonts

overview, 3952
samples, 3980
specifying with DEVICE, 3815

TRUNCATE_LUN procedure, 2031
truncating file contents, 2031
TS_COEF function, 2033
TS_DIFF function, 2035

TS_FCAST function, 2037
TS_SMOOTH function, 2039
TT_FONT keyword, 3820
TTY keyword, 3820
TV procedure, 2042
TVCRS procedure, 2046
TVDELETE, see obsolete routines
TVLCT procedure, 2048
TVRD function, 2051
TVRDC, see obsolete routines
TVSCL procedure, 2055
TVSET, see obsolete routines
TVSHOW, see obsolete routines
TVWINDOW, see obsolete routines
two-dimensional Gaussian fit, 715
type conversion

to 64-bit integer, 1172
to byte, 181
to complex

COMPlEX function, 268
DCOMPLEX function, 456

to double-precision, 533
to integer, 673
to longword, 1170
to single-precision, floating-point, 677
to string, 1900
to unsigned 64-bit integer, 2074
to unsigned integer, 2060
to unsigned longword, 2072

TYPE system variable field, 3928
type-ahead buffer, 728

U
UINDGEN function, 2058
UINT function, 2060
UINTARR function, 2062
UL64INDGEN function, 2064
ULINDGEN function, 2066
ULON64ARR function, 2068
ULONARR function, 2070
Index IDL Reference Guide

4083
ULONG function, 2072
ULONG64 function, 2074
undocumented object classes, 2511
unformatted binary data, 1658, 2381
uniform random deviates, 1598
uniformly-distributed random numbers, 1595
UNIQ function, 2076
unit number, logical, 1412
UNIT system variable field, 3915
UNIX, changing file permissions, 608
unmapping widgets, 2136
unsigned 64-bit integer

arrays, 2064
data type, converting to, 2074

unsigned arrays, longword, 2066
unsigned integer

arrays, 2058
data type, converting to, 2060

unsigned longword
arrays, 2070
data type, converting to, 2072

Update method, 3775
upper margin, setting, 3923
uppercase, converting strings to, 1932
USER_FONT keyword, 3820
user-defined plotting symbols, 2078
USERSYM procedure, 2078
using external modules, 198
UTM (Transverse Mercator) map projection,

1256

V
validating variable names, 866
VALUE_LOCATE function, 2080
variables

associated, 116
data type, determining, using SIZE function,

1800
deleting, 482
interactive editing tool, 2475

variables (continued)
named, 57, 57, 2501
reading display images into (TVRD func-

tion), 2051
returning information on, 800
saving, 1724
temporary, 1976
valid name, 866

variance
FV_TEST function, 700
MOMENT function, 1342

VARIANCE function, 2082
VAX_FLOAT, see obsolete routines
VECTOR_FIELD procedure, 2084
vector-drawn fonts

! character, 3973
displaying, 1788
editing (EFONT procedure), 537
overview, 3952
samples, 3983
special characters, 3955

vectors, drawing arrowheads, 108
VEL procedure, 2086
velocity field, plotting

FLOW3 procedure, 681
VEL procedure, 2086
VELOVECT procedure, 2088

VELOVECT procedure, 2088
VERT_T3D function, 2091
vertices

merged mesh example, 1299
mesh smooth example, 1312

view object, 3626
viewgroup object, 3643
viewing, HDF5 files, 781
VMSCODE, see obsolete routines
VOIGT function, 2093
volume object, 3655
volume slices, 1810
volumes

extracting slices, 588
IDL Reference Guide Index

4084
volumes (continued)
interactive (iTool) routine, 994
rendering, 1514
searching for objects, 1735
visualizing

POLYSHADE function, 1484
PROJECT_VOL function, 1514
SHADE_VOLUME procedure, 1758
VOXEL_PROJ function, 2098

volumetric reconstruction, 1666
Voronoi diagrams, 1536
VORONOI procedure, 2096
voxel rendering, 2098
VOXEL_PROJ function, 2098
VRML object, 3684
VT240 keyword, 3820
VT240 terminal, 3852
VT330 terminal, 3852
VT340 keyword, 3821
VT340 terminal, 3852

W
WAIT procedure, 2104
WARP_TRI function, 2105
warping

images, 1467
images to maps

MAP_IMAGE function, 1218
MAP_PATCH function, 1222

polynomial, 1467
using the Z-buffer, 1481

WATERSHED function, 2107
Wavefront Advanced Data Visualizer

reading, 1650
writing, 2379

Wavefront files
reading, 1650
writing, 2379

wavelet transform
discrete, WTN function, 2387

WDELETE procedure
reference, 2111
window systems, 3824

weather fronts, plotting, 2112
WEOF, see obsolete routines
WEXMASTER (widget examples), 2419
WF_DRAW procedure, 2112
WHERE function, 2115
WHILE...DO statement, 2119
whitespace

removing all, 1890
removing leading/trailing, 1926

WIDED, see obsolete routines
widget events, 2237
WIDGET_ACTIVEX function, 2120
WIDGET_BASE function, 2127
WIDGET_BUTTON function, 2151
WIDGET_COMBOBOX function, 2162
WIDGET_CONTROL procedure, reference,

2170
WIDGET_DISPLAYCONTEXTMENU func-

tion, 2211
WIDGET_DRAW function, 2213
WIDGET_DROPLIST function, 2230
WIDGET_EVENT function, reference, 2237
WIDGET_INFO function, reference, 2241
WIDGET_KILL_REQUEST event, 2144
WIDGET_LABEL function, 2263
WIDGET_LIST function, 2270
WIDGET_MESSAGE, see obsolete routines
WIDGET_PROPERTYSHEET function, 2278
WIDGET_SLIDER function, 2290
WIDGET_TAB function, 2298
WIDGET_TABLE function, 2307
WIDGET_TEXT function, 2323
WIDGET_TREE function, 2333
widgets

aligning (ALIGN_XXX keywords), 2130,
2279

aligning keywords, 2121
animation, 357
Index IDL Reference Guide

4085
widgets (continued)
annotation, 99
base, WIDGET_BASE, 2127
buttons

bitmap labels, 1652
groups, 374
release events, 2156
WIDGET_BUTTON, 2151

callbacks
WIDGET_ACTIVEX, 2123
WIDGET_BASE, 2135, 2139

changing appearance of, 2139
clearing events (CLEAR_EVENTS key-

word), 2176
color

index
CW_CLR_INDEX, 380
CW_RGBSLIDER, 442

resources, 2140
selection, 383

combobox, 2162
compound

3D orientation widget, 422
animation widget, 357
button group widget, 374
color index selection widget, 380
color selection widget, 383
data entry field widget, 390
display zoom widget, 447
manipulating 3D orientation, 369
pulldown menu widget, 434
RGB widget sliders, 442
ROI definition widget, 386
slider widget, 408
template for creating, 446

default font for, 2178
destroying, using WIDGET_CONTROL,

2179
determining if widgets are realized

(ACTIVE keyword), 2243
(REALIZED keyword), 2251

widgets (continued)
disabling and enabling screen updates (UP-

DATE keyword), 2206
draw, WIDGET_DRAW, 2213
droplist, WIDGET_DROPLIST, 2230
events, WIDGET_EVENT, 2237
examples, 2419
exclusive buttons, 2134
field, 390
form, 400
getting user values, 2183
help buttons, 2155
hiding and showing, 2201
horizontal size, changing

SCR_XSIZE, 2192
XSIZE, 2208

iconifying, 2186
invalid IDs, 2175, 2239
label, creating, 2263
list, creating, 2270
main event loop for, 2413
mapping

mapping and unmapping, 2188
using WIDGET_BASE, 2136

menu bars, 2136
message dialog box, 498
modal, 498
non-exclusive buttons, 2138
positioning, children in a base, 2127
property sheets, 2278
pulldown menu

creating, 434
separators, 2158

realizing, 2190
region of interest, 386
registered, 2452
registering with XMANAGER, 2413
resetting all widgets, 2191
resizing (DYNAMIC_RESIZE keyword)

SIDGET_LABEL, 2264
WIDGET_BUTTON, 2153
IDL Reference Guide Index

4086
widgets (continued)
resizing (DYNAMIC_RESIZE keyword)

WIDGET_COMBOBOX, 2163
WIDGET_DROPLIST, 2231

returning
children of, 2243
information about, 2241
name of event handler procedure, 2246
parent of, 2250
siblings of, 2251
size of (GEOMETRY keyword), 2247
tracking event status, 2256
type of

setting NAME keyword, 2249
TYPE code definitions, 2257

validity of, 2258
sending event to (SEND_EVENT keyword),

2192
sensitizing and de-sensitizing

WIDGET_ACTIVEX, 2124
WIDGET_BASE, 2142
WIDGET_BUTTON, 2157
WIDGET_COMBOBOX, 2166
WIDGET_CONTROL, 2192
WIDGET_DRAW, 2220
WIDGET_DROPLIST, 2233
WIDGET_LABEL, 2266
WIDGET_LIST, 2274
WIDGET_SLIDER, 2294
WIDGET_TAB, 2303
WIDGET_TABLE, 2314
WIDGET_TEXT, 2327
WIDGET_TREE, 2338

setting buttons, 2193
showing and hiding, 2201
size

changing horizontal
SCR_XSIZE, 2192
XSIZE, 2208

changing vertical
SRC_YSIZE, 2192
YSIZE, 2209

widgets (continued)
slider

CW_FSLIDER, 408
WIDGET_SLIDER, 2290

space between children, 2142
tab, WIDGET_TAB, 2298
table, WIDGET_TABLE, 2307
template for creating, 2422
text, WIDGET_TEXT, 2323
tracking events, 2145
tree, WIDGET_TREE, 2333
unmapping

WIDGET_BASE, 2136
WIDGET_CONTROL, 2188

values, 2184
version of implementation, 2258
vertical size, changing

SRC_YSIZE, 2192
YSIZE, 2209

viewing widgets managed by XMANAGER,
2424

zoom, 447
width of text, 2489
Wilcoxon Rank-Sum Test, 1717
WILCOXON, see obsolete routines
window object, 3705
window objects, maximum size, 3705
WINDOW procedure

reference, 2342
using, 3824

WINDOW system variable field
index of current, 3916
plotting, 3928

WINDOW_STATE keyword, 3821
windows

backing store
about, 3824
device keyword, 3810
WINDOW procedure, 2343

copying areas, 3792
copying pixels from, 3792
creating, 2342
Index IDL Reference Guide

4087
windows (continued)
deleting, 2111
display size, 3916
draw widgets, 2213
erasing, 553
exposing, 2385
height, 2344
hiding, 2385
iconifying, 2385
ID for draw widgets, 2222
index of currently open, 3916
number of colors, 3915
pixmaps, 2343
position of, 3801, 3919
positioning, 2344
selecting current, 2383
systems, 3824
visible area of display, 3916
width, 2344

Windows display device (WIN), 3782
Windows Metafile Format, 3782
Windows platform, changing file permissions,

608
wire-mesh surface plots, 1934
WMENU, see obsolete routines
WMF, 3782
World Wide Web, 1337
write mask

GET_WRITE_MASK keyword, 3801
SET_WRITE_MASK keyword, 3817

Write method, 2622
WRITE_BMP procedure, 2346
WRITE_IMAGE procedure, 2349
WRITE_JPEG procedure, 2351
WRITE_NRIF procedure, 2354
WRITE_PICT procedure, 2356
WRITE_PNG procedure, 2358
WRITE_PPM procedure, 2361
WRITE_SPR procedure, 2363
WRITE_SRF procedure, 2365
WRITE_SYLK function, 2367

WRITE_TIFF procedure, 2369
WRITE_WAV procedure, 2378
WRITE_WAVE procedure, 2379
WRITEU procedure, 2381
writing

BMP files, 2346
JPEG files, 2351
NRIF files, 2354
PGM files, 2361
PICT files, 2356
PPM files, 2361
SRF files, 2365
TIFF files, 2369
wave files, 2379

WSET procedure
reference, 2383
using, 3824

WSHOW procedure
reference, 2385
using, 3824

WTN function, 2387

X
X resources, widget colors, 2140
X Windows

bitmap files, reading, 1652
Dump files, reading, 1654
fonts, 2401
resource names, 2139

X Windows device
DirectColor visual, 3795
PseudoColor visual, 3809
reference, 3856
StaticColor visual, 3818
StaticGray visual, 3818
TrueColor visual, 3820
visuals, 3856

X Windows resource names, 2165
X_CH_SIZE system variable field, 3916
X_PX_CM system variable field, 3916
IDL Reference Guide Index

4088
X_SIZE system variable field, 3916
X_VSIZE system variable field, 3916
XANIMATE, see obsolete routines
XBACKREGISTER, see obsolete routines
XBM_EDIT procedure, reference, 2392
XCHARSIZE keyword, 3881
XDISPLAYFILE procedure, 2394
XDL, see obsolete routines
XDR format (floating point values), 183
XDXF procedure, 2397
XFONT function, 2401
XGRIDSTYLE keyword, 3881
XINTERANIMATE procedure, 2403
XLOADCT procedure, 2410
XMANAGER procedure, reference, 2413
XMANAGERTOOL, see obsolete routines
XMARGIN keyword, 3881
XMAX machine-specific parameter, 1193
XMENU, see obsolete routines
XMIN machine-specific parameter, 1193
XMINOR keyword, 3881
XML

parsers, IDLffXMLSAX, 2680
XMNG_TMPL procedure, 2422
XMTOOL procedure, 2424
XOBJVIEW procedure, 2426
XOBJVIEW_ROTATE procedure, 2436
XOBJVIEW_WRITE_IMAGE procedure,

2438
XOFFSET keyword

graphics positioning, 3821
PostScript positioning, 3843

XON_XOFF keyword, 3821
XOR operator, 3936
XPALETTE procedure, 2440
XPCOLOR procedure, 2444
XPDMENU, see obsolete routines
XPLOT3D procedure, 2445
XRANGE keyword, 3881
XREGISTERED function, reference, 2452

XROI
growing a region, 2463
importing images, 2462
procedure, 2454
using, 2460

XSIZE keyword, 3821
XSQ_TEST function, 2470
XSTYLE keyword, 3882
XSURFACE procedure, 2473
XTHICK keyword, 3882
XTICK_GET keyword, 3882
XTICKFORMAT keyword, 3883
XTICKINTERVAL keyword, 3885
XTICKLAYOUT keyword, 3886
XTICKLEN keyword, 3886
XTICKNAME keyword, 3887
XTICKS keyword, 3887
XTICKUNITS keyword, 3887
XTICKV keyword, 3888
XTITLE keyword, 3888
XVAREDIT procedure, 2475
XVOLUME procedure, 2477
XVOLUME_ROTATE procedure, 2483
XVOLUME_WRITE_IMAGE procedure,

2486
xwd files, reading, 1654
XYOUTS procedure, 2488

See also positioning

Y
Y_CH_SIZE system variable field, 3916
Y_PX_CM system variable field, 3916
Y_SIZE system variable field, 3916
Y_VSIZE system variable field, 3916
YCHARSIZE keyword, 3881
YGRIDSTYLE keyword, 3881
YMARGIN keyword, 3881
YMINOR keyword, 3881
YOFFSET keyword

graphics positioning, 3822
Index IDL Reference Guide

4089
YOFFSET keyword (continued)
PostScript positioning, 3843

YRANGE keyword, 3881
YSIZE keyword, 3822
YSTYLE keyword, 3882
YTHICK keyword, 3882
YTICK_GET keyword, 3882
YTICKFORMAT keyword, 3883
YTICKINTERVAL keyword, 3885
YTICKLAYOUT keyword, 3886
YTICKLEN keyword, 3886
YTICKNAME keyword, 3887
YTICKS keyword, 3887
YTICKUNITS keyword, 3887
YTICKV keyword, 3888
YTITLE keyword, 3888

Z
Z keyword, 3888
ZAPFCHANCERY keyword, 3822
ZAPFDINGBATS keyword, 3823
Z-buffer

closing, 3791
reference, 3865
using with POLYFILL, 1479
using with POLYSHADE, 1484
warping images to polygons, 1481

ZCHARSIZE keyword, 3881
zeroing byte arrays, 179
ZGRIDSTYLE keyword, 3881
ZMARGIN keyword, 3881
ZMINOR keyword, 3881
ZOOM procedure, 2492
ZOOM system variable field, 3916
zoom widget, 447
ZOOM_24 procedure, 2494
ZRANGE keyword, 3881
ZROOTS, see obsolete routines
ZSTYLE keyword, 3882
ZTHICK keyword, 3882
ZTICK_GET keyword, 3882
ZTICKFORMAT keyword, 3883
ZTICKINTERVAL keyword, 3885
ZTICKLAYOUT keyword, 3886
ZTICKLEN keyword, 3886
ZTICKNAME keyword, 3887
ZTICKS keyword, 3887
ZTICKUNITS keyword, 3887
ZTICKV keyword, 3888
ZTITLE keyword, 3888
ZVALUE keyword, 3889
IDL Reference Guide Index

4090
Index IDL Reference Guide

	Online Manuals
	Online Guide
	IDL Documentation
	What's New in IDL 6.0
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	iTool User's Guide
	iTool Developer's Guide
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	External Development Guide
	Obsolete IDL Features
	Master Index of IDL Docs

	IDL DataMiner Documentation
	IDL Dataminer
	DataDirect Connect ODBC Reference (3.1.1 for IRIX)
	DataDirect Connect ODBC Reference (3.7 for other platforms)

	IDL Wavelet Documentation
	IDL Wavelet Toolkit

	ION Documentation
	Introduction to ION
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	Search Documentation

	Contents
	Overview of IDL Syntax
	IDL Syntax
	Elements of Syntax
	Square Brackets ([])
	Braces ({ })
	Italics

	Procedures
	Functions
	Arguments
	Named Variables

	Keywords

	Part I: IDL Command Reference
	Dot Commands
	.COMPILE
	.CONTINUE
	.EDIT
	.FULL_RESET_SESSION
	.GO
	.OUT
	.RESET_SESSION
	.RETURN
	.RNEW
	.RUN
	Using .RUN to Make Program Listings

	.SKIP
	.STEP
	.STEPOVER
	.TRACE

	Procedures and Functions
	A Routines
	A_CORRELATE
	X
	Lag
	COVARIANCE
	DOUBLE

	ABS
	X
	Thread Pool Keywords

	ACOS
	X
	Thread Pool Keywords

	ADAPT_HIST_EQUAL
	Image
	CLIP
	FCN
	NREGIONS
	TOP

	ALOG
	X
	Thread Pool Keywords

	ALOG10
	X
	Thread Pool Keywords

	AMOEBA
	Ftol
	FUNCTION_NAME
	FUNCTION_VALUE
	NCALLS
	NMAX
	P0
	SCALE
	SIMPLEX

	ANNOTATE
	Using the Annotation Widget
	COLOR_INDICES
	DRAWABLE
	LOAD_FILE
	TEK_COLORS
	WINDOW

	ARG_PRESENT
	Variable

	ARRAY_EQUAL
	Op1, Op2
	NO_TYPECONV

	ARRAY_INDICES
	Array
	Index
	Example 1
	Example 2

	ARROW
	X0, Y0
	X1,Y1
	DATA
	NORMALIZED
	HSIZE
	COLOR
	HTHICK
	SOLID
	THICK

	ASCII_TEMPLATE
	Filename
	BROWSE_LINES
	CANCEL
	GROUP

	ASIN
	X
	Thread Pool Keywords

	ASSOC
	Unit
	Array_Structure
	Offset
	PACKED

	ATAN
	X
	Y
	PHASE
	Thread Pool Keywords

	AXIS
	X, Y, and Z
	SAVE
	XAXIS
	XLOG
	YAXIS
	YLOG
	YNOZERO
	ZAXIS
	Graphics Keywords Accepted

	B Routines
	BAR_PLOT
	Values
	BACKGROUND
	BARNAMES
	BAROFFSET
	BARSPACE
	BARWIDTH
	BASELINES
	BASERANGE
	COLORS
	OUTLINE
	OVERPLOT
	ROTATE
	TITLE
	XTITLE
	YTITLE

	BEGIN...END
	BESELI
	X
	N
	DOUBLE
	ITER

	BESELJ
	X
	N
	DOUBLE
	ITER
	Example 1
	Example 2

	BESELK
	X
	N
	DOUBLE
	ITER

	BESELY
	X
	N
	DOUBLE
	ITER

	BETA
	Z, W
	DOUBLE
	Thread Pool Keywords

	BILINEAR
	P
	IX and JY

	BIN_DATE
	Ascii_Time

	BINARY_TEMPLATE
	Filename
	CANCEL
	GROUP
	N_ROWS
	TEMPLATE

	BINDGEN
	Di
	Thread Pool Keywords

	BINOMIAL
	V
	N
	P
	DOUBLE
	GAUSSIAN

	BLAS_AXPY
	Y
	A
	X
	D1
	Loc1
	D2
	Range

	BLK_CON
	Filter
	Signal
	B_LENGTH
	DOUBLE

	BOX_CURSOR
	Using BOX_CURSOR
	X0, Y0
	NX, NY
	INIT
	FIXED_SIZE
	MESSAGE

	BREAK
	BREAKPOINT
	File
	Index
	AFTER
	CLEAR
	CONDITION
	DISABLE
	ENABLE
	ON_RECOMPILE
	ONCE
	SET

	BROYDEN
	X
	Vecfunc
	CHECK
	DOUBLE
	EPS
	ITMAX
	STEPMAX
	TOLF
	TOLMIN
	TOLX

	BYTARR
	Di
	NOZERO

	BYTE
	Expression
	Offset
	Di
	Thread Pool Keywords

	BYTEORDER
	Variablen
	DTOVAX
	DTOXDR
	FTOVAX
	FTOXDR
	HTONL
	HTONS
	L64SWAP
	LSWAP
	NTOHL
	NTOHS
	SSWAP
	SWAP_IF_BIG_ENDIAN
	SWAP_IF_LITTLE_ENDIAN
	VAXTOD
	VAXTOF
	XDRTOD
	XDRTOF
	Thread Pool Keywords

	BYTSCL
	Array
	MAX
	MIN
	NAN
	TOP
	Thread Pool Keywords

	C Routines
	C_CORRELATE
	X
	Y
	Lag
	COVARIANCE
	DOUBLE

	CALDAT
	Julian
	Month
	Day
	Year
	Hour
	Minute
	Second

	CALENDAR
	Month
	Year

	CALL_EXTERNAL
	Image
	Entry
	P0, ..., PN-1
	ALL_VALUE
	B_VALUE
	CDECL
	D_VALUE
	F_VALUE
	I_VALUE
	L64_VALUE
	RETURN_TYPE
	S_VALUE
	UI_VALUE
	UL_VALUE
	UL64_VALUE
	UNLOAD
	VALUE
	WRITE_WRAPPER
	Auto Glue Keywords
	AUTO_GLUE
	CC
	COMPILE_DIRECTORY
	EXTRA_CFLAGS
	EXTRA_LFLAGS
	IGNORE_EXISTING_GLUE
	LD
	NOCLEANUP
	SHOW_ALL_OUTPUT
	VERBOSE
	Obsolete Keywords
	Example: Using Auto Glue To Call System Library Routines

	CALL_FUNCTION
	Name
	Pi

	CALL_METHOD
	Name
	ObjRef
	Pi

	CALL_PROCEDURE
	Name
	Pi

	CASE
	CATCH
	Variable
	CANCEL

	CD
	Directory
	CURRENT

	CDF Routines
	CEIL
	X
	L64
	Thread Pool Keywords

	CHEBYSHEV
	D
	N

	CHECK_MATH
	MASK
	NOCLEAR
	PRINT
	CHECK_MATH and !EXCEPT
	Printing Error Messages
	Testing Critical Code

	CHISQR_CVF
	P
	Df

	CHISQR_PDF
	V
	Df

	CHOLDC
	A
	P
	DOUBLE

	CHOLSOL
	A
	P
	B
	DOUBLE

	CINDGEN
	Di
	Thread Pool Keywords

	CIR_3PNT
	X
	Y
	R
	X0
	Y0

	CLOSE
	Uniti
	ALL
	EXIT_STATUS
	FILE
	FORCE

	CLUST_WTS
	Array
	DOUBLE
	N_CLUSTERS
	N_ITERATIONS
	VARIABLE_WTS

	CLUSTER
	Array
	Weights
	DOUBLE
	N_CLUSTERS

	COLOR_CONVERT
	I0, I1, I2
	O0, O1, O2
	HLS_RGB
	HSV_RGB
	RGB_HLS
	RGB_HSV

	COLOR_QUAN
	Using COLOR_QUAN
	Image_R, Image_G, Image_B
	Image
	Dim
	R, G, B
	COLORS
	CUBE
	DITHER
	ERROR
	GET_TRANSLATION
	MAP_ALL
	TRANSLATION

	COLORMAP_APPLICABLE
	redrawRequired

	COMFIT
	X
	Y
	A
	EXPONENTIAL
	GEOMETRIC
	GOMPERTZ
	HYPERBOLIC
	LOGISTIC
	LOGSQUARE
	SIGMA
	WEIGHTS
	YFIT

	COMMON
	COMPILE_OPT
	optn

	COMPLEX
	Real
	Imaginary
	Expression
	Offset
	Di
	DOUBLE
	Thread Pool Keywords

	COMPLEXARR
	Di
	NOZERO

	COMPLEXROUND
	Input

	COMPUTE_MESH_NORMALS
	fVerts
	iConn

	COND
	A
	DOUBLE
	LNORM

	CONGRID
	Array
	X
	Y
	Z
	CENTER
	CUBIC
	INTERP
	MINUS_ONE

	CONJ
	X
	Thread Pool Keywords

	CONSTRAINED_MIN
	X
	Xbnd
	Gbnd
	Nobj
	Gcomp
	Inform
	EPSTOP
	LIMSER
	MAXIMIZE
	NSTOP
	REPORT
	TITLE

	CONTINUE
	CONTOUR
	Smoothing Contours
	Z
	X
	Y
	C_ANNOTATION
	C_CHARSIZE
	C_CHARTHICK
	C_COLORS
	C_LABELS
	C_LINESTYLE
	C_ORIENTATION
	C_SPACING
	C_THICK
	CELL_FILL
	CLOSED
	DOWNHILL
	FILL
	FOLLOW
	IRREGULAR
	ISOTROPIC
	LEVELS
	MAX_VALUE
	MIN_VALUE
	NLEVELS
	OVERPLOT
	PATH_DATA_COORDS
	PATH_DOUBLE
	PATH_FILENAME
	PATH_INFO
	PATH_XY
	TRIANGULATION
	XLOG
	YLOG
	ZAXIS
	Graphics Keywords Accepted
	Example 1
	Example 2
	Example 3
	Example 4

	CONVERT_COORD
	X
	Y
	Z
	DATA
	DEVICE
	DOUBLE
	NORMAL
	T3D
	TO_DATA
	TO_DEVICE
	TO_NORMAL

	CONVOL
	Using CONVOL
	Array
	Kernel
	Scale_Factor
	CENTER
	EDGE_WRAP
	EDGE_TRUNCATE
	MISSING
	NAN
	Thread Pool Keywords

	COORD2TO3
	Mx, My
	Dim
	D0
	PTI

	COPY_LUN
	FromUnit
	ToUnit
	Num
	EOF
	LINES
	TRANSFER_COUNT

	CORRELATE
	X
	Y
	COVARIANCE
	DOUBLE

	COS
	X
	Thread Pool Keywords

	COSH
	X
	Thread Pool Keywords

	CPU
	TPOOL_MAX_ELTS
	TPOOL_MIN_ELTS
	TPOOL_NTHREADS
	VECTOR_ENABLE

	CRAMER
	A
	B
	DOUBLE
	ZERO

	CREATE_STRUCT
	Tags
	Values
	Structures
	NAME

	CREATE_VIEW
	AX
	AY
	AZ
	PERSP
	RADIANS
	WINX
	WINY
	XMAX
	XMIN
	YMAX
	YMIN
	ZFAC
	ZMAX
	ZMIN
	ZOOM

	CROSSP
	V1, V2

	CRVLENGTH
	X
	Y
	DOUBLE

	CT_LUMINANCE
	R
	G
	B
	BRIGHT
	DARK
	READ_TABLES

	CTI_TEST
	Obfreq
	COEFF
	CORRECTED
	CRAMV
	DF
	EXFREQ
	RESIDUAL

	CURSOR
	Using CURSOR with Draw Widgets
	Using CURSOR with the TEK Device
	X
	Y
	Wait
	CHANGE
	DATA
	DOWN
	DEVICE
	NORMAL
	NOWAIT
	UP
	WAIT

	CURVEFIT
	X
	Y
	Weights
	A
	Sigma
	CHISQ
	DOUBLE
	FITA
	FUNCTION_NAME
	ITER
	ITMAX
	NODERIVATIVE
	STATUS
	TOL
	YERROR

	CV_COORD
	DEGREES
	DOUBLE
	FROM_CYLIN
	FROM_POLAR
	FROM_RECT
	FROM_SPHERE
	TO_CYLIN
	TO_POLAR
	TO_RECT
	TO_SPHERE

	CVTTOBM
	Array
	THRESHOLD

	CW_ANIMATE
	Using CW_ANIMATE
	Parent
	Sizex
	Sizey
	Nframes
	NO_KILL
	OPEN_FUNC
	PIXMAPS
	TRACK
	UNAME
	UVALUE
	Keywords to WIDGET_CONTROL and WIDGET_INFO

	CW_ANIMATE_GETP
	Widget
	Pixmaps
	KILL_ANYWAY

	CW_ANIMATE_LOAD
	Widget
	CYCLE
	FRAME
	IMAGE
	ORDER
	WINDOW
	XOFFSET
	YOFFSET

	CW_ANIMATE_RUN
	Widget
	Rate
	NFRAMES
	STOP

	CW_ARCBALL
	Using CW_ARCBALL
	Parent
	COLORS
	FRAME
	LABEL
	RETAIN
	SIZE
	UPDATE
	UNAME
	UVALUE
	VALUE
	Keywords to WIDGET_CONTROL and WIDGET_INFO

	CW_BGROUP
	Parent
	Names
	BUTTON_UVALUE
	COLUMN
	EVENT_FUNC
	EXCLUSIVE
	FONT
	FRAME
	IDS
	LABEL_LEFT
	LABEL_TOP
	MAP
	NONEXCLUSIVE
	NO_RELEASE
	RETURN_ID
	RETURN_INDEX
	RETURN_NAME
	ROW
	SCROLL
	SET_VALUE
	SPACE
	UNAME
	UVALUE
	XOFFSET
	XPAD
	XSIZE
	X_SCROLL_SIZE
	YOFFSET
	YPAD
	YSIZE
	Y_SCROLL_SIZE
	Keywords to WIDGET_CONTROL and WIDGET_INFO

	CW_CLR_INDEX
	Parent
	COLOR_VALUES
	EVENT_FUNC
	FRAME
	LABEL
	NCOLORS
	START_COLOR
	UNAME
	UVALUE
	VALUE
	XSIZE
	YSIZE
	Keywords to WIDGET_CONTROL and WIDGET_INFO

	CW_COLORSEL
	Using CW_COLORSEL
	Parent
	FRAME
	UNAME
	UVALUE
	XOFFSET
	YOFFSET

	CW_DEFROI
	Draw
	IMAGE_SIZE
	OFFSET
	ORDER
	RESTORE
	ZOOM

	CW_FIELD
	Parent
	ALL_EVENTS
	COLUMN
	FIELDFONT
	FLOATING
	FONT
	FRAME
	INTEGER
	LONG
	NOEDIT
	RETURN_EVENTS
	ROW
	STRING
	TEXT_FRAME
	TITLE
	UNAME
	UVALUE
	VALUE
	XSIZE
	YSIZE
	Keywords to WIDGET_CONTROL and WIDGET_INFO

	CW_FILESEL
	Parent
	FILENAME
	FILTER
	FIX_FILTER
	FRAME
	IMAGE_FILTER
	MULTIPLE
	PATH
	SAVE
	UNAME
	UVALUE
	WARN_EXIST
	Keywords to WIDGET_CONTROL

	CW_FORM
	Using CW_FORM
	Parent
	Desc
	COLUMN
	IDS
	TITLE
	UNAME
	UVALUE
	Keywords to WIDGET_CONTROL and WIDGET_INFO

	CW_FSLIDER
	Using CW_FSLIDER
	Parent
	DOUBLE
	DRAG
	EDIT
	FORMAT
	FRAME
	MAXIMUM
	MINIMUM
	SCROLL
	SUPPRESS_VALUE
	TITLE
	UNAME
	UVALUE
	VALUE
	VERTICAL
	XSIZE
	YSIZE
	Keywords to WIDGET_CONTROL and WIDGET_INFO

	CW_LIGHT_EDITOR
	Parent
	DIRECTION_DISABLED
	DRAG_EVENTS
	FRAME
	HIDE_DISABLED
	LIGHT
	LOCATION_DISABLED
	TYPE_DISABLED
	UNAME
	UVALUE
	XRANGE
	XSIZE
	YRANGE
	YSIZE
	ZRANGE
	WIDGET_CONTROL Keywords
	GET_VALUE
	SET_VALUE

	CW_LIGHT_EDITOR_GET
	WidgetID
	DIRECTION_DISABLED
	DRAG_ EVENTS
	HIDE_DISABLED
	LIGHT
	LOCATION_DISABLED
	TYPE_DISABLED
	XRANGE
	XSIZE
	YRANGE
	YSIZE
	ZRANGE

	CW_LIGHT_EDITOR_SET
	WidgetID
	DIRECTION_DISABLED
	DRAG_EVENTS
	HIDE_DISABLED
	LIGHT
	LOCATION_DISABLED
	TYPE_DISABLED
	XRANGE
	XSIZE
	YRANGE
	YSIZE
	ZRANGE

	CW_ORIENT
	Parent
	AX
	AZ
	FRAME
	TITLE
	UNAME
	UVALUE
	XSIZE
	YSIZE
	Keywords to WIDGET_CONTROL and WIDGET_INFO

	CW_PALETTE_EDITOR
	Graphics Area Components
	Interactive Capabilities
	Parent
	DATA
	FRAME
	HISTOGRAM
	HORIZONTAL
	SELECTION
	UNAME
	UVALUE
	XSIZE
	YSIZE
	WIDGET_CONTROL Keywords for Palette Editor
	GET_VALUE
	SET_VALUE

	CW_PALETTE_EDITOR_GET
	WidgetID
	ALPHA
	HISTOGRAM

	CW_PALETTE_EDITOR_SET
	WidgetID
	ALPHA
	HISTOGRAM

	CW_PDMENU
	Parent
	Desc
	COLUMN
	CONTEXT_MENU
	DELIMITER
	FONT
	HELP
	IDS
	MBAR
	RETURN_ID
	RETURN_INDEX
	RETURN_NAME
	RETURN_FULL_NAME
	UNAME
	UVALUE
	XOFFSET
	YOFFSET
	Keywords to WIDGET_CONTROL and WIDGET_INFO
	Example 1
	Example 2

	CW_RGBSLIDER
	Using CW_RGBSLIDER
	Parent
	CMY
	COLOR_INDEX
	DRAG
	FRAME
	GRAPHICS_LEVEL
	HSV
	HLS
	LENGTH
	RGB
	UNAME
	UVALUE
	VALUE
	VERTICAL
	Keywords to WIDGET_CONTROL and WIDGET_INFO

	CW_TMPL
	Parent
	UNAME
	UVALUE

	CW_ZOOM
	Using CW_ZOOM
	Parent
	FRAME
	MAX
	MIN
	RETAIN
	SAMPLE
	SCALE
	TRACK
	UNAME
	UVALUE
	XSIZE
	X_SCROLL_SIZE
	X_ZSIZE
	YSIZE
	Y_SCROLL_SIZE
	Y_ZSIZE
	Keywords to WIDGET_CONTROL and WIDGET_INFO

	D Routines
	DBLARR
	Di
	NOZERO

	DCINDGEN
	Di
	Thread Pool Keywords

	DCOMPLEX
	Real
	Imaginary
	Expression
	Offset
	Di
	Thread Pool Keywords

	DCOMPLEXARR
	Di
	NOZERO

	DEFINE_KEY
	Key
	Value
	BACK_CHARACTER (UNIX Only)
	BACK_WORD (UNIX Only)
	CONTROL (UNIX Only)
	DELETE_CHARACTER (UNIX Only)
	DELETE_CURRENT (UNIX Only)
	DELETE_EOL (UNIX Only)
	DELETE_LINE (UNIX Only)
	DELETE_WORD (UNIX Only)
	END_OF_LINE (UNIX Only)
	END_OF_FILE (UNIX Only)
	ENTER_LINE (UNIX Only)
	ESCAPE (UNIX Only)
	FORWARD_CHARACTER (UNIX Only)
	FORWARD_WORD (UNIX Only)
	INSERT_OVERSTRIKE_TOGGLE (UNIX Only)
	MATCH_PREVIOUS
	NEXT_LINE (UNIX Only)
	NOECHO
	PREVIOUS_LINE (UNIX Only)
	RECALL (UNIX Only)
	REDRAW (UNIX Only)
	START_OF_LINE (UNIX Only)
	TERMINATE
	Defining New Function Keys

	DEFINE_MSGBLK
	BlockName
	ErrorNames
	ErrorFormats
	IGNORE_DUPLICATE
	PREFIX

	DEFINE_MSGBLK_FROM_FILE
	Format of Message Definition Files
	Filename
	BLOCK
	IGNORE_DUPLICATE
	PREFIX
	VERBOSE

	DEFROI
	Using DEFROI
	Sx, Sy
	Xverts, Yverts
	NOREGION
	NOFILL
	RESTORE
	X0, Y0
	ZOOM

	DEFSYSV
	Name
	Value
	Read_Only
	EXISTS

	DELVAR
	Vi

	DERIV
	X
	Y

	DERIVSIG
	X
	Y
	Sigx
	Sigy

	DETERM
	A
	CHECK
	DOUBLE
	ZERO

	DEVICE
	DFPMIN
	X
	Gtol
	Fmin
	Func
	Dfunc
	DOUBLE
	EPS
	ITER
	ITMAX
	STEPMAX
	TOLX

	DIAG_MATRIX
	A
	Diag

	DIALOG_MESSAGE
	Message_Text
	CANCEL
	DEFAULT_CANCEL
	DEFAULT_NO
	DIALOG_PARENT
	DISPLAY_NAME
	ERROR
	INFORMATION
	QUESTION
	RESOURCE_NAME
	TITLE

	DIALOG_PICKFILE
	DEFAULT_EXTENSION
	DIALOG_PARENT
	DIRECTORY
	DISPLAY_NAME
	FILE
	FILTER
	FIX_FILTER
	GET_PATH
	GROUP
	MULTIPLE_FILES
	MUST_EXIST
	OVERWRITE_PROMPT
	PATH
	READ
	RESOURCE_NAME
	TITLE
	WRITE

	DIALOG_PRINTERSETUP
	PrintDestination
	DIALOG_PARENT
	DISPLAY_NAME
	RESOURCE_NAME
	TITLE

	DIALOG_PRINTJOB
	PrintDestination
	DIALOG_PARENT
	DISPLAY_NAME
	RESOURCE_NAME
	TITLE

	DIALOG_READ_IMAGE
	Filename
	BLUE
	DIALOG_PARENT
	FILE
	FILTER_TYPE
	FIX_FILTER
	GET_PATH
	GREEN
	IMAGE
	PATH
	QUERY
	RED
	TITLE

	DIALOG_WRITE_IMAGE
	Image
	R, G, B
	DIALOG_PARENT
	FILE
	FIX_TYPE
	NOWRITE
	OPTIONS
	PATH
	TITLE
	TYPE
	WARN_EXIST

	DIGITAL_FILTER
	Flow
	Fhigh
	A
	Nterms
	DOUBLE

	DILATE
	Using DILATE
	Image
	Structure
	X0, Y0, Z0
	BACKGROUND
	CONSTRAINED
	GRAY
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES
	Example 1
	Example 2

	DINDGEN
	Di
	Thread Pool Keywords

	DISSOLVE
	Image
	DELAY
	ORDER
	SIZ
	X0, Y0

	DIST
	N
	M

	DLM_LOAD
	DLMNameStrn

	DLM_REGISTER
	DLMDefFilePathn

	DOC_LIBRARY
	Name
	DIRECTORY (UNIX Only)
	MULTI (UNIX Only)
	PRINT
	Obsolete Keywords

	DOUBLE
	Expression
	Offset
	Di
	Thread Pool Keywords

	DRAW_ROI
	oROI
	LINE_FILL
	SPACING
	Graphics Keywords Accepted

	E Routines
	EFONT
	Init_Font
	BLOCK
	GROUP

	EIGENQL
	A
	ABSOLUTE
	ASCENDING
	DOUBLE
	EIGENVECTORS
	OVERWRITE
	RESIDUAL

	EIGENVEC
	A
	EVAL
	DOUBLE
	ITMAX
	RESIDUAL

	ELMHES
	A
	COLUMN
	DOUBLE
	NO_BALANCE

	EMPTY
	ENABLE_SYSRTN
	Special Cases
	Routines
	DISABLE
	EXCLUSIVE
	FUNCTIONS

	EOF
	Unit

	EOS_* Routines
	ERASE
	Background_Color
	CHANNEL
	COLOR

	ERF
	Z
	Thread Pool Keywords

	ERFC
	Z
	Thread Pool Keywords

	ERFCX
	Z
	Thread Pool Keywords

	ERODE
	Using ERODE
	Image
	Structure
	X0, Y0, Z0
	GRAY
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES
	Example 1
	Example 2

	ERRPLOT
	X
	Low
	High
	WIDTH

	EXECUTE
	String
	QuietCompile

	EXIT
	NO_CONFIRM
	STATUS

	EXP
	Expression
	Thread Pool Keywords

	EXPAND
	A
	Nx
	Ny
	Result
	FILLVAL
	MAXVAL

	EXPAND_PATH
	The Path Definition String
	String
	ALL_DIRS
	ARRAY
	COUNT
	DLM
	HELP
	Example 1
	Example 2
	Example 3

	EXPINT
	N
	X
	DOUBLE
	EPS
	ITER
	ITMAX
	Thread Pool Keywords

	EXTRAC
	Array
	Ci
	Si

	EXTRACT_SLICE
	PlaneNormal
	Xvec
	Vol
	Xsize
	Ysize
	Xcenter
	Ycenter
	Zcenter
	Xrot
	Yrot
	Zrot
	ANISOTROPY
	OUT_VAL
	RADIANS
	SAMPLE
	VERTICES

	F Routines
	F_CVF
	P
	Dfn
	Dfd

	F_PDF
	V
	Dfn
	Dfd

	FACTORIAL
	N
	STIRLING
	UL64

	FFT
	Running Time
	Array
	Direction
	DIMENSION
	DOUBLE
	INVERSE
	OVERWRITE
	Thread Pool Keywords

	FILE_BASENAME
	Path
	RemoveSuffix
	FOLD_CASE

	FILE_CHMOD
	File
	Mode
	A_EXECUTE
	A_READ
	A_WRITE
	G_EXECUTE
	G_READ
	G_WRITE
	NOEXPAND_PATH
	O_EXECUTE
	O_READ
	O_WRITE
	SETGID (UNIX Only)
	SETUID (UNIX Only)
	STICKY_BIT (UNIX Only)
	U_EXECUTE
	U_READ
	U_WRITE

	FILE_COPY
	SourcePath
	DestPath
	ALLOW_SAME
	COPY_NAMED_PIPE (UNIX Only)
	COPY_SYMLINK (UNIX Only)
	FORCE (UNIX Only)
	NOEXPAND_PATH
	OVERWRITE
	RECURSIVE
	REQUIRE_DIRECTORY
	VERBOSE

	FILE_DELETE
	Operating System Syntax
	Filei
	ALLOW_NONEXISTENT
	NOEXPAND_PATH
	QUIET
	RECURSIVE
	VERBOSE

	FILE_DIRNAME
	Path
	MARK_DIRECTORY

	FILE_EXPAND_PATH
	Path

	FILE_INFO
	Fields of the FILE_INFO Structure
	Path
	NOEXPAND_PATH

	FILE_LINES
	Path
	COMPRESS
	NOEXPAND_PATH

	FILE_LINK
	SourcePath
	DestPath
	ALLOW_SAME
	HARDLINK
	NOEXPAND_PATH
	VERBOSE

	FILE_MKDIR
	FileN
	NOEXPAND_PATH

	FILE_MOVE
	SourcePath
	DestPath
	ALLOW_SAME
	NOEXPAND_PATH
	OVERWRITE
	REQUIRE_DIRECTORY
	VERBOSE

	FILE_READLINK
	Path
	ALLOW_NONEXISTENT
	ALLOW_NONSYMLINK
	NOEXPAND_PATH

	FILE_SAME
	Path1, Path2
	NOEXPAND_PATH

	FILE_SEARCH
	Supported Wildcards and Expansions
	Filename Matching Issues
	Path_Specification
	Dir_Specification
	Recur_Pattern
	COUNT
	EXPAND_ENVIRONMENT
	EXPAND_TILDE
	FOLD_CASE
	FULLY_QUALIFY_PATH
	ISSUE_ACCESS_ERROR
	MARK_DIRECTORY
	MATCH_ALL_INITIAL_DOT
	MATCH_INITIAL_DOT
	NOSORT
	QUOTE
	TEST_BLOCK_SPECIAL (UNIX Only)
	TEST_CHARACTER_SPECIAL (UNIX Only)
	TEST_DANGLING_SYMLINK (UNIX Only)
	TEST_DIRECTORY
	TEST_EXECUTABLE
	TEST_GROUP (UNIX Only)
	TEST_NAMED_PIPE (UNIX Only)
	TEST_READ
	TEST_REGULAR
	TEST_SETGID (UNIX Only)
	TEST_SETUID (UNIX Only)
	TEST_SOCKET (UNIX Only)
	TEST_STICKY_BIT (UNIX Only)
	TEST_SYMLINK (UNIX Only)
	TEST_USER (UNIX Only)
	TEST_WRITE
	TEST_ZERO_LENGTH
	TEST_* Keywords
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9

	FILE_TEST
	File
	BLOCK_SPECIAL (UNIX Only)
	CHARACTER_SPECIAL (UNIX Only)
	DANGLING_SYMLINK (UNIX Only)
	DIRECTORY
	EXECUTABLE
	GET_MODE
	GROUP (UNIX Only)
	NAMED_PIPE (UNIX Only)
	NOEXPAND_PATH
	READ
	REGULAR
	SETGID (UNIX Only)
	SETUID (UNIX Only)
	SOCKET (UNIX Only)
	STICKY_BIT (UNIX Only)
	SYMLINK (UNIX Only)
	USER (UNIX Only)
	WRITE
	ZERO_LENGTH

	FILE_WHICH
	Path
	File
	INCLUDE_CURRENT_DIR

	FILEPATH
	Filename
	ROOT_DIR
	SUBDIRECTORY
	TERMINAL
	TMP

	FINDFILE
	File_Specification
	COUNT

	FINDGEN
	Di
	Thread Pool Keywords

	FINITE
	X
	INFINITY
	NAN
	SIGN
	Thread Pool Keywords
	Example 1
	Example 2

	FIX
	Expression
	Offset
	Di
	PRINT
	TYPE
	Thread Pool Keywords

	FLICK
	A
	B
	Rate

	FLOAT
	Expression
	Offset
	Di
	Thread Pool Keywords

	FLOOR
	X
	L64
	Thread Pool Keywords

	FLOW3
	Vx, Vy, Vz
	ARROWSIZE
	BLOB
	LEN
	NSTEPS
	NVECS
	SX, SY, SZ

	FLTARR
	Di
	NOZERO

	FLUSH
	Uniti

	FOR
	FORMAT_AXIS_VALUES
	Values

	FORWARD_FUNCTION
	FREE_LUN
	Uniti
	EXIT_STATUS
	FORCE

	FSTAT
	Fields of the FSTAT Structure
	Unit

	FULSTR
	A

	FUNCT
	X
	A
	F
	Pder

	FUNCTION
	FV_TEST
	X
	Y

	FX_ROOT
	X
	Func
	DOUBLE
	ITMAX
	STOP
	TOL

	FZ_ROOTS
	C
	DOUBLE
	EPS
	NO_POLISH

	G Routines
	GAMMA
	Z
	Thread Pool Keywords

	GAMMA_CT
	Gamma
	CURRENT
	INTENSITY

	GAUSS_CVF
	P

	GAUSS_PDF
	V
	Example 1
	Example 2
	Example 3

	GAUSS2DFIT
	Procedure Used and Other Notes
	Z
	A
	X
	Y
	NEGATIVE
	TILT

	GAUSSFIT
	X
	Y
	A
	CHISQ
	ESTIMATES
	MEASURE_ERRORS
	NTERMS
	SIGMA
	YERROR

	GAUSSINT
	X
	Thread Pool Keywords

	GET_DRIVE_LIST
	CDROM (Windows Only)
	COUNT
	FIXED (Windows Only)
	REMOTE (Windows Only)
	REMOVABLE (Windows Only)

	GET_KBRD
	Wait

	GET_LUN
	Unit

	GET_SCREEN_SIZE
	Display_name (X Only)
	DISPLAY_NAME (X Only)
	RESOLUTION

	GETENV
	Name
	ENVIRONMENT (UNIX Only)

	GOTO
	GRID_INPUT
	X, Y
	F
	Lon, Lat
	R, Theta
	X1, Y1, F1
	Xyz
	DEGREES
	DUPLICATES
	EPSILON
	EXCLUDE
	POLAR
	SPHERE

	GRID_TPS
	Xp
	Yp
	Values
	COEFFICIENTS
	DELTA
	NGRID
	START

	GRID3
	X, Y, Z and F
	Gx, Gy, and Gz
	DELTA
	DTOL
	GRID
	NGRID
	START

	GRIDDATA
	X [, Y [, Z]]
	F
	Lon, Lat
	ANISOTROPY
	DEGREES
	DELTA
	DIMENSION
	EMPTY_SECTORS
	FAULT_POLYGONS
	FAULT_XY
	FUNCTION_TYPE
	GRID
	INVERSE_DISTANCE
	KRIGING
	LINEAR
	MAX_PER_SECTOR
	METHOD
	MIN_CURVATURE
	MIN_POINTS
	MISSING
	NATURAL_NEIGHBOR
	NEAREST_NEIGHBOR
	NEIGHBORHOOD
	POLYNOMIAL_REGRESSION
	POWER
	QUINTIC
	RADIAL_BASIS_FUNCTION
	SEARCH_ELLIPSE
	SECTORS
	SHEPARDS
	SMOOTHING
	SPHERE
	START
	TRIANGLES
	VARIOGRAM
	XOUT
	YOUT
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Kriging
	Minimum Curvature
	Modified Shepard’s
	Natural Neighbor
	Quintic
	Radial Basis Function

	GS_ITER
	A
	B
	CHECK
	DOUBLE
	LAMBDA
	MAX_ITER
	TOL
	X_0

	H Routines
	H_EQ_CT
	Image

	H_EQ_INT
	Using the H_EQ_INT Interface
	Image

	H5_* Routines
	H5_BROWSER
	Files
	DIALOG_READ
	Open HDF5 file
	Show preview
	Fit in window
	Flip vertical
	Flip horizontal
	Open
	Cancel
	Variable name for import
	Include data
	Import to IDL
	Done

	HANNING
	N1
	N2
	ALPHA
	DOUBLE

	HDF_* Routines
	HDF_BROWSER
	Graphical User Interface Menu Options
	Filename
	CANCEL
	GROUP
	PREFIX

	HDF_READ
	Graphical User Interface Menu Options
	Filename
	DFR8
	DF24
	PREFIX
	TEMPLATE

	HEAP_FREE
	Var
	OBJ
	PTR
	VERBOSE

	HEAP_GC
	OBJ
	PTR
	VERBOSE

	HELP
	Expression(s)
	ALL_KEYS
	BREAKPOINTS
	BRIEF
	CALLS
	DEVICE
	DLM
	FILES
	FULL
	FUNCTIONS
	HEAP_VARIABLES
	KEYS
	LAST_MESSAGE
	MEMORY
	MESSAGES
	NAMES
	OBJECTS
	OUTPUT
	PATH_CACHE
	PROCEDURES
	RECALL_COMMANDS
	ROUTINES
	SHARED_MEMORY
	SOURCE_FILES
	STRUCTURES
	SYSTEM_VARIABLES
	TRACEBACK

	HILBERT
	X
	D

	HIST_2D
	V1, V2
	BIN1
	BIN2
	MAX1
	MAX2
	MIN1
	MIN2

	HIST_EQUAL
	A
	BINSIZE
	FCN
	HISTOGRAM_ONLY
	MAXV
	MINV
	OMAX
	OMIN
	PERCENT
	TOP

	HISTOGRAM
	Array
	BINSIZE
	INPUT
	L64
	LOCATIONS
	MAX
	MIN
	NAN
	NBINS
	OMAX
	OMIN
	REVERSE_INDICES

	HLS
	Litlo
	Lithi
	Satlo
	Sathi
	Hue
	Loops
	Colr

	HOUGH
	Hough Transform Theory
	Array
	BACKPROJECT
	DOUBLE
	DRHO
	DX
	DY
	GRAY
	NRHO
	NTHETA
	NX
	NY
	RHO
	RMIN
	THETA
	XMIN
	YMIN

	HQR
	A
	COLUMN
	DOUBLE

	HSV
	Vlo
	Vhi
	Satlo
	Sathi
	Hue
	Loops
	Colr

	I Routines
	IBETA
	A
	B
	Z
	DOUBLE
	EPS
	ITER
	ITMAX
	Thread Pool Keywords
	Example 1
	Example 2

	ICONTOUR
	X
	Y
	Z
	AM_PM
	ANISOTROPY
	C_COLOR
	C_FILL_PATTERN
	C_LABEL_INTERVAL
	C_LABEL_NOGAPS
	C_LABEL_OBJECTS
	C_LABEL_SHOW
	C_LINESTYLE
	C_THICK
	C_USE_LABEL_COLOR
	C_USE_LABEL_ORIENTATION
	C_VALUE
	CLIP_PLANES
	COLOR
	DAYS_OF_WEEK
	DIMENSIONS
	DOWNHILL
	FILL
	HIDE
	IDENTIFIER
	LABEL_FONT
	LABEL_FORMAT
	LABEL_FRMTDATA
	LABEL_UNITS
	LOCATION
	MAX_VALUE
	MONTHS
	MIN_VALUE
	NAME
	N_LEVELS
	OVERPLOT
	PLANAR
	RGB_INDICES
	RGB_TABLE
	SHADE_RANGE
	SHADING
	TICKINTERVAL
	TICKLEN
	TITLE
	USE_TEXT_ALIGNMENTS
	VIEW_GRID
	VIEW_NEXT
	VIEW_NUMBER
	[XYZ]MAJOR
	[XYZ]MINOR
	[XYZ]RANGE
	[XYZ]SUBTICKLEN
	[XYZ]TEXT_COLOR
	[XYZ]TICKFONT_INDEX
	[XYZ]TICKFONT_SIZE
	[XYZ]TICKFONT_STYLE
	[XYZ]TICKFORMAT
	[XYZ]TICKINTERVAL
	[XYZ]TICKLAYOUT
	[XYZ]TICKLEN
	[XYZ]TICKNAME
	[XYZ]TICKUNITS
	[XYZ]TICKVALUES
	[XYZ]TITLE
	ZVALUE
	Example 1
	Example 2
	Example 3

	IDENTITY
	N
	DOUBLE

	IDL_Container Object Class
	IDL_VALIDNAME
	String
	CONVERT_ALL
	CONVERT_SPACES

	IDLan* Object Class
	IDLcom* Object Class
	IDLff* Object Class
	IDLgr* Object Classes
	IDLit* Object Classes
	IDLITSYS_CREATETOOL
	StrTool
	INITIAL_DATA
	OVERPLOT
	PANEL_LOCATION
	VIEW_GRID
	VIEW_NEXT
	VIEW_NUMBER
	VISUALIZATION_TYPE

	IF...THEN...ELSE
	IGAMMA
	A
	Z
	DOUBLE
	EPS
	ITER
	ITMAX
	METHOD
	Thread Pool Keywords
	Example 1

	IIMAGE
	Image
	X
	Y
	ALPHA_CHANNEL
	BLUE_CHANNEL
	CHANNEL
	CLIP_PLANES
	DIMENSIONS
	GREEN_CHANNEL
	HIDE
	IDENTIFIER
	IMAGE_DIMENSIONS
	IMAGE_LOCATION
	INTERPOLATE
	LOCATION
	NAME
	ORDER
	OVERPLOT
	RED_CHANNEL
	RGB_TABLE
	TITLE
	VIEW_GRID
	VIEW_NEXT
	VIEW_NUMBER
	[XY]MAJOR
	[XY]MINOR
	[XY]RANGE
	[XY]SUBTICKLEN
	[XY]TEXT_COLOR
	[XY]TICKFONT_INDEX
	[XY]TICKFONT_SIZE
	[XY]TICKFONT_STYLE
	[XY]TICKFORMAT
	[XY]TICKINTERVAL
	[XY]TICKLAYOUT
	[XY]TICKLEN
	[XY]TICKNAME
	[XY]TICKUNITS
	[XY]TICKVALUES
	[XY]TITLE
	Example 1
	Example 2
	Example 3

	IMAGE_CONT
	A
	ASPECT
	INTERP
	WINDOW_SCALE

	IMAGE_STATISTICS
	Data
	COUNT
	DATA_SUM
	LABELED
	LUT
	MASK
	MAXIMUM
	MEAN
	MINIMUM
	STDDEV
	SUM_OF_SQUARES
	VARIANCE
	VECTOR
	WEIGHT_SUM
	WEIGHTED

	IMAGINARY
	Complex_Expression
	Thread Pool Keywords

	INDGEN
	Di
	BYTE
	COMPLEX
	DCOMPLEX
	DOUBLE
	FLOAT
	L64
	LONG
	STRING
	TYPE
	UINT
	UL64
	ULONG
	Thread Pool Keywords

	INT_2D
	Fxy
	AB_Limits
	PQ_Limits
	Pts
	DOUBLE
	ORDER
	Example 1
	Example 2

	INT_3D
	Fxyz
	AB_Limits
	PQ_Limits
	UV_Limits
	Pts
	DOUBLE

	INT_TABULATED
	X
	F
	DOUBLE
	SORT

	INTARR
	Di
	NOZERO

	INTERPOL
	V
	N
	X
	U
	LSQUADRATIC
	QUADRATIC
	SPLINE

	INTERPOLATE
	P
	X, Y, Z
	CUBIC
	GRID
	MISSING
	Thread Pool Keywords

	INTERVAL_VOLUME
	Data
	Value0
	Value1
	Outverts
	Outconn
	AUXDATA_IN
	AUXDATA_OUT
	GEOM_XYZ
	PROGRESS_CALLBACK
	PROGRESS_METHOD
	PROGRESS_OBJECT
	PROGRESS_PERCENT
	PROGRESS_USERDATA
	TETRAHEDRA

	INVERT
	Array
	Status
	DOUBLE

	IOCTL
	File_Unit
	Request
	Arg
	BY_VALUE
	MT_OFFLINE
	MT_REWIND
	MT_SKIP_FILE
	MT_SKIP_RECORD
	MT_WEOF
	SUPPRESS_ERROR

	IPLOT
	R
	Theta
	X
	Y
	Z
	CLIP_PLANES
	COLOR
	DIMENSIONS
	ERRORBAR_COLOR
	ERRORBAR_CAPSIZE
	FILL_BACKGROUND (for 2D plots only)
	FILL_COLOR (for 2D plots only)
	FILL_LEVEL (for 2D plots only)
	HIDE
	HISTOGRAM (for 2D plots only)
	IDENTIFIER
	LINESTYLE
	LOCATION
	MAX_VALUE
	MIN_VALUE
	NAME
	NSUM
	OVERPLOT
	POLAR
	RGB_TABLE
	SCATTER
	SYM_COLOR
	SYM_INCREMENT
	SYM_INDEX
	SYM_SIZE
	SYM_THICK
	THICK
	TITLE
	TRANSPARENCY
	USE_DEFAULT_COLOR
	VERT_COLORS
	VIEW_GRID
	VIEW_NEXT
	VIEW_NUMBER
	XY_SHADOW (for 3D plots only)
	[XYZ]_ERRORBARS
	[XYZ]_LOG
	[XYZ]ERROR
	[XYZ]MAJOR
	[XYZ]MINOR
	[XYZ]RANGE
	[XYZ]SUBTICKLEN
	[XYZ]TEXT_COLOR
	[XYZ]TICKFONT_INDEX
	[XYZ]TICKFONT_SIZE
	[XYZ]TICKFONT_STYLE
	[XYZ]TICKFORMAT
	[XYZ]TICKINTERVAL
	[XYZ]TICKLAYOUT
	[XYZ]TICKLEN
	[XYZ]TICKNAME
	[XYZ]TICKUNITS
	[XYZ]TICKVALUES
	[XYZ]TITLE
	XZ_SHADOW (for 3D plots only)
	YZ_SHADOW (for 3D plots only)
	Example 1
	Example 2
	Example 3

	ISHFT
	P1
	P2
	Thread Pool Keywords

	ISOCONTOUR
	Values
	Outconn
	Outverts
	AUXDATA_IN
	AUXDATA_OUT
	C_LABEL_INTERVAL
	C_LABEL_SHOW
	C_VALUE
	DOUBLE
	FILL
	GEOMX
	GEOMY
	GEOMZ
	LEVEL_VALUES
	N_LEVELS
	OUT_LABEL_OFFSETS
	OUT_LABEL_POLYLINES
	OUT_LABEL_STRINGS
	OUTCONN_INDICES
	POLYGONS

	ISOSURFACE
	Data
	Value
	Outverts
	Outconn
	AUXDATA_IN
	AUXDATA_OUT
	GEOM_XYZ
	PROGRESS_CALLBACK
	PROGRESS_METHOD
	PROGRESS_OBJECT
	PROGRESS_PERCENT
	PROGRESS_USERDATA
	TETRAHEDRA

	ISURFACE
	X
	Y
	Z
	BOTTOM
	CLIP_PLANES
	COLOR
	DIMENSIONS
	DEPTH_OFFSET
	EXTENDED_LEGO
	HIDDEN_LINES
	HIDE
	IDENTIFIER
	LINESTYLE
	LOCATION
	NAME
	OVERPLOT
	RGB_TABLE
	SHADING
	SHOW_SKIRT
	SKIRT
	STYLE
	TEXTURE_ALPHA
	TEXTURE_BLUE
	TEXTURE_GREEN
	TEXTURE_HIGHRES
	TEXTURE_IMAGE
	TEXTURE_INTERP
	TEXTURE_RED
	THICK
	TITLE
	USE_TRIANGLES
	VERT_COLORS
	VIEW_GRID
	VIEW_NEXT
	VIEW_NUMBER
	[XYZ]MAJOR
	[XYZ]MINOR
	[XYZ]RANGE
	[XYZ]SUBTICKLEN
	[XYZ]TEXT_COLOR
	[XYZ]TICKFONT_INDEX
	[XYZ]TICKFONT_SIZE
	[XYZ]TICKFONT_STYLE
	[XYZ]TICKFORMAT
	[XYZ]TICKINTERVAL
	[XYZ]TICKLAYOUT
	[XYZ]TICKLEN
	[XYZ]TICKNAME
	[XYZ]TICKUNITS
	[XYZ]TICKVALUES
	[XYZ]TITLE
	ZERO_OPACITY_SKIP
	Example 1
	Example 2
	Example 3

	ITCURRENT
	iToolID

	ITDELETE
	iToolID

	ITGETCURRENT
	ITREGISTER
	Name
	ItemName
	TYPES
	UI_PANEL
	UI_SERVICE
	VISUALIZATION

	ITRESET
	NO_PROMPT

	IVOLUME
	Vol0, Vol1, Vol2, Vol3
	AMBIENT
	AUTO_RENDER
	BOUNDS
	CLIP_PLANES
	COMPOSITE_FUNCTION
	CUTTING_PLANES
	DEPTH_CUE
	DIMENSIONS
	HIDE
	HINTS
	IDENTIFIER
	INTERPOLATE
	LIGHTING_MODEL
	LOCATION
	NAME
	OPACITY_TABLE0
	OPACITY_TABLE1
	OVERPLOT
	RENDER_EXTENTS
	RENDER_STEP
	RENDER_QUALITY
	RGB_TABLE0
	RGB_TABLE1
	SUBVOLUME
	TITLE
	TWO_SIDED
	VIEW_GRID
	VIEW_NEXT
	VIEW_NUMBER
	VOLUME_DIMENSIONS
	VOLUME_LOCATION
	[XYZ]MAJOR
	[XYZ]MINOR
	[XYZ]RANGE
	[XYZ]SUBTICKLEN
	[XYZ]TEXT_COLOR
	[XYZ]TICKFONT_INDEX
	[XYZ]TICKFONT_SIZE
	[XYZ]TICKFONT_STYLE
	[XYZ]TICKFORMAT
	[XYZ]TICKINTERVAL
	[XYZ]TICKLAYOUT
	[XYZ]TICKLEN
	[XYZ]TICKNAME
	[XYZ]TICKUNITS
	[XYZ]TICKVALUES
	[XYZ]TITLE
	ZBUFFER
	ZERO_OPACITY_SKIP
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	J Routines
	JOURNAL
	Arg

	JULDAY
	Month
	Day
	Year
	Hour
	Minute
	Second

	K Routines
	KEYWORD_SET
	Expression

	KRIG2D
	Z, X, Y
	Model Parameter Keywords:
	EXPONENTIAL
	SPHERICAL
	Input Grid Keywords:
	REGULAR
	XGRID
	XVALUES
	YGRID
	YVALUES
	Output Grid Keywords:
	BOUNDS
	GS
	NX
	NY

	KURTOSIS
	X
	DOUBLE
	NAN

	KW_TEST
	X
	DF
	MISSING

	L Routines
	L64INDGEN
	Di
	Thread Pool Keywords

	LA_CHOLDC
	Array
	DOUBLE
	STATUS
	UPPER

	LA_CHOLMPROVE
	Array
	Achol
	B
	X
	BACKWARD_ERROR
	DOUBLE
	FORWARD_ERROR
	UPPER

	LA_CHOLSOL
	A
	B
	DOUBLE
	UPPER

	LA_DETERM
	A
	CHECK
	DOUBLE
	ZERO

	LA_EIGENPROBLEM
	A
	B
	ALPHA
	BALANCE
	BETA
	DOUBLE
	EIGENVECTORS
	LEFT_EIGENVECTORS
	NORM_BALANCE
	PERMUTE_RESULT
	RCOND_VALUE
	RCOND_VECTOR
	SCALE_RESULT
	STATUS

	LA_EIGENQL
	A
	B
	DOUBLE
	EIGENVECTORS
	FAILED
	GENERALIZED
	METHOD
	RANGE
	SEARCH_RANGE
	STATUS
	TOLERANCE

	LA_EIGENVEC
	T
	QZ
	BALANCE
	DOUBLE
	EIGENINDEX
	LEFT_EIGENVECTORS
	PERMUTE_RESULT
	RCOND_VALUE
	RCOND_VECTOR
	SCALE_RESULT
	SELECT

	LA_ELMHES
	Array
	Q
	BALANCE
	DOUBLE
	NORM_BALANCE
	PERMUTE_RESULT
	SCALE_RESULT

	LA_GM_LINEAR_MODEL
	A
	B
	D
	Y
	DOUBLE

	LA_HQR
	H
	Q
	DOUBLE
	PERMUTE_RESULT
	STATUS

	LA_INVERT
	A
	DOUBLE
	STATUS

	LA_LEAST_SQUARE_EQUALITY
	A
	B
	C
	D
	DOUBLE
	RESIDUAL

	LA_LEAST_SQUARES
	A
	B
	DOUBLE
	METHOD
	RANK
	RCONDITION
	RESIDUAL
	STATUS

	LA_LINEAR_EQUATION
	Array
	B
	BACKWARD_ERROR
	DOUBLE
	FORWARD_ERROR
	STATUS

	LA_LUDC
	Array
	Index
	DOUBLE
	STATUS

	LA_LUMPROVE
	Array
	Aludc
	Index
	B
	X
	BACKWARD_ERROR
	DOUBLE
	FORWARD_ERROR

	LA_LUSOL
	A
	Index
	B
	DOUBLE

	LA_SVD
	Array
	W
	U
	V
	DIVIDE_CONQUER
	DOUBLE
	STATUS

	LA_TRIDC
	AL
	A
	AU
	U2
	Index
	DOUBLE
	STATUS

	LA_TRIMPROVE
	AL
	A
	AU
	DAL
	DA
	DAU
	DU2
	Index
	B
	X
	BACKWARD_ERROR
	DOUBLE
	FORWARD_ERROR

	LA_TRIQL
	D
	E
	A
	DOUBLE
	STATUS

	LA_TRIRED
	Array
	D
	E
	DOUBLE
	UPPER

	LA_TRISOL
	AL
	A
	AU
	U2
	Index
	B
	DOUBLE

	LABEL_DATE
	AM_PM
	DATE_FORMAT
	DAYS_OF_WEEK
	MONTHS
	OFFSET
	ROUND_UP

	LABEL_REGION
	Data
	ALL_NEIGHBORS
	EIGHT
	ULONG
	Example 1
	Example 2

	LADFIT
	X
	Y
	ABSDEV
	DOUBLE

	LAGUERRE
	X
	N
	K
	COEFFICIENTS
	DOUBLE

	LEEFILT
	A
	N
	Sig
	DOUBLE
	EXACT

	LEGENDRE
	X
	L
	M
	DOUBLE
	Example 1
	Example 2

	LINBCG
	A
	B
	X
	DOUBLE
	ITOL
	TOL
	ITER
	ITMAX

	LINDGEN
	Di
	Thread Pool Keywords

	LINFIT
	X
	Y
	CHISQ
	COVAR
	DOUBLE
	MEASURE_ERRORS
	PROB
	SDEV
	SIGMA
	YFIT

	LINKIMAGE
	Name
	Image
	Type
	Entry
	DEVICE
	FUNCT
	KEYWORDS
	MAX_ARGS
	MIN_ARGS
	Obsolete Keywords

	LL_ARC_DISTANCE
	Lon_lat0
	Arc_Dist
	Az
	DEGREES

	LMFIT
	X
	Y
	A
	ALPHA
	CHISQ
	CONVERGENCE
	COVAR
	DOUBLE
	FITA
	FUNCTION_NAME
	ITER
	ITMAX
	ITMIN
	MEASURE_ERRORS
	SIGMA
	TOL
	WEIGHTS

	LMGR
	CLIENTSERVER
	DEMO
	EMBEDDED
	EXPIRE_DATE
	FORCE_DEMO
	INSTALL_NUM
	LMHOSTID
	RUNTIME
	SITE_NOTICE
	STUDENT
	TRIAL
	VM

	LNGAMMA
	Z
	Thread Pool Keywords

	LNP_TEST
	X
	Y
	DOUBLE
	HIFAC
	JMAX
	OFAC
	WK1
	WK2

	LOADCT
	Table
	BOTTOM
	FILE
	GET_NAMES
	NCOLORS
	SILENT

	LOCALE_GET
	LOGICAL_AND
	Arg1, Arg2
	Thread Pool Keywords

	LOGICAL_OR
	Arg1, Arg2
	Thread Pool Keywords

	LOGICAL_TRUE
	Arg
	Thread Pool Keywords

	LON64ARR
	Di
	NOZERO

	LONARR
	Di
	NOZERO

	LONG
	Expression
	Offset
	Di
	Thread Pool Keywords

	LONG64
	Expression
	Offset
	Di
	Thread Pool Keywords

	LSODE
	Y
	X
	H
	Derivs
	Status
	ATOL
	RTOL

	LU_COMPLEX
	A
	B
	DOUBLE
	INVERSE
	SPARSE

	LUDC
	A
	Index
	COLUMN
	DOUBLE
	INTERCHANGES

	LUMPROVE
	A
	Alud
	Index
	B
	X
	COLUMN
	DOUBLE

	LUSOL
	A
	Index
	B
	COLUMN
	DOUBLE

	M Routines
	M_CORRELATE
	X
	Y
	DOUBLE

	MACHAR
	DOUBLE

	MAKE_ARRAY
	Di
	BYTE
	COMPLEX
	DCOMPLEX
	DIMENSION
	DOUBLE
	FLOAT
	L64
	INDEX
	INTEGER
	LONG
	NOZERO
	OBJ
	PTR
	SIZE
	STRING
	TYPE
	UINT
	UL64
	ULONG
	VALUE
	Thread Pool Keywords

	MAKE_DLL
	InputFiles
	OutputFile
	ExportedRoutineNames
	CC
	COMPILE_DIRECTORY
	DLL_PATH
	EXPORTED_DATA
	EXTRA_CFLAGS
	EXTRA_LFLAGS
	INPUT_DIRECTORY
	LD
	NOCLEANUP
	OUTPUT_DIRECTORY
	REUSE_EXISTING
	SHOW_ALL_OUTPUT
	VERBOSE
	Obsolete Keywords
	Example 1: Testmodule DLM
	Example 2: Using GCC

	MAP_2POINTS
	Lon0, Lat0
	Lon1, Lat1
	DPATH
	METERS
	MILES
	NPATH
	PARAMETERS
	RADIANS
	RADIUS
	RHUMB

	MAP_CONTINENTS
	COASTS
	COLOR
	CONTINENTS
	COUNTRIES
	FILL_CONTINENTS
	HIRES
	LIMIT
	MLINESTYLE
	MLINETHICK
	ORIENTATION
	RIVERS
	SPACING
	USA
	Graphics Keywords Accepted

	MAP_GRID
	BOX_AXES
	CHARSIZE
	CLIP_TEXT
	COLOR
	FILL_HORIZON
	GLINESTYLE
	GLINETHICK
	HORIZON
	INCREMENT
	LABEL
	LATALIGN
	LATDEL
	LATLAB
	LATNAMES
	LATS
	LONALIGN
	LONDEL
	LONLAB
	LONNAMES
	LONS
	NO_GRID
	ORIENTATION
	Graphics Keywords Accepted

	MAP_IMAGE
	Image
	Startx
	Starty
	Xsize
	Ysize
	LATMIN
	LATMAX
	LONMIN
	LONMAX
	BILINEAR
	COMPRESS
	SCALE
	MAX_VALUE
	MIN_VALUE
	MISSING

	MAP_PATCH
	Image_Orig
	Lons
	Lats
	LAT0
	LAT1
	LON0
	LON1
	MAX_VALUE
	MISSING
	TRIANGULATE
	XSIZE
	XSTART
	YSIZE
	YSTART

	MAP_PROJ_FORWARD
	Longitude
	Latitude
	CONNECTIVITY
	MAP_STRUCTURE
	POLYGONS
	POLYLINES
	RADIANS

	MAP_PROJ_INFO
	Iproj
	AZIMUTHAL
	CIRCLE
	CURRENT
	CYLINDRICAL
	LL_LIMITS
	NAME
	PROJ_NAMES
	UV_LIMITS
	UV_RANGE

	MAP_PROJ_INIT
	Projection
	DATUM
	GCTP
	LIMIT
	RADIANS
	RELAXED
	CENTER_AZIMUTH
	CENTER_LATITUDE
	CENTER_LONGITUDE
	FALSE_EASTING
	FALSE_NORTHING
	HEIGHT
	HOM_AZIM_LONGITUDE
	HOM_AZIM_ANGLE
	HOM_LATITUDE1
	HOM_LATITUDE2
	HOM_LONGITUDE1
	HOM_LONGITUDE2
	IS_ZONES
	IS_JUSTIFY
	MERCATOR_SCALE
	OEA_ANGLE
	OEA_SHAPEM
	OEA_SHAPEN
	ROTATION
	SEMIMAJOR_AXIS
	SEMIMINOR_AXIS
	SOM_INCLINATION
	SOM_LONGITUDE
	SOM_PERIOD
	SOM_RATIO
	SOM_FLAG
	SOM_LANDSAT_NUMBER
	SOM_LANDSAT_PATH
	SPHERE_RADIUS
	STANDARD_PARALLEL
	STANDARD_PAR1
	STANDARD_PAR2
	SAT_TILT
	TRUE_SCALE_LATITUDE
	ZONE

	MAP_PROJ_INVERSE
	X
	Y
	MAP_STRUCTURE
	RADIANS

	MAP_SET
	P0lat
	P0lon
	Rot
	Projection Type Keywords:
	AITOFF
	ALBERS
	AZIMUTHAL
	CONIC
	CYLINDRICAL
	GOODESHOMOLOSINE
	GNOMIC
	HAMMER
	LAMBERT
	MERCATOR
	MILLER_CYLINDRICAL
	MOLLWEIDE
	NAME
	ORTHOGRAPHIC
	ROBINSON
	SATELLITE
	SINUSOIDAL
	STEREOGRAPHIC
	TRANSVERSE_MERCATOR
	Map Characteristic Keywords:
	ADVANCE
	CHARSIZE
	CLIP
	COLOR
	CONTINENTS
	CON_COLOR
	E_CONTINENTS
	E_GRID
	E_HORIZON
	GLINESTYLE
	GLINETHICK
	GRID
	HIRES
	HORIZON
	LABEL
	LATALIGN
	LATLAB
	LATDEL
	LONALIGN
	LONDEL
	LONLAB
	MLINESTYLE
	MLINETHICK
	NOBORDER
	NOERASE
	REVERSE
	TITLE
	USA
	XMARGIN
	YMARGIN
	Projection Parameter Keywords:
	CENTRAL_AZIMUTH
	ELLIPSOID
	ISOTROPIC
	LIMIT
	SAT_P
	SCALE
	STANDARD_PARALLELS
	Graphics Keywords Accepted

	MATRIX_MULTIPLY
	The # Operator vs. MATRIX_MULTIPLY
	A
	B
	ATRANSPOSE
	BTRANSPOSE
	Thread Pool Keywords

	MATRIX_POWER
	Array
	N
	DOUBLE
	STATUS

	MAX
	Array
	Max_Subscript
	DIMENSION
	MIN
	NAN
	SUBSCRIPT_MIN
	Thread Pool Keywords
	Example 1
	Example 2

	MD_TEST
	X
	ABOVE
	BELOW
	MDC

	MEAN
	X
	DOUBLE
	NAN

	MEANABSDEV
	X
	DOUBLE
	MEDIAN
	NAN

	MEDIAN
	Array
	Width
	DIMENSION
	EVEN

	MEMORY
	CURRENT
	HIGHWATER
	L64
	NUM_ALLOC
	NUM_FREE
	STRUCTURE

	MESH_CLIP
	Plane
	Vertsin
	Connin
	Vertsout
	Connout
	AUXDATA_IN
	AUXDATA_OUT
	CUT_VERTS

	MESH_DECIMATE
	Verts
	Conn
	Connout
	PERCENT_VERTICES
	PERCENT_POLYGONS
	PROGRESS_CALLBACK
	PROGRESS_METHOD
	PROGRESS_OBJECT
	PROGRESS_PERCENT
	PROGRESS_USERDATA
	VERTICES

	MESH_ISSOLID
	Conn

	MESH_MERGE
	Verts
	Conn
	Verts1
	Conn1
	COMBINE_VERTICES
	TOLERANCE

	MESH_NUMTRIANGLES
	Conn

	MESH_OBJ
	Type
	Vertex_List
	Polygon_List
	Array1
	Array2
	CLOSED
	DEGREES
	P1 - P5

	MESH_SMOOTH
	Verts
	Conn
	ITERATIONS
	FIXED_VERTICES
	FIXED_EDGE_VERTICES
	LAMBDA

	MESH_SURFACEAREA
	Verts
	Conn
	AUXDATA
	MOMENT

	MESH_VALIDATE
	Verts
	Conn
	COMBINE_VERTICES
	PACK_VERTICES
	REMOVE_NAN
	TOLERANCE

	MESH_VOLUME
	Verts
	Conn
	SIGNED

	MESSAGE
	Text
	Argi
	BLOCK
	CONTINUE
	INFORMATIONAL
	IOERROR
	LEVEL
	NAME
	NONAME
	NOPREFIX
	NOPRINT
	REISSUE_LAST
	RESET
	TRACEBACK
	Example 1
	Example 2

	MIN
	Array
	Min_Subscript
	DIMENSION
	MAX
	NAN
	SUBSCRIPT_MAX
	Thread Pool Keywords

	MIN_CURVE_SURF
	Theory
	Z, X, Y
	CONST
	DOUBLE
	SPHERE
	TPS
	Input Grid Description Keywords:
	REGULAR
	XGRID
	XVALUES
	YGRID
	YVALUES
	Output Grid Description Keywords:
	GS
	BOUNDS
	NX
	NY
	XOUT
	YOUT
	XPOUT, YPOUT

	MK_HTML_HELP
	Sources
	Filename
	STRICT
	TITLE
	VERBOSE

	MODIFYCT
	Itab
	Name
	R
	G
	B
	FILE

	MOMENT
	X
	DOUBLE
	MDEV
	NAN
	SDEV

	MORPH_CLOSE
	Image
	Structure
	GRAY
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES

	MORPH_DISTANCE
	Data
	BACKGROUND
	NEIGHBOR_SAMPLING
	NO_COPY

	MORPH_GRADIENT
	Image
	Structure
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES

	MORPH_HITORMISS
	Image
	HitStructure
	MissStructure

	MORPH_OPEN
	Image
	Structure
	GRAY
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES

	MORPH_THIN
	Image
	HitStructure
	MissStructure

	MORPH_TOPHAT
	Image
	Structure
	PRESERVE_TYPE
	UINT
	ULONG
	VALUES

	MPEG_CLOSE
	mpegID

	MPEG_OPEN
	Dimensions
	BITRATE
	FILENAME
	IFRAME_GAP
	MOTION_VEC_LENGTH
	QUALITY

	MPEG_PUT
	mpegID
	COLOR
	FRAME
	IMAGE
	ORDER
	WINDOW

	MPEG_SAVE
	mpegID
	FILENAME

	MSG_CAT_CLOSE
	object

	MSG_CAT_COMPILE
	input
	output
	LOCALE_ALIAS
	MBCS

	MSG_CAT_OPEN
	application
	DEFAULT_FILENAME
	FILENAME
	FOUND
	LOCALE
	PATH
	SUB_QUERY

	MULTI
	N

	N Routines
	N_ELEMENTS
	Expression
	Example 1
	Example 2

	N_PARAMS
	N_TAGS
	Expression
	DATA_LENGTH
	LENGTH

	NCDF_* Routines
	NEWTON
	X
	Vecfunc
	CHECK
	DOUBLE
	ITMAX
	STEPMAX
	TOLF
	TOLMIN
	TOLX

	NORM
	A
	DOUBLE
	LNORM

	O Routines
	OBJ_CLASS
	Arg
	COUNT
	SUPERCLASS

	OBJ_DESTROY
	ObjRef
	Arg1…Argn

	OBJ_ISA
	ObjectInstance
	ClassName

	OBJ_NEW
	ObjectClassName
	Arg1…Argn

	OBJ_VALID
	Arg
	CAST
	COUNT

	OBJARR
	Di
	NOZERO

	ON_ERROR
	N

	ON_IOERROR
	Label

	ONLINE_HELP
	Value
	BOOK
	CONTEXT (Windows Only)
	FOLD_CASE (UNIX Only)
	FULL_PATH
	PAGE (UNIX Only)
	QUIT
	TOPICS (Windows Only)
	Obsolete Keywords

	OPEN
	Unit
	File
	APPEND
	BUFSIZE
	COMPRESS
	DELETE
	ERROR
	F77_UNFORMATTED
	GET_LUN
	MORE
	NOEXPAND_PATH
	RAWIO (UNIX Only)
	STDIO
	SWAP_ENDIAN
	SWAP_IF_BIG_ENDIAN
	SWAP_IF_LITTLE_ENDIAN
	VAX_FLOAT
	WIDTH
	XDR
	Obsolete Keywords

	OPLOT
	X
	Y
	MAX_VALUE
	MIN_VALUE
	NSUM
	POLAR
	THICK
	Graphics Keywords Accepted

	OPLOTERR
	X
	Y
	Err
	Psym

	P Routines
	P_CORRELATE
	X
	Y
	C
	DOUBLE

	PARTICLE_TRACE
	Data
	Seeds
	Verts
	Conn
	Normals
	ANISOTROPY
	INTEGRATION
	SEED_NORMAL
	TOLERANCE
	MAX_ITERATIONS
	MAX_STEPSIZE
	UNIFORM

	PATH_CACHE
	About the Path Cache
	CLEAR
	ENABLE
	REBUILD
	Current Working Directory
	Relative Paths
	Executive Commands
	IDL_NOCACHE File Present
	Path Cache Disabled

	PATH_SEP
	PARENT_DIRECTORY
	SEARCH_PATH

	PCOMP
	A
	COEFFICIENTS
	COVARIANCE
	DOUBLE
	EIGENVALUES
	NVARIABLES
	STANDARDIZE
	VARIANCES

	PLOT
	X
	Y
	ISOTROPIC
	MAX_VALUE
	MIN_VALUE
	NSUM
	POLAR
	THICK
	XLOG
	YNOZERO
	YLOG
	Graphics Keywords Accepted

	PLOT_3DBOX
	X
	Y
	Z
	GRIDSTYLE
	PSYM
	SOLID_WALLS
	XY_PLANE
	XYSTYLE
	XZ_PLANE
	XZSTYLE
	YZ_PLANE
	YZSTYLE
	SURFACE Keywords
	Graphics Keywords Accepted

	PLOT_FIELD
	U
	V
	ASPECT
	LENGTH
	N
	TITLE

	PLOTERR
	X
	Y
	Err
	TYPE
	PSYM

	PLOTS
	X
	Y
	Z
	CONTINUE
	Graphics Keywords Accepted

	PNT_LINE
	P0
	L0
	L1
	Pl
	INTERVAL

	POINT_LUN
	Use Of POINT_LUN On Compressed Files
	Unit
	Position

	POLAR_CONTOUR
	Z
	Theta
	R
	SHOW_TRIANGULATION

	POLAR_SURFACE
	Z
	R
	Theta
	GRID
	SPACING
	BOUNDS
	QUINTIC
	MISSING

	POLY
	X
	C

	POLY_2D
	Array
	P and Q
	Interp
	Dimx
	Dimy
	CUBIC
	MISSING
	Thread Pool Keywords

	POLY_AREA
	X
	Y
	DOUBLE
	SIGNED

	POLY_FIT
	X
	Y
	Degree
	Yfit, Yband, Sigma, Corrm
	CHISQ
	COVAR
	DOUBLE
	MEASURE_ERRORS
	SIGMA
	STATUS
	YBAND
	YERROR
	YFIT

	POLYFILL
	Fill Methods
	X
	Y
	Z
	IMAGE_COORD (Z-Buffer Output Only)
	IMAGE_INTERP (Z-Buffer Output Only)
	LINE_FILL
	PATTERN
	SPACING
	TRANSPARENT (Z-Buffer output only)
	Graphics Keywords Accepted
	Z-Buffer-Specific Keywords

	POLYFILLV
	X
	Y
	Sx
	Sy
	Run_Length

	POLYSHADE
	Vertices
	X, Y, Z
	Polygons
	DATA
	NORMAL
	POLY_SHADES
	SHADES
	T3D
	TOP
	XSIZE
	YSIZE

	POLYWARP
	Xi, Yi
	Xo, Yo
	Degree
	Kx
	Ky
	DOUBLE
	STATUS

	POPD
	POWELL
	P
	Xi
	Ftol
	Fmin
	Func
	DOUBLE
	ITER
	ITMAX

	PRIMES
	K

	PRINT/PRINTF
	Format Compatibility
	Unit
	Expri
	AM_PM
	DAYS_OF_WEEK
	FORMAT
	MONTHS
	STDIO_NON_FINITE
	Obsolete Keywords

	PRINTD
	PRO
	argumentn

	PRODUCT
	Array
	Dimension
	CUMULATIVE
	NAN
	Thread Pool Keywords

	PROFILE
	Using PROFILE
	Image
	XX
	YY
	NOMARK
	XSTART
	YSTART

	PROFILER
	Module
	CLEAR
	DATA
	OUTPUT
	REPORT
	RESET
	SYSTEM

	PROFILES
	Using PROFILES
	Image
	ORDER
	SX
	SY
	WSIZE

	PROJECT_VOL
	Vol
	X_Sample
	Y_Sample
	Z_Sample
	AVG_INTENSITY
	CUBIC
	DEPTH_Q
	OPAQUE
	TRANS
	XSIZE
	YSIZE
	Z_BUFFER

	PS_SHOW_FONTS
	NOLATIN

	PSAFM
	Input_Filename
	Output_Filename

	PSEUDO
	Litlo
	Lithi
	Satlo
	Sathi
	Hue
	Loops
	Colr

	PTR_FREE
	Pi

	PTR_NEW
	InitExpr
	ALLOCATE_HEAP
	NO_COPY

	PTR_VALID
	Arg
	CAST
	COUNT

	PTRARR
	Di
	ALLOCATE_HEAP
	NOZERO

	PUSHD
	Dir

	Q Routines
	QGRID3
	XYZ
	X, Y, Z
	Tetrahedra
	DELTA
	DIMENSION
	MISSING
	START
	Example 1
	Example 2
	Example 3

	QHULL
	V
	V0, V1, V2, ..., V(N–1)
	Tr
	BOUNDS
	CONNECTIVITY
	DELAUNAY
	SPHERE
	VDIAGRAM
	VNORMALS
	VVERTICES

	QROMB
	Func
	A
	B
	DOUBLE
	EPS
	JMAX
	K
	Example 1
	Example 2
	Example 3

	QROMO
	Func
	A
	B
	DOUBLE
	EPS
	JMAX
	K
	MIDEXP
	MIDINF
	MIDPNT
	MIDSQL
	MIDSQU

	QSIMP
	Func
	A
	B
	DOUBLE
	EPS
	JMAX

	QUERY_* Routines
	QUERY_BMP
	Filename
	Info

	QUERY_DICOM
	Filename
	Info
	IMAGE_INDEX

	QUERY_IMAGE
	Filename
	Info
	CHANNELS
	DIMENSIONS
	HAS_PALETTE
	IMAGE_INDEX
	NUM_IMAGES
	PIXEL_TYPE
	SUPPORTED_READ
	SUPPORTED_WRITE
	TYPE

	QUERY_JPEG
	Filename
	Info

	QUERY_MRSID
	Filename
	Info
	LEVEL

	QUERY_PICT
	Filename
	Info

	QUERY_PNG
	Filename
	Info

	QUERY_PPM
	Filename
	Info
	MAXVAL

	QUERY_SRF
	Filename
	Info

	QUERY_TIFF
	Filename
	Info
	IMAGE_INDEX

	QUERY_WAV
	Filename
	Info

	R Routines
	R_CORRELATE
	X
	Y
	D
	KENDALL
	PROBD
	ZD

	R_TEST
	X
	N0
	N1
	R

	RADON
	Radon Transform Theory
	How IDL Implements the Radon Transform
	How IDL Implements the Radon Backprojection
	Array
	BACKPROJECT
	DOUBLE
	DRHO
	DX
	DY
	GRAY
	LINEAR
	NRHO
	NTHETA
	NX
	NY
	RHO
	RMIN
	THETA
	XMIN
	YMIN

	RANDOMN
	Seed
	Di
	BINOMIAL
	DOUBLE
	GAMMA
	LONG
	NORMAL
	POISSON
	UNIFORM

	RANDOMU
	Seed
	Di
	BINOMIAL
	DOUBLE
	GAMMA
	LONG
	NORMAL
	POISSON
	UNIFORM

	RANKS
	X

	RDPIX
	Using RDPIX
	Image
	X0, Y0

	READ/READF
	Prompt
	Unit
	Vari
	AM_PM
	DAYS_OF_WEEK
	FORMAT
	MONTHS
	PROMPT
	Obsolete Keywords

	READ_ASCII
	Filename
	COMMENT_SYMBOL
	COUNT
	DATA_START
	DELIMITER
	HEADER
	MISSING_VALUE
	NUM_RECORDS
	RECORD_START
	TEMPLATE
	VERBOSE

	READ_BINARY
	Filename
	FileUnit
	DATA_DIMS
	DATA_START
	DATA_TYPE
	ENDIAN
	TEMPLATE

	READ_BMP
	Filename
	R, G, B
	Ihdr
	RGB

	READ_DICOM
	Filename
	Red, Green, Blue
	IMAGE_INDEX

	READ_IMAGE
	Filename
	Red
	Green
	Blue
	IMAGE_INDEX

	READ_INTERFILE
	File
	Data

	READ_JPEG
	Filename
	Image
	Colortable
	BUFFER
	COLORS
	DITHER
	GRAYSCALE
	ORDER
	TRUE
	TWO_PASS_QUANTIZE
	UNIT

	READ_MRSID
	Filename
	LEVEL
	SUB_RECT

	READ_PICT
	Filename
	Image
	R, G, B

	READ_PNG
	Filename
	R, G, B
	ORDER
	VERBOSE
	TRANSPARENT

	READ_PPM
	Filename
	Image
	MAXVAL

	READ_SPR
	Filename

	READ_SRF
	Filename
	Image
	R, G, B

	READ_SYLK
	File
	ARRAY
	COLMAJOR
	NCOLS
	NROWS
	STARTCOL
	STARTROW
	USEDOUBLES
	USELONGS

	READ_TIFF
	Filename
	R, G, B
	CHANNELS
	GEOTIFF
	IMAGE_INDEX
	INTERLEAVE
	ORIENTATION
	PLANARCONFIG
	SUB_RECT
	VERBOSE
	Obsolete Keywords
	Example 1
	Example 2
	Example 3

	READ_WAV
	Filename
	Rate

	READ_WAVE
	File
	Variables
	Names
	Dimensions
	MESHNAMES

	READ_X11_BITMAP
	File
	Bitmap
	X
	Y
	EXPAND_TO_BYTES

	READ_XWD
	Filename
	R, G, B

	READS
	Input
	Vari
	AM_PM
	DAYS_OF_WEEK
	FORMAT
	MONTHS

	READU
	Unit
	Vari
	TRANSFER_COUNT
	Obsolete Keywords

	REAL_PART
	Z

	REBIN
	Array
	Di
	SAMPLE

	RECALL_COMMANDS
	RECON3
	Using RECON3
	Images
	Obj_Rot
	Obj_Pos
	Focal
	Dist
	Vol_Pos
	Img_Ref
	Img_Mag
	Vol_Size
	CUBIC
	MISSING
	MODE
	QUIET

	REDUCE_COLORS
	Image
	Values

	REFORM
	Array
	Di
	OVERWRITE

	REGION_GROW
	Array
	ROIPixels
	ALL_NEIGHBORS
	STDDEV_MULTIPLIER
	THRESHOLD

	REGISTER_CURSOR
	Name
	Image
	MASK
	HOTSPOT
	OVERWRITE

	REGRESS
	X
	Y
	Weights
	Yfit, Const, Sigma, Ftest, R, Rmul, Chisq, Status
	CHISQ
	CONST
	CORRELATION
	DOUBLE
	FTEST
	MCORRELATION
	MEASURE_ERRORS
	RELATIVE_WEIGHT
	SIGMA
	STATUS
	YFIT

	REPEAT...UNTIL
	REPLICATE
	Value
	Di
	Thread Pool Keywords

	REPLICATE_INPLACE
	X
	Value
	D1
	Loc1
	D2
	Range
	Thread Pool Keywords

	RESOLVE_ALL
	CLASS
	CONTINUE_ON_ERROR
	QUIET

	RESOLVE_ROUTINE
	Name
	COMPILE_FULL_FILE
	EITHER
	IS_FUNCTION
	NO_RECOMPILE

	RESTORE
	Filename
	FILENAME
	RELAXED_STRUCTURE_ASSIGNMENT
	RESTORED_OBJECTS
	VERBOSE

	RETALL
	RETURN
	Return_value

	REVERSE
	Array
	Subscript_Index
	OVERWRITE

	RK4
	Y
	Dydx
	X
	H
	Derivs
	DOUBLE

	ROBERTS
	Image

	ROT
	A
	ANGLE
	MAG
	X0
	Y0
	INTERP
	CUBIC
	MISSING
	PIVOT

	ROTATE
	Array
	Direction

	ROUND
	X
	L64
	Thread Pool Keywords

	ROUTINE_INFO
	Routine
	DISABLED
	ENABLED
	FUNCTIONS
	PARAMETERS
	SOURCE
	SYSTEM
	UNRESOLVED
	VARIABLES

	RS_TEST
	X
	Y
	UX
	UY

	S Routines
	S_TEST
	X
	Y
	ZDIFF

	SAVE
	Varn
	ALL
	COMM
	COMPRESS
	FILENAME
	ROUTINES
	SYSTEM_VARIABLES
	VARIABLES
	VERBOSE

	SAVGOL
	Nleft
	Nright
	Order
	Degree
	DOUBLE

	SCALE3
	XRANGE
	YRANGE
	ZRANGE
	AX
	AZ

	SCALE3D
	SEARCH2D
	Array
	Xpos
	Ypos
	Min_Val
	Max_Val
	DECREASE
	INCREASE
	LPF_BAND
	DIAGONAL

	SEARCH3D
	Array
	Xpos
	Ypos
	Zpos
	Min_Val
	Max_Val
	DECREASE
	INCREASE
	LPF_BAND
	DIAGONAL

	SET_PLOT
	Device
	COPY
	INTERPOLATE

	SET_SHADING
	GOURAUD
	LIGHT
	REJECT
	VALUES

	SETENV
	Environment_Expression

	SETUP_KEYS
	ANSI
	EIGHTBIT
	SUN
	VT200
	HP9000
	IBM
	MIPS
	SGI
	APP_KEYPAD
	NUM_KEYPAD

	SFIT
	Data
	Degree
	KX

	SHADE_SURF
	Restrictions
	Z
	X
	Y
	AX
	AZ
	IMAGE
	MAX_VALUE
	MIN_VALUE
	PIXELS
	SAVE
	SHADES
	XLOG
	YLOG
	Graphics Keywords Accepted

	SHADE_SURF_IRR
	Z
	X
	Y
	AX
	AZ
	IMAGE
	PLIST
	T3D

	SHADE_VOLUME
	Volume
	Value
	Vertex
	Poly
	LOW
	SHADES
	VERBOSE
	XRANGE
	YRANGE
	ZRANGE

	SHIFT
	Array
	Si

	SHMDEBUG
	Enable

	SHMMAP
	Why Use Mapped Memory?
	SegmentName
	Di
	BYTE
	COMPLEX
	DCOMPLEX
	DESTROY_SEGMENT
	DIMENSION
	DOUBLE
	FILENAME
	FLOAT
	GET_NAME
	GET_OS_HANDLE
	INTEGER
	L64
	LONG
	OFFSET
	OS_HANDLE
	PRIVATE
	SIZE
	SYSV
	TEMPLATE
	TYPE
	UINT
	ULONG
	UL64
	UNIX
	Example 1
	Example 2
	Example 3
	Example 4

	SHMUNMAP
	SegmentName

	SHMVAR
	SegmentName
	Di
	BYTE
	COMPLEX
	DCOMPLEX
	DIMENSION
	DOUBLE
	FLOAT
	INTEGER
	L64
	LONG
	SIZE
	TEMPLATE
	TYPE
	UINT
	ULONG
	UL64

	SHOW3
	Image
	X
	Y
	INTERP
	E_CONTOUR
	E_SURFACE
	SSCALE

	SHOWFONT
	Font
	Name
	ENCAPSULATED
	TT_FONT

	SIMPLEX
	Zequation
	Constraints
	M1
	M2
	M3
	Tableau
	Izrov
	Iposv
	DOUBLE
	EPS
	STATUS

	SIN
	X
	Thread Pool Keywords

	SINDGEN
	Di

	SINH
	X
	Thread Pool Keywords

	SIZE
	IDL Type Codes and Names
	Expression
	DIMENSIONS
	FILE_LUN
	L64
	N_DIMENSIONS
	N_ELEMENTS
	STRUCTURE
	TNAME
	TYPE

	SKEWNESS
	X
	DOUBLE
	NAN

	SKIP_LUN
	FromUnit
	Num
	EOF
	LINES
	TRANSFER_COUNT

	SLICER3
	hData3D
	DATA_NAMES
	DETACH
	GROUP
	MODAL
	File Menu
	Tools Menu
	Main Draw Window
	Data Pulldown Menu
	Mode Pulldown Menu
	Draw Radio Button
	Expose Radio Button
	Orthogonal Radio Button
	X/Y/Z Radio Buttons
	Oblique Radio Button
	Normal Radio Button
	Center Radio Button
	Display Button
	Block Mode
	Surface Mode
	Projection Mode
	Threshold Mode
	Profile Mode
	Probe Mode
	View Mode

	SLIDE_IMAGE
	Image
	BLOCK
	CONGRID
	FULL_WINDOW
	GROUP
	ORDER
	REGISTER
	RETAIN
	SLIDE_WINDOW
	SHOW_FULL
	TITLE
	TOP_ID
	XSIZE
	XVISIBLE
	YSIZE
	YVISIBLE

	SMOOTH
	Array
	Width
	EDGE_TRUNCATE
	MISSING
	NAN

	SOBEL
	Image

	SOCKET
	Unit
	Host
	Port
	CONNECT_TIMEOUT
	ERROR
	GET_LUN
	RAWIO
	READ_TIMEOUT
	STDIO (UNIX Only)
	SWAP_ENDIAN
	SWAP_IF_BIG_ENDIAN
	SWAP_IF_LITTLE_ENDIAN
	WIDTH
	WRITE_TIMEOUT

	SORT
	Array
	L64
	Example 1
	Example 2

	SPAWN
	Command
	Result
	ErrResult
	COUNT
	EXIT_STATUS
	HIDE (WINDOWS Only)
	LOG_OUTPUT (WINDOWS Only)
	NOSHELL
	NOTTYRESET (UNIX Only)
	NOWAIT (WINDOWS Only)
	NULL_STDIN
	PID
	SH (UNIX Only)
	STDERR
	UNIT (UNIX Only)
	Obsolete Keywords
	Example 1: Interactive use of SPAWN
	Example 2: Noninteractive use of SPAWN

	SPH_4PNT
	X, Y, Z
	Xc, Yc, Zc
	R
	DOUBLE

	SPH_SCAT
	Lon
	Lat
	F
	BOUNDS
	BOUT
	GOUT
	GS
	NLON
	NLAT

	SPHER_HARM
	Theta
	Phi
	L
	M
	DOUBLE

	SPL_INIT
	X
	Y
	DOUBLE
	YP0
	YPN_1
	Example 1
	Example 2

	SPL_INTERP
	X
	Y
	Y2
	X2
	DOUBLE

	SPLINE
	X
	Y
	T
	Sigma

	SPLINE_P
	X
	Y
	Xr
	Yr
	INTERVAL
	TAN0
	TAN1

	SPRSAB
	A, B
	DOUBLE
	THRESHOLD

	SPRSAX
	A
	X
	DOUBLE

	SPRSIN
	A
	Columns
	Rows
	Values
	N
	COLUMN
	DOUBLE
	THRESHOLD
	Example1
	Example2

	SPRSTP
	A

	SQRT
	X
	Thread Pool Keywords

	STANDARDIZE
	A
	DOUBLE

	STDDEV
	X
	DOUBLE
	NAN

	STOP
	Expri

	STRARR
	Di

	STRCMP
	String1, String2
	N
	FOLD_CASE

	STRCOMPRESS
	String
	REMOVE_ALL

	STREAMLINE
	Verts
	Conn
	Normals
	Outverts
	Outconn
	ANISOTROPY
	SIZE
	PROFILE

	STREGEX
	StringExpression
	RegularExpression
	BOOLEAN
	EXTRACT
	FOLD_CASE
	LENGTH
	SUBEXPR
	Example 1
	Example 2

	STRETCH
	Low
	High
	Gamma
	CHOP

	STRING
	Expressionn
	AM_PM
	DAYS_OF_WEEK
	FORMAT
	MONTHS
	PRINT

	STRJOIN
	String
	Delimiter
	SINGLE

	STRLEN
	Expression

	STRLOWCASE
	String

	STRMATCH
	String
	SearchString
	FOLD_CASE
	Example 1
	Example 2
	Example 3
	Example 4

	STRMESSAGE
	Err
	BLOCK
	CODE
	NAME

	STRMID
	Expression
	First_Character
	Length
	REVERSE_OFFSET

	STRPOS
	Expression
	Search_String
	Pos
	REVERSE_OFFSET
	REVERSE_SEARCH
	Example 1
	Example 2

	STRPUT
	Destination
	Source
	Position

	STRSPLIT
	String
	Pattern
	COUNT
	ESCAPE
	EXTRACT
	FOLD_CASE
	LENGTH
	PRESERVE_NULL
	REGEX
	Example 1
	Example 2
	Example 3
	Example 4

	STRTRIM
	String
	Flag

	STRUCT_ASSIGN
	Source
	Destination
	NOZERO
	VERBOSE

	STRUCT_HIDE
	Arg1, ..., Argn

	STRUPCASE
	String

	SURFACE
	Restrictions
	Z
	X
	Y
	AX
	AZ
	BOTTOM
	HORIZONTAL
	LEGO
	LOWER_ONLY
	MAX_VALUE
	MIN_VALUE
	SAVE
	SHADES
	SKIRT
	UPPER_ONLY
	XLOG
	YLOG
	ZAXIS
	ZLOG
	Graphics Keywords Accepted

	SURFR
	AX
	AZ

	SVDC
	A
	W
	U
	V
	COLUMN
	DOUBLE
	ITMAX

	SVDFIT
	X
	Y
	M
	A
	CHISQ
	COVAR
	DOUBLE
	FUNCTION_NAME
	LEGENDRE
	MEASURE_ERRORS
	SIGMA
	SING_VALUES
	SINGULAR
	STATUS
	TOL
	VARIANCE
	WEIGHTS
	YFIT

	SVSOL
	U
	W
	V
	B
	COLUMN
	DOUBLE

	SWAP_ENDIAN
	Variable
	SWAP_IF_BIG_ENDIAN
	SWAP_IF_LITTLE_ENDIAN

	SWAP_ENDIAN_INPLACE
	Variable
	SWAP_IF_BIG_ENDIAN
	SWAP_IF_LITTLE_ENDIAN

	SWITCH
	SYSTIME
	SecondsFlag
	ElapsedSeconds
	JULIAN
	SECONDS
	UTC

	T Routines
	T_CVF
	P
	Df

	T_PDF
	V
	Df

	T3D
	Array
	MATRIX
	OBLIQUE
	PERSPECTIVE
	RESET
	ROTATE
	SCALE
	TRANSLATE
	XYEXCH
	XZEXCH
	YZEXCH

	TAG_NAMES
	Expression
	STRUCTURE_NAME

	TAN
	X
	Thread Pool Keywords

	TANH
	X
	Thread Pool Keywords

	TEK_COLOR
	Start_Index
	Colors

	TEMPORARY
	Variable

	TETRA_CLIP
	Plane
	Vertsin
	Connin
	Vertsout
	Connout
	AUXDATA_IN
	AUXDATA_OUT
	CUT_VERTS

	TETRA_SURFACE
	Verts
	Connin

	TETRA_VOLUME
	Verts
	Conn
	AUXDATA
	MOMENT

	THIN
	Image
	NEIGHBOR_COUNT
	PRUNE

	THREED
	A
	Sp
	TITLE
	XTITLE
	YTITLE

	TIME_TEST2
	Filename

	TIMEGEN
	Di
	DAYS
	FINAL
	HOURS
	MINUTES
	MONTHS
	SECONDS
	START
	STEP_SIZE
	UNITS
	YEAR

	TM_TEST
	X
	Y
	PAIRED
	UNEQUAL

	TOTAL
	Array
	Dimension
	CUMULATIVE
	DOUBLE
	NAN
	Thread Pool Keywords
	Example 1
	Example 2

	TRACE
	A
	DOUBLE

	TrackBall Object
	TRANSPOSE
	Array
	P
	Example 1
	Example 2

	TRI_SURF
	X, Y, Z
	EXTRAPOLATE
	LINEAR
	MISSING
	REGULAR
	XGRID
	XVALUES
	YGRID
	YVALUES
	GS
	BOUNDS
	NX
	NY
	Example 1
	Example 2

	TRIANGULATE
	X
	Y
	Triangles
	B
	CONNECTIVITY
	DEGREES
	FVALUE
	REPEATS
	SPHERE

	TRIGRID
	X, Y, Z
	F
	Triangles
	GS
	Limits
	DEGREES
	EXTRAPOLATE
	INPUT
	MAX_VALUE
	MIN_VALUE
	MISSING
	NX
	NY
	QUINTIC
	SPHERE
	XGRID
	XOUT
	YGRID
	YOUT
	Example 1
	Example 2
	Example 3
	Example 4

	TRIQL
	D
	E
	A
	DOUBLE

	TRIRED
	A
	D
	E
	DOUBLE

	TRISOL
	A
	B
	C
	R
	DOUBLE

	TRUNCATE_LUN
	Unitn
	Example 1
	Example 2

	TS_COEF
	X
	P
	DOUBLE
	MSE

	TS_DIFF
	X
	K
	DOUBLE

	TS_FCAST
	X
	P
	Nvalues
	BACKCAST
	DOUBLE

	TS_SMOOTH
	X
	Nvalues
	BACKWARD
	DOUBLE
	FORWARD
	ORDER

	TV
	Image
	X, Y
	Position
	Channel
	CENTIMETERS
	INCHES
	ORDER
	TRUE
	WORDS
	XSIZE
	YSIZE
	Graphics Keywords Accepted

	TVCRS
	ON_OFF
	X
	Y
	CENTIMETERS
	INCHES
	HIDE_CURSOR
	Graphics Keywords Accepted

	TVLCT
	R, G, B Color System
	H, L, S Color System
	H, S, V Color System
	Start
	GET
	HLS
	HSV

	TVRD
	Important Note about TVRD and Backing Store
	X0
	Y0
	Nx
	Ny
	Channel
	CHANNEL
	ORDER
	TRUE
	WORDS

	TVSCL
	Image
	X, Y
	Position
	Channel
	NAN
	TOP
	Graphics Keywords Accepted
	Thread Pool Keywords

	U Routines
	UINDGEN
	Di
	Thread Pool Keywords

	UINT
	Expression
	Offset
	Di
	Thread Pool Keywords

	UINTARR
	Di
	NOZERO

	UL64INDGEN
	Di
	Thread Pool Keywords

	ULINDGEN
	Di
	Thread Pool Keywords

	ULON64ARR
	Di
	NOZERO

	ULONARR
	Di
	NOZERO

	ULONG
	Expression
	Offset
	Di
	Thread Pool Keywords

	ULONG64
	Expression
	Offset
	Di
	Thread Pool Keywords

	UNIQ
	Array
	Index

	USERSYM
	X, Y
	COLOR
	FILL
	THICK

	V Routines
	VALUE_LOCATE
	Vector
	Value
	L64

	VARIANCE
	X
	DOUBLE
	NAN

	VECTOR_FIELD
	Field
	Outverts
	Outconn
	ANISOTROPY
	SCALE
	VERTICES

	VEL
	U
	V
	LENGTH
	NSTEPS
	NVECS
	TITLE
	XMAX

	VELOVECT
	U
	V
	X
	Y
	COLOR
	DOTS
	LENGTH
	MISSING
	OVERPLOT
	PLOT Keywords

	VERT_T3D
	Vertex_List
	DOUBLE
	MATRIX
	NO_COPY
	NO_DIVIDE
	SAVE_DIVIDE

	VOIGT
	A
	U
	Thread Pool Keywords

	VORONOI
	X
	Y
	I0
	C
	Xp, Yp
	Rect

	VOXEL_PROJ
	V
	RGBO
	BACKGROUND
	CUTTING_PLANE
	INTERPOLATE
	MAXIMUM_INTENSITY
	STEP
	XSIZE
	YSIZE
	ZBUFFER
	ZPIXELS
	Example 1
	Example 2
	Example 3

	W Routines
	WAIT
	Seconds

	WARP_TRI
	Xo, Yo
	Xi, Yi
	Image
	OUTPUT_SIZE
	QUINTIC
	EXTRAPOLATE
	TPS

	WATERSHED
	Image
	CONNECTIVITY

	Wavelet Toolkit
	WDELETE
	Window_Index

	WF_DRAW
	X, Y
	COLD
	COLOR
	CONVERGENCE
	DATA
	DEVICE
	FRONT_TYPE
	INTERVAL
	NORMAL
	OCCLUDED
	PSYM
	STATIONARY
	SYM_HT
	SYM_LEN
	THICK
	WARM

	WHERE
	Array_Expression
	Count
	COMPLEMENT
	L64
	NCOMPLEMENT
	Thread Pool Keywords
	Example 1
	Example 2

	WHILE...DO
	WIDGET_ACTIVEX
	Parent
	COM_ID
	ALIGN_BOTTOM
	ALIGN_CENTER
	ALIGN_LEFT
	ALIGN_RIGHT
	ALIGN_TOP
	EVENT_FUNC
	EVENT_PRO
	FUNC_GET_VALUE
	ID_TYPE
	KILL_NOTIFY
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	UNAME
	UNITS
	UVALUE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Keywords to WIDGET_CONTROL

	WIDGET_BASE
	Exclusive And Non-Exclusive Bases
	Positioning Child Widgets Within a Base
	Positioning Top-Level Bases
	Iconizing, Layering, and Destroying Groups of Top-Level Bases
	Parent
	ALIGN_BOTTOM
	ALIGN_CENTER
	ALIGN_LEFT
	ALIGN_RIGHT
	ALIGN_TOP
	BASE_ALIGN_BOTTOM
	BASE_ALIGN_CENTER
	BASE_ALIGN_LEFT
	BASE_ALIGN_RIGHT
	BASE_ALIGN_TOP
	COLUMN
	CONTEXT_EVENTS
	CONTEXT_MENU
	DISPLAY_NAME
	EVENT_FUNC
	EVENT_PRO
	EXCLUSIVE
	FLOATING
	FRAME
	FUNC_GET_VALUE
	GRID_LAYOUT
	GROUP_LEADER
	KBRD_FOCUS_EVENTS
	KILL_NOTIFY
	MAP
	MBAR
	MODAL
	NO_COPY
	NONEXCLUSIVE
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	RNAME_MBAR
	ROW
	SCR_XSIZE
	SCR_YSIZE
	SCROLL
	SENSITIVE
	SPACE
	TITLE
	TLB_FRAME_ATTR
	TLB_ICONIFY_EVENTS
	TLB_KILL_REQUEST_EVENTS
	TLB_MOVE_EVENTS
	TLB_SIZE_EVENTS
	TOOLBAR
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	XOFFSET
	XPAD
	XSIZE
	X_SCROLL_SIZE
	YOFFSET
	YPAD
	YSIZE
	Y_SCROLL_SIZE
	Obsolete Keywords
	Resize Events
	Move Events
	Iconify Events
	Keyboard Focus Events
	Kill Request Events
	Context Menu Events

	WIDGET_BUTTON
	Exclusive And Non-Exclusive Bases
	Bitmap Button Labels
	Parent
	ALIGN_CENTER
	ALIGN_LEFT
	ALIGN_RIGHT
	BITMAP
	CHECKED_MENU
	DYNAMIC_RESIZE
	EVENT_FUNC
	EVENT_PRO
	FONT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	HELP
	KILL_NOTIFY
	MENU
	NO_COPY
	NO_RELEASE
	NOTIFY_REALIZE
	PRO_SET_VALUE
	PUSHBUTTON_EVENTS
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	SEPARATOR
	TOOLTIP
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	X_BITMAP_EXTRA
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE

	WIDGET_COMBOBOX
	Parent
	DYNAMIC_RESIZE
	EDITABLE
	EVENT_FUNC
	EVENT_PRO
	FONT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE

	WIDGET_CONTROL
	Widget_ID
	ALIGNMENT
	ALL_TABLE_EVENTS
	ALL_TEXT_EVENTS
	AM_PM
	APPEND
	BAD_ID
	BASE_SET_TITLE
	CANCEL_BUTTON
	CLEAR_EVENTS
	COLUMN_LABELS
	COLUMN_WIDTHS
	COMBOBOX_ADDITEM
	COMBOBOX_DELETEITEM
	COMBOBOX_INDEX
	CONTEXT_EVENTS
	DAYS_OF_WEEK
	DEFAULT_BUTTON
	DEFAULT_FONT
	DELAY_DESTROY
	DELETE_COLUMNS
	DELETE_ROWS
	DESTROY
	DRAW_BUTTON_EVENTS
	DRAW_EXPOSE_EVENTS
	DRAW_KEYBOARD_EVENTS
	DRAW_MOTION_EVENTS
	DRAW_VIEWPORT_EVENTS
	DRAW_XSIZE
	DRAW_YSIZE
	DYNAMIC_RESIZE
	EDITABLE
	EDIT_CELL
	EVENT_FUNC
	EVENT_PRO
	FORMAT
	FUNC_GET_VALUE
	GET_DRAW_VIEW
	GET_UVALUE
	GET_VALUE
	GROUP_LEADER
	HOURGLASS
	ICONIFY
	INPUT_FOCUS
	INSERT_COLUMNS
	INSERT_ROWS
	KBRD_FOCUS_EVENTS
	KILL_NOTIFY
	MANAGED
	MAP
	MONTHS
	NO_COPY
	NO_NEWLINE
	NOTIFY_REALIZE
	PRO_SET_VALUE
	PUSHBUTTON_EVENTS
	REALIZE
	REFRESH _PROPERTY
	RESET
	ROW_LABELS
	ROW_HEIGHTS
	SCR_XSIZE
	SCR_YSIZE
	SEND_EVENT
	SENSITIVE
	SET_BUTTON
	SET_COMBOBOX_SELECT
	SET_DRAW_VIEW
	SET_DROPLIST_SELECT
	SET_LIST_SELECT
	SET_LIST_TOP
	SET_SLIDER_MAX
	SET_SLIDER_MIN
	SET_TAB_CURRENT
	SET_TAB_MULTILINE
	SET_TABLE_SELECT
	SET_TABLE_VIEW
	SET_TEXT_SELECT
	SET_TEXT_TOP_LINE
	SET_TREE_BITMAP
	SET_TREE_EXPANDED
	SET_TREE_SELECT
	SET_TREE_VISIBLE
	SET_UNAME
	SET_UVALUE
	SET_VALUE
	SHOW
	TABLE_BLANK
	TABLE_DISJOINT_SELECTION
	TABLE_XSIZE
	TABLE_YSIZE
	TIMER
	TLB_GET_OFFSET
	TLB_GET_SIZE
	TLB_ICONIFY_EVENTS
	TLB_KILL_REQUEST_EVENTS
	TLB_MOVE_EVENTS
	TLB_SET_TITLE
	TLB_SET_XOFFSET
	TLB_SET_YOFFSET
	TLB_SIZE_EVENTS
	TOOLTIP
	TRACKING_EVENTS
	UNITS
	UPDATE
	USE_TABLE_SELECT
	USE_TEXT_SELECT
	X_BITMAP_EXTRA
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE

	WIDGET_DISPLAYCONTEXTMENU
	Parent
	X
	Y
	ContextBase_ID

	WIDGET_DRAW
	Parent
	APP_SCROLL
	BUTTON_EVENTS
	COLOR_MODEL
	COLORS
	EVENT_FUNC
	EVENT_PRO
	EXPOSE_EVENTS
	FRAME
	FUNC_GET_VALUE
	GRAPHICS_LEVEL
	GROUP_LEADER
	KEYBOARD_EVENTS
	KILL_NOTIFY
	MOTION_EVENTS
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RENDERER
	RESOURCE_NAME
	RETAIN
	SCR_XSIZE
	SCR_YSIZE
	SCROLL
	SENSITIVE
	TOOLTIP
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	VIEWPORT_EVENTS
	XOFFSET
	XSIZE
	X_SCROLL_SIZE
	YOFFSET
	YSIZE
	Y_SCROLL_SIZE
	Note on using CURSOR

	WIDGET_DROPLIST
	Parent
	DYNAMIC_RESIZE
	EVENT_FUNC
	EVENT_PRO
	FONT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	TITLE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE

	WIDGET_EVENT
	Event Processing
	Widget_ID
	BAD_ID
	NOWAIT
	SAVE_HOURGLASS
	YIELD_TO_TTY (UNIX Only)

	WIDGET_INFO
	Widget_ID
	ACTIVE
	BUTTON_SET
	CHILD
	COLUMN_WIDTHS
	COMBOBOX_GETTEXT
	COMBOBOX_NUMBER
	COMPONENT
	CONTEXT_EVENTS
	DRAW_BUTTON_EVENTS
	DRAW_EXPOSE_EVENTS
	DRAW_KEYBOARD_EVENTS
	DRAW_MOTION_EVENTS
	DRAW_VIEWPORT_EVENTS
	DROPLIST_NUMBER
	DROPLIST_SELECT
	DYNAMIC_RESIZE
	EVENT_FUNC
	EVENT_PRO
	FIND_BY_UNAME
	FONTNAME
	GEOMETRY
	KBRD_FOCUS_EVENTS
	LIST_MULTIPLE
	LIST_NUMBER
	LIST_NUM_VISIBLE
	LIST_SELECT
	LIST_TOP
	MANAGED
	MAP
	MODAL
	NAME
	PARENT
	PROPERTY_VALID
	PROPERTY_VALUE
	PUSHBUTTON_EVENTS
	REALIZED
	ROW_HEIGHTS
	SENSITIVE
	SIBLING
	SLIDER_MIN_MAX
	SYSTEM_COLORS
	TAB_CURRENT
	TAB_MULTILINE
	TAB_NUMBER
	TABLE_ALL_EVENTS
	TABLE_DISJOINT_SELECTION
	TABLE_EDITABLE
	TABLE_EDIT_CELL
	TABLE_SELECT
	TABLE_VIEW
	TEXT_ALL_EVENTS
	TEXT_EDITABLE
	TEXT_NUMBER
	TEXT_OFFSET_TO_XY
	TEXT_SELECT
	TEXT_TOP_LINE
	TEXT_XY_TO_OFFSET
	TLB_ICONIFY_EVENTS
	TLB_KILL_REQUEST_EVENTS
	TLB_MOVE_EVENTS
	TLB_SIZE_EVENTS
	TOOLTIP
	TRACKING_EVENTS
	TREE_EXPANDED
	TREE_ROOT
	TREE_SELECT
	TYPE
	UNAME
	UNITS
	UPDATE
	USE_TABLE_SELECT
	VALID_ID
	VERSION
	VISIBLE

	WIDGET_LABEL
	Parent
	ALIGN_CENTER
	ALIGN_LEFT
	ALIGN_RIGHT
	DYNAMIC_RESIZE
	FONT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	SUNKEN_FRAME
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE

	WIDGET_LIST
	Parent
	CONTEXT_EVENTS
	EVENT_FUNC
	EVENT_PRO
	FONT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	MULTIPLE
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Context Menu Events

	WIDGET_PROPERTYSHEET
	Parent
	ALIGN_BOTTOM
	ALIGN_CENTER
	ALIGN_LEFT
	ALIGN_RIGHT
	ALIGN_TOP
	CONTEXT_EVENTS
	EVENT_FUNC
	EVENT_PRO
	FONT
	FUNC_GET_VALUE
	KILL_NOTIFY
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Change Event (TYPE=0)
	Select Event (TYPE=1)

	WIDGET_SLIDER
	Parent
	DRAG
	EVENT_FUNC
	EVENT_PRO
	FONT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	MAXIMUM
	MINIMUM
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SCROLL
	SENSITIVE
	SUPPRESS_VALUE
	TRACKING_EVENTS
	TITLE
	UNAME
	UNITS
	UVALUE
	VALUE
	VERTICAL
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Known Implementation Problems

	WIDGET_TAB
	Parent
	ALIGN_BOTTOM
	ALIGN_CENTER
	ALIGN_LEFT
	ALIGN_RIGHT
	ALIGN_TOP
	EVENT_FUNC
	EVENT_PRO
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	LOCATION
	MULTILINE
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE

	WIDGET_TABLE
	Note on Table Sizing
	Parent
	ALIGNMENT
	ALL_EVENTS
	AM_PM
	COLUMN_LABELS
	COLUMN_MAJOR
	COLUMN_WIDTHS
	DAYS_OF_WEEK
	DISJOINT_SELECTION
	EDITABLE
	EVENT_FUNC
	EVENT_PRO
	FONT
	FORMAT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KBRD_FOCUS_EVENTS
	KILL_NOTIFY
	MONTHS
	NO_COPY
	NO_HEADERS
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESIZEABLE_COLUMNS
	RESIZEABLE_ROWS
	RESOURCE_NAME
	ROW_HEIGHTS
	ROW_LABELS
	ROW_MAJOR
	SCR_XSIZE
	SCR_YSIZE
	SCROLL
	SENSITIVE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	XOFFSET
	XSIZE
	X_SCROLL_SIZE
	YOFFSET
	YSIZE
	Y_SCROLL_SIZE
	Insert Single Character (TYPE = 0)
	Insert Multiple Characters (TYPE = 1)
	Delete Text (TYPE = 2)
	Text Selection (TYPE = 3)
	Cell Selection (TYPE = 4)
	Row Height Changed (TYPE = 6)
	Column Width Changed (TYPE = 7)
	Invalid Data (TYPE = 8)
	Cell Deselection (Disjoint Mode) (TYPE = 9)
	Keyboard Focus Events

	WIDGET_TEXT
	Parent
	ALL_EVENTS
	CONTEXT_EVENTS
	EDITABLE
	EVENT_FUNC
	EVENT_PRO
	FONT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KBRD_FOCUS_EVENTS
	KILL_NOTIFY
	NO_COPY
	NO_NEWLINE
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SCROLL
	SENSITIVE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	WRAP
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Insert Single Character (TYPE = 0)
	Insert Multiple Characters (TYPE = 1)
	Delete Text (TYPE = 2)
	Selection (TYPE = 3)
	Keyboard Focus Events
	Context Menu Events

	WIDGET_TREE
	Parent
	ALIGN_BOTTOM
	ALIGN_CENTER
	ALIGN_LEFT
	ALIGN_RIGHT
	ALIGN_TOP
	BITMAP
	CONTEXT_EVENTS
	EVENT_FUNC
	EVENT_PRO
	EXPANDED
	FOLDER
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	MULTIPLE
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	TRACKING_EVENTS
	TOP
	UNAME
	UNITS
	UVALUE
	VALUE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Select (TYPE = 0)
	Expand (TYPE = 1)
	Context Menu Events

	WINDOW
	Window_Index
	COLORS
	FREE
	PIXMAP
	RETAIN
	TITLE
	XPOS
	YPOS
	XSIZE
	YSIZE

	WRITE_BMP
	Filename
	Image
	R, G, B
	FOUR_BIT
	IHDR
	HEADER_DEFINE
	RGB

	WRITE_IMAGE
	Filename
	Format
	Data
	Red
	Green
	Blue
	APPEND

	WRITE_JPEG
	Filename
	Image
	ORDER
	PROGRESSIVE
	QUALITY
	TRUE
	UNIT

	WRITE_NRIF
	File
	Image
	R, G, B

	WRITE_PICT
	Filename
	Image
	R, G, B

	WRITE_PNG
	Filename
	Image
	R, G, B
	ORDER
	VERBOSE
	TRANSPARENT

	WRITE_PPM
	Filename
	Image
	ASCII

	WRITE_SPR
	AS
	Filename

	WRITE_SRF
	Filename
	Image
	R, G, B
	ORDER
	WRITE_32

	WRITE_SYLK
	File
	Data
	STARTCOL
	STARTROW

	WRITE_TIFF
	Filename
	Image
	Order
	APPEND
	BITS_PER_SAMPLE
	COMPRESSION
	FLOAT
	GEOTIFF
	LONG
	ORIENTATION
	PLANARCONFIG
	RED, GREEN, BLUE
	SHORT
	UNITS
	VERBOSE
	XRESOL
	YRESOL
	Example 1
	Example 2
	Example 3

	WRITE_WAV
	Filename
	Data
	Rate

	WRITE_WAVE
	File
	Array
	BIN
	DATANAME
	MESHNAME
	NOMESHDEF
	VECTOR

	WRITEU
	Unit
	Expri
	TRANSFER_COUNT
	Obsolete Keywords

	WSET
	Window_Index

	WSHOW
	Window_Index
	Show
	ICONIC

	WTN
	A
	Coef
	COLUMN
	DOUBLE
	INVERSE
	OVERWRITE

	WV_* Routines

	X Routines
	XBM_EDIT
	BLOCK
	FILENAME
	GROUP
	XSIZE
	YSIZE

	XDISPLAYFILE
	Filename
	BLOCK
	DONE_BUTTON
	EDITABLE
	FONT
	GROUP
	HEIGHT
	MODAL
	TEXT
	TITLE
	WIDTH
	WTEXT

	XDXF
	Using XDXF
	The XDXF Toolbar
	The XDXF Information Dialog
	Filename
	BLOCK
	GROUP
	SCALE
	TEST

	XFONT
	GROUP
	PRESERVE_FONT_INFO

	XINTERANIMATE
	Using XINTERANIMATE
	Rate
	SET
	BLOCK
	CYCLE
	GROUP
	MODAL
	MPEG_BITRATE
	MPEG_FILENAME
	MPEG_IFRAME_GAP
	MPEG_MOTION_VEC_LENGTH
	MPEG_OPEN
	MPEG_QUALITY
	SHOWLOAD
	TRACK
	TITLE
	FRAME
	IMAGE
	ORDER
	WINDOW
	CLOSE
	KEEP_PIXMAPS
	MPEG_CLOSE
	XOFFSET
	YOFFSET

	XLOADCT
	BLOCK
	BOTTOM
	FILE
	GROUP
	MODAL
	NCOLORS
	SILENT
	UPDATECALLBACK
	UPDATECBDATA
	USE_CURRENT

	XMANAGER
	Name
	ID
	BACKGROUND
	CATCH
	CLEANUP
	EVENT_HANDLER
	GROUP_LEADER
	JUST_REG
	NO_BLOCK
	Active Command Line
	JUST_REG vs. NO_BLOCK
	Blocking vs. Non-blocking Applications

	XMNG_TMPL
	BLOCK
	GROUP

	XMTOOL
	BLOCK
	GROUP

	XOBJVIEW
	Using XOBJVIEW
	The XOBJVIEW Toolbar
	Obj
	BACKGROUND
	BLOCK
	DOUBLE_VIEW
	GROUP
	JUST_REG
	MODAL
	REFRESH
	RENDERER
	SCALE
	STATIONARY
	TLB
	TEST
	TITLE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Example 1
	Example 2
	Example 3

	XOBJVIEW_ROTATE
	Axis
	Angle
	PREMULTIPLY

	XOBJVIEW_WRITE_IMAGE
	Filename
	Format
	DIMENSIONS

	XPALETTE
	Using the XPALETTE Interface
	A Note about the Colors Used in the Interface
	BLOCK
	GROUP
	UPDATECALLBACK
	UPDATECBDATA

	XPCOLOR
	GROUP

	XPLOT3D
	Using XPLOT3D
	X
	Y
	Z
	BLOCK
	COLOR
	DOUBLE_VIEW
	GROUP
	LINESTYLE
	MODAL
	NAME
	OVERPLOT
	SYMBOL
	TEST
	THICK
	TITLE
	XRANGE
	YRANGE
	ZRANGE
	XTITLE
	YTITLE
	ZTITLE

	XREGISTERED
	Name
	NOSHOW

	XROI
	ImageData
	R, G, B
	BLOCK
	FLOATING
	GROUP
	MODAL
	REGIONS_IN
	REGIONS_OUT
	REJECTED
	RENDERER
	ROI_COLOR
	ROI_GEOMETRY
	ROI_SELECT_COLOR
	STATISTICS
	TITLE
	TOOLS
	X_SCROLL_SIZE
	Y_SCROLL_SIZE
	The XROI Toolbar
	Importing an Image into XROI
	Changing the Image Color Table
	Changing the ROI Outline Colors
	Viewing ROI Information
	Viewing a Histogram Plot for an ROI
	Growing an ROI
	Using the Region Grow Properties Dialog
	Deleting an ROI
	Example 1
	Example 2
	Example 3

	XSQ_TEST
	Obfreq
	Exfreq
	EXCELL
	OBCELL
	RESIDUAL

	XSURFACE
	Data
	BLOCK
	GROUP

	XVAREDIT
	Var
	NAME
	GROUP
	X_SCROLL_SIZE
	Y_SCROLL_SIZE

	XVOLUME
	Using XVOLUME
	The XVOLUME Toolbar
	The XVOLUME Interface
	Vol
	BLOCK
	GROUP
	INTERPOLATE
	MODAL
	RENDERER
	REPLACE
	SCALE
	TEST
	XSIZE
	YSIZE

	XVOLUME_ROTATE
	Axis
	Angle
	PREMULTIPLY

	XVOLUME_WRITE_IMAGE
	Filename
	Format
	DIMENSIONS

	XYOUTS
	X, Y
	String
	ALIGNMENT
	CHARSIZE
	CHARTHICK
	TEXT_AXES
	WIDTH
	Graphics Keywords Accepted

	Z Routines
	ZOOM
	Using ZOOM
	Using ZOOM with Draw Widgets
	CONTINUOUS
	FACT
	INTERP
	KEEP
	NEW_WINDOW
	XSIZE
	YSIZE
	ZOOM_WINDOW

	ZOOM_24
	Using ZOOM_24
	Using ZOOM_24 with Draw Widgets
	FACT
	RIGHT
	XSIZE
	YSIZE

	Functional List of Routines

	Part II: Object Class and Method Reference
	IDL Object Class Overview
	Using the Class Reference
	Syntax
	Procedure Methods
	Function Methods

	Arguments
	Named Variables
	Keywords
	Setting Keywords

	Creating Objects from the Class Library

	Object Properties
	Properties and the Property Sheet Interface
	Setting Properties at Initialization
	Setting Properties of Existing Objects
	Retrieving Property Settings
	About Object Property Descriptions

	Registered Properties
	Registering a Property
	Registering All Available Properties
	Registered Property Data Types

	Undocumented Object Classes

	Analysis Object Classes
	IDLanROI
	IDLanROI Properties
	ALL
	BLOCK_SIZE
	DATA
	DOUBLE
	INTERIOR
	N_VERTS
	ROI_XRANGE
	ROI_YRANGE
	ROI_ZRANGE
	TYPE

	IDLanROI::AppendData
	X
	Y
	Z
	XRANGE
	YRANGE
	ZRANGE

	IDLanROI::Cleanup
	IDLanROI::ComputeGeometry
	Result
	AREA
	CENTROID
	PERIMETER
	SPATIAL_OFFSET
	SPATIAL_SCALE

	IDLanROI::ComputeMask
	Result
	DIMENSIONS
	INITIALIZE
	LOCATION
	MASK_IN
	MASK_RULE
	PIXEL_CENTER
	PLANE_NORMAL
	PLANE_XAXIS
	RUN_LENGTH

	IDLanROI::ContainsPoints
	X
	Y
	Z

	IDLanROI::GetProperty
	IDLanROI::Init
	X
	Y
	Z

	IDLanROI::RemoveData
	COUNT
	START
	XRANGE
	YRANGE
	ZRANGE

	IDLanROI::ReplaceData
	X
	Y
	Z
	FINISH
	START
	XRANGE
	YRANGE
	ZRANGE

	IDLanROI::Rotate
	Axis
	Angle
	CENTER

	IDLanROI::Scale
	Sx
	Sy
	Sz

	IDLanROI::SetProperty
	IDLanROI::Translate
	Tx
	Ty
	Tz

	IDLanROIGroup
	IDLanROIGroup Properties
	ALL
	ROIGROUP_XRANGE
	ROIGROUP_YRANGE
	ROIGROUP_ZRANGE

	IDLanROIGroup::Add
	ROI

	IDLanROIGroup::Cleanup
	IDLanROIGroup::ComputeMask
	Result
	DIMENSIONS
	INITIALIZE
	LOCATION
	MASK_IN
	MASK_RULE
	PLANE_NORMAL
	PLANE_XAXIS
	RUN_LENGTH

	IDLanROIGroup::ComputeMesh
	Result
	Vertices
	Conn
	CAPPED
	SURFACE_AREA

	IDLanROIGroup::ContainsPoints
	X
	Y
	Z

	IDLanROIGroup::GetProperty
	IDLanROIGroup::Init
	IDLanROIGroup::Rotate
	Axis
	Angle
	CENTER

	IDLanROIGroup::Scale
	Sx
	Sy
	Sz

	IDLanROIGroup::Translate
	Tx
	Ty
	Tz

	File Format Object Classes
	IDLffDICOM
	IDL DICOM v3.0 Conformance Summary
	Introduction
	Reading of DICOM Part 10 files
	Encapsulated Transfer Syntaxes Supported
	Encapsulated Transfer Syntaxes NOT Supported
	Encapsulated SOP Classes Supported
	Handling of odd length data elements
	Handling of undefined VRs
	Handling of retired and private data elements

	IDLffDICOM Properties
	VERBOSE

	IDLffDICOM::Cleanup
	IDLffDICOM::DumpElements
	Filename

	IDLffDICOM::GetChildren
	Reference

	IDLffDICOM::GetDescription
	Group
	Element
	REFERENCE

	IDLffDICOM::GetElement
	Group
	Element
	REFERENCE

	IDLffDICOM::GetGroup
	Group
	Element
	REFERENCE

	IDLffDICOM::GetLength
	Group
	Element
	REFERENCE

	IDLffDICOM::GetParent
	ReferenceList

	IDLffDICOM::GetPreamble
	IDLffDICOM::GetReference
	Group
	Element
	DESCRIPTION
	VR

	IDLffDICOM::GetValue
	Group
	Element
	REFERENCE
	NO_COPY
	Example 1
	Example 2

	IDLffDICOM::GetVR
	Group
	Element
	REFERENCE

	IDLffDICOM::Init
	Filename

	IDLffDICOM::Read
	Filename
	ENDIAN

	IDLffDICOM::Reset

	IDLffDXF
	IDLffDXF Properties
	IDLffDXF::Cleanup
	IDLffDXF::GetContents
	Filter
	BLOCK
	COUNT
	LAYER

	IDLffDXF::GetEntity
	Type
	BLOCK
	INDEX
	LAYER
	Fields Common to All Structures
	BLOCK
	COLOR
	EXTRUSION
	LAYER
	LINESTYLE
	THICKNESS
	DXF_TYPE

	Structure Formats
	Structure IDL_DXF_ELLIPSE
	Structure IDL_DXF_POLYGON
	Structure IDL_DXF_POLYLINE
	Structure IDL_DXF_POINT
	Structure IDL_DXF_SPLINE
	Structure IDL_DXF_TXT
	Structure IDL_DXF_XLINE
	Structure IDL_DXF_INSERT
	Structure IDL_DXF_BLOCK
	Structure IDL_DXF_LAYER

	IDLffDXF::GetPalette
	Red
	Green
	Blue

	IDLffDXF::Init
	Filename

	IDLffDXF::PutEntity
	Data

	IDLffDXF::Read
	Filename

	IDLffDXF::RemoveEntity
	Type
	INDEX

	IDLffDXF::Reset
	IDLffDXF::SetPalette
	Red
	Green
	Blue

	IDLffDXF::Write
	Filename

	IDLffLanguageCat
	IDLffLanguageCat Properties
	IDLffLanguageCat::IsValid
	IDLffLanguageCat::Query
	Key
	DEFAULT_STRING

	IDLffLanguageCat::SetCatalog
	Application
	FILENAME
	LOCALE
	PATH

	IDLffMrSID
	IDLffMrSID Properties
	QUIET

	IDLffMrSID::Cleanup
	IDLffMrSID::GetDimsAtLevel
	Level

	IDLffMrSID::GetImageData
	LEVEL
	SUB_RECT

	IDLffMrSID::GetProperty
	CHANNELS
	DIMENSIONS
	LEVELS
	PIXEL_TYPE
	TYPE
	GEO_VALID
	GEO_PROJTYPE
	GEO_ORIGIN
	GEO_RESOLUTION

	IDLffMrSID::Init
	Filename

	IDLffShape
	Overview of ESRI Shapefiles
	Naming Conventions for a Shapefile
	Major Elements of a Shapefile
	Accessing Shapefiles
	Creating New Shapefiles
	Updating Existing Shapefiles

	IDLffShape Properties
	ATTRIBUTE_INFO
	ATTRIBUTE_NAMES
	DBF_ONLY
	ENTITY_TYPE
	FILENAME
	IS_OPEN
	N_ATTRIBUTES
	N_ENTITIES
	N_RECORDS
	UPDATE

	IDLffShape::AddAttribute
	Name
	Type
	Width
	PRECISION

	IDLffShape::Cleanup
	IDLffShape::Close
	IDLffShape::DestroyEntity
	Entity

	IDLffShape::GetAttributes
	Index
	ALL
	ATTRIBUTE_STUCTURE

	IDLffShape::GetEntity
	Index
	ALL
	ATTRIBUTES

	IDLffShape::GetProperty
	IDLffShape::Init
	Filename

	IDLffShape::Open
	Filename
	DBF_ONLY
	UPDATE
	ENTITY_TYPE

	IDLffShape::PutEntity
	Data

	IDLffShape::SetAttributes
	Attribute_Num
	Attributes
	Index
	Value

	IDLffXMLSAX
	IDLffXMLSAX Properties
	FILENAME
	NAMESPACE_PREFIXES
	PARSER_LOCATION
	PARSER_PUBLICID
	PARSER_URI
	SCHEMA_CHECKING
	VALIDATION_MODE

	IDLffXMLSAX::AttributeDecl
	eName
	aName
	Type
	Mode
	Value

	IDLffXMLSAX::Characters
	Chars

	IDLffXMLSAX::Cleanup
	IDLffXMLSAX::Comment
	Comment

	IDLffXMLSAX::ElementDecl
	Name
	Model

	IDLffXMLSAX::EndCDATA
	IDLffXMLSAX::EndDocument
	IDLffXMLSAX::EndDTD
	IDLffXMLSAX::EndElement
	URI
	Local
	qName

	IDLffXMLSAX::EndEntity
	Name

	IDLffXMLSAX::EndPrefixMapping
	Prefix

	IDLffXMLSAX::Error
	SystemID
	LineNumber
	ColumnNumber
	Message

	IDLffXMLSAX::ExternalEntityDecl
	Name
	PublicID
	SystemID

	IDLffXMLSAX::FatalError
	SystemID
	LineNumber
	ColumnNumber
	Message

	IDLffXMLSAX::GetProperty
	IDLffXMLSAX::IgnorableWhitespace
	Chars

	IDLffXMLSAX::Init
	IDLffXMLSAX::InternalEntityDecl
	Name
	Value

	IDLffXMLSAX::NotationDecl
	Name
	PublicID
	SystemID

	IDLffXMLSAX::ParseFile
	Filename

	IDLffXMLSAX::ProcessingInstruction
	Target
	Data

	IDLffXMLSAX::SetProperty
	IDLffXMLSAX::SkippedEntity
	Name

	IDLffXMLSAX::StartCDATA
	IDLffXMLSAX::StartDocument
	IDLffXMLSAX::StartDTD
	Name
	PublicID
	SystemID

	IDLffXMLSAX::StartElement
	URI
	Local
	qName
	attrName
	attrValue

	IDLffXMLSAX::StartEntity
	Name

	IDLffXMLSAX::StartPrefixmapping
	Prefix
	URI

	IDLffXMLSAX::StopParsing
	IDLffXMLSAX::UnparsedEntityDecl
	Name
	PublicID
	SystemID
	Notation

	IDLffXMLSAX::Warning
	SystemID
	LineNumber
	ColumnNumber
	Message

	iTools Object Classes
	IDLitCommand
	IDLitCommand Properties
	TARGET_IDENTIFIER
	OPERATION_IDENTIFIER

	IDLitCommand::AddItem
	StrItem
	Item
	OVERWRITE

	IDLitCommand::Cleanup
	IDLitCommand::GetItem
	StrItem
	Item

	IDLitCommand::GetProperty
	IDLitCommand::GetSize
	KILOBYTES

	IDLitCommand::Init
	IDLitCommand::SetProperty

	IDLitCommandSet
	IDLitCommandSet Properties
	IDLitCommandSet::Cleanup
	IDLitCommandSet::GetSize
	KILOBYTES

	IDLitCommandSet::Init

	IDLitComponent
	IDLitComponent Properties
	DESCRIPTION
	ICON
	HELP
	IDENTIFIER
	NAME
	PRIVATE
	UVALUE

	IDLitComponent::Cleanup
	IDLitComponent::EditUserDefProperty
	iTool
	PropertyIdentifier

	IDLitComponent::GetFullIdentifier
	Objref

	IDLitComponent::GetProperty
	IDLitComponent::GetPropertyAttribute
	PropertyIdentifier
	TYPE

	IDLitComponent::GetPropertyByIdentifier
	PropertyIdentifier
	Value

	IDLitComponent::Init
	IDLitComponent::QueryProperty
	PropertyIdentifier

	IDLitComponent::RegisterProperty
	PropertyIdentifier
	Type
	BOOLEAN
	COLOR
	DESCRIPTION (Get, Set)
	ENUMLIST (Get, Set)
	FLOAT
	HIDE (Get, Set)
	INTEGER
	LINESTYLE
	NAME (Get, Set)
	SENSITIVE (Get, Set)
	STRING
	SYMBOL
	THICKNESS
	UNDEFINED (Get, Set)
	USERDEF (Get, Set)
	VALID_RANGE (Get, Set)

	IDLitComponent::SetProperty
	IDLitComponent::SetPropertyAttribute
	PropertyIdentifier

	IDLitComponent::SetPropertyByIdentifier
	PropertyIdentifier
	Value

	IDLitContainer
	IDLitContainer Properties
	IDLitContainer::Add
	Components
	NO_NOTIFY

	IDLitContainer::AddByIdentifier
	Identifier
	Item

	IDLitContainer::Cleanup
	IDLitContainer::Get
	ALL
	COUNT
	ISA
	POSITION
	SKIP_PRIVATE

	IDLitContainer::GetByIdentifier
	Identifier

	IDLitContainer::Init
	IDLitContainer::Remove
	Components
	NO_NOTIFY

	IDLitContainer::RemoveByIdentifier
	Identifier

	IDLitData
	IDLitData Properties
	HIDE
	NO_COPY
	READ_ONLY
	TYPE

	IDLitData::AddDataObserver
	Observer

	IDLitData::Cleanup
	IDLitData::Copy
	IDLitData::GetByType
	Type
	COUNT

	IDLitData::GetData
	Data
	Identifier
	NAN
	NO_COPY

	IDLitData::GetProperty
	IDLitData::GetSize
	IDLitData::Init
	Data

	IDLitData::NotifyDataChange
	IDLitData::NotifyDataComplete
	IDLitData::RemoveDataObserver
	Observer

	IDLitData::SetData
	Data
	Identifier
	NO_COPY
	NULL

	IDLitData::SetProperty

	IDLitDataContainer
	IDLitDataContainer Properties
	IDLitDataContainer::Cleanup
	IDLitDataContainer::GetData
	Data
	Identifier
	NO_COPY

	IDLitDataContainer::GetIdentifiers
	Pattern
	LEAF

	IDLitDataContainer::GetProperty
	IDLitDataContainer::Init
	Data

	IDLitDataContainer::SetData
	Data
	Identifier
	NO_COPY
	NULL

	IDLitDataContainer::SetProperty

	IDLitDataOperation
	IDLitDataOperation Properties
	IDLitDataOperation::Cleanup
	IDLitDataOperation::DoExecuteUI
	IDLitDataOperation::Execute
	Data

	IDLitDataOperation::GetProperty
	IDLitDataOperation::Init
	IDLitDataOperation::SetProperty
	IDLitDataOperation::UndoExecute
	Data

	IDLitIMessaging
	IDLitIMessaging Properties
	IDLitIMessaging::AddOnNotifyObserver
	IdObserver
	IdSubject

	IDLitIMessaging::DoOnNotify
	IdOriginator
	IdMessage
	Value

	IDLitIMessaging::ErrorMessage
	StrMessage
	SEVERITY
	TITLE
	USE_LAST_ERROR

	IDLitIMessaging::GetTool
	IDLitIMessaging::ProbeStatusMessage
	StrMessage

	IDLitIMessaging::ProgressBar
	StrMessage
	PERCENT
	SHUTDOWN

	IDLitIMessaging::PromptUserText
	StrPrompt
	Answer
	TITLE

	IDLitIMessaging::PromptUserYesNo
	StrPrompt
	Answer
	TITLE

	IDLitIMessaging::RemoveOnNotifyObserver
	IdObserver
	IdSubject

	IDLitIMessaging::SignalError
	StrMessage
	CODE
	SEVERITY

	IDLitIMessaging::StatusMessage
	StrMessage

	IDLitManipulator
	IDLitManipulator Properties
	BUTTON_EVENTS
	DEFAULT_CURSOR
	DESCRIPTION
	DISABLE
	DRAG_QUALITY
	KEYBOARD_EVENTS
	MOTION_EVENTS
	OPERATION_IDENTIFIER
	PARAMETER_IDENTIFIER
	TRANSIENT_DEFAULT
	TRANSIENT_MOTION
	TYPES
	VIEWS_ONLY
	VISUAL_TYPE

	IDLitManipulator::Cleanup
	IDLitManipulator::CommitUndoValues
	UNCOMMIT

	IDLitManipulator::GetCursorType
	TypeIn
	KeyMods

	IDLitManipulator::GetProperty
	IDLitManipulator::Init
	IDLitManipulator::OnKeyboard
	Win
	IsASCII
	KeyValue
	Character
	X
	Y
	Press
	Release
	KeyMods

	IDLitManipulator::OnLoseCurrentManipulator
	IDLitManipulator::OnMouseDown
	Win
	X
	Y
	IButton
	KeyMods
	NClicks

	IDLitManipulator::OnMouseMotion
	Win
	X
	Y
	KeyMods

	IDLitManipulator::OnMouseUp
	Win
	X
	Y
	IButton

	IDLitManipulator::RecordUndoValues
	IDLitManipulator::SetCurrentManipulator
	Item

	IDLitManipulator::SetProperty

	IDLitManipulatorContainer
	IDLitManipulatorContainer Properties
	AUTO_SWITCH

	IDLitManipulatorContainer::Add
	Manipulator

	IDLitManipulatorContainer::GetCurrent
	IDLitManipulatorContainer::GetCurrentManipulator
	IDENTIFIER

	IDLitManipulatorContainer::GetProperty
	IDLitManipulatorContainer::Init
	IDLitManipulatorContainer::OnKeyboard
	Win
	IsASCII
	KeyValue
	Character
	X
	Y
	Press
	Release
	KeyMods

	IDLitManipulatorContainer::OnMouseDown
	Win
	X
	Y
	IButton
	KeyMods
	NClicks

	IDLitManipulatorContainer::OnMouseMotion
	Win
	X
	Y
	KeyMods

	IDLitManipulatorContainer::OnMouseUp
	Win
	X
	Y
	IButton

	IDLitManipulatorContainer::SetCurrent
	Manipulator

	IDLitManipulatorContainer::SetCurrentManipulator
	Identifier

	IDLitManipulatorContainer::SetProperty

	IDLitManipulatorManager
	IDLitManipulatorManager Properties
	IDLitManipulatorManager::Add
	Manipulator
	DEFAULT

	IDLitManipulatorManager::AddManipulatorObserver
	Observer

	IDLitManipulatorManager::Init
	IDLitManipulatorManager::RemoveManipulatorObserver
	Observer

	IDLitManipulatorVisual
	IDLitManipulatorVisual Properties
	UNIFORM_SCALE
	VISUAL_TYPE

	IDLitManipulatorVisual::Cleanup
	IDLitManipulatorVisual::GetProperty
	IDLitManipulatorVisual::Init
	IDLitManipulatorVisual::SetProperty

	IDLitOperation
	IDLitOperation Properties
	EXPENSIVE_COMPUTATION
	REVERSIBLE_OPERATION
	SHOW_EXECUTION_UI
	TYPES

	IDLitOperation::Cleanup
	IDLitOperation::DoAction
	Tool

	IDLitOperation::GetProperty
	IDLitOperation::Init
	IDLitOperation::RecordFinalValues
	CommandSet
	Targets
	IdProperty

	IDLitOperation::RecordInitialValues
	CommandSet
	Targets
	IdProperty

	IDLitOperation::RedoOperation
	CommandSet

	IDLitOperation::SetProperty
	IDLitOperation::UndoOperation
	CommandSet

	IDLitParameter
	IDLitParameter Properties
	IDLitParameter::Cleanup
	IDLitParameter::GetParameter
	Name
	ALL
	COUNT

	IDLitParameter::GetParameterSet
	DEEP_COPY

	IDLitParameter::Init
	IDLitParameter::OnDataChangeUpdate
	Data
	ParameterName

	IDLitParameter::OnDataDisconnect
	ParameterName

	IDLitParameter::RegisterParameter
	Name
	BY_VALUE
	DESCRIPTION
	INPUT
	OPTARGET
	OPTIONAL
	OUTPUT
	TYPES

	IDLitParameter::SetData
	Data
	BY_VALUE
	NO_UPDATE
	PARAMETER_NAME

	IDLitParameter::SetParameterSet
	ParamSet

	IDLitParameterSet
	IDLitParameterSet Properties
	IDLitParameterSet::Add
	Data
	PARAMETER_NAME
	PRESERVE_LOCATION

	IDLitParameterSet::Cleanup
	IDLitParameterSet::Copy
	IDLitParameterSet::Get
	ALL
	COUNT
	NAME
	POSITION

	IDLitParameterSet::GetByName
	Names
	NAME
	COUNT

	IDLitParameterSet::GetParameterName
	Data
	Name

	IDLitParameterSet::Init
	IDLitParameterSet::Remove
	Items
	ALL
	POSITION

	IDLitReader
	IDLitReader Properties
	IDLitReader::Cleanup
	IDLitReader::GetData
	Data

	IDLitReader::GetFileExtensions
	COUNT

	IDLitReader::GetFilename
	IDLitReader::GetProperty
	IDLitReader::Init
	Extensions

	IDLitReader::IsA
	Filename

	IDLitReader::SetFilename
	Filename

	IDLitReader::SetProperty

	IDLitTool
	IDLitTool Properties
	DESCRIPTION
	ICON
	NAME
	TYPE
	UPDATE_BYTYPE
	VERBOSE
	VERSION

	IDLitTool::Add
	Item

	IDLitTool::AddService
	Service

	IDLitTool::Cleanup
	IDLitTool::CommitActions
	IDLitTool::DisableUpdates
	IDLitTool::DoAction
	Identifier

	IDLitTool::DoSetProperty
	TargetIdentifier
	PropertyIdentifier
	Value

	IDLitTool::DoUIService
	ServiceIdentifier
	Requestor

	IDLitTool::EnableUpdates
	IDLitTool::GetCurrentManipulator
	IDLitTool::GetFileReader
	Idenitifer
	ALL
	COUNT

	IDLitTool::GetFileWriter
	Identifier
	ALL
	COUNT

	IDLitTool::GetManipulators
	COUNT

	IDLitTool::GetOperations
	IDENTIFIER
	COUNT

	IDLitTool::GetProperty
	IDLitTool::GetSelectedItems
	COUNT

	IDLitTool::GetService
	IdService

	IDLitTool::GetVisualization
	Identifier
	ALL
	COUNT

	IDLitTool::Init
	IDLitTool::RefreshCurrentWindow
	IDLitTool::Register
	Name
	ClassName
	DESCRIPTION
	ICON
	IDENTIFIER
	PROXY

	IDLitTool::RegisterFileReader
	Name
	ClassName
	DESCRIPTION
	ICON
	IDENTIFIER
	PROXY

	IDLitTool::RegisterFileWriter
	Name
	ClassName
	DESCRIPTION
	ICON
	IDENTIFIER
	PROXY

	IDLitTool::RegisterManipulator
	Name
	ClassName
	DEFAULT
	DESCRIPTION
	ICON
	IDENTIFIER

	IDLitTool::RegisterOperation
	Name
	ClassName
	DESCRIPTION
	ICON
	IDENTIFIER
	PROXY

	IDLitTool::RegisterVisualization
	Name
	ClassName
	DEFAULT
	DESCRIPTION
	ICON
	IDENTIFIER
	PROXY

	IDLitTool::SetProperty
	IDLitTool::UnRegister
	Identifier

	IDLitTool::UnRegisterFileReader
	Identifier

	IDLitTool::UnRegisterFileWriter
	Identifier

	IDLitTool::UnRegisterManipulator
	Identifier

	IDLitTool::UnRegisterOperation
	Identifier

	IDLitTool::UnRegisterVisualization
	Identifier

	IDLitUI
	IDLitUI Properties
	GROUP_LEADER

	IDLitUI::AddOnNotifyObserver
	IdObserver
	IdSubject

	IDLitUI::Cleanup
	IDLitUI::DoAction
	Identifier

	IDLitUI::GetProperty
	IDLitUI::GetTool
	IDLitUI::GetWidgetByName
	Name

	IDLitUI::Init
	IDLitUI::RegisterUIService
	Name
	Callback

	IDLitUI::RegisterWidget
	wID
	Name
	Callback
	FLOATING

	IDLitUI::RemoveOnNotifyObserver
	IdObserver
	IdSubject

	IDLitUI::SetProperty
	IDLitUI::UnRegisterUIService
	Name

	IDLitUI::UnRegisterWidget
	Name

	IDLitVisualization
	IDLitVisualization Properties
	CENTER_OF_ROTATION
	GROUP_PARENT
	IMPACTS_RANGE
	ISOTROPIC
	MANIPULATOR_TARGET
	PROPERTY_INTERSECTION
	TYPE

	IDLitVisualization::Add
	Objects
	AGGREGATE
	GROUP
	NO_UPDATE
	POSITION

	IDLitVisualization::Aggregate
	Objects

	IDLitVisualization::Cleanup
	IDLitVisualization::Get
	ALL
	COUNT
	ISA
	POSITION
	SKIP_PRIVATE

	IDLitVisualization::GetCenterRotation
	DATA
	NO_TRANSFORM
	XRANGE
	YRANGE
	ZRANGE

	IDLitVisualization::GetCurrentSelectionVisual
	IDLitVisualization::GetDataSpace
	UNNORMALIZED

	IDLitVisualization::GetDataString
	XYZLocation

	IDLitVisualization::GetDefaultSelectionVisual
	IDLitVisualization::GetManipulatorTarget
	IDLitVisualization::GetProperty
	IDLitVisualization::GetSelectionVisual
	Manipulator

	IDLitVisualization::GetTypes
	IDLitVisualization::GetXYZRange
	XRange
	YRange
	ZRange
	DATA
	NO_TRANSFORM

	IDLitVisualization::Init
	IDLitVisualization::Is3D
	IDLitVisualization::IsIsotropic
	IDLitVisualization::IsManipulatorTarget
	IDLitVisualization::IsSelected
	IDLitVisualization::OnDataChange
	Notifier

	IDLitVisualization::OnDataComplete
	Notifier

	IDLitVisualization::OnDataRangeChange
	Notifier
	XRange
	YRange
	ZRange

	IDLitVisualization::Remove
	Object

	IDLitVisualization::Scale
	SX
	SY
	SZ
	CENTER_OF_ROTATION
	PREMULTIPLY

	IDLitVisualization::Select
	Mode
	ADDITIVE
	NO_NOTIFY
	SELECT
	TOGGLE
	UNSELECT

	IDLitVisualization::Set3D
	Is3D
	ALWAYS
	AUTO_COMPUTE

	IDLitVisualization::SetCurrentSelectionVisual
	Manipulator

	IDLitVisualization::SetData
	Data

	IDLitVisualization::SetDefaultSelectionVisual
	SelectionVisual
	POSITION

	IDLitVisualization::SetParameterSet
	ParameterSet

	IDLitVisualization::SetProperty
	IDLitVisualization::UpdateSelectionVisual
	IDLitVisualization::VisToWindow
	InX
	InY
	InZ
	InVerts
	OutX
	OutY
	OutZ
	OutVerts
	NO_TRANSFORM

	IDLitVisualization::WindowToVis
	InX
	InY
	InZ
	InVerts
	OutX
	OutY
	OutZ
	OutVerts

	IDLitWindow
	IDLitWindow Properties
	COLOR_MODEL
	CURRENT_ZOOM
	DESCRIPTION
	DIMENSIONS
	DISPLAY_NAME (X Only)
	GRAPHICS_TREE
	LOCATION
	MINIMUM_VIRTUAL_DIMENSIONS
	NAME
	N_COLORS
	PALETTE
	QUALITY
	RENDERER
	RETAIN
	TITLE
	UNITS
	UVALUE
	VIRTUAL_DIMENSIONS
	VISIBLE_LOCATION
	ZOOM_BASE
	ZOOM_NSTEP

	IDLitWindow::Add
	Objects
	POSITION

	IDLitWindow::AddWindowEventObserver
	Objects

	IDLitWindow::Cleanup
	IDLitWindow::ClearSelections
	IDLitWindow::DoHitTest
	X
	Y
	DIMENSIONS
	SUB_HIT
	UNITS

	IDLitWindow::GetEventMask
	BUTTON_EVENTS
	KEYBOARD_EVENTS
	MOTION_EVENTS
	TRACKING_EVENTS

	IDLitWindow::GetProperty
	IDLitWindow::GetSelectedItems
	COUNT

	IDLitWindow::Init
	IDLitWindow::OnKeyboard
	IsAlphaNumeric
	Character
	KeySymbol

	IDLitWindow::OnMouseDown
	X
	Y
	ButtonMask
	Modifiers
	NumClicks

	IDLitWindow::OnMouseMotion
	X
	Y
	Modifiers

	IDLitWindow::OnMouseUp
	X
	Y
	ButtonMask

	IDLitWindow::OnScroll
	X
	Y

	IDLitWindow::Remove
	Object
	ALL
	POSITION

	IDLitWindow::RemoveWindowEventObserver
	Objects

	IDLitWindow::SetCurrentZoom
	ZoomFactor
	RESET

	IDLitWindow::SetEventMask
	EventMask
	BUTTON_EVENTS
	KEYBOARD_EVENTS
	MOTION_EVENTS
	TRACKING_EVENTS

	IDLitWindow::SetManipulatorManager
	Manager

	IDLitWindow::SetProperty
	IDLitWindow::ZoomIn
	IDLitWindow::ZoomOut

	IDLitWriter
	IDLitWriter Properties
	IDLitWriter::Cleanup
	IDLitWriter::GetFileExtensions
	COUNT

	IDLitWriter::GetFilename
	IDLitWriter::GetProperty
	IDLitWriter::Init
	Extensions

	IDLitWriter::IsA
	Filename

	IDLitWriter::SetData
	Data

	IDLitWriter::SetFilename
	Filename

	IDLitWriter::SetProperty

	Graphics Object Classes
	IDLgrAxis
	IDLgrAxis Properties
	ALL
	AM_PM
	CLIP_PLANES
	COLOR
	CRANGE
	DAYS_OF_WEEK
	DEPTH_TEST_DISABLE
	DEPTH_TEST_FUNCTION
	DEPTH_WRITE_DISABLE
	DIRECTION
	EXACT
	EXTEND
	GRIDSTYLE
	HIDE
	LOCATION
	LOG
	MAJOR
	MINOR
	MONTHS
	NOTEXT
	PALETTE
	PARENT
	RANGE
	REGISTER_PROPERTIES
	SUBTICKLEN
	TEXTALIGNMENTS
	TEXTBASELINE
	TEXTPOS
	TEXTUPDIR
	THICK
	TICKDIR
	TICKFORMAT
	TICKFRMTDATA
	TICKINTERVAL
	TICKLAYOUT
	TICKLEN
	TICKTEXT
	TICKUNITS
	TICKVALUES
	TITLE
	USE_TEXT_COLOR
	XCOORD_CONV
	XRANGE
	YCOORD_CONV
	YRANGE
	ZCOORD_CONV
	ZRANGE

	IDLgrAxis::Cleanup
	IDLgrAxis::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrAxis::GetProperty
	IDLgrAxis::Init
	Direction

	IDLgrAxis::SetProperty

	IDLgrBuffer
	IDLgrBuffer Properties
	ALL
	COLOR_MODEL
	DIMENSIONS
	GRAPHICS_TREE
	IMAGE_DATA
	N_COLORS
	PALETTE
	QUALITY
	REGISTER_PROPERTIES
	RESOLUTION
	SCREEN_DIMENSIONS
	UNITS
	ZBUFFER_DATA

	IDLgrBuffer::Cleanup
	IDLgrBuffer::Draw
	Picture
	CREATE_INSTANCE
	DRAW_INSTANCE

	IDLgrBuffer::Erase
	COLOR

	IDLgrBuffer::GetContiguousPixels
	IDLgrBuffer::GetDeviceInfo
	ALL
	MAX_NUM_CLIP_PLANES
	MAX_TEXTURE_DIMENSIONS
	MAX_VIEWPORT_DIMENSIONS
	NAME
	NUM_CPUS
	VENDOR
	VERSION

	IDLgrBuffer::GetFontnames
	FamilyName
	IDL_FONTS
	STYLES

	IDLgrBuffer::GetProperty
	IDLgrBuffer::GetTextDimensions
	TextObj
	DESCENT
	PATH

	IDLgrBuffer::Init
	IDLgrBuffer::PickData
	View
	Object
	Location
	XYZLocation
	DIMENSIONS
	PATH
	PICK_STATUS

	IDLgrBuffer::Read
	IDLgrBuffer::Select
	Picture
	XY
	DIMENSIONS
	ORDER
	UNITS

	IDLgrBuffer::SetProperty

	IDLgrClipboard
	IDLgrClipboard Properties
	ALL
	COLOR_MODEL
	DIMENSIONS
	GRAPHICS_TREE
	N_COLORS
	PALETTE
	QUALITY
	REGISTER_PROPERTIES
	RESOLUTION
	SCREEN_DIMENSIONS
	UNITS

	IDLgrClipboard::Cleanup
	IDLgrClipboard::Draw
	Picture
	FILENAME
	POSTSCRIPT
	VECTOR

	IDLgrClipboard::GetContiguousPixels
	IDLgrClipboard::GetDeviceInfo
	ALL
	MAX_NUM_CLIP_PLANES
	MAX_TEXTURE_DIMENSIONS
	MAX_VIEWPORT_DIMENSIONS
	NAME
	NUM_CPUS
	VENDOR
	VERSION

	IDLgrClipboard::GetFontnames
	FamilyName
	IDL_FONTS
	STYLES

	IDLgrClipboard::GetProperty
	IDLgrClipboard::GetTextDimensions
	TextObj
	DESCENT
	PATH

	IDLgrClipboard::Init
	IDLgrClipboard::SetProperty

	IDLgrColorbar
	IDLgrColorbar Properties
	ALL
	BLUE_VALUES
	COLOR
	DIMENSIONS
	GREEN_VALUES
	HIDE
	MAJOR
	MINOR
	PALETTE
	PARENT
	RED_VALUES
	SHOW_AXIS
	SHOW_OUTLINE
	SUBTICKLEN
	THICK
	THREED
	TICKFORMAT
	TICKFRMTDATA
	TICKLEN
	TICKTEXT
	TICKVALUES
	TITLE
	XCOORD_CONV
	XRANGE
	YCOORD_CONV
	YRANGE
	ZCOORD_CONV
	ZRANGE

	IDLgrColorbar::Cleanup
	IDLgrColorbar::ComputeDimensions
	DestinationObject
	PATH

	IDLgrColorbar::GetProperty
	IDLgrColorbar::Init
	aRed
	aGreen
	aBlue

	IDLgrColorbar::SetProperty

	IDLgrContour
	IDLgrContour Properties
	ALL
	AM_PM
	ANISOTROPY
	C_COLOR
	C_FILL_PATTERN
	C_LABEL_INTERVAL
	C_LABEL_NOGAPS
	C_LABEL_OBJECTS
	C_LABEL_SHOW
	C_LINESTYLE
	C_THICK
	C_USE_LABEL_COLOR
	C_USE_LABEL_ORIENTATION
	C_VALUE
	CLIP_PLANES
	COLOR
	DATA_VALUES
	DAYS_OF_WEEK
	DEPTH_OFFSET
	DEPTH_TEST_DISABLE
	DEPTH_TEST_FUNCTION
	DEPTH_WRITE_DISABLE
	DOUBLE_DATA
	DOUBLE_GEOM
	DOWNHILL
	FILL
	GEOM
	GEOMX
	GEOMY
	GEOMZ
	HIDE
	LABEL_FONT
	LABEL_FORMAT
	LABEL_FRMTDATA
	LABEL_UNITS
	MAX_VALUE
	MONTHS
	MIN_VALUE
	N_LEVELS
	PALETTE
	PARENT
	PLANAR
	POLYGONS
	REGISTER_PROPERTIES
	SHADE_RANGE
	SHADING
	TICKINTERVAL
	TICKLEN
	USE_TEXT_ALIGNMENTS
	XCOORD_CONV
	XRANGE
	YCOORD_CONV
	YRANGE
	ZCOORD_CONV
	ZRANGE

	IDLgrContour::AdjustLabelOffsets
	LevelIndex
	LabelOffsets

	IDLgrContour::Cleanup
	IDLgrContour::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrContour::GetLabelInfo
	Destination
	LevelIndex
	LABEL_OFFSETS
	LABEL_POLYLINES
	LABEL_OBJECTS

	IDLgrContour::GetProperty
	IDLgrContour::Init
	Values

	IDLgrContour::SetProperty

	IDLgrFont
	IDLgrFont Properties
	ALL
	SIZE
	SUBSTITUTE
	THICK

	IDLgrFont::Cleanup
	IDLgrFont::GetProperty
	IDLgrFont::Init
	Fontname

	IDLgrFont::SetProperty

	IDLgrImage
	IDLgrImage Properties
	ALL
	BLEND_FUNCTION
	CHANNEL
	CLIP_PLANES
	DATA
	DEPTH_TEST_DISABLE
	DEPTH_TEST_FUNCTION
	DEPTH_WRITE_DISABLE
	DIMENSIONS
	GREYSCALE
	HIDE
	INTERLEAVE
	INTERPOLATE
	LOCATION
	NO_COPY
	ORDER
	PALETTE
	PARENT
	REGISTER_PROPERTIES
	RESET_DATA
	SHARE_DATA
	SUB_RECT
	XCOORD_CONV
	XRANGE
	YCOORD_CONV
	YRANGE
	ZCOORD_CONV
	ZRANGE

	IDLgrImage::Cleanup
	IDLgrImage::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrImage::GetProperty
	IDLgrImage::Init
	ImageData

	IDLgrImage::SetProperty

	IDLgrLegend
	IDLgrLegend Properties
	ALL
	BORDER_GAP
	COLUMNS
	FILL_COLOR
	FONT
	GAP
	GLYPH_WIDTH
	HIDE
	ITEM_COLOR
	ITEM_LINESTYLE
	ITEM_NAME
	ITEM_OBJECT
	ITEM_THICK
	ITEM_TYPE
	OUTLINE_COLOR
	OUTLINE_THICK
	PARENT
	RECOMPUTE
	SHOW_FILL
	SHOW_OUTLINE
	TEXT_COLOR
	TITLE
	XCOORD_CONV
	XRANGE
	YCOORD_CONV
	YRANGE
	ZCOORD_CONV
	ZRANGE

	IDLgrLegend::Cleanup
	IDLgrLegend::ComputeDimensions
	DestinationObject
	PATH

	IDLgrLegend::GetProperty
	IDLgrLegend::Init
	aItemNames

	IDLgrLegend::SetProperty

	IDLgrLight
	IDLgrLight Properties
	ALL
	ATTENUATION
	COLOR
	CONEANGLE
	DIRECTION
	FOCUS
	HIDE
	INTENSITY
	LOCATION
	PALETTE
	PARENT
	REGISTER_PROPERTIES
	TYPE
	XCOORD_CONV
	YCOORD_CONV
	ZCOORD_CONV

	IDLgrLight::Cleanup
	IDLgrLight::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrLight::GetProperty
	IDLgrLight::Init
	IDLgrLight::SetProperty

	IDLgrModel
	IDLgrModel Properties
	ALL
	CLIP_PLANES
	DEPTH_TEST_DISABLE
	DEPTH_TEST_FUNCTION
	DEPTH_WRITE_DISABLE
	HIDE
	LIGHTING
	PARENT
	REGISTER_PROPERTIES
	SELECT_TARGET
	TRANSFORM

	IDLgrModel::Add
	Object
	ALIAS
	POSITION

	IDLgrModel::Cleanup
	IDLgrModel::Draw
	Destination
	Picture

	IDLgrModel::GetByName
	Name

	IDLgrModel::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrModel::GetProperty
	IDLgrModel::Init
	IDLgrModel::Reset
	IDLgrModel::Rotate
	Axis
	Angle
	PREMULTIPLY

	IDLgrModel::Scale
	Sx, Sy, Sz
	PREMULTIPLY

	IDLgrModel::SetProperty
	IDLgrModel::Translate
	Tx, Ty, Tz
	PREMULTIPLY

	IDLgrMPEG
	IDLgrMPEG Properties
	ALL
	BITRATE
	DIMENSIONS
	FILENAME
	FORMAT
	FRAME_RATE
	IFRAME_GAP
	INTERLACED
	MOTION_VEC_LENGTH
	QUALITY
	SCALE
	STATISTICS
	TEMP_DIRECTORY

	IDLgrMPEG::Cleanup
	IDLgrMPEG::GetProperty
	IDLgrMPEG::Init
	IDLgrMPEG::Put
	Image
	Frame

	IDLgrMPEG::Save
	FILENAME
	Obsolete Keywords

	IDLgrMPEG::SetProperty

	IDLgrPalette
	IDLgrPalette Properties
	ALL
	BLUE_VALUES
	BOTTOM_STRETCH
	GAMMA
	GREEN_VALUES
	N_COLORS
	RED_VALUES
	TOP_STRETCH

	IDLgrPalette::Cleanup
	IDLgrPalette::GetRGB
	Index

	IDLgrPalette::GetProperty
	IDLgrPalette::Init
	aRed
	aGreen
	aBlue

	IDLgrPalette::LoadCT
	TableNum
	FILE

	IDLgrPalette::NearestColor
	Red
	Green
	Blue

	IDLgrPalette::SetRGB
	Index
	Red
	Green
	Blue

	IDLgrPalette::SetProperty

	IDLgrPattern
	IDLgrPattern Properties
	ALL
	ORIENTATION
	PATTERN
	SPACING
	STYLE
	THICK

	IDLgrPattern::Cleanup
	IDLgrPattern::GetProperty
	IDLgrPattern::Init
	Style

	IDLgrPattern:SetProperty

	IDLgrPlot
	IDLgrPlot Properties
	ALL
	CLIP_PLANES
	COLOR
	DATA
	DATAX
	DATAY
	DEPTH_TEST_DISABLE
	DEPTH_TEST_FUNCTION
	DEPTH_WRITE_DISABLE
	DOUBLE
	HIDE
	HISTOGRAM
	LINESTYLE
	MAX_VALUE
	MIN_VALUE
	NSUM
	PALETTE
	PARENT
	POLAR
	REGISTER_PROPERTIES
	RESET_DATA
	SHARE_DATA
	SYMBOL
	THICK
	USE_ZVALUE
	VERT_COLORS
	XCOORD_CONV
	XRANGE
	YCOORD_CONV
	YRANGE
	ZCOORD_CONV
	ZRANGE
	ZVALUE

	IDLgrPlot::Cleanup
	IDLgrPlot::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrPlot::GetProperty
	IDLgrPlot::Init
	X
	Y

	IDLgrPlot::SetProperty

	IDLgrPolygon
	IDLgrPolygon Properties
	ALL
	BOTTOM
	CLIP_PLANES
	COLOR
	DATA
	DEPTH_OFFSET
	DEPTH_TEST_DISABLE
	DEPTH_TEST_FUNCTION
	DEPTH_WRITE_DISABLE
	DOUBLE
	FILL_PATTERN
	HIDDEN_LINES
	HIDE
	LINESTYLE
	NORMALS
	PALETTE
	PARENT
	POLYGONS
	REGISTER_PROPERTIES
	REJECT
	RESET_DATA
	SHADE_RANGE
	SHADING
	SHARE_DATA
	STYLE
	TEXTURE_COORD
	TEXTURE_INTERP
	TEXTURE_MAP
	THICK
	VERT_COLORS
	XCOORD_CONV
	XRANGE
	YCOORD_CONV
	YRANGE
	ZCOORD_CONV
	ZERO_OPACITY_SKIP
	ZRANGE

	IDLgrPolygon::Cleanup
	IDLgrPolygon::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrPolygon::GetProperty
	IDLgrPolygon::Init
	X
	Y
	Z

	IDLgrPolygon::SetProperty

	IDLgrPolyline
	IDLgrPolyline Properties
	ALL
	CLIP_PLANES
	COLOR
	DATA
	DEPTH_TEST_DISABLE
	DEPTH_TEST_FUNCTION
	DEPTH_WRITE_DISABLE
	DOUBLE
	HIDE
	LABEL_NOGAPS
	LABEL_OFFSETS
	LABEL_OBJECTS
	LABEL_POLYLINES
	LABEL_USE_VERTEX_COLOR
	LINESTYLE
	PALETTE
	PARENT
	POLYLINES
	REGISTER_PROPERTIES
	RESET_DATA
	SHADING
	SHARE_DATA
	SYMBOL
	THICK
	USE_LABEL_COLOR
	USE_LABEL_ORIENTATION
	USE_TEXT_ALIGNMENTS
	VERT_COLORS
	XCOORD_CONV
	XRANGE
	YCOORD_CONV
	YRANGE
	ZCOORD_CONV
	ZRANGE

	IDLgrPolyline::Cleanup
	IDLgrPolyline::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrPolyline::GetProperty
	IDLgrPolyline::Init
	X
	Y
	Z

	IDLgrPolyline::SetProperty

	IDLgrPrinter
	IDLgrPrinter Properties
	ALL
	COLOR_MODEL
	DIMENSIONS
	GAMMA
	GRAPHICS_TREE
	LANDSCAPE
	N_COLORS
	N_COPIES
	PALETTE
	PRINT_QUALITY
	QUALITY
	REGISTER_PROPERTIES
	RESOLUTION
	UNITS

	IDLgrPrinter::Cleanup
	IDLgrPrinter::Draw
	Picture
	VECTOR

	IDLgrPrinter::GetContiguousPixels
	IDLgrPrinter::GetFontnames
	FamilyName
	IDL_FONTS
	STYLES

	IDLgrPrinter::GetProperty
	IDLgrPrinter::GetTextDimensions
	TextObj
	DESCENT
	PATH

	IDLgrPrinter::Init
	IDLgrPrinter::NewDocument
	IDLgrPrinter::NewPage
	IDLgrPrinter::SetProperty

	IDLgrROI
	IDLgrROI Properties
	ALL
	CLIP_PLANES
	COLOR
	DEPTH_TEST_DISABLE
	DEPTH_TEST_FUNCTION
	DEPTH_WRITE_DISABLE
	DOUBLE
	HIDE
	LINESTYLE
	PALETTE
	REGISTER_PROPERTIES
	STYLE
	SYMBOL
	THICK
	XCOORD_CONV
	XRANGE
	YCOORD_CONV
	YRANGE
	ZCOORD_CONV
	ZRANGE

	IDLgrROI::Cleanup
	IDLgrROI::GetProperty
	IDLgrROI::Init
	X
	Y
	Z

	IDLgrROI::PickVertex
	Dest
	View
	Point
	PATH

	IDLgrROI::SetProperty

	IDLgrROIGroup
	IDLgrROIGroup Properties
	ALL
	CLIP_PLANES
	COLOR
	DEPTH_TEST_DISABLE
	DEPTH_TEST_FUNCTION
	DEPTH_WRITE_DISABLE
	HIDE
	PARENT
	XCOORD_CONV
	XRANGE
	YCOORD_CONV
	YRANGE
	ZCOORD_CONV
	ZRANGE

	IDLgrROIGroup::Add
	ROI

	IDLgrROIGroup::Cleanup
	IDLgrROIGroup::GetProperty
	IDLgrROIGroup::Init
	IDLgrROIGroup::PickRegion
	Dest
	View
	Point
	PATH

	IDLgrROIGroup::SetProperty

	IDLgrScene
	IDLgrScene Properties
	ALL
	COLOR
	HIDE
	REGISTER_PROPERTIES
	TRANSPARENT

	IDLgrScene::Add
	View
	POSITION

	IDLgrScene::Cleanup
	IDLgrScene::GetByName
	Name

	IDLgrScene::GetProperty
	IDLgrScene::Init
	IDLgrScene::SetProperty

	IDLgrSurface
	IDLgrSurface Properties
	ALL
	BOTTOM
	CLIP_PLANES
	COLOR
	DATA
	DATAX
	DATAY
	DATAZ
	DEPTH_OFFSET
	DEPTH_TEST_DISABLE
	DEPTH_TEST_FUNCTION
	DEPTH_WRITE_DISABLE
	DOUBLE
	EXTENDED_LEGO
	HIDDEN_LINES
	HIDE
	LINESTYLE
	MAX_VALUE
	MIN_VALUE
	PALETTE
	PARENT
	REGISTER_PROPERTIES
	RESET_DATA
	SHADE_RANGE
	SHADING
	SHARE_DATA
	SHOW_SKIRT
	SKIRT
	STYLE
	TEXTURE_COORD
	TEXTURE_HIGHRES
	TEXTURE_INTERP
	TEXTURE_MAP
	THICK
	USE_TRIANGLES
	VERT_COLORS
	XCOORD_CONV
	XRANGE
	YCOORD_CONV
	YRANGE
	ZCOORD_CONV
	ZERO_OPACITY_SKIP
	ZRANGE

	IDLgrSurface::Cleanup
	IDLgrSurface::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrSurface::GetProperty
	IDLgrSurface::Init
	X
	Y
	Z

	IDLgrSurface::SetProperty

	IDLgrSymbol
	IDLgrSymbol Properties
	ALL
	COLOR
	DATA
	SIZE
	THICK

	IDLgrSymbol::Cleanup
	IDLgrSymbol::GetProperty
	IDLgrSymbol::Init
	Data

	IDLgrSymbol::SetProperty

	IDLgrTessellator
	IDLgrTessellator Properties
	IDLgrTessellator::AddPolygon
	X
	Y
	Z
	AUXDATA
	POLYGON
	INTERIOR

	IDLgrTessellator::Cleanup
	IDLgrTessellator::Init
	IDLgrTessellator::Reset
	IDLgrTessellator::Tessellate
	Vertices
	Poly
	AUXDATA
	QUIET

	IDLgrText
	IDLgrText Properties
	ALIGNMENT
	ALL
	ALPHA_CHANNEL
	BASELINE
	CHAR_DIMENSIONS
	CLIP_PLANES
	COLOR
	DEPTH_TEST_DISABLE
	DEPTH_TEST_FUNCTION
	DEPTH_WRITE_DISABLE
	ENABLE_FORMATTING
	FILL_BACKGROUND
	FILL_COLOR
	FONT
	HIDE
	KERNING
	LOCATIONS
	ONGLASS
	PALETTE
	PARENT
	RECOMPUTE_DIMENSIONS
	REGISTER_PROPERTIES
	RENDER_METHOD
	STRINGS
	UPDIR
	VERTICAL_ALIGNMENT
	XCOORD_CONV
	XRANGE
	YCOORD_CONV
	YRANGE
	ZCOORD_CONV
	ZRANGE

	IDLgrText::Cleanup
	IDLgrText::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrText::GetProperty
	IDLgrText::Init
	String

	IDLgrText::SetProperty

	IDLgrView
	IDLgrView Properties
	ALL
	COLOR
	DEPTH_CUE
	DIMENSIONS
	DOUBLE
	EYE
	HIDE
	LOCATION
	PARENT
	PROJECTION
	REGISTER_PROPERTIES
	TRANSPARENT
	UNITS
	VIEWPLANE_RECT
	ZCLIP

	IDLgrView::Add
	Model
	POSITION

	IDLgrView::Cleanup
	IDLgrView::GetByName
	Name

	IDLgrView::GetProperty
	IDLgrView::Init
	IDLgrView::SetProperty

	IDLgrViewgroup
	IDLgrViewgroup Properties
	ALL
	HIDE
	PARENT
	REGISTER_PROPERTIES

	IDLgrViewgroup::Add
	Object
	POSITION

	IDLgrViewgroup::Cleanup
	IDLgrViewgroup::GetByName
	Name

	IDLgrViewgroup::GetProperty
	IDLgrViewgroup::Init
	IDLgrViewgroup::SetProperty

	IDLgrVolume
	IDLgrVolume Properties
	ALL
	AMBIENT
	BOUNDS
	CLIP_PLANES
	COMPOSITE_FUNCTION
	CUTTING_PLANES
	DATA0
	DATA1
	DATA2
	DATA3
	DEPTH_CUE
	DEPTH_TEST_DISABLE
	DEPTH_TEST_FUNCTION
	DEPTH_WRITE_DISABLE
	HIDE
	HINTS
	INTERPOLATE
	LIGHTING_MODEL
	NO_COPY
	OPACITY_TABLE0
	OPACITY_TABLE1
	PALETTE
	PARENT
	REGISTER_PROPERTIES
	RENDER_STEP
	RGB_TABLE0
	RGB_TABLE1
	TWO_SIDED
	VALID_DATA
	VOLUME_SELECT
	XCOORD_CONV
	XRANGE
	YCOORD_CONV
	YRANGE
	ZBUFFER
	ZCOORD_CONV
	ZERO_OPACITY_SKIP
	ZRANGE
	Obsolete Properties

	IDLgrVolume::Cleanup
	IDLgrVolume::ComputeBounds
	OPACITY
	RESET
	VOLUMES

	IDLgrVolume::GetCTM
	DESTINATION
	PATH
	TOP

	IDLgrVolume::GetProperty
	IDLgrVolume::Init
	vol0
	vol1
	vol2
	vol3

	IDLgrVolume::PickVoxel
	Win
	View
	Point
	PATH

	IDLgrVolume::SetProperty

	IDLgrVRML
	IDLgrImage objects
	IDLgrPolygon and IDLgrSurface objects
	IDLgrLight objects
	IDLgrText objects
	IDLgrViewgroup, IDLgrScene, IDLgrVolume objects
	IDLgrPalette objects
	IDLgrPattern objects
	IDLgrFont, IDLgrSymbol objects
	IDLgrPolyline, IDLgrSymbol, IDLgrSurface, IDLgrPolygon and IDLgrPlot objects
	IDLgrView objects
	Destination objects
	IDLgrVRML Properties
	ALL
	COLOR_MODEL
	DIMENSIONS
	FILENAME
	GRAPHICS_TREE
	N_COLORS
	PALETTE
	QUALITY
	REGISTER_PROPERTIES
	RESOLUTION
	SCREEN_DIMENSIONS
	UNITS
	WORLDINFO
	WORLDTITLE

	IDLgrVRML::Cleanup
	IDLgrVRML::Draw
	Picture

	IDLgrVRML::GetDeviceInfo
	ALL
	MAX_NUM_CLIP_PLANES
	MAX_TEXTURE_DIMENSIONS
	MAX_VIEWPORT_DIMENSIONS
	NAME
	NUM_CPUS
	VENDOR
	VERSION

	IDLgrVRML::GetFontnames
	FamilyName
	IDL_FONTS
	STYLES

	IDLgrVRML::GetProperty
	IDLgrVRML::GetTextDimensions
	TextObj
	DESCENT
	PATH

	IDLgrVRML::Init
	IDLgrVRML::SetProperty

	IDLgrWindow
	Note on Window Size Limits
	IDLgrWindow Properties
	ALL
	COLOR_MODEL
	CURRENT_ZOOM
	DIMENSIONS
	DISPLAY_NAME (X Only)
	GRAPHICS_TREE
	IMAGE_DATA
	LOCATION
	N_COLORS
	PALETTE
	QUALITY
	REGISTER_PROPERTIES
	RENDERER
	RESOLUTION
	RETAIN
	SCREEN_DIMENSIONS
	TITLE
	UNITS
	VIRTUAL_DIMENSIONS
	VISIBLE_LOCATION
	ZBUFFER_DATA

	IDLgrWindow::Cleanup
	IDLgrWindow::Draw
	Picture
	CREATE_INSTANCE
	DRAW_INSTANCE

	IDLgrWindow::Erase
	COLOR

	IDLgrWindow::GetContiguousPixels
	IDLgrWindow::GetDeviceInfo
	ALL
	MAX_NUM_CLIP_PLANES
	MAX_TEXTURE_DIMENSIONS
	MAX_VIEWPORT_DIMENSIONS
	NAME
	NUM_CPUS
	VENDOR
	VERSION

	IDLgrWindow::GetFontnames
	FamilyName
	IDL_FONTS
	STYLES

	IDLgrWindow::GetProperty
	IDLgrWindow::GetTextDimensions
	TextObj
	DESCENT
	PATH

	IDLgrWindow::Iconify
	IconFlag

	IDLgrWindow::Init
	IDLgrWindow::PickData
	View
	Object
	Location
	XYZLocation
	DIMENSIONS
	PATH
	PICK_STATUS

	IDLgrWindow::Read
	IDLgrWindow::Select
	Picture
	XY
	DIMENSIONS
	ORDER
	UNITS

	IDLgrWindow::SetCurrentCursor
	CursorName
	IMAGE
	MASK
	HOTSPOT
	STANDARD (X Only)

	IDLgrWindow::SetProperty
	IDLgrWindow::Show
	Position

	Miscellaneous Object Classes
	IDL_Container
	IDL_Container Properties
	IDL_Container::Add
	Objects
	POSITION

	IDL_Container::Cleanup
	IDL_Container::Count
	IDL_Container::Get
	ALL
	COUNT
	ISA
	POSITION

	IDL_Container::Init
	IDL_Container::IsContained
	Object
	POSITION

	IDL_Container::Move
	Source
	Destination

	IDL_Container::Remove
	Child_object
	ALL
	POSITION

	IDLcomActiveX
	IDLcomActiveX Properties

	IDLcomIDispatch
	IDLcomIDispatch Properties
	KEYWORD

	IDLcomIDispatch::GetProperty
	IDLcomIDispatch::Init
	IDLcomIDispatch::SetProperty

	IDLjavaObject
	IDLjavaObject Properties
	IDLjavaObject::GetProperty
	PROPERTY

	IDLjavaObject::Init
	JavaClassName
	Arg1, ...

	IDLjavaObject::SetProperty
	PROPERTY

	TrackBall
	TrackBall Properties
	AXIS
	CONSTRAIN
	MOUSE

	TrackBall::Init
	Center
	Radius

	TrackBall::Reset
	Center
	Radius
	AXIS
	CONSTRAIN
	MOUSE

	TrackBall::Update
	sEvent
	MOUSE
	TRANSFORM
	TRANSLATE

	Part III: Appendices
	IDL Graphics Devices
	Supported Devices
	Keywords Accepted by the IDL Devices
	AVANTGARDE
	AVERAGE_LINES
	BINARY
	BITS_PER_PIXEL
	BKMAN
	BOLD
	BOOK
	BYPASS_TRANSLATION
	CLOSE
	CLOSE_DOCUMENT
	CLOSE_FILE
	COLOR
	COLORS
	COPY
	COURIER
	CURSOR_CROSSHAIR
	CURSOR_IMAGE
	CURSOR_MASK
	CURSOR_ORIGINAL
	CURSOR_STANDARD
	CURSOR_XY
	DECOMPOSED
	DEMI
	DIRECT_COLOR
	EJECT
	ENCAPSULATED
	ENCODING
	FILENAME
	FLOYD
	FONT_INDEX
	FONT_SIZE
	GET_CURRENT_FONT
	GET_DECOMPOSED
	GET_FONTNAMES
	GET_FONTNUM
	GET_GRAPHICS_FUNCTION
	GET_PAGE_SIZE
	GET_SCREEN_SIZE
	GET_VISUAL_DEPTH
	GET_VISUAL_NAME
	GET_WINDOW_POSITION
	GET_WRITE_MASK
	GIN_CHARS
	GLYPH_CACHE
	HELVETICA
	INCHES
	INDEX_COLOR
	ISOLATIN1
	ITALIC
	LANDSCAPE
	LANGUAGE_LEVEL
	LIGHT
	MEDIUM
	NARROW
	NCAR
	OBLIQUE
	OPTIMIZE
	ORDERED
	OUTPUT
	PALATINO
	PIXELS
	PLOT_TO
	PLOTTER_ON_OFF
	POLYFILL
	PORTRAIT
	PRE_DEPTH
	PRE_XSIZE
	PRE_YSIZE
	PREVIEW
	PRINT_FILE
	PSEUDO_COLOR
	RESET_STRING
	RESOLUTION
	RETAIN
	SCALE_FACTOR
	SCHOOLBOOK
	SET_CHARACTER_SIZE
	SET_COLORMAP
	SET_COLORS
	SET_FONT
	SET_GRAPHICS_FUNCTION
	SET_RESOLUTION
	SET_STRING
	SET_TRANSLATION
	SET_WRITE_MASK
	STATIC_COLOR
	STATIC_GRAY
	SYMBOL
	TEK4014
	TEK4100
	TEXT
	THRESHOLD
	TIMES
	TRANSLATION
	TRUE_COLOR
	TT_FONT
	TTY
	USER_FONT
	VT240, VT241
	VT340, VT341
	WINDOW_STATE
	XOFFSET
	XON_XOFF
	XSIZE
	YOFFSET
	YSIZE
	ZAPFCHANCERY
	ZAPFDINGBATS
	Z_BUFFERING

	Window Systems
	Backing Store
	A Note on Reading Data from Windows

	Image Display On Monochrome Devices

	Printing Graphics Output Files
	Setting Up The Printer
	Setting Up Printers Under UNIX

	Positioning Graphics Output
	Image Background Color

	The CGM Device
	Device Keywords Accepted by the CGM Device:
	Abilities and Limitations

	The HP-GL Device
	Device Keywords Accepted by the HP-GL Device:
	Abilities And Limitations
	HP-GL Linestyles

	The Metafile Display Device
	Device Keywords Accepted by the Null Device:

	The Null Display Device
	Device Keywords Accepted by the Null Device:

	The PCL Device
	Device Keywords Accepted by the PCL Device:

	The Printer Device
	Device Keywords Accepted by the PRINTER Device:

	The PostScript Device
	Device Keywords Accepted by the PS Device:
	Using PostScript Fonts
	Color PostScript
	Color Images
	TrueColor Images
	Image Background Color

	PostScript Positioning
	Using the XOFFSET and YOFFSET Keywords
	Encapsulated PostScript Output
	Multiple Plots on the Same Page

	Importing IDL Plots into Other Documents

	The Regis Terminal Device
	Device Keywords Accepted by the REGIS Device:
	Defaults for Regis Devices
	Regis Limitations

	The Tektronix Device
	Device Keywords Accepted by the REGIS Device:
	The DEVICE Procedure For Tektronix Terminals
	Tektronix Limitations
	Tektronix Device Limitations

	The Microsoft Windows Device
	Device Keywords Accepted by the WIN Device:

	The X Windows Device
	Device Keywords Accepted by the X Device:
	X Windows Visuals
	How IDL Selects a Visual Class
	How IDL Obtains a Colormap

	Using Color Under X
	Shared Colormaps
	Private Colormaps
	Static Colormaps
	Color Translation

	Using Pixmaps
	How Color is Interpreted for a TrueColor Visual
	Setting the X Window Defaults

	The Z-Buffer Device
	Device Keywords Accepted by the Z Device:
	Reading and Writing Buffers
	Z-Axis Scaling
	Polyfill Procedure
	Examples Using the Z-Buffer

	Graphics Keywords
	BACKGROUND
	CHANNEL
	CHARSIZE
	CHARTHICK
	CLIP
	COLOR
	DATA
	DEVICE
	FONT
	LINESTYLE
	NOCLIP
	NODATA
	NOERASE
	NORMAL
	ORIENTATION
	POSITION
	PSYM
	SUBTITLE
	SYMSIZE
	T3D
	THICK
	TICKLEN
	TITLE
	[XYZ]CHARSIZE
	[XYZ]GRIDSTYLE
	[XYZ]MARGIN
	[XYZ]MINOR
	[XYZ]RANGE
	[XYZ]STYLE
	[XYZ]THICK
	[XYZ]TICK_GET
	[XYZ]TICKFORMAT
	A format code:
	The string 'LABEL_DATE' :
	The name of a user-defined function:

	[XYZ]TICKINTERVAL
	[XYZ]TICKLAYOUT
	[XYZ]TICKLEN
	[XYZ]TICKNAME
	[XYZ]TICKS
	[XYZ]TICKUNITS
	[XYZ]TICKV
	[XYZ]TITLE
	Z
	ZVALUE

	Thread Pool Keywords
	TPOOL_MAX_ELTS
	TPOOL_MIN_ELTS
	TPOOL_NOTHREAD

	System Variables
	What Are System Variables?
	Constant System Variables
	!DPI
	!DTOR
	!MAP
	!PI
	!RADEG
	!VALUES

	Error Handling System Variables
	!ERR
	!ERROR_STATE
	!ERROR
	!ERR_STRING
	!EXCEPT
	!MOUSE
	!MSG_PREFIX
	!SYSERROR
	!SYSERR_STRING
	!WARN

	IDL Environment System Variables
	!CPU
	!DIR
	!DLM_PATH
	Using Path Definition Tokens to Load a DLM Path

	!EDIT_INPUT
	!HELP_PATH
	!JOURNAL
	!MAKE_DLL
	!MORE
	!PATH
	Note on Path Expansion
	Path Caching
	Changing the Value of !PATH After IDL Starts

	!PROMPT
	!QUIET
	!VERSION

	Graphics System Variables
	!C System Variable
	!D System Variable
	FILL_DIST
	FLAGS
	N_COLORS
	NAME
	ORIGIN
	TABLE_SIZE
	UNIT
	WINDOW
	X_CH_SIZE, Y_CH_SIZE
	X_PX_CM, Y_PX_CM
	X_SIZE, Y_SIZE
	X_VSIZE, Y_VSIZE
	ZOOM

	!ORDER System Variable
	!P System Variable
	BACKGROUND
	CHANNEL
	CHARSIZE
	CHARTHICK
	CLIP
	COLOR
	FONT
	LINESTYLE
	MULTI
	NOCLIP
	NOERASE
	NSUM
	POSITION
	PSYM
	REGION
	SUBTITLE
	T
	T3D
	THICK
	TITLE
	TICKLEN

	!X, !Y, !Z System Variables
	CHARSIZE
	CRANGE
	GRIDSTYLE
	MARGIN
	MINOR
	OMARGIN
	RANGE
	REGION
	S
	STYLE
	THICK
	TICKFORMAT
	TICKINTERVAL
	TICKLAYOUT
	TICKLEN
	TICKNAME
	TICKS
	TICKUNITS
	TICKV
	TITLE
	TYPE
	WINDOW

	IDL Operators
	Mathematical Operators
	Minimum and Maximum Operators
	Matrix Operators
	Logical Operators
	Bitwise Operators
	Relational Operators
	Other Operators
	Operator Precedence

	Special Characters
	Exclamation Point (!)
	Apostrophe (')
	Semicolon (;)
	Dollar Sign ($)
	Quotation Mark (")
	Period (.)
	Ampersand (&)
	Colon (:)
	Asterisk (*)
	At Sign (@)
	@ as an Include Character
	@ to Signal Batch Processing

	Question Mark (?)

	Reserved Words
	Fonts
	Overview
	Fonts in IDL Direct vs. Object Graphics
	IDL Direct Graphics
	IDL Object Graphics

	About Vector Fonts
	Using Vector Fonts
	Specifying Font Size
	ISO Latin 1 Encoding
	Customizing the Vector Fonts

	About TrueType Fonts
	Using TrueType Fonts
	Specifying Font Size
	Using Embedded Formatting Commands
	IDL TrueType Font Resource Files
	Adding Your Own Fonts
	Where IDL Searches for Fonts
	UNIX
	Microsoft Windows

	About Device Fonts
	Which Device Fonts Are Available?
	UNIX
	Microsoft Windows

	Using Device Fonts
	UNIX
	Microsoft Windows

	Fonts and the PostScript Device
	Using PostScript Fonts
	Changing the PostScript Font Assigned to an Index
	Adding Your Own PostScript Fonts

	Choosing a Font Type
	Appearance
	Three-Dimensional Transformations
	Portability
	Computational Time
	Flexibility
	Print Quality

	Embedded Formatting Commands
	Changing Fonts within a String
	Positioning Commands

	Formatting Command Examples
	A Complex Equation
	!MI
	!S
	!A!E!8x
	!R!B!Ip
	!N !7q
	!Ii!N
	!8U
	!S!E2
	!R!Ii
	!N dx

	Vector-Drawn Font Example

	TrueType Font Samples
	Vector Font Samples

	Obsolete Features
	What Are Obsolete Features?
	Routines Obsoleted in IDL 6.0
	Routines Obsoleted in IDL 5.6
	Routines Obsoleted in IDL 5.5
	Routines Obsoleted in IDL 5.4
	Routines Obsoleted in IDL 5.3
	SDF Routines Obsoleted in IDL 5.3
	What is DFSD and Why Are We Obsoleting It?

	Routines Obsoleted in IDL 5.2
	Routines Obsoleted in IDL 5.1
	Routines Obsoleted in IDL 5.0
	Routines Obsoleted in IDL 4.0 or Earlier
	Obsolete Arguments and Keywords
	Obsolete System Variables
	Obsolete Graphics Devices

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

